diff --git a/src/sage/modules/free_quadratic_module_integer_symmetric.py b/src/sage/modules/free_quadratic_module_integer_symmetric.py index 3f6a34e778c..b6184fede3b 100644 --- a/src/sage/modules/free_quadratic_module_integer_symmetric.py +++ b/src/sage/modules/free_quadratic_module_integer_symmetric.py @@ -1516,6 +1516,15 @@ def short_vectors(self, n, **kwargs): [[(0, 0)], [], [(1, 1), (-1, -1), (0, 1), (0, -1), (1, 0), (-1, 0)]] sage: A2.short_vectors(3, up_to_sign_flag=True) # needs sage.graphs sage.libs.pari [[(0, 0)], [], [(1, 1), (0, 1), (1, 0)]] + + TESTS: + + Check that keyword arguments are passed to :meth:`sage.quadratic_forms.short_vector_list_up_to_length` + (:issue:`39848`):: + + sage: A2 = IntegralLattice('A2') # needs sage.graphs + sage: A2.short_vectors(3, up_to_sign_flag=False) # needs sage.graphs sage.libs.pari + [[(0, 0)], [], [(1, 1), (-1, -1), (0, 1), (0, -1), (1, 0), (-1, 0)]] """ p, m = self.signature_pair() if p * m != 0: @@ -1525,7 +1534,7 @@ def short_vectors(self, n, **kwargs): e = -2 from sage.quadratic_forms.quadratic_form import QuadraticForm q = QuadraticForm(e * self.gram_matrix()) - short = q.short_vector_list_up_to_length(n, *kwargs) + short = q.short_vector_list_up_to_length(n, **kwargs) return [[self(v * self.basis_matrix()) for v in L] for L in short] def _fplll_enumerate(self, target=None):