-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathmain.py
64 lines (51 loc) · 1.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from mlProject import logger
from mlProject.pipeline.stage_01_data_ingestion import DataIngestionTrainingPipeline
from mlProject.pipeline.stage_02_data_validation import DataValidationTrainingPipeline
from mlProject.pipeline.stage_03_data_transformation import DataTransformationTrainingPipeline
from mlProject.pipeline.stage_04_model_training import ModelTrainingPipeline
from mlProject.pipeline.stage_05_model_evaluation import ModelEvaluationTrainingPipeline
STAGE_NAME = "Data Ingestion stage"
try:
logger.info(f"Running {STAGE_NAME} !")
pipeline = DataIngestionTrainingPipeline()
pipeline.main()
logger.info(f"{STAGE_NAME} completed !")
except Exception as e:
logger.error(e)
raise e
STAGE_NAME = "Data Validation stage"
try:
logger.info(f"Running {STAGE_NAME} !")
pipeline = DataValidationTrainingPipeline()
pipeline.main()
logger.info(f"{STAGE_NAME} completed !")
except Exception as e:
logger.error(e)
raise e
STAGE_NAME = "Data Transformation stage"
try:
logger.info(f"Running {STAGE_NAME} !")
pipeline = DataTransformationTrainingPipeline()
pipeline.main()
logger.info(f"{STAGE_NAME} completed !")
except Exception as e:
logger.error(e)
raise e
STAGE_NAME = "Model Training stage"
try:
logger.info(f"Running {STAGE_NAME} !")
pipeline = ModelTrainingPipeline()
pipeline.main()
logger.info(f"{STAGE_NAME} completed !")
except Exception as e:
logger.error(e)
raise e
STAGE_NAME = "Model Evaluation stage"
try:
logger.info(f"Running {STAGE_NAME} !")
pipeline = ModelEvaluationTrainingPipeline()
pipeline.main()
logger.info(f"{STAGE_NAME} completed !")
except Exception as e:
logger.error(e)
raise e