-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathDD.py
230 lines (191 loc) · 10.9 KB
/
DD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# References: N. Papernot, et al., "Distillation as a defense to adversarial perturbations against deep neural networks," in S&P, 2016.
# **************************************
# @Time : 2018/9/19 0:23
# @Author : Jiaxu Zou & Xiang Ling
# @Lab : nesa.zju.edu.cn
# @File : DD.py
# **************************************
import copy
import os
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset
from torchvision.transforms import Compose, RandomAffine, RandomHorizontalFlip, ToPILImage, ToTensor
from Defenses.DefenseMethods.defenses import Defense
from RawModels.ResNet import adjust_learning_rate
from RawModels.Utils.TrainTest import testing_evaluation, validation_evaluation
# For help when requiring self-defined dataset provision with batches during training
class SoftLabelDataset(Dataset):
def __init__(self, images, labels, dataset, transform):
super(SoftLabelDataset, self).__init__()
self.images = images
self.labels = labels
self.transform = transform
self.color_mode = 'RGB' if dataset == 'CIFAR10' else 'L'
def __getitem__(self, index):
single_image, single_label = self.images[index], self.labels[index]
if self.transform:
img = ToPILImage(mode=self.color_mode)(single_image)
single_image = self.transform(img)
return single_image, single_label
def __len__(self):
return len(self.images)
class DistillationDefense(Defense):
def __init__(self, model=None, defense_name=None, dataset=None, temperature=1, training_parameters=None, device=None):
"""
:param model:
:param defense_name:
:param dataset:
:param temperature:
:param training_parameters:
:param device:
"""
super(DistillationDefense, self).__init__(model=model, defense_name=defense_name)
self.model = model
self.defense_name = defense_name
self.device = device
self.Dataset = dataset.upper()
assert self.Dataset in ['MNIST', 'CIFAR10'], "The data set must be MNIST or CIFAR10"
# prepare the models for the defenses
self.initial_model = copy.deepcopy(model)
self.best_initial_model = copy.deepcopy(model)
self.distilled_model = copy.deepcopy(model)
# parameters for the defense
self.temperature = temperature * 1.0
# get the training_parameters, the same as the settings of RawModels
self.num_epochs = training_parameters['num_epochs']
self.batch_size = training_parameters['batch_size']
# prepare the optimizers and transforms
if self.Dataset == 'MNIST':
self.initial_optimizer = optim.SGD(self.initial_model.parameters(), lr=training_parameters['learning_rate'],
momentum=training_parameters['momentum'], weight_decay=training_parameters['decay'],
nesterov=True)
self.distilled_optimizer = optim.SGD(self.distilled_model.parameters(), lr=training_parameters['learning_rate'],
momentum=training_parameters['momentum'], weight_decay=training_parameters['decay'],
nesterov=True)
self.transform = None
else:
self.initial_optimizer = optim.Adam(self.initial_model.parameters(), lr=training_parameters['lr'])
self.distilled_optimizer = optim.Adam(self.distilled_model.parameters(), lr=training_parameters['lr'])
self.transform = Compose([RandomAffine(degrees=0, translate=(0.1, 0.1)), RandomHorizontalFlip(), ToTensor()])
def train_initial_model_with_temperature(self, train_loader=None, validation_loader=None):
"""
:param train_loader:
:param validation_loader:
:return:
"""
print("\nTraining the initial model ......\n")
best_val_acc = None
for epoch in range(self.num_epochs):
self.initial_model.train() # set the model in the train mode before every epoch
for index, (images, labels) in enumerate(train_loader):
images = images.to(self.device)
labels = labels.to(self.device)
# forward the NN with the temperature
logits = self.initial_model(images)
logits_with_temp = logits / self.temperature
loss = F.cross_entropy(logits_with_temp, labels)
# backward
self.initial_optimizer.zero_grad()
loss.backward()
self.initial_optimizer.step()
print('\rTrain Epoch {:>3}: [batch:{:>4}/{:>4}({:>3.0f}%)] \tLoss: {:.4f} ===> '. \
format(epoch, index, len(train_loader), index / len(train_loader) * 100.0, loss.item()), end=' ')
# validation
val_acc = validation_evaluation(model=self.initial_model, validation_loader=validation_loader, device=self.device)
if self.Dataset == 'CIFAR10':
adjust_learning_rate(optimizer=self.initial_optimizer, epoch=epoch)
# save the initial model
assert os.path.exists('../DefenseEnhancedModels/{}'.format(self.defense_name))
initial_model_saver = '../DefenseEnhancedModels/{}/{}_DD_initial.pt'.format(self.defense_name, self.Dataset)
if not best_val_acc or round(val_acc, 4) >= round(best_val_acc, 4):
if best_val_acc is not None:
os.remove(initial_model_saver)
best_val_acc = val_acc
self.initial_model.save(name=initial_model_saver)
else:
print('Train Epoch {:>3}: validation dataset accuracy of *Initial Model* did not improve from {:.4f}\n'. \
format(epoch, best_val_acc))
def train_distilled_model_with_temp(self, distilled_train_loader=None, validation_loader=None):
"""
:param distilled_train_loader:
:param validation_loader:
:return:
"""
print("\nTraining distilled model ......\n")
best_val_acc = None
for epoch in range(self.num_epochs):
self.distilled_model.train() # set the model in the train mode before every epoch
for index, (images, labels) in enumerate(distilled_train_loader):
images.requires_grad = True
images = images.to(self.device)
labels = labels.to(self.device)
logits = self.distilled_model(images)
eps = 1e-20 # small value to avoid evaluation of log(0)
logits_with_temp = (logits + eps) / self.temperature
# cross entropy for soft labels
log_likelihood = - F.log_softmax(logits_with_temp, dim=1)
loss = torch.sum(torch.mul(log_likelihood, labels), dim=1)
loss = torch.mean(loss)
self.distilled_optimizer.zero_grad()
loss.backward()
self.distilled_optimizer.step()
print('\rTrain Epoch {:>3}: [batch:{:>4}/{:>4}({:>3.0f}%)] \tLoss: {:.4f} ===> '. \
format(epoch, index, len(distilled_train_loader), index / len(distilled_train_loader) * 100.0, loss.item()), end=' ')
val_acc = validation_evaluation(model=self.distilled_model, validation_loader=validation_loader, device=self.device)
# adjust the learning rate
if self.Dataset == 'CIFAR10':
adjust_learning_rate(optimizer=self.distilled_optimizer, epoch=epoch)
# save the distilled model --> DD_enhanced model
assert os.path.exists('../DefenseEnhancedModels/{}'.format(self.defense_name))
distilled_model_saver = '../DefenseEnhancedModels/{}/{}_{}_enhanced.pt'.format(self.defense_name, self.Dataset, self.defense_name)
if not best_val_acc or round(val_acc, 4) >= round(best_val_acc, 4):
if best_val_acc is not None:
os.remove(distilled_model_saver)
best_val_acc = val_acc
self.distilled_model.save(name=distilled_model_saver)
else:
print('Train Epoch {:>3}: validation dataset accuracy of *Distilled Model* did not improve from {:.4f}\n'. \
format(epoch, best_val_acc))
def defense(self, initial_flag=None, train_loader=None, validation_loader=None, raw_train=None, raw_valid=None, test_loader=None):
"""
:param initial_flag: whether there is the initial model or not
:param train_loader: train dataset loader for training the initial model
:param validation_loader: train validation loader for the initial model
:param raw_train: raw train dataset loader used to construct the dataset with soft label for training the distilled model
:param raw_valid: ... for validating the distilled model
:param test_loader: test dataset loader for testing models
:return:
"""
if initial_flag is False:
# train the initial model
self.train_initial_model_with_temperature(train_loader=train_loader, validation_loader=validation_loader)
# load the pre-trained initial model
model_location = '../DefenseEnhancedModels/{}/{}_DD_initial.pt'.format(self.defense_name, self.Dataset)
assert os.path.exists(model_location), 'No initial model, please train the initial model first'
self.best_initial_model.load(path=model_location, device=self.device)
# show and check the testing accuracy of best initial model
testing_evaluation(self.best_initial_model, test_loader, self.device)
# prepare the training data set with soft labels for the distilled model training
self.best_initial_model.eval()
with torch.no_grad():
ori_images = []
soft_labels = []
for images, _ in raw_train:
images = images.to(self.device)
initial_logits = self.best_initial_model(images)
initial_logits_temp = initial_logits / self.temperature
initial_preds = F.softmax(initial_logits_temp, dim=1).cpu().detach().numpy()
ori_images.extend(images.cpu().numpy())
soft_labels.extend(initial_preds)
ori_images = np.array(ori_images)
soft_labels = np.array(soft_labels)
soft_dataset = SoftLabelDataset(images=torch.from_numpy(ori_images), labels=torch.from_numpy(soft_labels), dataset=self.Dataset,
transform=self.transform)
soft_dataset_loader = torch.utils.data.DataLoader(soft_dataset, batch_size=self.batch_size, shuffle=True)
# train and save the distilled model -> DD_enhanced model
self.train_distilled_model_with_temp(distilled_train_loader=soft_dataset_loader, validation_loader=validation_loader)