-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRandomForestClassifier.py
172 lines (143 loc) · 6.3 KB
/
RandomForestClassifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
from googleapiclient.discovery import build
from googleapiclient.http import MediaIoBaseDownload
from google.oauth2.credentials import Credentials
from google_auth_oauthlib.flow import InstalledAppFlow
from io import BytesIO
import pandas as pd
import numpy as np
import pickle as pkl
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.metrics import accuracy_score, classification_report
# Load configuration from text file
def load_data(filename='input.txt'):
config = {}
with open(filename, 'r') as file:
for line in file:
key, value = line.strip().split('=')
config[key] = value
return config
input_details = load_data()
file_id = input_details['file_id']
print(f'File ID is {file_id}')
# Access data from Google Drive
def access_data_from_drive(file_id):
SCOPES = ['https://www.googleapis.com/auth/drive.readonly']
flow = InstalledAppFlow.from_client_secrets_file('./credentials.json', SCOPES)
creds = flow.run_local_server(port=0)
service = build('drive', 'v3', credentials=creds)
file_metadata = service.files().get(fileId=file_id).execute()
print("File Metadata", file_metadata)
file_content = BytesIO()
request = service.files().get_media(fileId=file_id)
media_downloader = MediaIoBaseDownload(file_content, request)
done = False
while not done:
status, done = media_downloader.next_chunk()
print(f"Download {int(status.progress() * 100)}% complete.")
file_content.seek(0)
df = pd.read_csv(file_content)
print(df)
return df
df = access_data_from_drive(file_id)
# Data overview function
def data_overview(df):
df.columns = df.columns.str.strip().str.lower().str.replace(' ', '_')
print('List of columns:', df.columns)
print('\nShape of data:', df.shape)
print('\nData info:', df.info())
print('\nFive-point summary:', df.describe().T)
print('\nMissing values:', df.isna().sum())
print('\nNull values:', df.isnull().sum())
print('\nDuplicated records:', df.duplicated().sum())
return df
df = data_overview(df)
# Custom transformers
class NullChecker(BaseEstimator, TransformerMixin):
def fit(self, X, y=None):
self.null_columns_ = X.columns[X.isnull().any()].tolist()
return self
def transform(self, X):
return X.fillna(0)
class LabelEncoderTransformer(BaseEstimator, TransformerMixin):
def fit(self, X, y=None):
self.le = LabelEncoder()
self.obj_col_list = X.select_dtypes(include=['object']).columns.tolist()
return self
def transform(self, X):
X_encoded = X.copy()
for col in self.obj_col_list:
X_encoded[col] = self.le.fit_transform(X[col])
return X_encoded
class StandardScalerTransformer(BaseEstimator, TransformerMixin):
def fit(self, X, y=None):
self.scaler = StandardScaler()
self.num_col_list = X.select_dtypes(include=['int64', 'float64']).columns.tolist()
self.scaler.fit(X[self.num_col_list])
return self
def transform(self, X):
X_scaled = X.copy()
X_scaled[self.num_col_list] = self.scaler.transform(X[self.num_col_list])
return X_scaled
class DataSplitter(BaseEstimator, TransformerMixin):
def __init__(self, target_feature, test_size=0.25, random_state=1):
self.target_feature = target_feature
self.test_size = test_size
self.random_state = random_state
def fit(self, X, y=None):
return self
def transform(self, X):
y = X[self.target_feature]
X = X.drop(columns=[self.target_feature])
return train_test_split(X, y, test_size=self.test_size, random_state=self.random_state)
class ModelTrainer(BaseEstimator, TransformerMixin):
def __init__(self, n_estimators=100, max_depth=None, min_samples_split=2,
min_samples_leaf=1, criterion='gini', bootstrap=True, model='RandomForest'):
self.model = RandomForestClassifier(
n_estimators=n_estimators,
max_depth=max_depth,
min_samples_split=min_samples_split,
min_samples_leaf=min_samples_leaf,
criterion=criterion,
bootstrap=bootstrap
) if model == 'RandomForest' else XGBClassifier()
def fit(self, X, y):
self.model.fit(X, y)
return self
def predict(self, X):
return self.model.predict(X)
class ModelSaver(BaseEstimator, TransformerMixin):
def __init__(self, filename):
self.filename = filename
def fit(self, X, y):
return self
def transform(self, X, y):
with open(self.filename, "wb") as file:
pkl.dump(y, file)
return X
# Pipeline setup
pipeline = Pipeline([
('null_checker', NullChecker()),
('label_encoder', LabelEncoderTransformer()),
('scaling', StandardScalerTransformer()),
('splitter', DataSplitter(target_feature='fertilizer_name')),
('model_trainer', ModelTrainer(n_estimators=50, max_depth=10,
min_samples_split=2, min_samples_leaf=1,
criterion='gini', bootstrap=True)),
('model_saver', ModelSaver(filename='final_rf_model.pkl'))
])
# Fitting and transforming the data through the pipeline
df_transformed = pipeline.named_steps['null_checker'].transform(df)
df_transformed = pipeline.named_steps['label_encoder'].transform(df_transformed)
df_transformed = pipeline.named_steps['scaling'].transform(df_transformed)
X_train, X_test, y_train, y_test = pipeline.named_steps['splitter'].transform(df_transformed)
pipeline.named_steps['model_trainer'].fit(X_train, y_train)
pipeline.named_steps['model_saver'].transform(X_test, pipeline.named_steps['model_trainer'].model)
y_pred = pipeline.named_steps['model_trainer'].predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Classification Report:\n", classification_report(y_test, y_pred))