@@ -561,9 +561,9 @@ def BarbellGraph(n1, n2):
561561
562562 sage: n1, n2 = randint(3, 10), randint(0, 10)
563563 sage: g = graphs.BarbellGraph(n1, n2)
564- sage: g.num_verts () == 2 * n1 + n2
564+ sage: g.n_vertices () == 2 * n1 + n2
565565 True
566- sage: g.num_edges () == 2 * binomial(n1, 2) + n2 + 1 # needs sage.symbolic
566+ sage: g.n_edges () == 2 * binomial(n1, 2) + n2 + 1 # needs sage.symbolic
567567 True
568568 sage: g.is_connected()
569569 True
@@ -638,9 +638,9 @@ def LollipopGraph(n1, n2):
638638
639639 sage: n1, n2 = randint(3, 10), randint(0, 10)
640640 sage: g = graphs.LollipopGraph(n1, n2)
641- sage: g.num_verts () == n1 + n2
641+ sage: g.n_vertices () == n1 + n2
642642 True
643- sage: g.num_edges () == binomial(n1, 2) + n2 # needs sage.symbolic
643+ sage: g.n_edges () == binomial(n1, 2) + n2 # needs sage.symbolic
644644 True
645645 sage: g.is_connected()
646646 True
@@ -711,9 +711,9 @@ def TadpoleGraph(n1, n2):
711711
712712 sage: n1, n2 = randint(3, 10), randint(0, 10)
713713 sage: g = graphs.TadpoleGraph(n1, n2)
714- sage: g.num_verts () == n1 + n2
714+ sage: g.n_vertices () == n1 + n2
715715 True
716- sage: g.num_edges () == n1 + n2
716+ sage: g.n_edges () == n1 + n2
717717 True
718718 sage: g.girth() == n1
719719 True
@@ -761,10 +761,10 @@ def AztecDiamondGraph(n):
761761 sage: graphs.AztecDiamondGraph(2)
762762 Aztec Diamond graph of order 2
763763
764- sage: [graphs.AztecDiamondGraph(i).num_verts () for i in range(8)]
764+ sage: [graphs.AztecDiamondGraph(i).n_vertices () for i in range(8)]
765765 [0, 4, 12, 24, 40, 60, 84, 112]
766766
767- sage: [graphs.AztecDiamondGraph(i).num_edges () for i in range(8)]
767+ sage: [graphs.AztecDiamondGraph(i).n_edges () for i in range(8)]
768768 [0, 4, 16, 36, 64, 100, 144, 196]
769769
770770 sage: G = graphs.AztecDiamondGraph(3)
@@ -803,9 +803,9 @@ def DipoleGraph(n):
803803
804804 sage: n = randint(0, 10)
805805 sage: g = graphs.DipoleGraph(n)
806- sage: g.num_verts () == 2
806+ sage: g.n_vertices () == 2
807807 True
808- sage: g.num_edges () == n
808+ sage: g.n_edges () == n
809809 True
810810 sage: g.is_connected() == (n > 0)
811811 True
@@ -2660,7 +2660,7 @@ def HanoiTowerGraph(pegs, disks, labels=True, positions=True):
26602660 A slightly larger instance. ::
26612661
26622662 sage: H = graphs.HanoiTowerGraph(4, 6, labels=False, positions=False)
2663- sage: H.num_verts ()
2663+ sage: H.n_vertices ()
26642664 4096
26652665 sage: H.distance(0, 4^6-1)
26662666 17
0 commit comments