-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculations.py
462 lines (369 loc) · 17.6 KB
/
calculations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
# calculations.py
import numpy as np
from scipy.special import jn_zeros, j0
from sklearn.metrics import mean_squared_error
import logging
import math
from datetime import datetime
logger = logging.getLogger(__name__)
class CalculationManager:
def __init__(self, data_manager):
self.data_manager = data_manager
def doy_to_hour_index(self, doy):
"""Convert DOY to hour index"""
start_doy = self.data_manager.start_date.timetuple().tm_yday
doy_int = int(doy)
hour = int((doy - doy_int) * 24)
hour_index = (doy_int - start_doy) * 24 + hour
print(f" Start DOY: {start_doy}")
return hour_index
def perform_calculations(self, doy_start, doy_end, upstream_start, upstream_end):
"""Main calculation function with proper GCR data handling"""
try:
logger.info("Starting calculations...")
print(f"Selected region in DOY: {doy_start:.2f} to {doy_end:.2f}")
# Initialize gcr_data before try block
gcr_data = None
try:
# Get data arrays
v_data = self.data_manager.get_data('V')
b_data = self.data_manager.get_data('B')
gcr_data = self.data_manager.get_data('GCR', hourly=True)
except Exception as e:
logger.warning(f"Error getting data: {str(e)}")
# Check for GCR data availability
has_gcr_data = gcr_data is not None and len(gcr_data) > 0 and not np.all(np.isnan(gcr_data))
if not has_gcr_data:
logger.warning("No GCR data available. Proceeding with ICME parameter calculations only.")
print("Warning: No GCR data available. Only ICME parameters will be calculated.")
# Calculate speeds if data is available
speeds = {
'vLead': np.nan,
'vTrail': np.nan,
'v_center': np.nan,
'upstream_w': np.nan,
'vAvg': np.nan,
'vMedian': np.nan,
'vStdev': np.nan,
'vPeak': np.nan
}
if v_data is not None and len(v_data) > 0 and not np.all(np.isnan(v_data)):
speeds = self.calculate_speeds(v_data, doy_start, doy_end, upstream_start, upstream_end)
# Calculate magnetic parameters if data is available
magnetic = {
'BPeak': np.nan,
'BAvg': np.nan,
'BMedian': np.nan,
'BStdev': np.nan
}
if b_data is not None and len(b_data) > 0 and not np.all(np.isnan(b_data)):
magnetic = self.calculate_magnetic_params(b_data, doy_start, doy_end)
# Initialize GCR-related parameters with NaN
fd_params = {
'reference_value': np.nan,
'fd_amplitude': np.nan,
'fd_min_doy': np.nan,
'fd_data': np.array([])
}
fit_data = {
'r_timeseries': np.array([]),
'A_timeseries': np.array([]),
'best_fit_bessel': None,
'r': None,
'FD_bestfit': None,
'MSE': None,
'details': {
'points_total': 0,
'points_valid': 0,
'points_nan': 0
}
}
# Calculate GCR parameters only if data is available
if has_gcr_data:
start_doy = int(doy_start)
end_doy = int(doy_end)
start_hour = int((doy_start - start_doy) * 24)
end_hour = int((doy_end - end_doy) * 24)
t_hour = (start_doy - self.data_manager.start_date.timetuple().tm_yday) * 24 + start_hour
z_hour = (end_doy - self.data_manager.start_date.timetuple().tm_yday) * 24 + end_hour
fd_params = self.calculate_fd_parameters(gcr_data, t_hour, z_hour)
fit_data = self.prepare_fit_data(gcr_data, t_hour, z_hour, speeds['vLead'], speeds['vTrail'])
return {
'timestamps': {
'doy_start': round(doy_start, 1),
'doy_end': round(doy_end, 1),
'FD_min_DOY': fd_params['fd_min_doy']
},
'velocities': speeds,
'magnetic': magnetic,
'fd': {
'FD_obs': fd_params['fd_amplitude']
},
'fit': fit_data,
'coordinates': {
'distance': self.data_manager.distance,
'longitude': self.data_manager.longitude,
'latitude': self.data_manager.latitude
},
'has_gcr_data': has_gcr_data
}
except Exception as e:
logger.error(f"Error in calculations: {str(e)}")
raise
def prepare_fit_data(self, gcr_data, t_hour, z_hour, vLead, vTrail):
"""Prepare data for fitting with proper NaN handling and independence from speed data"""
try:
# Get hourly GCR data for fitting
hourly_data = self.data_manager.get_data('GCR', hourly=True)
forbush = hourly_data[t_hour:z_hour+1].copy()
print(f"Number of total GCR points: {len(forbush)}")
print(f"Number of NaN points: {np.sum(np.isnan(forbush))}")
# Create time points array
num_points = len(forbush)
r_points = np.linspace(-1, 1, num_points)
# Filter out NaN values while preserving corresponding r points
valid_mask = ~np.isnan(forbush)
valid_forbush = forbush[valid_mask]
valid_r_points = r_points[valid_mask]
print(f"Number of valid points after NaN filtering: {len(valid_forbush)}")
if len(valid_forbush) < 2:
raise ValueError(f"Not enough valid points for fit. Need at least 2, got {len(valid_forbush)}")
# Normalize relative to first valid point
first_valid = valid_forbush[0]
forbush_norm = (valid_forbush - first_valid) / first_valid
return {
'r_timeseries': valid_r_points,
'A_timeseries': forbush_norm,
'best_fit_bessel': None,
'r': None,
'FD_bestfit': None,
'MSE': None,
'details': {
'points_total': len(forbush),
'points_valid': len(valid_forbush),
'points_nan': np.sum(np.isnan(forbush))
}
}
except Exception as e:
logger.error(f"Error preparing fit data: {str(e)}")
raise
def calculate_average(self, index, data, window=60):
"""Calculate average around an index with proper NaN handling"""
try:
# Handle NaN index
if np.isnan(index):
return np.nan
# Convert to integer safely
index = int(np.floor(index))
# Set window boundaries
start_idx = max(0, index - window//2)
end_idx = min(len(data), index + window//2)
# Extract window data
window_data = data[start_idx:end_idx]
valid_data = window_data[~np.isnan(window_data)]
return np.mean(valid_data) if len(valid_data) > 0 else np.nan
except Exception as e:
logger.error(f"Error calculating average: {str(e)}")
return np.nan
def calculate_speeds(self, v_data, doy_start, doy_end, upstream_start, upstream_end):
"""Calculate all speed-related parameters with proper NaN handling"""
try:
# Convert DOY to indices safely
start_index = np.nan
end_index = np.nan
try:
start_doy = self.data_manager.start_date.timetuple().tm_yday
start_index = (doy_start - start_doy) * 24 * 60
end_index = (doy_end - start_doy) * 24 * 60
except Exception as e:
logger.warning(f"Error converting DOY to indices: {str(e)}")
# Calculate center index
center = np.nan
if not (np.isnan(start_index) or np.isnan(end_index)):
center = (start_index + end_index) // 2
# Calculate speeds with NaN handling
vLead = round(self.calculate_average(start_index, v_data)) if not np.isnan(start_index) else np.nan
vTrail = round(self.calculate_average(end_index, v_data)) if not np.isnan(end_index) else np.nan
v_center = round(self.calculate_average(center, v_data)) if not np.isnan(center) else np.nan
# Calculate upstream speed
upstream_w = self.calculate_upstream(upstream_start, upstream_end, v_data)
# Calculate statistics
vPeak, vAvg, vMedian, vStdev = self.calculate_stats(
start_index if not np.isnan(start_index) else 0,
end_index if not np.isnan(end_index) else len(v_data),
v_data
)
return {
'vLead': vLead,
'vTrail': vTrail,
'v_center': v_center,
'upstream_w': upstream_w,
'vAvg': vAvg,
'vMedian': vMedian,
'vStdev': vStdev,
'vPeak': vPeak
}
except Exception as e:
logger.error(f"Error calculating speeds: {str(e)}")
raise
def calculate_upstream(self, start, end, data):
"""Calculate upstream speed average with NaN handling"""
try:
# Handle NaN inputs
if np.isnan(start) or np.isnan(end):
return np.nan
# Convert to integers safely
start_idx = int(np.floor(start))
end_idx = int(np.ceil(end))
if start_idx >= end_idx or start_idx < 0:
logger.warning("Invalid upstream window indices")
return np.nan
# Get data slice and filter NaNs
data_slice = data[start_idx:end_idx]
valid_data = data_slice[~np.isnan(data_slice)]
# Calculate mean if we have valid data
if len(valid_data) > 0:
return round(np.mean(valid_data))
return np.nan
except Exception as e:
logger.error(f"Error calculating upstream speed: {str(e)}")
return np.nan
def calculate_stats(self, start, end, data):
"""Calculate statistical parameters with proper NaN handling"""
try:
# Handle NaN inputs
if np.isnan(start) or np.isnan(end):
return np.nan, np.nan, np.nan, np.nan
# Convert to integers safely
s_idx = int(np.floor(max(0, min(start, len(data)-1))))
e_idx = int(np.ceil(max(0, min(end, len(data)))))
# Get data slice and filter NaNs
window_data = data[s_idx:e_idx]
valid_data = window_data[~np.isnan(window_data)]
if len(valid_data) == 0:
return np.nan, np.nan, np.nan, np.nan
return (
round(np.max(valid_data), 1),
round(np.mean(valid_data), 1),
round(np.median(valid_data), 1),
round(np.std(valid_data), 1)
)
except Exception as e:
logger.error(f"Error calculating statistics: {str(e)}")
return np.nan, np.nan, np.nan, np.nan
def calculate_magnetic_params(self, b_data, doy_start, doy_end):
"""Calculate magnetic field parameters"""
try:
start_index = (doy_start - self.data_manager.start_date.timetuple().tm_yday) * 24 * 60
end_index = (doy_end - self.data_manager.start_date.timetuple().tm_yday) * 24 * 60
BPeak, BAvg, BMedian, BStdev = self.calculate_stats(start_index, end_index, b_data)
return {
'BPeak': BPeak,
'BAvg': BAvg,
'BMedian': BMedian,
'BStdev': BStdev
}
except Exception as e:
logger.error(f"Error calculating magnetic parameters: {str(e)}")
raise
def calculate_fd_parameters(self, gcr_data, t_hour, z_hour):
"""Calculate FD parameters"""
try:
# Get hourly GCR data
hourly_data = self.data_manager.get_data('GCR', hourly=True)
# Get GCR data window
window_data = hourly_data[t_hour:z_hour+1]
valid_indices = np.where(~np.isnan(window_data))[0]
if len(valid_indices) == 0:
raise ValueError("No valid GCR data in selected window")
# Get reference point (first valid value in window)
first_valid_idx = valid_indices[0]
reference_value = window_data[first_valid_idx]
# Calculate FD parameters
fd_data = (window_data - reference_value) / reference_value * 100
FDmin = np.nanmin(fd_data)
min_idx = valid_indices[np.argmin(fd_data[valid_indices])]
# Calculate FD amplitude and DOY
fd_amplitude = abs(FDmin)
fd_min_doy = round((first_valid_idx + min_idx)/24 +
self.data_manager.start_date.timetuple().tm_yday, 1)
return {
'reference_value': reference_value,
'fd_amplitude': round(fd_amplitude, 2),
'fd_min_doy': fd_min_doy,
'fd_data': fd_data
}
except Exception as e:
logger.error(f"Error calculating FD parameters: {str(e)}")
raise
def calculate_fd_parameters(self, gcr_data, t_hour, z_hour):
"""Calculate FD parameters with NaN handling"""
try:
# Get hourly GCR data
hourly_data = self.data_manager.get_data('GCR', hourly=True)
# Get GCR data window
window_data = hourly_data[t_hour:z_hour+1]
# Find first valid value (non-NaN)
valid_indices = np.where(~np.isnan(window_data))[0]
if len(valid_indices) == 0:
raise ValueError("No valid GCR data in selected window")
# Get reference point (first valid value in window)
first_valid_idx = valid_indices[0]
reference_value = window_data[first_valid_idx]
# Calculate FD parameters using only valid data
fd_data = np.full_like(window_data, np.nan)
fd_data[valid_indices] = (window_data[valid_indices] - reference_value) / reference_value * 100
# Find minimum in valid data
valid_fd = fd_data[valid_indices]
FDmin = np.nanmin(valid_fd)
min_idx = valid_indices[np.argmin(valid_fd)]
# Calculate FD amplitude and DOY
fd_amplitude = abs(FDmin)
fd_min_doy = round((first_valid_idx + min_idx)/24 +
self.data_manager.start_date.timetuple().tm_yday, 1)
return {
'reference_value': reference_value,
'fd_amplitude': round(fd_amplitude, 2),
'fd_min_doy': fd_min_doy,
'fd_data': fd_data
}
except Exception as e:
logger.error(f"Error calculating FD parameters: {str(e)}")
raise
def find_best_bessel_fit(self, A_timeseries, r_timeseries):
"""
Find the best-fit Bessel function for FD modeling
Args:
A_timeseries: Normalized FD amplitude data
r_timeseries: Normalized radial distance data
Returns:
tuple: (best_fit_curve, r_points, mse, amplitude)
"""
# Filter NaN values
mask = ~np.isnan(A_timeseries) & ~np.isnan(r_timeseries)
A_clean = A_timeseries[mask]
r_clean = r_timeseries[mask]
if len(A_clean) < 2:
raise ValueError("Not enough valid data points for fitting")
min_error = np.inf
best_min = -1
best_fit_bessel = None
# Try different minimum values to find best fit
for i in range(len(A_clean)):
current_min = np.min(A_clean[i:])
# Calculate Bessel function with current amplitude
lambda1 = jn_zeros(0, 1)[0]
A_bessel = -j0(lambda1 * r_clean) * (-current_min)
# Calculate error
error = mean_squared_error(A_clean, A_bessel)
# Update if better fit found
if error < min_error:
min_error = error
best_fit_bessel = A_bessel
best_min = current_min
# Generate smooth curve for final plot
R_res = 1000
r_points = np.concatenate([-np.flip(np.arange(R_res) / R_res),
np.arange(R_res) / R_res])
best_fit_curve = -j0(lambda1 * r_points) * (-best_min)
return best_fit_curve, r_points, min_error, best_min