-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
44 lines (36 loc) · 1.14 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from CNN.test import unit_test
from CNN.model import Model
from CNN.layers.conv import Conv2D
from CNN.layers.pooling import MaxPooling2D
from CNN.utils.loss import CategoricalCrossEntropy
from CNN.layers.core import (
Dropout,
Flattening,
Dense
)
from data_preprocess import get_data
TEST = False
def test():
unit_test()
def main():
model = Model()
model.add(Conv2D(32, (3, 3), 'relu', 'he_normal', 'zeros', 1))
model.add(MaxPooling2D((2, 2), 2))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), 'relu', 'glorot_uniform', 'zeros', 1))
model.add(MaxPooling2D((2, 2), 2))
model.add(Dropout(0.25))
model.add(Conv2D(128, (3, 3), 'relu', 'glorot_uniform', 'zeros', 1))
model.add(Dropout(0.4))
model.add(Flattening())
model.add(Dense(128, 'relu', 'glorot_uniform', 'zeros'))
model.add(Dropout(0.3))
model.add(Dense(2, 'softmax', 'glorot_uniform', 'zeros'))
model.set_loss(CategoricalCrossEntropy)
data = get_data()
model.train(data, 32, 100, 'adam', lr=1e-4, beta1=0.9, beta2=0.999, epsilon=1e-7)
if __name__ == '__main__':
if TEST:
test()
else:
main()