-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_supervised.py
173 lines (153 loc) · 6.39 KB
/
run_supervised.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import numpy as np
import logging
import torch
import modules
import utils
from supervised import Supervised
from data import get_cifar10, get_cifar100, get_svhn
from monitoring import TableLogger
from evaluation import ModelEvaluator
from functools import partial
from tqdm import tqdm
import pprint
import datetime
import os
import re
import pickle
import fire
logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s', level=logging.INFO)
logger = logging.getLogger(__name__)
def main(
dataset='cifar10',
data_path='/tmp/data',
output_dir='/tmp/supervised',
run_id=None,
seed=1,
block_depth=4,
num_filters=32,
num_epochs=1024,
batches_per_epoch=1024,
batch_size=512,
lr=0.03,
momentum=0.9,
nesterov=True,
weight_decay=5e-4,
bn_momentum=1e-3,
exp_moving_avg_decay=1e-3,
augmentation='strong',
checkpoint_interval=1024,
max_checkpoints=25,
num_workers=4,
mixed_precision=True,
devices=('cuda:0',)):
"""Supervised training.
Args:
dataset: the dataset to use ('cifar10', 'cifar100', 'svhn')
data_path: dataset root directory
output_dir: directory to save logs and model checkpoints
run_id: name for training run (output will be saved under output_dir/run_id)
seed: random seed
block_depth: WideResNet block depth
num_filters: WideResNet base filter count
num_epochs: number of training epochs
batches_per_epoch: number of batches per epoch
batch_size: number of examples per batch
lr: SGD initial learning rate
momentum: SGD momentum parameter
nesterov: whether to use SGD with Nesterov acceleration
weight_decay: weight decay parameter
bn_momentum: batch normalization momentum parameter
exp_moving_avg_decay: model parameter exponential moving average decay
augmentation: data augmentation mode ('none', 'weak', 'strong', 'weak_noflip', 'strong_noflip').
'strong' augmentation uses RandAugment. 'noflip' disables horizontal flip augmentation.
checkpoint_interval: number of batches between checkpoints
max_checkpoints: maximum number of checkpoints to retain
num_workers: number of workers per data loader
mixed_precision: whether to use mixed precision training
devices: list of devices for data parallel training
"""
# initial setup
num_batches = num_epochs * batches_per_epoch
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
args = dict(locals())
logger.info(pprint.pformat(args))
run_id = datetime.datetime.now().isoformat() if run_id is None else run_id
output_dir = os.path.join(output_dir, str(run_id))
logger.info('output dir = %s' % output_dir)
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
with open(os.path.join(output_dir, 'args.pkl'), 'wb') as f:
pickle.dump(args, f)
train_logger, eval_logger = TableLogger(), TableLogger()
# load datasets
if dataset == 'cifar10':
dataset_fn = get_cifar10
elif dataset == 'cifar100':
dataset_fn = get_cifar100
elif dataset == 'svhn':
dataset_fn = get_svhn
else:
raise ValueError('Invalid dataset ' + dataset)
datasets = dataset_fn(
data_path, num_labeled=None, labeled_aug=augmentation, whiten=True)
model = modules.WideResNet(
num_classes=datasets['labeled'].num_classes, bn_momentum=bn_momentum,
block_depth=block_depth, channels=num_filters)
optimizer = partial(torch.optim.SGD, lr=lr, momentum=momentum, nesterov=nesterov, weight_decay=weight_decay)
scheduler = partial(utils.WarmupCosineLrScheduler, warmup_iter=0, max_iter=num_batches)
evaluator = ModelEvaluator(datasets['test'], batch_size, num_workers)
param_avg_ctor = partial(modules.EMA, alpha=exp_moving_avg_decay)
def evaluate(model, avg_model, iter):
results = evaluator.evaluate(model, device=devices[0])
avg_results = evaluator.evaluate(avg_model, device=devices[0])
valid_stats = {
'valid_loss': avg_results.log_loss,
'valid_accuracy': avg_results.accuracy,
'valid_loss_noavg': results.log_loss,
'valid_accuracy_noavg': results.accuracy
}
eval_logger.write(
iter=iter,
**valid_stats)
eval_logger.step()
return avg_results.accuracy
def checkpoint(model, avg_model, optimizer, scheduler, iter, fmt='ckpt-{:08d}.pt'):
path = os.path.join(output_dir, fmt.format(iter))
torch.save(dict(
iter=iter,
model=model.state_dict(),
avg_model=avg_model.state_dict(),
optimizer=optimizer.state_dict(),
scheduler=scheduler.state_dict()), path)
checkpoint_files = sorted(list(filter(lambda x: re.match(r'^ckpt-[0-9]+.pt$', x), os.listdir(output_dir))))
if len(checkpoint_files) > max_checkpoints:
os.remove(os.path.join(output_dir, checkpoint_files[0]))
train_logger.to_dataframe().to_pickle(os.path.join(output_dir, 'train.log.pkl'))
eval_logger.to_dataframe().to_pickle(os.path.join(output_dir, 'eval.log.pkl'))
trainer = Supervised(
num_iters=num_epochs * batches_per_epoch,
num_workers=num_workers,
model_optimizer_ctor=optimizer,
lr_scheduler_ctor=scheduler,
param_avg_ctor=param_avg_ctor,
batch_size=batch_size,
mixed_precision=mixed_precision,
devices=devices)
timer = utils.Timer()
with tqdm(desc='train', total=num_batches, position=0) as train_pbar:
train_iter = utils.Generator(trainer.train_iter(model, datasets['labeled']))
eval_acc = None
for i, stats in enumerate(train_iter):
train_pbar.set_postfix(loss=stats.loss, eval_acc=eval_acc, refresh=False)
train_pbar.update()
train_logger.write(loss=stats.loss, time=timer())
if (checkpoint_interval is not None and i > 0 and (i+1) % checkpoint_interval == 0) \
or (i == num_batches - 1):
eval_acc = evaluate(stats.model, stats.avg_model, i+1)
checkpoint(stats.model, stats.avg_model, stats.optimizer, stats.scheduler, i+1)
logger.info('eval acc = %.4f' % eval_acc)
train_logger.step()
if __name__ == '__main__':
fire.Fire(main)