@@ -142,7 +142,7 @@ def __init__(self, polys):
142
142
vars = R .variable_names ()
143
143
A = ProductProjectiveSpaces ([2 , 2 ],R .base_ring (),vars )
144
144
CR = A .coordinate_ring ()
145
- #Check for following:
145
+ # Check for following:
146
146
# Is the user calling in 2 polynomials from a list or tuple?
147
147
# Is there one biquadratic and one bilinear polynomial?
148
148
if len (polys ) != 2 :
@@ -411,7 +411,7 @@ def Hpoly(self, component, i, j):
411
411
sage: X.Hpoly(0, 1, 0)
412
412
2*y0*y1^3 + 2*y0*y1*y2^2 - y1*y2^3
413
413
"""
414
- #Check Errors in Passed in Values
414
+ # Check Errors in Passed in Values
415
415
if component not in [0 , 1 ]:
416
416
raise ValueError ("component can only be 1 or 0" )
417
417
@@ -709,7 +709,7 @@ def Ramification_poly(self, i):
709
709
4 * ((self ._Lcoeff (i , 2 ))** 2 )* (self ._Qcoeff (i , 1 , 1 ))* (self ._Qcoeff (i , 0 , 0 ))
710
710
711
711
@cached_method
712
- def is_degenerate (self ):
712
+ def is_degenerate (self ) -> bool :
713
713
r"""
714
714
Function will return ``True`` if there is a fiber (over the algebraic closure of the
715
715
base ring) of dimension greater than 0 and ``False`` otherwise.
@@ -751,7 +751,7 @@ def is_degenerate(self):
751
751
PP = self .ambient_space ()
752
752
K = FractionField (PP [0 ].base_ring ())
753
753
R = PP .coordinate_ring ()
754
- PS = PP [0 ] # check for x fibers
754
+ PS = PP [0 ] # check for x fibers
755
755
vars = list (PS .gens ())
756
756
R0 = PolynomialRing (K , 3 , vars ) #for dimension calculation to work,
757
757
#must be done with Polynomial ring over a field
@@ -763,7 +763,7 @@ def is_degenerate(self):
763
763
if I .dimension () != 0 :
764
764
return True
765
765
766
- PS = PP [1 ] # check for y fibers
766
+ PS = PP [1 ] # check for y fibers
767
767
vars = list (PS .gens ())
768
768
R0 = PolynomialRing (K ,3 ,vars ) #for dimension calculation to work,
769
769
#must be done with Polynomial ring over a field
@@ -840,7 +840,7 @@ def degenerate_fibers(self):
840
840
phi = R .hom (vars + [0 , 0 , 0 ], R0 )
841
841
I = phi (I )
842
842
xFibers = []
843
- #check affine charts
843
+ # check affine charts
844
844
for n in range (3 ):
845
845
affvars = list (R0 .gens ())
846
846
del affvars [n ]
@@ -871,7 +871,7 @@ def degenerate_fibers(self):
871
871
phi = PP .coordinate_ring ().hom ([0 , 0 , 0 ] + vars , R0 )
872
872
I = phi (I )
873
873
yFibers = []
874
- #check affine charts
874
+ # check affine charts
875
875
for n in range (3 ):
876
876
affvars = list (R0 .gens ())
877
877
del affvars [n ]
@@ -898,7 +898,7 @@ def degenerate_fibers(self):
898
898
@cached_method
899
899
def degenerate_primes (self , check = True ):
900
900
r"""
901
- Determine which primes `p` ``self`` has degenerate fibers over `\GF{p}`.
901
+ Determine primes `p` such that ``self`` has degenerate fibers over `\GF{p}`.
902
902
903
903
If ``check`` is ``False``, then may return primes that do not have degenerate fibers.
904
904
Raises an error if the surface is degenerate.
@@ -995,7 +995,7 @@ def degenerate_primes(self, check=True):
995
995
if power == 1 :
996
996
bad_primes = bad_primes + GB [i ].lt ().coefficients ()[0 ].support ()
997
997
bad_primes = sorted (set (bad_primes ))
998
- #check to return only the truly bad primes
998
+ # check to return only the truly bad primes
999
999
if check :
1000
1000
for p in bad_primes :
1001
1001
X = self .change_ring (GF (p ))
@@ -1041,7 +1041,7 @@ def is_smooth(self) -> bool:
1041
1041
R = self .ambient_space ().coordinate_ring ()
1042
1042
I = R .ideal (M .minors (2 ) + [self .L ,self .Q ])
1043
1043
T = PolynomialRing (self .ambient_space ().base_ring ().fraction_field (), 4 , 'h' )
1044
- #check the 9 affine charts for a singular point
1044
+ # check the 9 affine charts for a singular point
1045
1045
for l in xmrange ([3 , 3 ]):
1046
1046
vars = list (T .gens ())
1047
1047
vars .insert (l [0 ], 1 )
@@ -1577,7 +1577,7 @@ def phi(self, a, **kwds):
1577
1577
(-1 : 0 : 1 , 0 : 1 : 0)
1578
1578
"""
1579
1579
A = self .sigmaX (a , ** kwds )
1580
- kwds .update ({"check" :False })
1580
+ kwds .update ({"check" : False })
1581
1581
return self .sigmaY (A , ** kwds )
1582
1582
1583
1583
def psi (self , a , ** kwds ):
@@ -1617,7 +1617,7 @@ def psi(self, a, **kwds):
1617
1617
(0 : 0 : 1 , 0 : 1 : 0)
1618
1618
"""
1619
1619
A = self .sigmaY (a , ** kwds )
1620
- kwds .update ({"check" :False })
1620
+ kwds .update ({"check" : False })
1621
1621
return self .sigmaX (A , ** kwds )
1622
1622
1623
1623
def lambda_plus (self , P , v , N , m , n , prec = 100 ):
@@ -2411,9 +2411,9 @@ def orbit_psi(self, P, N, **kwds):
2411
2411
Orb .append (Q )
2412
2412
return Orb
2413
2413
2414
- def is_isomorphic (self , right ):
2414
+ def is_isomorphic (self , right ) -> bool :
2415
2415
r"""
2416
- Check to see if two K3 surfaces have the same defining ideal.
2416
+ Check whether two K3 surfaces have the same defining ideal.
2417
2417
2418
2418
INPUT:
2419
2419
@@ -2449,10 +2449,12 @@ def is_isomorphic(self, right):
2449
2449
"""
2450
2450
return self .defining_ideal () == right .defining_ideal ()
2451
2451
2452
- def is_symmetric_orbit (self , orbit ):
2452
+ def is_symmetric_orbit (self , orbit ) -> bool :
2453
2453
r"""
2454
- Check to see if the orbit is symmetric (i.e. if one of the points on the
2455
- orbit is fixed by '\sigma_x' or '\sigma_y').
2454
+ Check whether the orbit is symmetric.
2455
+
2456
+ This means that one of the points on the
2457
+ orbit is fixed by '\sigma_x' or '\sigma_y'.
2456
2458
2457
2459
INPUT:
2458
2460
0 commit comments