-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_summarization.py
876 lines (757 loc) · 39.3 KB
/
run_summarization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
import torch
import logging
import os
import sys
import warnings
from dataclasses import dataclass, field
from typing import Optional
import datasets
import evaluate
import nltk # Here to have a nice missing dependency error message early on
import numpy as np
from datasets import load_dataset
from filelock import FileLock
import transformers
from transformers import (
AutoConfig,
AutoModelForSeq2SeqLM,
AutoTokenizer,
DataCollatorForSeq2Seq,
HfArgumentParser,
MBart50Tokenizer,
MBart50TokenizerFast,
MBartTokenizer,
MBartTokenizerFast,
Seq2SeqTrainer,
Seq2SeqTrainingArguments,
set_seed,
)
from transformers.generation import GenerationConfig
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, is_offline_mode, send_example_telemetry
from transformers.utils.versions import require_version
from peft import (
PrefixTuningConfig,
LoraConfig,
TaskType,
get_peft_model
)
from arguments import get_args
from config import RMTBartConfig
from utils import RMTDataCollatorForSeq2Seq
from model.modeling_bart import BartForConditionalGeneration
from model.summarization import BartForPubmed, BartRMTForPubmed
logger = logging.getLogger(__name__)
try:
nltk.data.find("tokenizers/punkt")
except (LookupError, OSError):
if is_offline_mode():
raise LookupError(
"Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
)
with FileLock(".lock") as lock:
nltk.download("punkt", quiet=True)
# A list of all multilingual tokenizer which require lang attribute.
MULTILINGUAL_TOKENIZERS = [MBartTokenizer, MBartTokenizerFast, MBart50Tokenizer, MBart50TokenizerFast]
summarization_name_mapping = {
"amazon_reviews_multi": ("review_body", "review_title"),
"big_patent": ("description", "abstract"),
"cnn_dailymail": ("article", "highlights"),
"orange_sum": ("text", "summary"),
"pn_summary": ("article", "summary"),
"psc": ("extract_text", "summary_text"),
"samsum": ("dialogue", "summary"),
"thaisum": ("body", "summary"),
"xglue": ("news_body", "news_title"),
"xsum": ("document", "summary"),
"wiki_summary": ("article", "highlights"),
"multi_news": ("document", "summary"),
# TODO:
"pubmed": ("sections", "abstract_text")
# Add arXiv
# Add BookSum
}
import wandb
wandb.init(project="RMT", entity='lkf1013606100')
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
model_args, data_args, training_args = get_args()
if model_args.use_auth_token is not None:
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_summarization", model_args, data_args)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
if data_args.source_prefix is None and model_args.model_name_or_path in [
"t5-small",
"t5-base",
"t5-large",
"t5-3b",
"t5-11b",
]:
logger.warning(
"You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with "
"`--source_prefix 'summarize: ' `"
)
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files this script will use the first column for the full texts and the second column for the
# summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
# TODO: todo from here
if data_args.dataset_name == "pubmed":
raw_datasets = load_dataset(
"json",
data_dir='datasets/pubmed-dataset-incremental',
)
elif data_args.dataset_name == "pubmed-incremental":
raw_datasets = load_dataset(
"json",
data_dir="datasets/pubmed-dataset-incremental",
)
if training_args.model_type == "BaseModel":
def dataset_reshape(example):
# copy to 4x length to do test
example['sections'] = example['sections'] * 10
# print(example['sections'])
example['sections'] = " ".join(example['sections'])
# print(example['sections'])
# raise NotImplementedError
example['abstract_text'] = " ".join(example['abstract_text'])
return example
for split in raw_datasets.keys():
raw_datasets[split] = raw_datasets[split].map(dataset_reshape)
elif data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
# token=model_args.token,
)
else:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
if data_args.test_file is not None:
data_files["test"] = data_args.test_file
extension = data_args.test_file.split(".")[-1]
raw_datasets = load_dataset(
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
# token=model_args.token,
)
# if data_args.max_n_segments <= len(raw_datasets['train']['sections'][0]):
# def truncate_max_n_segments(example):
# example['sections'] = example['sections'][:data_args.max_n_segments]
# example['abstract_text'] = example['abstract_text'][:data_args.max_n_segments]
# return example
# for split in raw_datasets.keys():
# raw_datasets[split] = raw_datasets[split].map(truncate_max_n_segments)
# else:
# # do dummy process to extend max input length
# def extend_max_n_segments(example):
# # num_segments_to_copy = max_n_segments - len(example['sections'])
# origin_segments_num = len(example['sections'])
# num_segments_to_copy = data_args.max_n_segments - origin_segments_num
# while num_segments_to_copy > 0 :
# segments_to_copy_temp = min(origin_segments_num, num_segments_to_copy)
# example['sections'] += example['sections'][:segments_to_copy_temp]
# example['abstract_text'] += example['abstract_text'][:segments_to_copy_temp]
# num_segments_to_copy -= segments_to_copy_temp
# return example
# for split in raw_datasets.keys():
# raw_datasets[split] = raw_datasets[split].map(extend_max_n_segments)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
# token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
if data_args.max_position_embeddings > 1024:
config.max_position_embeddings = data_args.max_position_embeddings
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
# token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
if training_args.model_type == "BaseModel":
model = BartForConditionalGeneration.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
# token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
elif training_args.model_type == "BaseModelWithRMT":
# load base model
base_model = AutoModelForSeq2SeqLM.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
# token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
# prepare rmt parameters
rmt_config = RMTBartConfig(
pre_seq_len=model_args.pre_seq_len if model_args.pre_seq_len is not None else 0,
post_seq_len=model_args.post_seq_len if model_args.post_seq_len is not None else 0,
freeze_model=training_args.freeze_model,
max_section_length=data_args.max_source_length,
max_source_length=data_args.max_source_length-model_args.pre_seq_len-model_args.post_seq_len-1,
max_target_length=data_args.max_target_length,
**config.to_dict()
)
data_args.max_source_length = data_args.max_source_length - model_args.pre_seq_len - model_args.post_seq_len-1
# load rmt model
if data_args.dataset_name == "pubmed" or data_args.dataset_name == "pubmed-incremental":
model = BartRMTForPubmed(
base_model=base_model,
rmt_config=rmt_config,
tokenizer_name_or_path=model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
)
else:
raise NotImplementedError
else:
raise NotImplementedError
print(model)
print(config)
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
if training_args.task_type == "Normal":
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
# For Multi-lingual summarization, we need to set the decoder_start_token_id.
if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
if isinstance(tokenizer, MBartTokenizer):
model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.lang]
else:
model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.lang)
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
elif training_args.task_type == "Segment":
embedding_size = model.model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.model.resize_token_embeddings(len(tokenizer))
# For Multi-lingual summarization, we need to set the decoder_start_token_id.
if model.rmt_config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
if isinstance(tokenizer, MBartTokenizer):
model.rmt_config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.lang]
else:
model.rmt_config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.lang)
if model.rmt_config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
# Only resize position embedding for baseline models Normal task
# We have implemented memory mechanism for long documents, so don't need to resize
if training_args.task_type == "Normal":
if (
hasattr(model.config, "max_position_embeddings")
and model.config.max_position_embeddings < data_args.max_source_length
):
if model_args.resize_position_embeddings is None:
logger.warning(
"Increasing the model's number of position embedding vectors from"
f" {model.config.max_position_embeddings} to {data_args.max_source_length}."
)
model.resize_position_embeddings(data_args.max_source_length)
elif model_args.resize_position_embeddings:
model.resize_position_embeddings(data_args.max_source_length)
else:
raise ValueError(
f"`--max_source_length` is set to {data_args.max_source_length}, but the model only has"
f" {model.config.max_position_embeddings} position encodings. Consider either reducing"
f" `--max_source_length` to {model.config.max_position_embeddings} or to automatically resize the"
" model's position encodings by passing `--resize_position_embeddings`."
)
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
column_names = raw_datasets["train"].column_names
elif training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
column_names = raw_datasets["validation"].column_names
elif training_args.do_predict:
if "test" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset")
column_names = raw_datasets["test"].column_names
else:
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
return
if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
assert (
data_args.lang is not None
), f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --lang argument"
tokenizer.src_lang = data_args.lang
tokenizer.tgt_lang = data_args.lang
# For multilingual translation models like mBART-50 and M2M100 we need to force the target language token
# as the first generated token. We ask the user to explicitly provide this as --forced_bos_token argument.
forced_bos_token_id = (
tokenizer.lang_code_to_id[data_args.forced_bos_token] if data_args.forced_bos_token is not None else None
)
model.config.forced_bos_token_id = forced_bos_token_id
# Get the column names for input/target.
dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
if data_args.text_column is None:
text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
else:
text_column = data_args.text_column
if text_column not in column_names:
raise ValueError(
f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
)
if data_args.summary_column is None:
summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
else:
summary_column = data_args.summary_column
if summary_column not in column_names:
raise ValueError(
f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
)
# Temporarily set max_target_length for training.
max_target_length = data_args.max_target_length
padding = "max_length" if data_args.pad_to_max_length else False
if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
logger.warning(
"label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
)
if training_args.task_type == "Normal":
def preprocess_function(examples):
# remove pairs where at least one record is None
inputs, targets = [], []
# inputs = examples['sections']
# targets = examples['abstract_text']
text_column = 'sections'
summary_column = 'abstract_text'
for i in range(len(examples[text_column])):
if examples[text_column][i] and examples[summary_column][i]:
# print(f'{examples[text_column][i]=}')
inputs.append(examples[text_column][i])
targets.append(examples[summary_column][i])
# print(f'{inputs=}')
inputs = [prefix + inp for inp in inputs]
model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)
# calculate avg token length
# tokens = 0
# for i in range(len(model_inputs['input_ids'])):
# tokens += len(model_inputs['input_ids'][i])
# avg_token_length = (tokens/(len(model_inputs['input_ids'])))
# print(f'{avg_token_length=}')
# raise NotImplementedError
# Tokenize targets with the `text_target` keyword argument
labels = tokenizer(text_target=targets, max_length=max_target_length, padding=padding, truncation=True)
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
# padding in the loss.
if padding == "max_length" and data_args.ignore_pad_token_for_loss:
labels["input_ids"] = [
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
]
model_inputs["labels"] = labels["input_ids"]
# print avg length of model_inputs['input_ids]
# print(f'{model_inputs=}')
return model_inputs
elif training_args.task_type == "Segment":
def preprocess_function(examples):
inputs = examples['sections']
targets = examples['abstract_text']
model_inputs = {
'input_ids': [],
'attention_mask': [],
'labels': [],
}
for sample_input, sample_targets in zip(inputs, targets):
section_input_ids = []
section_attention_mask = []
section_labels = []
for section, target in zip(sample_input, sample_targets):
sample_input_ids = tokenizer(
section,
max_length=data_args.max_source_length,
padding=padding,
truncation=True,
)
section_input_ids.append(sample_input_ids['input_ids'])
section_attention_mask.append(sample_input_ids['attention_mask'])
sample_targets = tokenizer(
target,
max_length=max_target_length,
padding=padding,
truncation=True,
)
sample_targets = sample_targets['input_ids']
if padding == "max_length" and data_args.ignore_pad_token_for_loss:
sample_targets[sample_targets == tokenizer.pad_token_id] = -100
section_labels.append(sample_targets)
model_inputs['input_ids'].append(section_input_ids)
model_inputs['attention_mask'].append(section_attention_mask)
model_inputs['labels'].append(section_labels)
return model_inputs
if training_args.do_train:
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
with training_args.main_process_first(desc="train dataset map pre-processing"):
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
if training_args.do_eval:
max_target_length = data_args.val_max_target_length
eval_dataset = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
with training_args.main_process_first(desc="validation dataset map pre-processing"):
eval_dataset = eval_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
if training_args.do_predict:
max_target_length = data_args.val_max_target_length
predict_dataset = raw_datasets["test"]
if data_args.max_predict_samples is not None:
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
predict_dataset = predict_dataset.select(range(max_predict_samples))
with training_args.main_process_first(desc="prediction dataset map pre-processing"):
predict_dataset = predict_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on prediction dataset",
)
# Data collator
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
if training_args.task_type == "Normal":
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=8 if training_args.fp16 else None,
)
elif training_args.task_type == "Segment":
data_collator = RMTDataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=8 if training_args.fp16 else None,
max_target_length=max_target_length,
)
# Metric
metric = evaluate.load("rouge")
def postprocess_text(preds, labels):
preds = [pred.strip() for pred in preds]
labels = [label.strip() for label in labels]
# rougeLSum expects newline after each sentence
preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
return preds, labels
if training_args.task_type == "Normal":
def compute_metrics(eval_preds):
preds, labels = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
# Replace -100s used for padding as we can't decode them
preds = np.where(preds != -100, preds, tokenizer.pad_token_id)
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# Some simple post-processing
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
# print(f'decoded_preds: {decoded_preds}')
# print(f'decoded_labels: {decoded_labels}')
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
result = {k: round(v * 100, 4) for k, v in result.items()}
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
result["gen_len"] = np.mean(prediction_lens)
return result
elif training_args.task_type == "Segment":
print(f'{training_args.rouge_type=}')
if training_args.rouge_type == "Accumulation":
# def compute_metrics(eval_preds):
# # preds is already combined by sections, but labels is still a list of list
# # Note: both preds and labels are list instead of tensor
# # labels: batch_size, section, seq_len
# preds, labels = eval_preds
# # print(f'{labels=}')
# # print(f'shape_0: {len(labels)}')
# # print(f'shape_1: {len(labels[0])}')
# # print(f'shape_2: {len(labels[0][0])}')
# # print(f'{preds=}')
# # print(f'shape_0: {len(preds)}')
# # print(f'shape_1: {len(preds[0])}')
# results = []
# for sections in labels:
# new_list = []
# for section in sections:
# new_list.extend(section)
# results.append(new_list)
# # print(f'{results=}')
# labels = np.array(results)
# # print(f'before: {labels=}')
# # print(f'before: {preds=}')
# if isinstance(preds, tuple):
# preds = preds[0]
# # Replace -100s used for padding as we can't decode them
# preds = np.where(preds != -100, preds, tokenizer.pad_token_id)
# decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
# labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
# decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# # Some simple post-processing
# decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
# # print(f'decoded_preds: {decoded_preds}')
# # print(f'decoded_labels: {decoded_labels}')
# result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
# result = {k: round(v * 100, 4) for k, v in result.items()}
# prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
# result["gen_len"] = np.mean(prediction_lens)
# return result
def compute_metrics(eval_preds):
# format: [batch_size, section, seq_len]
preds, labels = eval_preds
# calculate rouge for each segment
for index in range(preds.shape[1]):
pred = preds[:, index, :]
label = labels[:, index, :]
pred = np.where(pred != -100, pred, tokenizer.pad_token_id)
decoded_pred = tokenizer.batch_decode(pred, skip_special_tokens=True)
label = np.where(label != -100, label, tokenizer.pad_token_id)
decoded_label = tokenizer.batch_decode(label, skip_special_tokens=True)
# Some simple post-processing
decoded_pred, decoded_label = postprocess_text(decoded_pred, decoded_label)
result = metric.compute(predictions=decoded_pred, references=decoded_label, use_stemmer=True)
result = {k: round(v * 100, 4) for k, v in result.items()}
predicton_lens = [np.count_nonzero(p != tokenizer.pad_token_id) for p in pred]
result["gen_len"] = np.mean(predicton_lens)
print(f'-'*50)
print(f'result for {index+1} segment:')
print(result)
print(f'-'*50)
print(f'\n')
# calculate rouge for the whole document
preds = preds.reshape(-1, preds.shape[-1])
labels = labels.reshape(-1, labels.shape[-1])
if isinstance(preds, tuple):
preds = preds[0]
# Replace -100s used for padding as we can't decode them
preds = np.where(preds != -100, preds, tokenizer.pad_token_id)
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# Some simple post-processing
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
# print(f'decoded_preds: {decoded_preds}')
# print(f'decoded_labels: {decoded_labels}')
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
result = {k: round(v * 100, 4) for k, v in result.items()}
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
result["gen_len"] = np.mean(prediction_lens)
return result
elif training_args.rouge_type == "Final":
raise NotImplementedError
# Override the decoding parameters of Seq2SeqTrainer
training_args.generation_max_length = (
training_args.generation_max_length
if training_args.generation_max_length is not None
else data_args.val_max_target_length
)
training_args.generation_num_beams = (
data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
)
# training_args.generation_config = GenerationConfig(
# bos_token_id=0,
# decoder_start_token_id=2,
# early_stopping=True,
# eos_token_id=2,
# forced_bos_token_id=0,
# forced_eos_token_id=2,
# no_repeat_ngram_size=3,
# num_beams=4,
# pad_token_id=1,
# length_penalty=3.0,
# )
# print(f'{training_args.generation_config=}')
# Initialize our Trainer
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
if isinstance(eval_dataset, dict):
metrics = {}
for eval_ds_name, eval_ds in eval_dataset.items():
dataset_metrics = trainer.evaluate(eval_dataset=eval_ds, metric_key_prefix=f"eval_{eval_ds_name}")
metrics.update(dataset_metrics)
else:
metrics = trainer.evaluate(metric_key_prefix="eval")
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if training_args.do_predict:
logger.info("*** Predict ***")
predict_results = trainer.predict(predict_dataset, metric_key_prefix="predict")
metrics = predict_results.metrics
max_predict_samples = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
)
metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
trainer.log_metrics("predict", metrics)
trainer.save_metrics("predict", metrics)
if trainer.is_world_process_zero():
if training_args.predict_with_generate:
predictions = predict_results.predictions
predictions = np.where(predictions != -100, predictions, tokenizer.pad_token_id)
if training_args.task_type == "Segment":
predictions = predictions.reshape(-1, predictions.shape[-1])
predictions = tokenizer.batch_decode(
predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
predictions = [pred.strip() for pred in predictions]
output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt")
with open(output_prediction_file, "w") as writer:
writer.write("\n".join(predictions))
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "summarization"}
if data_args.dataset_name is not None:
kwargs["dataset_tags"] = data_args.dataset_name
if data_args.dataset_config_name is not None:
kwargs["dataset_args"] = data_args.dataset_config_name
kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
else:
kwargs["dataset"] = data_args.dataset_name
if data_args.lang is not None:
kwargs["language"] = data_args.lang
if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(**kwargs)
return results
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()