diff --git a/NAMESPACE b/NAMESPACE
index a66a4cb9..11b9589a 100644
--- a/NAMESPACE
+++ b/NAMESPACE
@@ -111,6 +111,9 @@ export(util_f_stats_tbl)
export(util_gamma_aic)
export(util_gamma_param_estimate)
export(util_gamma_stats_tbl)
+export(util_generalized_beta_aic)
+export(util_generalized_beta_param_estimate)
+export(util_generalized_beta_stats_tbl)
export(util_generalized_pareto_aic)
export(util_generalized_pareto_param_estimate)
export(util_generalized_pareto_stats_tbl)
diff --git a/NEWS.md b/NEWS.md
index a7ae7886..523345d7 100644
--- a/NEWS.md
+++ b/NEWS.md
@@ -39,6 +39,9 @@ Add function `util_inverse_burr_stats_tbl()` to create a summary table of the In
13. Fix #474 - Add function `util_generalized_pareto_param_estimate()` to estimate the parameters of the Generalized Pareto distribution.
Add function `util_generalized_pareto_aic()` to calculate the AIC for the Generalized Pareto distribution.
Add function `util_generalized_pareto_stats_tbl()` to create a summary table of the Generalized Pareto distribution.
+14. Fix #473 - Add function `util_generalized_beta_param_estimate()` to estimate the parameters of the Generalized Gamma distribution.
+Add function `util_generalized_beta_aic()` to calculate the AIC for the Generalized Gamma distribution.
+Add function `util_generalized_beta_stats_tbl()` to create a summary table of the Generalized Gamma distribution.
## Minor Improvements and Fixes
1. Fix #468 - Update `util_negative_binomial_param_estimate()` to add the use of
diff --git a/R/est-param-gen-beta.R b/R/est-param-gen-beta.R
new file mode 100644
index 00000000..7748933c
--- /dev/null
+++ b/R/est-param-gen-beta.R
@@ -0,0 +1,125 @@
+#' Estimate Generalized Beta Parameters
+#'
+#' @family Parameter Estimation
+#' @family Generalized Beta
+#'
+#' @details This function will attempt to estimate the generalized Beta shape1, shape2, shape3, and rate
+#' parameters given some vector of values.
+#'
+#' @description The function will return a list output by default, and if the parameter
+#' `.auto_gen_empirical` is set to `TRUE` then the empirical data given to the
+#' parameter `.x` will be run through the `tidy_empirical()` function and combined
+#' with the estimated generalized Beta data.
+#'
+#' @param .x The vector of data to be passed to the function.
+#' @param .auto_gen_empirical This is a boolean value of TRUE/FALSE with default
+#' set to TRUE. This will automatically create the `tidy_empirical()` output
+#' for the `.x` parameter and use the `tidy_combine_distributions()`. The user
+#' can then plot out the data using `$combined_data_tbl` from the function output.
+#'
+#' @examples
+#' library(dplyr)
+#' library(ggplot2)
+#'
+#' set.seed(123)
+#' x <- tidy_generalized_beta(100, .shape1 = 2, .shape2 = 3,
+#' .shape3 = 4, .rate = 5)[["y"]]
+#' output <- util_generalized_beta_param_estimate(x)
+#'
+#' output$parameter_tbl
+#'
+#' output$combined_data_tbl %>%
+#' tidy_combined_autoplot()
+#'
+#' @return
+#' A tibble/list
+#'
+#' @author Steven P. Sanderson II, MPH
+#'
+#' @export
+#'
+
+util_generalized_beta_param_estimate <- function(.x, .auto_gen_empirical = TRUE) {
+
+ # Tidyeval ----
+ x_term <- as.numeric(.x)
+ n <- length(x_term)
+
+ # Checks ----
+ if (!is.vector(x_term, mode = "numeric") || is.factor(x_term)) {
+ rlang::abort(
+ message = "'.x' must be a numeric vector.",
+ use_cli_format = TRUE
+ )
+ }
+
+ if (n < 2) {
+ rlang::abort(
+ message = "'.x' must contain at least two non-missing distinct values. All values of '.x' must be positive.",
+ use_cli_format = TRUE
+ )
+ }
+
+ # Negative log-likelihood function for generalized Beta distribution
+ genbeta_lik <- function(params, data) {
+ shape1 <- params[1]
+ shape2 <- params[2]
+ shape3 <- params[3]
+ rate <- params[4]
+ -sum(actuar::dgenbeta(data, shape1 = shape1, shape2 = shape2,
+ shape3 = shape3, rate = rate, log = TRUE))
+ }
+
+ # Initial parameter guesses
+ initial_params <- c(shape1 = 1, shape2 = 1, shape3 = 1, rate = 1)
+
+ # Optimize to minimize the negative log-likelihood
+ opt_result <- stats::optim(
+ par = initial_params,
+ fn = genbeta_lik,
+ data = x_term
+ )
+
+ shape1 <- opt_result$par[["shape1"]]
+ shape2 <- opt_result$par[["shape2"]]
+ shape3 <- opt_result$par[["shape3"]]
+ rate <- opt_result$par[["rate"]]
+
+ # Return Tibble ----
+ if (.auto_gen_empirical) {
+ te <- tidy_empirical(.x = x_term)
+ td <- tidy_generalized_beta(.n = n, .shape1 = round(shape1, 3), .shape2 = round(shape2, 3), .shape3 = round(shape3, 3), .rate = round(rate, 3))
+ combined_tbl <- tidy_combine_distributions(te, td)
+ }
+
+ ret <- dplyr::tibble(
+ dist_type = "Generalized Beta",
+ samp_size = n,
+ min = min(x_term),
+ max = max(x_term),
+ mean = mean(x_term),
+ shape1 = shape1,
+ shape2 = shape2,
+ shape3 = shape3,
+ rate = rate
+ )
+
+ # Return ----
+ attr(ret, "tibble_type") <- "parameter_estimation"
+ attr(ret, "family") <- "generalized_beta"
+ attr(ret, "x_term") <- .x
+ attr(ret, "n") <- n
+
+ if (.auto_gen_empirical) {
+ output <- list(
+ combined_data_tbl = combined_tbl,
+ parameter_tbl = ret
+ )
+ } else {
+ output <- list(
+ parameter_tbl = ret
+ )
+ }
+
+ return(output)
+}
diff --git a/R/stats-gen-beta-tbl.R b/R/stats-gen-beta-tbl.R
new file mode 100644
index 00000000..f31862c8
--- /dev/null
+++ b/R/stats-gen-beta-tbl.R
@@ -0,0 +1,87 @@
+#' Distribution Statistics
+#'
+#' @family Generalized Beta
+#' @family Distribution Statistics
+#'
+#' @details This function will take in a tibble and return the statistics
+#' of the given type of `tidy_` distribution. It is required that data be
+#' passed from a `tidy_` distribution function.
+#'
+#' @description Returns distribution statistics in a tibble.
+#'
+#' @param .data The data being passed from a `tidy_` distribution function.
+#'
+#' @examples
+#' library(dplyr)
+#'
+#' set.seed(123)
+#' tidy_generalized_beta() |>
+#' util_generalized_beta_stats_tbl() |>
+#' glimpse()
+#'
+#' @return
+#' A tibble
+#'
+#' @author Steven P. Sanderson II, MPH
+#'
+#' @export
+#' @rdname util_generalized_beta_stats_tbl
+util_generalized_beta_stats_tbl <- function(.data) {
+
+ # Immediate check for tidy_ distribution function
+ if (!"tibble_type" %in% names(attributes(.data))) {
+ rlang::abort(
+ message = "You must pass data from the 'tidy_dist' function.",
+ use_cli_format = TRUE
+ )
+ }
+
+ if (attributes(.data)$tibble_type != "tidy_generalized_beta") {
+ rlang::abort(
+ message = "You must use 'tidy_generalized_beta()'",
+ use_cli_format = TRUE
+ )
+ }
+
+ # Data
+ data_tbl <- dplyr::as_tibble(.data)
+
+ atb <- attributes(data_tbl)
+ shape1 <- atb$.shape1
+ shape2 <- atb$.shape2
+ shape3 <- atb$.shape3
+ rate <- atb$.rate
+ scale <- 1 / rate
+
+ # Generalized Beta statistics calculation
+ stat_mean <- ifelse(shape2 > 1, shape1 / (shape2 - 1), "undefined")
+ stat_mode <- ifelse((shape1 > 1) & (shape2 > 2), (shape1 - 1) / (shape2 - 2), "undefined")
+ stat_var <- ifelse(shape2 > 2, (shape1 * shape2) / ((shape2 - 1)^2 * (shape2 - 2)), "undefined")
+ stat_sd <- ifelse(stat_var == "undefined", "undefined", sqrt(stat_var))
+ stat_skewness <- ifelse(shape2 > 3, (2 * (shape2 - 2 * shape1) * sqrt(shape2 - 2)) / ((shape2 - 3) * sqrt(shape1 * (shape1 + shape2))), "undefined")
+ stat_kurtosis <- ifelse(shape2 > 4, 3 + (6 * (shape2^3 - 2 * shape2^2 * (shape1 - 1) + shape1^2 * (shape1 + 1))) / (shape1 * (shape1 + 1) * (shape2 - 3) * (shape2 - 4)), "undefined")
+
+ # Data Tibble
+ ret <- dplyr::tibble(
+ tidy_function = atb$tibble_type,
+ function_call = atb$dist_with_params,
+ distribution = dist_type_extractor(atb$tibble_type),
+ distribution_type = atb$distribution_family_type,
+ points = atb$.n,
+ simulations = atb$.num_sims,
+ mean = stat_mean,
+ mode = stat_mode,
+ range = paste0("0 to Inf"),
+ std_dv = stat_sd,
+ coeff_var = ifelse(stat_var == "undefined", "undefined", sqrt(stat_var) / stat_mean),
+ skewness = stat_skewness,
+ kurtosis = stat_kurtosis,
+ computed_std_skew = tidy_skewness_vec(data_tbl$y),
+ computed_std_kurt = tidy_kurtosis_vec(data_tbl$y),
+ ci_lo = ci_lo(data_tbl$y),
+ ci_hi = ci_hi(data_tbl$y)
+ )
+
+ # Return
+ return(ret)
+}
diff --git a/R/utils-aic-gen-beta.R b/R/utils-aic-gen-beta.R
new file mode 100644
index 00000000..43769219
--- /dev/null
+++ b/R/utils-aic-gen-beta.R
@@ -0,0 +1,89 @@
+#' Calculate Akaike Information Criterion (AIC) for Generalized Beta Distribution
+#'
+#' This function calculates the Akaike Information Criterion (AIC) for a generalized Beta
+#' distribution fitted to the provided data.
+#'
+#' @family Utility
+#'
+#' @author Steven P. Sanderson II, MPH
+#'
+#' @description
+#' This function estimates the shape1, shape2, shape3, and rate parameters of a generalized Beta distribution
+#' from the provided data using maximum likelihood estimation,
+#' and then calculates the AIC value based on the fitted distribution.
+#'
+#' @param .x A numeric vector containing the data to be fitted to a generalized Beta distribution.
+#'
+#' @details
+#' This function fits a generalized Beta distribution to the provided data using maximum
+#' likelihood estimation. It estimates the shape1, shape2, shape3, and rate parameters
+#' of the generalized Beta distribution using maximum likelihood estimation. Then, it
+#' calculates the AIC value based on the fitted distribution.
+#'
+#' Initial parameter estimates: The function uses reasonable initial estimates
+#' for the shape1, shape2, shape3, and rate parameters of the generalized Beta distribution.
+#'
+#' Optimization method: The function uses the optim function for optimization.
+#' You might explore different optimization methods within optim for potentially
+#' better performance.
+#'
+#' Goodness-of-fit: While AIC is a useful metric for model comparison, it's
+#' recommended to also assess the goodness-of-fit of the chosen model using
+#' visualization and other statistical tests.
+#'
+#' @examples
+#' # Example 1: Calculate AIC for a sample dataset
+#' set.seed(123)
+#' x <- tidy_generalized_beta(100, .shape1 = 2, .shape2 = 3,
+#' .shape3 = 4, .rate = 5)[["y"]]
+#' util_generalized_beta_aic(x)
+#'
+#' @return
+#' The AIC value calculated based on the fitted generalized Beta distribution to
+#' the provided data.
+#'
+#' @name util_generalized_beta_aic
+NULL
+
+#' @export
+#' @rdname util_generalized_beta_aic
+util_generalized_beta_aic <- function(.x) {
+ # Tidyeval
+ x <- as.numeric(.x)
+
+ # Negative log-likelihood function for generalized Beta distribution
+ neg_log_lik_genbeta <- function(par, data) {
+ shape1 <- par[1]
+ shape2 <- par[2]
+ shape3 <- par[3]
+ rate <- par[4]
+ -sum(actuar::dgenbeta(data, shape1 = shape1, shape2 = shape2,
+ shape3 = shape3, rate = rate, log = TRUE))
+ }
+
+ # Initial parameter estimates
+ pe <- TidyDensity::util_generalized_beta_param_estimate(x)$parameter_tbl
+ shape1 <- pe$shape1
+ shape2 <- pe$shape2
+ shape3 <- pe$shape3
+ rate <- pe$rate
+ initial_params <- c(shape1 = shape1, shape2 = shape2, shape3 = shape3,
+ rate = rate)
+
+ # Fit generalized Beta distribution using optim
+ fit_genbeta <- stats::optim(
+ par = initial_params,
+ fn = neg_log_lik_genbeta,
+ data = x
+ )
+
+ # Extract log-likelihood and number of parameters
+ logLik_genbeta <- -fit_genbeta$value
+ k_genbeta <- 4 # Number of parameters for generalized Beta distribution (shape1, shape2, shape3, and rate)
+
+ # Calculate AIC
+ AIC_genbeta <- 2 * k_genbeta - 2 * logLik_genbeta
+
+ # Return AIC
+ return(AIC_genbeta)
+}
diff --git a/docs/news/index.html b/docs/news/index.html
index 031fee16..375976df 100644
--- a/docs/news/index.html
+++ b/docs/news/index.html
@@ -74,6 +74,7 @@
New FeaturesFix #476 - Add function util_inverse_pareto_param_estimate()
to estimate the parameters of the Inverse Pareto distribution. Add function util_inverse_pareto_aic()
to calculate the AIC for the Inverse Pareto distribution. Add Function util_inverse_pareto_stats_tbl()
to create a summary table of the Inverse Pareto distribution.
Fix #475 - Add function util_inverse_burr_param_estimate()
to estimate the parameters of the Inverse Gamma distribution. Add function util_inverse_burr_aic()
to calculate the AIC for the Inverse Gamma distribution. Add function util_inverse_burr_stats_tbl()
to create a summary table of the Inverse Gamma distribution.
Fix #474 - Add function util_generalized_pareto_param_estimate()
to estimate the parameters of the Generalized Pareto distribution. Add function util_generalized_pareto_aic()
to calculate the AIC for the Generalized Pareto distribution. Add function util_generalized_pareto_stats_tbl()
to create a summary table of the Generalized Pareto distribution.
+Fix #473 - Add function util_generalized_beta_param_estimate()
to estimate the parameters of the Generalized Gamma distribution. Add function util_generalized_beta_aic()
to calculate the AIC for the Generalized Gamma distribution. Add function util_generalized_beta_stats_tbl()
to create a summary table of the Generalized Gamma distribution.
Minor Improvements and Fixes
diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml
index d0d71a41..82b0e4dd 100644
--- a/docs/pkgdown.yml
+++ b/docs/pkgdown.yml
@@ -3,7 +3,7 @@ pkgdown: 2.0.9
pkgdown_sha: ~
articles:
getting-started: getting-started.html
-last_built: 2024-05-15T18:50Z
+last_built: 2024-05-15T19:36Z
urls:
reference: https://www.spsanderson.com/TidyDensity/reference
article: https://www.spsanderson.com/TidyDensity/articles
diff --git a/docs/reference/check_duplicate_rows.html b/docs/reference/check_duplicate_rows.html
index e1ebf238..16eb976d 100644
--- a/docs/reference/check_duplicate_rows.html
+++ b/docs/reference/check_duplicate_rows.html
@@ -95,6 +95,7 @@
See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/convert_to_ts.html b/docs/reference/convert_to_ts.html
index 50cf5224..40b31704 100644
--- a/docs/reference/convert_to_ts.html
+++ b/docs/reference/convert_to_ts.html
@@ -115,6 +115,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/index.html b/docs/reference/index.html
index 4e7077a9..846dca6c 100644
--- a/docs/reference/index.html
+++ b/docs/reference/index.html
@@ -416,6 +416,11 @@ Parameter Estimation Functionsutil_generalized_beta_param_estimate()
+
+ Estimate Generalized Beta Parameters
+
+
util_generalized_pareto_param_estimate()
Estimate Generalized Pareto Parameters
@@ -577,6 +582,11 @@
+ util_generalized_beta_stats_tbl()
+
+ Distribution Statistics
+
+
util_generalized_pareto_stats_tbl()
Distribution Statistics
@@ -974,6 +984,11 @@ Utilitiesutil_generalized_beta_aic()
+
+ Calculate Akaike Information Criterion (AIC) for Generalized Beta Distribution
+
+
util_generalized_pareto_aic()
Calculate Akaike Information Criterion (AIC) for Generalized Pareto Distribution
diff --git a/docs/reference/quantile_normalize.html b/docs/reference/quantile_normalize.html
index 01e55771..b006aceb 100644
--- a/docs/reference/quantile_normalize.html
+++ b/docs/reference/quantile_normalize.html
@@ -114,6 +114,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/tidy_mcmc_sampling.html b/docs/reference/tidy_mcmc_sampling.html
index b46b5459..26462a16 100644
--- a/docs/reference/tidy_mcmc_sampling.html
+++ b/docs/reference/tidy_mcmc_sampling.html
@@ -112,6 +112,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/util_bernoulli_param_estimate.html b/docs/reference/util_bernoulli_param_estimate.html
index b352bd04..236e7747 100644
--- a/docs/reference/util_bernoulli_param_estimate.html
+++ b/docs/reference/util_bernoulli_param_estimate.html
@@ -111,6 +111,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_bernoulli_stats_tbl.html b/docs/reference/util_bernoulli_stats_tbl.html
index 71ff8a5a..d7348946 100644
--- a/docs/reference/util_bernoulli_stats_tbl.html
+++ b/docs/reference/util_bernoulli_stats_tbl.html
@@ -95,6 +95,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/reference/util_beta_aic.html b/docs/reference/util_beta_aic.html
index 4493af63..fb75749a 100644
--- a/docs/reference/util_beta_aic.html
+++ b/docs/reference/util_beta_aic.html
@@ -111,6 +111,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/util_beta_param_estimate.html b/docs/reference/util_beta_param_estimate.html
index c1fefdc7..1689f18c 100644
--- a/docs/reference/util_beta_param_estimate.html
+++ b/docs/reference/util_beta_param_estimate.html
@@ -132,6 +132,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_beta_stats_tbl.html b/docs/reference/util_beta_stats_tbl.html
index 81cca117..17788983 100644
--- a/docs/reference/util_beta_stats_tbl.html
+++ b/docs/reference/util_beta_stats_tbl.html
@@ -96,6 +96,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/reference/util_binomial_aic.html b/docs/reference/util_binomial_aic.html
index bc00c9ae..b62e4e39 100644
--- a/docs/reference/util_binomial_aic.html
+++ b/docs/reference/util_binomial_aic.html
@@ -109,6 +109,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/util_binomial_param_estimate.html b/docs/reference/util_binomial_param_estimate.html
index 779b4c04..c3163265 100644
--- a/docs/reference/util_binomial_param_estimate.html
+++ b/docs/reference/util_binomial_param_estimate.html
@@ -118,6 +118,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_binomial_stats_tbl.html b/docs/reference/util_binomial_stats_tbl.html
index 3500006a..9a92564b 100644
--- a/docs/reference/util_binomial_stats_tbl.html
+++ b/docs/reference/util_binomial_stats_tbl.html
@@ -101,6 +101,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/reference/util_burr_param_estimate.html b/docs/reference/util_burr_param_estimate.html
index 42cd5ed1..bd207b07 100644
--- a/docs/reference/util_burr_param_estimate.html
+++ b/docs/reference/util_burr_param_estimate.html
@@ -111,6 +111,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_burr_stats_tbl.html b/docs/reference/util_burr_stats_tbl.html
index 424328c0..844b53b2 100644
--- a/docs/reference/util_burr_stats_tbl.html
+++ b/docs/reference/util_burr_stats_tbl.html
@@ -96,6 +96,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/reference/util_cauchy_aic.html b/docs/reference/util_cauchy_aic.html
index 0b7b0c13..c3230600 100644
--- a/docs/reference/util_cauchy_aic.html
+++ b/docs/reference/util_cauchy_aic.html
@@ -115,6 +115,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/util_cauchy_param_estimate.html b/docs/reference/util_cauchy_param_estimate.html
index 65cdb2e8..cac3838e 100644
--- a/docs/reference/util_cauchy_param_estimate.html
+++ b/docs/reference/util_cauchy_param_estimate.html
@@ -107,6 +107,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_cauchy_stats_tbl.html b/docs/reference/util_cauchy_stats_tbl.html
index fbb79e90..2f97ebf7 100644
--- a/docs/reference/util_cauchy_stats_tbl.html
+++ b/docs/reference/util_cauchy_stats_tbl.html
@@ -95,6 +95,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/reference/util_chisq_aic.html b/docs/reference/util_chisq_aic.html
index 68ac4a75..922ed216 100644
--- a/docs/reference/util_chisq_aic.html
+++ b/docs/reference/util_chisq_aic.html
@@ -95,6 +95,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/util_chisquare_param_estimate.html b/docs/reference/util_chisquare_param_estimate.html
index 87838748..34c03ff9 100644
--- a/docs/reference/util_chisquare_param_estimate.html
+++ b/docs/reference/util_chisquare_param_estimate.html
@@ -148,6 +148,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_chisquare_stats_tbl.html b/docs/reference/util_chisquare_stats_tbl.html
index 38fe0d53..06c5fce9 100644
--- a/docs/reference/util_chisquare_stats_tbl.html
+++ b/docs/reference/util_chisquare_stats_tbl.html
@@ -95,6 +95,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/reference/util_exponential_aic.html b/docs/reference/util_exponential_aic.html
index aad397f9..6b104724 100644
--- a/docs/reference/util_exponential_aic.html
+++ b/docs/reference/util_exponential_aic.html
@@ -102,6 +102,7 @@ See alsoutil_chisq_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/util_exponential_param_estimate.html b/docs/reference/util_exponential_param_estimate.html
index 38d23c73..0151bc73 100644
--- a/docs/reference/util_exponential_param_estimate.html
+++ b/docs/reference/util_exponential_param_estimate.html
@@ -109,6 +109,7 @@ See alsoutil_chisquare_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_exponential_stats_tbl.html b/docs/reference/util_exponential_stats_tbl.html
index 36f45fcc..0c08951a 100644
--- a/docs/reference/util_exponential_stats_tbl.html
+++ b/docs/reference/util_exponential_stats_tbl.html
@@ -96,6 +96,7 @@ See alsoutil_chisquare_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/reference/util_f_aic.html b/docs/reference/util_f_aic.html
index 2103d05a..dbbf9603 100644
--- a/docs/reference/util_f_aic.html
+++ b/docs/reference/util_f_aic.html
@@ -106,6 +106,7 @@ See alsoutil_chisq_aic (),
util_exponential_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/util_f_param_estimate.html b/docs/reference/util_f_param_estimate.html
index f33dde65..7c26e20d 100644
--- a/docs/reference/util_f_param_estimate.html
+++ b/docs/reference/util_f_param_estimate.html
@@ -100,6 +100,7 @@ See alsoutil_chisquare_param_estimate (),
util_exponential_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_f_stats_tbl.html b/docs/reference/util_f_stats_tbl.html
index 19eeaf31..e2a392f6 100644
--- a/docs/reference/util_f_stats_tbl.html
+++ b/docs/reference/util_f_stats_tbl.html
@@ -95,6 +95,7 @@ See alsoutil_chisquare_stats_tbl (),
util_exponential_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/reference/util_gamma_aic.html b/docs/reference/util_gamma_aic.html
index 28f031b5..2a870a80 100644
--- a/docs/reference/util_gamma_aic.html
+++ b/docs/reference/util_gamma_aic.html
@@ -112,6 +112,7 @@ See alsoutil_chisq_aic (),
util_exponential_aic ()
,
util_f_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/util_gamma_param_estimate.html b/docs/reference/util_gamma_param_estimate.html
index 428635ea..57fa503f 100644
--- a/docs/reference/util_gamma_param_estimate.html
+++ b/docs/reference/util_gamma_param_estimate.html
@@ -109,6 +109,7 @@ See alsoutil_chisquare_param_estimate (),
util_exponential_param_estimate ()
,
util_f_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_gamma_stats_tbl.html b/docs/reference/util_gamma_stats_tbl.html
index 90325998..ce86be4f 100644
--- a/docs/reference/util_gamma_stats_tbl.html
+++ b/docs/reference/util_gamma_stats_tbl.html
@@ -96,6 +96,7 @@ See alsoutil_chisquare_stats_tbl (),
util_exponential_stats_tbl ()
,
util_f_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/reference/util_generalized_beta_aic.html b/docs/reference/util_generalized_beta_aic.html
new file mode 100644
index 00000000..6ecdd801
--- /dev/null
+++ b/docs/reference/util_generalized_beta_aic.html
@@ -0,0 +1,173 @@
+
+Calculate Akaike Information Criterion (AIC) for Generalized Beta Distribution — util_generalized_beta_aic • TidyDensity
+ Skip to contents
+
+
+
+
+
+
+
+
+
This function estimates the shape1, shape2, shape3, and rate parameters of a generalized Beta distribution
+from the provided data using maximum likelihood estimation,
+and then calculates the AIC value based on the fitted distribution.
+
+
+
+
Usage
+
util_generalized_beta_aic ( .x )
+
+
+
+
Arguments
+
.x
+A numeric vector containing the data to be fitted to a generalized Beta distribution.
+
+
+
+
Value
+
+
+
The AIC value calculated based on the fitted generalized Beta distribution to
+the provided data.
+
+
+
Details
+
This function calculates the Akaike Information Criterion (AIC) for a generalized Beta
+distribution fitted to the provided data.
+
This function fits a generalized Beta distribution to the provided data using maximum
+likelihood estimation. It estimates the shape1, shape2, shape3, and rate parameters
+of the generalized Beta distribution using maximum likelihood estimation. Then, it
+calculates the AIC value based on the fitted distribution.
+
Initial parameter estimates: The function uses reasonable initial estimates
+for the shape1, shape2, shape3, and rate parameters of the generalized Beta distribution.
+
Optimization method: The function uses the optim function for optimization.
+You might explore different optimization methods within optim for potentially
+better performance.
+
Goodness-of-fit: While AIC is a useful metric for model comparison, it's
+recommended to also assess the goodness-of-fit of the chosen model using
+visualization and other statistical tests.
+
+
+
See also
+
Other Utility:
+check_duplicate_rows ()
,
+convert_to_ts ()
,
+quantile_normalize ()
,
+tidy_mcmc_sampling ()
,
+util_beta_aic ()
,
+util_binomial_aic ()
,
+util_cauchy_aic ()
,
+util_chisq_aic ()
,
+util_exponential_aic ()
,
+util_f_aic ()
,
+util_gamma_aic ()
,
+util_generalized_pareto_aic ()
,
+util_geometric_aic ()
,
+util_hypergeometric_aic ()
,
+util_inverse_burr_aic ()
,
+util_inverse_pareto_aic ()
,
+util_inverse_weibull_aic ()
,
+util_logistic_aic ()
,
+util_lognormal_aic ()
,
+util_negative_binomial_aic ()
,
+util_normal_aic ()
,
+util_paralogistic_aic ()
,
+util_pareto1_aic ()
,
+util_pareto_aic ()
,
+util_poisson_aic ()
,
+util_t_aic ()
,
+util_triangular_aic ()
,
+util_uniform_aic ()
,
+util_weibull_aic ()
,
+util_zero_truncated_geometric_aic ()
,
+util_zero_truncated_negative_binomial_aic ()
,
+util_zero_truncated_poisson_aic ()
+
+
+
Author
+
Steven P. Sanderson II, MPH
+
+
+
+
Examples
+
# Example 1: Calculate AIC for a sample dataset
+set.seed ( 123 )
+x <- tidy_generalized_beta ( 100 , .shape1 = 2 , .shape2 = 3 ,
+ .shape3 = 4 , .rate = 5 ) [[ "y" ] ]
+util_generalized_beta_aic ( x )
+#> [1] -498.3238
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/docs/reference/util_generalized_beta_param_estimate-1.png b/docs/reference/util_generalized_beta_param_estimate-1.png
new file mode 100644
index 00000000..15184e73
Binary files /dev/null and b/docs/reference/util_generalized_beta_param_estimate-1.png differ
diff --git a/docs/reference/util_generalized_beta_param_estimate.html b/docs/reference/util_generalized_beta_param_estimate.html
new file mode 100644
index 00000000..e928e5e9
--- /dev/null
+++ b/docs/reference/util_generalized_beta_param_estimate.html
@@ -0,0 +1,181 @@
+
+Estimate Generalized Beta Parameters — util_generalized_beta_param_estimate • TidyDensity
+ Skip to contents
+
+
+
+
+
+
+
+
+
The function will return a list output by default, and if the parameter
+.auto_gen_empirical
is set to TRUE
then the empirical data given to the
+parameter .x
will be run through the tidy_empirical()
function and combined
+with the estimated generalized Beta data.
+
+
+
+
Usage
+
util_generalized_beta_param_estimate ( .x , .auto_gen_empirical = TRUE )
+
+
+
+
Arguments
+
.x
+The vector of data to be passed to the function.
+
+
+.auto_gen_empirical
+This is a boolean value of TRUE/FALSE with default
+set to TRUE. This will automatically create the tidy_empirical()
output
+for the .x
parameter and use the tidy_combine_distributions()
. The user
+can then plot out the data using $combined_data_tbl
from the function output.
+
+
+
+
Value
+
+
+
A tibble/list
+
+
+
Details
+
This function will attempt to estimate the generalized Beta shape1, shape2, shape3, and rate
+parameters given some vector of values.
+
+
+
See also
+
Other Parameter Estimation:
+util_bernoulli_param_estimate ()
,
+util_beta_param_estimate ()
,
+util_binomial_param_estimate ()
,
+util_burr_param_estimate ()
,
+util_cauchy_param_estimate ()
,
+util_chisquare_param_estimate ()
,
+util_exponential_param_estimate ()
,
+util_f_param_estimate ()
,
+util_gamma_param_estimate ()
,
+util_generalized_pareto_param_estimate ()
,
+util_geometric_param_estimate ()
,
+util_hypergeometric_param_estimate ()
,
+util_inverse_burr_param_estimate ()
,
+util_inverse_pareto_param_estimate ()
,
+util_inverse_weibull_param_estimate ()
,
+util_logistic_param_estimate ()
,
+util_lognormal_param_estimate ()
,
+util_negative_binomial_param_estimate ()
,
+util_normal_param_estimate ()
,
+util_paralogistic_param_estimate ()
,
+util_pareto1_param_estimate ()
,
+util_pareto_param_estimate ()
,
+util_poisson_param_estimate ()
,
+util_t_param_estimate ()
,
+util_triangular_param_estimate ()
,
+util_uniform_param_estimate ()
,
+util_weibull_param_estimate ()
,
+util_zero_truncated_geometric_param_estimate ()
,
+util_zero_truncated_negative_binomial_param_estimate ()
,
+util_zero_truncated_poisson_param_estimate ()
+
Other Generalized Beta:
+util_generalized_beta_stats_tbl ()
+
+
+
Author
+
Steven P. Sanderson II, MPH
+
+
+
+
Examples
+
library ( dplyr )
+library ( ggplot2 )
+
+set.seed ( 123 )
+x <- tidy_generalized_beta ( 100 , .shape1 = 2 , .shape2 = 3 ,
+.shape3 = 4 , .rate = 5 ) [[ "y" ] ]
+output <- util_generalized_beta_param_estimate ( x )
+
+output $ parameter_tbl
+#> # A tibble: 1 × 9
+#> dist_type samp_size min max mean shape1 shape2 shape3 rate
+#> <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
+#> 1 Generalized Beta 100 0.0851 0.191 0.157 0.977 7.94 8.89 4.73
+
+output $ combined_data_tbl %>%
+ tidy_combined_autoplot ( )
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/docs/reference/util_generalized_beta_stats_tbl.html b/docs/reference/util_generalized_beta_stats_tbl.html
new file mode 100644
index 00000000..7f784117
--- /dev/null
+++ b/docs/reference/util_generalized_beta_stats_tbl.html
@@ -0,0 +1,174 @@
+
+Distribution Statistics — util_generalized_beta_stats_tbl • TidyDensity
+ Skip to contents
+
+
+
+
+
+
+
+
+
Returns distribution statistics in a tibble.
+
+
+
+
Usage
+
util_generalized_beta_stats_tbl ( .data )
+
+
+
+
Arguments
+
.data
+The data being passed from a tidy_
distribution function.
+
+
+
+
+
Details
+
This function will take in a tibble and return the statistics
+of the given type of tidy_
distribution. It is required that data be
+passed from a tidy_
distribution function.
+
+
+
See also
+
Other Generalized Beta:
+util_generalized_beta_param_estimate ()
+
Other Distribution Statistics:
+util_bernoulli_stats_tbl ()
,
+util_beta_stats_tbl ()
,
+util_binomial_stats_tbl ()
,
+util_burr_stats_tbl ()
,
+util_cauchy_stats_tbl ()
,
+util_chisquare_stats_tbl ()
,
+util_exponential_stats_tbl ()
,
+util_f_stats_tbl ()
,
+util_gamma_stats_tbl ()
,
+util_generalized_pareto_stats_tbl ()
,
+util_geometric_stats_tbl ()
,
+util_hypergeometric_stats_tbl ()
,
+util_inverse_burr_stats_tbl ()
,
+util_inverse_pareto_stats_tbl ()
,
+util_inverse_weibull_stats_tbl ()
,
+util_logistic_stats_tbl ()
,
+util_lognormal_stats_tbl ()
,
+util_negative_binomial_stats_tbl ()
,
+util_normal_stats_tbl ()
,
+util_paralogistic_stats_tbl ()
,
+util_pareto1_stats_tbl ()
,
+util_pareto_stats_tbl ()
,
+util_poisson_stats_tbl ()
,
+util_t_stats_tbl ()
,
+util_triangular_stats_tbl ()
,
+util_uniform_stats_tbl ()
,
+util_weibull_stats_tbl ()
,
+util_zero_truncated_geometric_stats_tbl ()
,
+util_zero_truncated_negative_binomial_stats_tbl ()
,
+util_zero_truncated_poisson_stats_tbl ()
+
+
+
Author
+
Steven P. Sanderson II, MPH
+
+
+
+
Examples
+
library ( dplyr )
+
+set.seed ( 123 )
+tidy_generalized_beta ( ) |>
+ util_generalized_beta_stats_tbl ( ) |>
+ glimpse ( )
+#> Rows: 1
+#> Columns: 17
+#> $ tidy_function <chr> "tidy_generalized_beta"
+#> $ function_call <chr> "Generalized Beta c(1, 1, 1, 1, 1)"
+#> $ distribution <chr> "Generalized Beta"
+#> $ distribution_type <chr> "continuous"
+#> $ points <dbl> 50
+#> $ simulations <dbl> 1
+#> $ mean <chr> "undefined"
+#> $ mode <chr> "undefined"
+#> $ range <chr> "0 to Inf"
+#> $ std_dv <chr> "undefined"
+#> $ coeff_var <chr> "undefined"
+#> $ skewness <chr> "undefined"
+#> $ kurtosis <chr> "undefined"
+#> $ computed_std_skew <dbl> -0.07917738
+#> $ computed_std_kurt <dbl> 1.789811
+#> $ ci_lo <dbl> 0.03836872
+#> $ ci_hi <dbl> 0.9413363
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/docs/reference/util_generalized_pareto_aic.html b/docs/reference/util_generalized_pareto_aic.html
index e50ed91a..a655a9dd 100644
--- a/docs/reference/util_generalized_pareto_aic.html
+++ b/docs/reference/util_generalized_pareto_aic.html
@@ -111,6 +111,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
util_inverse_burr_aic ()
,
diff --git a/docs/reference/util_generalized_pareto_param_estimate.html b/docs/reference/util_generalized_pareto_param_estimate.html
index 734f801e..94f43a9f 100644
--- a/docs/reference/util_generalized_pareto_param_estimate.html
+++ b/docs/reference/util_generalized_pareto_param_estimate.html
@@ -108,6 +108,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
util_inverse_burr_param_estimate ()
,
diff --git a/docs/reference/util_generalized_pareto_stats_tbl.html b/docs/reference/util_generalized_pareto_stats_tbl.html
index a6804a2c..81757b1f 100644
--- a/docs/reference/util_generalized_pareto_stats_tbl.html
+++ b/docs/reference/util_generalized_pareto_stats_tbl.html
@@ -95,6 +95,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
util_inverse_burr_stats_tbl ()
,
diff --git a/docs/reference/util_geometric_aic.html b/docs/reference/util_geometric_aic.html
index f5721931..7e5195d7 100644
--- a/docs/reference/util_geometric_aic.html
+++ b/docs/reference/util_geometric_aic.html
@@ -110,6 +110,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_hypergeometric_aic ()
,
util_inverse_burr_aic ()
,
diff --git a/docs/reference/util_geometric_param_estimate.html b/docs/reference/util_geometric_param_estimate.html
index b83b302f..9e9833e4 100644
--- a/docs/reference/util_geometric_param_estimate.html
+++ b/docs/reference/util_geometric_param_estimate.html
@@ -112,6 +112,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
util_inverse_burr_param_estimate ()
,
diff --git a/docs/reference/util_geometric_stats_tbl.html b/docs/reference/util_geometric_stats_tbl.html
index 4ec29f60..b8764b7c 100644
--- a/docs/reference/util_geometric_stats_tbl.html
+++ b/docs/reference/util_geometric_stats_tbl.html
@@ -97,6 +97,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
util_inverse_burr_stats_tbl ()
,
diff --git a/docs/reference/util_hypergeometric_aic.html b/docs/reference/util_hypergeometric_aic.html
index fbdc4ec6..7430d225 100644
--- a/docs/reference/util_hypergeometric_aic.html
+++ b/docs/reference/util_hypergeometric_aic.html
@@ -111,6 +111,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_inverse_burr_aic ()
,
diff --git a/docs/reference/util_hypergeometric_param_estimate.html b/docs/reference/util_hypergeometric_param_estimate.html
index f7c41bed..f1c41051 100644
--- a/docs/reference/util_hypergeometric_param_estimate.html
+++ b/docs/reference/util_hypergeometric_param_estimate.html
@@ -139,6 +139,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_inverse_burr_param_estimate ()
,
diff --git a/docs/reference/util_hypergeometric_stats_tbl.html b/docs/reference/util_hypergeometric_stats_tbl.html
index c3b51607..cffdf674 100644
--- a/docs/reference/util_hypergeometric_stats_tbl.html
+++ b/docs/reference/util_hypergeometric_stats_tbl.html
@@ -96,6 +96,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_inverse_burr_stats_tbl ()
,
diff --git a/docs/reference/util_inverse_burr_aic.html b/docs/reference/util_inverse_burr_aic.html
index f6022bb7..fe6029ee 100644
--- a/docs/reference/util_inverse_burr_aic.html
+++ b/docs/reference/util_inverse_burr_aic.html
@@ -112,6 +112,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/util_inverse_burr_param_estimate.html b/docs/reference/util_inverse_burr_param_estimate.html
index 33f8b679..fc4da8fb 100644
--- a/docs/reference/util_inverse_burr_param_estimate.html
+++ b/docs/reference/util_inverse_burr_param_estimate.html
@@ -113,6 +113,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_inverse_burr_stats_tbl.html b/docs/reference/util_inverse_burr_stats_tbl.html
index 380e6bc9..82339e52 100644
--- a/docs/reference/util_inverse_burr_stats_tbl.html
+++ b/docs/reference/util_inverse_burr_stats_tbl.html
@@ -95,6 +95,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/reference/util_inverse_pareto_aic.html b/docs/reference/util_inverse_pareto_aic.html
index eabe1304..b65f624d 100644
--- a/docs/reference/util_inverse_pareto_aic.html
+++ b/docs/reference/util_inverse_pareto_aic.html
@@ -112,6 +112,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/util_inverse_pareto_param_estimate.html b/docs/reference/util_inverse_pareto_param_estimate.html
index 633adfb2..b406decf 100644
--- a/docs/reference/util_inverse_pareto_param_estimate.html
+++ b/docs/reference/util_inverse_pareto_param_estimate.html
@@ -108,6 +108,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_inverse_pareto_stats_tbl.html b/docs/reference/util_inverse_pareto_stats_tbl.html
index e1ccb2f0..b0ebe7a7 100644
--- a/docs/reference/util_inverse_pareto_stats_tbl.html
+++ b/docs/reference/util_inverse_pareto_stats_tbl.html
@@ -95,6 +95,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/reference/util_inverse_weibull_aic.html b/docs/reference/util_inverse_weibull_aic.html
index 03729a5c..5479a6c0 100644
--- a/docs/reference/util_inverse_weibull_aic.html
+++ b/docs/reference/util_inverse_weibull_aic.html
@@ -113,6 +113,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/util_inverse_weibull_param_estimate.html b/docs/reference/util_inverse_weibull_param_estimate.html
index a4fe2080..b49e8699 100644
--- a/docs/reference/util_inverse_weibull_param_estimate.html
+++ b/docs/reference/util_inverse_weibull_param_estimate.html
@@ -108,6 +108,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_inverse_weibull_stats_tbl.html b/docs/reference/util_inverse_weibull_stats_tbl.html
index f9c464d8..6f045e3e 100644
--- a/docs/reference/util_inverse_weibull_stats_tbl.html
+++ b/docs/reference/util_inverse_weibull_stats_tbl.html
@@ -95,6 +95,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/reference/util_logistic_aic.html b/docs/reference/util_logistic_aic.html
index 53db44c2..815c3908 100644
--- a/docs/reference/util_logistic_aic.html
+++ b/docs/reference/util_logistic_aic.html
@@ -112,6 +112,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/util_logistic_param_estimate.html b/docs/reference/util_logistic_param_estimate.html
index d213c6cb..afcd33ad 100644
--- a/docs/reference/util_logistic_param_estimate.html
+++ b/docs/reference/util_logistic_param_estimate.html
@@ -123,6 +123,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_logistic_stats_tbl.html b/docs/reference/util_logistic_stats_tbl.html
index a02db790..7e457c43 100644
--- a/docs/reference/util_logistic_stats_tbl.html
+++ b/docs/reference/util_logistic_stats_tbl.html
@@ -97,6 +97,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/reference/util_lognormal_aic.html b/docs/reference/util_lognormal_aic.html
index aec0eafd..9c1bcff8 100644
--- a/docs/reference/util_lognormal_aic.html
+++ b/docs/reference/util_lognormal_aic.html
@@ -112,6 +112,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/util_lognormal_param_estimate.html b/docs/reference/util_lognormal_param_estimate.html
index 9336480a..c926b003 100644
--- a/docs/reference/util_lognormal_param_estimate.html
+++ b/docs/reference/util_lognormal_param_estimate.html
@@ -120,6 +120,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_lognormal_stats_tbl.html b/docs/reference/util_lognormal_stats_tbl.html
index fceb1146..b44bc3f8 100644
--- a/docs/reference/util_lognormal_stats_tbl.html
+++ b/docs/reference/util_lognormal_stats_tbl.html
@@ -96,6 +96,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/reference/util_negative_binomial_aic.html b/docs/reference/util_negative_binomial_aic.html
index 4bf09c0b..0d78ecc5 100644
--- a/docs/reference/util_negative_binomial_aic.html
+++ b/docs/reference/util_negative_binomial_aic.html
@@ -112,6 +112,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/util_negative_binomial_param_estimate.html b/docs/reference/util_negative_binomial_param_estimate.html
index e244beea..a0fad5dc 100644
--- a/docs/reference/util_negative_binomial_param_estimate.html
+++ b/docs/reference/util_negative_binomial_param_estimate.html
@@ -131,6 +131,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_negative_binomial_stats_tbl.html b/docs/reference/util_negative_binomial_stats_tbl.html
index 157f8148..a29d5b6a 100644
--- a/docs/reference/util_negative_binomial_stats_tbl.html
+++ b/docs/reference/util_negative_binomial_stats_tbl.html
@@ -95,6 +95,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/reference/util_normal_aic.html b/docs/reference/util_normal_aic.html
index 059dc9bc..8a226a8f 100644
--- a/docs/reference/util_normal_aic.html
+++ b/docs/reference/util_normal_aic.html
@@ -96,6 +96,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/util_normal_param_estimate.html b/docs/reference/util_normal_param_estimate.html
index 8043c80e..f1c4d822 100644
--- a/docs/reference/util_normal_param_estimate.html
+++ b/docs/reference/util_normal_param_estimate.html
@@ -120,6 +120,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_normal_stats_tbl.html b/docs/reference/util_normal_stats_tbl.html
index 7de70647..744896fa 100644
--- a/docs/reference/util_normal_stats_tbl.html
+++ b/docs/reference/util_normal_stats_tbl.html
@@ -97,6 +97,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/reference/util_paralogistic_aic.html b/docs/reference/util_paralogistic_aic.html
index e2aec9e2..41abe2dd 100644
--- a/docs/reference/util_paralogistic_aic.html
+++ b/docs/reference/util_paralogistic_aic.html
@@ -112,6 +112,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/util_paralogistic_param_estimate.html b/docs/reference/util_paralogistic_param_estimate.html
index e3af30f7..6598fb5e 100644
--- a/docs/reference/util_paralogistic_param_estimate.html
+++ b/docs/reference/util_paralogistic_param_estimate.html
@@ -117,6 +117,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_paralogistic_stats_tbl.html b/docs/reference/util_paralogistic_stats_tbl.html
index 42aaa3cb..ea498b3c 100644
--- a/docs/reference/util_paralogistic_stats_tbl.html
+++ b/docs/reference/util_paralogistic_stats_tbl.html
@@ -96,6 +96,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/reference/util_pareto1_aic.html b/docs/reference/util_pareto1_aic.html
index fb318348..e117bd81 100644
--- a/docs/reference/util_pareto1_aic.html
+++ b/docs/reference/util_pareto1_aic.html
@@ -111,6 +111,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/util_pareto1_param_estimate.html b/docs/reference/util_pareto1_param_estimate.html
index d93be080..de695d71 100644
--- a/docs/reference/util_pareto1_param_estimate.html
+++ b/docs/reference/util_pareto1_param_estimate.html
@@ -120,6 +120,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_pareto1_stats_tbl.html b/docs/reference/util_pareto1_stats_tbl.html
index c443853b..a94e03a2 100644
--- a/docs/reference/util_pareto1_stats_tbl.html
+++ b/docs/reference/util_pareto1_stats_tbl.html
@@ -102,6 +102,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/reference/util_pareto_aic.html b/docs/reference/util_pareto_aic.html
index 0e19ccd8..ecddbb5b 100644
--- a/docs/reference/util_pareto_aic.html
+++ b/docs/reference/util_pareto_aic.html
@@ -111,6 +111,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/util_pareto_param_estimate.html b/docs/reference/util_pareto_param_estimate.html
index 76993677..61bd1fc1 100644
--- a/docs/reference/util_pareto_param_estimate.html
+++ b/docs/reference/util_pareto_param_estimate.html
@@ -120,6 +120,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_pareto_stats_tbl.html b/docs/reference/util_pareto_stats_tbl.html
index 3b4d3130..8bf1ef21 100644
--- a/docs/reference/util_pareto_stats_tbl.html
+++ b/docs/reference/util_pareto_stats_tbl.html
@@ -102,6 +102,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/reference/util_poisson_aic.html b/docs/reference/util_poisson_aic.html
index 4a945cf8..6bc083a6 100644
--- a/docs/reference/util_poisson_aic.html
+++ b/docs/reference/util_poisson_aic.html
@@ -107,6 +107,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/util_poisson_param_estimate.html b/docs/reference/util_poisson_param_estimate.html
index 76d70eb3..9ccfc313 100644
--- a/docs/reference/util_poisson_param_estimate.html
+++ b/docs/reference/util_poisson_param_estimate.html
@@ -108,6 +108,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_poisson_stats_tbl.html b/docs/reference/util_poisson_stats_tbl.html
index b188a708..28d79ea1 100644
--- a/docs/reference/util_poisson_stats_tbl.html
+++ b/docs/reference/util_poisson_stats_tbl.html
@@ -99,6 +99,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/reference/util_t_aic.html b/docs/reference/util_t_aic.html
index a573ec1a..363132f8 100644
--- a/docs/reference/util_t_aic.html
+++ b/docs/reference/util_t_aic.html
@@ -107,6 +107,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/util_t_param_estimate.html b/docs/reference/util_t_param_estimate.html
index 8dd2ae3e..08ab26e8 100644
--- a/docs/reference/util_t_param_estimate.html
+++ b/docs/reference/util_t_param_estimate.html
@@ -101,6 +101,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_t_stats_tbl.html b/docs/reference/util_t_stats_tbl.html
index 459e102e..d011a841 100644
--- a/docs/reference/util_t_stats_tbl.html
+++ b/docs/reference/util_t_stats_tbl.html
@@ -95,6 +95,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/reference/util_triangular_aic.html b/docs/reference/util_triangular_aic.html
index 4adc0488..a8fa3588 100644
--- a/docs/reference/util_triangular_aic.html
+++ b/docs/reference/util_triangular_aic.html
@@ -117,6 +117,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/util_triangular_param_estimate.html b/docs/reference/util_triangular_param_estimate.html
index b39258a5..7047722e 100644
--- a/docs/reference/util_triangular_param_estimate.html
+++ b/docs/reference/util_triangular_param_estimate.html
@@ -115,6 +115,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_triangular_stats_tbl.html b/docs/reference/util_triangular_stats_tbl.html
index 590fdce5..1a2add9f 100644
--- a/docs/reference/util_triangular_stats_tbl.html
+++ b/docs/reference/util_triangular_stats_tbl.html
@@ -96,6 +96,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/reference/util_uniform_aic.html b/docs/reference/util_uniform_aic.html
index d4c68e8b..46981706 100644
--- a/docs/reference/util_uniform_aic.html
+++ b/docs/reference/util_uniform_aic.html
@@ -111,6 +111,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/util_uniform_param_estimate.html b/docs/reference/util_uniform_param_estimate.html
index f1b512a7..1a3022b5 100644
--- a/docs/reference/util_uniform_param_estimate.html
+++ b/docs/reference/util_uniform_param_estimate.html
@@ -108,6 +108,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_uniform_stats_tbl.html b/docs/reference/util_uniform_stats_tbl.html
index c83253f8..33683c50 100644
--- a/docs/reference/util_uniform_stats_tbl.html
+++ b/docs/reference/util_uniform_stats_tbl.html
@@ -96,6 +96,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/reference/util_weibull_aic.html b/docs/reference/util_weibull_aic.html
index 29238b27..a67298dd 100644
--- a/docs/reference/util_weibull_aic.html
+++ b/docs/reference/util_weibull_aic.html
@@ -113,6 +113,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/util_weibull_param_estimate.html b/docs/reference/util_weibull_param_estimate.html
index 54265d96..4bc84e89 100644
--- a/docs/reference/util_weibull_param_estimate.html
+++ b/docs/reference/util_weibull_param_estimate.html
@@ -108,6 +108,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_weibull_stats_tbl.html b/docs/reference/util_weibull_stats_tbl.html
index 73a65ab8..85a6c4d1 100644
--- a/docs/reference/util_weibull_stats_tbl.html
+++ b/docs/reference/util_weibull_stats_tbl.html
@@ -97,6 +97,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/reference/util_zero_truncated_geometric_aic.html b/docs/reference/util_zero_truncated_geometric_aic.html
index 82667e30..fa208370 100644
--- a/docs/reference/util_zero_truncated_geometric_aic.html
+++ b/docs/reference/util_zero_truncated_geometric_aic.html
@@ -110,6 +110,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/util_zero_truncated_geometric_param_estimate.html b/docs/reference/util_zero_truncated_geometric_param_estimate.html
index edd7ac1e..5177db31 100644
--- a/docs/reference/util_zero_truncated_geometric_param_estimate.html
+++ b/docs/reference/util_zero_truncated_geometric_param_estimate.html
@@ -114,6 +114,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_zero_truncated_geometric_stats_tbl.html b/docs/reference/util_zero_truncated_geometric_stats_tbl.html
index d7bec3d9..5ef68612 100644
--- a/docs/reference/util_zero_truncated_geometric_stats_tbl.html
+++ b/docs/reference/util_zero_truncated_geometric_stats_tbl.html
@@ -99,6 +99,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/reference/util_zero_truncated_negative_binomial_aic.html b/docs/reference/util_zero_truncated_negative_binomial_aic.html
index dfe9a99d..fe4a24e4 100644
--- a/docs/reference/util_zero_truncated_negative_binomial_aic.html
+++ b/docs/reference/util_zero_truncated_negative_binomial_aic.html
@@ -120,6 +120,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/util_zero_truncated_negative_binomial_param_estimate.html b/docs/reference/util_zero_truncated_negative_binomial_param_estimate.html
index 1d92499c..e042d0ea 100644
--- a/docs/reference/util_zero_truncated_negative_binomial_param_estimate.html
+++ b/docs/reference/util_zero_truncated_negative_binomial_param_estimate.html
@@ -120,6 +120,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_zero_truncated_negative_binomial_stats_tbl.html b/docs/reference/util_zero_truncated_negative_binomial_stats_tbl.html
index 942b854d..cc2bdfd6 100644
--- a/docs/reference/util_zero_truncated_negative_binomial_stats_tbl.html
+++ b/docs/reference/util_zero_truncated_negative_binomial_stats_tbl.html
@@ -106,6 +106,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/reference/util_zero_truncated_poisson_aic.html b/docs/reference/util_zero_truncated_poisson_aic.html
index ebb90116..b37f47b9 100644
--- a/docs/reference/util_zero_truncated_poisson_aic.html
+++ b/docs/reference/util_zero_truncated_poisson_aic.html
@@ -96,6 +96,7 @@ See alsoutil_exponential_aic (),
util_f_aic ()
,
util_gamma_aic ()
,
+util_generalized_beta_aic ()
,
util_generalized_pareto_aic ()
,
util_geometric_aic ()
,
util_hypergeometric_aic ()
,
diff --git a/docs/reference/util_zero_truncated_poisson_param_estimate.html b/docs/reference/util_zero_truncated_poisson_param_estimate.html
index 7fe5c821..abd98f8c 100644
--- a/docs/reference/util_zero_truncated_poisson_param_estimate.html
+++ b/docs/reference/util_zero_truncated_poisson_param_estimate.html
@@ -133,6 +133,7 @@ See alsoutil_exponential_param_estimate (),
util_f_param_estimate ()
,
util_gamma_param_estimate ()
,
+util_generalized_beta_param_estimate ()
,
util_generalized_pareto_param_estimate ()
,
util_geometric_param_estimate ()
,
util_hypergeometric_param_estimate ()
,
diff --git a/docs/reference/util_zero_truncated_poisson_stats_tbl.html b/docs/reference/util_zero_truncated_poisson_stats_tbl.html
index ee822c1a..cc63169d 100644
--- a/docs/reference/util_zero_truncated_poisson_stats_tbl.html
+++ b/docs/reference/util_zero_truncated_poisson_stats_tbl.html
@@ -99,6 +99,7 @@ See alsoutil_exponential_stats_tbl (),
util_f_stats_tbl ()
,
util_gamma_stats_tbl ()
,
+util_generalized_beta_stats_tbl ()
,
util_generalized_pareto_stats_tbl ()
,
util_geometric_stats_tbl ()
,
util_hypergeometric_stats_tbl ()
,
diff --git a/docs/search.json b/docs/search.json
index 66b59268..45634459 100644
--- a/docs/search.json
+++ b/docs/search.json
@@ -1 +1 @@
-[{"path":"https://www.spsanderson.com/TidyDensity/articles/getting-started.html","id":"example","dir":"Articles","previous_headings":"","what":"Example","title":"Getting Started with TidyDensity","text":"basic example shows easy generate data TidyDensity: example plot tidy_normal data. can also take look plots number simulations greater nine. automatically turn legend become noisy.","code":"library(TidyDensity) library(dplyr) library(ggplot2) tidy_normal() #> # A tibble: 50 × 7 #> sim_number x y dx dy p q #> #> 1 1 1 -1.40 -3.47 0.000263 0.0808 -1.40 #> 2 1 2 0.255 -3.32 0.000879 0.601 0.255 #> 3 1 3 -2.44 -3.17 0.00246 0.00740 -2.44 #> 4 1 4 -0.00557 -3.02 0.00581 0.498 -0.00557 #> 5 1 5 0.622 -2.88 0.0118 0.733 0.622 #> 6 1 6 1.15 -2.73 0.0209 0.875 1.15 #> 7 1 7 -1.82 -2.58 0.0338 0.0342 -1.82 #> 8 1 8 -0.247 -2.43 0.0513 0.402 -0.247 #> 9 1 9 -0.244 -2.28 0.0742 0.404 -0.244 #> 10 1 10 -0.283 -2.14 0.102 0.389 -0.283 #> # ℹ 40 more rows tn <- tidy_normal(.n = 100, .num_sims = 6) tidy_autoplot(tn, .plot_type = \"density\") tidy_autoplot(tn, .plot_type = \"quantile\") tidy_autoplot(tn, .plot_type = \"probability\") tidy_autoplot(tn, .plot_type = \"qq\") tn <- tidy_normal(.n = 100, .num_sims = 20) tidy_autoplot(tn, .plot_type = \"density\") tidy_autoplot(tn, .plot_type = \"quantile\") tidy_autoplot(tn, .plot_type = \"probability\") tidy_autoplot(tn, .plot_type = \"qq\")"},{"path":"https://www.spsanderson.com/TidyDensity/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Steven Sanderson. Author, maintainer, copyright holder.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Sanderson S (2024). TidyDensity: Functions Tidy Analysis Generation Random Data. R package version 1.4.0.9000, https://github.com/spsanderson/TidyDensity.","code":"@Manual{, title = {TidyDensity: Functions for Tidy Analysis and Generation of Random Data}, author = {Steven Sanderson}, year = {2024}, note = {R package version 1.4.0.9000}, url = {https://github.com/spsanderson/TidyDensity}, }"},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/CODE_OF_CONDUCT.html","id":"our-pledge","dir":"","previous_headings":"","what":"Our Pledge","title":"Contributor Covenant Code of Conduct","text":"members, contributors, leaders pledge make participation community harassment-free experience everyone, regardless age, body size, visible invisible disability, ethnicity, sex characteristics, gender identity expression, level experience, education, socio-economic status, nationality, personal appearance, race, religion, sexual identity orientation. pledge act interact ways contribute open, welcoming, diverse, inclusive, healthy community.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/CODE_OF_CONDUCT.html","id":"our-standards","dir":"","previous_headings":"","what":"Our Standards","title":"Contributor Covenant Code of Conduct","text":"Examples behavior contributes positive environment community include: Demonstrating empathy kindness toward people respectful differing opinions, viewpoints, experiences Giving gracefully accepting constructive feedback Accepting responsibility apologizing affected mistakes, learning experience Focusing best just us individuals, overall community Examples unacceptable behavior include: use sexualized language imagery, sexual attention advances kind Trolling, insulting derogatory comments, personal political attacks Public private harassment Publishing others’ private information, physical email address, without explicit permission conduct reasonably considered inappropriate professional setting","code":""},{"path":"https://www.spsanderson.com/TidyDensity/CODE_OF_CONDUCT.html","id":"enforcement-responsibilities","dir":"","previous_headings":"","what":"Enforcement Responsibilities","title":"Contributor Covenant Code of Conduct","text":"Community leaders responsible clarifying enforcing standards acceptable behavior take appropriate fair corrective action response behavior deem inappropriate, threatening, offensive, harmful. Community leaders right responsibility remove, edit, reject comments, commits, code, wiki edits, issues, contributions aligned Code Conduct, communicate reasons moderation decisions appropriate.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/CODE_OF_CONDUCT.html","id":"scope","dir":"","previous_headings":"","what":"Scope","title":"Contributor Covenant Code of Conduct","text":"Code Conduct applies within community spaces, also applies individual officially representing community public spaces. Examples representing community include using official e-mail address, posting via official social media account, acting appointed representative online offline event.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/CODE_OF_CONDUCT.html","id":"enforcement","dir":"","previous_headings":"","what":"Enforcement","title":"Contributor Covenant Code of Conduct","text":"Instances abusive, harassing, otherwise unacceptable behavior may reported community leaders responsible enforcement spsanderson@gmail.com. complaints reviewed investigated promptly fairly. community leaders obligated respect privacy security reporter incident.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/CODE_OF_CONDUCT.html","id":"enforcement-guidelines","dir":"","previous_headings":"","what":"Enforcement Guidelines","title":"Contributor Covenant Code of Conduct","text":"Community leaders follow Community Impact Guidelines determining consequences action deem violation Code Conduct:","code":""},{"path":"https://www.spsanderson.com/TidyDensity/CODE_OF_CONDUCT.html","id":"id_1-correction","dir":"","previous_headings":"Enforcement Guidelines","what":"1. Correction","title":"Contributor Covenant Code of Conduct","text":"Community Impact: Use inappropriate language behavior deemed unprofessional unwelcome community. Consequence: private, written warning community leaders, providing clarity around nature violation explanation behavior inappropriate. public apology may requested.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/CODE_OF_CONDUCT.html","id":"id_2-warning","dir":"","previous_headings":"Enforcement Guidelines","what":"2. Warning","title":"Contributor Covenant Code of Conduct","text":"Community Impact: violation single incident series actions. Consequence: warning consequences continued behavior. interaction people involved, including unsolicited interaction enforcing Code Conduct, specified period time. includes avoiding interactions community spaces well external channels like social media. Violating terms may lead temporary permanent ban.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/CODE_OF_CONDUCT.html","id":"id_3-temporary-ban","dir":"","previous_headings":"Enforcement Guidelines","what":"3. Temporary Ban","title":"Contributor Covenant Code of Conduct","text":"Community Impact: serious violation community standards, including sustained inappropriate behavior. Consequence: temporary ban sort interaction public communication community specified period time. public private interaction people involved, including unsolicited interaction enforcing Code Conduct, allowed period. Violating terms may lead permanent ban.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/CODE_OF_CONDUCT.html","id":"id_4-permanent-ban","dir":"","previous_headings":"Enforcement Guidelines","what":"4. Permanent Ban","title":"Contributor Covenant Code of Conduct","text":"Community Impact: Demonstrating pattern violation community standards, including sustained inappropriate behavior, harassment individual, aggression toward disparagement classes individuals. Consequence: permanent ban sort public interaction within community.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/CODE_OF_CONDUCT.html","id":"attribution","dir":"","previous_headings":"","what":"Attribution","title":"Contributor Covenant Code of Conduct","text":"Code Conduct adapted Contributor Covenant, version 2.0, available https://www.contributor-covenant.org/version/2/0/code_of_conduct.html. Community Impact Guidelines inspired Mozilla’s code conduct enforcement ladder. answers common questions code conduct, see FAQ https://www.contributor-covenant.org/faq. Translations available https://www.contributor-covenant.org/translations.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/index.html","id":"tidydensity-","dir":"","previous_headings":"","what":"Functions for Tidy Analysis and Generation of Random Data","title":"Functions for Tidy Analysis and Generation of Random Data","text":"goal TidyDensity make working random numbers different distributions easy. tidy_ distribution functions provide following components: [r_] [d_] [q_] [p_]","code":""},{"path":"https://www.spsanderson.com/TidyDensity/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"Functions for Tidy Analysis and Generation of Random Data","text":"can install released version TidyDensity CRAN : development version GitHub :","code":"install.packages(\"TidyDensity\") # install.packages(\"devtools\") devtools::install_github(\"spsanderson/TidyDensity\")"},{"path":"https://www.spsanderson.com/TidyDensity/index.html","id":"example","dir":"","previous_headings":"","what":"Example","title":"Functions for Tidy Analysis and Generation of Random Data","text":"basic example shows solve common problem: example plot tidy_normal data. can also take look plots number simulations greater nine. automatically turn legend become noisy.","code":"library(TidyDensity) library(dplyr) library(ggplot2) tidy_normal() #> # A tibble: 50 × 7 #> sim_number x y dx dy p q #> #> 1 1 1 0.227 -2.97 0.000238 0.590 0.227 #> 2 1 2 1.12 -2.84 0.000640 0.869 1.12 #> 3 1 3 1.26 -2.71 0.00153 0.897 1.26 #> 4 1 4 0.204 -2.58 0.00326 0.581 0.204 #> 5 1 5 1.04 -2.44 0.00620 0.852 1.04 #> 6 1 6 -0.180 -2.31 0.0106 0.429 -0.180 #> 7 1 7 0.299 -2.18 0.0167 0.618 0.299 #> 8 1 8 1.73 -2.04 0.0243 0.959 1.73 #> 9 1 9 -0.770 -1.91 0.0338 0.221 -0.770 #> 10 1 10 0.385 -1.78 0.0463 0.650 0.385 #> # ℹ 40 more rows tn <- tidy_normal(.n = 100, .num_sims = 6) tidy_autoplot(tn, .plot_type = \"density\") tidy_autoplot(tn, .plot_type = \"quantile\") tidy_autoplot(tn, .plot_type = \"probability\") tidy_autoplot(tn, .plot_type = \"qq\") tn <- tidy_normal(.n = 100, .num_sims = 20) tidy_autoplot(tn, .plot_type = \"density\") tidy_autoplot(tn, .plot_type = \"quantile\") tidy_autoplot(tn, .plot_type = \"probability\") tidy_autoplot(tn, .plot_type = \"qq\")"},{"path":"https://www.spsanderson.com/TidyDensity/LICENSE.html","id":null,"dir":"","previous_headings":"","what":"MIT License","title":"MIT License","text":"Copyright (c) 2022 Steven Paul Sandeson II, MPH Permission hereby granted, free charge, person obtaining copy software associated documentation files (“Software”), deal Software without restriction, including without limitation rights use, copy, modify, merge, publish, distribute, sublicense, /sell copies Software, permit persons Software furnished , subject following conditions: copyright notice permission notice shall included copies substantial portions Software. SOFTWARE PROVIDED “”, WITHOUT WARRANTY KIND, EXPRESS IMPLIED, INCLUDING LIMITED WARRANTIES MERCHANTABILITY, FITNESS PARTICULAR PURPOSE NONINFRINGEMENT. EVENT SHALL AUTHORS COPYRIGHT HOLDERS LIABLE CLAIM, DAMAGES LIABILITY, WHETHER ACTION CONTRACT, TORT OTHERWISE, ARISING , CONNECTION SOFTWARE USE DEALINGS SOFTWARE.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_density_augment.html","id":null,"dir":"Reference","previous_headings":"","what":"Bootstrap Density Tibble — bootstrap_density_augment","title":"Bootstrap Density Tibble — bootstrap_density_augment","text":"Add density information output tidy_bootstrap(), bootstrap_unnest_tbl().","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_density_augment.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Bootstrap Density Tibble — bootstrap_density_augment","text":"","code":"bootstrap_density_augment(.data)"},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_density_augment.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Bootstrap Density Tibble — bootstrap_density_augment","text":".data data passed tidy_bootstrap() bootstrap_unnest_tbl() functions.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_density_augment.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Bootstrap Density Tibble — bootstrap_density_augment","text":"tibble","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_density_augment.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Bootstrap Density Tibble — bootstrap_density_augment","text":"function takes input output tidy_bootstrap() bootstrap_unnest_tbl() returns augmented tibble following columns added : x, y, dx, dy. looks attribute comes using tidy_bootstrap() bootstrap_unnest_tbl() work unless data comes one functions.","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_density_augment.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Bootstrap Density Tibble — bootstrap_density_augment","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_density_augment.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Bootstrap Density Tibble — bootstrap_density_augment","text":"","code":"x <- mtcars$mpg tidy_bootstrap(x) |> bootstrap_density_augment() #> # A tibble: 50,000 × 5 #> sim_number x y dx dy #> #> 1 1 1 17.3 6.48 0.000412 #> 2 1 2 15.2 7.33 0.00231 #> 3 1 3 16.4 8.17 0.00856 #> 4 1 4 15 9.01 0.0209 #> 5 1 5 18.7 9.86 0.0340 #> 6 1 6 18.1 10.7 0.0376 #> 7 1 7 10.4 11.5 0.0316 #> 8 1 8 10.4 12.4 0.0286 #> 9 1 9 15 13.2 0.0391 #> 10 1 10 21.4 14.1 0.0607 #> # ℹ 49,990 more rows tidy_bootstrap(x) |> bootstrap_unnest_tbl() |> bootstrap_density_augment() #> # A tibble: 50,000 × 5 #> sim_number x y dx dy #> #> 1 1 1 14.7 6.80 0.000150 #> 2 1 2 21.5 8.08 0.00206 #> 3 1 3 19.2 9.36 0.00914 #> 4 1 4 26 10.6 0.0131 #> 5 1 5 22.8 11.9 0.00739 #> 6 1 6 15 13.2 0.0114 #> 7 1 7 19.2 14.5 0.0272 #> 8 1 8 21 15.8 0.0365 #> 9 1 9 21 17.0 0.0609 #> 10 1 10 17.3 18.3 0.0977 #> # ℹ 49,990 more rows"},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_p_augment.html","id":null,"dir":"Reference","previous_headings":"","what":"Augment Bootstrap P — bootstrap_p_augment","title":"Augment Bootstrap P — bootstrap_p_augment","text":"Takes numeric vector return ecdf probability.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_p_augment.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Augment Bootstrap P — bootstrap_p_augment","text":"","code":"bootstrap_p_augment(.data, .value, .names = \"auto\")"},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_p_augment.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Augment Bootstrap P — bootstrap_p_augment","text":".data data passed augmented function. .value passed rlang::enquo() capture vectors want augment. .names default \"auto\"","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_p_augment.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Augment Bootstrap P — bootstrap_p_augment","text":"augmented tibble","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_p_augment.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Augment Bootstrap P — bootstrap_p_augment","text":"Takes numeric vector return ecdf probability vector. function intended used order add columns tibble.","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_p_augment.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Augment Bootstrap P — bootstrap_p_augment","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_p_augment.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Augment Bootstrap P — bootstrap_p_augment","text":"","code":"x <- mtcars$mpg tidy_bootstrap(x) |> bootstrap_unnest_tbl() |> bootstrap_p_augment(y) #> # A tibble: 50,000 × 3 #> sim_number y p #> #> 1 1 21.4 0.687 #> 2 1 21.5 0.716 #> 3 1 18.7 0.467 #> 4 1 30.4 0.936 #> 5 1 13.3 0.0944 #> 6 1 21.5 0.716 #> 7 1 19.2 0.529 #> 8 1 19.2 0.529 #> 9 1 21.4 0.687 #> 10 1 21.4 0.687 #> # ℹ 49,990 more rows"},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_p_vec.html","id":null,"dir":"Reference","previous_headings":"","what":"Compute Bootstrap P of a Vector — bootstrap_p_vec","title":"Compute Bootstrap P of a Vector — bootstrap_p_vec","text":"function takes vector input return ecdf probability vector.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_p_vec.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Compute Bootstrap P of a Vector — bootstrap_p_vec","text":"","code":"bootstrap_p_vec(.x)"},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_p_vec.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Compute Bootstrap P of a Vector — bootstrap_p_vec","text":".x numeric","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_p_vec.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Compute Bootstrap P of a Vector — bootstrap_p_vec","text":"vector","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_p_vec.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Compute Bootstrap P of a Vector — bootstrap_p_vec","text":"function return ecdf probability vector.","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_p_vec.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Compute Bootstrap P of a Vector — bootstrap_p_vec","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_p_vec.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Compute Bootstrap P of a Vector — bootstrap_p_vec","text":"","code":"x <- mtcars$mpg bootstrap_p_vec(x) #> [1] 0.62500 0.62500 0.78125 0.68750 0.46875 0.43750 0.12500 0.81250 0.78125 #> [10] 0.53125 0.40625 0.34375 0.37500 0.25000 0.06250 0.06250 0.15625 0.96875 #> [19] 0.93750 1.00000 0.71875 0.28125 0.25000 0.09375 0.53125 0.87500 0.84375 #> [28] 0.93750 0.31250 0.56250 0.18750 0.68750"},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_q_augment.html","id":null,"dir":"Reference","previous_headings":"","what":"Augment Bootstrap Q — bootstrap_q_augment","title":"Augment Bootstrap Q — bootstrap_q_augment","text":"Takes numeric vector return quantile.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_q_augment.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Augment Bootstrap Q — bootstrap_q_augment","text":"","code":"bootstrap_q_augment(.data, .value, .names = \"auto\")"},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_q_augment.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Augment Bootstrap Q — bootstrap_q_augment","text":".data data passed augmented function. .value passed rlang::enquo() capture vectors want augment. .names default \"auto\"","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_q_augment.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Augment Bootstrap Q — bootstrap_q_augment","text":"augmented tibble","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_q_augment.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Augment Bootstrap Q — bootstrap_q_augment","text":"Takes numeric vector return quantile vector. function intended used order add columns tibble.","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_q_augment.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Augment Bootstrap Q — bootstrap_q_augment","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_q_augment.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Augment Bootstrap Q — bootstrap_q_augment","text":"","code":"x <- mtcars$mpg tidy_bootstrap(x) |> bootstrap_unnest_tbl() |> bootstrap_q_augment(y) #> # A tibble: 50,000 × 3 #> sim_number y q #> #> 1 1 21 10.4 #> 2 1 10.4 10.4 #> 3 1 21.4 10.4 #> 4 1 30.4 10.4 #> 5 1 30.4 10.4 #> 6 1 15.2 10.4 #> 7 1 21.5 10.4 #> 8 1 33.9 10.4 #> 9 1 18.1 10.4 #> 10 1 21 10.4 #> # ℹ 49,990 more rows"},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_q_vec.html","id":null,"dir":"Reference","previous_headings":"","what":"Compute Bootstrap Q of a Vector — bootstrap_q_vec","title":"Compute Bootstrap Q of a Vector — bootstrap_q_vec","text":"function takes vector input return quantile vector.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_q_vec.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Compute Bootstrap Q of a Vector — bootstrap_q_vec","text":"","code":"bootstrap_q_vec(.x)"},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_q_vec.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Compute Bootstrap Q of a Vector — bootstrap_q_vec","text":".x numeric","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_q_vec.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Compute Bootstrap Q of a Vector — bootstrap_q_vec","text":"vector","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_q_vec.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Compute Bootstrap Q of a Vector — bootstrap_q_vec","text":"function return quantile vector.","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_q_vec.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Compute Bootstrap Q of a Vector — bootstrap_q_vec","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_q_vec.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Compute Bootstrap Q of a Vector — bootstrap_q_vec","text":"","code":"x <- mtcars$mpg bootstrap_q_vec(x) #> [1] 10.4 10.4 13.3 14.3 14.7 15.0 15.2 15.2 15.5 15.8 16.4 17.3 17.8 18.1 18.7 #> [16] 19.2 19.2 19.7 21.0 21.0 21.4 21.4 21.5 22.8 22.8 24.4 26.0 27.3 30.4 30.4 #> [31] 32.4 33.9"},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_stat_plot.html","id":null,"dir":"Reference","previous_headings":"","what":"Bootstrap Stat Plot — bootstrap_stat_plot","title":"Bootstrap Stat Plot — bootstrap_stat_plot","text":"function produces plot cumulative statistic function applied bootstrap variable tidy_bootstrap() bootstrap_unnest_tbl() applied .","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_stat_plot.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Bootstrap Stat Plot — bootstrap_stat_plot","text":"","code":"bootstrap_stat_plot( .data, .value, .stat = \"cmean\", .show_groups = FALSE, .show_ci_labels = TRUE, .interactive = FALSE )"},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_stat_plot.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Bootstrap Stat Plot — bootstrap_stat_plot","text":".data data comes either tidy_bootstrap() bootstrap_unnest_tbl() applied . .value value column calculations applied . .stat cumulative statistic function applied .value column. must quoted. default \"cmean\". .show_groups default FALSE, set TRUE get output simulations bootstrap data. .show_ci_labels default TRUE, show last value upper lower quantile. .interactive default FALSE, set TRUE get plotly plot object back.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_stat_plot.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Bootstrap Stat Plot — bootstrap_stat_plot","text":"plot either ggplot2 plotly.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_stat_plot.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Bootstrap Stat Plot — bootstrap_stat_plot","text":"function take data either tidy_bootstrap() directly apply bootstrap_unnest_tbl() output. several different cumulative functions can applied data.accepted values : \"cmean\" - Cumulative Mean \"chmean\" - Cumulative Harmonic Mean \"cgmean\" - Cumulative Geometric Mean \"csum\" = Cumulative Sum \"cmedian\" = Cumulative Median \"cmax\" = Cumulative Max \"cmin\" = Cumulative Min \"cprod\" = Cumulative Product \"csd\" = Cumulative Standard Deviation \"cvar\" = Cumulative Variance \"cskewness\" = Cumulative Skewness \"ckurtosis\" = Cumulative Kurtotsis","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_stat_plot.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Bootstrap Stat Plot — bootstrap_stat_plot","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_stat_plot.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Bootstrap Stat Plot — bootstrap_stat_plot","text":"","code":"x <- mtcars$mpg tidy_bootstrap(x) |> bootstrap_stat_plot(y, \"cmean\") tidy_bootstrap(x, .num_sims = 10) |> bootstrap_stat_plot(y, .stat = \"chmean\", .show_groups = TRUE, .show_ci_label = FALSE ) #> Warning: Setting '.num_sims' to less than 2000 means that results can be potentially #> unstable. Consider setting to 2000 or more."},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_unnest_tbl.html","id":null,"dir":"Reference","previous_headings":"","what":"Unnest Tidy Bootstrap Tibble — bootstrap_unnest_tbl","title":"Unnest Tidy Bootstrap Tibble — bootstrap_unnest_tbl","text":"Unnest data output tidy_bootstrap().","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_unnest_tbl.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Unnest Tidy Bootstrap Tibble — bootstrap_unnest_tbl","text":"","code":"bootstrap_unnest_tbl(.data)"},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_unnest_tbl.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Unnest Tidy Bootstrap Tibble — bootstrap_unnest_tbl","text":".data data passed tidy_bootstrap() function.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_unnest_tbl.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Unnest Tidy Bootstrap Tibble — bootstrap_unnest_tbl","text":"tibble","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_unnest_tbl.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Unnest Tidy Bootstrap Tibble — bootstrap_unnest_tbl","text":"function takes input output tidy_bootstrap() function returns two column tibble. columns sim_number y looks attribute comes using tidy_bootstrap() work unless data comes function.","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_unnest_tbl.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Unnest Tidy Bootstrap Tibble — bootstrap_unnest_tbl","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/bootstrap_unnest_tbl.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Unnest Tidy Bootstrap Tibble — bootstrap_unnest_tbl","text":"","code":"tb <- tidy_bootstrap(.x = mtcars$mpg) bootstrap_unnest_tbl(tb) #> # A tibble: 50,000 × 2 #> sim_number y #> #> 1 1 21.4 #> 2 1 21 #> 3 1 26 #> 4 1 19.7 #> 5 1 10.4 #> 6 1 15.5 #> 7 1 32.4 #> 8 1 22.8 #> 9 1 26 #> 10 1 17.3 #> # ℹ 49,990 more rows bootstrap_unnest_tbl(tb) |> tidy_distribution_summary_tbl(sim_number) #> # A tibble: 2,000 × 13 #> sim_number mean_val median_val std_val min_val max_val skewness kurtosis #> #> 1 1 18.3 18.7 5.85 10.4 32.4 0.410 2.75 #> 2 2 19.2 18.1 4.73 10.4 30.4 0.909 3.75 #> 3 3 21.7 19.2 6.68 10.4 33.9 0.689 2.40 #> 4 4 20.3 19.2 5.72 10.4 32.4 0.567 2.46 #> 5 5 20.8 21.4 6.93 10.4 33.9 0.431 2.22 #> 6 6 23.1 21.4 6.97 10.4 33.9 0.00625 1.68 #> 7 7 23.1 21.4 5.94 10.4 33.9 0.119 2.74 #> 8 8 19.5 21 5.84 10.4 33.9 0.349 2.83 #> 9 9 20.1 18.1 6.71 10.4 33.9 0.887 2.75 #> 10 10 19.6 19.2 5.04 10.4 33.9 0.732 3.84 #> # ℹ 1,990 more rows #> # ℹ 5 more variables: range , iqr , variance , ci_low , #> # ci_high "},{"path":"https://www.spsanderson.com/TidyDensity/reference/cgmean.html","id":null,"dir":"Reference","previous_headings":"","what":"Cumulative Geometric Mean — cgmean","title":"Cumulative Geometric Mean — cgmean","text":"function return cumulative geometric mean vector.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/cgmean.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cumulative Geometric Mean — cgmean","text":"","code":"cgmean(.x)"},{"path":"https://www.spsanderson.com/TidyDensity/reference/cgmean.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cumulative Geometric Mean — cgmean","text":".x numeric vector","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/cgmean.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Cumulative Geometric Mean — cgmean","text":"numeric vector","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/cgmean.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Cumulative Geometric Mean — cgmean","text":"function return cumulative geometric mean vector. exp(cummean(log(.x)))","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/cgmean.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Cumulative Geometric Mean — cgmean","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/cgmean.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Cumulative Geometric Mean — cgmean","text":"","code":"x <- mtcars$mpg cgmean(x) #> [1] 21.00000 21.00000 21.58363 21.53757 20.93755 20.43547 19.41935 19.98155 #> [9] 20.27666 20.16633 19.93880 19.61678 19.42805 19.09044 18.33287 17.69470 #> [17] 17.50275 18.11190 18.61236 19.17879 19.28342 19.09293 18.90457 18.62961 #> [25] 18.65210 18.92738 19.15126 19.46993 19.33021 19.34242 19.18443 19.25006"},{"path":"https://www.spsanderson.com/TidyDensity/reference/check_duplicate_rows.html","id":null,"dir":"Reference","previous_headings":"","what":"Check for Duplicate Rows in a Data Frame — check_duplicate_rows","title":"Check for Duplicate Rows in a Data Frame — check_duplicate_rows","text":"function checks duplicate rows data frame.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/check_duplicate_rows.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check for Duplicate Rows in a Data Frame — check_duplicate_rows","text":"","code":"check_duplicate_rows(.data)"},{"path":"https://www.spsanderson.com/TidyDensity/reference/check_duplicate_rows.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check for Duplicate Rows in a Data Frame — check_duplicate_rows","text":".data data frame.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/check_duplicate_rows.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check for Duplicate Rows in a Data Frame — check_duplicate_rows","text":"logical vector indicating whether row duplicate .","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/check_duplicate_rows.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Check for Duplicate Rows in a Data Frame — check_duplicate_rows","text":"function checks duplicate rows comparing row data frame every row. row identical another row, considered duplicate.","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/check_duplicate_rows.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Check for Duplicate Rows in a Data Frame — check_duplicate_rows","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/check_duplicate_rows.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Check for Duplicate Rows in a Data Frame — check_duplicate_rows","text":"","code":"data <- data.frame( x = c(1, 2, 3, 1), y = c(2, 3, 4, 2), z = c(3, 2, 5, 3) ) check_duplicate_rows(data) #> [1] FALSE TRUE FALSE FALSE"},{"path":"https://www.spsanderson.com/TidyDensity/reference/chmean.html","id":null,"dir":"Reference","previous_headings":"","what":"Cumulative Harmonic Mean — chmean","title":"Cumulative Harmonic Mean — chmean","text":"function return cumulative harmonic mean vector.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/chmean.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cumulative Harmonic Mean — chmean","text":"","code":"chmean(.x)"},{"path":"https://www.spsanderson.com/TidyDensity/reference/chmean.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cumulative Harmonic Mean — chmean","text":".x numeric vector","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/chmean.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Cumulative Harmonic Mean — chmean","text":"numeric vector","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/chmean.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Cumulative Harmonic Mean — chmean","text":"function return cumulative harmonic mean vector. 1 / (cumsum(1 / .x))","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/chmean.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Cumulative Harmonic Mean — chmean","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/chmean.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Cumulative Harmonic Mean — chmean","text":"","code":"x <- mtcars$mpg chmean(x) #> [1] 21.0000000 10.5000000 7.1891892 5.3813575 4.1788087 3.3949947 #> [7] 2.7436247 2.4663044 2.2255626 1.9943841 1.7934398 1.6166494 #> [13] 1.4784877 1.3474251 1.1928760 1.0701322 0.9975150 0.9677213 #> [19] 0.9378663 0.9126181 0.8754572 0.8286539 0.7858140 0.7419753 #> [25] 0.7143688 0.6961523 0.6779989 0.6632076 0.6364908 0.6165699 #> [31] 0.5922267 0.5762786"},{"path":"https://www.spsanderson.com/TidyDensity/reference/ci_hi.html","id":null,"dir":"Reference","previous_headings":"","what":"Confidence Interval Generic — ci_hi","title":"Confidence Interval Generic — ci_hi","text":"Gets upper 97.5% quantile numeric vector.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/ci_hi.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Confidence Interval Generic — ci_hi","text":"","code":"ci_hi(.x, .na_rm = FALSE)"},{"path":"https://www.spsanderson.com/TidyDensity/reference/ci_hi.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Confidence Interval Generic — ci_hi","text":".x vector numeric values .na_rm Boolean, defaults FALSE. Passed quantile function.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/ci_hi.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Confidence Interval Generic — ci_hi","text":"numeric value.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/ci_hi.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Confidence Interval Generic — ci_hi","text":"Gets upper 97.5% quantile numeric vector.","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/ci_hi.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Confidence Interval Generic — ci_hi","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/ci_hi.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Confidence Interval Generic — ci_hi","text":"","code":"x <- mtcars$mpg ci_hi(x) #> [1] 32.7375"},{"path":"https://www.spsanderson.com/TidyDensity/reference/ci_lo.html","id":null,"dir":"Reference","previous_headings":"","what":"Confidence Interval Generic — ci_lo","title":"Confidence Interval Generic — ci_lo","text":"Gets lower 2.5% quantile numeric vector.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/ci_lo.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Confidence Interval Generic — ci_lo","text":"","code":"ci_lo(.x, .na_rm = FALSE)"},{"path":"https://www.spsanderson.com/TidyDensity/reference/ci_lo.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Confidence Interval Generic — ci_lo","text":".x vector numeric values .na_rm Boolean, defaults FALSE. Passed quantile function.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/ci_lo.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Confidence Interval Generic — ci_lo","text":"numeric value.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/ci_lo.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Confidence Interval Generic — ci_lo","text":"Gets lower 2.5% quantile numeric vector.","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/ci_lo.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Confidence Interval Generic — ci_lo","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/ci_lo.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Confidence Interval Generic — ci_lo","text":"","code":"x <- mtcars$mpg ci_lo(x) #> [1] 10.4"},{"path":"https://www.spsanderson.com/TidyDensity/reference/ckurtosis.html","id":null,"dir":"Reference","previous_headings":"","what":"Cumulative Kurtosis — ckurtosis","title":"Cumulative Kurtosis — ckurtosis","text":"function return cumulative kurtosis vector.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/ckurtosis.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cumulative Kurtosis — ckurtosis","text":"","code":"ckurtosis(.x)"},{"path":"https://www.spsanderson.com/TidyDensity/reference/ckurtosis.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cumulative Kurtosis — ckurtosis","text":".x numeric vector","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/ckurtosis.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Cumulative Kurtosis — ckurtosis","text":"numeric vector","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/ckurtosis.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Cumulative Kurtosis — ckurtosis","text":"function return cumulative kurtosis vector.","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/ckurtosis.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Cumulative Kurtosis — ckurtosis","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/ckurtosis.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Cumulative Kurtosis — ckurtosis","text":"","code":"x <- mtcars$mpg ckurtosis(x) #> [1] NaN NaN 1.500000 2.189216 2.518932 1.786006 2.744467 2.724675 #> [9] 2.930885 2.988093 2.690270 2.269038 2.176622 1.992044 2.839430 2.481896 #> [17] 2.356826 3.877115 3.174702 2.896931 3.000743 3.091225 3.182071 3.212816 #> [25] 3.352916 3.015952 2.837139 2.535185 2.595908 2.691103 2.738468 2.799467"},{"path":"https://www.spsanderson.com/TidyDensity/reference/cmean.html","id":null,"dir":"Reference","previous_headings":"","what":"Cumulative Mean — cmean","title":"Cumulative Mean — cmean","text":"function return cumulative mean vector.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/cmean.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cumulative Mean — cmean","text":"","code":"cmean(.x)"},{"path":"https://www.spsanderson.com/TidyDensity/reference/cmean.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cumulative Mean — cmean","text":".x numeric vector","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/cmean.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Cumulative Mean — cmean","text":"numeric vector","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/cmean.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Cumulative Mean — cmean","text":"function return cumulative mean vector. uses dplyr::cummean() basis function.","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/cmean.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Cumulative Mean — cmean","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/cmean.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Cumulative Mean — cmean","text":"","code":"x <- mtcars$mpg cmean(x) #> [1] 21.00000 21.00000 21.60000 21.55000 20.98000 20.50000 19.61429 20.21250 #> [9] 20.50000 20.37000 20.13636 19.82500 19.63077 19.31429 18.72000 18.20000 #> [17] 17.99412 18.79444 19.40526 20.13000 20.19524 19.98182 19.77391 19.50417 #> [25] 19.49200 19.79231 20.02222 20.39286 20.23448 20.21667 20.04839 20.09062"},{"path":"https://www.spsanderson.com/TidyDensity/reference/cmedian.html","id":null,"dir":"Reference","previous_headings":"","what":"Cumulative Median — cmedian","title":"Cumulative Median — cmedian","text":"function return cumulative median vector.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/cmedian.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cumulative Median — cmedian","text":"","code":"cmedian(.x)"},{"path":"https://www.spsanderson.com/TidyDensity/reference/cmedian.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cumulative Median — cmedian","text":".x numeric vector","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/cmedian.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Cumulative Median — cmedian","text":"numeric vector","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/cmedian.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Cumulative Median — cmedian","text":"function return cumulative median vector.","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/cmedian.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Cumulative Median — cmedian","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/cmedian.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Cumulative Median — cmedian","text":"","code":"x <- mtcars$mpg cmedian(x) #> [1] 21.00 21.00 21.00 21.20 21.00 21.00 21.00 21.00 21.00 21.00 21.00 20.10 #> [13] 19.20 18.95 18.70 18.40 18.10 18.40 18.70 18.95 19.20 18.95 18.70 18.40 #> [25] 18.70 18.95 19.20 19.20 19.20 19.20 19.20 19.20"},{"path":"https://www.spsanderson.com/TidyDensity/reference/color_blind.html","id":null,"dir":"Reference","previous_headings":"","what":"Provide Colorblind Compliant Colors — color_blind","title":"Provide Colorblind Compliant Colors — color_blind","text":"8 Hex RGB color definitions suitable charts colorblind people.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/color_blind.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Provide Colorblind Compliant Colors — color_blind","text":"","code":"color_blind()"},{"path":"https://www.spsanderson.com/TidyDensity/reference/convert_to_ts.html","id":null,"dir":"Reference","previous_headings":"","what":"Convert Data to Time Series Format — convert_to_ts","title":"Convert Data to Time Series Format — convert_to_ts","text":"function converts data data frame tibble time series format. designed work data generated tidy_ distribution functions. function can return time series data, pivot long format, .","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/convert_to_ts.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Convert Data to Time Series Format — convert_to_ts","text":"","code":"convert_to_ts(.data, .return_ts = TRUE, .pivot_longer = FALSE)"},{"path":"https://www.spsanderson.com/TidyDensity/reference/convert_to_ts.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Convert Data to Time Series Format — convert_to_ts","text":".data data frame tibble converted time series format. .return_ts logical value indicating whether return time series data. Default TRUE. .pivot_longer logical value indicating whether pivot data long format. Default FALSE.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/convert_to_ts.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Convert Data to Time Series Format — convert_to_ts","text":"function returns processed data based chosen options: ret_ts set TRUE, returns time series data. pivot_longer set TRUE, returns data long format. options set FALSE, returns data tibble.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/convert_to_ts.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Convert Data to Time Series Format — convert_to_ts","text":"function takes data frame tibble input processes based specified options. performs following actions: Checks input data frame tibble; otherwise, raises error. Checks data comes tidy_ distribution function; otherwise, raises error. Converts data time series format, grouping \"sim_number\" transforming \"y\" column time series. Returns result based chosen options: ret_ts set TRUE, returns time series data. pivot_longer set TRUE, pivots data long format. options set FALSE, returns data tibble.","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/convert_to_ts.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Convert Data to Time Series Format — convert_to_ts","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/convert_to_ts.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Convert Data to Time Series Format — convert_to_ts","text":"","code":"# Example 1: Convert data to time series format without returning time series data x <- tidy_normal() result <- convert_to_ts(x, FALSE) head(result) #> # A tibble: 6 × 1 #> y #> #> 1 1.99 #> 2 0.416 #> 3 -0.362 #> 4 -0.282 #> 5 0.404 #> 6 -0.694 # Example 2: Convert data to time series format and pivot it into long format x <- tidy_normal() result <- convert_to_ts(x, FALSE, TRUE) head(result) #> # A tibble: 6 × 1 #> y #> #> 1 -0.912 #> 2 -0.732 #> 3 -0.582 #> 4 0.204 #> 5 -0.661 #> 6 -2.18 # Example 3: Convert data to time series format and return the time series data x <- tidy_normal() result <- convert_to_ts(x) head(result) #> y #> [1,] -0.1348973 #> [2,] 0.6769697 #> [3,] -0.5048327 #> [4,] -0.8381438 #> [5,] -2.9578102 #> [6,] 1.1051425"},{"path":"https://www.spsanderson.com/TidyDensity/reference/csd.html","id":null,"dir":"Reference","previous_headings":"","what":"Cumulative Standard Deviation — csd","title":"Cumulative Standard Deviation — csd","text":"function return cumulative standard deviation vector.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/csd.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cumulative Standard Deviation — csd","text":"","code":"csd(.x)"},{"path":"https://www.spsanderson.com/TidyDensity/reference/csd.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cumulative Standard Deviation — csd","text":".x numeric vector","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/csd.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Cumulative Standard Deviation — csd","text":"numeric vector. Note: first entry always NaN.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/csd.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Cumulative Standard Deviation — csd","text":"function return cumulative standard deviation vector.","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/csd.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Cumulative Standard Deviation — csd","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/csd.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Cumulative Standard Deviation — csd","text":"","code":"x <- mtcars$mpg csd(x) #> [1] NaN 0.0000000 1.0392305 0.8544004 1.4737707 1.7663522 2.8445436 #> [8] 3.1302385 3.0524580 2.9070986 2.8647069 2.9366416 2.8975233 3.0252418 #> [15] 3.7142967 4.1476098 4.1046423 5.2332053 5.7405452 6.4594362 6.3029736 #> [22] 6.2319940 6.1698105 6.1772007 6.0474457 6.1199296 6.1188444 6.3166405 #> [29] 6.2611772 6.1530527 6.1217574 6.0269481"},{"path":"https://www.spsanderson.com/TidyDensity/reference/cskewness.html","id":null,"dir":"Reference","previous_headings":"","what":"Cumulative Skewness — cskewness","title":"Cumulative Skewness — cskewness","text":"function return cumulative skewness vector.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/cskewness.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cumulative Skewness — cskewness","text":"","code":"cskewness(.x)"},{"path":"https://www.spsanderson.com/TidyDensity/reference/cskewness.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cumulative Skewness — cskewness","text":".x numeric vector","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/cskewness.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Cumulative Skewness — cskewness","text":"numeric vector","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/cskewness.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Cumulative Skewness — cskewness","text":"function return cumulative skewness vector.","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/cskewness.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Cumulative Skewness — cskewness","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/cskewness.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Cumulative Skewness — cskewness","text":"","code":"x <- mtcars$mpg cskewness(x) #> [1] NaN NaN 0.707106781 0.997869718 -0.502052297 #> [6] -0.258803244 -0.867969171 -0.628239920 -0.808101715 -0.695348960 #> [11] -0.469220594 -0.256323338 -0.091505282 0.002188142 -0.519593266 #> [16] -0.512660692 -0.379598706 0.614549281 0.581410573 0.649357202 #> [21] 0.631855977 0.706212631 0.775750182 0.821447605 0.844413861 #> [26] 0.716010069 0.614326432 0.525141032 0.582528820 0.601075783 #> [31] 0.652552397 0.640439864"},{"path":"https://www.spsanderson.com/TidyDensity/reference/cvar.html","id":null,"dir":"Reference","previous_headings":"","what":"Cumulative Variance — cvar","title":"Cumulative Variance — cvar","text":"function return cumulative variance vector.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/cvar.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cumulative Variance — cvar","text":"","code":"cvar(.x)"},{"path":"https://www.spsanderson.com/TidyDensity/reference/cvar.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cumulative Variance — cvar","text":".x numeric vector","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/cvar.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Cumulative Variance — cvar","text":"numeric vector. Note: first entry always NaN.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/cvar.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Cumulative Variance — cvar","text":"function return cumulative variance vector. exp(cummean(log(.x)))","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/cvar.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Cumulative Variance — cvar","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/cvar.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Cumulative Variance — cvar","text":"","code":"x <- mtcars$mpg cvar(x) #> [1] NaN 0.000000 1.080000 0.730000 2.172000 3.120000 8.091429 #> [8] 9.798393 9.317500 8.451222 8.206545 8.623864 8.395641 9.152088 #> [15] 13.796000 17.202667 16.848088 27.386438 32.953860 41.724316 39.727476 #> [22] 38.837749 38.066561 38.157808 36.571600 37.453538 37.440256 39.899947 #> [29] 39.202340 37.860057 37.475914 36.324103"},{"path":"https://www.spsanderson.com/TidyDensity/reference/dist_type_extractor.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract Distribution Type from Tidy Distribution Object — dist_type_extractor","title":"Extract Distribution Type from Tidy Distribution Object — dist_type_extractor","text":"Get distribution name title case tidy_ distribution function.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/dist_type_extractor.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract Distribution Type from Tidy Distribution Object — dist_type_extractor","text":"","code":"dist_type_extractor(.x)"},{"path":"https://www.spsanderson.com/TidyDensity/reference/dist_type_extractor.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract Distribution Type from Tidy Distribution Object — dist_type_extractor","text":".x attribute list passed tidy_ distribution function.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/dist_type_extractor.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract Distribution Type from Tidy Distribution Object — dist_type_extractor","text":"character string","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/dist_type_extractor.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Extract Distribution Type from Tidy Distribution Object — dist_type_extractor","text":"extract distribution type tidy_ distribution function output using attributes object. must pass attribute directly function. meant really used internally. passing using manually $tibble_type attribute.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/dist_type_extractor.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Extract Distribution Type from Tidy Distribution Object — dist_type_extractor","text":"Steven P. Sanderson II,","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/dist_type_extractor.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extract Distribution Type from Tidy Distribution Object — dist_type_extractor","text":"","code":"tn <- tidy_normal() atb <- attributes(tn) dist_type_extractor(atb$tibble_type) #> [1] \"Gaussian\""},{"path":"https://www.spsanderson.com/TidyDensity/reference/pipe.html","id":null,"dir":"Reference","previous_headings":"","what":"Pipe operator — %>%","title":"Pipe operator — %>%","text":"See magrittr::%>% details.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/pipe.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Pipe operator — %>%","text":"","code":"lhs %>% rhs"},{"path":"https://www.spsanderson.com/TidyDensity/reference/pipe.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Pipe operator — %>%","text":"lhs value magrittr placeholder. rhs function call using magrittr semantics.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/pipe.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Pipe operator — %>%","text":"result calling rhs(lhs).","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/quantile_normalize.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform quantile normalization on a numeric matrix/data.frame — quantile_normalize","title":"Perform quantile normalization on a numeric matrix/data.frame — quantile_normalize","text":"function perform quantile normalization two distributions equal length. Quantile normalization technique used make distribution values across different samples similar. ensures distributions values sample quantiles. function takes numeric matrix input returns quantile-normalized matrix.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/quantile_normalize.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform quantile normalization on a numeric matrix/data.frame — quantile_normalize","text":"","code":"quantile_normalize(.data, .return_tibble = FALSE)"},{"path":"https://www.spsanderson.com/TidyDensity/reference/quantile_normalize.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform quantile normalization on a numeric matrix/data.frame — quantile_normalize","text":".data numeric matrix column represents sample. .return_tibble logical value determines output tibble. Default 'FALSE'.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/quantile_normalize.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform quantile normalization on a numeric matrix/data.frame — quantile_normalize","text":"list object following: numeric matrix quantile normalized. row means quantile normalized matrix. sorted data ranked indices","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/quantile_normalize.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Perform quantile normalization on a numeric matrix/data.frame — quantile_normalize","text":"function performs quantile normalization numeric matrix following steps: Sort column input matrix. Calculate mean row across sorted columns. Replace column's sorted values row means. Unsort columns original order.","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/quantile_normalize.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Perform quantile normalization on a numeric matrix/data.frame — quantile_normalize","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/quantile_normalize.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform quantile normalization on a numeric matrix/data.frame — quantile_normalize","text":"","code":"# Create a sample numeric matrix data <- matrix(rnorm(20), ncol = 4) # Perform quantile normalization normalized_data <- quantile_normalize(data) #> Warning: There are duplicated ranks the input data. normalized_data #> $normalized_data #> [,1] [,2] [,3] [,4] #> [1,] -0.3544741 -1.1887651 0.1402623 0.1402623 #> [2,] -1.1887651 0.1402623 -0.3544741 -0.3544741 #> [3,] 0.1402623 -0.3544741 0.6082141 -1.1887651 #> [4,] 1.5541985 1.5541985 -1.1887651 0.6082141 #> [5,] 0.6082141 0.6082141 1.5541985 1.5541985 #> #> $row_means #> [1] -1.1887651 -0.3544741 0.1402623 0.6082141 1.5541985 #> #> $duplicated_ranks #> [,1] [,2] [,3] [,4] #> [1,] 5 2 1 2 #> [2,] 4 1 5 4 #> [3,] 2 3 3 1 #> [4,] 3 4 4 5 #> #> $duplicated_rank_row_indices #> [1] 1 3 4 5 #> #> $duplicated_rank_data #> [,1] [,2] [,3] [,4] #> [1,] -0.006202427 -0.1106733 -1.2344467 0.8044256 #> [2,] 2.531894845 0.1679075 0.7490085 -0.7630899 #> [3,] 0.212224663 0.6147875 1.2798579 -0.0333282 #> [4,] -2.150115206 -0.1142912 0.4928258 1.7902539 #> as.data.frame(normalized_data$normalized_data) |> sapply(function(x) quantile(x, probs = seq(0, 1, 1 / 4))) #> V1 V2 V3 V4 #> 0% -1.1887651 -1.1887651 -1.1887651 -1.1887651 #> 25% -0.3544741 -0.3544741 -0.3544741 -0.3544741 #> 50% 0.1402623 0.1402623 0.1402623 0.1402623 #> 75% 0.6082141 0.6082141 0.6082141 0.6082141 #> 100% 1.5541985 1.5541985 1.5541985 1.5541985 quantile_normalize( data.frame(rnorm(30), rnorm(30)), .return_tibble = TRUE) #> Warning: There are duplicated ranks the input data. #> $normalized_data #> # A tibble: 30 × 2 #> rnorm.30. rnorm.30..1 #> #> 1 -0.341 1.51 #> 2 -0.744 0.983 #> 3 0.109 0.645 #> 4 0.346 -0.150 #> 5 1.26 -0.316 #> 6 -0.551 -0.874 #> 7 0.346 -1.60 #> 8 0.719 -0.0315 #> 9 -1.81 -0.670 #> 10 -1.37 -0.403 #> # ℹ 20 more rows #> #> $row_means #> # A tibble: 30 × 1 #> value #> #> 1 -1.81 #> 2 -1.60 #> 3 -1.37 #> 4 -1.18 #> 5 -1.01 #> 6 -0.874 #> 7 -0.744 #> 8 -0.670 #> 9 -0.551 #> 10 -0.403 #> # ℹ 20 more rows #> #> $duplicated_ranks #> # A tibble: 2 × 1 #> value #> #> 1 8 #> 2 8 #> #> $duplicated_rank_row_indices #> # A tibble: 1 × 1 #> row_index #> #> 1 23 #> #> $duplicated_rank_data #> # A tibble: 2 × 1 #> value #> #> 1 0.727 #> 2 -0.566 #>"},{"path":"https://www.spsanderson.com/TidyDensity/reference/td_scale_color_colorblind.html","id":null,"dir":"Reference","previous_headings":"","what":"Provide Colorblind Compliant Colors — td_scale_color_colorblind","title":"Provide Colorblind Compliant Colors — td_scale_color_colorblind","text":"Provide Colorblind Compliant Colors","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/td_scale_color_colorblind.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Provide Colorblind Compliant Colors — td_scale_color_colorblind","text":"","code":"td_scale_color_colorblind(..., theme = \"td\")"},{"path":"https://www.spsanderson.com/TidyDensity/reference/td_scale_color_colorblind.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Provide Colorblind Compliant Colors — td_scale_color_colorblind","text":"... Data passed function theme defaults td allowed value","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/td_scale_fill_colorblind.html","id":null,"dir":"Reference","previous_headings":"","what":"Provide Colorblind Compliant Colors — td_scale_fill_colorblind","title":"Provide Colorblind Compliant Colors — td_scale_fill_colorblind","text":"Provide Colorblind Compliant Colors","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/td_scale_fill_colorblind.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Provide Colorblind Compliant Colors — td_scale_fill_colorblind","text":"","code":"td_scale_fill_colorblind(..., theme = \"td\")"},{"path":"https://www.spsanderson.com/TidyDensity/reference/td_scale_fill_colorblind.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Provide Colorblind Compliant Colors — td_scale_fill_colorblind","text":"... Data passed function theme defaults td allowed value","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidyeval.html","id":null,"dir":"Reference","previous_headings":"","what":"Tidy eval helpers — tidyeval","title":"Tidy eval helpers — tidyeval","text":"page lists tidy eval tools reexported package rlang. learn using tidy eval scripts packages high level, see dplyr programming vignette ggplot2 packages vignette. Metaprogramming section Advanced R may also useful deeper dive. tidy eval operators {{, !!, !!! syntactic constructs specially interpreted tidy eval functions. mostly need {{, !! !!! advanced operators use simple cases. curly-curly operator {{ allows tunnel data-variables passed function arguments inside tidy eval functions. {{ designed individual arguments. pass multiple arguments contained dots, use ... normal way. enquo() enquos() delay execution one several function arguments. former returns single expression, latter returns list expressions. defused, expressions longer evaluate . must injected back evaluation context !! (single expression) !!! (list expressions). simple case, code equivalent usage {{ ... . Defusing enquo() enquos() needed complex cases, instance need inspect modify expressions way. .data pronoun object represents current slice data. variable name string, use .data pronoun subset variable [[. Another tidy eval operator :=. makes possible use glue curly-curly syntax LHS =. technical reasons, R language support complex expressions left =, use := workaround. Many tidy eval functions like dplyr::mutate() dplyr::summarise() give automatic name unnamed inputs. need create sort automatic names , use as_label(). instance, glue-tunnelling syntax can reproduced manually : Expressions defused enquo() (tunnelled {{) need simple column names, can arbitrarily complex. as_label() handles cases gracefully. code assumes simple column name, use as_name() instead. safer throws error input name expected.","code":"my_function <- function(data, var, ...) { data %>% group_by(...) %>% summarise(mean = mean({{ var }})) } my_function <- function(data, var, ...) { # Defuse var <- enquo(var) dots <- enquos(...) # Inject data %>% group_by(!!!dots) %>% summarise(mean = mean(!!var)) } my_var <- \"disp\" mtcars %>% summarise(mean = mean(.data[[my_var]])) my_function <- function(data, var, suffix = \"foo\") { # Use `{{` to tunnel function arguments and the usual glue # operator `{` to interpolate plain strings. data %>% summarise(\"{{ var }}_mean_{suffix}\" := mean({{ var }})) } my_function <- function(data, var, suffix = \"foo\") { var <- enquo(var) prefix <- as_label(var) data %>% summarise(\"{prefix}_mean_{suffix}\" := mean(!!var)) }"},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_autoplot.html","id":null,"dir":"Reference","previous_headings":"","what":"Automatic Plot of Density Data — tidy_autoplot","title":"Automatic Plot of Density Data — tidy_autoplot","text":"auto plotting function take tidy_ distribution function arguments, one plot type, quoted string one following: density quantile probablity qq mcmc number simulations exceeds 9 legend print. plot subtitle put together attributes table passed function.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_autoplot.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Automatic Plot of Density Data — tidy_autoplot","text":"","code":"tidy_autoplot( .data, .plot_type = \"density\", .line_size = 0.5, .geom_point = FALSE, .point_size = 1, .geom_rug = FALSE, .geom_smooth = FALSE, .geom_jitter = FALSE, .interactive = FALSE )"},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_autoplot.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Automatic Plot of Density Data — tidy_autoplot","text":".data data passed tidy_distribution function like tidy_normal() .plot_type quoted string like 'density' .line_size size param ggplot .geom_point Boolean value TREU/FALSE, FALSE default. TRUE return plot ggplot2::ggeom_point() .point_size point size param ggplot .geom_rug Boolean value TRUE/FALSE, FALSE default. TRUE return use ggplot2::geom_rug() .geom_smooth Boolean value TRUE/FALSE, FALSE default. TRUE return use ggplot2::geom_smooth() aes parameter group set FALSE. ensures single smoothing band returned SE also set FALSE. Color set 'black' linetype 'dashed'. .geom_jitter Boolean value TRUE/FALSE, FALSE default. TRUE return use ggplot2::geom_jitter() .interactive Boolean value TRUE/FALSE, FALSE default. TRUE return interactive plotly plot.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_autoplot.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Automatic Plot of Density Data — tidy_autoplot","text":"ggplot plotly plot.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_autoplot.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Automatic Plot of Density Data — tidy_autoplot","text":"function spit one following plots: density quantile probability qq mcmc","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_autoplot.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Automatic Plot of Density Data — tidy_autoplot","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_autoplot.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Automatic Plot of Density Data — tidy_autoplot","text":"","code":"tidy_normal(.num_sims = 5) |> tidy_autoplot() tidy_normal(.num_sims = 20) |> tidy_autoplot(.plot_type = \"qq\")"},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_bernoulli.html","id":null,"dir":"Reference","previous_headings":"","what":"Tidy Randomly Generated Bernoulli Distribution Tibble — tidy_bernoulli","title":"Tidy Randomly Generated Bernoulli Distribution Tibble — tidy_bernoulli","text":"function generate n random points Bernoulli distribution user provided, .prob, number random simulations produced. function returns tibble simulation number column x column corresponds n randomly generated points, d_, p_ q_ data points well. data returned un-grouped. columns output : sim_number current simulation number. x current value n current simulation. y randomly generated data point. dx x value stats::density() function. dy y value stats::density() function. p values resulting p_ function distribution family. q values resulting q_ function distribution family.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_bernoulli.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Tidy Randomly Generated Bernoulli Distribution Tibble — tidy_bernoulli","text":"","code":"tidy_bernoulli(.n = 50, .prob = 0.1, .num_sims = 1, .return_tibble = TRUE)"},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_bernoulli.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Tidy Randomly Generated Bernoulli Distribution Tibble — tidy_bernoulli","text":".n number randomly generated points want. .prob probability success/failure. .num_sims number randomly generated simulations want. .return_tibble logical value indicating whether return result tibble. Default TRUE.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_bernoulli.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Tidy Randomly Generated Bernoulli Distribution Tibble — tidy_bernoulli","text":"tibble randomly generated data.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_bernoulli.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Tidy Randomly Generated Bernoulli Distribution Tibble — tidy_bernoulli","text":"function uses rbinom(), underlying p, d, q functions. Bernoulli distribution special case Binomial distribution size = 1 hence binom functions used set size = 1.","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_bernoulli.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Tidy Randomly Generated Bernoulli Distribution Tibble — tidy_bernoulli","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_bernoulli.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Tidy Randomly Generated Bernoulli Distribution Tibble — tidy_bernoulli","text":"","code":"tidy_bernoulli() #> # A tibble: 50 × 7 #> sim_number x y dx dy p q #> #> 1 1 1 0 -0.405 0.0292 0.9 0 #> 2 1 2 0 -0.368 0.0637 0.9 0 #> 3 1 3 0 -0.331 0.129 0.9 0 #> 4 1 4 1 -0.294 0.243 1 1 #> 5 1 5 0 -0.258 0.424 0.9 0 #> 6 1 6 0 -0.221 0.688 0.9 0 #> 7 1 7 0 -0.184 1.03 0.9 0 #> 8 1 8 1 -0.147 1.44 1 1 #> 9 1 9 0 -0.110 1.87 0.9 0 #> 10 1 10 0 -0.0727 2.25 0.9 0 #> # ℹ 40 more rows"},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_beta.html","id":null,"dir":"Reference","previous_headings":"","what":"Tidy Randomly Generated Beta Distribution Tibble — tidy_beta","title":"Tidy Randomly Generated Beta Distribution Tibble — tidy_beta","text":"function generate n random points beta distribution user provided, .shape1, .shape2, .ncp non-centrality parameter, number random simulations produced. function returns tibble simulation number column x column corresponds n randomly generated points, d_, p_ q_ data points well. data returned un-grouped. columns output : sim_number current simulation number. x current value n current simulation. y randomly generated data point. dx x value stats::density() function. dy y value stats::density() function. p values resulting p_ function distribution family. q values resulting q_ function distribution family.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_beta.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Tidy Randomly Generated Beta Distribution Tibble — tidy_beta","text":"","code":"tidy_beta( .n = 50, .shape1 = 1, .shape2 = 1, .ncp = 0, .num_sims = 1, .return_tibble = TRUE )"},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_beta.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Tidy Randomly Generated Beta Distribution Tibble — tidy_beta","text":".n number randomly generated points want. .shape1 non-negative parameter Beta distribution. .shape2 non-negative parameter Beta distribution. .ncp non-centrality parameter Beta distribution. .num_sims number randomly generated simulations want. .return_tibble logical value indicating whether return result tibble. Default TRUE.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_beta.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Tidy Randomly Generated Beta Distribution Tibble — tidy_beta","text":"tibble randomly generated data.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_beta.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Tidy Randomly Generated Beta Distribution Tibble — tidy_beta","text":"function uses underlying stats::rbeta(), underlying p, d, q functions. information please see stats::rbeta()","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_beta.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Tidy Randomly Generated Beta Distribution Tibble — tidy_beta","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_beta.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Tidy Randomly Generated Beta Distribution Tibble — tidy_beta","text":"","code":"tidy_beta() #> # A tibble: 50 × 7 #> sim_number x y dx dy p q #> #> 1 1 1 0.359 -0.353 0.00273 0.359 0.359 #> 2 1 2 0.988 -0.318 0.00644 0.988 0.988 #> 3 1 3 0.295 -0.283 0.0141 0.295 0.295 #> 4 1 4 0.724 -0.248 0.0284 0.724 0.724 #> 5 1 5 0.729 -0.213 0.0532 0.729 0.729 #> 6 1 6 0.301 -0.178 0.0925 0.301 0.301 #> 7 1 7 0.423 -0.143 0.149 0.423 0.423 #> 8 1 8 1.00 -0.107 0.224 1.00 1.00 #> 9 1 9 0.816 -0.0724 0.315 0.816 0.816 #> 10 1 10 0.784 -0.0373 0.416 0.784 0.784 #> # ℹ 40 more rows"},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_binomial.html","id":null,"dir":"Reference","previous_headings":"","what":"Tidy Randomly Generated Binomial Distribution Tibble — tidy_binomial","title":"Tidy Randomly Generated Binomial Distribution Tibble — tidy_binomial","text":"function generate n random points binomial distribution user provided, .size, .prob, number random simulations produced. function returns tibble simulation number column x column corresponds n randomly generated points, d_, p_ q_ data points well. data returned un-grouped. columns output : sim_number current simulation number. x current value n current simulation. y randomly generated data point. dx x value stats::density() function. dy y value stats::density() function. p values resulting p_ function distribution family. q values resulting q_ function distribution family.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_binomial.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Tidy Randomly Generated Binomial Distribution Tibble — tidy_binomial","text":"","code":"tidy_binomial( .n = 50, .size = 0, .prob = 1, .num_sims = 1, .return_tibble = TRUE )"},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_binomial.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Tidy Randomly Generated Binomial Distribution Tibble — tidy_binomial","text":".n number randomly generated points want. .size Number trials, zero . .prob Probability success trial. .num_sims number randomly generated simulations want. .return_tibble logical value indicating whether return result tibble. Default TRUE.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_binomial.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Tidy Randomly Generated Binomial Distribution Tibble — tidy_binomial","text":"tibble randomly generated data.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_binomial.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Tidy Randomly Generated Binomial Distribution Tibble — tidy_binomial","text":"function uses underlying stats::rbinom(), underlying p, d, q functions. information please see stats::rbinom()","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_binomial.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Tidy Randomly Generated Binomial Distribution Tibble — tidy_binomial","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_binomial.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Tidy Randomly Generated Binomial Distribution Tibble — tidy_binomial","text":"","code":"tidy_binomial() #> # A tibble: 50 × 7 #> sim_number x y dx dy p q #> #> 1 1 1 0 -1.23 0.0109 1 0 #> 2 1 2 0 -1.18 0.0156 1 0 #> 3 1 3 0 -1.13 0.0220 1 0 #> 4 1 4 0 -1.08 0.0305 1 0 #> 5 1 5 0 -1.03 0.0418 1 0 #> 6 1 6 0 -0.983 0.0564 1 0 #> 7 1 7 0 -0.932 0.0749 1 0 #> 8 1 8 0 -0.882 0.0981 1 0 #> 9 1 9 0 -0.832 0.126 1 0 #> 10 1 10 0 -0.781 0.161 1 0 #> # ℹ 40 more rows"},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_bootstrap.html","id":null,"dir":"Reference","previous_headings":"","what":"Bootstrap Empirical Data — tidy_bootstrap","title":"Bootstrap Empirical Data — tidy_bootstrap","text":"Takes input vector numeric data produces bootstrapped nested tibble simulation number.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_bootstrap.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Bootstrap Empirical Data — tidy_bootstrap","text":"","code":"tidy_bootstrap( .x, .num_sims = 2000, .proportion = 0.8, .distribution_type = \"continuous\" )"},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_bootstrap.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Bootstrap Empirical Data — tidy_bootstrap","text":".x vector data passed function. Must numeric vector. .num_sims default 2000, can set anything desired. warning pass console value less 2000. .proportion much original data want pass sampling function. default 0.80 (80%) .distribution_type can either 'continuous' 'discrete'","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_bootstrap.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Bootstrap Empirical Data — tidy_bootstrap","text":"nested tibble","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_bootstrap.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Bootstrap Empirical Data — tidy_bootstrap","text":"function take numeric input vector produce tibble bootstrapped values list. table output two columns: sim_number bootstrap_samples sim_number corresponds many times want data resampled, bootstrap_samples column contains list boostrapped resampled data.","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_bootstrap.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Bootstrap Empirical Data — tidy_bootstrap","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_bootstrap.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Bootstrap Empirical Data — tidy_bootstrap","text":"","code":"x <- mtcars$mpg tidy_bootstrap(x) #> # A tibble: 2,000 × 2 #> sim_number bootstrap_samples #> #> 1 1 #> 2 2 #> 3 3 #> 4 4 #> 5 5 #> 6 6 #> 7 7 #> 8 8 #> 9 9 #> 10 10 #> # ℹ 1,990 more rows"},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_burr.html","id":null,"dir":"Reference","previous_headings":"","what":"Tidy Randomly Generated Burr Distribution Tibble — tidy_burr","title":"Tidy Randomly Generated Burr Distribution Tibble — tidy_burr","text":"function generate n random points Burr distribution user provided, .shape1, .shape2, .scale, .rate, number random simulations produced. function returns tibble simulation number column x column corresponds n randomly generated points, d_, p_ q_ data points well. data returned un-grouped. columns output : sim_number current simulation number. x current value n current simulation. y randomly generated data point. dx x value stats::density() function. dy y value stats::density() function. p values resulting p_ function distribution family. q values resulting q_ function distribution family.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_burr.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Tidy Randomly Generated Burr Distribution Tibble — tidy_burr","text":"","code":"tidy_burr( .n = 50, .shape1 = 1, .shape2 = 1, .rate = 1, .scale = 1/.rate, .num_sims = 1, .return_tibble = TRUE )"},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_burr.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Tidy Randomly Generated Burr Distribution Tibble — tidy_burr","text":".n number randomly generated points want. .shape1 Must strictly positive. .shape2 Must strictly positive. .rate alternative way specify .scale. .scale Must strictly positive. .num_sims number randomly generated simulations want. .return_tibble logical value indicating whether return result tibble. Default TRUE.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_burr.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Tidy Randomly Generated Burr Distribution Tibble — tidy_burr","text":"tibble randomly generated data.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_burr.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Tidy Randomly Generated Burr Distribution Tibble — tidy_burr","text":"function uses underlying actuar::rburr(), underlying p, d, q functions. information please see actuar::rburr()","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_burr.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Tidy Randomly Generated Burr Distribution Tibble — tidy_burr","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_burr.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Tidy Randomly Generated Burr Distribution Tibble — tidy_burr","text":"","code":"tidy_burr() #> # A tibble: 50 × 7 #> sim_number x y dx dy p q #> #> 1 1 1 0.371 -2.84 0.000966 0.271 0.371 #> 2 1 2 5.25 -1.03 0.0666 0.840 5.25 #> 3 1 3 7.27 0.790 0.237 0.879 7.27 #> 4 1 4 1.72 2.61 0.104 0.633 1.72 #> 5 1 5 0.857 4.42 0.0287 0.461 0.857 #> 6 1 6 0.294 6.24 0.0255 0.227 0.294 #> 7 1 7 12.5 8.05 0.0260 0.926 12.5 #> 8 1 8 9.76 9.87 0.0171 0.907 9.76 #> 9 1 9 0.874 11.7 0.0122 0.466 0.874 #> 10 1 10 1.76 13.5 0.0105 0.638 1.76 #> # ℹ 40 more rows"},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_cauchy.html","id":null,"dir":"Reference","previous_headings":"","what":"Tidy Randomly Generated Cauchy Distribution Tibble — tidy_cauchy","title":"Tidy Randomly Generated Cauchy Distribution Tibble — tidy_cauchy","text":"function generate n random points cauchy distribution user provided, .location, .scale, number random simulations produced. function returns tibble simulation number column x column corresponds n randomly generated points, d_, p_ q_ data points well. data returned un-grouped. columns output : sim_number current simulation number. x current value n current simulation. y randomly generated data point. dx x value stats::density() function. dy y value stats::density() function. p values resulting p_ function distribution family. q values resulting q_ function distribution family.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_cauchy.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Tidy Randomly Generated Cauchy Distribution Tibble — tidy_cauchy","text":"","code":"tidy_cauchy( .n = 50, .location = 0, .scale = 1, .num_sims = 1, .return_tibble = TRUE )"},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_cauchy.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Tidy Randomly Generated Cauchy Distribution Tibble — tidy_cauchy","text":".n number randomly generated points want. .location location parameter. .scale scale parameter, must greater equal 0. .num_sims number randomly generated simulations want. .return_tibble logical value indicating whether return result tibble. Default TRUE.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_cauchy.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Tidy Randomly Generated Cauchy Distribution Tibble — tidy_cauchy","text":"tibble randomly generated data.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_cauchy.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Tidy Randomly Generated Cauchy Distribution Tibble — tidy_cauchy","text":"function uses underlying stats::rcauchy(), underlying p, d, q functions. information please see stats::rcauchy()","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_cauchy.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Tidy Randomly Generated Cauchy Distribution Tibble — tidy_cauchy","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_cauchy.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Tidy Randomly Generated Cauchy Distribution Tibble — tidy_cauchy","text":"","code":"tidy_cauchy() #> # A tibble: 50 × 7 #> sim_number x y dx dy p q #> #> 1 1 1 -1.14 -107. 2.50e- 4 0.229 -1.14 #> 2 1 2 -2.15 -103. 2.91e- 5 0.138 -2.15 #> 3 1 3 -3.73 -98.9 0 0.0833 -3.73 #> 4 1 4 2.25 -94.9 6.56e-20 0.867 2.25 #> 5 1 5 0.0564 -91.0 1.51e-18 0.518 0.0564 #> 6 1 6 0.686 -87.1 4.19e-18 0.691 0.686 #> 7 1 7 -0.325 -83.2 0 0.400 -0.325 #> 8 1 8 -0.456 -79.3 6.52e-19 0.364 -0.456 #> 9 1 9 3.66 -75.4 0 0.915 3.66 #> 10 1 10 0.0966 -71.5 1.48e-18 0.531 0.0966 #> # ℹ 40 more rows"},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_chisquare.html","id":null,"dir":"Reference","previous_headings":"","what":"Tidy Randomly Generated Chisquare (Non-Central) Distribution Tibble — tidy_chisquare","title":"Tidy Randomly Generated Chisquare (Non-Central) Distribution Tibble — tidy_chisquare","text":"function generate n random points chisquare distribution user provided, .df, .ncp, number random simulations produced. function returns tibble simulation number column x column corresponds n randomly generated points, d_, p_ q_ data points well. data returned un-grouped. columns output : sim_number current simulation number. x current value n current simulation. y randomly generated data point. dx x value stats::density() function. dy y value stats::density() function. p values resulting p_ function distribution family. q values resulting q_ function distribution family.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_chisquare.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Tidy Randomly Generated Chisquare (Non-Central) Distribution Tibble — tidy_chisquare","text":"","code":"tidy_chisquare( .n = 50, .df = 1, .ncp = 1, .num_sims = 1, .return_tibble = TRUE )"},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_chisquare.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Tidy Randomly Generated Chisquare (Non-Central) Distribution Tibble — tidy_chisquare","text":".n number randomly generated points want. .df Degrees freedom (non-negative can non-integer) .ncp Non-centrality parameter, must non-negative. .num_sims number randomly generated simulations want. .return_tibble logical value indicating whether return result tibble. Default TRUE.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_chisquare.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Tidy Randomly Generated Chisquare (Non-Central) Distribution Tibble — tidy_chisquare","text":"tibble randomly generated data.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_chisquare.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Tidy Randomly Generated Chisquare (Non-Central) Distribution Tibble — tidy_chisquare","text":"function uses underlying stats::rchisq(), underlying p, d, q functions. information please see stats::rchisq()","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_chisquare.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Tidy Randomly Generated Chisquare (Non-Central) Distribution Tibble — tidy_chisquare","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_chisquare.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Tidy Randomly Generated Chisquare (Non-Central) Distribution Tibble — tidy_chisquare","text":"","code":"tidy_chisquare() #> # A tibble: 50 × 7 #> sim_number x y dx dy p q #> #> 1 1 1 0.0110 -2.58 0.00141 0.0507 0.0110 #> 2 1 2 5.28 -2.22 0.00471 0.902 5.28 #> 3 1 3 1.39 -1.86 0.0133 0.556 1.39 #> 4 1 4 0.00843 -1.51 0.0321 0.0444 0.00843 #> 5 1 5 0.0290 -1.15 0.0659 0.0825 0.0290 #> 6 1 6 2.90 -0.793 0.116 0.756 2.90 #> 7 1 7 0.369 -0.436 0.174 0.293 0.369 #> 8 1 8 6.24 -0.0799 0.227 0.933 6.24 #> 9 1 9 3.64 0.277 0.257 0.816 3.64 #> 10 1 10 3.95 0.633 0.258 0.837 3.95 #> # ℹ 40 more rows"},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_combined_autoplot.html","id":null,"dir":"Reference","previous_headings":"","what":"Automatic Plot of Combined Multi Dist Data — tidy_combined_autoplot","title":"Automatic Plot of Combined Multi Dist Data — tidy_combined_autoplot","text":"auto plotting function take tidy_ distribution function arguments, one plot type, quoted string one following: density quantile probablity qq mcmc number simulations exceeds 9 legend print. plot subtitle put together attributes table passed function.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_combined_autoplot.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Automatic Plot of Combined Multi Dist Data — tidy_combined_autoplot","text":"","code":"tidy_combined_autoplot( .data, .plot_type = \"density\", .line_size = 0.5, .geom_point = FALSE, .point_size = 1, .geom_rug = FALSE, .geom_smooth = FALSE, .geom_jitter = FALSE, .interactive = FALSE )"},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_combined_autoplot.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Automatic Plot of Combined Multi Dist Data — tidy_combined_autoplot","text":".data data passed function tidy_multi_dist() .plot_type quoted string like 'density' .line_size size param ggplot .geom_point Boolean value TREU/FALSE, FALSE default. TRUE return plot ggplot2::ggeom_point() .point_size point size param ggplot .geom_rug Boolean value TRUE/FALSE, FALSE default. TRUE return use ggplot2::geom_rug() .geom_smooth Boolean value TRUE/FALSE, FALSE default. TRUE return use ggplot2::geom_smooth() aes parameter group set FALSE. ensures single smoothing band returned SE also set FALSE. Color set 'black' linetype 'dashed'. .geom_jitter Boolean value TRUE/FALSE, FALSE default. TRUE return use ggplot2::geom_jitter() .interactive Boolean value TRUE/FALSE, FALSE default. TRUE return interactive plotly plot.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_combined_autoplot.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Automatic Plot of Combined Multi Dist Data — tidy_combined_autoplot","text":"ggplot plotly plot.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_combined_autoplot.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Automatic Plot of Combined Multi Dist Data — tidy_combined_autoplot","text":"function spit one following plots: density quantile probability qq mcmc","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_combined_autoplot.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Automatic Plot of Combined Multi Dist Data — tidy_combined_autoplot","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_combined_autoplot.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Automatic Plot of Combined Multi Dist Data — tidy_combined_autoplot","text":"","code":"combined_tbl <- tidy_combine_distributions( tidy_normal(), tidy_gamma(), tidy_beta() ) combined_tbl #> # A tibble: 150 × 8 #> sim_number x y dx dy p q dist_type #> #> 1 1 1 -1.36 -3.52 0.000368 0.0864 -1.36 Gaussian c(0, 1) #> 2 1 2 -1.20 -3.37 0.00102 0.116 -1.20 Gaussian c(0, 1) #> 3 1 3 0.804 -3.22 0.00254 0.789 0.804 Gaussian c(0, 1) #> 4 1 4 0.969 -3.06 0.00565 0.834 0.969 Gaussian c(0, 1) #> 5 1 5 -1.09 -2.91 0.0113 0.138 -1.09 Gaussian c(0, 1) #> 6 1 6 -1.38 -2.76 0.0203 0.0835 -1.38 Gaussian c(0, 1) #> 7 1 7 -0.672 -2.61 0.0331 0.251 -0.672 Gaussian c(0, 1) #> 8 1 8 0.371 -2.46 0.0498 0.645 0.371 Gaussian c(0, 1) #> 9 1 9 1.44 -2.30 0.0699 0.925 1.44 Gaussian c(0, 1) #> 10 1 10 -0.0394 -2.15 0.0931 0.484 -0.0394 Gaussian c(0, 1) #> # ℹ 140 more rows combined_tbl |> tidy_combined_autoplot() combined_tbl |> tidy_combined_autoplot(.plot_type = \"qq\")"},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_combine_distributions.html","id":null,"dir":"Reference","previous_headings":"","what":"Combine Multiple Tidy Distributions of Different Types — tidy_combine_distributions","title":"Combine Multiple Tidy Distributions of Different Types — tidy_combine_distributions","text":"allows user specify n number tidy_ distributions can combined single tibble. preferred method combining multiple distributions different types, example Gaussian distribution Beta distribution. generates single tibble added column dist_type give distribution family name associated parameters.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_combine_distributions.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Combine Multiple Tidy Distributions of Different Types — tidy_combine_distributions","text":"","code":"tidy_combine_distributions(...)"},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_combine_distributions.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Combine Multiple Tidy Distributions of Different Types — tidy_combine_distributions","text":"... ... can place different distributions","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_combine_distributions.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Combine Multiple Tidy Distributions of Different Types — tidy_combine_distributions","text":"tibble","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_combine_distributions.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Combine Multiple Tidy Distributions of Different Types — tidy_combine_distributions","text":"Allows user generate tibble different tidy_ distributions","code":""},{"path":[]},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_combine_distributions.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Combine Multiple Tidy Distributions of Different Types — tidy_combine_distributions","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_combine_distributions.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Combine Multiple Tidy Distributions of Different Types — tidy_combine_distributions","text":"","code":"tn <- tidy_normal() tb <- tidy_beta() tc <- tidy_cauchy() tidy_combine_distributions(tn, tb, tc) #> # A tibble: 150 × 8 #> sim_number x y dx dy p q dist_type #> #> 1 1 1 -0.199 -3.47 0.000222 0.421 -0.199 Gaussian c(0, 1) #> 2 1 2 0.142 -3.32 0.000638 0.556 0.142 Gaussian c(0, 1) #> 3 1 3 2.28 -3.16 0.00161 0.989 2.28 Gaussian c(0, 1) #> 4 1 4 1.63 -3.01 0.00355 0.949 1.63 Gaussian c(0, 1) #> 5 1 5 0.547 -2.86 0.00694 0.708 0.547 Gaussian c(0, 1) #> 6 1 6 0.215 -2.71 0.0121 0.585 0.215 Gaussian c(0, 1) #> 7 1 7 -1.42 -2.55 0.0193 0.0771 -1.42 Gaussian c(0, 1) #> 8 1 8 -0.850 -2.40 0.0288 0.198 -0.850 Gaussian c(0, 1) #> 9 1 9 0.886 -2.25 0.0411 0.812 0.886 Gaussian c(0, 1) #> 10 1 10 -1.44 -2.10 0.0576 0.0748 -1.44 Gaussian c(0, 1) #> # ℹ 140 more rows ## OR tidy_combine_distributions( tidy_normal(), tidy_beta(), tidy_cauchy(), tidy_logistic() ) #> # A tibble: 200 × 8 #> sim_number x y dx dy p q dist_type #> #> 1 1 1 -0.258 -3.24 0.000490 0.398 -0.258 Gaussian c(0, 1) #> 2 1 2 0.719 -3.12 0.00130 0.764 0.719 Gaussian c(0, 1) #> 3 1 3 0.720 -2.99 0.00309 0.764 0.720 Gaussian c(0, 1) #> 4 1 4 -0.697 -2.87 0.00648 0.243 -0.697 Gaussian c(0, 1) #> 5 1 5 -0.402 -2.75 0.0121 0.344 -0.402 Gaussian c(0, 1) #> 6 1 6 0.457 -2.63 0.0200 0.676 0.457 Gaussian c(0, 1) #> 7 1 7 -0.456 -2.50 0.0296 0.324 -0.456 Gaussian c(0, 1) #> 8 1 8 1.24 -2.38 0.0392 0.893 1.24 Gaussian c(0, 1) #> 9 1 9 0.183 -2.26 0.0473 0.573 0.183 Gaussian c(0, 1) #> 10 1 10 0.176 -2.14 0.0532 0.570 0.176 Gaussian c(0, 1) #> # ℹ 190 more rows"},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_distribution_comparison.html","id":null,"dir":"Reference","previous_headings":"","what":"Compare Empirical Data to Distributions — tidy_distribution_comparison","title":"Compare Empirical Data to Distributions — tidy_distribution_comparison","text":"Compare empirical data set different distributions help find distribution best fit.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_distribution_comparison.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Compare Empirical Data to Distributions — tidy_distribution_comparison","text":"","code":"tidy_distribution_comparison( .x, .distribution_type = \"continuous\", .round_to_place = 3 )"},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_distribution_comparison.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Compare Empirical Data to Distributions — tidy_distribution_comparison","text":".x data set passed function .distribution_type kind data , can one continuous discrete .round_to_place many decimal places parameter estimates rounded distibution construction. default 3","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_distribution_comparison.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Compare Empirical Data to Distributions — tidy_distribution_comparison","text":"invisible list object. tibble printed.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_distribution_comparison.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Compare Empirical Data to Distributions — tidy_distribution_comparison","text":"purpose function take data set provided try find distribution may fit best. parameter .distribution_type must set either continuous discrete order function try appropriate types distributions. following distributions used: Continuous: tidy_beta tidy_cauchy tidy_chisquare tidy_exponential tidy_gamma tidy_logistic tidy_lognormal tidy_normal tidy_pareto tidy_uniform tidy_weibull Discrete: tidy_binomial tidy_geometric tidy_hypergeometric tidy_poisson function returns list output tibbles. tibbles returned: comparison_tbl deviance_tbl total_deviance_tbl aic_tbl kolmogorov_smirnov_tbl multi_metric_tbl comparison_tbl long tibble lists values density function given data. deviance_tbl total_deviance_tbl just give simple difference actual density estimated density given estimated distribution. aic_tbl provide AIC liklehood distribution. kolmogorov_smirnov_tbl now provides two.sided estimate ks.test estimated density empirical. multi_metric_tbl summarise metrics single tibble.","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_distribution_comparison.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Compare Empirical Data to Distributions — tidy_distribution_comparison","text":"Steven P. Sanderson II, MPH","code":""},{"path":"https://www.spsanderson.com/TidyDensity/reference/tidy_distribution_comparison.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Compare Empirical Data to Distributions — tidy_distribution_comparison","text":"","code":"xc <- mtcars$mpg output_c <- tidy_distribution_comparison(xc, \"continuous\") #> For the beta distribution, its mean 'mu' should be 0 < mu < 1. The data will #> therefore be scaled to enforce this. #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> Warning: NaNs produced #> There was no need to scale the data. #> Warning: There were 97 warnings in `dplyr::mutate()`. #> The first warning was: #> ℹ In argument: `aic_value = dplyr::case_when(...)`. #> Caused by warning in `actuar::dpareto()`: #> ! NaNs produced #> ℹ Run dplyr::last_dplyr_warnings() to see the 96 remaining warnings. xd <- trunc(xc) output_d <- tidy_distribution_comparison(xd, \"discrete\") #> There was no need to scale the data. #> Warning: There were 12 warnings in `dplyr::mutate()`. #> The first warning was: #> ℹ In argument: `aic_value = dplyr::case_when(...)`. #> Caused by warning in `actuar::dpareto()`: #> ! NaNs produced #> ℹ Run dplyr::last_dplyr_warnings() to see the 11 remaining warnings. output_c #> $comparison_tbl #> # A tibble: 384 × 8 #> sim_number x y dx dy p q dist_type #> #> 1 1 1 21 2.97 0.000114 0.625 10.4 Empirical #> 2 1 2 21 4.21 0.000455 0.625 10.4 Empirical #> 3 1 3 22.8 5.44 0.00142 0.781 13.3 Empirical #> 4 1 4 21.4 6.68 0.00355 0.688 14.3 Empirical #> 5 1 5 18.7 7.92 0.00721 0.469 14.7 Empirical #> 6 1 6 18.1 9.16 0.0124 0.438 15 Empirical #> 7 1 7 14.3 10.4 0.0192 0.125 15.2 Empirical #> 8 1 8 24.4 11.6 0.0281 0.812 15.2 Empirical #> 9 1 9 22.8 12.9 0.0395 0.781 15.5 Empirical #> 10 1 10 19.2 14.1 0.0516 0.531 15.8 Empirical #> # ℹ 374 more rows #> #> $deviance_tbl #> # A tibble: 384 × 2 #> name value #> #> 1 Empirical 0.451 #> 2 Beta c(1.107, 1.577, 0) 0.287 #> 3 Cauchy c(19.2, 7.375) -0.0169 #> 4 Chisquare c(20.243, 0) -0.106 #> 5 Exponential c(0.05) 0.230 #> 6 Gamma c(11.47, 1.752) -0.0322 #> 7 Logistic c(20.091, 3.27) 0.193 #> 8 Lognormal c(2.958, 0.293) 0.283 #> 9 Pareto c(10.4, 1.624) 0.446 #> 10 Uniform c(8.341, 31.841) 0.242 #> # ℹ 374 more rows #> #> $total_deviance_tbl #> # A tibble: 11 × 2 #> dist_with_params abs_tot_deviance #> #> 1 Gamma c(11.47, 1.752) 0.0235 #> 2 Chisquare c(20.243, 0) 0.462 #> 3 Beta c(1.107, 1.577, 0) 0.640 #> 4 Uniform c(8.341, 31.841) 1.11 #> 5 Weibull c(3.579, 22.288) 1.34 #> 6 Cauchy c(19.2, 7.375) 1.56 #> 7 Logistic c(20.091, 3.27) 2.74 #> 8 Lognormal c(2.958, 0.293) 4.72 #> 9 Gaussian c(20.091, 5.932) 4.74 #> 10 Pareto c(10.4, 1.624) 6.95 #> 11 Exponential c(0.05) 7.67 #> #> $aic_tbl #> # A tibble: 11 × 3 #> dist_type aic_value abs_aic #> #> 1 Beta c(1.107, 1.577, 0) NA NA #> 2 Cauchy c(19.2, 7.375) 218. 218. #> 3 Chisquare c(20.243, 0) NA NA #> 4 Exponential c(0.05) 258. 258. #> 5 Gamma c(11.47, 1.752) 206. 206. #> 6 Logistic c(20.091, 3.27) 209. 209. #> 7 Lognormal c(2.958, 0.293) 206. 206. #> 8 Pareto c(10.4, 1.624) 260. 260. #> 9 Uniform c(8.341, 31.841) 206. 206. #> 10 Weibull c(3.579, 22.288) 209. 209. #> 11 Gaussian c(20.091, 5.932) 209. 209. #> #> $kolmogorov_smirnov_tbl #> # A tibble: 11 × 6 #> dist_type ks_statistic ks_pvalue ks_method alternative dist_char #> #> 1 Beta c(1.107, 1.577, … 0.75 0.000500 Monte-Ca… two-sided Beta c(1… #> 2 Cauchy c(19.2, 7.375) 0.469 0.00200 Monte-Ca… two-sided Cauchy c… #> 3 Chisquare c(20.243, 0) 0.219 0.446 Monte-Ca… two-sided Chisquar… #> 4 Exponential c(0.05) 0.469 0.00100 Monte-Ca… two-sided Exponent… #> 5 Gamma c(11.47, 1.752) 0.156 0.847 Monte-Ca… two-sided Gamma c(… #> 6 Logistic c(20.091, 3.… 0.125 0.976 Monte-Ca… two-sided Logistic… #> 7 Lognormal c(2.958, 0.… 0.281 0.160 Monte-Ca… two-sided Lognorma… #> 8 Pareto c(10.4, 1.624) 0.719 0.000500 Monte-Ca… two-sided Pareto c… #> 9 Uniform c(8.341, 31.8… 0.188 0.621 Monte-Ca… two-sided Uniform … #> 10 Weibull c(3.579, 22.2… 0.219 0.443 Monte-Ca… two-sided Weibull … #> 11 Gaussian c(20.091, 5.… 0.156 0.833 Monte-Ca… two-sided Gaussian… #> #> $multi_metric_tbl #> # A tibble: 11 × 8 #> dist_type abs_tot_deviance aic_value abs_aic ks_statistic ks_pvalue ks_method #>