forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsudoku_solver.py
220 lines (180 loc) · 7.38 KB
/
sudoku_solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
"""
Please do not modify this file! It is published at https://norvig.com/sudoku.html with
only minimal changes to work with modern versions of Python. If you have improvements,
please make them in a separate file.
"""
import random
import time
def cross(items_a, items_b):
"Cross product of elements in A and elements in B."
return [a + b for a in items_a for b in items_b]
digits = "123456789"
rows = "ABCDEFGHI"
cols = digits
squares = cross(rows, cols)
unitlist = (
[cross(rows, c) for c in cols]
+ [cross(r, cols) for r in rows]
+ [cross(rs, cs) for rs in ("ABC", "DEF", "GHI") for cs in ("123", "456", "789")]
)
units = {s: [u for u in unitlist if s in u] for s in squares}
peers = {s: set(sum(units[s], [])) - {s} for s in squares} # noqa: RUF017
def test():
"A set of unit tests."
assert len(squares) == 81
assert len(unitlist) == 27
assert all(len(units[s]) == 3 for s in squares)
assert all(len(peers[s]) == 20 for s in squares)
assert units["C2"] == [
["A2", "B2", "C2", "D2", "E2", "F2", "G2", "H2", "I2"],
["C1", "C2", "C3", "C4", "C5", "C6", "C7", "C8", "C9"],
["A1", "A2", "A3", "B1", "B2", "B3", "C1", "C2", "C3"],
]
# fmt: off
assert peers["C2"] == {
"A2", "B2", "D2", "E2", "F2", "G2", "H2", "I2", "C1", "C3",
"C4", "C5", "C6", "C7", "C8", "C9", "A1", "A3", "B1", "B3"
}
# fmt: on
print("All tests pass.")
def parse_grid(grid):
"""Convert grid to a dict of possible values, {square: digits}, or
return False if a contradiction is detected."""
## To start, every square can be any digit; then assign values from the grid.
values = {s: digits for s in squares}
for s, d in grid_values(grid).items():
if d in digits and not assign(values, s, d):
return False ## (Fail if we can't assign d to square s.)
return values
def grid_values(grid):
"Convert grid into a dict of {square: char} with '0' or '.' for empties."
chars = [c for c in grid if c in digits or c in "0."]
assert len(chars) == 81
return dict(zip(squares, chars))
def assign(values, s, d):
"""Eliminate all the other values (except d) from values[s] and propagate.
Return values, except return False if a contradiction is detected."""
other_values = values[s].replace(d, "")
if all(eliminate(values, s, d2) for d2 in other_values):
return values
else:
return False
def eliminate(values, s, d):
"""Eliminate d from values[s]; propagate when values or places <= 2.
Return values, except return False if a contradiction is detected."""
if d not in values[s]:
return values ## Already eliminated
values[s] = values[s].replace(d, "")
## (1) If a square s is reduced to one value d2, then eliminate d2 from the peers.
if len(values[s]) == 0:
return False ## Contradiction: removed last value
elif len(values[s]) == 1:
d2 = values[s]
if not all(eliminate(values, s2, d2) for s2 in peers[s]):
return False
## (2) If a unit u is reduced to only one place for a value d, then put it there.
for u in units[s]:
dplaces = [s for s in u if d in values[s]]
if len(dplaces) == 0:
return False ## Contradiction: no place for this value
# d can only be in one place in unit; assign it there
elif len(dplaces) == 1 and not assign(values, dplaces[0], d):
return False
return values
def display(values):
"Display these values as a 2-D grid."
width = 1 + max(len(values[s]) for s in squares)
line = "+".join(["-" * (width * 3)] * 3)
for r in rows:
print(
"".join(
values[r + c].center(width) + ("|" if c in "36" else "") for c in cols
)
)
if r in "CF":
print(line)
print()
def solve(grid):
return search(parse_grid(grid))
def some(seq):
"Return some element of seq that is true."
for e in seq:
if e:
return e
return False
def search(values):
"Using depth-first search and propagation, try all possible values."
if values is False:
return False ## Failed earlier
if all(len(values[s]) == 1 for s in squares):
return values ## Solved!
## Chose the unfilled square s with the fewest possibilities
n, s = min((len(values[s]), s) for s in squares if len(values[s]) > 1)
return some(search(assign(values.copy(), s, d)) for d in values[s])
def solve_all(grids, name="", showif=0.0):
"""Attempt to solve a sequence of grids. Report results.
When showif is a number of seconds, display puzzles that take longer.
When showif is None, don't display any puzzles."""
def time_solve(grid):
start = time.monotonic()
values = solve(grid)
t = time.monotonic() - start
## Display puzzles that take long enough
if showif is not None and t > showif:
display(grid_values(grid))
if values:
display(values)
print(f"({t:.5f} seconds)\n")
return (t, solved(values))
times, results = zip(*[time_solve(grid) for grid in grids])
if (n := len(grids)) > 1:
print(
"Solved %d of %d %s puzzles (avg %.2f secs (%d Hz), max %.2f secs)." # noqa: UP031
% (sum(results), n, name, sum(times) / n, n / sum(times), max(times))
)
def solved(values):
"A puzzle is solved if each unit is a permutation of the digits 1 to 9."
def unitsolved(unit):
return {values[s] for s in unit} == set(digits)
return values is not False and all(unitsolved(unit) for unit in unitlist)
def from_file(filename, sep="\n"):
"Parse a file into a list of strings, separated by sep."
return open(filename).read().strip().split(sep)
def random_puzzle(assignments=17):
"""Make a random puzzle with N or more assignments. Restart on contradictions.
Note the resulting puzzle is not guaranteed to be solvable, but empirically
about 99.8% of them are solvable. Some have multiple solutions."""
values = {s: digits for s in squares}
for s in shuffled(squares):
if not assign(values, s, random.choice(values[s])):
break
ds = [values[s] for s in squares if len(values[s]) == 1]
if len(ds) >= assignments and len(set(ds)) >= 8:
return "".join(values[s] if len(values[s]) == 1 else "." for s in squares)
return random_puzzle(assignments) ## Give up and make a new puzzle
def shuffled(seq):
"Return a randomly shuffled copy of the input sequence."
seq = list(seq)
random.shuffle(seq)
return seq
grid1 = (
"003020600900305001001806400008102900700000008006708200002609500800203009005010300"
)
grid2 = (
"4.....8.5.3..........7......2.....6.....8.4......1.......6.3.7.5..2.....1.4......"
)
hard1 = (
".....6....59.....82....8....45........3........6..3.54...325..6.................."
)
if __name__ == "__main__":
test()
# solve_all(from_file("easy50.txt", '========'), "easy", None)
# solve_all(from_file("top95.txt"), "hard", None)
# solve_all(from_file("hardest.txt"), "hardest", None)
solve_all([random_puzzle() for _ in range(99)], "random", 100.0)
for puzzle in (grid1, grid2): # , hard1): # Takes 22 sec to solve on my M1 Mac.
display(parse_grid(puzzle))
start = time.monotonic()
solve(puzzle)
t = time.monotonic() - start
print(f"Solved: {t:.5f} sec")