Skip to content
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.

Commit fc06bec

Browse files
committedSep 15, 2024·
Implement Math.sumPrecise
1 parent d20f91a commit fc06bec

File tree

5 files changed

+196
-68
lines changed

5 files changed

+196
-68
lines changed
 

‎Jint.Tests.Test262/Test262Harness.settings.json

-1
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,6 @@
1111
"decorators",
1212
"explicit-resource-management",
1313
"iterator-helpers",
14-
"Math.sumPrecise",
1514
"regexp-lookbehind",
1615
"regexp-modifiers",
1716
"regexp-unicode-property-escapes",

‎Jint/Native/Math/MathInstance.cs

+1-1
Original file line numberDiff line numberDiff line change
@@ -1154,7 +1154,7 @@ private JsValue SumPrecise(JsValue thisObject, JsValue[] arguments)
11541154
return state;
11551155
}
11561156

1157-
return sum.FSum();
1157+
return Math.SumPrecise.Sum(sum);
11581158
}
11591159

11601160
private static double[] Coerced(JsValue[] arguments)

‎Jint/Native/Math/MathX.cs

-66
This file was deleted.

‎Jint/Native/Math/SumPrecise.cs

+194
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,194 @@
1+
using System.Runtime.CompilerServices;
2+
using System.Runtime.InteropServices;
3+
4+
namespace Jint.Native.Math;
5+
6+
/// <summary>
7+
/// https://raw.githubusercontent.com/es-shims/Math.sumPrecise/main/sum.js
8+
/// adapted from https://github.com/tc39/proposal-math-sum/blob/f4286d0a9d8525bda61be486df964bf2527c8789/polyfill/polyfill.mjs
9+
/// https://www-2.cs.cmu.edu/afs/cs/project/quake/public/papers/robust-arithmetic.ps
10+
/// Shewchuk's algorithm for exactly floating point addition
11+
/// as implemented in Python's fsum: https://github.com/python/cpython/blob/48dfd74a9db9d4aa9c6f23b4a67b461e5d977173/Modules/mathmodule.c#L1359-L1474
12+
/// adapted to handle overflow via an additional "biased" partial, representing 2**1024 times its actual value
13+
/// </summary>
14+
internal static class SumPrecise
15+
{
16+
// exponent 11111111110, significand all 1s
17+
private const double MaxDouble = 1.79769313486231570815e+308; // i.e. (2**1024 - 2**(1023 - 52))
18+
19+
// exponent 11111111110, significand all 1s except final 0
20+
private const double PenultimateDouble = 1.79769313486231550856e+308; // i.e. (2**1024 - 2 * 2**(1023 - 52))
21+
22+
private const double Two1023 = 8.98846567431158e+307; // 2 ** 1023
23+
24+
// exponent 11111001010, significand all 0s
25+
private const double MaxUlp = MaxDouble - PenultimateDouble; // 1.99584030953471981166e+292, i.e. 2**(1023 - 52)
26+
27+
[StructLayout(LayoutKind.Auto)]
28+
private readonly record struct TwoSumResult(double Hi, double Lo);
29+
30+
// prerequisite: $abs(x) >= $abs(y)
31+
[MethodImpl(MethodImplOptions.AggressiveInlining)]
32+
private static TwoSumResult TwoSum(double x, double y)
33+
{
34+
var hi = x + y;
35+
var lo = y - (hi - x);
36+
return new TwoSumResult(hi, lo);
37+
}
38+
39+
// preconditions:
40+
// - array only contains numbers
41+
// - none of them are -0, NaN, or ±Infinity
42+
// - all of them are finite
43+
[MethodImpl(512)]
44+
internal static double Sum(List<double> array)
45+
{
46+
double hi, lo;
47+
48+
List<double> partials = [];
49+
50+
var overflow = 0; // conceptually 2**1024 times this value; the final partial is biased by this amount
51+
52+
var index = -1;
53+
54+
// main loop
55+
while (index + 1 < array.Count)
56+
{
57+
var x = +array[++index];
58+
59+
var actuallyUsedPartials = 0;
60+
for (var j = 0; j < partials.Count; j += 1)
61+
{
62+
var y = partials[j];
63+
64+
if (System.Math.Abs(x) < System.Math.Abs(y))
65+
{
66+
var tmp = x;
67+
x = y;
68+
y = tmp;
69+
}
70+
71+
(hi, lo) = TwoSum(x, y);
72+
73+
if (double.IsPositiveInfinity(System.Math.Abs(hi)))
74+
{
75+
var sign = double.IsPositiveInfinity(hi) ? 1 : -1;
76+
overflow += sign;
77+
78+
x = x - sign * Two1023 - sign * Two1023;
79+
if (System.Math.Abs(x) < System.Math.Abs(y))
80+
{
81+
var tmp2 = x;
82+
x = y;
83+
y = tmp2;
84+
}
85+
86+
var s2 = TwoSum(x, y);
87+
hi = s2.Hi;
88+
lo = s2.Lo;
89+
}
90+
91+
if (lo != 0)
92+
{
93+
partials[actuallyUsedPartials] = lo;
94+
actuallyUsedPartials += 1;
95+
}
96+
97+
x = hi;
98+
}
99+
100+
while (partials.Count > actuallyUsedPartials)
101+
{
102+
partials.RemoveAt(partials.Count - 1);
103+
}
104+
105+
if (x != 0)
106+
{
107+
partials.Add(x);
108+
}
109+
}
110+
111+
// compute the exact sum of partials, stopping once we lose precision
112+
var n = partials.Count - 1;
113+
hi = 0;
114+
lo = 0;
115+
116+
if (overflow != 0)
117+
{
118+
var next = n >= 0 ? partials[n] : 0;
119+
n -= 1;
120+
if (System.Math.Abs(overflow) > 1 || (overflow > 0 && next > 0) || (overflow < 0 && next < 0))
121+
{
122+
return overflow > 0 ? double.PositiveInfinity : double.NegativeInfinity;
123+
}
124+
125+
// here we actually have to do the arithmetic
126+
// drop a factor of 2 so we can do it without overflow
127+
// assert($abs(overflow) === 1)
128+
var s = TwoSum(overflow * Two1023, next / 2);
129+
hi = s.Hi;
130+
lo = s.Lo;
131+
lo *= 2;
132+
if (double.IsPositiveInfinity(System.Math.Abs(2 * hi)))
133+
{
134+
// stupid edge case: rounding to the maximum value
135+
// MAX_DOUBLE has a 1 in the last place of its significand, so if we subtract exactly half a ULP from 2**1024, the result rounds away from it (i.e. to infinity) under ties-to-even
136+
// but if the next partial has the opposite sign of the current value, we need to round towards MAX_DOUBLE instead
137+
// this is the same as the "handle rounding" case below, but there's only one potentially-finite case we need to worry about, so we just hardcode that one
138+
if (hi > 0)
139+
{
140+
if (hi == Two1023 && lo == -(MaxUlp / 2) && n >= 0 && partials[n] < 0)
141+
{
142+
return MaxDouble;
143+
}
144+
145+
return double.PositiveInfinity;
146+
}
147+
148+
if (hi == -Two1023 && lo == (MaxUlp / 2) && n >= 0 && partials[n] > 0)
149+
{
150+
return -MaxDouble;
151+
}
152+
153+
return double.NegativeInfinity;
154+
}
155+
156+
if (lo != 0)
157+
{
158+
partials[n + 1] = lo;
159+
n += 1;
160+
lo = 0;
161+
}
162+
163+
hi *= 2;
164+
}
165+
166+
while (n >= 0)
167+
{
168+
var x1 = hi;
169+
var y1 = partials[n];
170+
n -= 1;
171+
// assert: $abs(x1) > $abs(y1)
172+
(hi, lo) = TwoSum(x1, y1);
173+
if (lo != 0)
174+
{
175+
break; // eslint-disable-line no-restricted-syntax
176+
}
177+
}
178+
179+
// handle rounding
180+
// when the roundoff error is exactly half of the ULP for the result, we need to check one more partial to know which way to round
181+
if (n >= 0 && ((lo < 0.0 && partials[n] < 0.0) || (lo > 0.0 && partials[n] > 0.0)))
182+
{
183+
var y2 = lo * 2.0;
184+
var x2 = hi + y2;
185+
var yr = x2 - hi;
186+
if (y2 == yr)
187+
{
188+
hi = x2;
189+
}
190+
}
191+
192+
return hi;
193+
}
194+
}

‎README.md

+1
Original file line numberDiff line numberDiff line change
@@ -133,6 +133,7 @@ and many more.
133133
- ✔ Float16Array (Requires NET 6 or higher)
134134
- ✔ Import attributes
135135
- ✔ JSON modules
136+
- ✔ Math.sumPrecise
136137
-`Promise.try`
137138
- ✔ Set methods (`intersection`, `union`, `difference`, `symmetricDifference`, `isSubsetOf`, `isSupersetOf`, `isDisjointFrom`)
138139
- ✔ ShadowRealm

0 commit comments

Comments
 (0)
Please sign in to comment.