Skip to content

Commit ee4e3d5

Browse files
[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
1 parent b7d7d32 commit ee4e3d5

File tree

1 file changed

+17
-18
lines changed

1 file changed

+17
-18
lines changed

scrna/velovi.ipynb

+17-18
Original file line numberDiff line numberDiff line change
@@ -30,6 +30,7 @@
3030
"source": [
3131
"!pip install --quiet scvi-colab\n",
3232
"from scvi_colab import install\n",
33+
"\n",
3334
"install()"
3435
]
3536
},
@@ -47,15 +48,14 @@
4748
}
4849
],
4950
"source": [
51+
"import matplotlib.pyplot as plt\n",
5052
"import numpy as np\n",
5153
"import pandas as pd\n",
5254
"import scanpy as sc\n",
5355
"import scvelo as scv\n",
56+
"import seaborn as sns\n",
5457
"import torch\n",
55-
"from velovi import preprocess_data, VELOVI\n",
56-
"\n",
57-
"import matplotlib.pyplot as plt\n",
58-
"import seaborn as sns"
58+
"from velovi import VELOVI, preprocess_data"
5959
]
6060
},
6161
{
@@ -221,13 +221,11 @@
221221
" adata.var[\"fit_beta\"] = vae.get_rates()[\"beta\"] / scaling\n",
222222
" adata.var[\"fit_gamma\"] = vae.get_rates()[\"gamma\"] / scaling\n",
223223
" adata.var[\"fit_t_\"] = (\n",
224-
" torch.nn.functional.softplus(vae.module.switch_time_unconstr)\n",
225-
" .detach()\n",
226-
" .cpu()\n",
227-
" .numpy()\n",
224+
" torch.nn.functional.softplus(vae.module.switch_time_unconstr).detach().cpu().numpy()\n",
228225
" ) * scaling\n",
229226
" adata.layers[\"fit_t\"] = latent_time.values * scaling[np.newaxis, :]\n",
230-
" adata.var['fit_scaling'] = 1.0\n",
227+
" adata.var[\"fit_scaling\"] = 1.0\n",
228+
"\n",
231229
"\n",
232230
"add_velovi_outputs_to_adata(adata, vae)"
233231
]
@@ -297,7 +295,7 @@
297295
}
298296
],
299297
"source": [
300-
"scv.pl.velocity_embedding_stream(adata, basis='umap')"
298+
"scv.pl.velocity_embedding_stream(adata, basis=\"umap\")"
301299
]
302300
},
303301
{
@@ -507,7 +505,7 @@
507505
],
508506
"source": [
509507
"sc.pl.umap(\n",
510-
" adata, \n",
508+
" adata,\n",
511509
" color=\"directional_cosine_sim_variance\",\n",
512510
" cmap=\"Greys\",\n",
513511
" vmin=\"p1\",\n",
@@ -529,15 +527,16 @@
529527
"outputs": [],
530528
"source": [
531529
"def compute_extrinisic_uncertainty(adata, vae, n_samples=25) -> pd.DataFrame:\n",
532-
" from velovi._model import _compute_directional_statistics_tensor\n",
533-
" from scvi.utils import track\n",
534-
" from contextlib import redirect_stdout\n",
535530
" import io\n",
531+
" from contextlib import redirect_stdout\n",
532+
"\n",
533+
" from scvi.utils import track\n",
534+
" from velovi._model import _compute_directional_statistics_tensor\n",
536535
"\n",
537536
" extrapolated_cells_list = []\n",
538537
" for i in track(range(n_samples)):\n",
539538
" with io.StringIO() as buf, redirect_stdout(buf):\n",
540-
" vkey = \"velocities_velovi_{i}\".format(i=i)\n",
539+
" vkey = f\"velocities_velovi_{i}\"\n",
541540
" v = vae.get_velocity(n_samples=1, velo_statistic=\"mean\")\n",
542541
" adata.layers[vkey] = v\n",
543542
" scv.tl.velocity_graph(adata, vkey=vkey, sqrt_transform=False, approx=True)\n",
@@ -1134,10 +1133,10 @@
11341133
],
11351134
"source": [
11361135
"sc.pl.umap(\n",
1137-
" adata, \n",
1136+
" adata,\n",
11381137
" color=\"directional_cosine_sim_variance_extrinisic\",\n",
1139-
" vmin=\"p1\", \n",
1140-
" vmax=\"p99\", \n",
1138+
" vmin=\"p1\",\n",
1139+
" vmax=\"p99\",\n",
11411140
")"
11421141
]
11431142
},

0 commit comments

Comments
 (0)