This repository has been archived by the owner on Apr 11, 2024. It is now read-only.
-
-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathstancon_model.stan
144 lines (114 loc) · 3.81 KB
/
stancon_model.stan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
data {
int<lower=0> N ; # Total number of data points
int<lower=0> K_m; # Number of films
int<lower=0> K_mg; # Number of film groups
int<lower=0> K_ads; # Number of ad platforms
int<lower=0,upper=1> y[N] ; # Have seen target film
int<lower=0,upper=1> x_parent[N] ; # Parent code
real x_age[N] ; # Age
real<lower=0> x_gender[N] ; # Gender
int<lower=0> x_film[N] ; # Film
matrix[N, K_ads] x_ads ; # Ad impressions per platform
int<lower=1, upper=K_mg> x_mg[K_m] ; # Film groups
}
transformed data {
real realN;
real logit_mean_y;
realN = N;
logit_mean_y = logit(sum(y) / realN);
}
parameters {
real b;
real<lower=0> v_age_sigma;
vector[K_mg] v_age_g;
vector<lower=0>[K_mg] v_age_sigma_g;
vector[K_m] v_age;
real<lower=0> v_gender_sigma;
vector[K_mg] v_gender_g;
vector<lower=0>[K_mg] v_gender_sigma_g;
vector[K_m] v_gender;
real<lower=0> v_parent_sigma;
vector[K_mg] v_parent_g;
vector<lower=0>[K_mg] v_parent_sigma_g;
vector[K_m] v_parent;
real<lower=0> v_ad_sigma;
vector[K_ads] v_ad_platform_mean;
vector<lower=0>[K_ads] v_ad_platform_sigma;
matrix[K_ads, K_mg] v_ad_platform_g;
matrix<lower=0>[K_ads, K_mg] v_ad_platform_sigma_g;
matrix[K_m,K_ads] v_ad_platform_film;
real<lower=0> v_film_sigma;
vector<lower=0>[K_mg] v_film_g_sigma;
vector[K_mg] v_film_g;
vector[K_m] v_film_s;
}
model {
real y_pred[N];
b ~ normal(0, 0.5);
v_age_sigma ~ cauchy(0, 0.5);
v_age_g ~ normal(0, 1);
v_age_sigma_g ~ cauchy(0, 1);
v_age ~ normal(0, 1);
v_gender_sigma ~ cauchy(0, 0.5);
v_gender_g ~ normal(0, 1);
v_gender_sigma_g ~ cauchy(0, 1);
v_gender ~ normal(0, 1);
v_parent_sigma ~ cauchy(0, 0.5);
v_parent_g ~ normal(0, 1);
v_parent_sigma_g ~ cauchy(0, 1);
v_parent ~ normal(0, 1);
v_ad_sigma ~ cauchy(0, 0.5);
v_ad_platform_mean ~ normal(0, 1);
v_ad_platform_sigma ~ cauchy(0, 1);
to_vector(v_ad_platform_g) ~ normal(0, 1);
to_vector(v_ad_platform_sigma_g) ~ cauchy(0, 1);
to_vector(v_ad_platform_film) ~ normal(0, 1);
v_film_sigma ~ cauchy(0,1);
v_film_g_sigma ~ cauchy(0,1);
v_film_g ~ normal(0,1);
v_film_s ~ normal(0,1);
for (n in 1:N) {
int g;
int m;
real comb_ad_platform;
m = x_film[n];
g = x_mg[m];
comb_ad_platform = 0;
for (k in 1:K_ads) {
comb_ad_platform = comb_ad_platform +
v_ad_sigma * (v_ad_platform_mean[k] + v_ad_platform_sigma[k] * (v_ad_platform_g[k,g] + v_ad_platform_sigma_g[k,g] * v_ad_platform_film[m,k])) * x_ads[n,k];
}
y_pred[n] = logit_mean_y + b +
(v_age_sigma * (v_age_sigma_g[g] * v_age[m] + v_age_g[g])) * x_age[n] +
(v_gender_sigma * (v_gender_sigma_g[g] * v_gender[m] + v_gender_g[g])) * x_gender[n] +
(v_parent_sigma * (v_parent_sigma_g[g] * v_parent[m] + v_parent_g[g])) * x_parent[n] +
comb_ad_platform +
v_film_sigma * (v_film_g_sigma[g] * v_film_s[m] + v_film_g[g]);
}
y ~ bernoulli_logit(y_pred);
}
generated quantities {
real log_lik[N]; # Log-likelihood of each data point given a posterior sample
real theta[N]; # The probabilities of p(y=1|x) for each data point and MCMC sample
for (n in 1:N) {
int g;
int m;
real t_i;
real comb_ad_platform;
m = x_film[n];
g = x_mg[m];
comb_ad_platform = 0;
for (k in 1:K_ads) {
comb_ad_platform = comb_ad_platform +
v_ad_sigma * (v_ad_platform_mean[k] + v_ad_platform_sigma[k] * (v_ad_platform_g[k,g] + v_ad_platform_sigma_g[k,g] * v_ad_platform_film[m,k])) * x_ads[n,k];
}
t_i = logit_mean_y + b +
(v_age_sigma * (v_age_sigma_g[g] * v_age[m] + v_age_g[g])) * x_age[n] +
(v_gender_sigma * (v_gender_sigma_g[g] * v_gender[m] + v_gender_g[g])) * x_gender[n] +
(v_parent_sigma * (v_parent_sigma_g[g] * v_parent[m] + v_parent_g[g])) * x_parent[n] +
comb_ad_platform +
v_film_sigma * (v_film_g_sigma[g] * v_film_s[m] + v_film_g[g]);
log_lik[n] = bernoulli_logit_lpmf( y[n] | t_i );
theta[n] = inv_logit( t_i );
}
}