-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdec.py
224 lines (203 loc) · 6.91 KB
/
dec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
from PIL import Image
import numpy
from random import randint
import numpy
from tkinter import *
from tkinter import filedialog, Text, Tk
import os
import tkinter as tk
from PIL import Image, ImageTk
def upshift(a, index, n):
col = []
for j in range(len(a)):
col.append(a[j][index])
shiftCol = numpy.roll(col, -n)
for i in range(len(a)):
for j in range(len(a[0])):
if j == index:
a[i][j] = shiftCol[i]
def downshift(a, index, n):
col = []
for j in range(len(a)):
col.append(a[j][index])
shiftCol = numpy.roll(col, n)
for i in range(len(a)):
for j in range(len(a[0])):
if j == index:
a[i][j] = shiftCol[i]
def rotate180(n):
bits = "{0:b}".format(n)
return int(bits[::-1], 2)
def ModInv(a):
"""
Form equation 1 = inv(a)*a mod m. we find inv(a)
Inverse exist only if a and m 256 Coprime
"""
for i in range(2, 256):
if (a * i) % 256 == 1:
return i
return 1
def decryption(img, pix):
# Obtaining the RGB matrices
r = []
g = []
b = []
for i in range(img.size[0]):
r.append([])
g.append([])
b.append([])
for j in range(img.size[1]):
rgbPerPixel = pix[i, j]
r[i].append(rgbPerPixel[0])
g[i].append(rgbPerPixel[1])
b[i].append(rgbPerPixel[2])
m = img.size[0]
n = img.size[1]
# print(n)
# print(m)
Kr = []
Kc = []
a = eval(input("Enter value of Kr "))
Kr.extend(a)
a1 = eval(input("Enter value of Kc "))
Kc.extend(a1)
print('Enter value of ITER_MAX')
ITER_MAX = int(input())
# Subkey generation
def getKeyMatrix(key, message, keyMatrix):
k = 0
for i in range(len(message)):
for j in range(len(message)):
keyMatrix[i][j] = ord(key[k]) % 65
k += 1
def encrypt(messageVector, message, cipherMatrix, keyMatrix):
for i in range(len(message)):
for j in range(1):
cipherMatrix[i][j] = 0
for x in range(len(message)):
cipherMatrix[i][j] += (keyMatrix[i][x] * messageVector[x][j])
cipherMatrix[i][j] = cipherMatrix[i][j] % 26
def HillCipher(message, key):
keyMatrix = [[0] * (len(message)) for i in range(len(message))]
cipherMatrix = [[0] for i in range(len(message))]
getKeyMatrix(key, message, keyMatrix)
messageVector = [[0] for i in range(len(message))]
for i in range(len(message)):
messageVector[i][0] = ord(message[i]) % 65
encrypt(messageVector, message, cipherMatrix, keyMatrix)
CipherText = []
for i in range(len(message)):
CipherText.append(chr(cipherMatrix[i][0] + 65))
temp = []
for i in range(len(CipherText)):
temp.append(str(ord(CipherText[i]) - 65))
for i in range(len(temp)):
temp.append(temp[i][::-1])
arr = list(map(int, temp))
return arr
message = input("Enter the private key (3 lettered):")
key1 = HillCipher(message, "GYBNQKURP")
# key1=[15,14,7,51,71,7]
for i in range(3):
if key1[i] % 2 == 0:
key1[i] = key1[i] + 1
if 0 <= key1[i] <= 9:
key1[i + 3] = key1[i] * 10
inv1 = ModInv(key1[0])
inv2 = ModInv(key1[1])
inv3 = ModInv(key1[2])
for iterations in range(ITER_MAX):
# For each column
for j in range(n):
for i in range(m):
if j % 2 == 0:
r[i][j] = r[i][j] ^ Kr[i]
g[i][j] = g[i][j] ^ Kr[i]
b[i][j] = b[i][j] ^ Kr[i]
else:
r[i][j] = r[i][j] ^ rotate180(Kr[i])
g[i][j] = g[i][j] ^ rotate180(Kr[i])
b[i][j] = b[i][j] ^ rotate180(Kr[i])
# For each row
for i in range(m):
for j in range(n):
if i % 2 == 1:
r[i][j] = r[i][j] ^ Kc[j]
g[i][j] = g[i][j] ^ Kc[j]
b[i][j] = b[i][j] ^ Kc[j]
else:
r[i][j] = r[i][j] ^ rotate180(Kc[j])
g[i][j] = g[i][j] ^ rotate180(Kc[j])
b[i][j] = b[i][j] ^ rotate180(Kc[j])
# For each column
for i in range(n):
"""
rTotalSum = 0
gTotalSum = 0
bTotalSum = 0
for j in range(m):
rTotalSum += r[j][i]
gTotalSum += g[j][i]
bTotalSum += b[j][i]
rModulus = rTotalSum % 2
gModulus = gTotalSum % 2
bModulus = bTotalSum % 2
"""
# down circular shift
downshift(r, i, key1[0])
downshift(g, i, key1[1])
downshift(b, i, key1[2])
# For each row
for i in range(m):
"""
rTotalSum = sum(r[i])
gTotalSum = sum(g[i])
bTotalSum = sum(b[i])
rModulus = rTotalSum % 2
gModulus = gTotalSum % 2
bModulus = bTotalSum % 2
"""
# left circular shift
r[i] = numpy.roll(r[i], -key1[3])
g[i] = numpy.roll(g[i], -key1[4])
b[i] = numpy.roll(b[i], -key1[5])
for i in range(m):
for j in range(n):
r[i][j] = inv1 * (r[i][j] - key1[3]) % 256
g[i][j] = inv2 * (g[i][j] - key1[4]) % 256
b[i][j] = inv3 * (b[i][j] - key1[5]) % 256
for i in range(m):
for j in range(n):
pix[i, j] = (r[i][j], g[i][j], b[i][j])
if __name__ == '__main__':
def saveimg(img):
img.save('/Users/sparshkathed/Desktop/CSProject/decrypted.png')
print("Success")
exit(0)
def chooseFile():
fln = filedialog.askopenfilename(initialdir=os.getcwd(), title='Select Image',filetypes=(("JPG File", "*.jpg"), ("PNG file", "*.png"), ("All Files", "*.*")))
img = Image.open(fln)
pic = img.load()
decryption(img, pic)
saveimg(img)
exit()
root = Tk()
root.resizable(False, False)
dbg = root.cget('bg')
frm = Frame(root)
frm.pack(side=TOP, padx=15, pady=15)
text = Text(root, height=13, bg=dbg)
text.tag_configure("center", justify='center', font='Montserrat')
text.insert('1.0', "Image Decryption using Rubik's Cube Algorithm\n\n\n")
text.insert('3.0', 'Made by -\nSparsh Kathed\nGayathri Reddy Patlolla\n')
text.tag_add("center", "1.0", "end")
text.pack()
btn = Button(frm, text="Browse Image", command=chooseFile)
btn.configure(font='Montserrat')
btn.pack(side=tk.LEFT)
btn2 = Button(frm, text="Quit", command=lambda: exit())
btn2.configure(font='Montserrat')
btn2.pack(side=tk.LEFT, padx=10, ipadx=10)
root.title("Rubik's Cube Algorithm")
root.geometry("400x300")
root.mainloop()