@@ -184,15 +184,6 @@ def benchmark_radius_clustering():
184184fig .suptitle ("Benchmark of Radius Clustering Solvers" , fontsize = 16 )
185185
186186axs ['time' ].set_yscale ('log' ) # Use logarithmic scale for better visibility
187- #for algo, algo_results in results.items():
188- # Plot execution time
189- # axs['time'].plot(
190- # DATASETS.keys(),
191- # algo_results["time"],
192- # marker='o',
193- # label=algo,
194- # )
195- # Plot number of clusters
196187
197188algorithms = list (results .keys ())
198189dataset_names = list (DATASETS .keys ())
@@ -205,7 +196,6 @@ def benchmark_radius_clustering():
205196 # Calculate position for each bar in the group to center them
206197 position = x_indices - (n_algos * bar_width / 2 ) + (i * bar_width ) + bar_width / 2
207198 axs ['time' ].bar (position , times , bar_width , label = algo )
208- # --- End of change ---
209199
210200for i , (name , (dataset , _ )) in enumerate (DATASETS .items ()):
211201 axs [name ].bar (
@@ -227,7 +217,7 @@ def benchmark_radius_clustering():
227217axs ['time' ].set_title ("Execution Time (log scale)" )
228218axs ['time' ].set_xlabel ("Datasets" )
229219axs ['time' ].set_ylabel ("Time (seconds)" )
230- axs ['time' ].set_xticks (x_indices ) # Set tick positions to be at the center of the groups
220+ axs ['time' ].set_xticks (x_indices )
231221axs ['time' ].set_xticklabels (dataset_names )
232222axs ['time' ].legend (title = "Algorithms" )
233223plt .tight_layout ()
0 commit comments