@@ -21,10 +21,7 @@ The software packages used are
21
21
and [ mappraiser] ( https://github.com/B3Dcmb/midapack/tree/gaps-maxL ) .
22
22
They are provided as submodules in the ` extern ` folder so that the exact setup can be reproduced easily.
23
23
24
- The simulation worfklow, ` so_mappraiser.py ` , is a modified version of a script in sotodlib and can be obtained by running the following command:
25
- ``` bash
26
- patch extern/sotodlib/sotodlib/toast/scripts/so_sim.py -o so_mappraiser.py < so_sim.patch
27
- ```
24
+ The simulation worfklow, ` so_mappraiser.py ` , is a modified version of the ` toast_so_sim.py ` script in sotodlib.
28
25
29
26
## Files in this directory
30
27
34
31
35
32
* ` get_defaults.sh ` : Use ` so_mappraiser.py ` to generate a default parameter file for reference
36
33
* ` sat.toml ` : Master parameter file for the ` so_mappraiser.py ` workflow
34
+ * ` sat.par ` , ` atm.par ` : Sets of command line parameters for the workflow
37
35
* ` ffp10_lensed_scl_100_nside0512.fits ` : Input map to be observed during simulation
38
36
39
37
Schedule files
@@ -48,6 +46,7 @@ Tests (laptop: truncated schedule, decimated focal plane)
48
46
* ` run.white.uniform.sh ` : all detector _ pairs_ have the same white noise level (but not detectors in a pair)
49
47
* ` run.white.variable.sh ` : all detectors have different white noise levels
50
48
* ` run.one_over_f.sh ` : all detectors have different 1/f noise parameters
49
+ * ` run.atm.sh ` : in addition to variable instrumental noise, simulate atmosphere
51
50
* ` tests/syst ` : Evaluate the impact of systematic effects on the pair-differencing approach
52
51
* ` run.atm.cache.sh ` : simulate and cache the atmosphere simulation
53
52
* ` run.baseline.sh ` : run the baseline configuration (ideal case)
@@ -56,16 +55,16 @@ Tests (laptop: truncated schedule, decimated focal plane)
56
55
Execution (Jean-Zay: full schedule)
57
56
58
57
* ` slurm/run.atm.cache.slurm ` : Simulate and cache the atmosphere simulation
59
- * ` slurm/run.baseline.slurm ` : Run the baseline configuration (ideal case)
60
- * ` slurm/run.gains.constant.slurm ` : Run with gain errors which are the same for all detector pairs
61
- * ` slurm/run.gains.random.slurm ` : Run with Gaussian distributed gain errors
58
+ * ` slurm/get_sample_data.slurm ` : Get sample observation data for testing
59
+ * ` slurm/opti/* ` : Run the optimality tests
62
60
63
61
Post-processing
64
62
65
- * ` utils.py ` : Some utility routines
66
- * ` plot_maps.py ` : Produce difference maps and histograms for a given run
67
- * ` plot_maps_all.py ` : Plot difference maps and histograms for all runs under a given directory
68
- * ` spectrum.py ` : Power spectrum routines
69
- * ` get_mask_apo.py ` : Create and save a mask (requires [ NaMaster] ( https://namaster.readthedocs.io ) )
70
- * ` compute_spectra.py ` : Compute and save power spectra for all runs
63
+ * ` post/compute_spectra.py ` : Compute and save power spectra for all runs
64
+ * ` post/get_input_spectra.py ` : Compute and save power spectra of input map
65
+ * ` post/get_mask_apo.py ` : Create and save a mask (requires [ NaMaster] ( https://namaster.readthedocs.io ) )
66
+ * ` post/plot_maps_all.py ` : Plot difference maps and histograms for all runs in a root directory
67
+ * ` post/plot_maps.py ` : Produce difference maps and histograms for a given run
68
+ * ` post/plot_spectra.py ` : Plot power spectra recursively for all runs in a root directory
69
+ * ` post/spectrum.py ` : Power spectrum routines
71
70
* ` slurm/run.spectra.slurm ` : Job script to compute power spectra
0 commit comments