-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreproc.py
205 lines (189 loc) · 5.74 KB
/
preproc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
"""
This file preprocesses raw corpora and emits clean versions of them to `normalized_data`
"""
# %%
import functools
import operator as op
import random
import re
from collections import Counter
from operator import itemgetter
import datasets
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
from datasets import Dataset, load_dataset
from evaluate import load
from functional import seq
from IPython.display import HTML, display
from unidecode import unidecode
from funcutils import get
from funcutils import underscore as _
from pathlib import Path
import ast
# %%
# import webnlg 2.0
raw_datasets = load_dataset("web_nlg", "release_v2")
raw_datasets
# datasets api doesn't support direct indexing so we have to
# perform some unnatural contortions
df_raw = pd.concat([
pd.concat([
pd.DataFrame(raw_datasets[e]),
pd.DataFrame([e] * len(raw_datasets[e]), columns=['subset'])
], axis=1)
for e in ['dev','train','test']
],
axis=0)
df_raw = df_raw.reset_index()
df = df_raw[['subset','category','index']]
# %%
# extract natural language from inside lex column
nl = df_raw.lex.map(get.text)
nl
# %%
# extract structured data from the mtriple set
sd = df_raw.modified_triple_sets.map(get.mtriple_set).map(get[0])
sdl = sd.map(len)
display(sd)
display(sdl)
df['nl'] = nl
df['sd'] = sd
# df.to_pickle("pipeline/normalized_data/webnlg_raw.pkl")
# %%
# normalized structured data
def normalize_terms(rdf_triples: list[str]):
'''surround terms, remove _ and " as well '''
camelcase = re.compile(r'(?<!^)(?=[A-Z])')
# camelCase to space separated, except for all-caps words
de_camelcase = lambda x: camelcase.sub(' ', x).lower() if not x.upper() == x else x
decamelcase_middle = lambda x: [x[0], de_camelcase(x[1]), x[2]]
def join_with_bar(triple: list[str]):
return seq(triple).reduce(lambda x,y: x + "|" + y)
return (
seq(rdf_triples)
.map(_.replace("_", " ")) # normalize away underscores
.map(_.replace('"', "")) # delete full quotes
.map(_.replace("'", "")) # delete half quotes
.map(_.replace(';', "")) # only 40 of these exist
.map(_.split(" | "))
.map(decamelcase_middle)
.map(join_with_bar)
.map(unidecode)
)
# %%
nsd = sd.map(normalize_terms).map(lambda x: "; ".join(x))
nsd
# %%
# %% [markdown]
# Ensure that the operations just performed are invertable by reformatting them as triples.
# While we're at it, perform some data cleaning
# including normalizing to unicode
# %%
vocab_freq = seq(nsd).map(Counter).reduce(op.add)
seq(vocab_freq.keys()).sorted().reduce(op.add)
# %%
len(vocab_freq.keys())
# %% [markdown]
# Now the actual checking: let's ensure that all elements are well-formed with 3 terms in each label
# %%
counts = nsd.map(_.split(";")).map(lambda x: seq(x).map(_.split('|')).map(len)).map(Counter)
[(trmlen, freq)] = seq(counts.values).reduce(op.add).most_common()
assert trmlen == 3
assert freq >= len(counts.values)
# %%
df['sd'] = nsd
df.sd
# %%
# normalize by removing non-ascii
nnl = nl.map(lambda x: seq(x).map(unidecode).to_list())
df['nl'] = nnl
df.nl
# %%
df
# %%
# df.to_pickle("~/repos/nlgs-research/pipeline/normalized_data/webnlg_clean.pkl")
# %%
from datasets import load_dataset
dataset = load_dataset("wiki_bio")
# %%
df_raw = pd.concat([
pd.concat([
pd.DataFrame(dataset[e]),
pd.DataFrame([e] * len(dataset[e]), columns=['subset'])
], axis=1)
for e in ['val','train','test']
],
axis=0)
df_raw = df_raw.reset_index()
# %%
# df_raw[['subset','target_text']].to_pickle('pipeline/normalized_data/wikibio.pkl')
# %%
palm_outputs = pd.Series(Path('palm/generations/').glob("*"))
# %%
palm_raw_text = palm_outputs.map(_.read_text())
palm_raw_text
# %%
# %%
def parse_store_errors(string):
def get_within(tag):
tagopen = f"<{tag}>"
idst = string.find(tagopen)
ided = string.find(f"</{tag}>")
return string[idst + len(tagopen): ided].strip()
try:
if not 'sentence' in string or not 'labels' in string:
print(string)
return None
ident,sent,labls = (get_within('id'), get_within('sentence'), get_within('labels'))
parsed_labels = ast.literal_eval(labls)
return ident,sent, ";".join(normalize_terms(parsed_labels))
except Exception as e:
print(e)
return None
parsed = palm_raw_text.map(parse_store_errors)
print(Counter(parsed).most_common(3))
print(parsed.size)
parsed
# %%
valids = seq(parsed).filter(lambda x: x!= None)
indices = valids.map(get[0]).map(int).map(lambda x: x*100000)
sentences = (
valids
.map(get[1]) # the sentence is the first arg
.map(unidecode) # clean out unicode chars
.zip(indices) # maintain the index
.starmap(lambda x,y: (y,x)) # prepare for joining
)
sentences
# %%
data_triples = (
valids
.map(get[2])
.map(unidecode)
.map(_.replace(" | ", '|'))
.zip(indices)
.starmap(lambda x, y: (y,x))
)
data_triples
# %%
# %%
wikibio_joined = sentences.join(data_triples).to_pandas(columns=['index','joined']) # execute the join
wikibio_joined['category'] = 'WikBio'
wikibio_joined['subset'] = 'train'
wikibio_joined['sd'] = wikibio_joined.joined.map(get[1])
wikibio_joined['nl'] = wikibio_joined.joined.map(get[0]).map(lambda x: [x])
wikibio = wikibio_joined.drop(columns=['joined'])
wikibio
# %%
wikibio.to_pickle("~/repos/nlgs-research/pipeline/normalized_data/wikibio_llm_annot.pkl")
wikibio
# %%
webnlg = pd.read_pickle("~/repos/nlgs-research/pipeline/normalized_data/webnlg_clean.pkl")
webnlg
# %%
joint_corpus = pd.concat([webnlg, wikibio]).sample(frac=1.0)
joint_corpus
# %%
joint_corpus.to_pickle("~/repos/nlgs-research/pipeline/normalized_data/webnlg_wikibio_joint.pkl")
# %%