-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path01b_keras_imdb.py
48 lines (38 loc) · 1.27 KB
/
01b_keras_imdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from keras.datasets import imdb
TOP_N_WORDS = 1000
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words = TOP_N_WORDS)
import numpy as np
# Transform dataset from variable-length word sequences to a binary valued dense matrix.
new_x_train = np.zeros((len(x_train), TOP_N_WORDS + 1))
# We'll use a dummy column 0 to apply an intercept theta_0 to our model. It will always have value 1.
new_x_train[:, 0] = 1.0
for example_idx, word_sequence in enumerate(x_train):
for word_idx in word_sequence:
new_x_train[example_idx, word_idx] = 1
new_x_test = np.zeros((len(x_test), TOP_N_WORDS + 1))
new_x_test[:, 0] = 1.0
for example_idx, word_sequence in enumerate(x_test):
for word_idx in word_sequence:
new_x_test[example_idx, word_idx] = 1
from keras.layers import Dense, Input
from keras.models import Model
from keras.optimizers import SGD
input_tensor = Input(shape = (new_x_train.shape[1],))
output_tensor = Dense(
1,
activation = 'sigmoid'
)(input_tensor)
m = Model(input_tensor, output_tensor)
optimizer = SGD(lr = 0.025)
m.compile(
optimizer = optimizer,
loss = 'binary_crossentropy',
metrics = ['accuracy'],
)
m.fit(
new_x_train,
y_train,
batch_size = 128,
validation_data = (new_x_test, y_test),
epochs = 100
)