|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | +# pylint: disable=missing-docstring |
| 3 | +"""Tests for the entropy() function.""" |
| 4 | +import numpy |
| 5 | + |
| 6 | +from make_test_ref import SEED |
| 7 | + |
| 8 | + |
| 9 | +class Pmf: |
| 10 | + """PMF class. |
| 11 | +
|
| 12 | + Parameters |
| 13 | + ---------- |
| 14 | + alpha : float |
| 15 | + Concentration parameter. |
| 16 | + k : int |
| 17 | + Alphabet size. |
| 18 | + zero : float or None |
| 19 | + Fraction of bins with exactly zero probability. |
| 20 | +
|
| 21 | + """ |
| 22 | + |
| 23 | + def __init__(self, alpha=0.1, k=10000, zero=0): |
| 24 | + numpy.random.seed(SEED) |
| 25 | + self.alpha = alpha |
| 26 | + self.k = k |
| 27 | + self.zero = zero |
| 28 | + self._pk = self._generate_pk(self.alpha, self.k, self.zero) |
| 29 | + self._entropy = None |
| 30 | + |
| 31 | + @property |
| 32 | + def pk(self): |
| 33 | + return self._pk |
| 34 | + |
| 35 | + @staticmethod |
| 36 | + def _generate_pk(alpha, k, zero=0): |
| 37 | + """Return a Dirichlet sample.""" |
| 38 | + pk = numpy.random.dirichlet([alpha] * k) |
| 39 | + if zero: |
| 40 | + n_zero = numpy.random.binomial(k, zero) |
| 41 | + pk[:n_zero] = 0 |
| 42 | + pk /= pk.sum() |
| 43 | + pk = pk[n_zero:] |
| 44 | + return pk |
| 45 | + |
| 46 | + def randomize(self): |
| 47 | + """Reset pk to a random pmf.""" |
| 48 | + self._pk = self._generate_pk(self.alpha, self.k, self.zero) |
| 49 | + self._entropy = None |
| 50 | + return self |
| 51 | + |
| 52 | + @staticmethod |
| 53 | + def entropy_from_pmf(a): |
| 54 | + pk = numpy.asarray(a) |
| 55 | + pk = pk[pk > 0] |
| 56 | + return -numpy.sum(pk * numpy.log(pk)) |
| 57 | + |
| 58 | + @property |
| 59 | + def entropy(self): |
| 60 | + """Entropy for PMF""" |
| 61 | + if self._entropy is None: |
| 62 | + self._entropy = self.entropy_from_pmf(self.pk) |
| 63 | + return self._entropy |
| 64 | + |
| 65 | + |
| 66 | +class Counts: |
| 67 | + def __init__(self, n=100, pmf=None, **kwargs): |
| 68 | + """ |
| 69 | + Counts class. |
| 70 | +
|
| 71 | + Parameters |
| 72 | + ---------- |
| 73 | + n : int |
| 74 | + Number of samples. |
| 75 | + pmf : Pmf object, optional |
| 76 | + Alphabet size. |
| 77 | +
|
| 78 | + """ |
| 79 | + numpy.random.seed(SEED) |
| 80 | + self.n = n |
| 81 | + |
| 82 | + if pmf is not None: |
| 83 | + self.pmf = pmf |
| 84 | + else: |
| 85 | + self.pmf = Pmf(**kwargs) |
| 86 | + |
| 87 | + self._nk = self._generate_nk(self.n, self.pmf.pk) |
| 88 | + self._entropy = None |
| 89 | + |
| 90 | + @property |
| 91 | + def nk(self): |
| 92 | + return self._nk |
| 93 | + |
| 94 | + @staticmethod |
| 95 | + def _generate_nk(n, pk): |
| 96 | + """Return a Multinomial sample.""" |
| 97 | + return numpy.random.multinomial(n, pk) |
| 98 | + |
| 99 | + def randomize(self): |
| 100 | + self.nk = self._generate_nk(self.n, self.pmf.pk) |
| 101 | + self._entropy = None |
| 102 | + return self |
| 103 | + |
| 104 | + @staticmethod |
| 105 | + def entropy_from_counts(a, estimator, **kwargs): |
| 106 | + nk = numpy.asarray(a) |
| 107 | + estimator.fit(nk, **kwargs) |
| 108 | + return estimator.estimate_ |
| 109 | + |
| 110 | + def entropy(self, estimator, **kwargs): |
| 111 | + """Entropy estimate from counts using `estimator`.""" |
| 112 | + if self._entropy is None: |
| 113 | + self._entropy = self.entropy_from_counts(self.nk, estimator, |
| 114 | + **kwargs) |
| 115 | + return self._entropy |
0 commit comments