forked from UKPLab/sentence-transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathXLNet.py
executable file
·108 lines (82 loc) · 4.34 KB
/
XLNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from torch import Tensor
from torch import nn
from transformers import XLNetModel, XLNetTokenizer
import json
from typing import Union, Tuple, List, Dict
import os
import numpy as np
class XLNet(nn.Module):
"""XLNet model to generate token embeddings.
Each token is mapped to an output vector from XLNet.
"""
def __init__(self, model_name_or_path: str, max_seq_length: int = 128, do_lower_case: bool = False):
super(XLNet, self).__init__()
self.config_keys = ['max_seq_length', 'do_lower_case']
self.max_seq_length = max_seq_length
self.do_lower_case = do_lower_case
self.xlnet = XLNetModel.from_pretrained(model_name_or_path)
self.tokenizer = XLNetTokenizer.from_pretrained(model_name_or_path, do_lower_case=do_lower_case)
self.cls_token_id = self.tokenizer.convert_tokens_to_ids([self.tokenizer.cls_token])[0]
self.sep_token_id = self.tokenizer.convert_tokens_to_ids([self.tokenizer.sep_token])[0]
def forward(self, features):
"""Returns token_embeddings, cls_token"""
output_tokens = self.xlnet(input_ids=features['input_ids'], token_type_ids=features['token_type_ids'], attention_mask=features['input_mask'])[0]
cls_tokens = output_tokens[:, 0, :] # CLS token is first token
features.update({'token_embeddings': output_tokens, 'cls_token_embeddings': cls_tokens, 'input_mask': features['input_mask']})
return features
def get_word_embedding_dimension(self) -> int:
return self.xlnet.config.d_model
def tokenize(self, text: str) -> List[int]:
"""
Tokenizes a text and maps tokens to token-ids
"""
return self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(text))
def get_sentence_features(self, tokens: List[int], pad_seq_length: int) -> Dict[str, Tensor]:
"""
Convert tokenized sentence in its embedding ids, segment ids and mask
:param tokens:
a tokenized sentence
:param pad_seq_length:
the maximal length of the sequence. Cannot be greater than self.sentence_transformer_config.max_seq_length
:return: embedding ids, segment ids and mask for the sentence
"""
pad_seq_length = min(pad_seq_length, self.max_seq_length)
sep_token = self.sep_token_id
cls_token = self.cls_token_id
sequence_a_segment_id = 0
cls_token_segment_id = 2
pad_token_segment_id = 4
pad_token = 0
tokens = tokens[:pad_seq_length] + [sep_token]
token_type_ids = [sequence_a_segment_id] * len(tokens)
# XLNet CLS token at the end
tokens = tokens + [cls_token]
token_type_ids = token_type_ids + [cls_token_segment_id]
pad_seq_length += 2 ##+2 for CLS and SEP token
input_ids = tokens
input_mask = [1] * len(input_ids)
sentence_length = len(input_ids)
# Zero-pad up to the sequence length. XLNet: Pad to the left
padding_length = pad_seq_length - len(input_ids)
input_ids = ([pad_token] * padding_length) + input_ids
input_mask = ([0] * padding_length) + input_mask
token_type_ids = ([pad_token_segment_id] * padding_length) + token_type_ids
assert len(input_ids) == pad_seq_length
assert len(input_mask) == pad_seq_length
assert len(token_type_ids) == pad_seq_length
return {'input_ids': np.asarray(input_ids, dtype=np.int64),
'token_type_ids': np.asarray(token_type_ids, dtype=np.int64),
'input_mask': np.asarray(input_mask, dtype=np.int64),
'sentence_lengths': np.asarray(sentence_length, dtype=np.int64)}
def get_config_dict(self):
return {key: self.__dict__[key] for key in self.config_keys}
def save(self, output_path: str):
self.xlnet.save_pretrained(output_path)
self.tokenizer.save_pretrained(output_path)
with open(os.path.join(output_path, 'sentence_xlnet_config.json'), 'w') as fOut:
json.dump(self.get_config_dict(), fOut, indent=2)
@staticmethod
def load(input_path: str):
with open(os.path.join(input_path, 'sentence_xlnet_config.json')) as fIn:
config = json.load(fIn)
return XLNet(model_name_or_path=input_path, **config)