-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogistic_regression.py
70 lines (53 loc) · 2.21 KB
/
logistic_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# imports
import numpy as np
import tensorflow as tf
from mnist_utils import load_mnist, IMAGE_SIZE, N_CLASSES
BATCH_SIZE = 200
EPOCHS = 2
# graph
x = tf.placeholder(dtype=tf.float32, shape=[None, IMAGE_SIZE], name='x')
y = tf.placeholder(dtype=tf.float32, shape=[None, N_CLASSES], name='y')
with tf.name_scope('logistic') as scope:
W = tf.Variable(initial_value=tf.zeros(shape=[IMAGE_SIZE, N_CLASSES]),
name='weights')
b = tf.Variable(initial_value=tf.zeros(shape=[N_CLASSES]), name='biases')
y_hat = tf.nn.softmax(tf.matmul(x, W) + b)
# loss function
cross_entropy = tf.reduce_mean(
-tf.reduce_sum(y * tf.log(y_hat),
reduction_indices=[1]))
# train
training_step = tf.train.GradientDescentOptimizer(learning_rate=0.5).minimize(cross_entropy)
# evaluation
predicted_class = tf.argmax(input=y_hat, dimension=1)
true_class = tf.argmax(input=y, dimension=1)
correct_prediction = tf.equal(predicted_class, true_class)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, dtype=tf.float32))
# initialize all variables
init = tf.initialize_all_variables()
# load dataset
mnist = load_mnist()
train_data = mnist.train.data
train_target = mnist.train.target
n_batches = mnist.train.data.shape[0] / BATCH_SIZE
with tf.Session() as sess:
sess.run(init)
for epoch in range(EPOCHS):
print 'Epoch', epoch + 1
for batch in range(n_batches):
start_i = batch * BATCH_SIZE
end_i = start_i + BATCH_SIZE
feed_dict = {x: train_data[start_i:end_i],
y: train_target[start_i:end_i]}
sess.run(training_step, feed_dict=feed_dict)
if batch % 20 == 0:
feed_dict = {x: mnist.validation.data,
y: mnist.validation.target}
acc = sess.run(accuracy, feed_dict=feed_dict)
print 'Step {0}: validation accuracy {1}'.format(batch, acc)
perm = np.arange(mnist.train.data.shape[0])
np.random.shuffle(perm)
train_data, train_target = train_data[perm], train_target[perm]
test_acc = sess.run(accuracy,
feed_dict={x: mnist.test.data, y: mnist.test.target})
print 'Test accuracy:', test_acc