forked from yliu8834/CodeSample
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPredicting Affordability of Houses in Ames, Iowa.R
360 lines (338 loc) · 13.9 KB
/
Predicting Affordability of Houses in Ames, Iowa.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
### 2.1 Data Cleaning
## cleaning training dataset
training_total <- read.csv("C:/Users/liuyu/OneDrive/Documents/UCLA/Statistics 101C/Final Project/HTrainLast.csv")[, -1]
# delete observations with Y is NA
NonNA2 <- training_total[is.na(training_total[[80]])==FALSE, ]
# deal with correlation terms
basement_sub <- which(is.na(NonNA2[[30]])|is.na(NonNA2[[31]])|is.na(NonNA2[[32]])|is.na(NonNA2[[33]])|is.na(NonNA2[[34]])|
is.na(NonNA2[[36]])|is.na(NonNA2[[37]])|is.na(NonNA2[[38]]))
NonNA2[basement_sub, c(30:33)] <- NA
NonNA2[basement_sub, c(34, 36:38)] <- 0
garage_sub <- which(is.na(NonNA2[[58]])|is.na(NonNA2[[59]])|is.na(NonNA2[[60]])|is.na(NonNA2[[61]])|is.na(NonNA2[[62]])|
is.na(NonNA2[[63]])|is.na(NonNA2[[64]]))
NonNA2[garage_sub, c(58, 60, 63:64)] <- NA
NonNA2[garage_sub, c(61:62)] <- 0
# deal with numerical variables: NA to 0
nume2 <- c(26, 47, 48)
for(i in 1:length(nume2)){
NonNA2[[nume2[i]]] <- replace(NonNA2[[nume2[i]]], is.na(NonNA2[[nume2[i]]])==TRUE, 0)
}
# deal with numerical variables: NA by predicting via MLR
library(leaps)
numeric <- c(3, 4, 17:20, 26, 34, 36:38, 43:52, 54, 56, 59, 61, 62, 66:71, 75:77)
NonNA2_num <- NonNA2[, numeric]
train_3 <- NonNA2_num[is.na(NonNA2[[3]])==FALSE, -24]
test_3 <- NonNA2_num[is.na(NonNA2[[3]]), -c(1, 24)]
regfit.full3=regsubsets(LotFrontage~., train_3)
summary(regfit.full3)
reg.summary3 <- summary(regfit.full3)
which.min(reg.summary3$bic)
m3 <- lm(LotFrontage~LotArea+OverallQual+X1stFlrSF+FullBath+BedroomAbvGr+KitchenAbvGr+TotRmsAbvGrd+GarageArea+PoolArea, data=train_3)
summary(m3)
predict3 <- round(predict(m3, test_3))
for(i in 1:560)
NonNA2[is.na(NonNA2[[3]]), 3] <- predict3[i]
train_59 <- NonNA2_num[is.na(NonNA2[[59]])==FALSE, -1]
test_59 <- NonNA2_num[is.na(NonNA2[[59]]), -c(1, 24)]
regfit.full59=regsubsets(GarageYrBlt~., train_59)
summary(regfit.full59)
reg.summary59 <- summary(regfit.full59)
which.min(reg.summary59$bic)
m59 <- lm(GarageYrBlt~YearBuilt+YearRemodAdd+MasVnrArea+X1stFlrSF+LowQualFinSF+FullBath+BedroomAbvGr+Fireplaces+GarageArea, data=train_59)
summary(m59)
predict59 <- round(predict(m59, test_59))
for(i in 1:162)
NonNA2[is.na(NonNA2[[59]]), 59] <- predict59[i]
# deal with categorical variables: NA to a category None
cate <- c(6, 25, 30:33, 35, 57:58, 60, 63:64, 72:74)
for(i in 1:length(cate)){
NonNA2[[cate[i]]] <- as.character(NonNA2[[cate[i]]])
NonNA2[[cate[i]]][is.na(NonNA2[[cate[i]]])] <- "None"
NonNA2[[cate[i]]] <- as.factor(NonNA2[[cate[i]]])
}
# deal with categorical variables: NA to a others
NonNA2[[2]] <- as.character(NonNA2[[2]])
NonNA2[[2]][is.na(NonNA2[[2]])] <- "RL"
NonNA2[[2]] <- as.factor(NonNA2[[2]])
NonNA2[[9]] <- as.character(NonNA2[[9]])
NonNA2[[9]][is.na(NonNA2[[9]])] <- "AllPub"
NonNA2[[9]] <- as.factor(NonNA2[[9]])
NonNA2[[42]] <- as.character(NonNA2[[42]])
NonNA2[[42]][is.na(NonNA2[[42]])] <- "SBrkr"
NonNA2[[42]] <- as.factor(NonNA2[[42]])
NonNA2[[53]] <- as.character(NonNA2[[53]])
NonNA2[[53]][is.na(NonNA2[[53]])] <- "TA"
NonNA2[[53]] <- as.factor(NonNA2[[53]])
NonNA2[[55]] <- as.character(NonNA2[[55]])
NonNA2[[55]][is.na(NonNA2[[55]])] <- "Typ"
NonNA2[[55]] <- as.factor(NonNA2[[55]])
# delete the unused variable column 9
NonNA3 <- NonNA2[, -9]
# transform the first column into factor
NonNA3[, 1] <- as.factor(NonNA3[, 1])
# transform the Year remodeled column to categorical
for(i in 1:3498){
if(NonNA3[i, 19]==NonNA3[i, 18])
NonNA3[i, 19] <- "No"
else
NonNA3[i, 19] <- "Yes"
}
NonNA3[, 19] <- as.factor(NonNA3[, 19])
# transform the Year built column to how many years it had been built
sort(NonNA3$YearBuilt, decreasing = TRUE)[1]
NonNA3$YearBuilt <- 2010-NonNA3$YearBuilt
## cleaning testing dataset
test_total <- read.csv("C:/Users/liuyu/OneDrive/Documents/UCLA/Statistics 101C/Final Project/HTestLastNoY.csv")[-1]
NonNA2 <- test_total
basement_sub <- which(is.na(NonNA2[[30]])|is.na(NonNA2[[31]])|is.na(NonNA2[[32]])|is.na(NonNA2[[33]])|is.na(NonNA2[[34]])|
is.na(NonNA2[[36]])|is.na(NonNA2[[37]])|is.na(NonNA2[[38]]))
NonNA2[basement_sub, c(30:33)] <- NA
NonNA2[basement_sub, c(34, 36:38)] <- 0
garage_sub <- which(is.na(NonNA2[[58]])|is.na(NonNA2[[59]])|is.na(NonNA2[[60]])|is.na(NonNA2[[61]])|is.na(NonNA2[[62]])|
is.na(NonNA2[[63]])|is.na(NonNA2[[64]]))
NonNA2[garage_sub, c(58, 60, 63:64)] <- NA
NonNA2[garage_sub, c(61:62)] <- 0
nume2 <- c(26, 47, 48)
for(i in 1:length(nume2)){
NonNA2[[nume2[i]]] <- replace(NonNA2[[nume2[i]]], is.na(NonNA2[[nume2[i]]])==TRUE, 0)
}
library(leaps)
numeric <- c(3, 4, 17:20, 26, 34, 36:38, 43:52, 54, 56, 59, 61, 62, 66:71, 75:77)
NonNA2_num <- NonNA2[, numeric]
train_3 <- NonNA2_num[is.na(NonNA2[[3]])==FALSE, -24]
test_3 <- NonNA2_num[is.na(NonNA2[[3]]), -c(1, 24)]
regfit.full3=regsubsets(LotFrontage~., train_3)
summary(regfit.full3)
reg.summary3 <- summary(regfit.full3)
which.min(reg.summary3$bic)
m3 <- lm(LotFrontage~LotArea+BsmtFinSF1+X2ndFlrSF+TotRmsAbvGrd+GarageArea+EnclosedPorch+PoolArea, data=train_3)
summary(m3)
predict3 <- round(predict(m3, test_3))
for(i in 1:225)
NonNA2[is.na(NonNA2[[3]]), 3] <- predict3[i]
train_59 <- NonNA2_num[is.na(NonNA2[[59]])==FALSE, -1]
test_59 <- NonNA2_num[is.na(NonNA2[[59]]), -c(1, 24)]
regfit.full59=regsubsets(GarageYrBlt~., train_59)
summary(regfit.full59)
reg.summary59 <- summary(regfit.full59)
which.min(reg.summary59$bic)
m59 <- lm(GarageYrBlt~OverallCond+YearBuilt+YearRemodAdd+X1stFlrSF+LowQualFinSF+Fireplaces+GarageArea+EnclosedPorch+PoolArea, data=train_59)
summary(m59)
predict59 <- round(predict(m59, test_59))
for(i in 1:91)
NonNA2[is.na(NonNA2[[59]]), 59] <- predict59[i]
cate <- c(6, 25, 30:33, 35, 57:58, 60, 63:64, 72:74)
for(i in 1:length(cate)){
NonNA2[[cate[i]]] <- as.character(NonNA2[[cate[i]]])
NonNA2[[cate[i]]][is.na(NonNA2[[cate[i]]])] <- "None"
NonNA2[[cate[i]]] <- as.factor(NonNA2[[cate[i]]])
}
NonNA2[[2]] <- as.character(NonNA2[[2]])
NonNA2[[2]][is.na(NonNA2[[2]])] <- "RL"
NonNA2[[2]] <- as.factor(NonNA2[[2]])
NonNA2[[9]] <- as.character(NonNA2[[9]])
NonNA2[[9]][is.na(NonNA2[[9]])] <- "AllPub"
NonNA2[[9]] <- as.factor(NonNA2[[9]])
NonNA2[[23]] <- as.character(NonNA2[[23]])
NonNA2[[23]][is.na(NonNA2[[23]])] <- "VinylSd"
NonNA2[[23]] <- as.factor(NonNA2[[23]])
NonNA2[[24]] <- as.character(NonNA2[[24]])
NonNA2[[24]][is.na(NonNA2[[24]])] <- "Vinylsd"
NonNA2[[24]] <- as.factor(NonNA2[[24]])
NonNA2[[42]] <- as.character(NonNA2[[42]])
NonNA2[[42]][is.na(NonNA2[[42]])] <- "SBrkr"
NonNA2[[42]] <- as.factor(NonNA2[[42]])
NonNA2[[53]] <- as.character(NonNA2[[53]])
NonNA2[[53]][is.na(NonNA2[[53]])] <- "TA"
NonNA2[[53]] <- as.factor(NonNA2[[53]])
NonNA2[[55]] <- as.character(NonNA2[[55]])
NonNA2[[55]][is.na(NonNA2[[55]])] <- "Typ"
NonNA2[[55]] <- as.factor(NonNA2[[55]])
NonNA2[[78]] <- as.character(NonNA2[[78]])
NonNA2[[78]][is.na(NonNA2[[78]])] <- "WD"
NonNA2[[78]] <- as.factor(NonNA2[[78]])
NonNA3 <- NonNA2[, -9]
NonNA3[, 1] <- as.factor(NonNA3[, 1])
for(i in 1:1500){
if(NonNA3[i, 19]==NonNA3[i, 18])
NonNA3[i, 19] <- "No"
else
NonNA3[i, 19] <- "Yes"
}
NonNA3[, 19] <- as.factor(NonNA3[, 19])
sort(NonNA3$YearBuilt, decreasing = TRUE)[1]
NonNA3$YearBuilt <- 2010-NonNA3$YearBuilt
### 2.2 Model Exploration
## read the training data
data <- read.csv("TrainNonNA.csv")[,-1]
## read the test data
testdata <- read.csv("TestNonNA.csv")[, -1]
testdata <- rbind(data[1, -79], testdata)
testdata <- testdata[-1, ]
rownames(testdata) <- 1:1500
totalData <- rbind(data[,-79], testdata)
for (f in 1:length(names(totalData))){
levels(data[, f]) <- levels(totalData[, f])
levels(testdata[, f]) <- levels(totalData[, f])
}
## Logistic on full data
library(car)
library(caret)
model_full <- glm(data = data, affordabilitty~.,family = binomial)
alias(model_full)
# REMOVE ALIAS
data <- as.data.frame(data[,-c(37,45)])
# Divide data into numerical and categorical
numeric <- rep(NA,ncol(data))
for (i in 1:ncol(data)) {
if(is.numeric(data[,i])==TRUE)
numeric[i] <- i
}
numeric <- numeric[!is.na(numeric)]
data_numeric <- data[,numeric]
data_factor <- data [, -numeric]
for (i in 1:42) {
data_factor[,i] <- as.factor(data_factor[,i])
}
## LDA (0.920877)
train <- data_numeric[sampling,]
test <- data_numeric[-sampling,]
testx <- test[,-18]
lda_model_numeric <- lda(train$affordabilitty ~.,data = train)
lda_model_numeric
predict_lda1 <- predict(lda_model_numeric,testx)
table(predict_lda1$class,test$affordabilitty)
## QDA(0.914204)
qda_model_numeric <- qda(train$affordabilitty ~.,data = train)
qda_model_numeric
predict_qda1 <- predict(qda_model_numeric,testx)
table(predict_qda1$class,test$affordabilitty)
## KNN (0.9466158,k=1/ 0.950 second/ 0.95615, k=1,cut=0.7,scale)
train <- data_numeric[sampling,]
test <- data_numeric[-sampling,]
testx <- scale(test[,-33])
trainx <- scale(train[,-33])
trainy <- train[,33]
knn_model_numeric<-NA
error <- NA
for (i in 1:10) {
knn_model_numeric <- knn(trainx,testx,trainy,k=i )
error[i]<- mean(test$affordabilitty!= knn_model_numeric)
}
print(min(error))
print(which(error == min(error)))
knn_model_numeric <- knn(trainx,testx,trainy,k=1)
## NUMERIC
# Remove high correlation
df <- cor(data_numeric[,-35])#Remove y-variable
high <- findCorrelation(df,cutoff = 0.8)
high <- sort(high)
data_numeric <- data_numeric[,-high]#Variables with high correlation
log_numerical <- glm(affordabilitty~., data = data_numeric,family = binomial)
colnames(data_numeric)[high]
vif(log_numerical) #combining the result of VIF and FINDCORRELATION, we finalize the highly correlated variables.
library(car)
# Continue variable selection using stepAIC
stepAIC <- stepAIC(log_numerical)
data_numeric_new <- data_numeric[,-c(27,5,7,25,32,24,18,20,15,3,1,13,30)]#20NUMERIC(INCLUDING RESPONSE) LEFT
# TRAIN VS TEST with finalized numeric predictors
set.seed(123)
sampling <- sample(nrow(data_numeric), 2449, replace=FALSE)
train <- data_numeric_new[sampling,]
test <- data_numeric_new[-sampling,]
# KNN using finalized numerical predictors(0.9466158,k=1/ 0.950 second/ 0.95615, k=1,cut=0.7,scale )
train <- data_numeric_new[sampling,]
test <- data_numeric_new[-sampling,]
testx <- scale(test[,-20])
trainx <- scale(train[,-20])
trainy <- train[,20]
knn_model_numeric<-NA
error <- NA
for (i in 1:10) {
knn_model_numeric <- knn(trainx,testx,trainy,k=i )
error[i]<- mean(test$affordabilitty!= knn_model_numeric)
}
print(min(error))
print(which(error == min(error)))
knn_model_numeric <- knn(trainx,testx,trainy,k=1)
predict <- predict(log_model,testx)
predict <- ifelse(predict>0.5,1,0)
table(predict,test$affordabilitty)
## FACTOR
# Identify high correlation using CHI-SQUARE
result<- matrix(rep(NA,42*42),nrow = 42,ncol = 42)
for (i in 1:ncol(data_factor)) {
for (j in 1:ncol(data_factor)) {
result[i,j] <- (chisq.test(data_factor[,i],data_factor[,j])$p.value)>0.5
}
}
indep <- NA
for (i in 1:ncol(result)) {
indep[i] <- sum(result[i,])
}
## FACTOR LOGISTIC(0.9189)
model_factor_log <- glm(affordabilitty~.,data = data_factor, family = binomial)
summary(model_factor_log)
set.seed(123)
sampling <- sample(nrow(data_factor), 2449, replace=FALSE)
train <- data_factor[sampling,]
test <- data_factor[-sampling,]
testx <- test[,-43]
log_model_factor <- glm(train$affordabilitty ~.,data = train, family = binomial())
summary(log_model_factor)
predict <- predict(log_model_factor,testx)
predict <- ifelse(predict>0.5,1,0)
table(predict,test$affordabilitty)
mean(predict==test$affordabilitty)
## stepaic
stepAIC_factor <- stepAIC(log_model_factor,direction = "forward")
summary(stepAIC_factor)
predict <- predict(stepAIC_factor,testx)
predict <- ifelse(predict>0.5,1,0)
table(predict,test$affordabilitty)
## NEW FACTOR LOGISTIC(0.9294)
model_newfactor_log <- glm(affordabilitty~.,data = data_factor_new, family = binomial)
train <- data_factor_new[sampling,]
test <- data_factor_new[-sampling,]
testx <- test[,-36]
predict <- predict(model_newfactor_log,testx)
predict <- ifelse(predict>0.5,1,0)
table(predict,test$affordabilitty)
## COMBINED logisticc, factor and numeric(0.9542421, correlation cutoff=0.4/0.9513823, cutoff=0.8)
data_new <- cbind(data_factor,data_numeric_new)
train<- data_new[sampling,]
test<- data_new[-sampling,]
model_glm_combine <- glm(affordabilitty~.,data = train,family = binomial)
predict <- predict(model_glm_combine,test[,1:55])
predict <- ifelse(predict>0.5,1,0)
table(predict,test$affordabilitty)
mean(predict==test$affordabilitty)
### 2.3 Finalizing Model Selection
## seprate train and test
sampling <- sample(nrow(data), 2449, replace=FALSE)
train <- data[sampling,]
test <- data[-sampling,]
testx <- test[, -79]
## tree
tree.train=tree(affordabilitty~.,train)
tree.pre <- predict(tree.train,testx,type="class")
#Use cross validation to choose the best
tree.cv <- cv.tree(tree.train,FUN=prune.misclass)
qplot(tree.cv$size, tree.cv$dev, geom=c("point", "line"), xlab="size", ylab= "deviance")
prune <- prune.misclass(tree.train,best=6)
prune.pre <- predict(prune,testx,type="class")
table(prune.pre, test$affordabilitty)
## bagging
library(randomForest)
bagging_train <- randomForest(affordabilitty~., data=train, mtry=78, importance=TRUE)
rank <- sort(importance(bagging_train)[, 3], decreasing = TRUE)
varImpPlot(bagging_train)
bagging_pred <- predict(bagging_train, newdata=testx, type='class')
bagging_test_error <- mean(bagging_pred!=test$affordabilitty)
bagging_test_error
## random forest
tuneRF(data[, c(16, 11, 45, 37, 42, 18, 48, 43, 33, 61)], data[,79], stepFactor=1.5)
bagging_total <- randomForest(affordabilitty~OverallQual+Neighborhood+GrLivArea+TotalBsmtSF+X1stFlrSF+YearBuilt+FullBath+X2ndFlrSF+
BsmtFinSF1+GarageArea, data=data, mtry=4, ntree=300, importance=TRUE)
total.pred <- predict(bagging_total, newdata=testdata, type='class')
# write.csv(total.pred, file="kaggle1.csv")