-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlightning_model.py
40 lines (36 loc) · 1.2 KB
/
lightning_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import lightning as L
import numpy as np
import torch
import torch.nn.functional as F
import torchmetrics
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader, Dataset
import torchvision
class LightningModel(L.LightningModule):
def __init__(self,
model=None,
batch_size = None,
epochs = None,
workers = None,
optimizer = None,
norm_weight_decay = None,
momentum = None,
lr = None,
weight_decay = None,
lr_step_size = None,
num_classes = None):
super().__init__()
self.model=None,
self.batch_size = None,
self.epochs = None,
self.workers = None,
self.optimizer = None,
self.norm_weight_decay = None,
self.momentum = None,
self.lr = None,
self.weight_decay = None,
self.lr_step_size = None
self.num_classes = 91
if model is None:
self.model = torchvision.models.detection.retinanet_resnet50_fpn(pretrained=True)