diff --git a/.Rhistory b/.Rhistory index 1655775..623bcd9 100644 --- a/.Rhistory +++ b/.Rhistory @@ -1,12 +1,512 @@ +# model includes "p10", "beta", "q" +# constants +nsite <- 20 +nobs_count <- 100 +nobs_pcr <- 8 +# params +mu <- rlnorm(nsite, meanlog = log(1), sdlog = 1) +beta <- 0.5 +log_p10 <- -4.5 +q <- 2 +# traditional type +count_type <- cbind(matrix(1, nrow = nsite, ncol = nobs_count / 2), +matrix(2, nrow = nsite, ncol = nobs_count / 2)) # count count <- matrix(NA, nrow = nsite, ncol = nobs_count) for (i in 1:nsite) { for (j in 1:nobs_count) { if (count_type[i, j] == 1) { +count[i, j] <- rpois(1, mu[i]) +} else { +count[i, j] <- rpois(1, mu[i] * q) +} +} +} +# p11 (probability of true positive eDNA detection) and p (probability +# of eDNA detection) +p11 <- mu / (mu + exp(beta)) +p <- pmin(p11 + exp(log_p10), 1) +# pcr_n (# qPCR observations) +pcr_n <- matrix(3, nrow = nsite, ncol = nobs_pcr) +# pcr_k (# positive qPCR detections) +pcr_k <- matrix(NA, nrow = nsite, ncol = nobs_pcr) +for (i in 1:nsite) { +pcr_k[i, ] <- rbinom(nobs_pcr, pcr_n[i, ], rep(p[i], nobs_pcr)) +} +# add NA to sites 2 and 4 +count[c(2, 4), ] <- NA +count_type[c(2, 4), ] <- NA +# collect data +data <- list( +pcr_n = pcr_n, +pcr_k = pcr_k, +count = count, +count_type = count_type +) +# initial values +inits <- list() +inits[[1]] <- list( +mu = mu, +p10 = exp(log_p10), +alpha = beta, +q = 2 +) +names(inits[[1]]) <- c("mu", "p10", "alpha", "q") +# run model +fit <- suppressWarnings({ +joint_model(data = data, q = TRUE, n_chain = 1, multicore = FALSE, +seed = 10, initial_values = inits, n_warmup = 25, n_iter = 100) +}) +devtools::load_all() +## 3. +# model includes "p10", "beta", "q", "alpha_gamma", "beta_gamma" +# constants +nsite <- 20 +nobs_count <- 100 +nobs_pcr <- 8 +# params +mu <- rlnorm(nsite, meanlog = log(1), sdlog = 1) +beta <- 0.5 +log_p10 <- -4.5 +q <- 2 +beta_gamma <- 1 +alpha_gamma <- mu * beta_gamma +# traditional type +count_type <- cbind(matrix(1, nrow = nsite, ncol = nobs_count / 2), +matrix(2, nrow = nsite, ncol = nobs_count / 2)) +# count +count <- matrix(NA, nrow = nsite, ncol = nobs_count) +for (i in 1:nsite) { +for (j in 1:nobs_count) { +if (count_type[i, j] == 1) { +count[i, j] <- rgamma(1, shape = alpha_gamma[i], rate = beta_gamma) +} else { +count[i, j] <- rgamma(1, shape = alpha_gamma[i] * q, rate = beta_gamma) +} +} +} +# p11 (probability of true positive eDNA detection) and p (probability +# of eDNA detection) +p11 <- mu / (mu + exp(beta)) +p <- pmin(p11 + exp(log_p10), 1) +# pcr_n (# qPCR observations) +pcr_n <- matrix(3, nrow = nsite, ncol = nobs_pcr) +# pcr_k (# positive qPCR detections) +pcr_k <- matrix(NA, nrow = nsite, ncol = nobs_pcr) +for (i in 1:nsite) { +pcr_k[i, ] <- rbinom(nobs_pcr, pcr_n[i, ], rep(p[i], nobs_pcr)) +} +# add NA to sites 2 and 4 +count[c(2, 4), ] <- NA +count_type[c(2, 4), ] <- NA +# collect data +data <- list( +pcr_n = pcr_n, +pcr_k = pcr_k, count = count, count_type = count_type ) # initial values inits <- list() inits[[1]] <- list( - +alpha_gamma = mu, +beta_gamma = rep(1, length(mu)), +p10 = exp(log_p10), +alpha = beta, +q = q +) +names(inits[[1]]) <- c("alpha_gamma", "beta_gamma", "p10", "alpha", "q") +# run model +fit <- suppressWarnings({ +joint_model(data = data, q = TRUE, family = "gamma", +n_chain = 1, multicore = FALSE, seed = 10, +initial_values = inits, n_warmup = 25, n_iter = 100) +}) +devtools::load_all() +## 3. +# model includes "p10", "beta", "q", "alpha_gamma", "beta_gamma" +# constants +nsite <- 20 +nobs_count <- 100 +nobs_pcr <- 8 +# params +mu <- rlnorm(nsite, meanlog = log(1), sdlog = 1) +beta <- 0.5 +log_p10 <- -4.5 +q <- 2 +beta_gamma <- 1 +alpha_gamma <- mu * beta_gamma +# traditional type +count_type <- cbind(matrix(1, nrow = nsite, ncol = nobs_count / 2), +matrix(2, nrow = nsite, ncol = nobs_count / 2)) +# count +count <- matrix(NA, nrow = nsite, ncol = nobs_count) +for (i in 1:nsite) { +for (j in 1:nobs_count) { +if (count_type[i, j] == 1) { +count[i, j] <- rgamma(1, shape = alpha_gamma[i], rate = beta_gamma) +} else { +count[i, j] <- rgamma(1, shape = alpha_gamma[i] * q, rate = beta_gamma) +} +} +} +# p11 (probability of true positive eDNA detection) and p (probability +# of eDNA detection) +p11 <- mu / (mu + exp(beta)) +p <- pmin(p11 + exp(log_p10), 1) +# pcr_n (# qPCR observations) +pcr_n <- matrix(3, nrow = nsite, ncol = nobs_pcr) +# pcr_k (# positive qPCR detections) +pcr_k <- matrix(NA, nrow = nsite, ncol = nobs_pcr) +for (i in 1:nsite) { +pcr_k[i, ] <- rbinom(nobs_pcr, pcr_n[i, ], rep(p[i], nobs_pcr)) +} +# add NA to sites 2 and 4 +count[c(2, 4), ] <- NA +count_type[c(2, 4), ] <- NA +# collect data +data <- list( +pcr_n = pcr_n, +pcr_k = pcr_k, +count = count, +count_type = count_type +) +# initial values +inits <- list() +inits[[1]] <- list( +alpha_gamma = mu, +beta_gamma = rep(1, length(mu)), +p10 = exp(log_p10), +alpha = beta, +q = q +) +names(inits[[1]]) <- c("alpha_gamma", "beta_gamma", "p10", "alpha", "q") +# run model +fit <- suppressWarnings({ +joint_model(data = data, q = TRUE, family = "gamma", +n_chain = 1, multicore = FALSE, seed = 10, +initial_values = inits, n_warmup = 25, n_iter = 100) +}) +devtools::load_all() +qPCR.N <- matrix(3, nrow=12, ncol=12) +colnames(qPCR.N) <- c("1","2","3","4","5","6","7","8","9","10","11","12") +# this shows that for every one of 12 sites, there were 12 samples, and 3 replicates were collected for each sample +RHCAqPCR.K <- matrix(nrow=12, ncol=12) +colnames(RHCAqPCR.K) <- c("1","2","3","4","5","6","7","8","9","10","11","12") +RHKEqPCR.K <- matrix(nrow=12, ncol=12) +colnames(RHKEqPCR.K) <- c("1","2","3","4","5","6","7","8","9","10","11","12") +# made empty 12 x 12 matrices, now let's fill them in with the data +RHCAqPCR.K[1, ] <- c(0,0,0,0,0,0,0,0,0,0,0,0) #badger had zero positive replicates +RHCAqPCR.K[2, ] <- c(3,0,0,2,0,0,0,0,0,0,0,0) #bear +RHCAqPCR.K[3, ] <- c(0,0,1,1,2,0,1,1,1,1,0,0) #bolin +RHCAqPCR.K[4, ] <- c(3,3,2,1,2,3,3,2,3,1,2,3) #bridal +RHCAqPCR.K[5, ] <- c(2,1,2,1,3,1,3,0,1,0,1,1) #flat +RHCAqPCR.K[6, ] <- c(3,3,3,3,3,3,3,3,3,3,3,3) #larch had all replicates positive +RHCAqPCR.K[7, ] <- c(0,0,0,0,0,0,0,0,0,0,0,0) #salmon had zero positive replicates +RHCAqPCR.K[8, ] <- c(1,0,3,1,1,0,1,1,1,0,2,1) #eagle +RHCAqPCR.K[9, ] <- c(2,0,0,0,1,0,0,0,0,0,0,1) #santiam +RHCAqPCR.K[10, ] <- c(0,1,0,1,3,1,1,0,0,0,2,1) #strawberry +RHCAqPCR.K[11, ] <- c(3,3,0,0,0,0,0,3,3,1,3,3) #whiskey +RHCAqPCR.K[12, ] <- c(0,0,3,2,1,2,0,0,0,0,0,1) #wyeth +RHKEqPCR.K[1, ] <- c(1,3,3,3,3,3,3,3,2,3,3,3) #101 +RHKEqPCR.K[2, ] <- c(2,3,1,1,1,1,2,2,3,3,2,3) #clarence +RHKEqPCR.K[3, ] <- c(2,2,1,0,1,1,1,0,1,3,1,1) #coffee +RHKEqPCR.K[4, ] <- c(3,3,3,3,3,3,3,3,3,3,3,3) #crazy had all replicates positive +RHKEqPCR.K[5, ] <- c(1,0,0,3,0,1,1,1,0,2,1,2) #edwards +RHKEqPCR.K[6, ] <- c(3,3,3,3,3,3,3,3,3,3,3,3) #elochoman had all replicates positive +RHKEqPCR.K[7, ] <- c(3,1,3,3,3,3,3,2,0,2,3,2) #falk +RHKEqPCR.K[8, ] <- c(2,1,3,3,3,2,0,1,3,3,2,3) #fern +RHKEqPCR.K[9, ] <- c(3,3,3,3,3,3,3,3,3,3,3,3) #holcombe had all replicates positive +RHKEqPCR.K[10, ] <- c(3,3,3,3,3,3,3,3,3,3,3,3) #nehalem had all replicates positive +RHKEqPCR.K[11, ] <- c(3,0,1,3,1,3,2,3,3,3,2,2) #rock +RHKEqPCR.K[12, ] <- c(1,0,0,0,0,0,3,2,3,3,2,0) #wlest +RHCAcount <- matrix(nrow=12, ncol=1) +colnames(RHCAcount) <- c("1") +RHKEcount <- matrix(nrow=12, ncol=1) +colnames(RHKEcount) <- c("1") +# 12 rows, one for each site, only 1 column because we only did physical samples once per site +RHCAcount[1] <- c(1) #badger +RHCAcount[2] <- c(2) #bear +RHCAcount[3] <- c(8) #bolin +RHCAcount[4] <- c(2) #bridal +RHCAcount[5] <- c(8) #flat +RHCAcount[6] <- c(15) #larch +RHCAcount[7] <- c(13) #salmon +RHCAcount[8] <- c(7) #eagle +RHCAcount[9] <- c(11) #santiam +RHCAcount[10] <- c(6) #strawberry +RHCAcount[11] <- c(19) #whiskey +RHCAcount[12] <- c(3) #wyeth +RHKEcount[1] <- c(24) #101 +RHKEcount[2] <- c(4) #clarence +RHKEcount[3] <- c(6) #coffee +RHKEcount[4] <- c(17) #crazy +RHKEcount[5] <- c(9) #edwards +RHKEcount[6] <- c(16) #elochoman +RHKEcount[7] <- c(13) #falk +RHKEcount[8] <- c(29) #fern +RHKEcount[9] <- c(53) #holcombe +RHKEcount[10] <- c(11) #nehalem +RHKEcount[11] <- c(11) #rock +RHKEcount[12] <- c(26) #wlest +RHCAcount2 <- matrix(nrow=12, ncol=2) +colnames(RHCAcount2) <- c("1","2") +RHKEcount2 <- matrix(nrow=12, ncol=2) +colnames(RHKEcount2) <- c("1","2") +# 12 rows, one for each site, only 1 column because we only did physical samples once per site +RHCAcount2[1,] <- c(1,1) #badger +RHCAcount2[2,] <- c(2,2) #bear +RHCAcount2[3,] <- c(8,8) #bolin +RHCAcount2[4,] <- c(2,2) #bridal +RHCAcount2[5,] <- c(8,8) #flat +RHCAcount2[6,] <- c(15,15) #larch +RHCAcount2[7,] <- c(13,13) #salmon +RHCAcount2[8,] <- c(7,7) #eagle +RHCAcount2[9,] <- c(11,11) #santiam +RHCAcount2[10,] <- c(6,6) #strawberry +RHCAcount2[11,] <- c(19,19) #whiskey +RHCAcount2[12,] <- c(3,3) #wyeth +RHKEcount2[1,] <- c(24,24) #101 +RHKEcount2[2,] <- c(4,4) #clarence +RHKEcount2[3,] <- c(6,6) #coffee +RHKEcount2[4,] <- c(17,17) #crazy +RHKEcount2[5,] <- c(9,9) #edwards +RHKEcount2[6,] <- c(16,16) #elochoman +RHKEcount2[7,] <- c(13,13) #falk +RHKEcount2[8,] <- c(29,29) #fern +RHKEcount2[9,] <- c(53,53) #holcombe +RHKEcount2[10,] <- c(11,11) #nehalem +RHKEcount2[11,] <- c(11,11) #rock +RHKEcount2[12,] <- c(26,26) #wlest +# AK changed +RHCA_list <- list( +pcr_n = qPCR.N, # Number of eDNA qPCR replicates per site +pcr_k = RHCAqPCR.K, # Number of positive eDNA qPCR detections per site +count = RHCAcount # Traditional survey count data +) +# AK changed +RHKE_list <- list( +pcr_n = qPCR.N, # Number of eDNA qPCR replicates per site +pcr_k = RHKEqPCR.K, # Number of positive eDNA qPCR detections per site +count = RHKEcount # Traditional survey count data +) +# AK changed +RHCA_list2 <- list( +pcr_n = qPCR.N, # Number of eDNA qPCR replicates per site +pcr_k = RHCAqPCR.K, # Number of positive eDNA qPCR detections per site +count = RHCAcount2 # Traditional survey count data +) +RHKE_list2 <- list( +pcr_n = qPCR.N, # Number of eDNA qPCR replicates per site +pcr_k = RHKEqPCR.K, # Number of positive eDNA qPCR detections per site +count = RHKEcount2 # Traditional survey count data +) +RHCA.fit1 <- joint_model(data = RHCA_list, family = 'poisson', +p10_priors = c(0.1,99.99), q=FALSE, +n_warmup = 1000, n_iter = 8000, +adapt_delta = 0.9999, multicore = TRUE) +RHKE.fit1 <- joint_model(data = RHKE_list, family = 'poisson', +p10_priors = c(0.1,99.9), q=FALSE, +n_warmup = 1000, n_iter = 8000, +adapt_delta = 0.9999, multicore = TRUE) +joint_summarize(RHKE.fit1) +joint_summarize(RHKE.fit1$model) +RHKE_list +ggplot()+ +geom_point(aes(x=rowMeans(RHCA_list$count, na.rm = TRUE), +y=rowMeans(RHCA_list$pcr_k, na.rm = TRUE)), +size = 3)+ +labs(x='mean count',y='mean positive eDNA detections')+ +theme_minimal() +library(tidyverse) +ggplot()+ +geom_point(aes(x=rowMeans(RHCA_list$count, na.rm = TRUE), +y=rowMeans(RHCA_list$pcr_k, na.rm = TRUE)), +size = 3)+ +labs(x='mean count',y='mean positive eDNA detections')+ +theme_minimal() +ggplot()+ +geom_point(aes(x=rowMeans(RHKE_list$count, na.rm = TRUE), +y=rowMeans(RHKE_list$pcr_k, na.rm = TRUE)), +size = 3)+ +labs(x='mean count',y='mean positive eDNA detections')+ +theme_minimal() +jointSummarize(RHKE.fit1$model) +joint_summarize(RHKE.fit1$model) +hist(rbeta(10000, 0.1, 99.9)) +mean(rbeta(10000, 0.1, 99.9)) +var(rbeta(10000, 0.1, 99.9)) +mean(rbeta(10000, 1, 100)) +mean(rbeta(10000, 1, 1000)) +var(rbeta(10000, 1, 1000)) +RHKE.fit1 <- joint_model(data = RHKE_list, family = 'poisson', +p10_priors = c(1, 1000), q=FALSE, +n_warmup = 1000, n_iter = 8000, +adapt_delta = 0.9999, multicore = TRUE) +mean1 <- mean(rbeta(10000, 0.1, 99.9)) +var1 <- var(rbeta(10000, 0.1, 99.9)) +print('mean: ', mean1) +mean1 <- mean(rbeta(10000, 0.1, 99.9)) +var1 <- var(rbeta(10000, 0.1, 99.9)) +print('mean: ', mean1) +mean1 <- mean(rbeta(10000, 0.1, 99.9)) +var1 <- var(rbeta(10000, 0.1, 99.9)) +print(paste0('mean: ', mean1)) +print(paste0('var: ', var1)) +mean2 <- mean(rbeta(10000, 1, 1000)) +var2 <- var(rbeta(10000, 0.1, 1000)) +print(paste0('mean: ', mean2)) +print(paste0('var: ', var2)) +library(tidyverse) +ggplot() + +geom_histogram(x = rbeta(10000, 0.1, 99.9), color = "blue") + +geom_histogram(x = rbeta(10000, 1, 1000), color = "purple") + +theme_minimal() +ggplot() + +geom_histogram(aes(x = rbeta(10000, 0.1, 99.9), color = "blue")) + +geom_histogram(aes(x = rbeta(10000, 1, 1000), color = "purple")) + +theme_minimal() +library(tidyverse) +ggplot() + +geom_histogram(aes(x = rbeta(10000, 0.1, 99.9), +fill = "blue", alpha = 0.4)) + +geom_histogram(aes(x = rbeta(10000, 1, 1000), +fill = "purple", alpha = 0.4)) + +theme_minimal() +library(tidyverse) +ggplot() + +geom_histogram(aes(x = rbeta(10000, 0.1, 99.9), +fill = "blue", alpha = 0.4)) + +geom_histogram(aes(x = rbeta(10000, 1, 1000), +fill = "purple", alpha = 0.4)) + +theme_minimal() + +theme(legend.position = "None") +ggplot() + +geom_histogram(aes(x = rbeta(10000, 0.1, 99.9), +fill = "blue", alpha = 0.4)) + +geom_histogram(aes(x = rbeta(10000, 1, 1000), +fill = "purple", alpha = 0.4)) + +labs(x = "p10 value", y = "frequency") + +theme_minimal() + +theme(legend.position = "None") +remove.packages('eDNAjoint') +install.packages("eDNAjoint", repos = "https://ropensci.r-universe.dev") +install.packages("eDNAjoint", repos = "https://ropensci.r-universe.dev") +install.packages("eDNAjoint", repos = "https://ropensci.r-universe.dev") +library(eDNAjoint) +#install.packages("eDNAjoint") +library(eDNAjoint) +library(bayesplot) +qPCR.N <- matrix(3, nrow=12, ncol=12) +colnames(qPCR.N) <- c("1","2","3","4","5","6","7","8","9","10","11","12") +# this shows that for every one of 12 sites, there were 12 samples, and 3 replicates were collected for each sample +RHCAqPCR.K <- matrix(nrow=12, ncol=12) +colnames(RHCAqPCR.K) <- c("1","2","3","4","5","6","7","8","9","10","11","12") +RHKEqPCR.K <- matrix(nrow=12, ncol=12) +colnames(RHKEqPCR.K) <- c("1","2","3","4","5","6","7","8","9","10","11","12") +# made empty 12 x 12 matrices, now let's fill them in with the data +RHCAqPCR.K[1, ] <- c(0,0,0,0,0,0,0,0,0,0,0,0) #badger had zero positive replicates +RHCAqPCR.K[2, ] <- c(3,0,0,2,0,0,0,0,0,0,0,0) #bear +RHCAqPCR.K[3, ] <- c(0,0,1,1,2,0,1,1,1,1,0,0) #bolin +RHCAqPCR.K[4, ] <- c(3,3,2,1,2,3,3,2,3,1,2,3) #bridal +RHCAqPCR.K[5, ] <- c(2,1,2,1,3,1,3,0,1,0,1,1) #flat +RHCAqPCR.K[6, ] <- c(3,3,3,3,3,3,3,3,3,3,3,3) #larch had all replicates positive +RHCAqPCR.K[7, ] <- c(0,0,0,0,0,0,0,0,0,0,0,0) #salmon had zero positive replicates +RHCAqPCR.K[8, ] <- c(1,0,3,1,1,0,1,1,1,0,2,1) #eagle +RHCAqPCR.K[9, ] <- c(2,0,0,0,1,0,0,0,0,0,0,1) #santiam +RHCAqPCR.K[10, ] <- c(0,1,0,1,3,1,1,0,0,0,2,1) #strawberry +RHCAqPCR.K[11, ] <- c(3,3,0,0,0,0,0,3,3,1,3,3) #whiskey +RHCAqPCR.K[12, ] <- c(0,0,3,2,1,2,0,0,0,0,0,1) #wyeth +RHKEqPCR.K[1, ] <- c(1,3,3,3,3,3,3,3,2,3,3,3) #101 +RHKEqPCR.K[2, ] <- c(2,3,1,1,1,1,2,2,3,3,2,3) #clarence +RHKEqPCR.K[3, ] <- c(2,2,1,0,1,1,1,0,1,3,1,1) #coffee +RHKEqPCR.K[4, ] <- c(3,3,3,3,3,3,3,3,3,3,3,3) #crazy had all replicates positive +RHKEqPCR.K[5, ] <- c(1,0,0,3,0,1,1,1,0,2,1,2) #edwards +RHKEqPCR.K[6, ] <- c(3,3,3,3,3,3,3,3,3,3,3,3) #elochoman had all replicates positive +RHKEqPCR.K[7, ] <- c(3,1,3,3,3,3,3,2,0,2,3,2) #falk +RHKEqPCR.K[8, ] <- c(2,1,3,3,3,2,0,1,3,3,2,3) #fern +RHKEqPCR.K[9, ] <- c(3,3,3,3,3,3,3,3,3,3,3,3) #holcombe had all replicates positive +RHKEqPCR.K[10, ] <- c(3,3,3,3,3,3,3,3,3,3,3,3) #nehalem had all replicates positive +RHKEqPCR.K[11, ] <- c(3,0,1,3,1,3,2,3,3,3,2,2) #rock +RHKEqPCR.K[12, ] <- c(1,0,0,0,0,0,3,2,3,3,2,0) #wlest +RHCAcount <- matrix(nrow=12, ncol=1) +colnames(RHCAcount) <- c("1") +RHKEcount <- matrix(nrow=12, ncol=1) +colnames(RHKEcount) <- c("1") +# 12 rows, one for each site, only 1 column because we only did physical samples once per site +RHCAcount[1] <- c(1) #badger +RHCAcount[2] <- c(2) #bear +RHCAcount[3] <- c(8) #bolin +RHCAcount[4] <- c(2) #bridal +RHCAcount[5] <- c(8) #flat +RHCAcount[6] <- c(15) #larch +RHCAcount[7] <- c(13) #salmon +RHCAcount[8] <- c(7) #eagle +RHCAcount[9] <- c(11) #santiam +RHCAcount[10] <- c(6) #strawberry +RHCAcount[11] <- c(19) #whiskey +RHCAcount[12] <- c(3) #wyeth +RHKEcount[1] <- c(24) #101 +RHKEcount[2] <- c(4) #clarence +RHKEcount[3] <- c(6) #coffee +RHKEcount[4] <- c(17) #crazy +RHKEcount[5] <- c(9) #edwards +RHKEcount[6] <- c(16) #elochoman +RHKEcount[7] <- c(13) #falk +RHKEcount[8] <- c(29) #fern +RHKEcount[9] <- c(53) #holcombe +RHKEcount[10] <- c(11) #nehalem +RHKEcount[11] <- c(11) #rock +RHKEcount[12] <- c(26) #wlest +RHCAcount2 <- matrix(nrow=12, ncol=2) +colnames(RHCAcount2) <- c("1","2") +RHKEcount2 <- matrix(nrow=12, ncol=2) +colnames(RHKEcount2) <- c("1","2") +# 12 rows, one for each site, only 1 column because we only did physical samples once per site +RHCAcount2[1,] <- c(1,1) #badger +RHCAcount2[2,] <- c(2,2) #bear +RHCAcount2[3,] <- c(8,8) #bolin +RHCAcount2[4,] <- c(2,2) #bridal +RHCAcount2[5,] <- c(8,8) #flat +RHCAcount2[6,] <- c(15,15) #larch +RHCAcount2[7,] <- c(13,13) #salmon +RHCAcount2[8,] <- c(7,7) #eagle +RHCAcount2[9,] <- c(11,11) #santiam +RHCAcount2[10,] <- c(6,6) #strawberry +RHCAcount2[11,] <- c(19,19) #whiskey +RHCAcount2[12,] <- c(3,3) #wyeth +RHKEcount2[1,] <- c(24,24) #101 +RHKEcount2[2,] <- c(4,4) #clarence +RHKEcount2[3,] <- c(6,6) #coffee +RHKEcount2[4,] <- c(17,17) #crazy +RHKEcount2[5,] <- c(9,9) #edwards +RHKEcount2[6,] <- c(16,16) #elochoman +RHKEcount2[7,] <- c(13,13) #falk +RHKEcount2[8,] <- c(29,29) #fern +RHKEcount2[9,] <- c(53,53) #holcombe +RHKEcount2[10,] <- c(11,11) #nehalem +RHKEcount2[11,] <- c(11,11) #rock +RHKEcount2[12,] <- c(26,26) #wlest +# AK changed +RHCA_list <- list( +pcr_n = qPCR.N, # Number of eDNA qPCR replicates per site +pcr_k = RHCAqPCR.K, # Number of positive eDNA qPCR detections per site +count = RHCAcount # Traditional survey count data +) +# AK changed +RHKE_list <- list( +pcr_n = qPCR.N, # Number of eDNA qPCR replicates per site +pcr_k = RHKEqPCR.K, # Number of positive eDNA qPCR detections per site +count = RHKEcount # Traditional survey count data +) +RHKE.fit1 <- joint_model(data = RHKE_list, family = 'poisson', +p10_priors = c(1, 1000), # new prior +q=FALSE, +n_warmup = 1000, n_iter = 8000, +adapt_delta = 0.9999, +multicore = TRUE # this argument runs the chains in parallel (i.e., faster) +) +roxygen2::roxygenise() +lintr::lint_package() +lintr::lint_package() +install.packages('bayesplot') diff --git a/inst/stan/joint_continuous.stan b/inst/stan/joint_continuous.stan index bcaeca5..84e79ee 100644 --- a/inst/stan/joint_continuous.stan +++ b/inst/stan/joint_continuous.stan @@ -96,7 +96,6 @@ transformed parameters { } model { - // get lambda real lambda[n_C]; lambda = get_lambda_continuous(ctch, coef, mat, alpha_gamma, R_ind, n_C); @@ -115,13 +114,11 @@ model { } } - //priors log_p10 ~ normal(p10_priors[1], p10_priors[2]); // p10 prior alpha ~ normal(alphapriors[1], alphapriors[2]); // sitecov shrinkage priors beta_gamma ~ gamma(bgammapriors[1], bgammapriors[2]); alpha_gamma ~ gamma(agammapriors[1], agammapriors[2]); - } generated quantities { diff --git a/inst/stan/joint_count.stan b/inst/stan/joint_count.stan index 8f6e9d4..8911204 100644 --- a/inst/stan/joint_count.stan +++ b/inst/stan/joint_count.stan @@ -87,7 +87,6 @@ transformed parameters { } model { - // get lambda real lambda[n_C]; lambda = get_lambda_count(ctch, coef, mat, mu_trad, R_ind, n_C); @@ -118,7 +117,6 @@ model { if (negbin == 1) { phi ~ gamma(phi_priors[1], phi_priors[2]); // phi prior } - } generated quantities { @@ -144,7 +142,6 @@ generated quantities { Nloc_dna, Nloc_trad, p_dna, p10, mat_site, alpha ); - //////////////////////////////// // get point-wise log likelihood @@ -153,5 +150,4 @@ generated quantities { n_E, n_K, n_N, p_trad, L_ind, n_C, n_S, S_dna, Nloc_dna, K_dna, N_dna, p_dna, L_dna ); - } diff --git a/inst/stan/traditional_continuous.stan b/inst/stan/traditional_continuous.stan index 018776e..66945ff 100644 --- a/inst/stan/traditional_continuous.stan +++ b/inst/stan/traditional_continuous.stan @@ -49,7 +49,6 @@ transformed parameters { } model { - // get lambda real lambda[n_C]; lambda = get_lambda_continuous(ctch, coef, mat, alpha, R_ind, n_C); @@ -60,7 +59,6 @@ model { alpha ~ gamma(alphapriors[1], alphapriors[2]); beta ~ gamma(betapriors[1], betapriors[2]); - } generated quantities{ @@ -83,5 +81,4 @@ generated quantities{ log_lik = calc_loglik_tradmod_continuous( beta, E_trans, R_ind, n_C, ctch, coef, mat, alpha ); - } diff --git a/inst/stan/traditional_count.stan b/inst/stan/traditional_count.stan index 8fe6b6c..3696d0f 100644 --- a/inst/stan/traditional_count.stan +++ b/inst/stan/traditional_count.stan @@ -43,7 +43,6 @@ transformed parameters { } model { - // get lambda real lambda[n_C]; lambda = get_lambda_count(ctch, coef, mat, mu_1, R_ind, n_C); @@ -61,7 +60,6 @@ model { if (negbin == 1) { phi ~ gamma(phi_priors[1], phi_priors[2]); // phi prior } - } generated quantities{ @@ -83,5 +81,4 @@ generated quantities{ log_lik = calc_loglik_tradmod_count( negbin, phi, n_E, n_C, ctch, coef, mat, mu_1, R_ind ); - }