|
| 1 | +import pickle |
| 2 | +import shutil |
| 3 | + |
| 4 | +import lightning.pytorch as pl |
| 5 | +from lightning.pytorch.callbacks import EarlyStopping |
| 6 | +from lightning.pytorch.loggers import TensorBoardLogger |
| 7 | +import numpy as np |
| 8 | +import pandas as pd |
| 9 | +import pytest |
| 10 | + |
| 11 | +from pytorch_forecasting.data.timeseries import TimeSeriesDataSet |
| 12 | +from pytorch_forecasting.metrics import MAE, SMAPE, QuantileLoss |
| 13 | +from pytorch_forecasting.models import TiDEModel |
| 14 | +from pytorch_forecasting.tests.test_all_estimators import _integration |
| 15 | +from pytorch_forecasting.utils._dependencies import _get_installed_packages |
| 16 | + |
| 17 | + |
| 18 | +def _tide_integration(dataloaders, tmp_path, trainer_kwargs=None, **kwargs): |
| 19 | + """TiDE specific wrapper around the common integration test function. |
| 20 | +
|
| 21 | + Args: |
| 22 | + dataloaders: Dictionary of dataloaders for train, val, and test. |
| 23 | + tmp_path: Temporary path for saving the model. |
| 24 | + trainer_kwargs: Additional arguments for the Trainer. |
| 25 | + **kwargs: Additional arguments for the TiDEModel. |
| 26 | +
|
| 27 | + Returns: |
| 28 | + Predictions from the trained model. |
| 29 | + """ |
| 30 | + from pytorch_forecasting.tests._data_scenarios import data_with_covariates |
| 31 | + |
| 32 | + df = data_with_covariates() |
| 33 | + |
| 34 | + tide_kwargs = { |
| 35 | + "temporal_decoder_hidden": 8, |
| 36 | + "temporal_width_future": 4, |
| 37 | + "dropout": 0.1, |
| 38 | + } |
| 39 | + |
| 40 | + tide_kwargs.update(kwargs) |
| 41 | + train_dataset = dataloaders["train"].dataset |
| 42 | + |
| 43 | + data_loader_kwargs = { |
| 44 | + "target": train_dataset.target, |
| 45 | + "group_ids": train_dataset.group_ids, |
| 46 | + "time_varying_known_reals": train_dataset.time_varying_known_reals, |
| 47 | + "time_varying_unknown_reals": train_dataset.time_varying_unknown_reals, |
| 48 | + "static_categoricals": train_dataset.static_categoricals, |
| 49 | + "static_reals": train_dataset.static_reals, |
| 50 | + "add_relative_time_idx": train_dataset.add_relative_time_idx, |
| 51 | + } |
| 52 | + return _integration( |
| 53 | + TiDEModel, |
| 54 | + df, |
| 55 | + tmp_path, |
| 56 | + data_loader_kwargs=data_loader_kwargs, |
| 57 | + trainer_kwargs=trainer_kwargs, |
| 58 | + **tide_kwargs, |
| 59 | + ) |
| 60 | + |
| 61 | + |
| 62 | +@pytest.mark.parametrize( |
| 63 | + "kwargs", |
| 64 | + [ |
| 65 | + {}, |
| 66 | + {"loss": SMAPE()}, |
| 67 | + {"temporal_decoder_hidden": 16}, |
| 68 | + {"dropout": 0.2, "use_layer_norm": True}, |
| 69 | + ], |
| 70 | +) |
| 71 | +def test_integration(dataloaders_with_covariates, tmp_path, kwargs): |
| 72 | + _tide_integration(dataloaders_with_covariates, tmp_path, **kwargs) |
| 73 | + |
| 74 | + |
| 75 | +@pytest.mark.parametrize( |
| 76 | + "kwargs", |
| 77 | + [ |
| 78 | + {}, |
| 79 | + ], |
| 80 | +) |
| 81 | +def test_multi_target_integration(dataloaders_multi_target, tmp_path, kwargs): |
| 82 | + _tide_integration(dataloaders_multi_target, tmp_path, **kwargs) |
| 83 | + |
| 84 | + |
| 85 | +@pytest.fixture |
| 86 | +def model(dataloaders_with_covariates): |
| 87 | + dataset = dataloaders_with_covariates["train"].dataset |
| 88 | + net = TiDEModel.from_dataset( |
| 89 | + dataset, |
| 90 | + hidden_size=16, |
| 91 | + dropout=0.1, |
| 92 | + temporal_width_future=4, |
| 93 | + ) |
| 94 | + return net |
| 95 | + |
| 96 | + |
| 97 | +def test_pickle(model): |
| 98 | + pkl = pickle.dumps(model) |
| 99 | + pickle.loads(pkl) # noqa: S301 |
| 100 | + |
| 101 | + |
| 102 | +@pytest.mark.skipif( |
| 103 | + "matplotlib" not in _get_installed_packages(), |
| 104 | + reason="skip test if required package matplotlib not installed", |
| 105 | +) |
| 106 | +def test_prediction_visualization(model, dataloaders_with_covariates): |
| 107 | + raw_predictions = model.predict( |
| 108 | + dataloaders_with_covariates["val"], |
| 109 | + mode="raw", |
| 110 | + return_x=True, |
| 111 | + fast_dev_run=True, |
| 112 | + ) |
| 113 | + model.plot_prediction(raw_predictions.x, raw_predictions.output, idx=0) |
| 114 | + |
| 115 | + |
| 116 | +def test_prediction_with_kwargs(model, dataloaders_with_covariates): |
| 117 | + # Tests prediction works with different keyword arguments |
| 118 | + model.predict( |
| 119 | + dataloaders_with_covariates["val"], return_index=True, fast_dev_run=True |
| 120 | + ) |
| 121 | + model.predict( |
| 122 | + dataloaders_with_covariates["val"], |
| 123 | + return_x=True, |
| 124 | + return_y=True, |
| 125 | + fast_dev_run=True, |
| 126 | + ) |
| 127 | + |
| 128 | + |
| 129 | +def test_no_exogenous_variable(): |
| 130 | + data = pd.DataFrame( |
| 131 | + { |
| 132 | + "target": np.ones(1600), |
| 133 | + "group_id": np.repeat(np.arange(16), 100), |
| 134 | + "time_idx": np.tile(np.arange(100), 16), |
| 135 | + } |
| 136 | + ) |
| 137 | + training_dataset = TimeSeriesDataSet( |
| 138 | + data=data, |
| 139 | + time_idx="time_idx", |
| 140 | + target="target", |
| 141 | + group_ids=["group_id"], |
| 142 | + max_encoder_length=10, |
| 143 | + max_prediction_length=5, |
| 144 | + time_varying_unknown_reals=["target"], |
| 145 | + time_varying_known_reals=[], |
| 146 | + ) |
| 147 | + validation_dataset = TimeSeriesDataSet.from_dataset( |
| 148 | + training_dataset, data, stop_randomization=True, predict=True |
| 149 | + ) |
| 150 | + training_data_loader = training_dataset.to_dataloader( |
| 151 | + train=True, batch_size=8, num_workers=0 |
| 152 | + ) |
| 153 | + validation_data_loader = validation_dataset.to_dataloader( |
| 154 | + train=False, batch_size=8, num_workers=0 |
| 155 | + ) |
| 156 | + forecaster = TiDEModel.from_dataset( |
| 157 | + training_dataset, |
| 158 | + ) |
| 159 | + from lightning.pytorch import Trainer |
| 160 | + |
| 161 | + trainer = Trainer( |
| 162 | + max_epochs=2, |
| 163 | + limit_train_batches=8, |
| 164 | + limit_val_batches=8, |
| 165 | + ) |
| 166 | + trainer.fit( |
| 167 | + forecaster, |
| 168 | + train_dataloaders=training_data_loader, |
| 169 | + val_dataloaders=validation_data_loader, |
| 170 | + ) |
| 171 | + best_model_path = trainer.checkpoint_callback.best_model_path |
| 172 | + best_model = TiDEModel.load_from_checkpoint(best_model_path) |
| 173 | + best_model.predict( |
| 174 | + validation_data_loader, |
| 175 | + fast_dev_run=True, |
| 176 | + return_x=True, |
| 177 | + return_y=True, |
| 178 | + return_index=True, |
| 179 | + ) |
0 commit comments