This repository has been archived by the owner on Apr 11, 2024. It is now read-only.
-
-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathmodel_int.stan
160 lines (155 loc) · 5.21 KB
/
model_int.stan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
data {
int<lower=1> N_train;// number of training data points
int<lower=1> N; // number of total data points
int<lower=1> G; // number of groupings
int<lower=3> J[G]; // group sizes
int COND[N]; // index for surface condition/inclement weather
int CITY[N]; // index for city
int SLIM[N]; // index for posted speed limit
int SIGN[N]; // index for signs and signals i.e. school zone/work zone
int LGHT[N]; // index for light and time
int BLTE[N]; // index for built environment
int CITYxSLIM[N];
int LGHTxSLIM[N];
int BLTExSLIM[N];
int CONDxSLIM[N];
int LGHTxCOND[N];
int LGHTxCONDxSLIM[N];
vector[N] EXPR; // population exposed
int count[N]; // number of pedestrian deaths
}
transformed data {
vector[N] offset;
offset = log(EXPR);
}
parameters {
real offset_e;
vector[J[1]] COND_eta;
vector[J[2]] CITY_eta;
vector[J[3]] SLIM_eta;
vector[J[4]] SIGN_eta;
vector[J[5]] LGHT_eta;
vector[J[6]] BLTE_eta;
vector[J[7]] CITYxSLIM_eta;
vector[J[8]] LGHTxSLIM_eta;
vector[J[9]] BLTExSLIM_eta;
vector[J[10]] CONDxSLIM_eta;
vector[J[11]] LGHTxCOND_eta;
vector[J[12]] LGHTxCONDxSLIM_eta;
vector<lower=0>[G + 1] sds;
vector[N_train] cell_eta;
real mu;
}
transformed parameters {
vector[J[1]] COND_e;
vector[J[2]] CITY_e;
vector[J[3]] SLIM_e;
vector[J[4]] SIGN_e;
vector[J[5]] LGHT_e;
vector[J[6]] BLTE_e;
vector[J[7]] CITYxSLIM_e;
vector[J[8]] LGHTxSLIM_e;
vector[J[9]] BLTExSLIM_e;
vector[J[10]] CONDxSLIM_e;
vector[J[11]] LGHTxCOND_e;
vector[J[12]] LGHTxCONDxSLIM_e;
vector[N_train] cell_e;
vector[N_train] mu_indiv;
COND_e = sds[1] * COND_eta;
CITY_e = sds[2] * CITY_eta;
SLIM_e = sds[3] * SLIM_eta;
SIGN_e = sds[4] * SIGN_eta;
LGHT_e = sds[5] * LGHT_eta;
BLTE_e = sds[6] * BLTE_eta;
CITYxSLIM_e = sds[7] * CITYxSLIM_eta;
LGHTxSLIM_e = sds[8] * LGHTxSLIM_eta;
BLTExSLIM_e = sds[9] * BLTExSLIM_eta;
CONDxSLIM_e = sds[10] * CONDxSLIM_eta;
LGHTxCOND_e = sds[11] * LGHTxCOND_eta;
LGHTxCONDxSLIM_e = sds[12] * LGHTxCONDxSLIM_eta;
cell_e = sds[G+1] * cell_eta;
for(n in 1:N_train)
mu_indiv[n] = mu + offset_e * offset[n]
+ COND_e[COND[n]]
+ CITY_e[CITY[n]]
+ SLIM_e[SLIM[n]]
+ SIGN_e[SIGN[n]]
+ LGHT_e[LGHT[n]]
+ BLTE_e[BLTE[n]]
+ CITYxSLIM_e[CITYxSLIM[n]]
+ LGHTxSLIM_e[LGHTxSLIM[n]]
+ BLTExSLIM_e[BLTExSLIM[n]]
+ CONDxSLIM_e[CONDxSLIM[n]]
+ LGHTxCOND_e[LGHTxCOND[n]]
+ LGHTxCONDxSLIM_e[LGHTxCONDxSLIM[n]]
+ cell_e[n];
}
model {
COND_eta ~ normal(0,1);
CITY_eta ~ normal(0,1);
SLIM_eta ~ normal(0,1);
SIGN_eta ~ normal(0,1);
LGHT_eta ~ normal(0,1);
BLTE_eta ~ normal(0,1);
CITYxSLIM_eta ~ normal(0,1);
LGHTxSLIM_eta ~ normal(0,1);
BLTExSLIM_eta ~ normal(0,1);
CONDxSLIM_eta ~ normal(0,1);
LGHTxCOND_eta ~ normal(0,1);
LGHTxCONDxSLIM_eta ~ normal(0,1);
cell_eta ~ normal(0,1);
offset_e ~ normal(0,1);
sds ~ normal(0,1);
mu ~ normal(0,10);
for (n in 1:N_train){
target += poisson_log_lpmf(count[n] | mu_indiv[n]);
target += -log1m_exp(-exp(mu_indiv[n]));
}
}
generated quantities {
real COND_sd;
real CITY_sd;
real SLIM_sd;
real SIGN_sd;
real LGHT_sd;
real BLTE_sd;
real CITYxSLIM_sd;
real LGHTxSLIM_sd;
real BLTExSLIM_sd;
real CONDxSLIM_sd;
real LGHTxCOND_sd;
real LGHTxCONDxSLIM_sd;
real cell_sd;
vector[N - N_train] mu_indiv_pred;
vector[N - N_train] cell_e_pred;
COND_sd = sd(COND_e);
CITY_sd = sd(CITY_e);
SLIM_sd = sd(SLIM_e);
SIGN_sd = sd(SIGN_e);
LGHT_sd = sd(LGHT_e);
BLTE_sd = sd(BLTE_e);
CITYxSLIM_sd = sd(CITYxSLIM_e);
LGHTxSLIM_sd = sd(LGHTxSLIM_e);
BLTExSLIM_sd = sd(BLTExSLIM_e);
CONDxSLIM_sd = sd(CONDxSLIM_e);
LGHTxCOND_sd = sd(LGHTxCOND_e);
LGHTxCONDxSLIM_sd = sd(LGHTxCONDxSLIM_e);
cell_sd = sd(cell_e);
for (n in 1:(N - N_train)){
cell_e_pred[n] = normal_rng(0, sds[G+1]);
mu_indiv_pred[n] = mu + offset_e * offset[N_train + n]
+ COND_e[COND[N_train + n]]
+ CITY_e[CITY[N_train + n]]
+ SLIM_e[SLIM[N_train + n]]
+ SIGN_e[SIGN[N_train + n]]
+ LGHT_e[LGHT[N_train + n]]
+ BLTE_e[BLTE[N_train + n]]
+ CITYxSLIM_e[CITYxSLIM[N_train + n]]
+ LGHTxSLIM_e[LGHTxSLIM[N_train + n]]
+ BLTExSLIM_e[BLTExSLIM[N_train + n]]
+ CONDxSLIM_e[CONDxSLIM[N_train + n]]
+ LGHTxCOND_e[LGHTxCOND[N_train + n]]
+ LGHTxCONDxSLIM_e[LGHTxCONDxSLIM[N_train + n]]
+ cell_e_pred[n];
}
}