-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathApproach1_Generic EDA.py
132 lines (62 loc) · 2.15 KB
/
Approach1_Generic EDA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/usr/bin/env python
# coding: utf-8
##Import Libraries and Load Data##
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# Load the dataset
#df = pd.read_csv('your_dataset.csv') # Replace 'your_dataset.csv' with your file path
df = pd.read_csv (r'/Users/xxxx/Downloads/titanic.csv', sep=',')
#Basic Dataset Overview#
print("Shape of the dataset:", df.shape)
print("Data types:\n", df.dtypes)
##Display First Few Rows##
df.head()
Check for Missing Values
print("Missing values per column:\n", df.isnull().sum())
##Summary Statistics##
df.describe(include='all') # Shows statistics for both numerical and categorical columns
#Univariate Analysis#
##Distribution of Numerical Features##
numeric_columns = df.select_dtypes(include=[np.number]).columns
for col in numeric_columns:
plt.figure(figsize=(8, 4))
sns.histplot(df[col].dropna(), kde=True)
plt.title(f'Distribution of {col}')
plt.show()
#Distribution of Categorical Features#
categorical_columns = df.select_dtypes(include=['object', 'category']).columns
for col in categorical_columns:
plt.figure(figsize=(8, 4))
sns.countplot(x=col, data=df)
plt.title(f'Count plot of {col}')
plt.xticks(rotation=45)
plt.show()
#Bivariate Analysis#
##Numerical vs Numerical (Correlation Heatmap)##
plt.figure(figsize=(12, 8))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm', fmt='.2f')
plt.title("Correlation Heatmap")
plt.show()
#Categorical vs Numerical (Box Plot)#
for cat_col in categorical_columns:
for num_col in numeric_columns:
plt.figure(figsize=(8, 4))
sns.boxplot(x=cat_col, y=num_col, data=df)
plt.title(f'{num_col} by {cat_col}')
plt.xticks(rotation=45)
plt.show()
#Outlier Detection#
##Box Plot for Outliers##
for col in numeric_columns:
plt.figure(figsize=(8, 4))
sns.boxplot(x=df[col])
plt.title(f'Box plot of {col}')
plt.show()
#Checking for Skewness#
skew_values = df[numeric_columns].skew()
print("Skewness of numerical features:\n", skew_values)
#Multivariate Analysis (Pair Plot)#
sns.pairplot(df[numeric_columns])
plt.show()