|
30 | 30 | "source": [
|
31 | 31 | "!pip install --quiet scvi-colab\n",
|
32 | 32 | "from scvi_colab import install\n",
|
| 33 | + "\n", |
33 | 34 | "install()"
|
34 | 35 | ]
|
35 | 36 | },
|
|
47 | 48 | }
|
48 | 49 | ],
|
49 | 50 | "source": [
|
| 51 | + "import matplotlib.pyplot as plt\n", |
50 | 52 | "import numpy as np\n",
|
51 | 53 | "import pandas as pd\n",
|
52 | 54 | "import scanpy as sc\n",
|
53 | 55 | "import scvelo as scv\n",
|
| 56 | + "import seaborn as sns\n", |
54 | 57 | "import torch\n",
|
55 |
| - "from velovi import preprocess_data, VELOVI\n", |
56 |
| - "\n", |
57 |
| - "import matplotlib.pyplot as plt\n", |
58 |
| - "import seaborn as sns" |
| 58 | + "from velovi import VELOVI, preprocess_data" |
59 | 59 | ]
|
60 | 60 | },
|
61 | 61 | {
|
|
221 | 221 | " adata.var[\"fit_beta\"] = vae.get_rates()[\"beta\"] / scaling\n",
|
222 | 222 | " adata.var[\"fit_gamma\"] = vae.get_rates()[\"gamma\"] / scaling\n",
|
223 | 223 | " adata.var[\"fit_t_\"] = (\n",
|
224 |
| - " torch.nn.functional.softplus(vae.module.switch_time_unconstr)\n", |
225 |
| - " .detach()\n", |
226 |
| - " .cpu()\n", |
227 |
| - " .numpy()\n", |
| 224 | + " torch.nn.functional.softplus(vae.module.switch_time_unconstr).detach().cpu().numpy()\n", |
228 | 225 | " ) * scaling\n",
|
229 | 226 | " adata.layers[\"fit_t\"] = latent_time.values * scaling[np.newaxis, :]\n",
|
230 |
| - " adata.var['fit_scaling'] = 1.0\n", |
| 227 | + " adata.var[\"fit_scaling\"] = 1.0\n", |
| 228 | + "\n", |
231 | 229 | "\n",
|
232 | 230 | "add_velovi_outputs_to_adata(adata, vae)"
|
233 | 231 | ]
|
|
297 | 295 | }
|
298 | 296 | ],
|
299 | 297 | "source": [
|
300 |
| - "scv.pl.velocity_embedding_stream(adata, basis='umap')" |
| 298 | + "scv.pl.velocity_embedding_stream(adata, basis=\"umap\")" |
301 | 299 | ]
|
302 | 300 | },
|
303 | 301 | {
|
|
507 | 505 | ],
|
508 | 506 | "source": [
|
509 | 507 | "sc.pl.umap(\n",
|
510 |
| - " adata, \n", |
| 508 | + " adata,\n", |
511 | 509 | " color=\"directional_cosine_sim_variance\",\n",
|
512 | 510 | " cmap=\"Greys\",\n",
|
513 | 511 | " vmin=\"p1\",\n",
|
|
529 | 527 | "outputs": [],
|
530 | 528 | "source": [
|
531 | 529 | "def compute_extrinisic_uncertainty(adata, vae, n_samples=25) -> pd.DataFrame:\n",
|
532 |
| - " from velovi._model import _compute_directional_statistics_tensor\n", |
533 |
| - " from scvi.utils import track\n", |
534 |
| - " from contextlib import redirect_stdout\n", |
535 | 530 | " import io\n",
|
| 531 | + " from contextlib import redirect_stdout\n", |
| 532 | + "\n", |
| 533 | + " from scvi.utils import track\n", |
| 534 | + " from velovi._model import _compute_directional_statistics_tensor\n", |
536 | 535 | "\n",
|
537 | 536 | " extrapolated_cells_list = []\n",
|
538 | 537 | " for i in track(range(n_samples)):\n",
|
539 | 538 | " with io.StringIO() as buf, redirect_stdout(buf):\n",
|
540 |
| - " vkey = \"velocities_velovi_{i}\".format(i=i)\n", |
| 539 | + " vkey = f\"velocities_velovi_{i}\"\n", |
541 | 540 | " v = vae.get_velocity(n_samples=1, velo_statistic=\"mean\")\n",
|
542 | 541 | " adata.layers[vkey] = v\n",
|
543 | 542 | " scv.tl.velocity_graph(adata, vkey=vkey, sqrt_transform=False, approx=True)\n",
|
|
1134 | 1133 | ],
|
1135 | 1134 | "source": [
|
1136 | 1135 | "sc.pl.umap(\n",
|
1137 |
| - " adata, \n", |
| 1136 | + " adata,\n", |
1138 | 1137 | " color=\"directional_cosine_sim_variance_extrinisic\",\n",
|
1139 |
| - " vmin=\"p1\", \n", |
1140 |
| - " vmax=\"p99\", \n", |
| 1138 | + " vmin=\"p1\",\n", |
| 1139 | + " vmax=\"p99\",\n", |
1141 | 1140 | ")"
|
1142 | 1141 | ]
|
1143 | 1142 | },
|
|
0 commit comments