-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhparam.py
88 lines (81 loc) · 3.24 KB
/
hparam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import tensorflow as tf
from collections import namedtuple
import os
# Model Parameters
tf.flags.DEFINE_string('word_embed_path','glove.txt','path to word embedding')
tf.flags.DEFINE_string('vocab_path','rg_vocab.txt','vocab path')
tf.flags.DEFINE_integer('vocab_size',18423,'vocab size')
tf.flags.DEFINE_integer("word_dim", 300, "Dimensionality of the embeddings")
tf.flags.DEFINE_integer('word_rnn_num_units', 600, 'Num of rnn cells')
tf.flags.DEFINE_integer('context_rnn_num_units', 1200, 'Num of rnn cells')
tf.flags.DEFINE_integer('decoder_rnn_num_units', 1200, 'Num of rnn cells')
tf.flags.DEFINE_integer('beam_width', 10, 'Num of beam_width')
tf.flags.DEFINE_float('keep_prob', 1.0, 'the keep prob of rnn state')
tf.flags.DEFINE_string('rnn_cell_type', 'GRU', 'the cell type in rnn')
# Pre-trained parameters
tf.flags.DEFINE_integer('max_sentence_length', 25,'the max sentence length')
tf.flags.DEFINE_integer('max_context_length', 20,'the max context length')
# Training Parameters,
# train example 131438 4000 step /epoch
# valid example 3907
# test example 3894
tf.flags.DEFINE_integer("batch_size", 32, "Batch size during training")
tf.flags.DEFINE_integer('num_epochs', 10, 'the number of epochs')
tf.flags.DEFINE_integer('eval_step', 2000, 'eval every n steps')
tf.flags.DEFINE_boolean('shuffle_batch',True, 'whether shuffle the train examples when batch')
tf.flags.DEFINE_float("learning_rate", 0.001, "Learning rate")
tf.flags.DEFINE_integer('summary_save_steps',200,'steps to save summary')
FLAGS = tf.flags.FLAGS
HParams = namedtuple(
"HParams",
[ "eval_step",
"batch_size",
"word_dim",
"learning_rate",
'vocab_size',
"num_epochs",
'word_rnn_num_units',
'context_rnn_num_units',
'decoder_rnn_num_units',
'beam_width',
'keep_prob',
'rnn_cell_type',
'max_sentence_length',
'max_context_length',
'shuffle_batch',
'summary_save_steps',
'clip_norm',
'lambda_l2',
'word_embed_path',
'vocab_path'
])
def create_hparam():
return HParams(
eval_step=FLAGS.eval_step,
batch_size=FLAGS.batch_size,
learning_rate=FLAGS.learning_rate,
word_dim=FLAGS.word_dim,
vocab_size=FLAGS.vocab_size,
num_epochs=FLAGS.num_epochs,
word_rnn_num_units=FLAGS.word_rnn_num_units,
context_rnn_num_units=FLAGS.context_rnn_num_units,
decoder_rnn_num_units=FLAGS.decoder_rnn_num_units,
beam_width=FLAGS.beam_width,
keep_prob=FLAGS.keep_prob,
rnn_cell_type=FLAGS.rnn_cell_type,
max_sentence_length=FLAGS.max_sentence_length,
max_context_length=FLAGS.max_context_length,
shuffle_batch=FLAGS.shuffle_batch,
summary_save_steps=FLAGS.summary_save_steps,
lambda_l2 = 0.001,
clip_norm = 10,
word_embed_path = FLAGS.word_embed_path,
vocab_path = FLAGS.vocab_path
)
def write_hparams_to_file(hp, model_dir):
with open(os.path.join(os.path.abspath(model_dir),'hyper_parameters.txt'), 'w') as f:
f.write('batch_size: {}\n'.format(hp.batch_size))
f.write('learning_rate: {}\n'.format(hp.learning_rate))
f.write('num_epochs: {}\n'.format(hp.num_epochs))
f.write('word_rnn_num_units: {}\n'.format(hp.word_rnn_num_units))
f.write('keep_prob: {}\n'.format(hp.keep_prob))