-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvec3.h
145 lines (114 loc) · 3.79 KB
/
vec3.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#ifndef VEC3_H
#define VEC3_H
class vec3 {
public:
double e[3];
vec3() : e{0,0,0} {}
vec3(double e0, double e1, double e2) : e{e0, e1, e2} {}
double x() const { return e[0]; }
double y() const { return e[1]; }
double z() const { return e[2]; }
vec3 operator - () const { return vec3(-e[0], -e[1], -e[2]); }
double operator[](int i) const { return e[i]; }
double& operator[](int i) { return e[i]; }
vec3& operator += (const vec3& v) {
e[0] += v.e[0];
e[1] += v.e[1];
e[2] += v.e[2];
return *this;
}
vec3& operator *= (double t) {
e[0] *= t;
e[1] *= t;
e[2] *= t;
return *this;
}
vec3& operator /= (double t) {
return *this *= 1/t;
}
double length() const {
return std::sqrt(length_squared());
}
double length_squared() const {
return e[0]*e[0] + e[1]*e[1] + e[2]*e[2];
}
bool near_zero() const {
// Returns true if the vector is close to zero in all dimensions
auto s = 1e-8;
return (std::fabs(e[0]) < s) && (std::fabs(e[1]) < s) && (std::fabs(e[2]) < s);
}
static vec3 random() {
return vec3(random_double(), random_double(), random_double());
}
static vec3 random(double min, double max) {
return vec3(random_double(min, max), random_double(min, max), random_double(min, max));
}
};
using point3 = vec3;
// Vector utility functions
inline std::ostream& operator << (std::ostream& out, const vec3& v) {
return out << v.e[0] << ' ' << v.e[1] << ' ' << v.e[2];
}
inline vec3 operator + (const vec3& u, const vec3& v) {
return vec3(u.e[0] + v.e[0], u.e[1] + v.e[1], u.e[2] + v.e[2]);
}
inline vec3 operator - (const vec3& u, const vec3& v) {
return vec3(u.e[0] - v.e[0], u.e[1] - v.e[1], u.e[2] - v.e[2]);
}
inline vec3 operator * (const vec3& u, const vec3& v) {
return vec3(u.e[0] * u.e[0], u.e[1] * u.e[1], u.e[2] * u.e[2]);
}
inline vec3 operator * (double t, const vec3& v) {
return vec3(t * v.e[0], t * v.e[1], t * v.e[2]);
}
inline vec3 operator * (const vec3& v, double t) {
return t * v;
}
inline vec3 operator / (const vec3& v, double t) {
return (1 / t) * v;
}
inline double dot(const vec3& u, const vec3& v) {
return u.e[0] * v.e[0]
+ u.e[1] * v.e[1]
+ u.e[2] * v.e[2];
}
inline vec3 cross (const vec3& u, const vec3& v) {
return vec3(u.e[1] * v.e[2] - u.e[2] * v.e[1],
u.e[2] * v.e[0] - u.e[0] * v.e[2],
u.e[0] * v.e[1] - u.e[1] * v.e[0]);
}
inline vec3 unit_vector (const vec3& v) {
return v / v.length();
}
inline vec3 random_in_unit_sphere() {
while (true) {
auto p = vec3::random(-1, 1);
if (p.length_squared() < 1)
return p;
}
}
inline vec3 random_unit_vector() {
while (true) {
auto p = vec3::random(-1, 1);
auto lensq = p.length_squared();
if (1e-160 < lensq && lensq <= 1.0)
return p / sqrt(lensq);
}
}
inline vec3 random_on_hemisphere(const vec3& normal) {
vec3 on_unit_sphere = random_unit_vector();
if (dot(on_unit_sphere, normal) > 0.0) // In the same hemisphere as the normal
return on_unit_sphere;
else
return -on_unit_sphere;
}
inline vec3 reflect(const vec3& v, const vec3& n) {
return v - 2*dot(v,n)*n;
}
inline vec3 refract (const vec3& uv, const vec3& n, double etai_over_etat) {
auto cos_theta = std::fmin(dot(-uv, n), 1.0);
vec3 r_out_perp = etai_over_etat * (uv + cos_theta*n);
vec3 r_out_parallel = -std::sqrt(std::fabs(1.0 - r_out_perp.length_squared())) * n;
return r_out_perp + r_out_parallel;
}
#endif