-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path99_boston_linear_regression.py
86 lines (71 loc) · 2.62 KB
/
99_boston_linear_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from keras.datasets import boston_housing
from keras.layers import Dense, Input
from keras.models import Model
from keras.optimizers import SGD
import numpy as np
(x_train, y_train), (x_test, y_test) = boston_housing.load_data()
# Mean and variance normalize input data.
x_mean, x_stddev = x_train.mean(axis = 0), x_train.std(axis = 0)
x_train = (x_train - x_mean) / x_stddev
x_test = (x_test - x_mean) / x_stddev
y_mean, y_stddev = y_train.mean(), y_train.std()
y_train = (y_train - y_mean) / y_stddev
y_test = (y_test - y_mean) / y_stddev
input_tensor = Input(shape = (13,))
output_tensor = Dense(1, activation = 'linear')(input_tensor)
model = Model(input_tensor, output_tensor)
optimizer = SGD(lr = 0.1)
model.compile(
loss = 'mse',
optimizer = optimizer
)
model.fit(
x_train,
y_train,
validation_data = (x_test, y_test),
batch_size = 1024,
epochs = 100
)
# How to interpret the MSE loss. The MSE is an estimate of *variance*,
# which is dispersion from the mean.
#
# Because we standardized y_train to have variance 1.0, that means
# that the MSE of guessing the mean value (which was itself set to
# zero) would be 1.0.
#
# If we train a model and have a test set MSE of 0.27, that means that
# the variance in output, *after* we have factored out the part of the
# output explained by the X variables, is 0.27.
#
# Put another way: the X variables explain 73% of the variance in
# house prices.
def calc_errors(y_train, y_predictions):
absolute_errors = np.abs(y_train - y_predictions) * y_stddev
mean_absolute_error = np.mean(absolute_errors)
squared_errors = ((y_train - y_predictions) * y_stddev) ** 2
mean_squared_error = np.mean(squared_errors)
mean_absolute_percent_error = np.mean(
np.abs(absolute_errors / y_mean)
)
return (mean_absolute_error, mean_squared_error, mean_absolute_percent_error)
(mean_absolute_error, mean_squared_error, mean_absolute_percent_error) = calc_errors(
y_train,
y_train.mean()
)
print(
f"Baseline Mean Abs Err: {mean_absolute_error:0.1f} | "
f"Baseline Mean Squared Err: {mean_squared_error:0.2f} | "
f"Baseline Mean Abs %Err: {mean_absolute_percent_error:0.2f}"
)
(mean_absolute_error, mean_squared_error, mean_absolute_percent_error) = calc_errors(
y_train,
# model.predict gives us a (404, 1) matrix which won't play well
# with our (404,) shape y_train. Thus we reshape the output to
# (404,).
model.predict(x_train).reshape((-1))
)
print(
f"Model Mean Abs Err: {mean_absolute_error:0.1f} | "
f"Model Mean Squared Err: {mean_squared_error:0.2f} | "
f"Model Mean Abs %Err: {mean_absolute_percent_error:0.2f}"
)