-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstmain.py
35 lines (27 loc) · 1.31 KB
/
stmain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#--------------------
# Author : Serge Zaugg
# Description : Main streamlit entry point
# run locally : streamlit run stmain.py
#--------------------
import streamlit as st
from streamlit import session_state as ss
st.set_page_config(layout="wide")
p01 = st.Page("st_page_01.py", title="Interactive")
p02 = st.Page("st_page_02.py", title="Data info")
p03 = st.Page("st_page_03.py", title="Explanations")
p04 = st.Page("st_page_04.py", title="Examples")
p05 = st.Page("st_page_05.py", title="References")
p06 = st.Page("st_page_06.py", title="Changes")
pg = st.navigation([p01, p06, p02, p03, p04, p05])
pg.run()
with st.sidebar:
st.header(''':red[**CLUSTERING UNSELECTED BIO-ACOUSTIC RECORDINGS**]''')
st.markdown(''':red[**Alpha - under development**]''')
st.markdown('''
Spectrogram clusters obtained via auto-encoders, dimensionality reduction and unsupervised clustering.
This page only features dim reduction and clustering.
Once ready, this tool could pre-label dataset and boost the annotation of datasets for supervised models.
''')
st.markdown(''':red[LINKS]''')
st.page_link("https://xeno-canto.org/", label=":gray[xeno-canto]")
st.page_link("https://github.com/sergezaugg/xeno_canto_organizer", label=":gray[xeno-canto organizer]")