-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathGAMI_IntercodeReconciliationFunctions.R
739 lines (679 loc) · 26.6 KB
/
GAMI_IntercodeReconciliationFunctions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
# GAMI Reconciling Differences in Coder Responses
# ARSiders ([email protected])
# Spring 2020
# =============== DATA ON CODING
# ===== number of coders and unique coder names
coders <-as.vector(unique(data[,2], incomparables = FALSE))
relcoders <- setdiff(coders,unrelcoders)
# ===== unique article labels
articles <-as.vector(unique(data[,1], incomparables = FALSE))
# ===== articles with more than one coder
cot <- as.data.frame(table(data$Article.ID))
multiples <- as.vector(cot[cot$Freq>1,1])
# ===== Single-coded articles
singla <- function(data,unrelcoders){
coders <- as.vector(unique(data[,2], incomparables = FALSE))
relcoders <- setdiff(coders,unrelcoders)
# articles by single coder
ct <- as.data.frame(table(data$Article.ID))
sing <- as.vector(ct[ct$Freq==1,1])
print(c("Number single-coded articles",length(sing)))
# cycle through articles with just one coder
relart.sing.inc <- vector()
relart.sing.exc <- vector()
unrel.sing.inc <- vector()
unrel.sing.exc <- vector()
for (i in 1:(length(sing))){
# subset each article
d <- data[data$Article.ID==sing[i],]
# check if coder is reliable coder
if (d[1,2] %in% relcoders){
if ((d[1,4] == TRUE) & (d[1,7] == TRUE)){
relart.sing.inc <- c(relart.sing.inc,d$Article.ID)
}
else
relart.sing.exc <- c(relart.sing.exc, d$Article.ID)
}
else if (d[1,2] %in% unrelcoders){
if ((d[1,4] == TRUE) & (d[1,7] == TRUE)){
unrel.sing.inc <- c(unrel.sing.inc,d$Article.ID)
}
else
unrel.sing.exc <- c(unrel.sing.exc, d$Article.ID)
}
}
lengths<-(length(relart.sing.inc)+length(relart.sing.exc)+length(unrel.sing.inc)+length(unrel.sing.exc))
print(c("Checking addition",lengths))
print(c("Single reliable included",length(relart.sing.inc)))
print(c("Single reliable excluded",length(relart.sing.exc)))
print(c("Single unreliable included",length(unrel.sing.inc)))
print(c("Single unreliable excluded",length(unrel.sing.exc)))
# no return: just provides counts
}
# ===== Single-coded articles by UNreliable coder who says INC+SUFF
singlun <- function(data,unrelcoders){
# articles by single coder
ct <- as.data.frame(table(data$Article.ID))
sing <- as.vector(ct[ct$Freq==1,1])
# cycle through articles with just one coder
unrel.sing.inc <- vector()
unrel.sing.exc <- vector()
for (i in 1:(length(sing))){
# subset each article
d <- data[data$Article.ID==sing[i],]
# check if coder is reliable coder
if (d[1,2] %in% unrelcoders){
if ((d[1,4] == TRUE) & (d[1,7] == TRUE)){
unrel.sing.inc <- c(unrel.sing.inc,d$Article.ID)
}
else
unrel.sing.exc <- c(unrel.sing.exc, d$Article.ID)
}
}
unrel.sing<-c(unrel.sing.exc,unrel.sing.inc)
singlundb <- data[data$Article.ID %in% unrel.sing,]
return(singlundb)
}
# ===== two unreliable coders
twounrelcoded <- function(data,unrelcoders) {
unrelv <- vector()
# find article IDs for articles with more than one coder
ct <- as.data.frame(table(data$Article.ID))
mults <- as.vector(ct[ct$Freq>1,1])
# cycle through aticles with more than one coder
for (i in 1:(length(mults))){
# subset each article
i=4
d <- data[data$Article.ID==mults[i],]
# if all coders are unreliable
if (all(d$User.Name %in% unrelcoders)) {
unrelv <-c(unrelv,d[1,1])
}
}
unrelartsdb <- data[data$Article.ID %in% unrelv,]
return(unrelartsdb)
}
# =============== IDENTIFY PAPERS THAT NEED HUMAN REVIEW
# ===== IDENTIFY ARTICLES BY TWO UNRELIABLE CODERS: AT LEAST ONE SAYS INCLUDE & SUFFICIENT
dualunrel <- function(data,unrelcoders) {
unrelartv <- vector()
# find article IDs for articles with more than one coder
ct <- as.data.frame(table(data$Article.ID))
mults <- as.vector(ct[ct$Freq>1,1])
# cycle through aticles with more than one coder
for (i in 1:(length(mults))){
# subset each article
d <- data[data$Article.ID==mults[i],]
# if all coders are unreliable
if (all(d$User.Name %in% unrelcoders)) {
# if at least one says include and sufficient
if (any(d[,4]==TRUE) & (any(d[,7]==TRUE))){
unrelartv <- c(unrelartv,d[1,1])
}
}
}
unrelartd <- data[data$Article.ID %in% unrelartv,]
return(unrelartd)
}
# ===== IDENTIFY ARTICLES WITH NO IMPLEMENTATION RESPONSE
#
# blank_imp <- function(data){
# # at least one reliable coder says INC&SUFF
# coders <- as.vector(unique(data[,2], incomparables = FALSE))
# relcoders <- setdiff(coders,unrelcoders)
# blank_impsv <-vector()
# # loop though each article
# for (j in 1:length(articles)){
# d <- data[data$Article.ID==articles[j],]
# if (any(d[,2] %in% relcoders)){
# if (any(d[,4]==TRUE) & (any(d[,7]==TRUE)) & (all(d[,35]==""))){
# blank_impsv <-c(blank_impsv,articles[j])
# }
# }
# }
# blank.articles <- data[data$Article.ID %in% blank_impsv,]
# return(blank.articles)
# }
#
#
# # ===== Combine and run the code to identify articles in need of human review
# arts2rev <-function(data,unrelcoders){
# twounrel <-dualunrel(data,unrelcoders)
# #noimplement <-blank_imp(data)
# singlun <-singlun(data,unrelcoders)
# arts2review <-rbind(twounrel,singlun)
# return(arts2review)
# }
# ===== single reliable coder
singre <- function(data,relcoders,sing){
# cycle through articles with just one coder
relsing <- vector()
for (i in 1:(length(sing))){
# subset each article
sd <- data[data$Article.ID==sing[i],]
# check if coder is reliable coder
if (sd[1,2] %in% relcoders){
relsing<-c(relsing,sd[1,1])
}
}
return(relsing)
}
# ======= RETURN ARTICLES ONCE REVIEWED
# remove articles already reviewed to return dataframe of articles that still need review
reconcileupdate <- function(data,unrelcoders,reccode){
reccode<-cleandata(reccode)
colnames(reccode)<-colnames(data)
# articles flagged as needing human review
articles2review<-arts2rev(data,unrelcoders)
flagged.arts <- as.vector(unique(articles2review$Article.ID, incomparables = FALSE))
# articles already reviewed by human
recd.arts <- as.vector(unique(reccode$Article.ID, incomparables = FALSE))
print(c("Articles already reviewed",length(recd.arts)))
# articles that still need human review
arts.stillreview <- setdiff(flagged.arts,recd.arts)
print(c("Articles still needing review",length(arts.stillreview)))
# database just of those that still need review
articles4review <- articles2review[articles2review$Article.ID %in% arts.stillreview,]
return(articles4review)
}
# replace reviewed data in overall data frame to reconcile
reconciledata <- function(data,unrelcoders,reccode){
#reccode<-cleandata(reccode)
#data<-cleandata(data)
print(c("Ncol reccode",ncol(reccode)))
colnames(reccode)<-colnames(data)
print(c("Dim of data",dim(data)))
# articles flagged as needing human review
articles2review<-arts2rev(data,unrelcoders)
flagged.arts <- as.vector(unique(articles2review$Article.ID, incomparables = FALSE))
# articles already reviewed by human
recd.arts <- as.vector(unique(reccode$Article.ID, incomparables = FALSE))
print(c("Articles already reviewed",length(recd.arts)))
# articles that still need human review
arts.stillreview <- setdiff(flagged.arts,recd.arts)
# database just of those that still need review
articles4review <- articles2review[articles2review$Article.ID %in% arts.stillreview,]
# replace data with reviewed articles
# remove data for reviewed articles
a<-which(data$Article.ID %in% recd.arts)
d<- data[-a,]
# add on reviewed article information
d<-rbind(d,reccode)
print(c("Should equal dim data at end",dim(d)))
return(d)
}
# =============== RECONCILE CODER DIFFERENCES
reconciliation <-function(data,unrelcoders,reccode){
data <- cleandata(data) #clean data - changes names, adds 66th column
reccode <- cleandata(reccode)
colnames(reccode) <- colnames(data) # make colnames match
data <-reconciledata(data,unrelcoders,reccode) # combine reconciled codes into data
data <- cleandata(data)
articles <-as.vector(unique(data[,1], incomparables = FALSE))
ct <- as.data.frame(table(data$Article.ID))
mults <- as.vector(ct[ct$Freq>1,1])
sing <- as.vector(ct[ct$Freq==1,1])
shelldf <- as.data.frame(matrix(ncol=66))
colnames(shelldf) <- colnames(data)
# deciding between cases 1,3
singlesre<-singre(data,relcoders,sing)
singlesunre<-setdiff(sing,singlesre)
a<-length(singlesre)
b<-length(singlesunre)
print(c("Number of articles coded",length(articles)))
print(c("How many coded by multiple people",length(mults)))
print(c("How many coded by one person",length(sing)))
# deciding between Cases 2,4,5
# loop through articles with more than 1 coder
case2<-vector()
case4<-vector()
case5<-vector()
for (h in 1:length(mults)){
rd <- data[data$Article.ID==mults[h],]
# check if coders reliable
if (all(rd[,2] %in% relcoders)){
case4<-c(case4,rd[1,1])
} else if (all(rd[,2] %in% unrelcoders)){
case2<-c(case2,rd[1,1])
} else {
case5<-c(case5,rd[1,1])
}
}
# creates a vector of article IDs for each case
# articles already reviewed by human
recd.arts <- as.vector(unique(reccode$Article.ID, incomparables = FALSE))
# which are the same
reviewedunrels <-intersect(case2,recd.arts)
# articles coded by two unreliable reviewers, a third human says include
# remove these from case 2
case2<-case2[!case2 %in% reviewedunrels]
# add them to case 5
case5<-c(case5,reviewedunrels)
print(c("Case1: One unreliable coder (not reconciled)",length(singlesunre)))
print(c("Case2: Two unreliable coders (not yet reviewed) (not reconciled)",length(case2)))
print(c("Case3: One reliable coder (recorded)",length(singlesre)))
print(c("Case4: Two reliable coders (reconciled)",length(case4)))
print(c("Case5: Two coders mix re/unrel or reviewed unrel (reconciled)",length(case5)))
summing<-(a+length(case2)+b+length(case4)+length(case5))
print(c("Sum check",summing))
print(c("Num articles",length(articles)))
# proper<-(a+length(case4)+length(case5))
# case 1: single unreliable coder - treat as uncoded; do not include
# case 2: two unreliable coders: treat as uncoded; do not include
# case 3: single reliable coder: take answers into reconciled table
print("Recording single codes")
single.reliable.coder <-sing.rel.cod(shelldf,data,singlesre)
# case 4: two reliable coders: reconcile
print("Reconciling multiple codes")
mult.reliable.coder <- multreliables(shelldf,data,case4,case5)
# for the moment, case 4 and 5 are both treated the same
# case 5: two coders, one reliable one unreliable: reconcile weighting reliable
# mult.unrel.coders <- multunrels(shelldf,data,case5)
#combine results in shell dataframe
shelldf<-rbind(single.reliable.coder,mult.reliable.coder) #,mult.unrel.coders)
print(c("Dim Shelldf",dim(shelldf)))
# remove rows of NA
shelldf2<-shelldf[-(which(is.na(shelldf[,1]))),]
print(c("Dim Shelldf2",dim(shelldf2)))
print(c("Num cases 3+4+5 should equal csv rows",proper))
print(c("Number csv rows",nrow(shelldf2)))
return(shelldf2)
}
# ===== CASE 3: SINGLE RELIABLE CODER - WRITE INTO SHELL DF
sing.rel.cod <- function(shelldf,data,sing){
# SUBSET data for single codes
k <- (nrow(shelldf) + 1)
sd <- data[data$Article.ID %in% sing,]
for (i in 1:nrow(sd)) {
shelldf[k,1] <- as.character(sd[i,1])
shelldf[k,2] <- as.character(sd[i,2])
shelldf[k,3] <- as.character(sd[i,3])
shelldf[k,4] <- as.logical(sd[i,4])
shelldf[k,5] <- as.character(sd[i,5])
shelldf[k,6] <- as.character(sd[i,6])
shelldf[k,7] <- as.logical(sd[i,7])
shelldf[k,8] <- as.character(sd[i,8])
shelldf[k,9] <- as.character(sd[i,9])
shelldf[k,10] <- as.character(sd[i,10])
shelldf[k,11] <- as.character(sd[i,11])
shelldf[k,12] <- as.logical(sd[i,12])
shelldf[k,13] <- as.logical(sd[i,13])
shelldf[k,14] <- as.character(sd[i,14])
shelldf[k,15] <- as.character(sd[i,15])
shelldf[k,16] <- as.character(sd[i,16])
shelldf[k,17] <- as.character(sd[i,17])
shelldf[k,18] <- as.character(sd[i,18])
shelldf[k,19] <- as.character(sd[i,19])
shelldf[k,20] <- as.character(sd[i,20])
shelldf[k,21] <- as.character(sd[i,21])
shelldf[k,22] <- as.character(sd[i,22])
shelldf[k,23] <- as.character(sd[i,23])
shelldf[k,24] <- as.character(sd[i,24])
shelldf[k,25] <- as.character(sd[i,25])
shelldf[k,26] <- as.character(sd[i,26])
shelldf[k,27] <- as.character(sd[i,27])
shelldf[k,28] <- as.character(sd[i,28])
shelldf[k,29] <- as.character(sd[i,29])
shelldf[k,30] <- as.character(sd[i,30])
shelldf[k,31] <- as.character(sd[i,31])
shelldf[k,32] <- as.character(sd[i,32])
shelldf[k,33] <- as.character(sd[i,33])
shelldf[k,34] <- as.character(sd[i,34])
shelldf[k,35] <- as.factor(sd[i,35])
shelldf[k,36] <- as.character(sd[i,36])
shelldf[k,37] <- as.logical(sd[i,37])
shelldf[k,38] <- as.character(sd[i,38])
shelldf[k,39] <- as.character(sd[i,39])
shelldf[k,40] <- as.character(sd[i,40])
shelldf[k,41] <- as.character(sd[i,41])
shelldf[k,42] <- as.character(sd[i,42])
shelldf[k,43] <- as.character(sd[i,43])
shelldf[k,44] <- as.character(sd[i,44])
shelldf[k,45] <- as.logical(sd[i,45])
shelldf[k,46] <- as.character(sd[i,46])
shelldf[k,47] <- as.logical(sd[i,47])
shelldf[k,48] <- as.character(sd[i,48])
shelldf[k,49] <- as.character(sd[i,49])
shelldf[k,50] <- as.character(sd[i,50])
shelldf[k,51] <- as.character(sd[i,51])
shelldf[k,52] <- as.character(sd[i,52])
shelldf[k,53] <- as.logical(sd[i,53])
shelldf[k,54] <- as.character(sd[i,54])
shelldf[k,55] <- as.character(sd[i,55])
shelldf[k,56] <- as.character(sd[i,56])
shelldf[k,57] <- as.character(sd[i,57])
shelldf[k,58] <- as.character(sd[i,58])
shelldf[k,59] <- as.character(sd[i,59])
shelldf[k,60] <- as.character(sd[i,60])
shelldf[k,61] <- as.character(sd[i,61])
shelldf[k,62] <- as.character(sd[i,62])
shelldf[k,63] <- as.character(sd[i,63])
shelldf[k,64] <- as.character(sd[i,64])
shelldf[k,65] <- as.character(sd[i,65])
shelldf[k,66] <- as.numeric(sd[i,66])
k <- k+1
}
return(shelldf)
}
# ===== CASE 4: MULTIPLE RELIABLE CODERS - RECONCILE INTO SHELLDF
multreliables <-function(shelldf,data,case4,case5){
case4<-c(case4,case5)
j <- (nrow(shelldf) + 1)
# subset data for multiple reliable coders
md <- data[data$Article.ID %in% case4,]
# cycle through the articles
for (m in 1:nrow(md)){
d <- md[md$Article.ID==case4[m],]
# set article citation info
shelldf[j,1] <- as.character(d[1,1]) # article ID
shelldf[j,63] <- as.character(d[1,63]) # title
shelldf[j,64] <- as.character(d[1,64]) # journal
shelldf[j,65] <- as.character(d[1,65]) # authors
# combine coder names
shelldf[j,2] <- paste(d[,2], collapse = "|||")
# combine summaries
shelldf[j,6] <- paste(d[,6], collapse = "|||")
# Include -- if either one is TRUE, take TRUE
d[,4] <- as.logical(d[,4])
if (isTRUE(any(d[,4]))){
shelldf[j,4] <-"TRUE"
}
else shelldf[j,4]<-"FALSE"
# Include -- if either one is TRUE, take TRUE
d[,7] <- as.logical(d[,7])
if (isTRUE(any(d[,7]))){
shelldf[j,7] <-"TRUE"
}
else shelldf[j,7]<-"FALSE"
# only continue if at least one says Include & Sufficient
if (isTRUE(any(d[,4])) & isTRUE(any(d[,7]))){
# geography -- if agree, take that answer, else take both
if (dim(table(d[,8])) == 1){
shelldf[j,8] <- d[1,8]
}
else {
d[,8] <- as.character(d[,8])
s8 <- unlist(strsplit(d[,8],split='|||', fixed=TRUE))
s8 <- unique(s8, incomparables = FALSE)
shelldf[j,8] <- paste(s8, collapse="|||")
}
# geography country -- if agree, take that answer, else take both
if (dim(table(d[,9])) == 1){
shelldf[j,9] <- d[1,9]
}
else {
d[,9] <- as.character(d[,9])
s9 <-unlist(strsplit(d[,9],split='|||', fixed=TRUE))
s9 <- unique(s9, incomparables = FALSE)
shelldf[j,9] <- paste(s9, collapse="|||")
}
# sector -- if agree, take that answer else take both
if (dim(table(d[,10])) == 1){
shelldf[j,10] <- d[1,10]
}
else {
d[,10] <- as.character(d[,10])
s8 <-unlist(strsplit(d[,10],split='|||', fixed=TRUE))
s8 <- unique(s8, incomparables = FALSE)
shelldf[j,10] <- paste(s8, collapse="|||")
}
# cross cutting topics -- if agree, take that answer, else take both
if (dim(table(d[,11])) == 1){
shelldf[j,11] <- d[1,11]
}
else {
d[,11] <- as.character(d[,11])
s11 <-unlist(strsplit(d[,11],split='|||', fixed=TRUE))
s11 <- unique(s11, incomparables = FALSE)
shelldf[j,11] <- paste(s11, collapse="|||")
}
# indigenous knowledge -- if either one is TRUE, take TRUE
d[,12] <- as.logical(d[,12])
if (isTRUE(any(d[,12]))){
shelldf[j,12] <-"TRUE"
}
else shelldf[j,12]<-"FALSE"
# local knowledge -- if either one is TRUE, take TRUE
d[,13] <- as.logical(d[,12])
if (isTRUE(any(d[,13]))){
shelldf[j,13]<-"TRUE"
}
else shelldf[j,13]<-"FALSE"
# actors / institutions-- if agree, take that answer, else all
if (dim(table(d[,14])) == 1){
shelldf[j,14] <- d[1,14]
}
else {
d[,14] <- as.character(d[,14])
s8 <-unlist(strsplit(d[,14],split='|||', fixed=TRUE))
s8 <- unique(s8, incomparables = FALSE)
shelldf[j,14] <- paste(s8, collapse="|||")
}
# actors, other -- take all
shelldf[j,15] <- paste(d[,15], collapse="|||")
# actors, quotes -- take all
shelldf[j,16] <- paste(d[,16], collapse="|||")
# equity planning -- if same, take that one, else all
if (dim(table(d[,17])) == 1){
shelldf[j,17] <- d[1,17]
}
else {
d[,17] <- as.character(d[,17])
s17 <-unlist(strsplit(d[,17],split='|||', fixed=TRUE))
s17 <- unique(s17, incomparables = FALSE)
shelldf[j,17] <- paste(s17, collapse="|||")
}
# equity planning other -- take all
shelldf[j,18] <- paste(d[,18], collapse="|||")
# equity quotes - take all
shelldf[j,19] <- paste(d[,19], collapse="|||")
# equity targeting -- if same, take that one, else all
if (dim(table(d[,20])) == 1){
shelldf[j,20] <- d[1,20]
}
else {
d[,20] <- as.character(d[,20])
s20 <-unlist(strsplit(d[,20],split='|||', fixed=TRUE))
s20 <- unique(s20, incomparables = FALSE)
shelldf[j,20] <- paste(s20, collapse="|||")
}
# equity targeting other -- take all
shelldf[j,21] <- paste(d[,21], collapse="|||")
# equity targeting quotes - take all
shelldf[j,22] <- paste(d[,22], collapse="|||")
# type of response -- if agree, take that answer, else take all
if (dim(table(d[,23])) == 1){
shelldf[j,23] <- d[1,23]
}
else {
d[,23] <- as.character(d[,23])
s23 <- unlist(strsplit(d[,23],split='|||', fixed=TRUE))
s23 <- unique(s23, incomparables = FALSE)
shelldf[j,23] <- paste(s23, collapse="|||")
}
# response quotes - take all
shelldf[j,24] <- paste(d[,24], collapse="|||")
# implementation tools - take all
shelldf[j,25] <- paste(d[,25], collapse="|||")
# implementation quotes - take all
shelldf[j,26] <- paste(d[,26], collapse="|||")
# hazards -- if agree, take that answer, else take all
if (dim(table(d[,27])) == 1){
shelldf[j,27] <- d[1,27]
}
else {
d[,27] <- as.character(d[,27])
s27 <- unlist(strsplit(d[,27],split='|||', fixed=TRUE))
s27 <- unique(s27, incomparables = FALSE)
shelldf[j,27] <- paste(s27, collapse="|||")
}
# hazards other - take all
shelldf[j,28] <- paste(d[,28], collapse = "|||")
# hazards quotes - take all
shelldf[j,29] <- paste(d[,29], collapse = "|||")
# exposure - take all
if (dim(table(d[,30])) == 1) {
shelldf[j,30] <- d[1,30]
}
else {
d[,30] <- as.character(d[,30])
s30 <- unlist(strsplit(d[,30],split='|||', fixed=TRUE))
s302 <- unique(s30, incomparables = FALSE)
shelldf[j,30] <- paste(s302, collapse = "|||")
}
# exposure other - take all
shelldf[j,31] <- paste(d[,31], collapse = "|||")
# exposure quotes - take all
shelldf[j,32] <- paste(d[,32], collapse = "|||")
# links to risk - take all
shelldf[j,33] <- paste(d[,33], collapse = "|||")
# links to risk quotes - take all
shelldf[j,34] <- paste(d[,34], collapse = "|||")
# implementation quotes - take all
shelldf[j,36] <- paste(d[,36], collapse = "|||")
# adaptation finance -- if either one is TRUE, take TRUE
d[,37] <- as.logical(d[,37])
if (isTRUE(any(d[,37]))){
shelldf[j,37]<-"TRUE"
}
else shelldf[j,37]<-"FALSE"
# finance costs -- if agree, take that answer, else take both
if (dim(table(d[,38])) == 1){
shelldf[j,38] <- d[1,38]
}
else {
d[,38] <- as.character(d[,38])
s38 <- unlist(strsplit(d[,38],split='|||', fixed=TRUE))
s38 <- unique(s38, incomparables = FALSE)
shelldf[j,38] <- paste(s38, collapse="|||")
}
# depth
shelldf[j,39] <- paste(d[,39], collapse = "|||")
# depth quotes -- take all
shelldf[j,40] <- paste(d[,40], collapse = "|||")
# scope
shelldf[j,41] <- paste(d[,41], collapse = "|||")
# scope quotes -- take all
shelldf[j,42] <- paste(d[,42], collapse = "|||")
# speed
shelldf[j,43] <- paste(d[,43], collapse = "|||")
# speed quotes -- take all
shelldf[j,44] <- paste(d[,44], collapse = "|||")
# reduced risk -- if either one is TRUE, take TRUE
d[,45] <- as.logical(d[,45])
if (isTRUE(any(d[,45]))){
shelldf[j,45]<-"TRUE"
}
else shelldf[j,45]<-"FALSE"
# reduced risk quotes -- take all
shelldf[j,46] <- paste(d[,46], collapse = "|||")
# indicators -- if either one is TRUE, take TRUE
d[,47] <- as.logical(d[,47])
if (isTRUE(any(d[,47]))){
shelldf[j,47] <- "TRUE"
}
else shelldf[j,47] <- "FALSE"
# indicators quotes -- take all
shelldf[j,48] <- paste(d[,48], collapse = "|||")
# maladaptation
shelldf[j,49] <- paste(d[,49], collapse = "|||")
# maladpatation quotes -- take all
shelldf[j,50] <- paste(d[,50], collapse = "|||")
# co benefits
shelldf[j,51] <- paste(d[,51], collapse = "|||")
# co benefits -- take all
shelldf[j,52] <- paste(d[,52], collapse = "|||")
# limits -- if either says true, take true
d[,53] <- as.logical(d[,53])
if (isTRUE(any(d[,53]))){
shelldf[j,53] <- "TRUE"
}
else shelldf[j,53] <- "FALSE"
# limits describe -- take all
shelldf[j,54] <- paste(d[,54], collapse = "|||")
# hard, soft -- if same, take that, else take all
shelldf[j,55] <- paste(d[,55], collapse = "|||")
# approach limits -- if same, take that, else take all
if (dim(table(d[,56])) == 1){
shelldf[j,56] <- d[1,56]
}
else {
d[,56] <- as.character(d[,56])
s56 <- unlist(strsplit(d[,56],split='|||', fixed=TRUE))
s56 <- unique(s56, incomparables = FALSE)
shelldf[j,56] <- paste(s56, collapse="|||")
}
# approach limits quotes -- take all
shelldf[j,57] <- paste(d[,57], collapse = "|||")
# methods -- take all
shelldf[j,58] <- paste(d[,58], collapse = "|||")
# coherence -- take all
shelldf[j,59] <- paste(d[,59], collapse = "|||")
# adequacy -- take all
shelldf[j,60] <- paste(d[,60], collapse = "|||")
# relevance -- take all
shelldf[j,61] <- paste(d[,61], collapse = "|||")
# user note -- take all
shelldf[j,62] <- paste(d[,62], collapse = "|||")
# implementation
shelldf <- Process_Imp(data,d, shelldf, j)
}
j <- j + 1
}
return(shelldf)
}
# ===== Code to process the Implementation Scores
Process_Imp <- function(data,d, shelldf, j) {
# replace blanks and 0s with NAs
d[,35] <- as.factor(d[,35])
valid <- levels(data[,35])
invalid <- valid[1]
d[which(d[,35] %in% invalid),35] <- NA
d[which(d[,66]==0),66] <- NA
# if all coders tag same implementation stage, take that answer
if (dim(table(d[,35])) == 1) {
shelldf[j,66] <- d[1,66]
shelldf[j,35] <- d[1,35]
}
# if all entries are NA
else if (all(is.na(d[,66]))){
shelldf[j,66] <- d[1,66]
shelldf[j,35] <- d[1,35]
}
# if coders do not agree, reconcile
else {
# how far apart entries are
g <- (max(d[,66],na.rm=TRUE) - min(d[,66],na.rm=TRUE))
# if codes one apart, take the higher
if (g==1) {
ma <- max(d[,66], na.rm=TRUE)
shelldf[j,35] <- d[ma,35]
}
else {
# if conflict farther apart, take average (round up)
av <- mean(d[,66], na.rm=TRUE)
av <- ceiling(av) # round up
if (av == 1){
shelldf[j,66] <- 1
shelldf[j,35] <- "Vulnerability assessment and/or early planning"
}
else if (av==2){
shelldf[j,66] <- 2
shelldf[j,35] <- "Adaptation planning & early implementation"
}
else if (av==3){
shelldf[j,66] <- 3
shelldf[j,35] <- "Implementation expanding"
}
else if (av==4){
shelldf[j,66] <- 4
shelldf[j,35] <- "Implementation widespread"
}
else if (av==5){
shelldf[j,66] <- 5
shelldf[j,35] <- " Evidence of risk reduction associated with adaptation efforts"
}
}
}
return(shelldf)
}