-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathquaternion_plotter.py
258 lines (214 loc) · 9.69 KB
/
quaternion_plotter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
from itertools import product, combinations
from collections import defaultdict
from serial import Serial
import matplotlib.pyplot as plt
import numpy as np
import quaternion
import datetime
data_fields = {'quat_w', 'quat_x', 'quat_y', 'quat_z', 'accel_x', 'accel_y', 'accel_z',
'gyro_x', 'gyro_y', 'gyro_z', 'compass_x', 'compass_y', 'compass_z'}
def wrap_angle(ang):
ang = (ang + 180) % 360 - 180
return ang
def quat_to_elev_azim_roll(q, angle_offsets=(0, 0, 0)):
# See Diebel, James "Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors" (2006)
# https://www.astro.rug.nl/software/kapteyn-beta/_downloads/attitude.pdf
# Sequence (3, 2, 1), Eqn. 452
q0, q1, q2, q3 = q.w, q.x, q.y, q.z
phi = np.arctan2(-2*q1*q2 + 2*q0*q3, q1**2 + q0**2 - q3**2 - q2**2)
theta = np.arcsin(2*q1*q3 + 2*q0*q2)
psi = np.arctan2(-2*q2*q3 + 2*q0*q1, q3**2 - q2**2 - q1**2 + q0**2)
azim = np.rad2deg(phi) + angle_offsets[0]
elev = -np.rad2deg(theta) + angle_offsets[1]
roll = np.rad2deg(psi) + angle_offsets[2]
return elev, azim, roll
def elev_azim_roll_to_quat(elev, azim, roll, angle_offsets=(0, 0, 0)):
# See Diebel, James "Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors" (2006)
# https://www.astro.rug.nl/software/kapteyn-beta/_downloads/attitude.pdf
# Sequence (3, 2, 1), Eqn. 459
phi = np.deg2rad(azim) - angle_offsets[0]
theta = np.deg2rad(-elev) - angle_offsets[1]
psi = np.deg2rad(roll) - angle_offsets[2]
q0 = np.cos(phi/2)*np.cos(theta/2)*np.cos(psi/2) - np.sin(phi/2)*np.sin(theta/2)*np.sin(psi/2)
q1 = np.cos(phi/2)*np.cos(theta/2)*np.sin(psi/2) + np.sin(phi/2)*np.sin(theta/2)*np.cos(psi/2)
q2 = np.cos(phi/2)*np.sin(theta/2)*np.cos(psi/2) - np.sin(phi/2)*np.cos(theta/2)*np.sin(psi/2)
q3 = np.cos(phi/2)*np.sin(theta/2)*np.sin(psi/2) + np.sin(phi/2)*np.cos(theta/2)*np.cos(psi/2)
q = np.quaternion(q0, q1, q2, q3)
return q
class quaternion_plotter():
def __init__(self, angles_init=(0, 0, 0), port='/dev/ttyACM0', baudrate=115200):
self.port = port
self.baudrate = baudrate
self.running = True
self.data = defaultdict(float)
self.n = 0
self.read_freq = 1e3
self.plot_freq = 30
self.maxpoints = 10*self.read_freq
self.t_start = datetime.datetime.now()
self.last_plotted = datetime.datetime.now()
self.t = self.t_start
self.q = np.quaternion(1, 0, 0, 0)
self.angles_init = angles_init # elev, azim, roll (deg)
self.ang = np.array(angles_init)
# self.accel = np.array([0, 0, 0])
# self.gyro = np.array([0, 0, 0])
# self.mag = np.array([0, 0, 0])
self.ts = [self.t]
self.qs = [self.q]
self.angs = [self.ang]
# self.accels = [self.accel]
# self.gyros = [self.gyro]
# self.mags = [self.mag]
def update_data(self, line):
if line:
remaining_keys = data_fields.copy()
try:
string = line.decode() # convert the byte string to a unicode string
for datapoint in string.split():
key, val = datapoint.split(':')
if key in remaining_keys:
self.data[key] = float(val)
remaining_keys.remove(key)
except:
# Bad data
pass
# for key in remaining_keys:
# self.data[key] = None
def process_data(self):
q0 = self.data['quat_w']
q1 = self.data['quat_x']
q2 = self.data['quat_y']
q3 = self.data['quat_z']
self.q = np.quaternion(q0, q1, q2, q3)
elev, azim, roll = quat_to_elev_azim_roll(self.q, self.angles_init)
self.ang = wrap_angle(np.array([elev, azim, roll]))
self.t = datetime.datetime.now()
self.n += 1
# accel = np.array([self.data['accel_x'], self.data['accel_y'], self.data['accel_z']])
# gyro = np.array([self.data['gyro_x'], self.data['gyro_y'], self.data['gyro_z']])
# compass = np.array([self.data['compass_x'], self.data['compass_y'], self.data['compass_z']])
# self.accel = accel * 9.81 / 8192 # gpm4 (m/s)
# self.gyro = gyro / 65.5 # dps500 (deg/s)
# self.mag = compass * 0.15 # uT
def update_timeseries(self):
self.ts.append(self.t)
self.qs.append(self.q)
self.angs.append(self.ang)
# self.accels.append(self.accel)
# self.gyros.append(self.gyro)
# self.mags.append(self.mag)
def run(self):
plot_3d_only = True
if plot_3d_only:
layout = [['3d']]
else:
layout = [['3d', '3d', 'q'],
['3d', '3d', 'ang']]
fig, axd = plt.subplot_mosaic(layout)
ss = axd['3d'].get_subplotspec()
axd['3d'].remove()
axd['3d'] = fig.add_subplot(ss, projection='3d')
with Serial(self.port, self.baudrate, timeout=1) as ser:
while self.running:
dt = datetime.datetime.now() - self.t
if dt.total_seconds() >= 1./self.read_freq:
try:
line = ser.readline()
if line:
self.update_data(line)
self.process_data()
self.update_timeseries()
except:
pass
# Init plots
if self.n == 1:
self.plot_cuboid(axd['3d'])
if not plot_3d_only:
self.plot_q_line(axd['q'])
self.plot_ang_line(axd['ang'])
plt.show(block=False)
# Update plots
if self.n > 0:
dt = self.t - self.last_plotted
if dt.total_seconds() >= 1./self.plot_freq:
self.update_cuboid_plot(axd['3d'])
if not plot_3d_only:
self.update_q_plot(axd['q'])
self.update_ang_plot(axd['ang'])
fig.canvas.draw()
fig.canvas.flush_events()
self.last_plotted = datetime.datetime.now()
## Plotting init methods
def plot_cuboid(self, ax):
r = [0, 1]
scale = np.array([8.2, 5.4, 0.9]) # mm
for start, end in combinations(np.array(list(product(r, r, r))), 2):
if np.sum(np.abs(start - end)) == r[1] - r[0]:
ax.plot3D(*zip(start*scale, end*scale))
ax.view_init(elev=0, azim=0, roll=0)
ax.set_proj_type('persp')
ax.set_aspect('equal')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
def plot_q_line(self, ax):
ax.clear()
npoints = min(self.n, self.maxpoints)
timedeltas = [t - self.t_start for t in self.ts[-npoints-1:]]
times = [t.total_seconds() for t in timedeltas]
self.q0_line, = ax.plot(times, [q.w for q in self.qs[-npoints-1:]], '-*', label='q0')
self.q1_line, = ax.plot(times, [q.x for q in self.qs[-npoints-1:]], '-*', label='q1')
self.q2_line, = ax.plot(times, [q.y for q in self.qs[-npoints-1:]], '-*', label='q2')
self.q3_line, = ax.plot(times, [q.z for q in self.qs[-npoints-1:]], '-*', label='q3')
ax.legend()
ax.yaxis.set_label_position("right")
ax.yaxis.tick_right()
ax.set_ylabel('q')
ax.set_ylim((-1.05, 1.05))
def plot_ang_line(self, ax):
ax.clear()
npoints = min(self.n, self.maxpoints)
timedeltas = [t - self.t_start for t in self.ts[-npoints-1:]]
times = [t.total_seconds() for t in timedeltas]
self.elev_line, = ax.plot(times, [angs[0] for angs in self.angs[-npoints-1:]], '-*', label='elev')
self.azim_line, = ax.plot(times, [angs[1] for angs in self.angs[-npoints-1:]], '-*', label='azim')
self.roll_line, = ax.plot(times, [angs[2] for angs in self.angs[-npoints-1:]], '-*', label='roll')
ax.legend()
ax.yaxis.set_label_position("right")
ax.yaxis.tick_right()
ax.set_ylim((-185, 185))
ax.set_ylabel('ang (deg)')
ax.set_xlabel('t (s)')
## Plotting update methods
def update_cuboid_plot(self, ax):
print(self.t, self.q) #, self.ang)
elev, azim, roll = self.ang
ax.view_init(elev, azim, roll)
ax.set_title(f'elev={elev:0.1f}, azim={azim:0.1f}, roll={roll:0.1f}')
def update_q_plot(self, ax):
npoints = min(self.n, self.maxpoints)
timedeltas = [t - self.t_start for t in self.ts[-npoints-1:]]
times = [t.total_seconds() for t in timedeltas]
q0s = [q.w for q in self.qs[-npoints-1:]]
q1s = [q.x for q in self.qs[-npoints-1:]]
q2s = [q.y for q in self.qs[-npoints-1:]]
q3s = [q.z for q in self.qs[-npoints-1:]]
for line, qs in zip((self.q0_line, self.q1_line, self.q2_line, self.q3_line),
(q0s, q1s, q2s, q3s)):
line.set_xdata(times)
line.set_ydata(qs)
ax.set_xlim([times[0], times[-1]])
def update_ang_plot(self, ax):
npoints = min(self.n, self.maxpoints)
timedeltas = [t - self.t_start for t in self.ts[-npoints-1:]]
times = [t.total_seconds() for t in timedeltas]
for i, line in enumerate((self.elev_line, self.azim_line, self.roll_line)):
line.set_xdata(times)
line.set_ydata([angs[i] for angs in self.angs[-npoints-1:]])
ax.set_xlim([times[0], times[-1]])
def main():
qp = quaternion_plotter(port='/dev/ttyACM0', angles_init=(0, 0, 180))
qp.run()
if __name__ == '__main__':
main()