-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathvisualization.py
152 lines (89 loc) · 4.03 KB
/
visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
def draw_traj(w_t, g_t, dw_t):
plt.quiver(w_t[:,0], w_t[:,1], dw_t[:,0], dw_t[:,1], color='k')
#plt.plot(w_t[:,0], w_t[:,1], '-*')
# Parameters for the intelligent synapse model
param_c = 1.0
param_xi = 0.1
learning_rate = 0.1
# A simple dummy model, corresponding to a 2D weight vector and a set of made-up loss functions
w_placeholder = tf.placeholder(tf.float32, (2,))
use_placeholder = tf.placeholder(tf.float32, (1,))
w_var = tf.Variable(0.1*tf.ones((2,)))
w = w_var*(1.0-use_placeholder) + (use_placeholder)*w_placeholder
el1 = tf.reduce_sum(w*tf.constant(np.asarray([1.,0.]),dtype=tf.float32))
el2 = tf.reduce_sum(w*tf.constant(np.asarray([0.,1.]),dtype=tf.float32))
loss1 = tf.square(el1-1.0)
loss2 = tf.square(el1-0.5)+tf.square(el2-0.5)
# Intelligent synapse
small_omega_var = tf.Variable(tf.zeros(w_var.get_shape()), trainable=False)
previous_weights_mu_minus_1 = tf.Variable(tf.zeros(w_var.get_shape()), trainable=False)
big_omega_var = tf.Variable(tf.zeros(w_var.get_shape()), trainable=False)
aux_loss = tf.reduce_sum(tf.multiply( big_omega_var, tf.square(previous_weights_mu_minus_1 - w_var) ))
reset_small_omega = tf.group( tf.assign( previous_weights_mu_minus_1, w_var ), tf.assign( small_omega_var, small_omega_var*0.0 ) )
update_big_omega = tf.assign_add( big_omega_var, tf.div(small_omega_var,(param_xi + tf.square(w_var-previous_weights_mu_minus_1) )) )
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
g1 = optimizer.compute_gradients(loss1, var_list=[w_var])
g1_a = optimizer.compute_gradients(loss1+aux_loss, var_list=[w_var])
train1 = optimizer.apply_gradients(g1_a)
g2 = optimizer.compute_gradients(loss2, var_list=[w_var])
g2_a = optimizer.compute_gradients(loss2+param_c*aux_loss, var_list=[w_var])
train2 = optimizer.apply_gradients(g2_a)
update_small_omega_1 = tf.assign_add( small_omega_var, learning_rate*g1_a[0][0]*g1[0][0] )
update_small_omega_2 = tf.assign_add( small_omega_var, learning_rate*g2_a[0][0]*g2[0][0] )
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
sess = tf.InteractiveSession(config=config)
sess.run(tf.global_variables_initializer())
## train and track weights and gradients
def training_util(g, train, update_small_omega, steps):
weight_t = []
gradient_t = []
delta_w_t = []
for t in range(steps):
weight_t.append( sess.run(w, {w_placeholder:[0.0,0.0], use_placeholder:[0.0]}) )
grad, _, _ = sess.run([g, train, update_small_omega], {w_placeholder:[0.0,0.0], use_placeholder:[0.0]})
gradient_t.append( grad[0][0] )
delta_w_t.append( -grad[0][0]*learning_rate ) # only valid for SGD!
weight_t = np.asarray(weight_t)
gradient_t = np.asarray(gradient_t)
delta_w_t = np.asarray(delta_w_t)
return weight_t, gradient_t, delta_w_t
weight_t_A, gradient_t_A, delta_w_t_A = training_util(g1, train1, update_small_omega_1, 15)
sess.run( update_big_omega )
sess.run( reset_small_omega )
weight_t_B, gradient_t_B, delta_w_t_B = training_util(g2, train2, update_small_omega_2, 15)
## compute the surface of each loss function
xmin=0.0
xmax=1.0
ymin=0.0
ymax=1.0
step = 0.05
x, y = np.meshgrid(np.arange(xmin, xmax+step, step), np.arange(ymin, ymax+step, step))
loss1_value = np.zeros(x.shape)
loss2_value = np.zeros(x.shape)
for i in xrange(x.shape[0]):
for j in xrange(x.shape[1]):
loss1_value[i,j],loss2_value[i,j] = sess.run([loss1, loss2], {w_placeholder:[x[i,j],y[i,j]], use_placeholder:[1.0]})
plt.subplot(1, 3, 1, aspect='equal')
plt.hold(True)
plt.title("Task 1")
plt.contour(x, y, loss1_value, 50)
draw_traj(weight_t_A, gradient_t_A, delta_w_t_A)
plt.hold(False)
plt.subplot(1, 3, 2, aspect='equal')
plt.hold(True)
plt.title("Task 2")
plt.contour(x, y, loss2_value, 50)
draw_traj(weight_t_B, gradient_t_B, delta_w_t_B)
plt.hold(False)
plt.subplot(1, 3, 3, aspect='equal')
plt.hold(True)
plt.title("Tasks 1+2 combined")
plt.contour(x, y, loss1_value+loss2_value, 50)
draw_traj(weight_t_A, gradient_t_A, delta_w_t_A)
draw_traj(weight_t_B, gradient_t_B, delta_w_t_B)
plt.hold(False)
plt.show()