-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMakefile
94 lines (61 loc) · 2.02 KB
/
Makefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
## Machine
setup: install mount-vol docker-start etl-env ml-env
install:
./machines/install.sh
mount-vol:
./machines/mount-volume.sh
## Neo4j
neo4j-status:
neo4j status
neo4j-stop:
sudo systemctl stop neo4j
neo4j-start:
sudo systemctl start neo4j
neo4j-restart: neo4j-stop neo4j-start
neo4j-logs:
tail -f /var/log/neo4j/neo4j.log
neo4j-check-consitency:
sudo /bin/neo4j-admin database check neo4j
neo4j-check-memory:
du -hc /var/lib/neo4j/data/databases/neo4j/*store.db* | tail -n 1
neo4j-backup:
./machines/neo4j-backup.sh
neo4j-restore:
./machines/neo4j-restore.sh
## Docker
docker-start:
sudo service docker start && sudo chmod 666 /var/run/docker.sock
docker-clean:
docker system prune -a -f
### ETL container
etl-env:
printf '%s\n' 'NEO4J_USER="neo4j"' 'NEO4J_PASSWORD=""' 'NEO4J_URI="bolt://:7687"' 'PYTHONUNBUFFERED=1' > ./jobs/etl/.env
etl:
docker-compose up --build etl
etl-sra:
WORKFLOW="sra_to_sql" docker-compose -p etl-sra up --build etl
etl-sql:
WORKFLOW="sql_to_graph" docker-compose -p etl-sql up --build etl
etl-projection:
WORKFLOW="graph_to_projection" docker-compose -p etl-projection up --build etl
etl-clear-cache:
rm /mnt/graphdata/*.csv
etl-connect:
docker exec -it $(docker ps -aqf "name=etl") /bin/bash
### Graph learning container
ml-env:
printf '%s\n' 'NEO4J_USER="neo4j"' 'NEO4J_PASSWORD=""' 'NEO4J_URI="bolt://:7687"' 'PYTHONUNBUFFERED=1' 'GRAPHISTRY_USERNAME="" GRAPHISTRY_PASSWORD=""' > ./jobs/graph_learning/.env
ml:
docker-compose up --build graph_learning
ml-connect:
docker exec -it $(docker ps -aqf "name=etl") /bin/bash
ml-graphrag:
WORKFLOW="graphrag" docker-compose -p ml-graphrag up --build graph_learning
ml-dataset:
WORKFLOW="make_datasets" docker-compose -p ml-dataset up --build graph_learning
lp-pyg:
WORKFLOW="link_prediction_pyg" docker-compose -p lp-pyg up --build graph_learning
lp-gds:
WORKFLOW="link_prediction_gds" docker-compose -p lp-gds up --build graph_learning
lp-nx:
WORKFLOW="link_prediction_nx" docker-compose -p lp-nx up --build graph_learning