-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
37 lines (30 loc) · 1.19 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import pandas as pd
import numpy as np
def load_stock_prices(data_path: str = 'data/Index2018.csv'):
df_data = pd.read_csv(data_path)
df_data.date = pd.to_datetime(df_data.date, dayfirst=True)
df_data.set_index('date', inplace=True)
# Set the frequency to be business days
df_data = df_data.asfreq('b')
# Fill missing data
df_data.spx = df_data.spx.fillna(method='ffill')
df_data.ftse = df_data.ftse.fillna(method='ffill')
df_data.dax = df_data.dax.fillna(method='ffill')
df_data.nikkei = df_data.nikkei.fillna(method='ffill')
return df_data
def load_sp500_data():
df_data = load_stock_prices()
return df_data[['spx']].copy()
def load_random_walk_data():
df_rw = pd.read_csv('data/RandWalk.csv')
df_rw.date = pd.to_datetime(df_rw.date, dayfirst=True)
df_rw.set_index('date', inplace=True)
df_rw = df_rw.asfreq('b')
return df_rw
def generate_white_noise():
df_data = load_stock_prices()
mean_ = df_data.spx.mean()
wn = np.random.normal(loc=df_data.spx.mean(), scale=50, size=len(df_data))
with pd.option_context('mode.chained_assignment', None):
df_data['wn'] = wn
return df_data[['wn']].copy()