-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSolution.py
60 lines (56 loc) · 2.2 KB
/
Solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import numpy as np
import Logger
from time import *
class Solution:
def __init__(self, employees):
self.employees = employees
def to_string(self):
return str(self.employees)
'''
Return the relative cost of this solution. This is based on the optimal cost
'''
def get_cost(self,type,problem):
if type=='number_employees':
max = np.max(problem.b)
value = len(self.employees)
else:
max = sum(problem.b)
value = np.sum(self.employees)
return (value-max)/max
'''
Return a new solution based on this one. This can be done by removing an employee, or by performing a number of
swaps in a certain employee
'''
def step(self, problem, percentage, nbChanges):
new_solution = 0
start = time()
i = 0
copy_emp = np.copy(self.employees)
while new_solution == 0:
if time() - start > 20:
#print 'start time: %f, current time: %f' %(start,time())
return False
i+=1
#print 'Step currently at try: %i' %i
which_step = np.random.rand()*100
if which_step < percentage:
which_emp = np.random.randint(len(copy_emp))
new_emp = np.delete(copy_emp, which_emp, axis = 0)
if problem.check_solution(Solution(new_emp)):
#print 'removed employee after %i steps' % i
new_solution = Solution(new_emp)
else:
which_emp = np.random.randint(len(self.employees))
copy_emp = np.copy(self.employees)
emp = copy_emp[which_emp]
new_emps = copy_emp
if not nbChanges:
nbChanges = np.random.randint(len(emp))
for _ in range(nbChanges):
which_day = np.random.randint(len(emp))
emp[which_day] = (emp[which_day] + 1) % 2
new_emps[which_emp] = emp
if problem.check_solution(Solution(new_emps)):
#print 'switched value after %i steps' % i
new_solution = Solution(new_emps)
return new_solution