-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_utils.py
120 lines (91 loc) · 4.04 KB
/
mnist_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import gzip
import numpy as np
import collections
import tensorflow as tf
from download_data import maybe_download
HEIGHT = 28
WIDTH = 28
IMAGE_SIZE = HEIGHT * WIDTH
N_CLASSES = 10
N_VALIDATION = 5000
DATA_DIR = 'datasets/mnist'
MNIST_URL = 'http://yann.lecun.com/exdb/mnist/'
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
Dataset = collections.namedtuple('Dataset', ['data', 'target'])
Datasets = collections.namedtuple('Datasets', ['train', 'validation', 'test'])
def _read32(bytestream):
dt = np.dtype(np.uint32).newbyteorder('>')
return np.frombuffer(bytestream.read(4), dtype=dt)[0]
def extract_images(filename):
'''
Extract the images into a 4D unint8 numpy array [index, y, x, depth]
:type filename: str
:param filename: name of the input file
'''
print 'Extracting', filename
with tf.gfile.Open(filename, 'rb') as f:
with gzip.GzipFile(fileobj=f) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError('Invalid magic number {0} in MNIST image file: {1}'
.format(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = np.frombuffer(buf, dtype=np.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def dense_to_one_hot(labels_dense, n_classes=N_CLASSES):
n_labels = labels_dense.shape[0]
index_offset = np.arange(n_labels) * n_classes
labels_one_hot = np.zeros((n_labels, n_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
def extract_labels(filename, one_hot=False, n_classes=N_CLASSES):
'''
Extract labels into a 1D uint8 numpy array [index]
'''
print 'Extracting', filename
with tf.gfile.Open(filename, 'rb') as f:
with gzip.GzipFile(fileobj=f) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError('Invalid magic number {0} in MNIST label file: {1}'
.format(magic, filename))
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = np.frombuffer(buf, dtype=np.uint8)
if one_hot:
return dense_to_one_hot(labels, n_classes)
return labels
def read_data_sets(dirname, one_hot=False, n_classes=N_CLASSES):
'''
Download MNIST if necessary, extracts images and labels, prepare for
analysis.
'''
local_file = maybe_download(MNIST_URL, TRAIN_IMAGES, dirname)
train_images = extract_images(local_file)
train_images = train_images.reshape(train_images.shape[0],
train_images.shape[1] * train_images.shape[2])
train_images = np.multiply(train_images, 1. / 255.)
local_file = maybe_download(MNIST_URL, TRAIN_LABELS, dirname)
train_labels = extract_labels(local_file, one_hot, n_classes)
local_file = maybe_download(MNIST_URL, TEST_IMAGES, dirname)
test_images = extract_images(local_file)
test_images = test_images.reshape(test_images.shape[0],
test_images.shape[1] * test_images.shape[2])
test_images = np.multiply(test_images, 1. / 255.)
local_file = maybe_download(MNIST_URL, TEST_LABELS, dirname)
test_labels = extract_labels(local_file, one_hot, n_classes)
test = Dataset(data=test_images, target=test_labels)
train = Dataset(data=train_images[N_VALIDATION:],
target=train_labels[N_VALIDATION:])
validation = Dataset(data=train_images[:N_VALIDATION],
target=train_labels[:N_VALIDATION])
return Datasets(train=train, validation=validation, test=test)
def load_mnist(dirname=DATA_DIR, one_hot=True):
return read_data_sets(dirname, one_hot)