-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun-ODE-2D.py
130 lines (89 loc) · 3.73 KB
/
run-ODE-2D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import numpy as np
import random
import time
import fire
import torch
from torch.optim import Adam
from torch.optim.lr_scheduler import ReduceLROnPlateau
from infras.randutils import *
from infras.misc import *
from infras.utils import *
from infras.configs import *
from core.inf_fid_ode_2d import InfFidNet2D
from data.dataset2D import MFData2D
from data.domain_configs import EXP_DOMAIN_CONFIGS
from tqdm.auto import tqdm, trange
torch.set_default_tensor_type(torch.DoubleTensor)
def evaluate(**kwargs):
exp_config = ExpConfigODE()
exp_config.parse(kwargs)
device = torch.device(exp_config.device)
domain = exp_config.domain
dataset = MFData2D(
domain=domain,
fid_min = EXP_DOMAIN_CONFIGS[domain]['fid_min'],
fid_max = EXP_DOMAIN_CONFIGS[domain]['fid_max'],
t_min = EXP_DOMAIN_CONFIGS[domain]['t_min'],
t_max = EXP_DOMAIN_CONFIGS[domain]['t_max'],
fid_list_tr = EXP_DOMAIN_CONFIGS[domain]['fid_list_tr'],
fid_list_te = EXP_DOMAIN_CONFIGS[domain]['fid_list_te'],
ns_list_tr = EXP_DOMAIN_CONFIGS[domain]['ns_list_tr'],
ns_list_te = EXP_DOMAIN_CONFIGS[domain]['ns_list_te'],
)
exp_path = os.path.join(
domain,
'InfFidODE',
'base'+str(exp_config.h_dim),
'fold'+str(exp_config.fold),
)
res_path = os.path.join('__res__', exp_path)
log_path = os.path.join('__log__', exp_path)
create_path(res_path)
create_path(log_path)
logger = get_logger(logpath=os.path.join(log_path, 'exp.log'), displaying=exp_config.verbose)
logger.info(exp_config)
perform_meters = PerformMeters(save_path=res_path, logger=logger)
Xtr_list, ytr_list, t_list_tr = dataset.get_data(fold=exp_config.fold, train=True, device=device)
Xte_list, yte_list, t_list_te = dataset.get_data(fold=exp_config.fold, train=False, device=device)
inf_fid_model = InfFidNet2D(
in_dim = dataset.input_dim,
h_dim = exp_config.h_dim,
s_dim = dataset.fid_max,
int_steps = exp_config.int_steps,
solver = exp_config.solver,
dataset = dataset,
g_width = exp_config.g_width,
g_depth = exp_config.g_depth,
f_width = exp_config.f_width,
f_depth = exp_config.f_depth,
A_width=exp_config.A_width,
A_depth=exp_config.A_depth,
interp = EXP_DOMAIN_CONFIGS[domain]['interp']
).to(device)
max_epochs = exp_config.max_epochs
optimizer = Adam(inf_fid_model.parameters(), lr=exp_config.max_lr)
scheduler = ReduceLROnPlateau(optimizer, 'min', min_lr=exp_config.min_lr)
for ie in trange(max_epochs+1):
loss = inf_fid_model.eval_loss(Xtr_list, ytr_list, t_list_tr)
if ie % exp_config.test_interval == 0:
rmse_list_tr, adjust_rmse = inf_fid_model.eval_rmse(
Xtr_list, ytr_list, t_list_tr, return_adjust=True)
rmse_list_te = inf_fid_model.eval_rmse(Xte_list, yte_list, t_list_te)
mae_list_tr = inf_fid_model.eval_mae(Xtr_list, ytr_list, t_list_tr)
mae_list_te = inf_fid_model.eval_mae(Xte_list, yte_list, t_list_te)
pred_list = inf_fid_model.eval_pred(Xte_list, t_list_te)
perform_meters.update(
ie, loss.item(),
rmse_list_tr,
rmse_list_te,
mae_list_tr,
mae_list_te,
pred_list
)
scheduler.step(adjust_rmse)
#
optimizer.zero_grad()
loss.backward()
optimizer.step()
if __name__=='__main__':
fire.Fire(evaluate)