diff --git a/R/tidy_distribution_summary_tbl.R b/R/tidy_distribution_summary_tbl.R index 88b4d984..89b7522a 100644 --- a/R/tidy_distribution_summary_tbl.R +++ b/R/tidy_distribution_summary_tbl.R @@ -57,8 +57,8 @@ tidy_distribution_summary_tbl <- function(.data){ std_val = sd(y, na.rm = TRUE), min_val = min(y), max_val = max(y), - skewness = healthyR.ai::hai_skewness_vec(y), - kurtosis = healthyR.ai::hai_kurtosis_vec(y), + # skewness = healthyR.ai::hai_skewness_vec(y), + # kurtosis = healthyR.ai::hai_kurtosis_vec(y), range = healthyR.ai::hai_range_statistic(y), iqr = stats::IQR(y), variance = stats::var(y) diff --git a/vignettes/getting-started.Rmd b/vignettes/getting-started.Rmd index 6bd4f05b..efeefe57 100644 --- a/vignettes/getting-started.Rmd +++ b/vignettes/getting-started.Rmd @@ -10,10 +10,52 @@ vignette: > ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, - comment = "#>" + comment = "#>", + fig.width = 8, + fig.height = 4.5, + fig.align = 'center', + out.width = '95%', + dpi = 100, + message = FALSE, + warning = FALSE ) ``` ```{r setup} library(TidyDensity) ``` + +## Example + +This is a basic example which shows you how easy it is to generate data with `{TidyDensity}`: + +```{r example} +library(TidyDensity) +library(dplyr) +library(ggplot2) + +tidy_normal() +``` + +An example plot of the `tidy_normal` data. + +```{r plot_density} +tn <- tidy_normal(.n = 100, .num_sims = 6) + +tidy_autoplot(tn, .plot_type = "density") +tidy_autoplot(tn, .plot_type = "quantile") +tidy_autoplot(tn, .plot_type = "probability") +tidy_autoplot(tn, .plot_type = "qq") +``` + +We can also take a look at the plots when the number of simulations is greater than +nine. This will automatically turn off the legend as it will become too noisy. + +```{r more_than_nine_simulations} +tn <- tidy_normal(.n = 100, .num_sims = 20) + +tidy_autoplot(tn, .plot_type = "density") +tidy_autoplot(tn, .plot_type = "quantile") +tidy_autoplot(tn, .plot_type = "probability") +tidy_autoplot(tn, .plot_type = "qq") +```