@@ -353,8 +353,8 @@ def beta_A_isometric_monte_carlo(self, v, **kwargs):
353353
354354 where the relative free energy of the reference system is
355355
356- .. math::
357- \Delta A_0\equiv
356+ .. math::
357+ \Delta A_0\equiv
358358 A_0(v,\boldsymbol{\lambda})-A_0(1,\boldsymbol{\lambda}),
359359
360360 and where the isometric ensemble average here is
@@ -371,9 +371,9 @@ def beta_A_isometric_monte_carlo(self, v, **kwargs):
371371
372372 where the free energy measure here is
373373
374- .. math::
375- A_\star(\boldsymbol{\lambda})\equiv
376- A_0(1,\lambda}) + U_1(\boldsymbol{\lambda}).
374+ .. math::
375+ A_\star(\boldsymbol{\lambda})\equiv
376+ A_0(1,\boldsymbol{\ lambda}) + U_1(\boldsymbol{\lambda}).
377377
378378 Args:
379379 v (array_like): The nondimensional end separation.
@@ -445,7 +445,7 @@ def beta_G_isotensional_monte_carlo(self, p, **kwargs):
445445 where the relative free energy of the reference system is
446446
447447 .. math::
448- \Delta G_0\equiv
448+ \Delta G_0\equiv
449449 G_0(p,\boldsymbol{\lambda})-G_0(0,\boldsymbol{\lambda}),
450450
451451 and where the isotensional ensemble average here is
@@ -463,8 +463,8 @@ def beta_G_isotensional_monte_carlo(self, p, **kwargs):
463463 where the free energy measure here is
464464
465465 .. math::
466- G_\star(\boldsymbol{\lambda})\equiv
467- G_0(0,\lambda}) + U_1(\boldsymbol{\lambda}).
466+ G_\star(\boldsymbol{\lambda})\equiv
467+ G_0(0,\boldsymbol{\ lambda}) + U_1(\boldsymbol{\lambda}).
468468
469469 Args:
470470 p (array_like): The nondimensional end force.
0 commit comments