Skip to content

Commit 1c812f7

Browse files
committed
update tutorials path
1 parent 98d3da0 commit 1c812f7

File tree

2 files changed

+6
-6
lines changed

2 files changed

+6
-6
lines changed

tutorial_basics.html

+3-3
Original file line numberDiff line numberDiff line change
@@ -107,7 +107,7 @@ <h2>Brain Class</h2>
107107
SpeechBrain provides a convenient framework for organizing the training loop, in the form of a class known as the "Brain" class,
108108
implemented in speechbrain/core.py. In each recipe, we sub-class this class and override the methods for which the default
109109
implementation doesn't do what is required for that particular recipe.</p>
110-
<a href="https://colab.research.google.com/drive/1cYIsQiKlXTyfGR3j4gKs5Rq648JDaqaB?usp=sharing#scrollTo=jr2jH1sDZcml" class="blog_btn">Open in Google Colab</a>
110+
<a href="https://colab.research.google.com/drive/1fdqTk4CTXNcrcSVFvaOKzRfLmj4fJfwa?usp=sharing" class="blog_btn">Open in Google Colab</a>
111111
</div>
112112
</div>
113113
</div>
@@ -138,7 +138,7 @@ <h2>HyperPyYAML</h2>
138138
SpeechBrain-developed format, which we call "HyperPyYAML". We chose to extend YAML since it is a highly
139139
readable format for data serialization. By extending an already useful format, we were able to create an
140140
expanded definition of hyperparameter, keeping our actual experimental code small and highly readable.</p>
141-
<a href="https://colab.research.google.com/drive/10jZah2QHZ7xuajv9M1yIwRQdePxPV97U" class="blog_btn">Open in Google Colab</a>
141+
<a href="https://colab.research.google.com/drive/1Pg9by4b6-8QD2iC0U7Ic3Vxq4GEwEdDz?usp=sharing" class="blog_btn">Open in Google Colab</a>
142142
</div>
143143
</div>
144144
</div>
@@ -165,7 +165,7 @@ <h2>Data Loading Pipeline</h2>
165165
defining your torch.utils.data.Dataset class as well as different data sampling and augmentations strategies.
166166
In SpeechBrain we provide efficient abstractions to simplify this time-consuming process without sacrificing
167167
flexibility. In fact our data pipeline is built around the Pytorch one.</p>
168-
<a href="https://colab.research.google.com/drive/1NEboTfb2EIBrc0nUd9NKwcG2eqf-kv3d?usp=sharing" class="blog_btn">Open in Google Colab</a>
168+
<a href="https://colab.research.google.com/drive/1AiVJZhZKwEI4nFGANKXEe-ffZFfvXKwH?usp=sharing" class="blog_btn">Open in Google Colab</a>
169169
</div>
170170
</div>
171171
</div>

tutorial_processing.html

+3-3
Original file line numberDiff line numberDiff line change
@@ -106,7 +106,7 @@ <h2>Speech Augmentation</h2>
106106
and we must cleverly use the available dataset. One popular technique is called speech augmentation. The idea is to artificially
107107
corrupt the original speech signals to give the network the "illusion" that we are processing a new signal. This acts as a powerful regularizer,
108108
that normally helps neural networks improving generalization and thus achieve better performance on test data.</p>
109-
<a href="https://colab.research.google.com/drive/16mUGH_A3UHZZOx2Vn69hy6fkPAM8CnA4?usp=sharing" class="blog_btn">Open in Google Colab</a>
109+
<a href="https://colab.research.google.com/drive/1JJc4tBhHNXRSDM2xbQ3Z0jdDQUw4S5lr?usp=sharing" class="blog_btn">Open in Google Colab</a>
110110
</div>
111111
</div>
112112
</div>
@@ -136,7 +136,7 @@ <h2>Fourier Transform and Spectrograms</h2>
136136
Fourier Transform, which turns the time-domain signal into an equivalent representation in the frequency domain.
137137
In the following sections, we will describe the Fourier transforms along with other related transformations such as
138138
Short-Term Fourier Transform (STFT) and spectrograms.</p>
139-
<a href="https://colab.research.google.com/drive/1dCY2XHC6NiDA9mor3jd9H9w-XEcD3M4L?usp=sharing" class="blog_btn">Open in Google Colab</a>
139+
<a href="https://colab.research.google.com/drive/18IgBv3Ip0rWXjYoZywttSmW7Y2AIK1vJ?usp=sharing" class="blog_btn">Open in Google Colab</a>
140140
</div>
141141
</div>
142142
</div>
@@ -162,7 +162,7 @@ <h2>Speech Features (MFCC, FBANK)</h2>
162162
<p>Speech is a very high-dimensional signal. For instance, when the sampling frequency is 16 kHz,
163163
we have 16000 samples for each second. Working with such very high dimensional data can be critical from a machine learning perspective.
164164
The goal of feature extraction is to find more compact ways to represent speech.</p>
165-
<a href="https://colab.research.google.com/drive/1iH1Tvgrsi7nD_uxh5jEj7DAXaL4gdjze?usp=sharing" class="blog_btn">Open in Google Colab</a>
165+
<a href="https://colab.research.google.com/drive/1CI72Xyay80mmmagfLaIIeRoDgswWHT_g?usp=sharing" class="blog_btn">Open in Google Colab</a>
166166
</div>
167167
</div>
168168
</div>

0 commit comments

Comments
 (0)