-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathtrain.py
465 lines (425 loc) · 21.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
# from pase.models.core import Waveminionet
import warnings
# Pawel: this one is for nightly build of pytorch, as it
# spits out massive number of warnings
warnings.filterwarnings('ignore')
import librosa
from pase.models.modules import VQEMA
from pase.dataset import PairWavDataset, DictCollater, MetaWavConcatDataset
from pase.models.WorkerScheduler.trainer import trainer
#from torchvision.transforms import Compose
from pase.transforms import *
from pase.losses import *
from pase.utils import pase_parser, worker_parser
import pase
from torch.utils.data import DataLoader
import torch
import pickle
import torch.nn as nn
import numpy as np
import argparse
import os
import json
import random
torch.backends.cudnn.benchmark = True
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
def str2None(v):
if v.lower() in ('none'):
return None
return v
def make_transforms(chunk_size, workers_cfg, hop,
random_scale=False,
stats=None, trans_cache=None):
trans = [ToTensor()]
keys = ['totensor']
# go through all minions first to check whether
# there is MI or not to make chunker
mi = False
for type, minions_cfg in workers_cfg.items():
for minion in minions_cfg:
if 'mi' in minion['name']:
mi = True
if mi:
trans.append(MIChunkWav(chunk_size, random_scale=random_scale))
else:
trans.append(SingleChunkWav(chunk_size, random_scale=random_scale))
collater_keys = []
znorm = False
for type, minions_cfg in workers_cfg.items():
for minion in minions_cfg:
name = minion['name']
if name in collater_keys:
raise ValueError('Duplicated key {} in minions'.format(name))
collater_keys.append(name)
# look for the transform config if available
# in this minion
tr_cfg=minion.pop('transform', {})
tr_cfg['hop'] = hop
if name == 'mi' or name == 'cmi' or name == 'spc' or \
name == 'overlap' or name == 'gap' or 'regu' in name:
continue
elif 'lps' in name:
znorm = True
# copy the minion name into the transform name
tr_cfg['name'] = name
#trans.append(LPS(opts.nfft, hop=opts.LPS_hop, win=opts.LPS_win, der_order=opts.LPS_der_order))
trans.append(LPS(**tr_cfg))
elif 'gtn' in name:
znorm = True
tr_cfg['name'] = name
trans.append(Gammatone(**tr_cfg))
#trans.append(Gammatone(opts.gtn_fmin, opts.gtn_channels,
# hop=opts.gammatone_hop, win=opts.gammatone_win,der_order=opts.gammatone_der_order))
elif 'lpc' in name:
znorm = True
tr_cfg['name'] = name
trans.append(LPC(**tr_cfg))
#trans.append(LPC(opts.lpc_order, hop=opts.LPC_hop,
# win=opts.LPC_win))
elif 'fbank' in name:
znorm = True
tr_cfg['name'] = name
trans.append(FBanks(**tr_cfg))
#trans.append(FBanks(n_filters=opts.fbank_filters,
# n_fft=opts.nfft,
# hop=opts.fbanks_hop,
# win=opts.fbanks_win,
# der_order=opts.fbanks_der_order))
elif 'mfcc_librosa' in name:
znorm = True
tr_cfg['name'] = name
trans.append(MFCC_librosa(**tr_cfg))
#trans.append(MFCC_librosa(hop=opts.mfccs_librosa_hop, win=opts.mfccs_librosa_win, order=opts.mfccs_librosa_order, der_order=opts.mfccs_librosa_der_order, n_mels=opts.mfccs_librosa_n_mels, htk=opts.mfccs_librosa_htk))
elif 'mfcc' in name:
znorm = True
tr_cfg['name'] = name
trans.append(MFCC(**tr_cfg))
#trans.append(MFCC(hop=opts.mfccs_hop, win=opts.mfccs_win, order=opts.mfccs_order, der_order=opts.mfccs_der_order))
elif 'prosody' in name:
znorm = True
tr_cfg['name'] = name
trans.append(Prosody(**tr_cfg))
#trans.append(Prosody(hop=opts.prosody_hop, win=opts.prosody_win, der_order=opts.prosody_der_order))
elif name == 'chunk' or name == 'cchunk':
znorm = False
elif 'kaldimfcc' in name:
znorm = True
tr_cfg['name'] = name
trans.append(KaldiMFCC(**tr_cfg))
#trans.append(KaldiMFCC(kaldi_root=opts.kaldi_root, hop=opts.kaldimfccs_hop, win=opts.kaldimfccs_win,num_mel_bins=opts.kaldimfccs_num_mel_bins,num_ceps=opts.kaldimfccs_num_ceps,der_order=opts.kaldimfccs_der_order))
elif "kaldiplp" in name:
znorm = True
tr_cfg['name'] = name
trans.append(KaldiPLP(**tr_cfg))
#trans.append(KaldiPLP(kaldi_root=opts.kaldi_root, hop=opts.kaldiplp_hop, win=opts.kaldiplp_win))
else:
raise TypeError('Unrecognized module \"{}\"'
'whilst building transfromations'.format(name))
keys.append(name)
if znorm and stats is not None:
trans.append(ZNorm(stats))
keys.append('znorm')
if trans_cache is None:
trans = Compose(trans)
else:
print (keys, trans)
trans = CachedCompose(trans, keys, trans_cache)
return trans, collater_keys
def config_zerospeech(noises_dir=None,
noises_snrs=[0, 5, 10]):
trans = SimpleAdditive(noises_dir, noises_snrs)
return trans
def build_dataset_providers(opts, minions_cfg):
dr = len(opts.data_root)
dc = len(opts.data_cfg)
if dr > 1 or dc > 1:
assert dr == dc, (
"Specced at least one repeated option for data_root or data_cfg."
"This assumes multiple datasets, and their resp configs should be matched."
"Currently got {} data_root and {} data_cfg options".format(dr, dc)
)
if opts.dtrans_cfg is not None and len(opts.dtrans_cfg) > 0:
assert dr == len(opts.dtrans_cfg), (
"Spec one dtrans_cfg per data_root (can be the same) or None"
)
#make sure defaults for dataset has been properly set
if len(opts.dataset) < dr:
print ('Provided fewer dataset options than data_root. Repeating default.')
for _ in range(len(opts.datasets), dr):
opts.dataset.append('LibriSpeechSegTupleWavDataset')
if len(opts.zero_speech_p) < dr:
print ('Provided fewer zero_speech_p options than data_roots. Repeating default.')
for _ in range(len(opts.zero_speech_p), dr):
opts.zero_speech_p.append(0)
#this is to set default in proper way, as argparse
#uses whatever is set as default in append mode as
#initial values (i.e. do not override them)
if len(opts.dataset) < 1:
opts.dataset.append('LibriSpeechSegTupleWavDataset')
#TODO: allow for different base transforms for different datasets
trans, batch_keys = make_transforms(opts.chunk_size, minions_cfg,
opts.hop,
opts.random_scale,
opts.stats, opts.trans_cache)
print(trans)
dsets, va_dsets = [], []
for idx in range(dr):
print ('Preparing dset for {}'.format(opts.data_root[idx]))
if opts.dtrans_cfg is not None and \
len(opts.dtrans_cfg) > 0 and \
str2None(opts.dtrans_cfg[idx]) is not None :
with open(opts.dtrans_cfg[idx], 'r') as dtr_cfg:
dtr = json.load(dtr_cfg)
#dtr['trans_p'] = opts.distortion_p
dist_trans = config_distortions(**dtr)
print(dist_trans)
else:
dist_trans = None
if opts.zerospeech_cfg is not None \
and len(opts.zero_speech_p) > 0 \
and opts.zero_speech_p[idx] > 0:
with open(opts.zerospeech_cfg[idx], 'r') as zsp_cfg:
ztr = json.load(zsp_cfg)
zp_trans = config_zerospeech(**ztr)
print(zp_trans)
else:
zp_trans = None
# Build Dataset(s) and DataLoader(s)
dataset = getattr(pase.dataset, opts.dataset[idx])
print ('Dataset name {} and opts {}'.format(dataset, opts.dataset[idx]))
dset = dataset(opts.data_root[idx], opts.data_cfg[idx], 'train',
transform=trans,
noise_folder=opts.noise_folder,
whisper_folder=opts.whisper_folder,
distortion_probability=opts.distortion_p,
distortion_transforms=dist_trans,
zero_speech_p=opts.zero_speech_p[idx],
zero_speech_transform=zp_trans,
preload_wav=opts.preload_wav,
ihm2sdm=opts.ihm2sdm)
dsets.append(dset)
if opts.do_eval:
va_dset = dataset(opts.data_root[idx], opts.data_cfg[idx],
'valid', transform=trans,
noise_folder=opts.noise_folder,
whisper_folder=opts.whisper_folder,
distortion_probability=opts.distortion_p,
distortion_transforms=dist_trans,
zero_speech_p=opts.zero_speech_p[idx],
zero_speech_transform=zp_trans,
preload_wav=opts.preload_wav,
ihm2sdm=opts.ihm2sdm)
va_dsets.append(va_dset)
ret = None
if len(dsets) > 1:
ret = (MetaWavConcatDataset(dsets), )
if opts.do_eval:
ret = ret + (MetaWavConcatDataset(va_dsets), )
else:
ret = (dsets[0], )
if opts.do_eval:
ret = ret + (va_dsets[0], )
if opts.do_eval is False or len(va_dsets) == 0:
ret = ret + (None, )
return ret, batch_keys
def train(opts):
CUDA = True if torch.cuda.is_available() and not opts.no_cuda else False
device = 'cuda' if CUDA else 'cpu'
num_devices = 1
np.random.seed(opts.seed)
random.seed(opts.seed)
torch.manual_seed(opts.seed)
if CUDA:
torch.cuda.manual_seed_all(opts.seed)
num_devices = torch.cuda.device_count()
print('[*] Using CUDA {} devices'.format(num_devices))
else:
print('[!] Using CPU')
print('Seeds initialized to {}'.format(opts.seed))
#torch.autograd.set_detect_anomaly(True)
# ---------------------
# Build Model
minions_cfg = worker_parser(opts.net_cfg)
#make_transforms(opts, minions_cfg)
opts.random_scale = str2bool(opts.random_scale)
dsets, collater_keys = build_dataset_providers(opts, minions_cfg)
dset, va_dset = dsets
# Build collater, appending the keys from the loaded transforms to the
# existing default ones
collater = DictCollater()
collater.batching_keys.extend(collater_keys)
dloader = DataLoader(dset, batch_size=opts.batch_size,
shuffle=True, collate_fn=collater,
num_workers=opts.num_workers,drop_last=True,
pin_memory=CUDA)
# Compute estimation of bpe. As we sample chunks randomly, we
# should say that an epoch happened after seeing at least as many
# chunks as total_train_wav_dur // chunk_size
bpe = (dset.total_wav_dur // opts.chunk_size) // opts.batch_size
print ("Dataset has a total {} hours of training data".format(dset.total_wav_dur/16000/3600.0))
opts.bpe = bpe
if opts.do_eval:
assert va_dset is not None, (
"Asked to do validation, but failed to build validation set"
)
va_dloader = DataLoader(va_dset, batch_size=opts.batch_size,
shuffle=True, collate_fn=DictCollater(),
num_workers=opts.num_workers,drop_last=True,
pin_memory=CUDA)
va_bpe = (va_dset.total_wav_dur // opts.chunk_size) // opts.batch_size
opts.va_bpe = va_bpe
else:
va_dloader = None
# fastet lr to MI
#opts.min_lrs = {'mi':0.001}
if opts.fe_cfg is not None:
with open(opts.fe_cfg, 'r') as fe_cfg_f:
print(fe_cfg_f)
fe_cfg = json.load(fe_cfg_f)
print(fe_cfg)
else:
fe_cfg = None
# load config file for attention blocks
if opts.att_cfg:
with open(opts.att_cfg) as f:
att_cfg = json.load(f)
print(att_cfg)
else:
att_cfg = None
print(str2bool(opts.tensorboard))
Trainer = trainer(frontend_cfg=fe_cfg,
att_cfg=att_cfg,
minions_cfg=minions_cfg,
cfg=vars(opts),
backprop_mode=opts.backprop_mode,
lr_mode=opts.lr_mode,
tensorboard=str2bool(opts.tensorboard),
device=device)
print(Trainer.model)
print('Frontend params: ', Trainer.model.frontend.describe_params())
Trainer.model.to(device)
Trainer.train_(dloader, device=device, valid_dataloader=va_dloader)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_root', action='append',
default=[])
parser.add_argument('--data_cfg', action='append',
default=[])
parser.add_argument('--dtrans_cfg', action='append', default=[],
help='Distortion transform to apply, note in case of'
'mutliple datasets, provide config multiple times')
parser.add_argument('--zerospeech_cfg', action='append', default=None)
parser.add_argument('--zero_speech_p', action='append', type=float,
default=[0.0])
parser.add_argument('--dataset', action='append',
default=[],
help='Dataset to be used: '
'(1) PairWavDataset, '
'(2) LibriSpeechSegTupleWavDataset, '
'(Def: LibriSpeechSegTupleWavDataset.)'
'When used multiple times, datasets get'
'concatenated with ConcatDataset')
parser.add_argument('--stats', type=str,
default='data/librispeech_stats.pkl',
help='Stats file')
parser.add_argument('--noise_folder', type=str, default=None)
parser.add_argument('--whisper_folder', type=str, default=None)
parser.add_argument('--distortion_p', type=float, default=0.4)
parser.add_argument('--net_ckpt', type=str, default=None,
help='Ckpt to initialize the full network '
'(Def: None).')
parser.add_argument('--net_cfg', type=str, help="Workers configuration file (see cfg/workers/*.cfg)",
default=None)
parser.add_argument('--fe_cfg', help="Frontend (main) model definition, see cfg/frontend/*.cfg - PASE or PASE+", type=str, default=None)
#parser.add_argument('--do_eval', action='store_true', default=False)
parser.add_argument('--pretrained_ckpt', type=str, default=None)
parser.add_argument('--save_path', type=str, default='ckpt')
parser.add_argument('--max_ckpts', type=int, default=5)
parser.add_argument('--trans_cache', type=str,
default=None)
parser.add_argument('--num_workers', type=int, default=2)
parser.add_argument('--seed', type=int, default=2)
parser.add_argument('--no-cuda', action='store_true', default=False)
parser.add_argument('--random_scale', type=str, default='False', help="random scaling of noise")
parser.add_argument('--chunk_size', type=int, default=16000)
parser.add_argument('--log_freq', type=int, default=100)
parser.add_argument('--epoch', type=int, default=1000)
parser.add_argument('--nfft', type=int, default=2048)
parser.add_argument('--fbank_filters', type=int, default=40)
parser.add_argument('--lpc_order', type=int, default=25)
parser.add_argument('--gtn_channels', type=int, default=40)
parser.add_argument('--gtn_fmin', type=int, default=100)
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--hidden_size', type=int, default=256)
parser.add_argument('--hidden_layers', type=int, default=2)
parser.add_argument('--fe_opt', type=str, default='Adam')
parser.add_argument('--min_opt', type=str, default='Adam')
parser.add_argument('--lrdec_step', type=int, default=30,
help='Number of epochs to scale lr (Def: 30).')
parser.add_argument('--lrdecay', type=float, default=0,
help='Learning rate decay factor with '
'cross validation. After patience '
'epochs, lr decays this amount in '
'all optimizers. '
'If zero, no decay is applied (Def: 0).')
parser.add_argument('--dout', type=float, default=0.2)
parser.add_argument('--fe_lr', type=float, default=0.0001)
parser.add_argument('--min_lr', type=float, default=0.0004)
parser.add_argument('--z_lr', type=float, default=0.0004)
parser.add_argument('--rndmin_train', action='store_true',
default=False)
parser.add_argument('--adv_loss', type=str, default='BCE',
help='BCE or L2')
parser.add_argument('--warmup', type=int, default=1000000000,
help='Epoch to begin applying z adv '
'(Def: 1000000000 to not apply it).')
parser.add_argument('--zinit_weight', type=float, default=1)
parser.add_argument('--zinc', type=float, default=0.0002)
parser.add_argument('--vq_K', type=int, default=50,
help='Number of K embeddings in VQ-enc. '
'(Def: 50).')
parser.add_argument('--log_grad_keys', type=str, nargs='+',
default=[])
parser.add_argument('--vq', action='store_true', default=False,
help='Do VQ quantization of enc output (Def: False).')
parser.add_argument('--cchunk_prior', action='store_true', default=False)
parser.add_argument('--sup_exec', type=str, default=None)
parser.add_argument('--sup_freq', type=int, default=1)
parser.add_argument('--preload_wav', action='store_true', default=False,
help='Preload wav files in Dataset (Def: False).')
parser.add_argument('--cache_on_load', action='store_true', default=False,
help='Argument to activate cache loading on the fly '
'for the wav files in datasets (Def: False).')
parser.add_argument('--no_continue', type=str, default="False",help="whether continue the training")
parser.add_argument('--lr_mode', type=str, default='step', help='learning rate scheduler mode')
parser.add_argument('--att_cfg', type=str, help='Path to the config file of attention blocks')
parser.add_argument('--avg_factor', type=float, default=0, help="running average factor for option running_avg for attention")
parser.add_argument('--att_mode', type=str, help='options for attention block')
parser.add_argument('--tensorboard', type=str, default='True', help='use tensorboard for logging')
parser.add_argument('--backprop_mode', type=str, default='base',help='backprop policy can be choose from: [base, select_one, select_half]')
parser.add_argument('--dropout_rate', type=float, default=0.5, help="drop out rate for workers")
parser.add_argument('--delta', type=float, help="delta for hyper volume loss scheduling")
parser.add_argument('--temp', type=float, help="temp for softmax or adaptive losss")
parser.add_argument('--alpha', type=float, help="alpha for adaptive loss")
parser.add_argument('--att_K', type=int, help="top K indices to select for attention")
#this one is for AMI/ICSI parallel like datasets, so one can selectively pick sdm chunks
parser.add_argument('--ihm2sdm', type=str, default=None,
help="Pick random of one of these channels."
"Can be empty or None in which case only"
"ihm channel gets used for chunk and cchunk")
#some transformations rely on kaldi to extract feats
parser.add_argument('--kaldi_root', type=str, default=None,
help='Absolute path to kaldi installation. Possibly of use for feature related bits.')
parser.add_argument('--hop', type=int, default=160)
opts = parser.parse_args()
# enforce evaluation for now, no option to disable
opts.do_eval = True
opts.ckpt_continue = not str2bool(opts.no_continue)
if opts.net_cfg is None:
raise ValueError('Please specify a net_cfg file')
if not os.path.exists(opts.save_path):
os.makedirs(opts.save_path)
with open(os.path.join(opts.save_path, 'train.opts'), 'w') as opts_f:
opts_f.write(json.dumps(vars(opts), indent=2))
train(opts)