-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassify.py
61 lines (53 loc) · 1.58 KB
/
classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from __future__ import division
from tools.csv_tools import *
import numpy as np
from sklearn import preprocessing
import pandas as pd
def get_all_data(files):
all_data = []
for f in files:
genre = read_mfcc_csv(f)
for s in genre:
all_data.append(s)
return all_data
#split data into input and output numpy arrays
#concatenate mfccs for each frame
#scale features
def preprocess_and_seperate(data):
y = []
all_feats = []
for song in data:
mfccs_in_song = song[0]
oned_mfccs_in_song = []
for frame in mfccs_in_song:
for m in frame:
oned_mfccs_in_song.append(m)
all_feats.append(oned_mfccs_in_song)
label = song[-1]
y.append(label)
all_feats = check_size(all_feats)
feat = np.array(all_feats)
feat = preprocessing.scale(feat)
y = np.array(y)
return feat, y
def validate(x_test, y_test, clf):
num_test = len(y_test)
count = 0
y_pred = []
for i in range(num_test):
x = x_test[i].reshape(1,-1)
pred = clf.predict(x)
pred = pred[0]
y_pred.append(pred)
actual_label = y_test[i]
if(actual_label == pred):
count = count + 1
cm = pd.crosstab(pd.Series(y_pred), pd.Series(y_test), rownames=['Predicted'], colnames=['Actual'], margins=True)
accuracy = (count/num_test)
return count, accuracy, cm
def check_size(list):
min_size = min(len(i) for i in list)
for i in range(len(list)):
if len(list[i]) > min_size:
list[i] = list[i][:min_size]
return list