-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathsumprices_tabular_iwerm_target_shift.py
171 lines (145 loc) · 4.95 KB
/
sumprices_tabular_iwerm_target_shift.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), ".."))
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import RANSACRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import HuberRegressor
from sklearn.linear_model import TheilSenRegressor
from sklearn.metrics import mean_absolute_error as mae
from scipy.stats import norm
from scipy.stats import wasserstein_distance
import tqdm
from shift15m.datasets import SumPricesRegression
sns.set_style("whitegrid")
dataset = SumPricesRegression()
n_trials = 20
train_sample_size = 100000
test_sample_size = 100000
test_mu = 80
test_sigma = 10
n_trials = 20
train_sample_size = 100000
test_sample_size = 100000
test_mu = 180000
test_sigma = 10000
shifts = [
{"train_mu": 180000, "train_sigma": 100000},
{"train_mu": 160000, "train_sigma": 100000},
{"train_mu": 140000, "train_sigma": 100000},
{"train_mu": 120000, "train_sigma": 100000},
{"train_mu": 100000, "train_sigma": 100000},
{"train_mu": 80000, "train_sigma": 100000},
{"train_mu": 60000, "train_sigma": 100000},
{"train_mu": 40000, "train_sigma": 100000},
{"train_mu": 20000, "train_sigma": 100000},
]
models = [
{"model": LinearRegression, "sample_weights": "ERM"},
{"model": LinearRegression, "sample_weights": "IWERM (optimal)"},
{
"model": LinearRegression,
"sample_weights": r"RIWERM ($\alpha=0.25$)",
"alpha": 0.25,
},
{
"model": LinearRegression,
"sample_weights": r"RIWERM ($\alpha=0.5$)",
"alpha": 0.5,
},
{
"model": LinearRegression,
"sample_weights": r"RIWERM ($\alpha=0.75$)",
"alpha": 0.75,
},
]
models_errors_mean = []
models_errors_std = []
dists = []
for k in range(len(models)):
model = models[k]["model"]
weighting = models[k]["sample_weights"]
model_errors_mean = []
model_errors_std = []
model_dists = []
for shift in shifts:
errors = []
rv_train = np.random.normal(shift["train_mu"], shift["train_sigma"], 10000)
rv_test = np.random.normal(test_mu, test_sigma, 10000)
wd = wasserstein_distance(rv_train, rv_test)
model_dists.append(wd)
for i in tqdm.tqdm(range(n_trials)):
(x_train, y_train), (x_test, y_test) = dataset.load_dataset(
target_shift=True,
train_size=train_sample_size,
test_size=test_sample_size,
test_mu=test_mu,
test_sigma=test_sigma,
train_mu=shift["train_mu"],
train_sigma=shift["train_sigma"],
random_seed=i,
)
x_train = x_train.reshape(-1, 1)
x_test = x_test.reshape(-1, 1)
p_tr = norm.pdf(y_train, loc=shift["train_mu"], scale=shift["train_sigma"])
p_te = norm.pdf(y_train, loc=test_mu, scale=test_sigma)
p_tr = p_tr.reshape(-1)
p_te = p_te.reshape(-1)
reg = model()
if weighting == "ERM":
reg.fit(x_train, y_train)
elif weighting.split()[0] == "IWERM":
reg.fit(x_train, y_train, sample_weight=p_te / (p_tr + 1e-9))
elif weighting.split()[0] == "AIWERM":
alpha = float(models[k]["alpha"])
w = (p_te / (p_tr + 1e-9)) ** alpha
reg.fit(x_train, y_train, sample_weight=w)
elif weighting.split()[0] == "RIWERM":
alpha = float(models[k]["alpha"])
w = p_te / ((1 - alpha) * p_te + alpha * p_tr + 1e-9)
reg.fit(x_train, y_train, sample_weight=w)
errors.append(mae(reg.predict(x_test), y_test))
model_errors_mean.append(np.mean(errors))
model_errors_std.append(np.std(errors))
print(model_errors_mean)
print(model_errors_std)
models_errors_mean.append(model_errors_mean)
models_errors_std.append(model_errors_std)
dists.append(model_dists)
models_errors_mean = np.array(models_errors_mean)
models_errors_std = np.array(models_errors_std)
colors = ["purple", "green", "blue", "darkcyan", "red"]
print(dists)
print(models_errors_mean)
print(models_errors_std)
fig = plt.figure(figsize=(12, 6))
for i in range(len(models)):
plt.plot(
dists[i],
models_errors_mean[i],
alpha=0.8,
color=colors[i],
label=models[i]["sample_weights"],
)
plt.fill_between(
dists[i],
models_errors_mean[i],
models_errors_mean[i] + models_errors_std[i],
alpha=0.2,
color=colors[i],
)
plt.fill_between(
dists[i],
models_errors_mean[i],
models_errors_mean[i] - models_errors_std[i],
alpha=0.2,
color=colors[i],
)
plt.legend()
plt.xlabel(r"$W_1(P_{train}, P_{test})$")
plt.ylabel("MAE")
plt.savefig("sumprices_regression_iwerm_target_shift.png")
plt.show()