-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeepfool.py
227 lines (193 loc) · 8.66 KB
/
deepfool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from torchvision.utils import save_image
from torch.autograd import Variable
import torch as torch
import copy
import torch
import torchvision
import torch.optim as optim
import argparse
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
from cvae import LinearCVAE
from torchvision import datasets
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time
import os
from torch_dataset import DatasetFromCSV
import pandas as pd
import numpy as np
from models.efficientnet import EfficientNet
from func_train_val_test import train,valid
from albumentations.pytorch import ToTensorV2
import gc
from datetime import datetime
import nvidia_smi
import collections
from PIL import Image
from skimage.metrics import structural_similarity as ssim
import csv
def zero_gradients(x):
if isinstance(x, torch.Tensor):
if x.grad is not None:
x.grad.detach_()
x.grad.zero_()
elif isinstance(x, collections.abc.Iterable):
for elem in x:
zero_gradients(elem)
def clip_tensor(A, minv, maxv):
# 用于限制tensor的值在min和max之间。如果tensor中元素的值小于min,则设置该元素值为min,如果tensor中元素的值大于max,则设置该元素值为max。
# 这里用来把图片的值限制在0-255之间
A = torch.max(A, minv*torch.ones(A.shape))
A = torch.min(A, maxv*torch.ones(A.shape))
return A
def similarity(images, attacked_images,mean,std):
# images:(b,c,w,h),attacked_images:(c,w,h) or (b,c,w,h)
if images.shape != attacked_images.shape:
attacked_images = attacked_images[None, :, :, :]
similarities = np.zeros(images.shape[0])
data_min = np.divide(-mean, std)
data_max = np.divide(mean, std)
data_range = (data_max- data_min).max()
for i, (image, attacked_image) in enumerate(zip(images, attacked_images)):
similarities[i] = ssim(im1=attacked_image.permute(1,2,0).numpy(),
im2=image.permute(1,2,0).numpy(),
channel_axis=2,
data_range=data_range.item())
return similarities
def deepfool(image, model,num_classes=3, overshoot=0.02, max_iter=10):
data_mean = torch.tensor([0.7750, 0.5888, 0.7629])
data_std = torch.tensor([0.2129, 0.2971, 0.1774])
#输进模型的transform
in_transform = transforms.Compose([
transforms.Resize([224, 224]),
transforms.ToTensor(),
transforms.Normalize(mean=data_mean, std=data_std),
])
clip = lambda x: clip_tensor(x, 0, 255)
#输出图像的transform
out_transform = transforms.Compose([
transforms.Normalize(mean=[0, 0, 0], std=list(map(lambda x: 1 / x, data_std))),
transforms.Normalize(mean=list(map(lambda x: -x, data_mean)), std=[1, 1, 1]),
transforms.Lambda(clip),
transforms.ToPILImage(),
])
image = torch.squeeze(image) # squeeze to 3*224*224
f_image = model.forward(Variable(image[None, :, :, :], requires_grad=True)).data.numpy().flatten() #模型的输出
I = (np.array(f_image)).flatten().argsort()[::-1]
I = I[0:num_classes]
pred_label = I[0] #原图的预测标签
input_shape = image.numpy().shape # (C,W,H)
w = np.zeros(input_shape)
r_tot = np.zeros(input_shape)
pert_image = copy.deepcopy(image)
pert_image = Variable(pert_image[None, :, :, :], requires_grad=True)
pred = model(pert_image)
loop_i = 0
pert_label = pred_label
while pert_label == pred_label and loop_i < max_iter:
pert = np.inf
# 求出输出向量中预测标签对应的值对图片的梯度
pred[0, I[0]].backward(retain_graph=True)
grad_f_0 = pert_image.grad.data.numpy().copy()
for k in range(1,num_classes):
zero_gradients(pert_image)
# 求出输出向量的各个值对图片的梯度(除了预测的标签对应的值)
pred[0, I[k]].backward(retain_graph=True)
grad_f_k = pert_image.grad.data.numpy().copy()
grad_diff = grad_f_k - grad_f_0
f_diff=(pred[0, I[k]] - pred[0, I[0]]).data.numpy()
pert_k = abs(f_diff) / np.linalg.norm(grad_diff.flatten())
if pert_k < pert:
pert = pert_k
w = grad_diff
r_i = (pert + 1e-4) * w / np.linalg.norm(w)
r_tot = np.float32(r_tot + r_i) # r_tot是每次循环累积的
pert_image_tmp = image + (1 + overshoot) * torch.from_numpy(r_tot)
'''
pert_image_tmp = out_transform(pert_image_tmp[0]) # 第一维是batch
pert_image_tmp = Image.fromarray((np.array(pert_image_tmp)), 'RGB') # array to image format
pert_image_quantized = in_transform(pert_image_tmp)
pert_image = Variable(pert_image_quantized[None, :], requires_grad=True)
'''
pert_image_quantized = pert_image_tmp[0]
pert_image = Variable(pert_image_quantized[None, :], requires_grad=True)
pred = model(pert_image)
pert_label = np.argmax(pred.data.numpy().flatten())
loop_i += 1
r_tot = (1 + overshoot) * r_tot
return r_tot, loop_i, pred_label.item(), pert_label.item(), pert_image_quantized
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', type = int, default=1)
parser.add_argument('--n_class', type=int, default=3)
parser.add_argument('--overshoot', type=int, default=0.02, help='overshoot')
parser.add_argument('--max_iter', type=int, default=10, help='max_iter')
args = parser.parse_args()
batch_size = args.batch_size
n_class = args.n_class
overshoot = args.overshoot
max_iter = args.max_iter
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
#model = EfficientNet.from_name('efficientnet-b0', num_classes=n_class)
model = torchvision.models.resnet18(weights=None, num_classes=n_class)
model.load_state_dict(torch.load('./checkpoints/resnet18/weights/2023-02-13T03-25-38/best_24.pt'))
#model.to(device)
# Switch to evaluation mode
model.eval()
data_mean = torch.tensor([0.7750, 0.5888, 0.7629])
data_std = torch.tensor([0.2129, 0.2971, 0.1774])
in_transforms = transforms.Compose([
transforms.Resize([224, 224]),
transforms.ToTensor(),
#transforms.Normalize(mean=[0.0, 0.0, 0.0], std=[1.0, 1.0, 1.0]),
transforms.Normalize(mean=data_mean, std=data_std),
])
clip = lambda x: clip_tensor(x, 0, 255)
out_transform = transforms.Compose([
transforms.Normalize(mean=[0, 0, 0], std=list(map(lambda x: 1 / x, data_std))),
transforms.Normalize(mean=list(map(lambda x: -x, data_mean)), std=[1, 1, 1]),
transforms.Lambda(clip),
transforms.ToPILImage(),
])
img_path = "./data/medical_data/data_org_image"
csv_test_path = './data/medical_data/medical_csv/test_data.csv'
test_dataset = DatasetFromCSV(img_path=img_path, csv_path=csv_test_path, transforms=in_transforms)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
img_names = test_dataset.img_names
fool_count = 0
loop_sum = 0
simi_sum = 0
sim = []
save_csv_path = './data/medical_data/medical_csv/attacked_data_label_resnet18.csv'
with open(save_csv_path,mode='w', newline='') as f:
csv_head = ['image_name','label']
writer = csv.DictWriter(f, fieldnames=csv_head)
writer.writeheader()
for idx, (image, label) in enumerate(test_loader):
#image = image.to(device)
r, loop_i, label_orig, label_pert, pert_image = deepfool(image, model)
with open(save_csv_path, mode='a', newline='') as f:
csv_write = csv.writer(f)
data_row = [str(img_names[idx])+'pert.png', label_pert]
csv_write.writerow(data_row)
simi = similarity(image.detach(), pert_image.detach(),data_mean,data_std)
print(f'similarities: {simi}')
sim.append(simi)
simi_sum += simi.sum()
pert_image = out_transform(pert_image)
pert_file = './data/medical_data/data_pert_image_resnet18/'+str(img_names[idx])+'pert.png'
Image.fromarray((np.array(pert_image)), 'RGB').save(pert_file)
loop_sum += loop_i
if label_pert != label_orig:
fool_count = fool_count + 1
print(idx)
print(f'predicted label:{label_orig}------attacked label:{label_pert}')
print(f'loop number:{loop_i}')
fool_ratio = fool_count/len(test_dataset)
mean_loop = loop_sum/len(test_dataset)
mean_similarity = simi_sum/len(test_dataset)
print(f'fool ratio:{fool_ratio}')
print(f'mean loop number:{mean_loop}')
print(f'mean similarity:{mean_similarity}')