From b84c31c54656547528f68afdbbfcaad93449ac82 Mon Sep 17 00:00:00 2001 From: lkksharma Date: Sun, 6 Oct 2024 00:34:34 +0530 Subject: [PATCH 1/2] grid knn and svr --- Python File/Stock_Price_Prediction.ipynb | 5416 ++++++++++++++++++++-- Stock_Price_Prediction.ipynb | 5416 ++++++++++++++++++++-- 2 files changed, 9850 insertions(+), 982 deletions(-) diff --git a/Python File/Stock_Price_Prediction.ipynb b/Python File/Stock_Price_Prediction.ipynb index c82b075..19803fe 100644 --- a/Python File/Stock_Price_Prediction.ipynb +++ b/Python File/Stock_Price_Prediction.ipynb @@ -17,62 +17,51 @@ }, { "cell_type": "code", - "source": [ - "from google.colab import drive\n", - "drive.mount('/content/drive')\n", - "df = pd.read_csv('drive/My Drive/Colab Notebooks/Stock Price Prediction RNN/SBIN.csv')" - ], + "execution_count": 4, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "SOQbXSiB-g5G", - "outputId": "6ae02a27-02b0-4bd9-a1ae-a7029056f32e" + "outputId": "55ee6ec8-9146-4ebf-c2fe-b4b06bc3a5c4" }, - "execution_count": 22, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n" ] } + ], + "source": [ + "from google.colab import drive\n", + "drive.mount('/content/drive')\n", + "df = pd.read_csv('drive/My Drive/Colab Notebooks/Stock Price Prediction RNN/SBIN.csv')" ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 6, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 206 }, "id": "Sc4id6VxL8BS", - "outputId": "568d039c-faf4-4636-bfc1-70b9ef83367b" + "outputId": "78207ea2-5b80-47a2-a1b1-0548765b6455" }, "outputs": [ { - "output_type": "execute_result", "data": { - "text/plain": [ - " Date Open High Low Close Adj Close \\\n", - "0 01-01-1996 18.691147 18.978922 18.540184 18.823240 12.409931 \n", - "1 02-01-1996 18.894005 18.964767 17.738192 18.224106 12.014931 \n", - "2 03-01-1996 18.327892 18.568489 17.643839 17.738192 11.694577 \n", - "3 04-01-1996 17.502312 17.832542 17.223972 17.676863 11.654142 \n", - "4 05-01-1996 17.738192 17.785366 17.459852 17.577793 11.588827 \n", - "\n", - " Volume \n", - "0 43733533.0 \n", - "1 56167280.0 \n", - "2 68296318.0 \n", - "3 86073880.0 \n", - "4 76613039.0 " - ], + "application/vnd.google.colaboratory.intrinsic+json": { + "summary": "{\n \"name\": \"df\",\n \"rows\": 7074,\n \"fields\": [\n {\n \"column\": \"Date\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 7074,\n \"samples\": [\n \"11-08-2016\",\n \"30-10-2007\",\n \"17-01-2017\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Open\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 154.7732294451065,\n \"min\": 13.478195,\n \"max\": 703.650024,\n \"num_unique_values\": 4758,\n \"samples\": [\n 174.399994,\n 31.0324,\n 187.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"High\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 156.34507839355788,\n \"min\": 13.935802,\n \"max\": 728.349976,\n \"num_unique_values\": 5403,\n \"samples\": [\n 473.0,\n 495.450012,\n 78.321663\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Low\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 152.98051601861624,\n \"min\": 13.214009,\n \"max\": 694.200012,\n \"num_unique_values\": 5488,\n \"samples\": [\n 60.2957,\n 22.677523,\n 16.983376\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 154.63054905628158,\n \"min\": 13.346102,\n \"max\": 725.25,\n \"num_unique_values\": 5975,\n \"samples\": [\n 633.599976,\n 241.100006,\n 107.834999\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Adj Close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 152.90324918554683,\n \"min\": 9.53141,\n \"max\": 725.25,\n \"num_unique_values\": 6575,\n \"samples\": [\n 12.345289,\n 223.836212,\n 16.758821\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Volume\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 34627439.399630256,\n \"min\": 0.0,\n \"max\": 446948261.0,\n \"num_unique_values\": 6948,\n \"samples\": [\n 29959130.0,\n 1648453.0,\n 14077470.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", + "type": "dataframe", + "variable_name": "df" + }, "text/html": [ "\n", - "
\n", + "
\n", "
\n", "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Close
5286257.350006
3408129.464996
5477279.350006
6906588.500000
53021.644367
\n", + "

" + ], "text/plain": [ "5286 257.350006\n", "3408 129.464996\n", @@ -903,8 +960,9 @@ "Name: Close, dtype: float64" ] }, + "execution_count": 18, "metadata": {}, - "execution_count": 34 + "output_type": "execute_result" } ], "source": [ @@ -913,28 +971,432 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 19, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 74 + "height": 80 }, "id": "qBhQ9HbYMI3d", - "outputId": "52e0655f-1d23-47b7-decc-7a7ca35c0470" + "outputId": "daac2bc7-a480-4013-8e06-717bb8c1fa65" }, "outputs": [ { - "output_type": "execute_result", "data": { + "text/html": [ + "
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], "text/plain": [ "LinearRegression()" - ], - "text/html": [ - "
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ] }, + "execution_count": 19, "metadata": {}, - "execution_count": 35 + "output_type": "execute_result" } ], "source": [ @@ -944,7 +1406,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 20, "metadata": { "id": "X269co2kMS4z" }, @@ -956,7 +1418,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 21, "metadata": { "id": "QK8GvDYPOd0Y" }, @@ -975,18 +1437,18 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 22, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "dEi49xtEOtne", - "outputId": "0000b074-3187-41de-fbac-4ae75cbda6bd" + "outputId": "60b53406-81c4-4531-cbb0-77b9ffde8890" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "RMSE: 1.6881364643681482\n", "MAE: 0.9433353485344729\n", @@ -1024,30 +1486,33 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 23, "metadata": { "id": "o7K9r7EXWRjQ" }, "outputs": [], "source": [ - "from sklearn.svm import SVR" + "from sklearn.svm import SVR\n", + "from sklearn.model_selection import GridSearchCV" ] }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 24, "metadata": { "id": "0xQewd7QWTtq" }, "outputs": [], "source": [ "# Create an SVR model\n", - "model2 = SVR()" + "model2 = SVR()\n", + "param_grid = {'C':[0.1, 1], 'epsilon':[0.01, 0.1, 0.5], 'kernel':['sigmoid']}\n", + "GV_SVR = GridSearchCV(model2, param_grid = param_grid, scoring = 'accuracy', n_jobs = -1)" ] }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 25, "metadata": { "id": "DuNes3s6U2IV" }, @@ -1063,96 +1528,543 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 26, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 74 + "height": 191 }, "id": "22SaCsQmfhgP", - "outputId": "2121e992-399d-4b78-e42c-fc20b9d52189" - }, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "SVR()" - ], - "text/html": [ - "
SVR()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" - ] - }, - "metadata": {}, - "execution_count": 42 - } - ], - "source": [ - "# Train the model\n", - "model2.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": { - "id": "OQ1nL4oYfkAC" - }, - "outputs": [], - "source": [ - "# Make predictions on the test set\n", - "pred2 = model2.predict(X_test)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": { - "id": "nRYTwydsfpjb" - }, - "outputs": [], - "source": [ - "# Calculate evaluation metrics\n", - "rmse2 = np.sqrt(mean_squared_error(y_test, pred2))\n", - "mae2 = mean_absolute_error(y_test, pred2)\n", - "mape2 = mean_absolute_percentage_error(y_test, pred2)\n", - "accuracy2 = accuracy_score(y_test > pred2, y_test > pred2.round())\n", - "precision2 = precision_score(y_test > pred2, y_test > pred2.round())\n", - "confusion2 = confusion_matrix(y_test > pred2, y_test > pred2.round())\n", - "recall2 = recall_score(y_test > pred2, y_test > pred2.round())\n", - "f12 = f1_score(y_test > pred2, y_test > pred2.round())" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "656J5oz5fzq6", - "outputId": "ce67d2d8-0bc8-4e6d-d6b5-6b78e7e1c59b" + "outputId": "7867aa8e-a7dc-49e4-d0aa-310423e9c696" }, "outputs": [ { + "name": "stderr", "output_type": "stream", - "name": "stdout", "text": [ - "RMSE: 147.71103599153602\n", - "MAE: 110.99419106508152\n", - "MAPE: 1.9715076513294716\n", - "Accuracy: 0.9992932862190813\n", - "Precision: 1.0\n", - "Confusion Matrix:\n", - " [[727 0]\n", - " [ 1 687]]\n", - "Recall: 0.998546511627907\n", - "F1 Score: 0.9992727272727273\n" + "/usr/local/lib/python3.10/dist-packages/sklearn/model_selection/_search.py:1103: UserWarning: One or more of the test scores are non-finite: [nan nan nan nan nan nan]\n", + " warnings.warn(\n" ] + }, + { + "data": { + "text/html": [ + "
GridSearchCV(estimator=SVR(), n_jobs=-1,\n",
+              "             param_grid={'C': [0.1, 1], 'epsilon': [0.01, 0.1, 0.5],\n",
+              "                         'kernel': ['sigmoid']},\n",
+              "             scoring='accuracy')
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "GridSearchCV(estimator=SVR(), n_jobs=-1,\n", + " param_grid={'C': [0.1, 1], 'epsilon': [0.01, 0.1, 0.5],\n", + " 'kernel': ['sigmoid']},\n", + " scoring='accuracy')" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "# Print the evaluation metrics\n", + "# Train the model\n", + "GV_SVR.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "id": "OQ1nL4oYfkAC" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred2 = GV_SVR.predict(X_test)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "U6-EppR68Jsu", + "outputId": "cfa67a46-ab8c-478d-c13e-fe884ef7ebae" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'C': 0.1, 'epsilon': 0.01, 'kernel': 'sigmoid'}" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "GV_SVR.best_params_" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "id": "nRYTwydsfpjb" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics with grid search\n", + "rmse2 = np.sqrt(mean_squared_error(y_test, pred2))\n", + "mae2 = mean_absolute_error(y_test, pred2)\n", + "mape2 = mean_absolute_percentage_error(y_test, pred2)\n", + "accuracy2 = accuracy_score(y_test > pred2, y_test > pred2.round())\n", + "precision2 = precision_score(y_test > pred2, y_test > pred2.round())\n", + "confusion2 = confusion_matrix(y_test > pred2, y_test > pred2.round())\n", + "recall2 = recall_score(y_test > pred2, y_test > pred2.round())\n", + "f12 = f1_score(y_test > pred2, y_test > pred2.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "656J5oz5fzq6", + "outputId": "c62c2076-2a10-43da-935d-c593c2d7be79" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 158.5191296342117\n", + "MAE: 127.61818666535594\n", + "MAPE: 2.6724681150799072\n", + "Accuracy: 0.9985865724381625\n", + "Precision: 0.9970457902511078\n", + "Confusion Matrix:\n", + " [[738 2]\n", + " [ 0 675]]\n", + "Recall: 1.0\n", + "F1 Score: 0.9985207100591716\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics with grid search\n", "print(\"RMSE:\", rmse2)\n", "print(\"MAE:\", mae2)\n", "print(\"MAPE:\", mape2)\n", @@ -1163,6 +2075,512 @@ "print(\"F1 Score:\", f12)" ] }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "tIlc-wCE8Jsv", + "outputId": "fc6a39f5-b546-444e-a522-8bbcf889be14" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
SVR()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "SVR()" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#fitting without grid search\n", + "model2.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "id": "f3u1h6Dk8Jsv" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred2_1 = model2.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "id": "F-NgJx2d8Jsv" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics without grid search\n", + "rmse2_1 = np.sqrt(mean_squared_error(y_test, pred2_1))\n", + "mae2_1 = mean_absolute_error(y_test, pred2_1)\n", + "mape2_1 = mean_absolute_percentage_error(y_test, pred2_1)\n", + "accuracy2_1 = accuracy_score(y_test > pred2_1, y_test > pred2_1.round())\n", + "precision2_1 = precision_score(y_test > pred2_1, y_test > pred2_1.round())\n", + "confusion2_1 = confusion_matrix(y_test > pred2_1, y_test > pred2_1.round())\n", + "recall2_1 = recall_score(y_test > pred2_1, y_test > pred2_1.round())\n", + "f12_1 = f1_score(y_test > pred2_1, y_test > pred2_1.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "_BB1EERE8Jsv", + "outputId": "11c94daf-d2db-4447-a5b9-b753e648b56c" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 147.71103599153602\n", + "MAE: 110.99419106508152\n", + "MAPE: 1.9715076513294716\n", + "Accuracy: 0.9992932862190813\n", + "Precision: 1.0\n", + "Confusion Matrix:\n", + " [[727 0]\n", + " [ 1 687]]\n", + "Recall: 0.998546511627907\n", + "F1 Score: 0.9992727272727273\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics without grid search\n", + "print(\"RMSE:\", rmse2_1)\n", + "print(\"MAE:\", mae2_1)\n", + "print(\"MAPE:\", mape2_1)\n", + "print(\"Accuracy:\", accuracy2_1)\n", + "print(\"Precision:\", precision2_1)\n", + "print(\"Confusion Matrix:\\n\", confusion2_1)\n", + "print(\"Recall:\", recall2_1)\n", + "print(\"F1 Score:\", f12_1)" + ] + }, { "cell_type": "markdown", "metadata": { @@ -1174,7 +2592,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 35, "metadata": { "id": "f7raXT_hf2ij" }, @@ -1187,7 +2605,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 36, "metadata": { "id": "TadNM7MEU7fh" }, @@ -1203,28 +2621,432 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 37, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 74 + "height": 80 }, "id": "fF002Yepgk55", - "outputId": "d148c589-4879-4e2d-8b0f-5b5ca01a2a53" + "outputId": "4ff3a76e-04be-452e-8927-a7739bc306fb" }, "outputs": [ { - "output_type": "execute_result", "data": { + "text/html": [ + "
RandomForestRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], "text/plain": [ "RandomForestRegressor()" - ], - "text/html": [ - "
RandomForestRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ] }, + "execution_count": 37, "metadata": {}, - "execution_count": 48 + "output_type": "execute_result" } ], "source": [ @@ -1234,7 +3056,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 38, "metadata": { "id": "8nRU_pzEgnCt" }, @@ -1246,7 +3068,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 39, "metadata": { "id": "4aKEXGVUgsry" }, @@ -1265,29 +3087,29 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 40, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "8pPzsCY1g305", - "outputId": "72c4ea56-2610-41c6-f286-4c8289d3f0ac" + "outputId": "bc5eeab1-5d75-4be3-b26f-70c4fe533a47" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "RMSE: 2.189635498596314\n", - "MAE: 1.250413817712252\n", - "MAPE: 0.007984509559881612\n", - "Accuracy: 0.8551236749116607\n", - "Precision: 0.8558823529411764\n", + "RMSE: 2.2227552163641375\n", + "MAE: 1.2618627107561857\n", + "MAPE: 0.008011786688180922\n", + "Accuracy: 0.8537102473498234\n", + "Precision: 0.8575624082232012\n", "Confusion Matrix:\n", - " [[628 98]\n", - " [107 582]]\n", - "Recall: 0.8447024673439768\n", - "F1 Score: 0.8502556610664718\n" + " [[624 97]\n", + " [110 584]]\n", + "Recall: 0.8414985590778098\n", + "F1 Score: 0.8494545454545455\n" ] } ], @@ -1314,7 +3136,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 41, "metadata": { "id": "TI8idoxOg6jF" }, @@ -1327,7 +3149,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 42, "metadata": { "id": "7r9xJDtOVBEA" }, @@ -1343,21 +3165,424 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 43, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 248 + "height": 254 }, "id": "2gpbDxshhexj", - "outputId": "b2b1a681-7ede-4d66-be5d-1a8606d0f470" + "outputId": "2cdbacc9-909a-43c9-cf04-cc4f70015e43" }, "outputs": [ { - "output_type": "execute_result", "data": { - "text/plain": [ - "XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + "text/html": [ + "
XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
               "             colsample_bylevel=None, colsample_bynode=None,\n",
               "             colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
               "             enable_categorical=False, eval_metric=None, feature_types=None,\n",
@@ -1367,10 +3592,7 @@
               "             max_delta_step=None, max_depth=None, max_leaves=None,\n",
               "             min_child_weight=None, missing=nan, monotone_constraints=None,\n",
               "             multi_strategy=None, n_estimators=None, n_jobs=None,\n",
-              "             num_parallel_tree=None, random_state=None, ...)"
-            ],
-            "text/html": [
-              "
XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
+              "             num_parallel_tree=None, random_state=None, ...)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + " num_parallel_tree=None, random_state=None, ...)" ] }, + "execution_count": 43, "metadata": {}, - "execution_count": 54 + "output_type": "execute_result" } ], "source": [ @@ -1404,7 +3630,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 44, "metadata": { "id": "Jj9DXdUPhh9V" }, @@ -1416,7 +3642,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 45, "metadata": { "id": "TdH60Sllhn5O" }, @@ -1435,18 +3661,18 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 46, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "qpnLeFyZhwB3", - "outputId": "4dcac062-ec60-4b2c-ab4b-dcda1b0f2341" + "outputId": "1637d31a-e785-4414-dfe5-f7fa4fd282e9" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "RMSE: 2.733930065274145\n", "MAE: 1.502457380471909\n", @@ -1457,7 +3683,7 @@ " [[613 75]\n", " [ 89 638]]\n", "Recall: 0.8775790921595599\n", - "F1 Score: 0.8861111111111112\n" + "F1 Score: 0.8861111111111111\n" ] } ], @@ -1484,7 +3710,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 47, "metadata": { "id": "DyhhdlZAhx94" }, @@ -1497,7 +3723,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 48, "metadata": { "id": "Z_AD0lVOVHwB" }, @@ -1513,21 +3739,424 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 49, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 248 + "height": 254 }, "id": "RAIwxIp5iH9Z", - "outputId": "d2b4aa97-7e07-4015-c308-76a292b0929f" + "outputId": "cc66ca33-11cc-4e5d-e7e1-f39b41466c28" }, "outputs": [ { - "output_type": "execute_result", "data": { - "text/plain": [ - "XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + "text/html": [ + "
XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
               "             colsample_bylevel=None, colsample_bynode=None,\n",
               "             colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
               "             enable_categorical=False, eval_metric=None, feature_types=None,\n",
@@ -1537,10 +4166,7 @@
               "             max_delta_step=None, max_depth=None, max_leaves=None,\n",
               "             min_child_weight=None, missing=nan, monotone_constraints=None,\n",
               "             multi_strategy=None, n_estimators=None, n_jobs=None,\n",
-              "             num_parallel_tree=None, random_state=None, ...)"
-            ],
-            "text/html": [
-              "
XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
+              "             num_parallel_tree=None, random_state=None, ...)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + " num_parallel_tree=None, random_state=None, ...)" ] }, + "execution_count": 49, "metadata": {}, - "execution_count": 60 + "output_type": "execute_result" } ], "source": [ @@ -1574,7 +4204,7 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 50, "metadata": { "id": "XmJds5fYiKT3" }, @@ -1586,7 +4216,7 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 51, "metadata": { "id": "lZ1A0-L8iNCM" }, @@ -1605,18 +4235,18 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 52, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "7IkE-RAmiWNo", - "outputId": "cf4c1d84-412b-4a18-f70c-65ce637772ea" + "outputId": "d69e485e-0462-409a-f9aa-59e5ca7c4bef" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "RMSE: 2.733930065274145\n", "MAE: 1.502457380471909\n", @@ -1627,7 +4257,7 @@ " [[613 75]\n", " [ 89 638]]\n", "Recall: 0.8775790921595599\n", - "F1 Score: 0.8861111111111112\n" + "F1 Score: 0.8861111111111111\n" ] } ], @@ -1654,7 +4284,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 53, "metadata": { "id": "HNq66cXRiYPJ" }, @@ -1667,7 +4297,7 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 54, "metadata": { "id": "qPHH6rG0VW4V" }, @@ -1683,28 +4313,432 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 55, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 74 + "height": 80 }, "id": "P0oB5wjQivBr", - "outputId": "8726c583-6782-4504-b0ac-d2ef4ccbca4c" + "outputId": "827e151d-e13e-4924-ef50-c5e1d13f6161" }, "outputs": [ { - "output_type": "execute_result", "data": { + "text/html": [ + "
AdaBoostRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], "text/plain": [ "AdaBoostRegressor()" - ], - "text/html": [ - "
AdaBoostRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ] }, + "execution_count": 55, "metadata": {}, - "execution_count": 66 + "output_type": "execute_result" } ], "source": [ @@ -1714,7 +4748,7 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 56, "metadata": { "id": "Bf1m5ukOi2VM" }, @@ -1726,7 +4760,7 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 57, "metadata": { "id": "oFWSqC4ai6gd" }, @@ -1745,29 +4779,29 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 58, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "BsajWJGBjC80", - "outputId": "1af1194f-9a33-40af-8578-c99832509c1b" + "outputId": "076cff01-ff0a-449b-d86c-df9f1363fecd" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "RMSE: 9.283285018137352\n", - "MAE: 7.574989783595977\n", - "MAPE: 0.16829256716397573\n", - "Accuracy: 0.9901060070671378\n", - "Precision: 0.9900990099009901\n", + "RMSE: 10.504089217159294\n", + "MAE: 8.746118088217727\n", + "MAPE: 0.20512996006219347\n", + "Accuracy: 0.9943462897526502\n", + "Precision: 0.9939879759519038\n", "Confusion Matrix:\n", - " [[901 5]\n", - " [ 9 500]]\n", - "Recall: 0.9823182711198428\n", - "F1 Score: 0.9861932938856016\n" + " [[911 3]\n", + " [ 5 496]]\n", + "Recall: 0.9900199600798403\n", + "F1 Score: 0.992\n" ] } ], @@ -1794,7 +4828,7 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 59, "metadata": { "id": "23DZ2biSjF9a" }, @@ -1807,7 +4841,7 @@ }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 60, "metadata": { "id": "Ajo2RAVAVb7H" }, @@ -1823,28 +4857,432 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 61, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 74 + "height": 80 }, "id": "6mQEQf-ykc9F", - "outputId": "f1a62020-4125-4aea-e7e4-11acffdc5169" + "outputId": "78dc7661-96e4-46af-b65a-c705018c58a3" }, "outputs": [ { - "output_type": "execute_result", "data": { + "text/html": [ + "
DecisionTreeRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], "text/plain": [ "DecisionTreeRegressor()" - ], - "text/html": [ - "
DecisionTreeRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ] }, + "execution_count": 61, "metadata": {}, - "execution_count": 72 + "output_type": "execute_result" } ], "source": [ @@ -1854,7 +5292,7 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 62, "metadata": { "id": "BFJ9q_tvkgRC" }, @@ -1866,7 +5304,7 @@ }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 63, "metadata": { "id": "9IxfYZbYkjv1" }, @@ -1885,29 +5323,29 @@ }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 64, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "AnZXMYb8kooV", - "outputId": "273fa9ed-d6f2-4c4d-fb0e-a643f5ef5732" + "outputId": "93527d46-9366-49ce-b895-7a12ae87f742" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "RMSE: 3.193539964582351\n", - "MAE: 1.6240937361593886\n", - "MAPE: 0.010136361140005275\n", - "Accuracy: 0.8579505300353357\n", - "Precision: 0.8700410396716827\n", + "RMSE: 3.136698143876249\n", + "MAE: 1.6416165234385407\n", + "MAPE: 0.010224639636659394\n", + "Accuracy: 0.8600706713780919\n", + "Precision: 0.8687845303867403\n", "Confusion Matrix:\n", - " [[578 95]\n", - " [106 636]]\n", - "Recall: 0.8571428571428571\n", - "F1 Score: 0.8635437881873728\n" + " [[588 95]\n", + " [103 629]]\n", + "Recall: 0.8592896174863388\n", + "F1 Score: 0.864010989010989\n" ] } ], @@ -1934,20 +5372,23 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 65, "metadata": { "id": "JVDSed7yktFY" }, "outputs": [], "source": [ "from sklearn.neighbors import KNeighborsRegressor\n", + "from sklearn.model_selection import GridSearchCV\n", "# Create a KNN model\n", - "model8 = KNeighborsRegressor()" + "model8 = KNeighborsRegressor()\n", + "param_grid = {'n_neighbors':[3, 5, 7, 9, 11, 15, 20, 23, 25, 30, 60, 70, 150]}\n", + "GV_KNN = GridSearchCV(model8, param_grid, cv=5, scoring='neg_mean_squared_error')" ] }, { "cell_type": "code", - "execution_count": 77, + "execution_count": 66, "metadata": { "id": "XJHb5SxrVgVp" }, @@ -1963,28 +5404,432 @@ }, { "cell_type": "code", - "execution_count": 78, + "execution_count": 67, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 74 + "height": 80 }, "id": "9fn64o-ZlBka", - "outputId": "dc5e6af2-de37-46ee-cde7-e0a3baa31a1f" + "outputId": "bc388b6b-cf36-4a91-eb52-8fe7a861308b" }, "outputs": [ { - "output_type": "execute_result", "data": { + "text/html": [ + "
KNeighborsRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], "text/plain": [ "KNeighborsRegressor()" - ], - "text/html": [ - "
KNeighborsRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ] }, + "execution_count": 67, "metadata": {}, - "execution_count": 78 + "output_type": "execute_result" } ], "source": [ @@ -1994,73 +5839,610 @@ }, { "cell_type": "code", - "execution_count": 79, + "execution_count": 68, "metadata": { "id": "hbfbbjcSlDn7" }, "outputs": [], "source": [ - "# Make predictions on the test set\n", - "pred8 = model8.predict(X_test)" + "# Make predictions on the test set\n", + "pred8 = model8.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "id": "hnWyNv3blHdL" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse8 = np.sqrt(mean_squared_error(y_test, pred8))\n", + "mae8 = mean_absolute_error(y_test, pred8)\n", + "mape8 = mean_absolute_percentage_error(y_test, pred8)\n", + "accuracy8 = accuracy_score(y_test > pred8, y_test > pred8.round())\n", + "precision8 = precision_score(y_test > pred8, y_test > pred8.round())\n", + "confusion8 = confusion_matrix(y_test > pred8, y_test > pred8.round())\n", + "recall8 = recall_score(y_test > pred8, y_test > pred8.round())\n", + "f18 = f1_score(y_test > pred8, y_test > pred8.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IPoDRkcMlMAr", + "outputId": "5aee40b5-c7c1-4fad-f419-37d08a504146" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 148.73183825029315\n", + "MAE: 109.35229571264969\n", + "MAPE: 1.75024316976612\n", + "Accuracy: 0.9908127208480565\n", + "Precision: 0.9887820512820513\n", + "Confusion Matrix:\n", + " [[785 7]\n", + " [ 6 617]]\n", + "Recall: 0.9903691813804173\n", + "F1 Score: 0.9895749799518845\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse8)\n", + "print(\"MAE:\", mae8)\n", + "print(\"MAPE:\", mape8)\n", + "print(\"Accuracy:\", accuracy8)\n", + "print(\"Precision:\", precision8)\n", + "print(\"Confusion Matrix:\\n\", confusion8)\n", + "print(\"Recall:\", recall8)\n", + "print(\"F1 Score:\", f18)" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "5qW5X1Xe8Js7", + "outputId": "6abf26c0-873e-42e2-9aab-c2bd93a5ae84" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
KNeighborsRegressor(n_neighbors=150)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "KNeighborsRegressor(n_neighbors=150)" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "GV_KNN.fit(X_train, y_train)\n", + "pred8_1 = GV_KNN.predict(X_test)\n", + "GV_KNN.best_estimator_" ] }, { "cell_type": "code", - "execution_count": 80, + "execution_count": 72, "metadata": { - "id": "hnWyNv3blHdL" + "id": "voNSUlHk8Js7" }, "outputs": [], "source": [ - "# Calculate evaluation metrics\n", - "rmse8 = np.sqrt(mean_squared_error(y_test, pred8))\n", - "mae8 = mean_absolute_error(y_test, pred8)\n", - "mape8 = mean_absolute_percentage_error(y_test, pred8)\n", - "accuracy8 = accuracy_score(y_test > pred8, y_test > pred8.round())\n", - "precision8 = precision_score(y_test > pred8, y_test > pred8.round())\n", - "confusion8 = confusion_matrix(y_test > pred8, y_test > pred8.round())\n", - "recall8 = recall_score(y_test > pred8, y_test > pred8.round())\n", - "f18 = f1_score(y_test > pred8, y_test > pred8.round())" + "# Calculate evaluation metrics with grid search\n", + "rmse8_1 = np.sqrt(mean_squared_error(y_test, pred8_1))\n", + "mae8_1 = mean_absolute_error(y_test, pred8_1)\n", + "mape8_1 = mean_absolute_percentage_error(y_test, pred8_1)\n", + "accuracy8_1 = accuracy_score(y_test > pred8_1, y_test > pred8_1.round())\n", + "precision8_1 = precision_score(y_test > pred8_1, y_test > pred8_1.round())\n", + "confusion8_1 = confusion_matrix(y_test > pred8_1, y_test > pred8_1.round())\n", + "recall8_1 = recall_score(y_test > pred8_1, y_test > pred8_1.round())\n", + "f18_1 = f1_score(y_test > pred8_1, y_test > pred8_1.round())" ] }, { "cell_type": "code", - "execution_count": 81, + "execution_count": 73, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, - "id": "IPoDRkcMlMAr", - "outputId": "9892f42f-e65f-46c0-eeed-77ce32f6a7eb" + "id": "VMnot_fX8Js8", + "outputId": "71c354e6-71e6-4d31-ee2f-2a03f65d24fe" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "RMSE: 148.73183825029315\n", - "MAE: 109.35229571264969\n", - "MAPE: 1.75024316976612\n", - "Accuracy: 0.9908127208480565\n", - "Precision: 0.9887820512820513\n", + "RMSE: 137.20694663964096\n", + "MAE: 101.08872313712585\n", + "MAPE: 1.7323302969000884\n", + "Accuracy: 0.9985865724381625\n", + "Precision: 1.0\n", "Confusion Matrix:\n", - " [[785 7]\n", - " [ 6 617]]\n", - "Recall: 0.9903691813804173\n", - "F1 Score: 0.9895749799518845\n" + " [[865 0]\n", + " [ 2 548]]\n", + "Recall: 0.9963636363636363\n", + "F1 Score: 0.9981785063752276\n" ] } ], "source": [ - "# Print the evaluation metrics\n", - "print(\"RMSE:\", rmse8)\n", - "print(\"MAE:\", mae8)\n", - "print(\"MAPE:\", mape8)\n", - "print(\"Accuracy:\", accuracy8)\n", - "print(\"Precision:\", precision8)\n", - "print(\"Confusion Matrix:\\n\", confusion8)\n", - "print(\"Recall:\", recall8)\n", - "print(\"F1 Score:\", f18)" + "# Print the evaluation metrics with grid search\n", + "print(\"RMSE:\", rmse8_1)\n", + "print(\"MAE:\", mae8_1)\n", + "print(\"MAPE:\", mape8_1)\n", + "print(\"Accuracy:\", accuracy8_1)\n", + "print(\"Precision:\", precision8_1)\n", + "print(\"Confusion Matrix:\\n\", confusion8_1)\n", + "print(\"Recall:\", recall8_1)\n", + "print(\"F1 Score:\", f18_1)" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 524 + }, + "id": "Swebseye8Js8", + "outputId": "c501acf3-094c-4ba6-f0d7-1a0901cdb2e0" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1AAAAH7CAYAAADCX341AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVWElEQVR4nO3de3iU9Z3//9fMJDM5TjBASJAgEa2agihHU/uluqWEGq2stqtWLZ7qwgYU2FW0VSn2W7G6rWhRaO1e4G+Rou631AI1bsrJWoJRECFEUCEFNBkSjMmEkOPM/fsDZsiQBCaQ5L5n8nxc11wy9/3Jnfd8QoFXPyebYRiGAAAAAABnZDe7AAAAAACIFAQoAAAAAAgTAQoAAAAAwkSAAgAAAIAwEaAAAAAAIEwEKAAAAAAIEwEKAAAAAMJEgAIAAACAMBGgAAAAACBMMWYXYCa/36/y8nIlJyfLZrOZXQ4AAAAAkxiGobq6Og0ePFh2+2nGmYwueOqpp4yxY8caSUlJxsCBA40bb7zR2LNnT0ibb33rW4akkNe//uu/hrQ5cOCAcd111xnx8fHGwIEDjf/4j/8wWlpaQtps3LjRuPLKKw2n02kMHz7cWLZsWbt6Fi9ebFxwwQWGy+Uyxo8fb7z33ntd+TjGoUOH2tXKixcvXrx48eLFixevvvs6dOjQaTNEl0agNm/erPz8fI0bN06tra36yU9+osmTJ6u0tFSJiYnBdj/+8Y/15JNPBt8nJCQEf+3z+ZSXl6f09HRt2bJFFRUV+tGPfqTY2Fg99dRTkqSysjLl5eVp+vTpevXVV7V+/Xrdd999ysjIUG5uriTptdde09y5c7V06VJNmDBBixYtUm5urvbu3au0tLSwPk9ycrIk6dChQ3K73V3pCgAAAABRxOv1KjMzM5gROmMzDMM4229SVVWltLQ0bd68WRMnTpQkXXPNNbriiiu0aNGiDr/mrbfe0vXXX6/y8nINGjRIkrR06VLNmzdPVVVVcjqdmjdvntatW6eSkpLg1916662qqalRQUGBJGnChAkaN26cFi9eLOn4dLzMzEzNmjVLjzzySFj1e71epaSkqLa2lgAFAAAA9GHhZoNz2kSitrZWkpSamhpy/dVXX9WAAQM0YsQIPfroozp27FjwXlFRkUaOHBkMT5KUm5srr9er3bt3B9tMmjQp5Jm5ubkqKiqSJDU3N2vbtm0hbex2uyZNmhRs05GmpiZ5vd6QFwAAAACE66w3kfD7/Zo9e7auvvpqjRgxInj9hz/8oS644AINHjxYO3fu1Lx587R371798Y9/lCR5PJ6Q8CQp+N7j8Zy2jdfrVUNDg7766iv5fL4O2+zZs6fTmhcuXKgFCxac7UcGAAAA0MeddYDKz89XSUmJ3n333ZDr999/f/DXI0eOVEZGhr797W9r3759Gj58+NlX2g0effRRzZ07N/g+MM8RAAAAAMJxVgFq5syZWrt2rd555x0NGTLktG0nTJggSfrss880fPhwpaenq7i4OKTN4cOHJUnp6enB/wautW3jdrsVHx8vh8Mhh8PRYZvAMzricrnkcrnC+5AAAAAAcIourYEyDEMzZ87U6tWrtWHDBmVlZZ3xa3bs2CFJysjIkCTl5ORo165dqqysDLYpLCyU2+1WdnZ2sM369etDnlNYWKicnBxJktPp1JgxY0La+P1+rV+/PtgGAAAAALpbl0ag8vPztXLlSr355ptKTk4OrllKSUlRfHy89u3bp5UrV+q6665T//79tXPnTs2ZM0cTJ07U5ZdfLkmaPHmysrOzdeedd+qZZ56Rx+PRY489pvz8/ODo0PTp07V48WI9/PDDuueee7Rhwwa9/vrrWrduXbCWuXPnatq0aRo7dqzGjx+vRYsWqb6+XnfffXd39Q0AAAAAhOjSNuY2m63D68uWLdNdd92lQ4cO6Y477lBJSYnq6+uVmZmpf/7nf9Zjjz0WshXggQMHNGPGDG3atEmJiYmaNm2ann76acXEnMxzmzZt0pw5c1RaWqohQ4bo8ccf11133RXyfRcvXqxnn31WHo9HV1xxhV544YXglMFwsI05AAAAACn8bHBO50BFOgIUAAAAAKmXzoECAAAAgL6EAAUAAAAAYSJAAQAAAECYCFAAAAAAECYCFAAAAACEqUvnQKFn+PyGisuqVVnXqLTkOI3PSpXD3vGW8QAAAADMQ4AyWUFJhRasKVVFbWPwWkZKnObfkK0pIzJMrAwAAADAqZjCZ6KCkgrNWLE9JDxJkqe2UTNWbFdBSYVJlQEAAADoCAHKJD6/oQVrStXRKcaBawvWlMrn77PnHAMAAACWQ4AySXFZdbuRp7YMSRW1jSouq+69ogAAAACcFgHKJJV1nYens2kHAAAAoOcRoEySlhzXre0AAAAA9DwClEnGZ6UqIyVOnW1WbtPx3fjGZ6X2ZlkAAAAAToMAZRKH3ab5N2RLUrsQFXg//4ZszoMCAAAALIQAZaIpIzK05I7RSk8JnaaXnhKnJXeM5hwoAAAAwGI4SNdkU0Zk6DvZ6Zr8683ad6Re/zH5a5pxzUWMPAEAAAAWxAiUBTjsNg0+L16SdP558YQnAAAAwKIIUBaRHHd8MNDb0GpyJQAAAAA6Q4CyiGRXrCSprrHF5EoAAAAAdIYAZRGBEai6RkagAAAAAKsiQFmEO/74CJSXAAUAAABYFgHKIk6OQDGFDwAAALAqApRFJMcxAgUAAABYHQHKIhiBAgAAAKyPAGURbCIBAAAAWB8ByiLccWxjDgAAAFgdAcoiAgGKg3QBAAAA6yJAWURgCl9Di08tPr/J1QAAAADoCAHKIpJOBChJOso6KAAAAMCSCFAWEeuwK8HpkMRGEgAAAIBVEaAsJDCNz8tGEgAAAIAlEaAs5ORhugQoAAAAwIoIUBbCWVAAAACAtRGgLCQ5eBYUAQoAAACwIgKUhbiDI1BM4QMAAACsiABlIckcpgsAAABYGgHKQhiBAgAAAKyNAGUhbCIBAAAAWBsBykLc8Sc2kWhiBAoAAACwIgKUhTACBQAAAFgbAcpCkl2BTSQYgQIAAACsiABlIYxAAQAAANZGgLKQ4DbmBCgAAADAkghQFuKOZxtzAAAAwMoIUBYSGIFqavWrqdVncjUAAAAATkWAspAkV0zw16yDAgAAAKyHAGUhDrstGKIIUAAAAID1EKAsxh3HOigAAADAqghQFhNYB8UIFAAAAGA9BCiLCZwFxWG6AAAAgPUQoCyGw3QBAAAA6yJAWczJw3QZgQIAAACshgBlMScP02UECgAAALAaApTFMAIFAAAAWBcBymJYAwUAAABYFwHKYk5uY84IFAAAAGA1BCiLcTMCBQAAAFgWAcpi3BykCwAAAFgWAcpiggfpMoUPAAAAsBwClMUkMwIFAAAAWFaXAtTChQs1btw4JScnKy0tTVOnTtXevXs7bGsYhr773e/KZrPpT3/6U8i9gwcPKi8vTwkJCUpLS9NDDz2k1tbQwLBp0yaNHj1aLpdLF110kZYvX97ue7z44osaNmyY4uLiNGHCBBUXF3fl41jSyV34WmQYhsnVAAAAAGirSwFq8+bNys/P19atW1VYWKiWlhZNnjxZ9fX17douWrRINput3XWfz6e8vDw1Nzdry5YteuWVV7R8+XI98cQTwTZlZWXKy8vTtddeqx07dmj27Nm677779PbbbwfbvPbaa5o7d67mz5+v7du3a9SoUcrNzVVlZWVXPpLluOOPj0C1+Aw1tfpNrgYAAABAWzbjHIY5qqqqlJaWps2bN2vixInB6zt27ND111+vDz74QBkZGVq9erWmTp0qSXrrrbd0/fXXq7y8XIMGDZIkLV26VPPmzVNVVZWcTqfmzZundevWqaSkJPjMW2+9VTU1NSooKJAkTZgwQePGjdPixYslSX6/X5mZmZo1a5YeeeSRsOr3er1KSUlRbW2t3G732XZDtzIMQ8N/8hf5Dan4p99WWnKc2SUBAAAAUS/cbHBOa6Bqa2slSampqcFrx44d0w9/+EO9+OKLSk9Pb/c1RUVFGjlyZDA8SVJubq68Xq92794dbDNp0qSQr8vNzVVRUZEkqbm5Wdu2bQtpY7fbNWnSpGCbjjQ1Ncnr9Ya8rMZmsynJdWIjiQbWQQEAAABWctYByu/3a/bs2br66qs1YsSI4PU5c+boG9/4hm688cYOv87j8YSEJ0nB9x6P57RtvF6vGhoadOTIEfl8vg7bBJ7RkYULFyolJSX4yszMDP8D9yIO0wUAAACs6awDVH5+vkpKSrRq1argtT//+c/asGGDFi1a1B21dbtHH31UtbW1wdehQ4fMLqlDgXVQ7MQHAAAAWMtZBaiZM2dq7dq12rhxo4YMGRK8vmHDBu3bt0/9+vVTTEyMYmKOT0W7+eabdc0110iS0tPTdfjw4ZDnBd4Hpvx11sbtdis+Pl4DBgyQw+HosE1H0wYDXC6X3G53yMuKTu7ER4ACAAAArKRLAcowDM2cOVOrV6/Whg0blJWVFXL/kUce0c6dO7Vjx47gS5Kee+45LVu2TJKUk5OjXbt2heyWV1hYKLfbrezs7GCb9evXhzy7sLBQOTk5kiSn06kxY8aEtPH7/Vq/fn2wTSRzc5guAAAAYEkxXWmcn5+vlStX6s0331RycnJwvVFKSori4+OVnp7e4QjQ0KFDg2Fr8uTJys7O1p133qlnnnlGHo9Hjz32mPLz8+VyuSRJ06dP1+LFi/Xwww/rnnvu0YYNG/T6669r3bp1wWfOnTtX06ZN09ixYzV+/HgtWrRI9fX1uvvuu8+6M6yCNVAAAACANXUpQC1ZskSSgtPxApYtW6a77rorrGc4HA6tXbtWM2bMUE5OjhITEzVt2jQ9+eSTwTZZWVlat26d5syZo+eff15DhgzR73//e+Xm5gbb3HLLLaqqqtITTzwhj8ejK664QgUFBe02lohETOEDAAAArOmczoGKdFY8B0qS/vPtvVq88TPd9Y1h+tn3vm52OQAAAEDU65VzoNAzklkDBQAAAFgSAcqCAmugOEgXAAAAsBYClAWdXAPFCBQAAABgJQQoC+IgXQAAAMCaCFAWFByBamIECgAAALASApQFBQ/SZQ0UAAAAYCkEKAsKbCJxtKlVfXiXeQAAAMByCFAWFJjC5/MbOtbsM7kaAAAAAAEEKAuKj3Uoxm6TxEYSAAAAgJUQoCzIZrOxlTkAAABgQQQoiwoepkuAAgAAACyDAGVRgREoL1P4AAAAAMsgQFmUO47DdAEAAACrIUBZFGugAAAAAOshQFlUcA0Uh+kCAAAAlkGAsihGoAAAAADrIUBZlDsYoBiBAgAAAKyCAGVR7vjAJhKMQAEAAABWQYCyqGRGoAAAAADLIUBZFAfpAgAAANZDgLIoRqAAAAAA6yFAWRQH6QIAAADWQ4CyqMAIFFP4AAAAAOsgQFlUYA3U0aZW+f2GydUAAAAAkAhQlhUYgTIM6Wgz0/gAAAAAKyBAWVRcrENOx/EfD+ugAAAAAGsgQFmYOz6wEx/roAAAAAArIEBZWDI78QEAAACWQoCysOBOfA2MQAEAAABWQICyMA7TBQAAAKyFAGVhJw/TZQQKAAAAsAIClIWdPEyXESgAAADACghQFhbYRMLLCBQAAABgCQQoC2MNFAAAAGAtBCgLYxtzAAAAwFoIUBbmjuMgXQAAAMBKCFAWxggUAAAAYC0EKAtzc5AuAAAAYCkEKAtjBAoAAACwFgKUhbnjWQMFAAAAWAkBysICI1D1zT61+vwmVwMAAACAAGVhgXOgJOloE9P4AAAAALMRoCws1mFXXOzxHxHroAAAAADzEaAsLjCNz8s6KAAAAMB0BCiLO3mYLiNQAAAAgNkIUBbHVuYAAACAdRCgLC6Zw3QBAAAAyyBAWZw7OAJFgAIAAADMRoCyuJOH6TKFDwAAADAbAcrigmugOAcKAAAAMB0ByuKSXYERKKbwAQAAAGYjQFncyU0kGIECAAAAzEaAsjgO0gUAAACsgwBlce54zoECAAAArIIAZXGBKXysgQIAAADMR4CyuOAaKEagAAAAANMRoCyOg3QBAAAA6yBAWVwgQDW2+NXi85tcDQAAANC3EaAsLunEFD6JjSQAAAAAsxGgLM5htynR6ZDEND4AAADAbASoCBA8C4rDdAEAAABTdSlALVy4UOPGjVNycrLS0tI0depU7d27N6TNv/7rv2r48OGKj4/XwIEDdeONN2rPnj0hbQ4ePKi8vDwlJCQoLS1NDz30kFpbQ8PBpk2bNHr0aLlcLl100UVavnx5u3pefPFFDRs2THFxcZowYYKKi4u78nEiBluZAwAAANbQpQC1efNm5efna+vWrSosLFRLS4smT56s+vr6YJsxY8Zo2bJl+vjjj/X222/LMAxNnjxZPp9PkuTz+ZSXl6fm5mZt2bJFr7zyipYvX64nnngi+IyysjLl5eXp2muv1Y4dOzR79mzdd999evvtt4NtXnvtNc2dO1fz58/X9u3bNWrUKOXm5qqysvJc+8RyAofpspU5AAAAYC6bYRjG2X5xVVWV0tLStHnzZk2cOLHDNjt37tSoUaP02Wefafjw4Xrrrbd0/fXXq7y8XIMGDZIkLV26VPPmzVNVVZWcTqfmzZundevWqaSkJPicW2+9VTU1NSooKJAkTZgwQePGjdPixYslSX6/X5mZmZo1a5YeeeSRDmtpampSU1NT8L3X61VmZqZqa2vldrvPtht63F3LirVpb5We/f7l+sHYTLPLAQAAAKKO1+tVSkrKGbPBOa2Bqq2tlSSlpqZ2eL++vl7Lli1TVlaWMjOP/8O/qKhII0eODIYnScrNzZXX69Xu3buDbSZNmhTyrNzcXBUVFUmSmpubtW3btpA2drtdkyZNCrbpyMKFC5WSkhJ8BWqyuuAaKEagAAAAAFOddYDy+/2aPXu2rr76ao0YMSLk3ksvvaSkpCQlJSXprbfeUmFhoZxOpyTJ4/GEhCdJwfcej+e0bbxerxoaGnTkyBH5fL4O2wSe0ZFHH31UtbW1wdehQ4fO7sP3MtZAAQAAANZw1gEqPz9fJSUlWrVqVbt7t99+uz788ENt3rxZX/va1/Qv//IvamxsPKdCu4PL5ZLb7Q55RYLAYbqcAwUAAACY66wC1MyZM7V27Vpt3LhRQ4YMaXc/JSVFF198sSZOnKj/+Z//0Z49e7R69WpJUnp6ug4fPhzSPvA+PT39tG3cbrfi4+M1YMAAORyODtsEnhFNGIECAAAArKFLAcowDM2cOVOrV6/Whg0blJWVFdbXGIYR3LwhJydHu3btCtktr7CwUG63W9nZ2cE269evD3lOYWGhcnJyJElOp1NjxowJaeP3+7V+/fpgm2jiDgYoRqAAAAAAM3UpQOXn52vFihVauXKlkpOT5fF45PF41NDQIEnav3+/Fi5cqG3btungwYPasmWLfvCDHyg+Pl7XXXedJGny5MnKzs7WnXfeqY8++khvv/22HnvsMeXn58vlckmSpk+frv379+vhhx/Wnj179NJLL+n111/XnDlzgrXMnTtXL7/8sl555RV9/PHHmjFjhurr63X33Xd3V99YxslNJBiBAgAAAMwU05XGS5YskSRdc801IdeXLVumu+66S3Fxcfrb3/6mRYsW6auvvtKgQYM0ceJEbdmyRWlpaZIkh8OhtWvXasaMGcrJyVFiYqKmTZumJ598Mvi8rKwsrVu3TnPmzNHzzz+vIUOG6Pe//71yc3ODbW655RZVVVXpiSeekMfj0RVXXKGCgoJ2G0tEg2RGoAAAAABLOKdzoCJduHu9m+39f1TrB0uLlDUgURv/4xqzywEAAACiTq+cA4XewSYSAAAAgDUQoCJAcA1UA1P4AAAAADMRoCJAYASq2edXY4vP5GoAAACAvosAFQGSnDGy2Y7/mo0kAAAAAPMQoCKA3W5Tkot1UAAAAIDZCFARwn1iHRQjUAAAAIB5CFARIrAOisN0AQAAAPMQoCIEh+kCAAAA5iNARYiTU/gYgQIAAADMQoCKEIxAAQAAAOYjQEWIk4fpMgIFAAAAmIUAFSFObiLBCBQAAABgFgJUhHDHs405AAAAYDYCVIQ4uQaKKXwAAACAWQhQESKZg3QBAAAA0xGgIgQH6QIAAADmI0BFCDfbmAMAAACmI0BFCA7SBQAAAMxHgIoQbddAGYZhcjUAAABA30SAihCBNVCtfkMNLT6TqwEAAAD6JgJUhEhwOuSw2ySxDgoAAAAwCwEqQthsNs6CAgAAAExGgIogJ7cyZwQKAAAAMAMBKoIkuzhMFwAAADATASqCJLkckqQNHx9W0b4v5fOzGx8AAADQm2LMLgDhKSip0Eef10qSXik6oFeKDigjJU7zb8jWlBEZJlcHAAAA9A2MQEWAgpIKzVixXU2t/pDrntpGzVixXQUlFSZVBgAAAPQtBCiL8/kNLVhTqo4m6wWuLVhTynQ+AAAAoBcQoCyuuKxaFbWNnd43JFXUNqq4rLr3igIAAAD6KAKUxVXWdR6ezqYdAAAAgLNHgLK4tOS4bm0HAAAA4OwRoCxufFaqMlLiZOvkvk1SRkqcxmel9mZZAAAAQJ9EgLI4h92m+TdkS1K7EBV4P/+GbDnsnUUsAAAAAN2FABUBpozI0JI7Ris9JXSaXnpKnJbcMZpzoAAAAIBeQoCKEFNGZOjdef+kb1+WJkmaesVgvTvvnwhPAAAAQC8iQEUQh92mbwwfIElqavUzbQ8AAADoZQSoCHPhwERJ0v6qepMrAQAAAPoeAlSEuWhgkiSp7Ei9fH7D5GoAAACAvoUAFWEG94uXK8auZp9fn391zOxyAAAAgD6FABVhHHabsgYcn8a3r+qoydUAAAAAfQsBKgINPzGNj3VQAAAAQO8iQEWg4QMZgQIAAADMQICKQMPTjo9A7atkBAoAAADoTQSoCHThgBNT+I4wAgUAAAD0JgJUBAqcBXXkaLNqjjWbXA0AAADQdxCgIlCiK0YZKXGSpH1sJAEAAAD0GgJUhAqMQu1nIwkAAACg1xCgIlRgK3NGoAAAAIDeQ4CKUCcDFCNQAAAAQG8hQEUoAhQAAADQ+whQESqwBurgl8fU4vObXA0AAADQNxCgIlS6O04JToda/YYOVh8zuxwAAACgTyBARSi73RYchdpXyTQ+AAAAoDcQoCLYhQOOr4Paf4Sd+AAAAIDeQICKYMGNJBiBAgAAAHoFASqCDU87MYWPnfgAAACAXkGAimCBKXz7quplGIbJ1QAAAADRjwAVwbIGJMpmk2obWlRd32x2OQAAAEDUI0BFsHinQ+f3i5d0fBQKAAAAQM8iQEW44EYSrIMCAAAAelyXAtTChQs1btw4JScnKy0tTVOnTtXevXuD96urqzVr1ixdcsklio+P19ChQ/XAAw+otrY25DkHDx5UXl6eEhISlJaWpoceekitra0hbTZt2qTRo0fL5XLpoosu0vLly9vV8+KLL2rYsGGKi4vThAkTVFxc3JWPExUCZ0HtJ0ABAAAAPa5LAWrz5s3Kz8/X1q1bVVhYqJaWFk2ePFn19cenj5WXl6u8vFz/+Z//qZKSEi1fvlwFBQW69957g8/w+XzKy8tTc3OztmzZoldeeUXLly/XE088EWxTVlamvLw8XXvttdqxY4dmz56t++67T2+//XawzWuvvaa5c+dq/vz52r59u0aNGqXc3FxVVlaea59ElJMjUEzhAwAAAHqazTiH7duqqqqUlpamzZs3a+LEiR22eeONN3THHXeovr5eMTExeuutt3T99dervLxcgwYNkiQtXbpU8+bNU1VVlZxOp+bNm6d169appKQk+Jxbb71VNTU1KigokCRNmDBB48aN0+LFiyVJfr9fmZmZmjVrlh555JGw6vd6vUpJSVFtba3cbvfZdoOpivZ9qdte3qoL+ido80PXml0OAAAAEJHCzQbntAYqMDUvNTX1tG3cbrdiYmIkSUVFRRo5cmQwPElSbm6uvF6vdu/eHWwzadKkkOfk5uaqqKhIktTc3Kxt27aFtLHb7Zo0aVKwTUeamprk9XpDXpFu+IkpfIeqj6mp1WdyNQAAAEB0O+sA5ff7NXv2bF199dUaMWJEh22OHDmin//857r//vuD1zweT0h4khR87/F4TtvG6/WqoaFBR44ckc/n67BN4BkdWbhwoVJSUoKvzMzM8D+wRQ1MdinZFSO/IR348pjZ5QAAAABR7awDVH5+vkpKSrRq1aoO73u9XuXl5Sk7O1s/+9nPzvbbdKtHH31UtbW1wdehQ4fMLumc2Ww2XZh2Yh1UJRtJAAAAAD0p5my+aObMmVq7dq3eeecdDRkypN39uro6TZkyRcnJyVq9erViY2OD99LT09vtlnf48OHgvcB/A9fatnG73YqPj5fD4ZDD4eiwTeAZHXG5XHK5XF37sBFg+MBEfXSohq3MAQAAgB7WpREowzA0c+ZMrV69Whs2bFBWVla7Nl6vV5MnT5bT6dSf//xnxcXFhdzPycnRrl27QnbLKywslNvtVnZ2drDN+vXrQ76usLBQOTk5kiSn06kxY8aEtPH7/Vq/fn2wTV8S2IlvPzvxAQAAAD2qSwEqPz9fK1as0MqVK5WcnCyPxyOPx6OGhgZJJ8NTfX29/uu//kterzfYxuc7vsHB5MmTlZ2drTvvvFMfffSR3n77bT322GPKz88Pjg5Nnz5d+/fv18MPP6w9e/bopZde0uuvv645c+YEa5k7d65efvllvfLKK/r44481Y8YM1dfX6+677+6uvokYgY0kGIECAAAAelaXpvAtWbJEknTNNdeEXF+2bJnuuusubd++Xe+9954k6aKLLgppU1ZWpmHDhsnhcGjt2rWaMWOGcnJylJiYqGnTpunJJ58Mts3KytK6des0Z84cPf/88xoyZIh+//vfKzc3N9jmlltuUVVVlZ544gl5PB5dccUVKigoaLexRF/Q9iwowzBks9lMrggAAACITud0DlSki4ZzoCSpqdWnyx4vkN+Qin/ybaW54878RQAAAACCeuUcKFiDK8ahoakJkqTPmMYHAAAA9BgCVJRoO40PAAAAQM8gQEWJC09sJLGfESgAAACgxxCgogQjUAAAAEDPI0BFieFpJwJUJSNQAAAAQE8hQEWJwAjUFzUNamj2mVwNAAAAEJ0IUFEiNdGpfgmxkqSyI0zjAwAAAHoCASqKnFwHxTQ+AAAAoCcQoKLI8BM78RGgAAAAgJ5BgIoiF54YgdrPTnwAAABAjyBARRGm8AEAAAA9iwAVRYYHD9Otl99vmFwNAAAAEH0IUFEkMzVBMXabGlp88ngbzS4HAAAAiDoEqCgS67Drgv4JkpjGBwAAAPQEAlSUuXDA8Wl8f/rwCxXt+1I+pvIBAAAA3SbG7ALQfQpKKrRl/5eSpP+3/Qv9v+1fKCMlTvNvyNaUERkmVwcAAABEPkagokRBSYVmrNiu+iZfyHVPbaNmrNiugpIKkyoDAAAAogcBKgr4/IYWrClVR5P1AtcWrCllOh8AAABwjghQUaC4rFoVtZ3vumdIqqhtVHFZde8VBQAAAEQhAlQUqKwLb8vycNsBAAAA6BgBKgqkJcd1azsAAAAAHSNARYHxWanKSImTrZP7NkkZKXEan5Xam2UBAAAAUYcAFQUcdpvm35AtSe1CVOD9/Buy5bB3FrEAAAAAhIMAFSWmjMjQkjtGKz0ldJreILdLS+4YzTlQAAAAQDfgIN0oMmVEhr6Tna7ismr926vb9NWxFv3n90fpm18baHZpAAAAQFRgBCrKOOw25Qzvr5zh/SVJu8q9JlcEAAAARA8CVJQaNaSfJGnn5zWm1gEAAABEEwJUlLo8GKBqzS0EAAAAiCIEqCg1ckiKbDbpi5oGHTnaZHY5AAAAQFQgQEWpJFeMhg9MksQ0PgAAAKC7EKCi2OVDUiRJHx1iGh8AAADQHQhQUYyNJAAAAIDuRYCKYoERqJ2f18owDJOrAQAAACIfASqKXZbhVozdpi/rm/VFTYPZ5QAAAAARjwAVxeJiHbo0I1kS25kDAAAA3YEAFeUC50F9dKjG1DoAAACAaECAinKjAjvxsZEEAAAAcM4IUFEuMAJV8oVXfj8bSQAAAADnggAV5S5OS1JcrF1Hm1q1/8hRs8sBAAAAIhoBKsrFOOwaMZgDdQEAAIDuQIDqAy7nQF0AAACgWxCg+oBRmYGNJBiBAgAAAM4FAaoPGHViBKq0wqvmVr+5xQAAAAARjADVB1zQP0Ep8bFqbvXrk8N1ZpcDAAAARCwCVB9gs9l0OedBAQAAAOeMANVHBALUTnbiAwAAAM4aAaqPCOzExwgUAAAAcPYIUH1EYCOJTyuPqqHZZ24xAAAAQIQiQPUR6SlxSkt2yec3tLucaXwAAADA2SBA9SEnp/ERoAAAAICzQYDqQ0YFNpJgHRQAAABwVghQfcjlmf0kSTsZgQIAAADOCgGqD7n8/OMjUGVH6lV7rMXkagAAAIDIQ4DqQ85LdGpoaoIkaecXNeYWAwAAAEQgAlQfEzxQl2l8AAAAQJcRoPqYwHlQHx2qMbUOAAAAIBIRoPqYUWwkAQAAAJw1AlQfM+J8t+w2yeNtVKW30exyAAAAgIhCgOpjEpwxujgtWRIH6gIAAABdRYDqgy7nQF0AAADgrHQpQC1cuFDjxo1TcnKy0tLSNHXqVO3duzekze9+9ztdc801crvdstlsqqmpafec6upq3X777XK73erXr5/uvfdeHT16NKTNzp079X/+z/9RXFycMjMz9cwzz7R7zhtvvKFLL71UcXFxGjlypP7yl7905eP0WYEDdRmBAgAAALqmSwFq8+bNys/P19atW1VYWKiWlhZNnjxZ9fX1wTbHjh3TlClT9JOf/KTT59x+++3avXu3CgsLtXbtWr3zzju6//77g/e9Xq8mT56sCy64QNu2bdOzzz6rn/3sZ/rd734XbLNlyxbddtttuvfee/Xhhx9q6tSpmjp1qkpKSrrykfqkUSdGoLYdqNabH36hon1fyuc3TK4KAAAAsD6bYRhn/S/nqqoqpaWlafPmzZo4cWLIvU2bNunaa6/VV199pX79+gWvf/zxx8rOztb777+vsWPHSpIKCgp03XXX6fPPP9fgwYO1ZMkS/fSnP5XH45HT6ZQkPfLII/rTn/6kPXv2SJJuueUW1dfXa+3atcFnX3XVVbriiiu0dOnSsOr3er1KSUlRbW2t3G732XZDxFnzUblm/eHDkGsZKXGaf0O2pozIMKkqAAAAwDzhZoNzWgNVW3t8ClhqamrYX1NUVKR+/foFw5MkTZo0SXa7Xe+9916wzcSJE4PhSZJyc3O1d+9effXVV8E2kyZNCnl2bm6uioqKOv3eTU1N8nq9Ia++pqCkQg+cEp4kyVPbqBkrtqugpMKEqgAAAIDIcNYByu/3a/bs2br66qs1YsSIsL/O4/EoLS0t5FpMTIxSU1Pl8XiCbQYNGhTSJvD+TG0C9zuycOFCpaSkBF+ZmZlh1x0NfH5DC9aUqqMhx8C1BWtKmc4HAAAAdOKsA1R+fr5KSkq0atWq7qynRz366KOqra0Nvg4dOmR2Sb2quKxaFbWdn/1kSKqobVRxWXXvFQUAAABEkJiz+aKZM2cGN38YMmRIl742PT1dlZWVIddaW1tVXV2t9PT0YJvDhw+HtAm8P1ObwP2OuFwuuVyuLtUbTSrrwjs4N9x2AAAAQF/TpREowzA0c+ZMrV69Whs2bFBWVlaXv2FOTo5qamq0bdu24LUNGzbI7/drwoQJwTbvvPOOWlpagm0KCwt1ySWX6Lzzzgu2Wb9+fcizCwsLlZOT0+Wa+oq05LhubQcAAAD0NV0KUPn5+VqxYoVWrlyp5ORkeTweeTweNTQ0BNt4PB7t2LFDn332mSRp165d2rFjh6qrj08Lu+yyyzRlyhT9+Mc/VnFxsf7+979r5syZuvXWWzV48GBJ0g9/+EM5nU7de++92r17t1577TU9//zzmjt3bvD7PPjggyooKNCvfvUr7dmzRz/72c/0wQcfaObMmefcKdFqfFaqMlLiZOvkvk3Hd+MbnxX+piAAAABAX9Klbcxtto7/6b1s2TLdddddkqSf/exnWrBgwWnbVFdXa+bMmVqzZo3sdrtuvvlmvfDCC0pKSgq237lzp/Lz8/X+++9rwIABmjVrlubNmxfyzDfeeEOPPfaY/vGPf+jiiy/WM888o+uuuy7cj9MntzEvKKnQjBXbJandZhI2SUvuGM1W5gAAAOhzws0G53QOVKTriwFKOh6iFqwpDdlQItZh029uu5LwBAAAgD4p3GxwVptIILJNGZGh72Snq7isWmVHjuqJN3erxWfo/H4JZpcGAAAAWNo5HaSLyOWw25QzvL9+OOECXTfy+KjTyuKDJlcFAAAAWBsBCrpt/FBJ0p93fKGjTa0mVwMAAABYFwEKuurCVF04IFH1zT6t+ajc7HIAAAAAyyJAQTabLTgKtfI9pvEBAAAAnSFAQZJ085ghcjrs2vVFrXZ9Xmt2OQAAAIAlEaAgSUpNdGrKiHRJ0h/eZxQKAAAA6AgBCkGBaXxvfshmEgAAAEBHCFAIYjMJAAAA4PQIUAhqu5nEHzgTCgAAAGiHAIUQgc0kdn5eq5Iv2EwCAAAAaIsAhRBtN5NYySgUAAAAEIIAhXbabiZRz2YSAAAAQBABCu203Uziz2wmAQAAAAQRoNBO280kXn5nv97c8YWK9n0pn98wuTIAAADAXDFmFwBr6pcQK0naf6ReD67aIUnKSInT/BuyNWVEhomVAQAAAOZhBArtFJRU6OH/2dnuuqe2UTNWbFdBSYUJVQEAAADmI0AhhM9vaMGaUnU0WS9wbcGaUqbzAQAAoE8iQCFEcVm1KmobO71vSKqobVRxWXXvFQUAAABYBAEKISrrOg9PZ9MOAAAAiCYEKIRIS47r1nYAAABANCFAIcT4rFRlpMTJdpo26W6Xxmel9lpNAAAAgFUQoBDCYbdp/g3ZktRpiMpIiZf9dAkLAAAAiFIEKLQzZUSGltwxWukpodP0BiQ55bBLHx6q0X+9W2ZSdQAAAIB5OEgXHZoyIkPfyU5XcVm1KusalZYcp/FZqVr53gE9/uZuLXxrjy4f0o+pfAAAAOhTGIFCpxx2m3KG99eNV5yvnOH95bDbdMdVF2jqFYPl8xvKX7ldlV524wMAAEDfQYBCl9hsNj1100hdMihZVXVNmrnyQ7X4/GaXBQAAAPQKAhS6LMEZoyV3jFaSK0bF/6jWMwV7zC4JAAAA6BUEKJyVCwcm6T9/cLkk6eW/lekvuypMrggAAADoeQQonLUpIzL0rxMvlCQ9/D87ta/qqMkVAQAAAD2LAIVz8lDuJRqflaqjTa2asWKbjjW3ml0SAAAA0GMIUDgnMQ67Fv/wSqUlu/TJ4aN65P/tkmEYZpcFAAAA9AgCFM5ZWnKcXrx9tBx2m/78Ubn+e+sBs0sCAAAAegQBCt1i3LBUPfrdSyVJP19bqu0HvzK5IgAAAKD7EaDQbe79ZpbyRmaoxWfo31Zs15dHm8wuCQAAAOhWBCh0G5vNpl9+/3JdODBRHm+jHlj1oXx+1kMBAAAgehCg0K2SXDH67R1jlOB06O+ffalfF+41uyQAAACg2xCg0O0uHpSsp28+fsjuixv36a+lh02uCAAAAOgeBCj0iO+NGqy7vjFMkjTn9R3aX3VURfu+1Js7vlDRvi+Z2gcAAICIFGN2AYheP7nuMu38vEbbD9Zo8nPvqLVNaMpIidP8G7I1ZUSGiRUCAAAAXcMIFHqMM8auH4zNlKSQ8CRJntpGzVixXQUlFWaUBgAAAJwVAhR6jM9v6IX1n3Z4LxCnFqwpZTofAAAAIgYBCj2muKxaFbWNnd43JFXUNqq4rLr3igIAAADOAQEKPaayrvPwdDbtAAAAALMRoNBj0pLjurUdAAAAYDYCFHrM+KxUZaTEyXaaNv0TnRqfldprNQEAAADnggCFHuOw2zT/hmxJ6jRE1Ta06O+fHem9ogAAAIBzQIBCj5oyIkNL7hit9JTQaXrpKXEaeb5brX5D9/1/H2jjnkqTKgQAAADCZzMMo8/uIe31epWSkqLa2lq53W6zy4lqPr+h4rJqVdY1Ki05TuOzUuXzG5r1h+16e/dhOR12vXj7aH0ne5DZpQIAAKAPCjcbEKAIUKZq8fk1e9UOrdtVoRi7TYt/eKWmjMgwuywAAAD0MeFmA6bwwVSxDruev/UK3XjFYLX6DeWv/FBrPio3uywAAACgQwQomC7GYdev/+UK3TT6fPn8hh5c9aH+9OEXZpcFAAAAtEOAgiU47DY9+/1RumVspvyGNOf1HfqfbZ+bXRYAAAAQggAFy3DYbVp400jdPmGoDEN66H8+0qrig2aXBQAAAAQRoGApdrtN/3fqCN31jWEyDOmRP+7Sf289YHZZAAAAgCQCFCzIZjt+AO9938ySJD3+pxIt+3uZyVUBAAAABChYlM1m00/zLtP0bw2XJC1YU6qX39lvclUAAADo6whQsCybzaZ5Uy7RA/90kSTpF3/5WC9u/MzkqgAAANCXEaBgaTabTXMnX6K53/maJOnZt/fq+b9+anJVAAAA6KsIUIgID3z7Yj085RJJ0nN//US/+t+9MgzD5KoAAADQ13QpQC1cuFDjxo1TcnKy0tLSNHXqVO3duzekTWNjo/Lz89W/f38lJSXp5ptv1uHDh0PaHDx4UHl5eUpISFBaWpoeeughtba2hrTZtGmTRo8eLZfLpYsuukjLly9vV8+LL76oYcOGKS4uThMmTFBxcXFXPg4izL9dc5F+et1lkqTfbPhMTxfsIUQBAACgV3UpQG3evFn5+fnaunWrCgsL1dLSosmTJ6u+vj7YZs6cOVqzZo3eeOMNbd68WeXl5brpppuC930+n/Ly8tTc3KwtW7bolVde0fLly/XEE08E25SVlSkvL0/XXnutduzYodmzZ+u+++7T22+/HWzz2muvae7cuZo/f762b9+uUaNGKTc3V5WVlefSH7C4H0+8UPNvyJYk/Xbzfv3fdR8TogAAANBrbMY5/OuzqqpKaWlp2rx5syZOnKja2loNHDhQK1eu1Pe//31J0p49e3TZZZepqKhIV111ld566y1df/31Ki8v16BBgyRJS5cu1bx581RVVSWn06l58+Zp3bp1KikpCX6vW2+9VTU1NSooKJAkTZgwQePGjdPixYslSX6/X5mZmZo1a5YeeeSRsOr3er1KSUlRbW2t3G732XYDTPDfWw/o8T8d//0xLecCPX59tt7/x1eqrGtUWnKcxmelymG3mVwlAAAAIkW42eCc1kDV1tZKklJTUyVJ27ZtU0tLiyZNmhRsc+mll2ro0KEqKiqSJBUVFWnkyJHB8CRJubm58nq92r17d7BN22cE2gSe0dzcrG3btoW0sdvtmjRpUrBNR5qamuT1ekNeiEx3XnWBnr5ppGw26ZWiA7p8wf/qtpe36sFVO3Tby1v1zV9uUEFJhdllAgAAIMqcdYDy+/2aPXu2rr76ao0YMUKS5PF45HQ61a9fv5C2gwYNksfjCbZpG54C9wP3TtfG6/WqoaFBR44ckc/n67BN4BkdWbhwoVJSUoKvzMzMrn9wWMat44fqR1ddIEk61uwLueepbdSMFdsJUQAAAOhWZx2g8vPzVVJSolWrVnVnPT3q0UcfVW1tbfB16NAhs0vCOfD5Df1v6eEO7wXmpS5YUyqfnzVSAAAA6B5nFaBmzpyptWvXauPGjRoyZEjwenp6upqbm1VTUxPS/vDhw0pPTw+2OXVXvsD7M7Vxu92Kj4/XgAED5HA4OmwTeEZHXC6X3G53yAuRq7isWhW1jZ3eNyRV1DaquKy694oCAABAVOtSgDIMQzNnztTq1au1YcMGZWVlhdwfM2aMYmNjtX79+uC1vXv36uDBg8rJyZEk5eTkaNeuXSG75RUWFsrtdis7OzvYpu0zAm0Cz3A6nRozZkxIG7/fr/Xr1wfbIPpV1nUens6mHQAAAHAmMV1pnJ+fr5UrV+rNN99UcnJycL1RSkqK4uPjlZKSonvvvVdz585Vamqq3G63Zs2apZycHF111VWSpMmTJys7O1t33nmnnnnmGXk8Hj322GPKz8+Xy+WSJE2fPl2LFy/Www8/rHvuuUcbNmzQ66+/rnXr1gVrmTt3rqZNm6axY8dq/PjxWrRokerr63X33Xd3V9/A4tKS47q1HQAAAHAmXQpQS5YskSRdc801IdeXLVumu+66S5L03HPPyW636+abb1ZTU5Nyc3P10ksvBds6HA6tXbtWM2bMUE5OjhITEzVt2jQ9+eSTwTZZWVlat26d5syZo+eff15DhgzR73//e+Xm5gbb3HLLLaqqqtITTzwhj8ejK664QgUFBe02lkD0Gp+VqoyUOHlqG9XZKiebJJ/P35tlAQAAIIqd0zlQkY5zoCJfQUmFZqzYLkkhIcrW5n2M3aanb75c3x8z5NQvBwAAACT10jlQgNmmjMjQkjtGKz0ldJpeekqcXrj1Ct0warBa/Yb+442P9OvCT9SH//8CAAAAdANGoBiBigo+v6HismpV1jUqLTlO47NS5bDb5Pcb+lXhXr24cZ8k6aYrz9fCm0fKFeMwuWIAAABYSbjZoEtroACrcthtyhnev911u92mh3IvVeZ5Cfrpn0r0xw+/UHltg357x1ilJMSaUCkAAAAiGVP40CfcOn6olt01TkmuGG3dX62blvxdh6qPSTo+elW070u9ueMLFe37koN3AQAA0Cmm8DGFr0/Z4/Hq7mXvq6K2UQOSnLrn6iz999YDIQfyZqTEaf4N2ZoyIsPESgEAANCbws0GBCgCVJ9z2Nuoe5a/r93l3g7v2078d8kdowlRAAAAfQS78AGdGOSO0x9+fJVcMR3/9g/8PwoL1pQynQ8AAAAhCFDok3aXe9XU2vkBu4akitpGFZdV915RAAAAsDwCFPqkyrrGMzfqQjsAAAD0DQQo9ElpyXFnbtSFdgAAAOgbCFDok8ZnpSojJS64YURH+sXHanxWaq/VBAAAAOsjQKFPcthtmn9DtiR1GqJqGlr0f9eVqsXn56woAAAASGIbc7Yx7+MKSiq0YE1pu3Ogrhx6nv6yq0KS9LVBSao51qLKuqaQNpwVBQAAED04ByoMBChIks9vqLisWpV1jUpLjtP4rFQ57DYVlHj04KoPO9ytj7OiAAAAoku42SCmF2sCLMlhtylneP9217+TPUjJcTFqOtrc7p6h4yFqwZpSfSc7XQ776VZTAQAAIFqwBgroRHFZtY50EJ4COCsKAACg7yFAAZ3grCgAAACcigAFdCLcM6BWbD2gjyu8PVwNAAAArIAABXQinLOiJOn9f3yl7z7/N/3bq9u011PXK7UBAADAHAQooBOnOyvKduI1/4Zs3TBqsGw26S+7PJry/DuauXK7PqskSAEAAEQjtjFnG3OcQWdnRbU9B2qvp07Pr/9Ef9nlkSTZbNKNowbrgW9frAsHJplSNwAAAMLHOVBhIEAhXJ2dFXWq0nKvFv31E/1v6WFJkt0mTb3yfD3wTxdr2IDE3i4bAAAAYSJAhYEAhZ5S8kWtFv31E/3140pJx6cD3jz6fM36p4uVmZpgcnUAAAA4FQEqDAQo9LSPDtXoub9+ok17qyRJMXabfjB2iPKvvUhDzjsZpMId4QIAAEDPIECFgQCF3rL94Fd6rvAT/e3TI5KkWIdNt4zLVP61F+mjQzVnXGMFAACAnkWACgMBCr3tg39U67m/fqK/f/alpOMjUq3+9v8TDIw9LbljNCEKAACgF4SbDdjGHOhFY4el6tX7rtKq+6/SuGHndRieJClwdcGaUvk6aQMAAIDeR4ACTHDVhf019ztfO20bQ1JFbaM27a3snaIAAABwRjFmFwD0VZV1TWG1u/eVDzQ0NUHZGW5lD3YH/5uREiebjY0mAAAAehMBCjBJWnJc2G0PVh/TwepjKtjtCV7rlxB7PEwFgtVgt4YPTFKsg4FlAACAnkKAAkwyPitVGSlx8tQ2qqNVTjZJ6SlxWjvrm9p7uE6l5V6VVnhVWu7VZ5VHVXOsRVv2fakt+74Mfo3TYdfX0pPaBKsUXZaRrOS42F77XAAAANGMXfjYhQ8mKiip0IwV2yUpJESdaRe+plafPj18NBioAuHqaFNrh9+n7RTAr58YrUp3MwUQAAAggG3Mw0CAghUUlFR0yzlQfr+hz79qUGlFbchoVXmb57Z1XkJsyJqq7IwUXTgwkSmAAACgTyJAhYEABavw+Q0Vl1Wrsq5RaclxGp+VKoe9e0aHvqpv1scVJwNVaYVXn1Ye7XB7dGeMXZcMSg5ZV3VpOlMAAQBA9CNAhYEAhb6qscWnzyqPBgPV7vJafVxR1+kUwAv6J7TbsIIpgAAAIJoQoMJAgAJO8vsNHfrqWMj0v9IKb8jUwrZSE53ttla/cECiYpgCCAAAIhABKgwEKODMqgNTANvuAljV+RTAS9OTQ4LVpRluJbnY8BMAAFgbASoMBCjg7DS2BHYBDN2wor7Z12H7Yf0T2m1YMcjtYgogAACwDAJUGAhQQPfx+w0drD4WMv2vtNwrj/f0UwAD26pnZ7iVxRRAAABgEgJUGAhQQM/78miTPq6oCxmt2ldV3+EUQFdgCmCb0apL091KZAogAADoYQSoMBCgAHM0tvj0yeG6kJGqjys6ngJos0nD+ie227AiLZkpgAAAoPsQoMJAgAKsIzAFcHe5N2S06rC3qcP2/ROdIYHq64PdyhqQ1G3nZwEAgL6FABUGAhRgfUeONrXbBXBf1VF1MANQcbF2XZLuDt0FMD2ZKYAAAOCMCFBhIEABkamxxae9nrqQDSs+rvDqWCdTALP6J+qytqNVGW4NZAogAABogwAVBgIUED38fkMHqo8fBLy7vDYYrirrOp4COCDJqcvajFQxBRAAgL6NABUGAhQQ/arqTkwBbDNatf80UwAvTXefsgtgshKcTAEEACDaEaDCQIAC+qaGZp/2BncBrD2xC2CdGlo6mQI4oKNdAONMqBwAAPQUAlQYCFAAAnx+Qwe+rA+OVO0+MVpV1ekUQFdIoAocBMwUQAAAIhMBKgwEKABnUlnXePwg4OAugLXaf6ReHf3J2XYK4NeDuwC6Fe909H7hAACgSwhQYSBAATgbx5pb2+0CuKeTKYD2wBTAwSkho1UDk10mVA4AADpDgAoDAQpAd/H5Df3jy/qQ86p2l3t15GjHUwAHJrvarasa1v/spgD6/IaKy6pVWdeotOQ4jc9KjaiphJFePwAgOhCgwkCAAtDTKusaQ0JVaYVXZZ1MAYyPdejSjORTDgI+/RTAgpIKLVhTqoraxuC1jJQ4zb8hW1NGZPTER+pWkV4/ACB6EKDCQIACYIZjza3a46kLCVZ7PF41tvjbtbXbpAsHJrUbrRqQ5FJBSYVmrNiuU/8QD4zdLLljtKVDSKTXDwCILgSoMBCgAFiFz2+o7Eh9yEhVaXmtjhxt7rD9wCSnvI2tamptH7qk4yEkPSVO7877J0tOh/P5DX3zlxtCRp7asnr9AIDoQ4AKAwEKgNVV1jUe31L9RKj6uNyrsi87ngLYGZvteCCx2Wwn/nviuo7fsAXb2NrcO9k+0EaBa6c8T8Fntr138nu0bR/Q1OrrNBy2NemyNA1PS1KiM0aJrhgluRxKdMUE3ye6HEpyxSjBGaMkV4ziYu0h3wcAgHARoMJAgAIQieqbWvXy3/Zr0V8/NbsUy7Hb1CZgHQ9XicGA5TgRwo6/b3s/0eVoE9JilHDiXnysg0AGAH1EuNkgphdrAgB0g0RXjCZk9Zd05gC19I7RGn3BeZIhGZIMQzJOrDoygteMkBGtQJu296WTX68299q1P+X5p94PPGfX5zV6/M3dZ6z/5tHn67wEp+qbW3W0yadjTa062tSq+uZW1Tf5VN/UevzVfHwLeb8h1TW2qq6x9YzPDofdJiU6jweqQLgKhLNEV5vA5WwbxmKU6HR0eC/BSSADgEhHgAKACDQ+K1UZKXHy1Da224RBOrmG6DvZ6ZZcQzTy/BS9tGnfGet/5vujwqrf7zd0rKVNwGry6WhTq441n3xfHwxex8NYfaf3fapvbpVhnAhkTa2qa2qV1PGW9F1hs0kJsW3C2BnC1+lGxxJdMUqIdchuwZ8vAEQzAhQARCCH3ab5N2RrxortskkhISTwz+n5N2RbMjxJ3V+/3W5T0omAkdYN9fn9hhpafCEjXScDWZuRrxNh62jb922CWtv3/hMjdPXNPtU3+1RZd+6BTJISQgKXI7geLLBmLOE068faBrPA11r19wwAWAVroFgDBSCCRfo5SpFef7gMw1Bjiz8YtI6HsZPBLDANsf6U+yeD2cn7gWv+HvrbOz44QtY2jIWGr0AYSwj82hkYHWsT1E60J5ABiBRsIhEGAhSAaODzGyouq1ZlXaPSkuM0Pis1ov7RGun1m8EwDDW1tg9kIYErMHJ2YjTs2IlpjW3XkwUDWbNPvh5KZHGx9g438+hwuqLzNGvLTqw9i3HYe6ROAOixAPXOO+/o2Wef1bZt21RRUaHVq1dr6tSpwfuHDx/WvHnz9L//+7+qqanRxIkT9Zvf/EYXX3xxsE1jY6P+/d//XatWrVJTU5Nyc3P10ksvadCgQcE2Bw8e1IwZM7Rx40YlJSVp2rRpWrhwoWJiTs463LRpk+bOnavdu3crMzNTjz32mO66666wPwsBCgCAk4EsELzCWT/WdppioH3g1/VNrWrtoUDmirEH14IlOsNYK9Z2ymIHYS2WQAbghB7bha++vl6jRo3SPffco5tuuinknmEYmjp1qmJjY/Xmm2/K7Xbr17/+tSZNmqTS0lIlJiZKkubMmaN169bpjTfeUEpKimbOnKmbbrpJf//73yVJPp9PeXl5Sk9P15YtW1RRUaEf/ehHio2N1VNPPSVJKisrU15enqZPn65XX31V69ev13333aeMjAzl5uZ29WMBANBn2Ww2xcU6FBfrUP+k7nlmU6uv8/DVZlri0abWE5t/dBzM6puPj541+/wnnutXU2uzvqzvnjqdgUB22s08Tre2LDS8OWMIZEC0O6cpfDabLWQE6pNPPtEll1yikpISff3rX5ck+f1+paen66mnntJ9992n2tpaDRw4UCtXrtT3v/99SdKePXt02WWXqaioSFdddZXeeustXX/99SovLw+OSi1dulTz5s1TVVWVnE6n5s2bp3Xr1qmkpCRYz6233qqamhoVFBR0WG9TU5Oamk4u2vV6vcrMzGQECgAAi2s+MUIWzvqwtvc7W2/W3OrvkTqdDvspo2Pt148lBLfEbzOdsZONPlwxjh6pE0B7ppwDFQgncXFxwWt2u10ul0vvvvuu7rvvPm3btk0tLS2aNGlSsM2ll16qoUOHBgNUUVGRRo4cGTKlLzc3VzNmzNDu3bt15ZVXqqioKOQZgTazZ8/utL6FCxdqwYIF3fRpAQBAb3HG2OWMceq8RGe3PK/Fd5pAdtrdFduEseaTa8uaTgSyZp9fzcf8qjnW0i11xjpsnWzmEXow9Kmbd4QcFN2mvSvGzllkwDnq1gAVCEKPPvqofvvb3yoxMVHPPfecPv/8c1VUVEiSPB6PnE6n+vXrF/K1gwYNksfjCbZpG54C9wP3TtfG6/WqoaFB8fHx7ep79NFHNXfu3OD7wAgUAADoW2IddvVLcKpfQvcFsmNNvjbTFU8GsZO7K/rarC0LvX/q2WSNLf4TzzVU29Ci2obuCWQxdlvo4c7tdlI8EcxOWTvW0cYeSQQy9FHdGqBiY2P1xz/+Uffee69SU1PlcDg0adIkffe735UVNvtzuVxyuVxmlwEAAKJMrMOulAS7UhJiu+V5rT6/6pt9JzbnOGX9WJvzyNquHzva3Hpid8WT68cCI2YNLb7jz/Ub8ja2ytvY2i11Ok4JZKfdSbGDnRdPDWRxsQQyWF+3H6Q7ZswY7dixQ7W1tWpubtbAgQM1YcIEjR07VpKUnp6u5uZm1dTUhIxCHT58WOnp6cE2xcXFIc89fPhw8F7gv4Frbdu43e4OR58AAAAiRYzDrpR4u1LiuyeQ+fxGyJTDztaPne48slN/HXhuXWOr6ropkNltCq4BO+1Ois5TR8dCN/oIbOyR4HQQyNDtuj1ABaSkpEiSPv30U33wwQf6+c9/Lul4wIqNjdX69et18803S5L27t2rgwcPKicnR5KUk5OjX/ziF6qsrFRa2vEz5QsLC+V2u5WdnR1s85e//CXkexYWFgafAQAAgOMcdpvccbFyx3VPIPP7DR1rOSV8tVkrdrTplLB2mvVjgeAmSX5DqmtqVV1T9wQyWzCQOUKCWGDtWGebd5xcW9bmvStGCbEO2Tmnrs/rcoA6evSoPvvss+D7srIy7dixQ6mpqRo6dKjeeOMNDRw4UEOHDtWuXbv04IMPaurUqZo8ebKk48Hq3nvv1dy5c5Wamiq3261Zs2YpJydHV111lSRp8uTJys7O1p133qlnnnlGHo9Hjz32mPLz84NT8KZPn67Fixfr4Ycf1j333KMNGzbo9ddf17p167qjXwAAANAJu92mpBOjQYPO3PyM/H5DDSGBrP16srbrxwLryTpeb3b814YhGYZ09EQbqemMdZyJzSYlxLbdPbHt+rGT68lOHTFL6GxjD2dMnw1kkXyIepe3Md+0aZOuvfbadtenTZum5cuX64UXXtCzzz6rw4cPKyMjQz/60Y/0+OOPy+k8uUgzcJDuH/7wh5CDdAPT8yTpwIEDmjFjhjZt2qTExERNmzZNTz/9dLuDdOfMmaPS0lINGTJEjz/+OAfpAgAA9HGGcTyQhRwGfcr6sVN3XOzsPLLA+x46G1oJTkcHOyl2fPBzp2vL2oyiRUIIKSip0II1paqobQxey0iJ0/wbsjVlRIZpdYWbDc7pHKhIR4ACAADAmRiGocYWf6dTEo+dGsya22zm0cHasvqmngtk8bGOkEB1pt0VTxfWEp0OxTi693DogpIKzVixXad+/EDsW3LHaNNClCnnQAEAAADRxmazKd7pULzToYHJ576js2EYamr169Qt7YObdLQJX0dPrBdru36s7aja0RMBzXcikTW0+NTQ4tORo83nXKckuWLsp9lJMXTzjsBmHm3vB0fOnMd3WVywprRdeJIkQ8dD1II1pfpOdrqlR9IIUAAAAEAvstlsiot1KC7WoQFJ3RfI2p8v1v48slN3Xgw9SPpk2xbf8ZjT1OpXU2uzvqzvnkB22s8hqaK2UcVl1coZ3r/Hv9/ZIkABAAAAEaxtIOuf1D3PbGr1hawBC27e0em29+3XjwWmN9Y3+dTs84f9vSvrGs/cyEQEKAAAAAAhXDEOuWIcSk10nrlxGJpb/dq8t1I//u9tZ2yblhzXLd+zp3TvqjAAAAAAOIUzxq5/umyQMlLi1NnqJpuO78Y3Piu1N0vrMgIUAAAAgB7nsNs0/4ZsSWoXogLv59+QbekNJCQCFAAAAIBeMmVEhpbcMVrpKaHT9NJT4kzdwrwrWAMFAAAAoNdMGZGh72Snq7isWpV1jUpLPj5tz+ojTwEEKAAAAAC9ymG3WXqr8tNhCh8AAAAAhIkABQAAAABhIkABAAAAQJgIUAAAAAAQJgIUAAAAAISJAAUAAAAAYSJAAQAAAECYCFAAAAAAECYCFAAAAACEiQAFAAAAAGEiQAEAAABAmAhQAAAAABAmAhQAAAAAhCnG7ALMZBiGJMnr9ZpcCQAAAAAzBTJBICN0pk8HqLq6OklSZmamyZUAAAAAsIK6ujqlpKR0et9mnCliRTG/36/y8nIlJyfLZrN1yzO9Xq8yMzN16NAhud3ubnkmwkPfm4v+Nxf9by7631z0v7nof3PR/93HMAzV1dVp8ODBsts7X+nUp0eg7Ha7hgwZ0iPPdrvd/CY2CX1vLvrfXPS/ueh/c9H/5qL/zUX/d4/TjTwFsIkEAAAAAISJAAUAAAAAYSJAdTOXy6X58+fL5XKZXUqfQ9+bi/43F/1vLvrfXPS/ueh/c9H/va9PbyIBAAAAAF3BCBQAAAAAhIkABQAAAABhIkABAAAAQJgIUAAAAAAQJgIUAAAAAISJANWNXnzxRQ0bNkxxcXGaMGGCiouLzS4pKi1cuFDjxo1TcnKy0tLSNHXqVO3duzekTWNjo/Lz89W/f38lJSXp5ptv1uHDh02qOHo9/fTTstlsmj17dvAafd+zvvjiC91xxx3q37+/4uPjNXLkSH3wwQfB+4Zh6IknnlBGRobi4+M1adIkffrppyZWHD18Pp8ef/xxZWVlKT4+XsOHD9fPf/5ztd3Mlv7vPu+8845uuOEGDR48WDabTX/6059C7ofT19XV1br99tvldrvVr18/3XvvvTp69GgvforIdbr+b2lp0bx58zRy5EglJiZq8ODB+tGPfqTy8vKQZ9D/Z+9Mv//bmj59umw2mxYtWhRynf7vOQSobvLaa69p7ty5mj9/vrZv365Ro0YpNzdXlZWVZpcWdTZv3qz8/Hxt3bpVhYWFamlp0eTJk1VfXx9sM2fOHK1Zs0ZvvPGGNm/erPLyct10000mVh193n//ff32t7/V5ZdfHnKdvu85X331la6++mrFxsbqrbfeUmlpqX71q1/pvPPOC7Z55pln9MILL2jp0qV67733lJiYqNzcXDU2NppYeXT45S9/qSVLlmjx4sX6+OOP9ctf/lLPPPOMfvOb3wTb0P/dp76+XqNGjdKLL77Y4f1w+vr222/X7t27VVhYqLVr1+qdd97R/fff31sfIaKdrv+PHTum7du36/HHH9f27dv1xz/+UXv37tX3vve9kHb0/9k70+//gNWrV2vr1q0aPHhwu3v0fw8y0C3Gjx9v5OfnB9/7fD5j8ODBxsKFC02sqm+orKw0JBmbN282DMMwampqjNjYWOONN94Itvn4448NSUZRUZFZZUaVuro64+KLLzYKCwuNb33rW8aDDz5oGAZ939PmzZtnfPOb3+z0vt/vN9LT041nn302eK2mpsZwuVzGH/7wh94oMarl5eUZ99xzT8i1m266ybj99tsNw6D/e5IkY/Xq1cH34fR1aWmpIcl4//33g23eeustw2azGV988UWv1R4NTu3/jhQXFxuSjAMHDhiGQf93p876//PPPzfOP/98o6SkxLjggguM5557LniP/u9ZjEB1g+bmZm3btk2TJk0KXrPb7Zo0aZKKiopMrKxvqK2tlSSlpqZKkrZt26aWlpaQn8ell16qoUOH8vPoJvn5+crLywvpY4m+72l//vOfNXbsWP3gBz9QWlqarrzySr388svB+2VlZfJ4PCH9n5KSogkTJtD/3eAb3/iG1q9fr08++USS9NFHH+ndd9/Vd7/7XUn0f28Kp6+LiorUr18/jR07Nthm0qRJstvteu+993q95mhXW1srm82mfv36SaL/e5rf79edd96phx56SF//+tfb3af/e1aM2QVEgyNHjsjn82nQoEEh1wcNGqQ9e/aYVFXf4Pf7NXv2bF199dUaMWKEJMnj8cjpdAb/EA8YNGiQPB6PCVVGl1WrVmn79u16//33292j73vW/v37tWTJEs2dO1c/+clP9P777+uBBx6Q0+nUtGnTgn3c0Z9F9P+5e+SRR+T1enXppZfK4XDI5/PpF7/4hW6//XZJov97UTh97fF4lJaWFnI/JiZGqamp/Dy6WWNjo+bNm6fbbrtNbrdbEv3f0375y18qJiZGDzzwQIf36f+eRYBCRMvPz1dJSYneffdds0vpEw4dOqQHH3xQhYWFiouLM7ucPsfv92vs2LF66qmnJElXXnmlSkpKtHTpUk2bNs3k6qLf66+/rldffVUrV67U17/+de3YsUOzZ8/W4MGD6X/0WS0tLfqXf/kXGYahJUuWmF1On7Bt2zY9//zz2r59u2w2m9nl9ElM4esGAwYMkMPhaLfT2OHDh5Wenm5SVdFv5syZWrt2rTZu3KghQ4YEr6enp6u5uVk1NTUh7fl5nLtt27apsrJSo0ePVkxMjGJiYrR582a98MILiomJ0aBBg+j7HpSRkaHs7OyQa5dddpkOHjwoScE+5s+invHQQw/pkUce0a233qqRI0fqzjvv1Jw5c7Rw4UJJ9H9vCqev09PT223k1Nraqurqan4e3SQQng4cOKDCwsLg6JNE//ekv/3tb6qsrNTQoUODfxcfOHBA//7v/65hw4ZJov97GgGqGzidTo0ZM0br168PXvP7/Vq/fr1ycnJMrCw6GYahmTNnavXq1dqwYYOysrJC7o8ZM0axsbEhP4+9e/fq4MGD/DzO0be//W3t2rVLO3bsCL7Gjh2r22+/Pfhr+r7nXH311e227P/kk090wQUXSJKysrKUnp4e0v9er1fvvfce/d8Njh07Jrs99K9Nh8Mhv98vif7vTeH0dU5OjmpqarRt27Zgmw0bNsjv92vChAm9XnO0CYSnTz/9VH/961/Vv3//kPv0f8+58847tXPnzpC/iwcPHqyHHnpIb7/9tiT6v8eZvYtFtFi1apXhcrmM5cuXG6Wlpcb9999v9OvXz/B4PGaXFnVmzJhhpKSkGJs2bTIqKiqCr2PHjgXbTJ8+3Rg6dKixYcMG44MPPjBycnKMnJwcE6uOXm134TMM+r4nFRcXGzExMcYvfvEL49NPPzVeffVVIyEhwVixYkWwzdNPP23069fPePPNN42dO3caN954o5GVlWU0NDSYWHl0mDZtmnH++ecba9euNcrKyow//vGPxoABA4yHH3442Ib+7z51dXXGhx9+aHz44YeGJOPXv/618eGHHwZ3eQunr6dMmWJceeWVxnvvvWe8++67xsUXX2zcdtttZn2kiHK6/m9ubja+973vGUOGDDF27NgR8ndxU1NT8Bn0/9k70+//U526C59h0P89iQDVjX7zm98YQ4cONZxOpzF+/Hhj69atZpcUlSR1+Fq2bFmwTUNDg/Fv//ZvxnnnnWckJCQY//zP/2xUVFSYV3QUOzVA0fc9a82aNcaIESMMl8tlXHrppcbvfve7kPt+v994/PHHjUGDBhkul8v49re/bezdu9ekaqOL1+s1HnzwQWPo0KFGXFycceGFFxo//elPQ/7BSP93n40bN3b4Z/20adMMwwivr7/88kvjtttuM5KSkgy3223cfffdRl1dnQmfJvKcrv/Lyso6/bt448aNwWfQ/2fvTL//T9VRgKL/e47NMNocoQ4AAAAA6BRroAAAAAAgTAQoAAAAAAgTAQoAAAAAwkSAAgAAAIAwEaAAAAAAIEwEKAAAAAAIEwEKAAAAAMJEgAIAAACAMBGgAAAAACBMBCgAAAAACBMBCgAAAADC9P8D/+8PbuAfWTAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "results = GV_KNN.cv_results_\n", + "mse = -results['mean_test_score']\n", + "k_values = results['param_n_neighbors'].data\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(k_values, mse, marker='o', linestyle='-')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3aOBO56I8Js8" + }, + "source": [ + "The code shows that the elboq point occurs around n=30." ] }, { @@ -2074,7 +6456,7 @@ }, { "cell_type": "code", - "execution_count": 82, + "execution_count": 75, "metadata": { "id": "bJk1-9VhlRL6" }, @@ -2087,7 +6469,7 @@ }, { "cell_type": "code", - "execution_count": 83, + "execution_count": 76, "metadata": { "id": "sZVPMR9Wlo7-" }, @@ -2103,11 +6485,24 @@ }, { "cell_type": "code", - "execution_count": 84, + "execution_count": 77, "metadata": { - "id": "vd1fDjQiltP4" + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vd1fDjQiltP4", + "outputId": "54545c64-073b-41c5-d03a-cc9cbff204f2" }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" + ] + } + ], "source": [ "# Create an ANN model\n", "model9 = Sequential()\n", @@ -2118,7 +6513,7 @@ }, { "cell_type": "code", - "execution_count": 85, + "execution_count": 78, "metadata": { "id": "ZIf94WLMlv04" }, @@ -2130,24 +6525,24 @@ }, { "cell_type": "code", - "execution_count": 86, + "execution_count": 79, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "FX5DTKqslxWf", - "outputId": "9253b26c-1a79-4390-975e-d14c28a5e2a8" + "outputId": "d2353bcd-1508-469b-e4a4-9344af25a2cc" }, "outputs": [ { - "output_type": "execute_result", "data": { "text/plain": [ - "" + "" ] }, + "execution_count": 79, "metadata": {}, - "execution_count": 86 + "output_type": "execute_result" } ], "source": [ @@ -2157,20 +6552,20 @@ }, { "cell_type": "code", - "execution_count": 87, + "execution_count": 80, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "OVW2qpNsmGVq", - "outputId": "34343782-f560-4dee-c307-ff0d0c52ab5a" + "outputId": "36e4620e-9823-4b12-d6d2-509c0bcf2a88" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "45/45 [==============================] - 0s 1ms/step\n" + "\u001b[1m45/45\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step\n" ] } ], @@ -2181,7 +6576,7 @@ }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 81, "metadata": { "id": "CqRmjMj2maJY" }, @@ -2200,29 +6595,29 @@ }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 82, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "5zuwkC1emmh3", - "outputId": "5d6a0e05-3112-4d27-f5fb-ed665867b22d" + "outputId": "3154af15-1dba-4edc-9b4e-f012f6ff6886" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "RMSE: 2.7570259701356035\n", - "MAE: 1.7412277270507284\n", - "MAPE: 0.012205298865408084\n", - "Accuracy: 0.8904593639575972\n", - "Precision: 0.8242753623188406\n", + "RMSE: 2.7525331773064208\n", + "MAE: 1.7070852219826735\n", + "MAPE: 0.011166669166884299\n", + "Accuracy: 0.901060070671378\n", + "Precision: 0.9446640316205533\n", "Confusion Matrix:\n", - " [[805 97]\n", - " [ 58 455]]\n", - "Recall: 0.8869395711500975\n", - "F1 Score: 0.8544600938967135\n" + " [[558 42]\n", + " [ 98 717]]\n", + "Recall: 0.8797546012269939\n", + "F1 Score: 0.9110546378653113\n" ] } ], @@ -2249,7 +6644,7 @@ }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 83, "metadata": { "id": "nCoyUanhnDKw" }, @@ -2262,7 +6657,7 @@ }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 84, "metadata": { "id": "ThcXESVEVv0U" }, @@ -2278,7 +6673,7 @@ }, { "cell_type": "code", - "execution_count": 92, + "execution_count": 85, "metadata": { "id": "uACvajfImrbB" }, @@ -2297,11 +6692,24 @@ }, { "cell_type": "code", - "execution_count": 93, + "execution_count": 86, "metadata": { - "id": "r066pVYpnXH5" + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "r066pVYpnXH5", + "outputId": "faddb972-58cc-43a7-eb04-4829ec65f019" }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/layers/rnn/rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(**kwargs)\n" + ] + } + ], "source": [ "# Create an LSTM model\n", "model = Sequential()\n", @@ -2311,7 +6719,7 @@ }, { "cell_type": "code", - "execution_count": 94, + "execution_count": 87, "metadata": { "id": "YpSfHu6gov35" }, @@ -2323,24 +6731,24 @@ }, { "cell_type": "code", - "execution_count": 95, + "execution_count": 88, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "0vHjcluaoxzP", - "outputId": "1eaafd31-9f91-4655-f437-e9199c0f7933" + "outputId": "8ca3e888-84d1-4c79-e045-cfa9d3e76d5f" }, "outputs": [ { - "output_type": "execute_result", "data": { "text/plain": [ - "" + "" ] }, + "execution_count": 88, "metadata": {}, - "execution_count": 95 + "output_type": "execute_result" } ], "source": [ @@ -2350,20 +6758,20 @@ }, { "cell_type": "code", - "execution_count": 96, + "execution_count": 89, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "gEE06_TjozYv", - "outputId": "30306af7-2ec8-4733-db96-d3416a7fc6d4" + "outputId": "5a39a4df-0a56-45f5-ac4b-c2b00f0f15d0" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "44/44 [==============================] - 0s 4ms/step\n" + "\u001b[1m44/44\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 9ms/step\n" ] } ], @@ -2374,7 +6782,7 @@ }, { "cell_type": "code", - "execution_count": 113, + "execution_count": 90, "metadata": { "id": "7k6C8DrxpB_Q" }, @@ -2393,29 +6801,29 @@ }, { "cell_type": "code", - "execution_count": 114, + "execution_count": 91, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "i_6-UUDhpi0c", - "outputId": "3dcc5761-03b6-4b52-dfe6-08dece835c8d" + "outputId": "af51da10-aedc-479d-80ca-96880408422c" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "RMSE: 10.083053125286519\n", - "MAE: 7.973378150691296\n", - "MAPE: 0.12730792351246625\n", - "Accuracy: 0.9886201991465149\n", - "Precision: 0.9904912836767037\n", - "Recall: 0.984251968503937\n", - "F1 Score: 0.9873617693522907\n", + "RMSE: 11.43451426022395\n", + "MAE: 9.387460991819042\n", + "MAPE: 0.1689158970124316\n", + "Accuracy: 0.9957325746799431\n", + "Precision: 0.9965277777777778\n", + "Recall: 0.9930795847750865\n", + "F1 Score: 0.9948006932409013\n", "Confusion Matrix:\n", - " [[765 6]\n", - " [ 10 625]]\n" + " [[826 2]\n", + " [ 4 574]]\n" ] } ], @@ -2433,14 +6841,35 @@ }, { "cell_type": "code", + "execution_count": 92, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "qpWPtph9CGip", + "outputId": "746d4c8b-bd76-4873-d9b3-b21e078b15bd" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABE9klEQVR4nO3deXhM9+LH8c8kZBFJrNmKiKWiqP0GRauClqqtiqvXllu9FbXVbWmLul2Utm6L4rYlVENUieqGNIq217XH0qo1liJBySIIkvP7w2N+HQkyMjGT0/freeZ5mu85c84nyan55DvnnLEYhmEIAADApNycHQAAAKAoUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAOM2rr74qi8WiM2fOFPm+Vq5cqQYNGsjLy0sWi0VpaWlFvs/ibN68ebJYLDp8+LCzowCFRtkBisD1F4o/PgICAtSmTRt9++23dz3Pl19+qc6dOyswMFAeHh4qV66cWrdurXfffVcZGRl3Pc/d9vvvv+vJJ5+Ut7e3PvjgAy1YsEA+Pj63fd7MmTNlsVgUERFxF1ICKColnB0AMLN//etfCgsLk2EYSk1N1bx589SxY0d9+eWXeuyxx4p8/7m5uYqKitK8efNUr149DRkyRJUrV1ZmZqY2bNigV155Rd98840SExOLPIszbd68WZmZmXrttdcUGRlZ4OfFxsaqatWq2rRpkw4cOKAaNWoUYUrX8re//U29e/eWp6ens6MAhUbZAYrQo48+qiZNmli/joqKUmBgoBYtWuSQspObm6vLly/Ly8sr3+VTpkzRvHnzNHLkSL377ruyWCzWZcOHD9fJkyf1ySefFGofxcGpU6ckSWXKlCnwc5KTk/Xf//5Xy5Yt0zPPPKPY2FhNmDChiBIWTlZWVoFmquzh7u4ud3d3h24TcBbexgLuojJlysjb21slStj+nfHOO++oRYsWKl++vLy9vdW4cWN9/vnneZ5vsVg0dOhQxcbGqk6dOvL09NTKlSvz3deFCxc0efJk1alTR2+//bZN0bkuODhYL774YoH3cSc5a9WqJS8vLzVu3Fjr16/PN2taWpoGDBigMmXKyN/fXwMHDtSFCxfy/yHeYMmSJWrcuLG8vb1VoUIFPfXUUzp+/Lh1+UMPPaT+/ftLkpo2bSqLxaIBAwbcdruxsbEqW7asOnXqpCeeeEKxsbE3zT5y5EhVrVpVnp6eqlSpkvr162dzHtKlS5f06quv6t5775WXl5eCg4PVvXt3HTx4UJK0du1aWSwWrV271mbbhw8flsVi0bx586xjAwYMUOnSpXXw4EF17NhRvr6+6tu3ryTphx9+UM+ePVWlShV5enqqcuXKGjlypC5evJgn96+//qonn3xSFStWlLe3t2rVqqWXX37Zuvxm5+x8++23atWqlXx8fOTr66tOnTrp559/tlknJSVFAwcOVKVKleTp6ang4GB16dKF83/gNMzsAEUoPT1dZ86ckWEYOnXqlKZPn67z58/rqaeeslnv/fff1+OPP66+ffvq8uXLiouLU8+ePfXVV1+pU6dONuuuWbNGn332mYYOHaoKFSqoatWq+e77xx9/VFpamkaPHm33X+g324c9OdetW6fFixdr2LBh8vT01MyZM/XII49o06ZNqlu3rs26Tz75pMLCwjRp0iRt27ZNH3/8sQICAjR58uRb5pw3b54GDhyopk2batKkSUpNTdX777+vn376Sdu3b1eZMmX08ssvq1atWvrwww+tbytWr179tj+D2NhYde/eXR4eHurTp49mzZqlzZs3q2nTptZ1zp8/r1atWmnPnj0aNGiQGjVqpDNnzmjFihX67bffVKFCBeXk5Oixxx5TYmKievfureHDhyszM1MJCQnavXt3gbLc6OrVq+rQoYNatmypd955R6VKlZJ0rfhduHBBzz77rMqXL69NmzZp+vTp+u2337RkyRLr83fu3KlWrVqpZMmSGjx4sKpWraqDBw/qyy+/1BtvvHHT/S5YsED9+/dXhw4dNHnyZF24cEGzZs1Sy5YttX37dutx0qNHD/3888967rnnVLVqVZ06dUoJCQk6evToTY9XoEgZABwuJibGkJTn4enpacybNy/P+hcuXLD5+vLly0bdunWNhx9+2GZckuHm5mb8/PPPt83w/vvvG5KM5cuX24xfvXrVOH36tM0jNze3QPuwJ6ckY8uWLdaxI0eOGF5eXka3bt2sYxMmTDAkGYMGDbJ5frdu3Yzy5cvf8vu7fPmyERAQYNStW9e4ePGidfyrr74yJBnjx4+3jl3/fWzevPmW27xuy5YthiQjISHBMAzDyM3NNSpVqmQMHz7cZr3x48cbkoxly5bl2cb1n+ncuXMNScbUqVNvus73339vSDK+//57m+XJycmGJCMmJsY61r9/f0OSMWbMmDzbu/H3YxiGMWnSJMNisRhHjhyxjrVu3drw9fW1GftjHsP4/59ZcnKyYRiGkZmZaZQpU8Z4+umnbZ6TkpJi+Pv7W8fPnTtnSDLefvvtPFkAZ+FtLKAIffDBB0pISFBCQoI+/fRTtWnTRn//+9+1bNkym/W8vb2t/33u3Dmlp6erVatW2rZtW55tPvjgg7rvvvtuu+/rV1mVLl3aZnzXrl2qWLGizeP3338v0D7sydm8eXM1btzY+nWVKlXUpUsXrVq1Sjk5OTbr/uMf/7D5ulWrVvr9999veaXYli1bdOrUKQ0ZMsTmfKJOnTopPDxcX3/99U2fezuxsbEKDAxUmzZtJF17W65Xr16Ki4uzyb506VLVr19f3bp1y7ON628bLl26VBUqVNBzzz1303XuxLPPPptn7I+/n6ysLJ05c0YtWrSQYRjavn27JOn06dNav369Bg0apCpVqhQ4T0JCgtLS0tSnTx+dOXPG+nB3d1dERIS+//57awYPDw+tXbtW586du+PvD3Ak3sYCitBf/vIXmxOU+/Tpo4YNG2ro0KF67LHH5OHhIUn66quv9PrrryspKUnZ2dnW9fN78QkLCyvQvn19fSVde6vlj2rUqKGEhARJ0ieffKIFCxYUeB/25KxZs2aesXvvvVcXLlzQ6dOnFRQUZB2/8UW3bNmykq4VKj8/v3yzHDlyRJJUq1atPMvCw8P1448/5vu828nJyVFcXJzatGmj5ORk63hERITeffddJSYmqn379pKkgwcPqkePHrfc3sGDB1WrVq0852kVRokSJVSpUqU840ePHtX48eO1YsWKPEUjPT1dknTo0CFJyvNW4u3s379fkvTwww/nu/z678nT01OTJ0/W888/r8DAQDVr1kyPPfaY+vXrZ/M7B+4myg5wF7m5ualNmzZ6//33tX//ftWpU0c//PCDHn/8cbVu3VozZ85UcHCwSpYsqZiYGC1cuDDPNv741/uthIeHS5J2796tLl26WMdLly5tvfz6ZoUgv33Ym9MeNzunyDCMQm33TqxZs0YnT55UXFyc4uLi8iyPjY21lh1HudmMyo0zYNd5enrKzc0tz7rt2rXT2bNn9eKLLyo8PFw+Pj46fvy4BgwYoNzc3EJlvP78BQsW5Fta/ljmRowYoc6dO2v58uVatWqVxo0bp0mTJmnNmjVq2LBhoXIAd4KyA9xlV69elfT/My5Lly6Vl5eXVq1aZXNPk5iYmELtp1WrVvL391dcXJzGjh2b58XRXvbmvD4T8Ef79u1TqVKlVLFixUJlkaTQ0FBJ0t69e/PMNuzdu9e63F6xsbEKCAjQBx98kGfZsmXLFB8fr9mzZ8vb21vVq1fX7t27b7m96tWra+PGjbpy5YpKliyZ7zrXZ7JuvKvz9dmrgti1a5f27dun+fPnq1+/ftbx67N411WrVk2Sbpv7RtdPpA4ICCjQvYqqV6+u559/Xs8//7z279+vBg0a6N1339Wnn35q134BR+CcHeAuunLlilavXi0PDw/Vrl1b0rVZDYvFYvNX/OHDh7V8+fJC7atUqVJ64YUXtHv3bo0ZMybfWRJ7Zk7szblhwwabc3mOHTumL774Qu3bt3fI/VuaNGmigIAAzZ492+YttW+//VZ79uzJc3VYQVy8eFHLli3TY489pieeeCLPY+jQocrMzNSKFSskXbvqaMeOHYqPj8+zres/2x49eujMmTOaMWPGTdcJDQ2Vu7t7nkvzZ86cWeDs13+mf/ydGoah999/32a9ihUrqnXr1po7d66OHj2ab578dOjQQX5+fnrzzTd15cqVPMtPnz4t6dotDy5dumSzrHr16vL19bX5PQF3EzM7QBH69ttv9euvv0q6dmO7hQsXav/+/RozZoz1HIdOnTpp6tSpeuSRR/TXv/5Vp06d0gcffKAaNWpo586dhdr/mDFjtGfPHr399ttavXq1evTooUqVKuncuXPatm2blixZooCAgALdMNDenHXr1lWHDh1sLj2XpIkTJxbqe7quZMmSmjx5sgYOHKgHH3xQffr0sV56XrVqVY0cOdLuba5YsUKZmZl6/PHH813erFkzVaxYUbGxserVq5f++c9/6vPPP1fPnj01aNAgNW7cWGfPntWKFSs0e/Zs1a9fX/369dMnn3yiUaNGadOmTWrVqpWysrL03XffaciQIerSpYv8/f3Vs2dPTZ8+XRaLRdWrV9dXX31lvRliQYSHh6t69eoaPXq0jh8/Lj8/Py1dujTfk4SnTZumli1bqlGjRho8eLDCwsJ0+PBhff3110pKSsp3+35+fpo1a5b+9re/qVGjRurdu7cqVqyoo0eP6uuvv9YDDzygGTNmaN++fWrbtq2efPJJ3XfffSpRooTi4+OVmpqq3r17F/j7ARzKadeBASaW36XnXl5eRoMGDYxZs2bZXOJrGIYxZ84co2bNmoanp6cRHh5uxMTEWC/L/iNJRnR0tN154uPjjY4dOxoVK1Y0SpQoYZQpU8Zo2bKl8fbbbxtpaWkF3oe9OT/99FPr+g0bNsxzafX1554+fdpm/MbLnm9l8eLFRsOGDQ1PT0+jXLlyRt++fY3ffvst3+3d7tLzzp07G15eXkZWVtZN1xkwYIBRsmRJ48yZM4ZhGMbvv/9uDB061LjnnnsMDw8Po1KlSkb//v2tyw3j2iXhL7/8shEWFmaULFnSCAoKMp544gnj4MGD1nVOnz5t9OjRwyhVqpRRtmxZ45lnnjF2796d76XnPj4++Wb75ZdfjMjISKN06dJGhQoVjKefftrYsWNHnm0YhmHs3r3b6Natm1GmTBnDy8vLqFWrljFu3Lg8P7Mbfwfff/+90aFDB8Pf39/w8vIyqlevbgwYMMB6m4EzZ84Y0dHRRnh4uOHj42P4+/sbERERxmeffXbLnz1QlCyG4YQzAAGYmsViUXR0dL5v3QDA3cY5OwAAwNQoOwAAwNQoOwAAwNS4GguAw3EqIABXwswOAAAwNcoOAAAwNd7G0rXPfDlx4oR8fX0L9SnEAADg7jEMQ5mZmQoJCbnlR+JQdiSdOHFClStXdnYMAABwB44dO6ZKlSrddDllR5Kvr6+kaz+s67fwBwAAri0jI0OVK1e2vo7fDGVHsr515efnR9kBAKCYud0pKJygDAAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATM2pZWf9+vXq3LmzQkJCZLFYtHz5cpvlhmFo/PjxCg4Olre3tyIjI7V//36bdc6ePau+ffvKz89PZcqUUVRUlM6fP38XvwsAAODKnFp2srKyVL9+fX3wwQf5Lp8yZYqmTZum2bNna+PGjfLx8VGHDh106dIl6zp9+/bVzz//rISEBH311Vdav369Bg8efLe+BQAA4OIshmEYzg4hXfsQr/j4eHXt2lXStVmdkJAQPf/88xo9erQkKT09XYGBgZo3b5569+6tPXv26L777tPmzZvVpEkTSdLKlSvVsWNH/fbbbwoJCSnQvjMyMuTv76/09HQ+CBQAgGKioK/fLnvOTnJyslJSUhQZGWkd8/f3V0REhDZs2CBJ2rBhg8qUKWMtOpIUGRkpNzc3bdy48abbzs7OVkZGhs0DAACYk8uWnZSUFElSYGCgzXhgYKB1WUpKigICAmyWlyhRQuXKlbOuk59JkybJ39/f+qhcubKD0wMAAFfhsmWnKI0dO1bp6enWx7Fjx5wd6a6zWJz3cNVsAIoXV/53DK6lhLMD3ExQUJAkKTU1VcHBwdbx1NRUNWjQwLrOqVOnbJ539epVnT171vr8/Hh6esrT09PxoQG4PGe+ULnGGZL4M3PW8e/sY99lZ3bCwsIUFBSkxMRE61hGRoY2btyo5s2bS5KaN2+utLQ0bd261brOmjVrlJubq4iIiLueGQAAuB6nzuycP39eBw4csH6dnJyspKQklStXTlWqVNGIESP0+uuvq2bNmgoLC9O4ceMUEhJivWKrdu3aeuSRR/T0009r9uzZunLlioYOHarevXsX+EosAMCt/VlnA2AeTi07W7ZsUZs2baxfjxo1SpLUv39/zZs3Ty+88IKysrI0ePBgpaWlqWXLllq5cqW8vLysz4mNjdXQoUPVtm1bubm5qUePHpo2bdpd/14AAIBrcpn77DjTn/E+O6583gJ/RaIoufKx76pc9f9Jfpf2c9Xf5Z0q9vfZAQAAcATKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMLUSzg4AAICZWCzO27dhOG/froyZHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGpcjQUUc6565Yer5gLw58PMDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDVuKggALsJZN2LkJowwO2Z2AACAqTGzAxQQf3UDQPHEzA4AADA1yg4AADA1yg4AADA1yg4AADA1yg4AADA1yg4AADA1yg4AADA17rNTxJx1bxaJ+7MAACAxswMAAEyOsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEzNpctOTk6Oxo0bp7CwMHl7e6t69ep67bXXZPzhmmrDMDR+/HgFBwfL29tbkZGR2r9/vxNTAwAAV+LSZWfy5MmaNWuWZsyYoT179mjy5MmaMmWKpk+fbl1nypQpmjZtmmbPnq2NGzfKx8dHHTp00KVLl5yYHAAAuAqXvqngf//7X3Xp0kWdOnWSJFWtWlWLFi3Spk2bJF2b1Xnvvff0yiuvqEuXLpKkTz75RIGBgVq+fLl69+7ttOwAAMA1uPTMTosWLZSYmKh9+/ZJknbs2KEff/xRjz76qCQpOTlZKSkpioyMtD7H399fERER2rBhw023m52drYyMDJsHAAAwJ5ee2RkzZowyMjIUHh4ud3d35eTk6I033lDfvn0lSSkpKZKkwMBAm+cFBgZal+Vn0qRJmjhxYtEFBwAALsOlZ3Y+++wzxcbGauHChdq2bZvmz5+vd955R/Pnzy/UdseOHav09HTr49ixYw5KDAAAXI1Lz+z885//1JgxY6zn3tSrV09HjhzRpEmT1L9/fwUFBUmSUlNTFRwcbH1eamqqGjRocNPtenp6ytPTs0izAwAA1+DSMzsXLlyQm5ttRHd3d+Xm5kqSwsLCFBQUpMTEROvyjIwMbdy4Uc2bN7+rWQEAgGty6Zmdzp0764033lCVKlVUp04dbd++XVOnTtWgQYMkSRaLRSNGjNDrr7+umjVrKiwsTOPGjVNISIi6du3q3PAAAMAluHTZmT59usaNG6chQ4bo1KlTCgkJ0TPPPKPx48db13nhhReUlZWlwYMHKy0tTS1bttTKlSvl5eXlxOQAAMBVWIw/3o74TyojI0P+/v5KT0+Xn5+fQ7dtsTh0c3a51W/WVXNJzstGLvsVx2PMVXNJHGM3ctVcEseYvYqqaRT09dulz9kBAAAoLMoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNbvLzsWLF3XhwgXr10eOHNF7772n1atXOzQYAACAI9hddrp06aJPPvlEkpSWlqaIiAi9++676tKli2bNmuXwgAAAAIVhd9nZtm2bWrVqJUn6/PPPFRgYqCNHjuiTTz7RtGnTHB4QAACgMOwuOxcuXJCvr68kafXq1erevbvc3NzUrFkzHTlyxOEBAQAACsPuslOjRg0tX75cx44d06pVq9S+fXtJ0qlTp+Tn5+fwgAAAAIVhd9kZP368Ro8erapVq+ovf/mLmjdvLunaLE/Dhg0dHhAAAKAwLIZhGPY+KSUlRSdPnlT9+vXl5natL23atEl+fn4KDw93eMiilpGRIX9/f6Wnpzt8dspicejm7HKr36yr5pKcl41c9iuOx5ir5pI4xm7kqrkkjjF72d80Cqagr993dJ+doKAg+fr6KiEhQRcvXpQkNW3atFgWHQAAYG52l53ff/9dbdu21b333quOHTvq5MmTkqSoqCg9//zzDg8IAABQGHaXnZEjR6pkyZI6evSoSpUqZR3v1auXVq5c6dBwAAAAhVXC3iesXr1aq1atUqVKlWzGa9asyaXnAADA5dg9s5OVlWUzo3Pd2bNn5enp6ZBQAAAAjmJ32WnVqpX14yIkyWKxKDc3V1OmTFGbNm0cGg4AAKCw7H4ba8qUKWrbtq22bNmiy5cv64UXXtDPP/+ss2fP6qeffiqKjAAAAHfM7pmdunXrat++fWrZsqW6dOmirKwsde/eXdu3b1f16tWLIiMAAMAdu6ObCpoNNxW8u4rrTa/IlVdxPMZcNZfEMXYjV80lcYzZy9k3FbT7baz169ffcnnr1q3t3SQAAECRsbvsPPTQQ3nGLH+oijk5OYUKBAAA4Eh2n7Nz7tw5m8epU6e0cuVKNW3aVKtXry6KjAAAAHfM7pkdf3//PGPt2rWTh4eHRo0apa1btzokGAAAgCPc0QeB5icwMFB79+511OYAAAAcwu6ZnZ07d9p8bRiGTp48qbfeeksNGjRwVC4AAACHsLvsNGjQQBaLRTdesd6sWTPNnTvXYcEAAAAcwe6yk5ycbPO1m5ubKlasKC8vL4eFAgAAcBS7z9kJDQ21eVSuXLlIi87x48f11FNPqXz58vL29la9evW0ZcsW63LDMDR+/HgFBwfL29tbkZGR2r9/f5HlAQAAxUuBZnamTZtW4A0OGzbsjsPc6Ny5c3rggQfUpk0bffvtt6pYsaL279+vsmXLWteZMmWKpk2bpvnz5yssLEzjxo1Thw4d9MsvvzDbBAAACvZxEWFhYQXbmMWiQ4cOFTrUdWPGjNFPP/2kH374Id/lhmEoJCREzz//vEaPHi1JSk9PV2BgoObNm6fevXsXaD98XMTdVVxvZ06uvIrjMeaquSSOsRu5ai6JY8xexeLjIm48T+duWbFihTp06KCePXtq3bp1uueeezRkyBA9/fTT1lwpKSmKjIy0Psff318RERHasGHDTctOdna2srOzrV9nZGQU7TcCAACcxmH32SkKhw4d0qxZs1SzZk2tWrVKzz77rIYNG6b58+dLklJSUiRdu8fPHwUGBlqX5WfSpEny9/e3PipXrlx03wQAAHAqu6/GkqTffvtNK1as0NGjR3X58mWbZVOnTnVIMEnKzc1VkyZN9Oabb0qSGjZsqN27d2v27Nnq37//HW937NixGjVqlPXrjIwMCg8AACZld9lJTEzU448/rmrVqunXX39V3bp1dfjwYRmGoUaNGjk0XHBwsO677z6bsdq1a2vp0qWSpKCgIElSamqqgoODreukpqbe8gaHnp6e8vT0dGhWAADgmux+G2vs2LEaPXq0du3aJS8vLy1dulTHjh3Tgw8+qJ49ezo03AMPPJDnIyj27dun0NBQSddOnA4KClJiYqJ1eUZGhjZu3KjmzZs7NAsAACimDDuVLl3aOHDggGEYhlGmTBlj9+7dhmEYRlJSkhEaGmrv5m5p06ZNRokSJYw33njD2L9/vxEbG2uUKlXK+PTTT63rvPXWW0aZMmWML774wti5c6fRpUsXIywszLh48WKB95Oenm5IMtLT0x2a3zAM49o56M55FMdczsxGrj/HMeaquTjGik8ujjHH57pTBX39tvttLB8fH+t5OsHBwTp48KDq1KkjSTpz5owje5iaNm2q+Ph4jR07Vv/6178UFham9957T3379rWu88ILLygrK0uDBw9WWlqaWrZsqZUrV3KPHQAAIKmA99n5o65du6pTp056+umnNXr0aH3xxRcaMGCAli1bprJly+q7774rqqxFhvvs3F23O+Jc9T4Q5MqrOB5jrppL4hi7kavmkjjG7GVf0yg4h95nR5LOnj2rcuXKaerUqTp//rwkaeLEiTp//rwWL16smjVrOvRKLAAAAEcocNkJCQlR165dFRUVpXbt2km69pbW7NmziywcAABAYRX4aqyPPvpIp0+f1iOPPKKqVavq1Vdf1eHDh4swGgAAQOEVuOz87W9/U2Jiog4cOKD+/ftr/vz5qlGjhtq1a6fFixfnubkgAACAK7D7PjthYWGaOHGikpOTtXLlSgUEBGjQoEEKDg526CeeAwAAOILdV2PlZ+nSpdZLv3NychyR667iaqy7q7heLUCuvIrjMeaquSSOsRu5ai6JY8xexeZqrBsdOXJEMTExmj9/vo4dO6Y2bdooKirqTjcHAABQJOwqO9nZ2Vq6dKnmzp2rtWvX6p577tGAAQM0cOBAVa1atYgiAgAA3LkCl50hQ4YoLi5OFy5cUJcuXfTNN9+oXbt2sjhzvg4AAOA2Clx2fvzxR02YMEFPPfWUypcvX5SZAAAAHKbAZWfnzp1FmQMAAKBI2H3pOQAAQHFC2QEAAKZG2QEAAKZG2QEAAKZmd9mpWrWq/vWvf+no0aNFkQcAAMCh7C47I0aM0LJly1StWjW1a9dOcXFxys7OLopsAAAAhXZHZScpKUmbNm1S7dq19dxzzyk4OFhDhw7Vtm3biiIjAADAHbvjc3YaNWqkadOm6cSJE5owYYI+/vhjNW3aVA0aNNDcuXPlgM8XBQAAKLQ7/iDQK1euKD4+XjExMUpISFCzZs0UFRWl3377TS+99JK+++47LVy40JFZAQAA7GZ32dm2bZtiYmK0aNEiubm5qV+/fvr3v/+t8PBw6zrdunVT06ZNHRoUAADgTthddpo2bap27dpp1qxZ6tq1q0qWLJlnnbCwMPXu3dshAQEAAArD7rJz6NAhhYaG3nIdHx8fxcTE3HEoAAAAR7H7BOVTp05p48aNecY3btyoLVu2OCQUAACAo9hddqKjo3Xs2LE848ePH1d0dLRDQgEAADiK3WXnl19+UaNGjfKMN2zYUL/88otDQgEAADiK3WXH09NTqampecZPnjypEiXu+Ep2AACAImF32Wnfvr3Gjh2r9PR061haWppeeukltWvXzqHhAAAACsvuqZh33nlHrVu3VmhoqBo2bChJSkpKUmBgoBYsWODwgAAAAIVhd9m55557tHPnTsXGxmrHjh3y9vbWwIED1adPn3zvuQMAAOBMd3SSjY+PjwYPHuzoLAAAAA53x2cU//LLLzp69KguX75sM/74448XOhQAAICj3NEdlLt166Zdu3bJYrFYP93cYrFIknJychybEAAAoBDsvhpr+PDhCgsL06lTp1SqVCn9/PPPWr9+vZo0aaK1a9cWQUQAAIA7Z/fMzoYNG7RmzRpVqFBBbm5ucnNzU8uWLTVp0iQNGzZM27dvL4qcAAAAd8TumZ2cnBz5+vpKkipUqKATJ05IkkJDQ7V3717HpgMAACgku2d26tatqx07digsLEwRERGaMmWKPDw89OGHH6patWpFkREAAOCO2V12XnnlFWVlZUmS/vWvf+mxxx5Tq1atVL58eS1evNjhAQEAAArDYly/nKoQzp49q7Jly1qvyCpuMjIy5O/vr/T0dPn5+Tl02878kdzqN+uquSTnZSOX/YrjMeaquSSOsRu5ai6JY8xehW8a+Svo67dd5+xcuXJFJUqU0O7du23Gy5UrV2yLDgAAMDe7yk7JkiVVpUoV7qUDAACKDbuvxnr55Zf10ksv6ezZs0WRBwAAwKHsPkF5xowZOnDggEJCQhQaGiofHx+b5du2bXNYOAAAgMKyu+x07dq1CGIAAAAUDbvLzoQJE4oiBwAAQJGw+5wdAACA4sTumR03N7dbXmbOlVoAAMCV2F124uPjbb6+cuWKtm/frvnz52vixIkOCwYAAOAIDrmDsiQtXLhQixcv1hdffOGIzd1V3EH57iqud/gkV17F8Rhz1VwSx9iNXDWXxDFmr2J1B+VbadasmRITEx21OQAAAIdwSNm5ePGipk2bpnvuuccRmwMAAHAYu8/ZufEDPw3DUGZmpkqVKqVPP/3UoeEAAAAKy+6y8+9//9um7Li5ualixYqKiIhQ2bJlHRoOAACgsOwuOwMGDCiCGAAAAEXD7nN2YmJitGTJkjzjS5Ys0fz58x0SCgAAwFHsLjuTJk1ShQoV8owHBATozTffdEgoAAAAR7G77Bw9elRhYWF5xkNDQ3X06FGHhAIAAHAUu8tOQECAdu7cmWd8x44dKl++vENCAQAAOIrdZadPnz4aNmyYvv/+e+Xk5CgnJ0dr1qzR8OHD1bt376LICAAAcMfsvhrrtdde0+HDh9W2bVuVKHHt6bm5uerXrx/n7AAAAJdj98yOh4eHFi9erL179yo2NlbLli3TwYMHNXfuXHl4eBRFRqu33npLFotFI0aMsI5dunRJ0dHRKl++vEqXLq0ePXooNTW1SHMAAIDiw+6Znetq1qypmjVrOjLLLW3evFn/+c9/dP/999uMjxw5Ul9//bWWLFkif39/DR06VN27d9dPP/1017IBAADXZffMTo8ePTR58uQ841OmTFHPnj0dEupG58+fV9++ffXRRx/Z3KU5PT1dc+bM0dSpU/Xwww+rcePGiomJ0X//+1/973//K5IsAACgeLG77Kxfv14dO3bMM/7oo49q/fr1Dgl1o+joaHXq1EmRkZE241u3btWVK1dsxsPDw1WlShVt2LDhptvLzs5WRkaGzQMAAJiT3W9jnT9/Pt9zc0qWLFkkpSEuLk7btm3T5s2b8yxLSUmRh4eHypQpYzMeGBiolJSUm25z0qRJmjhxoqOjAgAAF2T3zE69evW0ePHiPONxcXG67777HBLqumPHjmn48OGKjY2Vl5eXw7Y7duxYpaenWx/Hjh1z2LYBAIBrsXtmZ9y4cerevbsOHjyohx9+WJKUmJioRYsW5fuZWYWxdetWnTp1So0aNbKO5eTkaP369ZoxY4ZWrVqly5cvKy0tzWZ2JzU1VUFBQTfdrqenpzw9PR2aFQAAuCa7y07nzp21fPlyvfnmm/r888/l7e2t+++/X999950efPBBh4Zr27atdu3aZTM2cOBAhYeH68UXX1TlypVVsmRJJSYmqkePHpKkvXv36ujRo2revLlDswAAgOLpji4979Spkzp16pRnfPfu3apbt26hQ13n6+ubZ3s+Pj4qX768dTwqKkqjRo1SuXLl5Ofnp+eee07NmzdXs2bNHJYDAAAUX3d8n53rMjMztWjRIn388cfaunWrcnJyHJGrwP7973/Lzc1NPXr0UHZ2tjp06KCZM2fe1QwAAMB1WQzDMO7kievXr9fHH3+sZcuWKSQkRN27d1ePHj3UtGlTR2cschkZGfL391d6err8/Pwcum2LxaGbs8utfrOumktyXjZy2a84HmOumkviGLuRq+aSOMbsdWdN4/YK+vpt18xOSkqK5s2bpzlz5igjI0NPPvmksrOztXz5codfiQUAAOAIBb70vHPnzqpVq5Z27typ9957TydOnND06dOLMhsAAEChFXhm59tvv9WwYcP07LPP3tXPxAIAACiMAs/s/Pjjj8rMzFTjxo0VERGhGTNm6MyZM0WZDQAAoNAKXHaaNWumjz76SCdPntQzzzyjuLg4hYSEKDc3VwkJCcrMzCzKnAAAAHfkjq/Gkq7dwG/OnDlasGCB0tLS1K5dO61YscKR+e4Krsa6u4rr1QLkyqs4HmOumkviGLuRq+aSOMbs5eyrsez+bKw/qlWrlqZMmaLffvtNixYtKsymAAAAikShZnbMgpmdu6u4/uVBrryK4zHmqrkkjrEbuWouiWPMXsV6ZgcAAMDVUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpuXTZmTRpkpo2bSpfX18FBASoa9eu2rt3r806ly5dUnR0tMqXL6/SpUurR48eSk1NdVJiAADgaly67Kxbt07R0dH63//+p4SEBF25ckXt27dXVlaWdZ2RI0fqyy+/1JIlS7Ru3TqdOHFC3bt3d2JqAADgSiyGYRjODlFQp0+fVkBAgNatW6fWrVsrPT1dFStW1MKFC/XEE09Ikn799VfVrl1bGzZsULNmzQq03YyMDPn7+ys9PV1+fn4OzWyxOHRzdrnVb9ZVc0nOy0Yu+xXHY8xVc0kcYzdy1VwSx5i9iqppFPT126Vndm6Unp4uSSpXrpwkaevWrbpy5YoiIyOt64SHh6tKlSrasGHDTbeTnZ2tjIwMmwcAADCnYlN2cnNzNWLECD3wwAOqW7euJCklJUUeHh4qU6aMzbqBgYFKSUm56bYmTZokf39/66Ny5cpFGR0AADhRsSk70dHR2r17t+Li4gq9rbFjxyo9Pd36OHbsmAMSAgAAV1TC2QEKYujQofrqq6+0fv16VapUyToeFBSky5cvKy0tzWZ2JzU1VUFBQTfdnqenpzw9PYsyMgAAcBEuPbNjGIaGDh2q+Ph4rVmzRmFhYTbLGzdurJIlSyoxMdE6tnfvXh09elTNmze/23EBAIALcumZnejoaC1cuFBffPGFfH19refh+Pv7y9vbW/7+/oqKitKoUaNUrlw5+fn56bnnnlPz5s0LfCUWAAAwN5cuO7NmzZIkPfTQQzbjMTExGjBggCTp3//+t9zc3NSjRw9lZ2erQ4cOmjlz5l1OCgAAXFWxus9OUeE+O3dXcb0PBLnyKo7HmKvmkjjGbuSquSSOMXtxnx0AAIAiRNkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmZpqy88EHH6hq1ary8vJSRESENm3a5OxIAADABZii7CxevFijRo3ShAkTtG3bNtWvX18dOnTQqVOnnB0NAAA4mSnKztSpU/X0009r4MCBuu+++zR79myVKlVKc+fOdXY0AADgZMW+7Fy+fFlbt25VZGSkdczNzU2RkZHasGGDE5MBAABXUMLZAQrrzJkzysnJUWBgoM14YGCgfv3113yfk52drezsbOvX6enpkqSMjIyiC+oErvrtkMs+rppLct1s5LIPueznqtn+bLmuv24bhnHL9Yp92bkTkyZN0sSJE/OMV65c2Qlpio6/v7MT5I9c9nHVXJLrZiOXfchlP1fN9mfNlZmZKf9b7KTYl50KFSrI3d1dqampNuOpqakKCgrK9zljx47VqFGjrF/n5ubq7NmzKl++vCwWS5HmLaiMjAxVrlxZx44dk5+fn7Pj2HDVbOSyj6vmklw3G7nsQy77uWo2V81lGIYyMzMVEhJyy/WKfdnx8PBQ48aNlZiYqK5du0q6Vl4SExM1dOjQfJ/j6ekpT09Pm7EyZcoUcdI74+fn51IH1h+5ajZy2cdVc0mum41c9iGX/Vw1myvmutWMznXFvuxI0qhRo9S/f381adJEf/nLX/Tee+8pKytLAwcOdHY0AADgZKYoO7169dLp06c1fvx4paSkqEGDBlq5cmWek5YBAMCfjynKjiQNHTr0pm9bFUeenp6aMGFCnrfbXIGrZiOXfVw1l+S62chlH3LZz1WzuWqugrIYt7teCwAAoBgr9jcVBAAAuBXKDgAAMDXKDgAAMDXKDgAAMDXKjgtav369OnfurJCQEFksFi1fvtzZkTRp0iQ1bdpUvr6+CggIUNeuXbV3795ise8PP/xQDz30kPz8/GSxWJSWllZ0Yf9g1qxZuv/++6034WrevLm+/fbbu7Jve7z11luyWCwaMWKEU3O8+uqrslgsNo/w8HCnZrru+PHjeuqpp1S+fHl5e3urXr162rJli7NjqWrVqnl+ZhaLRdHR0U7NlZOTo3HjxiksLEze3t6qXr26Xnvttdt+fpGz97ts2TK1b9/eejf9pKSkIs37R5mZmRoxYoRCQ0Pl7e2tFi1aaPPmzXdt/9fd7vXHMAyNHz9ewcHB8vb2VmRkpPbv33/Xc9qLsuOCsrKyVL9+fX3wwQfOjmK1bt06RUdH63//+58SEhJ05coVtW/fXllZWS6/7wsXLuiRRx7RSy+9VMRJbVWqVElvvfWWtm7dqi1btujhhx9Wly5d9PPPP9/VHLeyefNm/ec//9H999/v7CiSpDp16ujkyZPWx48//ujsSDp37pweeOABlSxZUt9++61++eUXvfvuuypbtqyzo2nz5s02P6+EhARJUs+ePZ2aa/LkyZo1a5ZmzJihPXv2aPLkyZoyZYqmT5/u0vvNyspSy5YtNXny5CLNmZ+///3vSkhI0IIFC7Rr1y61b99ekZGROn78+F3NcbvXnylTpmjatGmaPXu2Nm7cKB8fH3Xo0EGXLl26qzntZsClSTLi4+OdHSOPU6dOGZKMdevWFZt9f//994Yk49y5c0UTrADKli1rfPzxx07b/x9lZmYaNWvWNBISEowHH3zQGD58uFPzTJgwwahfv75TM+TnxRdfNFq2bOnsGAUyfPhwo3r16kZubq5Tc3Tq1MkYNGiQzVj37t2Nvn37Fov9JicnG5KM7du3OzDdzV24cMFwd3c3vvrqK5vxRo0aGS+//PJdyZCfG19/cnNzjaCgIOPtt9+2jqWlpRmenp7GokWLnJCw4JjZwR1JT0+XJJUrV+5Pte87lZOTo7i4OGVlZal58+bOjiNJio6OVqdOnRQZGensKFb79+9XSEiIqlWrpr59++ro0aPOjqQVK1aoSZMm6tmzpwICAtSwYUN99NFHzo6Vx+XLl/Xpp59q0KBBTv9A4xYtWigxMVH79u2TJO3YsUM//vijHn30UVPut7CuXr2qnJwceXl52Yx7e3u7xOzmdcnJyUpJSbH5N8Pf318RERHasGGDE5PdnmnuoIy7Jzc3VyNGjNADDzygunXr/mn2fSd27dql5s2b69KlSypdurTi4+N13333OTuW4uLitG3bNqecE3AzERERmjdvnmrVqqWTJ09q4sSJatWqlXbv3i1fX1+n5Tp06JBmzZqlUaNG6aWXXtLmzZs1bNgweXh4qH///k7LdaPly5crLS1NAwYMcHYUjRkzRhkZGQoPD5e7u7tycnL0xhtvqG/fvqbcb2H5+vqqefPmeu2111S7dm0FBgZq0aJF2rBhg2rUqOHseFYpKSmSlOejmAIDA63LXBVlB3aLjo7W7t27nfIXhzP3fSdq1aqlpKQkpaen6/PPP1f//v21bt06pxaeY8eOafjw4UpISMjzl6Qz/fGv7/vvv18REREKDQ3VZ599pqioKKflys3NVZMmTfTmm29Kkho2bKjdu3dr9uzZLlV25syZo0cffVQhISHOjqLPPvtMsbGxWrhwoerUqaOkpCSNGDFCISEhRfozc9Z+HWHBggUaNGiQ7rnnHrm7u6tRo0bq06ePtm7d6uxo5uDs99Fwa3Kxc3aio6ONSpUqGYcOHSp2+3aFc3batm1rDB482Gn7NwzDiI+PNyQZ7u7u1ockw2KxGO7u7sbVq1edmu+PmjRpYowZM8apGapUqWJERUXZjM2cOdMICQlxUqK8Dh8+bLi5uRnLly93dhTDMAyjUqVKxowZM2zGXnvtNaNWrVrFYr93+5ydPzp//rxx4sQJwzAM48knnzQ6dux41zNcd+Prz8GDB/P9ubRu3doYNmzY3Q1nJ87ZQYEYhqGhQ4cqPj5ea9asUVhY2J9i346Wm5ur7Oxsp2Zo27atdu3apaSkJOujSZMm6tu3r5KSkuTu7u7UfNedP39eBw8eVHBwsFNzPPDAA3ludbBv3z6FhoY6KVFeMTExCggIUKdOnZwdRdK1KyDd3GxfXtzd3ZWbm2vK/TqSj4+PgoODde7cOa1atUpdunRxdiSrsLAwBQUFKTEx0TqWkZGhjRs3usy5iDfD21gu6Pz58zpw4ID16+TkZCUlJalcuXKqUqWKUzJFR0dr4cKF+uKLL+Tr62t9f9bf31/e3t4uve+UlBSlpKRYf6a7du2Sr6+vqlSpUqQnOY8dO1aPPvqoqlSposzMTC1cuFBr167VqlWrimyfBeHr65vnfCcfHx+VL1/eqedBjR49Wp07d1ZoaKhOnDihCRMmyN3dXX369HFaJkkaOXKkWrRooTfffFNPPvmkNm3apA8//FAffvihU3Ndl5ubq5iYGPXv318lSrjGP+mdO3fWG2+8oSpVqqhOnTravn27pk6dqkGDBrn0fs+ePaujR4/qxIkTkmQtuUFBQQoKCiqy3JK0atUqGYahWrVq6cCBA/rnP/+p8PBwDRw4sEj3e6Pbvf6MGDFCr7/+umrWrKmwsDCNGzdOISEh6tq1613NaTcnzywhH9ffbrnx0b9/f6dlyi+PJCMmJsbl9z1hwgSnZB80aJARGhpqeHh4GBUrVjTatm1rrF69ukj3eadc4dLzXr16GcHBwYaHh4dxzz33GL169TIOHDjg1EzXffnll0bdunUNT09PIzw83Pjwww+dHclq1apVhiRj7969zo5ilZGRYQwfPtyoUqWK4eXlZVSrVs14+eWXjezsbJfeb0xMTL7/VkyYMKFIcxuGYSxevNioVq2a4eHhYQQFBRnR0dFGWlpake/3Rrd7/cnNzTXGjRtnBAYGGp6enkbbtm1d6ti7GYthFPEtLQEAAJyIc3YAAICpUXZQrMXGxqp06dL5PurUqePseABcxA8//HDTfytKly7t7HgoYryNhWItMzNTqamp+S4rWbKkS10xA8B5Ll68eMvPmXKlm/fB8Sg7AADA1HgbCwAAmBplBwAAmBplBwAAmBplBwAc4PDhw7JYLEpKSirwcwYMGHDbO88+9NBDGjFiRKGyAX92lB3gT2LDhg1yd3d3mc9PcoZ69erpH//4R77LFixYIE9PT505c+aOtl25cmWdPHnSqR+5ASB/lB3gT2LOnDl67rnntH79eutn/zjL5cuXnbLfqKgoxcXF6eLFi3mWxcTE6PHHH1eFChXs3u7ly5fl7u6uoKAgl/l8KgD/j7ID/AmcP39eixcv1rPPPqtOnTpp3rx5edb58ssv1bRpU3l5ealChQrq1q2bdVl2drZefPFFVa5cWZ6enqpRo4bmzJkjSZo3b57KlCljs63ly5fLYrFYv3711VfVoEEDffzxxwoLC5OXl5ckaeXKlWrZsqXKlCmj8uXL67HHHtPBgwdttvXbb7+pT58+KleunHx8fNSkSRNt3LhRhw8flpubm7Zs2WKz/nvvvafQ0NB8P+n6qaee0sWLF7V06VKb8eTkZK1du1ZRUVE6ePCgunTposDAQJUuXVpNmzbVd999Z7N+1apV9dprr6lfv37y8/PT4MGD87yNlZOTo6ioKIWFhcnb21u1atXS+++/n89vR5o4caIqVqwoPz8//eMf/7hlGczOztbo0aN1zz33yMfHRxEREVq7dq11+ZEjR9S5c2eVLVtWPj4+qlOnjr755pubbg/4M6DsAH8Cn332mcLDw1WrVi099dRTmjt3rv54i62vv/5a3bp1U8eOHbV9+3YlJibqL3/5i3V5v379tGjRIk2bNk179uzRf/7zH7vvOnvgwAEtXbpUy5YtsxaCrKwsjRo1Slu2bFFiYqLc3NzUrVs3a1E5f/68HnzwQR0/flwrVqzQjh079MILLyg3N1dVq1ZVZGSkYmJibPYTExOjAQMGyM0t7z9vFSpUUJcuXTR37lyb8Xnz5qlSpUpq3769zp8/r44dOyoxMVHbt2/XI488os6dO+vo0aM2z3nnnXdUv359bd++XePGjcuzr9zcXFWqVElLlizRL7/8ovHjx+ull17SZ599ZrNeYmKi9uzZo7Vr12rRokVatmyZJk6ceNOf49ChQ7VhwwbFxcVp586d6tmzpx555BHt379fkhQdHa3s7GytX79eu3bt0uTJk7lDMODEDyEFcJe0aNHCeO+99wzDMIwrV64YFSpUML7//nvr8ubNmxt9+/bN97l79+41JBkJCQn5Lo+JiTH8/f1txuLj440//vMyYcIEo2TJksapU6dumfP06dOGJGPXrl2GYRjGf/7zH8PX19f4/fff811/8eLFRtmyZY1Lly4ZhmEYW7duNSwWi5GcnHzTfaxcudKwWCzGoUOHDMO49inOoaGhxiuvvHLT59SpU8eYPn269evQ0FCja9euNuskJycbkozt27ffdDvR0dFGjx49rF/379/fKFeunJGVlWUdmzVrllG6dGkjJyfHMAzbT6Q/cuSI4e7ubhw/ftxmu23btjXGjh1rGIZh1KtXz3j11VdvmgH4M2JmBzC5vXv3atOmTerTp48kqUSJEurVq5f1bShJSkpKUtu2bfN9flJSktzd3fXggw8WKkdoaKgqVqxoM7Z//3716dNH1apVk5+fn6pWrSpJ1lmUpKQkNWzYUOXKlct3m127dpW7u7vi4+MlXZuhadOmjXU7+WnXrp0qVapknRFKTEzU0aNHNXDgQEnXZpNGjx6t2rVrq0yZMipdurT27NmTZ2anSZMmt/2eP/jgAzVu3FgVK1ZU6dKl9eGHH+bZTv369VWqVCnr182bN9f58+d17NixPNvbtWuXcnJydO+999p8rtO6deusb/8NGzZMr7/+uh544AFNmDBBO3fuvG1OwOwoO4DJzZkzR1evXlVISIhKlCihEiVKaNasWVq6dKnS09MlSd7e3jd9/q2WSZKbm5vNW2KSdOXKlTzr+fj45Bnr3Lmzzp49q48++kgbN27Uxo0bJf3/Ccy327eHh4f69eunmJgYXb58WQsXLtSgQYNum3fAgAGaP3++cnNzFRMTozZt2qhatWqSpNGjRys+Pl5vvvmmfvjhByUlJalevXp5zqPJ7/v5o7i4OI0ePVpRUVFavXq1kpKSNHDgwEKdnH3+/Hm5u7tr69atSkpKsj727NljPR/o73//uw4dOqS//e1v2rVrl5o0aaLp06ff8T4BM6DsACZ29epVffLJJ3r33XdtXhx37NihkJAQLVq0SJJ0//33KzExMd9t1KtXT7m5uVq3bl2+yytWrKjMzExlZWVZxwpyr5nff/9de/fu1SuvvKK2bduqdu3aOnfunM06999/v5KSknT27Nmbbufvf/+7vvvuO82cOVNXr15V9+7db7vvgQMH6tixY1q2bJni4+MVFRVlXfbTTz9pwIAB6tatm+rVq6egoCAdPnz4ttu80U8//aQWLVpoyJAhatiwoWrUqJHn5GtJ2rFjh83VYf/73/9UunRpVa5cOc+6DRs2VE5Ojk6dOqUaNWrYPIKCgqzrVa5cWf/4xz+0bNkyPf/88/roo4/szg+YCWUHMLGvvvpK586dU1RUlOrWrWvz6NGjh/WtrAkTJmjRokWaMGGC9uzZYz2xVbp25VH//v01aNAgLV++3Hrl0vUTbSMiIlSqVCm99NJLOnjwoBYuXJjv1V43Klu2rMqXL68PP/xQBw4c0Jo1azRq1Cibdfr06aOgoCB17dpVP/30kw4dOqSlS5dqw4YN1nVq166tZs2a6cUXX1SfPn1uOxskSWFhYXr44Yc1ePBgeXp62hSkmjVrWk+i3rFjh/7617/me2XX7dSsWVNbtmzRqlWrtG/fPo0bN06bN2/Os97ly5cVFRWlX375Rd98840mTJigoUOH5nuC9b333qu+ffuqX79+WrZsmZKTk7Vp0yZNmjRJX3/9tSRpxIgRWrVqlZKTk7Vt2zZ9//33ql27tt35ATOh7AAmNmfOHEVGRsrf3z/Psh49emjLli3auXOnHnroIS1ZskQrVqxQgwYN9PDDD2vTpk3WdWfNmqUnnnhCQ4YMUXh4uJ5++mnrTE65cuX06aef6ptvvlG9evW0aNEivfrqq7fN5ubmpri4OG3dulV169bVyJEj9fbbb9us4+HhodWrVysgIEAdO3ZUvXr19NZbb8nd3d1mvaioKF2+fPm2b2Hd+Jxz587pr3/9q/VSeEmaOnWqypYtqxYtWqhz587q0KGDGjVqVODtXvfMM8+oe/fu6tWrlyIiIvT7779ryJAhedZr27atatasqdatW6tXr156/PHHb/nzi4mJUb9+/fT888+rVq1a6tq1qzZv3qwqVapIunbJe3R0tGrXrq1HHnlE9957r2bOnGl3fsBMLMaNb7YDQDHz2muvacmSJZyMCyBfzOwAKLbOnz+v3bt3a8aMGXruueecHQeAi6LsACi2hg4dqsaNG+uhhx6y6y0sAH8uvI0FAABMjZkdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgav8H/GzqtXu8YtUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "# Assuming you have a list of accuracies from accuracy1 to accuracy10\n", - "accuracies = [accuracy1*100, accuracy2*100, accuracy3*100, accuracy4*100, accuracy5*100, accuracy6*100, accuracy7*100, accuracy8*100, accuracy9*100, accuracy10*100]\n", + "accuracies = [accuracy1*100, accuracy2*100, accuracy2_1*100, accuracy3*100, accuracy4*100, accuracy5*100, accuracy6*100, accuracy7*100, accuracy8*100, accuracy8_1*100, accuracy9*100, accuracy10*100]\n", "\n", "# List of corresponding labels for each accuracy\n", - "labels = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10']\n", + "labels = ['1', '2', '2_1', '3', '4', '5', '6', '7', '8', '8_1', '9', '10']\n", "\n", "# Plotting the bar graph\n", "plt.bar(labels, accuracies, color='blue')\n", @@ -2448,39 +6877,39 @@ "plt.ylabel('Accuracy Values')\n", "plt.title('Bar Graph of Accuracies')\n", "plt.show()\n" - ], + ] + }, + { + "cell_type": "code", + "execution_count": 93, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 472 }, - "id": "qpWPtph9CGip", - "outputId": "c099cb8d-96af-4223-f499-743040aecdf1" + "id": "RFaaCNH6Cfoa", + "outputId": "e624dad4-1663-4a68-90ec-b569e5b0b46a" }, - "execution_count": 117, "outputs": [ { - "output_type": "display_data", "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIKElEQVR4nO3dfVxUZf7/8fdwN+ANICh3BUpmqWlKoGZZ3lHepWmYeZPhzdpWWqmblbumZW2k3Wi5pNaWZGm2Vpq1SZqpVOIdhltmZqlpJmipIBoocP3+8Mv8HEEDBWY4vZ6Px3k8mutcc53PnDkO785cZ47NGGMEAABgUR6uLgAAAKAqEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAWM7jjz8um82mX3/9tcq3lZqaqtatW8vX11c2m01Hjx6t8m0CqBjCDlCDpKSkyGazOS0hISHq3Lmzli9fXu31fPjhh+rdu7dCQ0Pl4+OjoKAg3XjjjXr++eeVm5tb7fVUt99++00DBgyQn5+fkpOT9eabb6p27dpl9j37vfPy8tIll1yiYcOGaf/+/aX6d+rUSTabTU2aNClzvJUrVzrGevfdd53Wff311+rfv78aNmwoX19fXXLJJbrppps0a9Ysp36NGjUqdTyVLN27d7/AvQK4Hy9XFwCg4qZOnaro6GgZY5Sdna2UlBT17NlTH374oW655ZYq335xcbFGjhyplJQUtWzZUvfdd58iIyN17Ngxpaena9KkSfr444+1atWqKq/FlTZt2qRjx47pySefVHx8fLmeU/Le5efna/369UpJSdEXX3yhb775Rr6+vk59fX199cMPP2jjxo1q27at07oFCxbI19dX+fn5Tu3r1q1T586dFRUVpVGjRiksLEz79u3T+vXr9eKLL+r+++936t+6dWv97W9/K1VnREREuV4PUBMQdoAaqEePHoqLi3M8HjlypEJDQ/X2229XStgpLi7WyZMnS/3xLTF9+nSlpKRo3Lhxev7552Wz2RzrHnzwQR04cEDz58+/qG3UBAcPHpQkBQYGlvs5Z753f/nLX1S/fn1NmzZNy5Yt04ABA5z6Nm7cWIWFhXr77bedwk5+fr6WLFmiXr166b333nN6zj//+U8FBARo06ZNpeoqqfdMl1xyie68885y1w/URHyNBVhAYGCg/Pz85OXl/P8vzz33nK677joFBwfLz89PsbGxpb7ykCSbzaYxY8ZowYIFuuqqq2S325Wamlrmtk6cOKFp06bpqquu0rPPPusUdEqEh4frkUceKfc2LqTOK6+8Ur6+voqNjVVaWlqZtR49elTDhg1TYGCgAgICNHz4cJ04caLsnXiWxYsXKzY2Vn5+fqpfv77uvPNOp6+bOnXqpMTERElSmzZtZLPZNGzYsHKNfaYbbrhBkvTjjz+WuX7QoEF65513VFxc7Gj78MMPdeLEiVLhqGScq666qswAFhISUuH6ACsg7AA1UE5Ojn799VcdOnRI27Zt07333qu8vLxS/4f+4osvKiYmRlOnTtXTTz8tLy8v3X777frvf/9baszPPvtM48aN0x133KEXX3xRjRo1KnPbX3zxhY4ePapBgwbJ09OzQnWfaxsVqXPt2rUaO3as7rzzTk2dOlW//fabunfvrm+++aZU3wEDBujYsWNKSkrSgAEDlJKSoieeeOIP60xJSdGAAQPk6emppKQkjRo1Su+//746dOjgmID8j3/8Q3fffbek019Nvfnmm/rrX/9aof0hSXv27JEk1atXr8z1gwcP1oEDB7RmzRpH28KFC9W1a9cyw0vDhg2VkZFR5v4oy6lTp/Trr7+WWn7//fcKvxbAbRkANca8efOMpFKL3W43KSkppfqfOHHC6fHJkydNixYtTJcuXZzaJRkPDw+zbdu2P6zhxRdfNJLM0qVLndoLCwvNoUOHnJbi4uJybaMidUoymzdvdrT99NNPxtfX1/Tr18/RNmXKFCPJjBgxwun5/fr1M8HBwed9fSdPnjQhISGmRYsW5vfff3e0f/TRR0aSmTx5sqOt5P3YtGnTecc8s++nn35qDh06ZPbt22feffdd06BBA2O3282+ffuc+nfs2NFcddVVxhhj4uLizMiRI40xxhw5csT4+PiYN954w6xevdpIMosXL3Y8b8WKFcbT09N4enqa9u3bm4cffth88skn5uTJk6VqatiwYZnHkySTlJT0h68JqCk4swPUQMnJyVq5cqVWrlypt956S507d9Zf/vIXvf/++079/Pz8HP995MgR5eTk6IYbbtCWLVtKjdmxY0c1b978D7ddcpVVnTp1nNq//vprNWjQwGn57bffyrWNitTZvn17xcbGOh5HRUXp1ltv1SeffKKioiKnvvfcc4/T4xtuuEG//fbbea8U27x5sw4ePKj77rvPaT5Rr1691LRp0zLPNlVEfHy8GjRooMjISPXv31+1a9fWsmXLdOmll57zOYMHD9b777+vkydP6t1335Wnp6f69etXZt+bbrpJ6enp6tOnj7Zu3arp06erW7duuuSSS7Rs2bJS/du1a+c4ls5cBg0adFGvE3AnTFAGaqC2bds6TVAeNGiQYmJiNGbMGN1yyy3y8fGRJH300Ud66qmnlJmZqYKCAkf/subZREdHl2vbdevWlSTl5eU5tV9++eVauXKlJGn+/Pl68803y72NitRZ1qXYV1xxhU6cOKFDhw4pLCzM0R4VFeXUr+SroiNHjsjf37/MWn766SdJ0pVXXllqXdOmTfXFF1+U+bzySk5O1hVXXKGcnBy9/vrrSktLk91uP+9zBg4cqIceekjLly/XggULdMsttzjeh7K0adPGEY62bt2qJUuWaMaMGerfv78yMzOdAmf9+vXLfSUZUFNxZgewAA8PD3Xu3FkHDhzQzp07JUmff/65+vTpI19fX7388sv6+OOPtXLlSg0ePFjGmFJjnHl25XyaNm0qSaXmhNSpU0fx8fGKj4/XZZddVuZzy9pGReusiHPNKbrYcS9G27ZtFR8fr4SEBC1btkwtWrTQ4MGDS4XHM4WHh6tTp056/vnnlZaWpsGDB5drWz4+PmrTpo2efvppzZ49W6dOndLixYsr66UANQZhB7CIwsJCSf//jMt7770nX19fffLJJxoxYoR69OhRKf8Hf8MNNyggIECLFi1yukLoQlW0zpIwd6bvv/9etWrVUoMGDS66noYNG0qSduzYUWrdjh07HOsrQ8kE6F9++UX/+te/ztt38ODB+vzzz+Xv76+ePXtWeFslZwIPHDhwQbUCNRlhB7CAU6dOacWKFfLx8VGzZs0knf5DarPZnOax7NmzR0uXLr2obdWqVUsPP/ywvvnmGz366KNlniWpyJmTitaZnp7uNJdn3759+uCDD3TzzTdX+OqwssTFxSkkJERz5sxx+kpt+fLl2r59u3r16nXR2zhTp06d1LZtW82cObPUDwSeqX///poyZYpefvllx9eUZVm9enWZ+//jjz+WVPbXc4DVMWcHqIGWL1+u7777TtLpH4pbuHChdu7cqUcffdQxF6VXr1564YUX1L17dw0ePFgHDx5UcnKyLr/8cv3vf/+7qO0/+uij2r59u5599lmtWLFCCQkJuvTSS3XkyBFt2bJFixcvVkhISLl+MLCidbZo0ULdunXTAw88ILvdrpdfflmSynVJeXl4e3tr2rRpGj58uDp27KhBgwYpOzvbcan8uHHjKmU7Z5owYYJuv/12paSklJpUXSIgIECPP/74H451//3368SJE+rXr5+aNm2qkydPat26dXrnnXfUqFEjDR8+3Kn//v379dZbb5Uap06dOurbt++FvBzA/bjyUjAAFVPWpee+vr6mdevWZvbs2U6XehtjzGuvvWaaNGli7Ha7adq0qZk3b57jsuwzSTKjR4+ucD1LliwxPXv2NA0aNDBeXl4mMDDQdOjQwTz77LPm6NGj5d5GRet86623HP1jYmLM6tWrnfqVPPfQoUNO7SX7b/fu3X/42t555x0TExNj7Ha7CQoKMkOGDDE///xzmeNV5NLzsvoWFRWZxo0bm8aNG5vCwkJjjPOl5+dS1qXny5cvNyNGjDBNmzY1derUMT4+Pubyyy83999/v8nOznZ6/vkuPW/YsOEfviagprAZ48KZegBQATabTaNHj/7D+S0AcCbm7AAAAEsj7AAAAEsj7AAAAEvjaiwANQZTDAFcCM7sAAAASyPsAAAAS+NrLEnFxcX65ZdfVLdu3TJvPAgAANyPMUbHjh1TRESEPDzOff6GsCPpl19+UWRkpKvLAAAAF2Dfvn269NJLz7mesCOpbt26kk7vrJKf2gcAAO4tNzdXkZGRjr/j50LYkRxfXfn7+xN2AACoYf5oCgoTlAEAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKW5NOykpaWpd+/eioiIkM1m09KlS0v12b59u/r06aOAgADVrl1bbdq00d69ex3r8/PzNXr0aAUHB6tOnTpKSEhQdnZ2Nb4KAADgzlwado4fP65WrVopOTm5zPU//vijOnTooKZNm2rNmjX63//+p8cee0y+vr6OPuPGjdOHH36oxYsXa+3atfrll1902223VddLAAAAbs5mjDGuLkI6/euHS5YsUd++fR1tAwcOlLe3t958880yn5OTk6MGDRpo4cKF6t+/vyTpu+++U7NmzZSenq5rr722XNvOzc1VQECAcnJy+AVlAABqiPL+/XbbOTvFxcX673//qyuuuELdunVTSEiI2rVr5/RVV0ZGhk6dOqX4+HhHW9OmTRUVFaX09PRzjl1QUKDc3FynBQAAWJPbhp2DBw8qLy9PzzzzjLp3764VK1aoX79+uu2227R27VpJUlZWlnx8fBQYGOj03NDQUGVlZZ1z7KSkJAUEBDgW7ngOAIB1uW3YKS4uliTdeuutGjdunFq3bq1HH31Ut9xyi+bMmXNRY0+cOFE5OTmOZd++fZVRMgAAcENue9fz+vXry8vLS82bN3dqb9asmb744gtJUlhYmE6ePKmjR486nd3Jzs5WWFjYOce22+2y2+1VUjcAAHAvbntmx8fHR23atNGOHTuc2r///ns1bNhQkhQbGytvb2+tWrXKsX7Hjh3au3ev2rdvX631AgAA9+TSMzt5eXn64YcfHI93796tzMxMBQUFKSoqShMmTNAdd9yhG2+8UZ07d1Zqaqo+/PBDrVmzRpIUEBCgkSNHavz48QoKCpK/v7/uv/9+tW/fvtxXYv2Z2Z6wuWS7ZopbXAAIAPiTcGnY2bx5szp37ux4PH78eElSYmKiUlJS1K9fP82ZM0dJSUl64IEHdOWVV+q9995Thw4dHM+ZMWOGPDw8lJCQoIKCAnXr1k0vv/xytb8WAADgntzmd3Zc6c/6Ozuc2QEA1GQ1/nd2AAAAKgNhBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWJqXqwsAALg32xM2l23bTDEu2zasgzM7AADA0gg7AADA0vgaC27HVafMOV0OANbEmR0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBpLg07aWlp6t27tyIiImSz2bR06dJz9r3nnntks9k0c+ZMp/bDhw9ryJAh8vf3V2BgoEaOHKm8vLyqLRwAANQYLg07x48fV6tWrZScnHzefkuWLNH69esVERFRat2QIUO0bds2rVy5Uh999JHS0tJ09913V1XJAACghvFy5cZ79OihHj16nLfP/v37df/99+uTTz5Rr169nNZt375dqamp2rRpk+Li4iRJs2bNUs+ePfXcc8+VGY4AAMCfi1vP2SkuLtbQoUM1YcIEXXXVVaXWp6enKzAw0BF0JCk+Pl4eHh7asGHDOcctKChQbm6u0wIAAKzJrcPOtGnT5OXlpQceeKDM9VlZWQoJCXFq8/LyUlBQkLKyss45blJSkgICAhxLZGRkpdYNAADch9uGnYyMDL344otKSUmRzWar1LEnTpyonJwcx7Jv375KHR8AALgPtw07n3/+uQ4ePKioqCh5eXnJy8tLP/30k/72t7+pUaNGkqSwsDAdPHjQ6XmFhYU6fPiwwsLCzjm23W6Xv7+/0wIAAKzJpROUz2fo0KGKj493auvWrZuGDh2q4cOHS5Lat2+vo0ePKiMjQ7GxsZKkzz77TMXFxWrXrl211wwAANyPS8NOXl6efvjhB8fj3bt3KzMzU0FBQYqKilJwcLBTf29vb4WFhenKK6+UJDVr1kzdu3fXqFGjNGfOHJ06dUpjxozRwIEDuRILAABIcvHXWJs3b1ZMTIxiYmIkSePHj1dMTIwmT55c7jEWLFigpk2bqmvXrurZs6c6dOigV155papKBgAANYxLz+x06tRJxphy99+zZ0+ptqCgIC1cuLASqwIA1AS2Jyr34pWKMFPK/7cLrue2E5QBAAAqA2EHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYmkvDTlpamnr37q2IiAjZbDYtXbrUse7UqVN65JFH1LJlS9WuXVsRERG666679MsvvziNcfjwYQ0ZMkT+/v4KDAzUyJEjlZeXV82vBAAAuCuXhp3jx4+rVatWSk5OLrXuxIkT2rJlix577DFt2bJF77//vnbs2KE+ffo49RsyZIi2bdumlStX6qOPPlJaWpruvvvu6noJAADAzXm5cuM9evRQjx49ylwXEBCglStXOrX961//Utu2bbV3715FRUVp+/btSk1N1aZNmxQXFydJmjVrlnr27KnnnntOERERVf4aAACAe6tRc3ZycnJks9kUGBgoSUpPT1dgYKAj6EhSfHy8PDw8tGHDhnOOU1BQoNzcXKcFAABYU40JO/n5+XrkkUc0aNAg+fv7S5KysrIUEhLi1M/Ly0tBQUHKyso651hJSUkKCAhwLJGRkVVaOwAAcJ0aEXZOnTqlAQMGyBij2bNnX/R4EydOVE5OjmPZt29fJVQJAADckUvn7JRHSdD56aef9NlnnznO6khSWFiYDh486NS/sLBQhw8fVlhY2DnHtNvtstvtVVYzAABwH259Zqck6OzcuVOffvqpgoODnda3b99eR48eVUZGhqPts88+U3Fxsdq1a1fd5QIAADfk0jM7eXl5+uGHHxyPd+/erczMTAUFBSk8PFz9+/fXli1b9NFHH6moqMgxDycoKEg+Pj5q1qyZunfvrlGjRmnOnDk6deqUxowZo4EDB3IlFgAAkOTisLN582Z17tzZ8Xj8+PGSpMTERD3++ONatmyZJKl169ZOz1u9erU6deokSVqwYIHGjBmjrl27ysPDQwkJCXrppZeqpX4AAOD+XBp2OnXqJGPMOdefb12JoKAgLVy4sDLLAgAAFuLWc3YAAAAuFmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYWqWEnaNHj1bGMAAAAJWuwmFn2rRpeueddxyPBwwYoODgYF1yySXaunVrhcZKS0tT7969FRERIZvNpqVLlzqtN8Zo8uTJCg8Pl5+fn+Lj47Vz506nPocPH9aQIUPk7++vwMBAjRw5Unl5eRV9WQAAwKIqHHbmzJmjyMhISdLKlSu1cuVKLV++XD169NCECRMqNNbx48fVqlUrJScnl7l++vTpeumllzRnzhxt2LBBtWvXVrdu3ZSfn+/oM2TIEG3btk0rV67URx99pLS0NN19990VfVkAAMCivCr6hKysLEfY+eijjzRgwADdfPPNatSokdq1a1ehsXr06KEePXqUuc4Yo5kzZ2rSpEm69dZbJUnz589XaGioli5dqoEDB2r79u1KTU3Vpk2bFBcXJ0maNWuWevbsqeeee04REREVfXkAAMBiKnxmp169etq3b58kKTU1VfHx8ZJOh5OioqJKK2z37t3KyspyjC9JAQEBateundLT0yVJ6enpCgwMdAQdSYqPj5eHh4c2bNhQabUAAICaq8Jndm677TYNHjxYTZo00W+//eY4M/PVV1/p8ssvr7TCsrKyJEmhoaFO7aGhoY51WVlZCgkJcVrv5eWloKAgR5+yFBQUqKCgwPE4Nze3ssoGAABupsJndmbMmKExY8aoefPmWrlyperUqSNJOnDggO67775KL7AqJCUlKSAgwLGUfC0HAACsp8Jndry9vfXQQw+Vah83blylFFQiLCxMkpSdna3w8HBHe3Z2tlq3bu3oc/DgQafnFRYW6vDhw47nl2XixIkaP36843Fubi6BBwAAi7qg39l588031aFDB0VEROinn36SJM2cOVMffPBBpRUWHR2tsLAwrVq1ytGWm5urDRs2qH379pKk9u3b6+jRo8rIyHD0+eyzz1RcXHzeydJ2u13+/v5OCwAAsKYKh53Zs2dr/Pjx6tGjh44ePeqYlBwYGKiZM2dWaKy8vDxlZmYqMzNT0ulJyZmZmdq7d69sNpvGjh2rp556SsuWLdPXX3+tu+66SxEREerbt68kqVmzZurevbtGjRqljRs36ssvv9SYMWM0cOBArsQCAACSLiDszJo1S6+++qr+8Y9/yNPT09EeFxenr7/+ukJjbd68WTExMYqJiZEkjR8/XjExMZo8ebIk6eGHH9b999+vu+++W23atFFeXp5SU1Pl6+vrGGPBggVq2rSpunbtqp49e6pDhw565ZVXKvqyAACARVV4zs7u3bsd4eRMdrtdx48fr9BYnTp1kjHmnOttNpumTp2qqVOnnrNPUFCQFi5cWKHtAgCAP48Kn9mJjo52fO10ptTUVDVr1qwyagIAAKg0FT6zM378eI0ePVr5+fkyxmjjxo16++23lZSUpH//+99VUSMAAMAFq3DY+ctf/iI/Pz9NmjRJJ06c0ODBgxUREaEXX3xRAwcOrIoaAQAALliFw450+uabQ4YM0YkTJ5SXl1fqV4wBAADcxQWFnRK1atVSrVq1KqsWAACASlfhsBMdHS2bzXbO9bt27bqoggAAACpThcPO2LFjnR6fOnVKX331lVJTUzVhwoTKqgsAAKBSVDjsPPjgg2W2Jycna/PmzRddEAAAQGW6oHtjlaVHjx567733Kms4AACASlFpYefdd99VUFBQZQ0HAABQKSr8NVZMTIzTBGVjjLKysnTo0CG9/PLLlVocAADAxapw2Cm543gJDw8PNWjQQJ06dVLTpk0rqy4AAIBKUeGwM2XKlKqoAwAAoEqUK+zk5uaWe0B/f/8LLgYAAKCylSvsBAYGnveHBKXTc3dsNpuKiooqpTAAAIDKUK6ws3r16qquAwAAoEqUK+x07NixqusAAACoEhd8I9ATJ05o7969OnnypFP71VdffdFFAQAAVJYKh51Dhw5p+PDhWr58eZnrmbMDAADcSYV/QXns2LE6evSoNmzYID8/P6WmpuqNN95QkyZNtGzZsqqoEQAA4IJV+MzOZ599pg8++EBxcXHy8PBQw4YNddNNN8nf319JSUnq1atXVdQJAABwQSp8Zuf48eMKCQmRJNWrV0+HDh2SJLVs2VJbtmyp3OoAAAAuUoXDzpVXXqkdO3ZIklq1aqW5c+dq//79mjNnjsLDwyu9QAAAgItR4a+xHnzwQR04cEDS6VtHdO/eXQsWLJCPj49SUlIquz4AAICLUu6w079/f/3lL3/RkCFDHL+mHBsbq59++knfffedoqKiVL9+/SorFAAA4EKU+2usI0eOqFevXoqKitLkyZO1a9cuSVKtWrV0zTXXEHQAAIBbKnfYWbVqlXbt2qWRI0fqrbfeUpMmTdSlSxctXLhQBQUFVVkjAADABavQBOWGDRvq8ccf165du7Ry5UpFRERo1KhRCg8P1+jRo5WRkVFVdQIAAFyQCl+NVaJLly566623lJWVpaSkJC1atEjt2rWrzNoAAAAu2gXfG0uSdu/erZSUFKWkpCgnJ0fx8fGVVRcAAEClqPCZnfz8fL311lvq0qWLmjRpovnz52vkyJHavXu3UlNTq6JGAACAC1buMzsbN27U66+/rnfeeUf5+fnq16+fUlNT1bVrV8el6AAAAO6m3GHn2muvVatWrfTkk09qyJAhqlevXlXWBQAAUCnKHXY2b96sa665piprAQAAqHTlnrPjiqBTVFSkxx57TNHR0fLz81Pjxo315JNPyhjj6GOM0eTJkxUeHi4/Pz/Fx8dr586d1V4rAABwTxd86Xl1mDZtmmbPnq1//etf2r59u6ZNm6bp06dr1qxZjj7Tp0/XSy+9pDlz5mjDhg2qXbu2unXrpvz8fBdWDgAA3MVFXXpe1datW6dbb71VvXr1kiQ1atRIb7/9tjZu3Cjp9FmdmTNnatKkSbr11lslSfPnz1doaKiWLl2qgQMHuqx2AADgHtz6zM51112nVatW6fvvv5ckbd26VV988YV69Ogh6fTv/GRlZTn9vk9AQIDatWun9PT0c45bUFCg3NxcpwUAAFhTucPOwYMHz7u+sLDQccalsjz66KMaOHCgmjZtKm9vb8XExGjs2LEaMmSIJCkrK0uSFBoa6vS80NBQx7qyJCUlKSAgwLFERkZWat0AAMB9lDvshIeHOwWeli1bat++fY7Hv/32m9q3b1+pxf3nP//RggULtHDhQm3ZskVvvPGGnnvuOb3xxhsXNe7EiROVk5PjWM58HQAAwFrKPWfnzCugJGnPnj06derUeftcrAkTJjjO7kinA9ZPP/2kpKQkJSYmKiwsTJKUnZ2t8PBwx/Oys7PVunXrc45rt9tlt9srtVYAAOCeKnXOTmX/kvKJEyfk4eFcoqenp4qLiyVJ0dHRCgsL06pVqxzrc3NztWHDhko/ywQAAGomt74aq3fv3vrnP/+pqKgoXXXVVfrqq6/0wgsvaMSIEZJOh6uxY8fqqaeeUpMmTRQdHa3HHntMERER6tu3r2uLBwAAbqHcYcdms+nYsWPy9fWVMUY2m015eXmOK5mq4oqmWbNm6bHHHtN9992ngwcPKiIiQn/96181efJkR5+HH35Yx48f1913362jR4+qQ4cOSk1Nla+vb6XXAwAAah6bKedEGw8PD6evqUoCz9mPi4qKKr/KKpabm6uAgADl5OTI39/f1eVUG9sTrrmBq5ly/kPOXesC/qxc9W9SOv+/S3etC9WnvH+/y31mZ/Xq1ZVSGAAAQHUqd9jp2LFjVdYBAABQJcoddgoLC1VUVOR0yXZ2drbmzJmj48ePq0+fPurQoUOVFAkAAHChyh12Ro0aJR8fH82dO1eSdOzYMbVp00b5+fkKDw/XjBkz9MEHH6hnz55VViwAAEBFlft3dr788kslJCQ4Hs+fP19FRUXauXOntm7dqvHjx+vZZ5+tkiIBAAAuVLnDzv79+9WkSRPH41WrVikhIUEBAQGSpMTERG3btq3yKwQAALgI5Q47vr6++v333x2P169fr3bt2jmtz8vLq9zqAAAALlK5w07r1q315ptvSpI+//xzZWdnq0uXLo71P/74oyIiIiq/QgAAgItQ7gnKkydPVo8ePfSf//xHBw4c0LBhw5xuvrlkyRJdf/31VVIkAADAharQ7+xkZGRoxYoVCgsL0+233+60vnXr1mrbtm2lFwgAAHAxKnQj0GbNmqlZs2Zlrrv77rsrpSAAAIDKVO6wk5aWVq5+N9544wUXAwAAUNnKHXY6derkuPHnue4dWlNvBAoAAKyr3GGnXr16qlu3roYNG6ahQ4eqfv36VVkXAABApSj3pecHDhzQtGnTlJ6erpYtW2rkyJFat26d/P39FRAQ4FgAAADcSbnDjo+Pj+644w598skn+u6773T11VdrzJgxioyM1D/+8Q8VFhZWZZ0AAAAXpNxh50xRUVGaPHmyPv30U11xxRV65plnlJubW9m1AQAAXLQKh52CggItXLhQ8fHxatGiherXr6///ve/CgoKqor6AAAALkq5Jyhv3LhR8+bN06JFi9SoUSMNHz5c//nPfwg5AADArZU77Fx77bWKiorSAw88oNjYWEnSF198Uapfnz59Kq86AACAi1ShX1Deu3evnnzyyXOu53d2AACAuyl32CkuLq7KOgAAAKrEBV2NdS6///57ZQ4HAABw0Sol7BQUFOj5559XdHR0ZQwHAABQacoddgoKCjRx4kTFxcXpuuuu09KlSyVJ8+bNU3R0tGbOnKlx48ZVVZ0AAAAXpNxzdiZPnqy5c+cqPj5e69at0+23367hw4dr/fr1euGFF3T77bfL09OzKmsFAACosHKHncWLF2v+/Pnq06ePvvnmG1199dUqLCzU1q1bHXdDBwAAcDfl/hrr559/dvy+TosWLWS32zVu3DiCDgAAcGvlDjtFRUXy8fFxPPby8lKdOnWqpCgAAIDKUu6vsYwxGjZsmOx2uyQpPz9f99xzj2rXru3U7/3336/cCgEAAC5CucNOYmKi0+M777yz0osBAACobOUOO/PmzavKOgAAAKpEpf6CMgAAgLtx+7Czf/9+3XnnnQoODpafn59atmypzZs3O9YbYzR58mSFh4fLz89P8fHx2rlzpwsrBgAA7sStw86RI0d0/fXXy9vbW8uXL9e3336r559/XvXq1XP0mT59ul566SXNmTNHGzZsUO3atdWtWzfl5+e7sHIAAOAuyj1nxxWmTZumyMhIp/lCZ95/yxijmTNnatKkSbr11lslSfPnz1doaKiWLl2qgQMHVnvNAADAvbj1mZ1ly5YpLi5Ot99+u0JCQhQTE6NXX33VsX737t3KyspSfHy8oy0gIEDt2rVTenr6OcctKChQbm6u0wIAAKzJrcPOrl27NHv2bDVp0kSffPKJ7r33Xj3wwAN64403JElZWVmSpNDQUKfnhYaGOtaVJSkpSQEBAY4lMjKy6l4EAABwKbcOO8XFxbrmmmv09NNPKyYmRnfffbdGjRqlOXPmXNS4EydOVE5OjmPZt29fJVUMAADcjVuHnfDwcDVv3typrVmzZtq7d68kKSwsTJKUnZ3t1Cc7O9uxrix2u13+/v5OCwAAsCa3DjvXX3+9duzY4dT2/fffq2HDhpJOT1YOCwvTqlWrHOtzc3O1YcMGtW/fvlprBQAA7smtr8YaN26crrvuOj399NMaMGCANm7cqFdeeUWvvPKKJMlms2ns2LF66qmn1KRJE0VHR+uxxx5TRESE+vbt69riAQCAW3DrsNOmTRstWbJEEydO1NSpUxUdHa2ZM2dqyJAhjj4PP/ywjh8/rrvvvltHjx5Vhw4dlJqaKl9fXxdWDgAA3IVbhx1JuuWWW3TLLbecc73NZtPUqVM1derUaqwKAADUFG49ZwcAAOBiEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAICl1aiw88wzz8hms2ns2LGOtvz8fI0ePVrBwcGqU6eOEhISlJ2d7boiAQCAW6kxYWfTpk2aO3eurr76aqf2cePG6cMPP9TixYu1du1a/fLLL7rttttcVCUAAHA3NSLs5OXlaciQIXr11VdVr149R3tOTo5ee+01vfDCC+rSpYtiY2M1b948rVu3TuvXr3dhxQAAwF3UiLAzevRo9erVS/Hx8U7tGRkZOnXqlFN706ZNFRUVpfT09HOOV1BQoNzcXKcFAABYk5erC/gjixYt0pYtW7Rp06ZS67KysuTj46PAwECn9tDQUGVlZZ1zzKSkJD3xxBOVXSoAAHBDbn1mZ9++fXrwwQe1YMEC+fr6Vtq4EydOVE5OjmPZt29fpY0NAADci1uHnYyMDB08eFDXXHONvLy85OXlpbVr1+qll16Sl5eXQkNDdfLkSR09etTpednZ2QoLCzvnuHa7Xf7+/k4LAACwJrf+Gqtr1676+uuvndqGDx+upk2b6pFHHlFkZKS8vb21atUqJSQkSJJ27NihvXv3qn379q4oGQAAuBm3Djt169ZVixYtnNpq166t4OBgR/vIkSM1fvx4BQUFyd/fX/fff7/at2+va6+91hUlAwAAN+PWYac8ZsyYIQ8PDyUkJKigoEDdunXTyy+/7OqyAACAm6hxYWfNmjVOj319fZWcnKzk5GTXFAQAANyaW09QBgAAuFiEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGluH3aSkpLUpk0b1a1bVyEhIerbt6927Njh1Cc/P1+jR49WcHCw6tSpo4SEBGVnZ7uoYgAA4E7cPuysXbtWo0eP1vr167Vy5UqdOnVKN998s44fP+7oM27cOH344YdavHix1q5dq19++UW33XabC6sGAADuwsvVBfyR1NRUp8cpKSkKCQlRRkaGbrzxRuXk5Oi1117TwoUL1aVLF0nSvHnz1KxZM61fv17XXnutK8oGAABuwu3P7JwtJydHkhQUFCRJysjI0KlTpxQfH+/o07RpU0VFRSk9Pb3MMQoKCpSbm+u0AAAAa6pRYae4uFhjx47V9ddfrxYtWkiSsrKy5OPjo8DAQKe+oaGhysrKKnOcpKQkBQQEOJbIyMiqLh0AALhIjQo7o0eP1jfffKNFixZd1DgTJ05UTk6OY9m3b18lVQgAANyN28/ZKTFmzBh99NFHSktL06WXXupoDwsL08mTJ3X06FGnszvZ2dkKCwsrcyy73S673V7VJQMAADfg9md2jDEaM2aMlixZos8++0zR0dFO62NjY+Xt7a1Vq1Y52nbs2KG9e/eqffv21V0uAABwM25/Zmf06NFauHChPvjgA9WtW9cxDycgIEB+fn4KCAjQyJEjNX78eAUFBcnf31/333+/2rdvz5VYAADA/cPO7NmzJUmdOnVyap83b56GDRsmSZoxY4Y8PDyUkJCggoICdevWTS+//HI1VwoAANyR24cdY8wf9vH19VVycrKSk5OroSIAAFCTuP2cHQAAgItB2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJbm9jcCBQAAlcP2hM0l2zVT/vim3lWJMzsAAMDSOLMD4E/nz/p/t8CfFWd2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApXm5ugAAwGm2J2wu2a6ZYlyyXaC6EHaAGs5VfyCl8/+RdNe6gKrGse9+LBN2kpOT9eyzzyorK0utWrXSrFmz1LZtW1eXBQvhAwwAaiZLhJ133nlH48eP15w5c9SuXTvNnDlT3bp1044dOxQSEuLS2vgDCQCAa1ligvILL7ygUaNGafjw4WrevLnmzJmjWrVq6fXXX3d1aQAAwMVqfNg5efKkMjIyFB8f72jz8PBQfHy80tPTXVgZAABwBzX+a6xff/1VRUVFCg0NdWoPDQ3Vd999V+ZzCgoKVFBQ4Hick5MjScrNza38AvMrf8jy+sPX46LaqKvizlsbdZXiru8ldVVcjTzG3LUuyX2PsYsc15g/mLZharj9+/cbSWbdunVO7RMmTDBt27Yt8zlTpkwxklhYWFhYWFgssOzbt++8WaHGn9mpX7++PD09lZ2d7dSenZ2tsLCwMp8zceJEjR8/3vG4uLhYhw8fVnBwsGw2100oPltubq4iIyO1b98++fv7u7ocB+qqGOqqOHetjboqxl3rkty3NuqqGGOMjh07poiIiPP2q/Fhx8fHR7GxsVq1apX69u0r6XR4WbVqlcaMGVPmc+x2u+x2u1NbYGBgFVd64fz9/d3q4CpBXRVDXRXnrrVRV8W4a12S+9ZGXeUXEBDwh31qfNiRpPHjxysxMVFxcXFq27atZs6cqePHj2v48OGuLg0AALiYJcLOHXfcoUOHDmny5MnKyspS69atlZqaWmrSMgAA+POxRNiRpDFjxpzza6uaym63a8qUKaW+cnM16qoY6qo4d62NuirGXeuS3Lc26qoaNmP+6HotAACAmqvG/6ggAADA+RB2AACApRF2AACApRF2AACApRF2KsGwYcNks9lks9nk7e2t6OhoPfzww8rP//83ISlZv379eqfnFhQUOH65ec2aNY72tWvXqkuXLgoKClKtWrXUpEkTJSYm6uTJk5KkNWvWOMY8e8nKypIk9e3b16k9ODjYpXWNHj1a+fn5evXVV3XDDTc42tu0aaONGzdWyz4p2Xa9evVUr149xcfHO237j97L999/32nczMzMaqm7c+fOTu12u129evVy+TF25v7y8vKSzWZTkyZNXF5Xhw4dSq3z8vJyeV2SNHjwYKd13t7e6t+/v8trCwsLK3N99+7dXVLXnj17Sm3XbrcrMjJS48aNU35+fpW/VzNnztSVV14pPz8/p+1Kf/xZkZaW5jTu0qVLq3R/nVlHhw4dFB0dLV9fX7Vq1colx9O2bduUkJCgRo0ayWazaebMmSpLcnKyGjVqJF9fX7Vr187p87gyEXYqSffu3XXgwAHt2rVLM2bM0Ny5czVlyhSnPpGRkZo3b55T25IlS1SnTh2ntm+//Vbdu3dXXFyc0tLS9PXXX2vWrFny8fFRUVGRU98dO3bowIEDTktISIgkqbCwUI0aNdLs2bPVoEED9e3bt9rq6tevnzp37qytW7dq8+bNev311/XWW29pypQpWrNmjQYNGiRJCg8PV25urm6++Wbt37+/yvdJybZXr16t9PR0RUZGOm1bOv97efz4cUlSUFCQzlaVddvtdsXExGjt2rVKS0vTnXfeqY8//lh33XVXlb+X56urZH9t3LhR9evXV7NmzbRnzx6XH/uS5Onp6XT81apVy+V1nTx5UitWrFCDBg30wQcf6Msvv9SUKVP0ySefuLy2zp07O/2bffHFFyVJHh7Ofyaqoq4bbrjB6b2qW7euXn75ZUnSwoULJUnBwcFKSEjQa6+9pnfeeUd///vfq3R/LFy4UI8++qimTJmi7du3O223RHk+K+rXr6+zVWbdAwYMUOfOnbV//37t2rVLMTExWrdunWJjY/Xtt9/qnnvukXQ6zFbn8XTixAlddtlleuaZZ85566Z33nlH48eP15QpU7Rlyxa1atVK3bp108GDB8vsf1Eq53acf26JiYnm1ltvdWq77bbbTExMjOOxJDNp0iTj7+9vTpw44Wi/6aabzGOPPWYkmdWrVxtjjJkxY4Zp1KjRebe5evVqI8kcOXKkXHU1bNjQzJgxo9rqGjRoUIX2SZ06dcwbb7xR5fvkbIWFhaZu3bqObZf3vRwzZoyRZNLT0x3t1fVelggICDBhYWFOdbniGOvTp4+57rrrzL///W+TmJhowsPDXX7sX3/99cbLy8upzR3+Tc6ePdvUqVPH9O7d2+1qO/sYmzFjhvHy8jKtWrWq8rp69uzp1H7m/hg9enSp7Y4fP95cf/31Vbo/Ro8ebbp06eLUVrJdYyr2uS/JLFq0yNFemXWfXUd4eLhp1apVqTpatGhRrcfTmUr+/pytbdu2ZvTo0Y7HRUVFJiIiwiQlJZVr3IrgzE4V+Oabb7Ru3Tr5+Pg4tcfGxqpRo0Z67733JEl79+5VWlqahg4d6tQvLCxMBw4cUFpaWqXWdeDAAZfVdb59EhUVpYKCAgUFBVX7Pjlx4oROnTpV5pma89XdsmVLSdKqVaskVe97aYzRv//9b+Xk5JS6p5srjrEdO3YoJCREI0eO1JEjR3T48GG3OPYLCwvVsGFDRUZGqnPnzkpLS3N5XcuWLVNISIj+97//KTQ0VC1atNCDDz7olp8XycnJ8vb2lq+vb7XWdfa/ueuuu07S6XsylZyp/vjjj3XddddV6f647rrrlJGR4fhaZdeuXfr444/Vs2fPctVdIjY2VpKUnp4uqerfx+PHj2vPnj2l6sjOznbp8XS2kydPKiMjQ/Hx8Y42Dw8PxcfHO/ZVpar0+PQnlJiYaDw9PU3t2rWN3W43koyHh4d59913HX0kmSVLlpiZM2eazp07G2OMeeKJJ0y/fv3MkSNHnJJ1YWGhGTZsmJFkwsLCTN++fc2sWbNMTk6OY7ySZF27dm2npXnz5mXWJala6/Ly8nJs84+2ff311xtfX1/z+++/V/k+Odu9995rLrvsMvP7779X6L2cO3eukWTatGlTre/lmfvTZrO5/Bjr3r27kWRq1arl2F+SXF5Xz549jYeHh/Hz8zPe3t6OuubOnevSuq688krj4eFhbDabU23u8F6eeez7+PhU6+dFWcvZ2/X09DQeHh5Gkrnnnnuq5bPixRdfNN7e3o7Ps3vuuafM/fVHn/v6vzMrVfE+ltR2Zh2SzKxZs0xRUZFZsWKF4zO5Oo+nM5V1Zmf//v1Gklm3bp1T+4QJE0zbtm3LHOdiEHYqQWJioomPjzc7d+40mZmZJjEx0YwcOdKpT8lB/+uvvxpfX1/z448/mujoaPPhhx+WOthK/Pzzz2b+/Plm9OjRJjw83Fx66aXml19+Mcb8/4Nty5YtZufOnY5lz549ZdYVHh5u2rRpU2119e7d21x33XXm008/NcuWLTMJCQllbvvOO+80AQEBxm63V8s+OVNSUpKpV6+e2bp1a4Xfy5KwU111JyYmmq5du5pPP/3ULFq0yMTFxRlvb2+n7VT3MZabm2tq165tWrdu7dhfjRs3NlFRUaX2lyuP/czMTDN06FBTt25dM2nSJJfW1aRJE1OrVi3TtWtXR21xcXHGz8/PrfZZQkKCCQwMrLbPi3bt2jk+K/r162fuuOMOx/NL+tx3330mLS3N+Pj4mPDwcFOvXr0q3R+rV682oaGh5tVXXzX/+9//zPvvv28iIyPN1KlTyzzGzve5L8n4+PhUyfvYr18/06FDB0cdd9xxh4mKijIeHh7G09PTXHHFFUaS8fb2rtbj6UyEHYs4+zvToqIi06JFC/Pvf//b0VZy0BtjTP/+/U2nTp1MeHi4KSwsPOfBdqbDhw+b+vXrm8mTJxtjLmzOzvPPP19tdZ09Z+dc+6RWrVpm06ZN1bZPSjz77LMmICDAbNq06Zz77Hx1l4Sd+Pj4an8vS+qqV6+e0/9JVfcx9tVXXzn+L9LT09PpzJPNZjM//PCDS+o61/7y9/d3nIlzVV033nijCQ8Pd6rto48+MpLMnDlzXFpbyT7Ly8sz/v7+5oUXXqi2z4sz5+yc/W+uQ4cOpbbbrFkzI8mcPHmyyvZHhw4dzEMPPeTU9uabbxo/Pz9TVFRUoc99SaZ9+/ZV8j6eq47Zs2ebn3/+2RQXFxtJ5tJLL3Xsv+r8rDWm7LBTUFBgPD09He9ribvuusv06dOnXONWBHN2qoCHh4f+/ve/a9KkSfr9999LrR8xYoTWrFmju+66S56enuUas169egoPD3fM8K9pdZ297enTp0uSJk+erLi4uGrdJ9OnT9eTTz6p1NRUxcXFVajus916660uey+vvvpq/fDDDy47xpo2bao+ffqoc+fOyszMVGZmpm699VY1b95cwcHBZV6F4qpj3xij2rVra9u2bS79N3n99dcrNzdXxhhH2w8//KDAwEA9/vjjbvF5sXjxYhUUFOiuu+5yyefF2f/mTpw4UWq727dvl5eXV6krxS5mu2c7ceJEqfFLXueZ79+56j5b165dq+V9LKnjiSeeUFBQkAoLCyVJ7dq1k+S6f4Nn8/HxUWxsrGPeoyQVFxdr1apVat++faVtp4Rl7nrubm6//XZNmDBBycnJeuihh5zWde/eXYcOHZK/v3+Zz507d64yMzPVr18/NW7cWPn5+Zo/f762bdumWbNmOfU9ePCg0+9zSKcv0fT29lZxcbFycnKUmZmpkydPav/+/erQoYOMMVVeV35+vvLz851+s6Jv376aMGGC+vfvr08//VSSFBISoqysLLVu3Vq7d+9WREREle6TadOmafLkyVq4cKEaNWrkqK9OnTqlLsEsceZ7OWLECEnSvn37JJ2+rPSzzz5T48aNq7Tur7/+Wna7Xbt27VJBQYE+/vhjffHFF6pbt67LjjFfX1/Vq1dPNptNLVq0kCQFBgaqcePGysnJ0auvvuqyY3/r1q3y8/PTrl27dPToUT377LM6fPiwAgMDXfpv8t5779Wzzz6rr7/+Wt9//7127typp59+WuPGjdMrr7zi0tpKvPbaa+rbt6+Cg4Or7XOsoKDA6bPihhtukKenp5KTk9W7d29t2bJFn3/+uVq1aiVPT081atRIsbGxZf6xrqz90bt3b73wwguKiYlRu3bt9MMPP+ixxx5T7969zxkSztxfJZd87969W9LpwPDZZ58pMjLyovfXmXX//vvvys/P16lTp+Tt7a0NGzbIy+v0n/a//e1v2rFjh6TTPwciVd/xdPLkSX377beS5Pj7k5mZqTp16ujyyy+XJI0fP16JiYmKi4tT27ZtNXPmTB0/flzDhw8vs7aLUunniv6EyroE0ZjTc0IaNGhg8vLynE7Dnu3s04hbtmwxd955p4mOjjZ2u90EBwebG2+80SxbtszxnPNN7Cu5HDohIaHM9dHR0S6rKykpyTHJ8OxlypQpVb5PGjZseN5t/9F7OWfOnPM+v6rqvvrqq03t2rWNr6+vqVevnmnfvr1ZtGiRy4+xs/dXyWNX19WsWTPj5+dnfHx8TGhoqOnZs6fZsmWLy+sy5vTk6Xr16hm73W4uu+wy889//tMUFha6vLaSeWGSzIoVKxzPdVVd9957r2nQoIE5evSokU5PlvX19TWRkZHmvvvuc3yFUlX749SpU+bxxx83jRs3LnO7f/RZ8fHHH5c5fmJiYpXWvWbNGtOsWTPj6elpbDabGThwoEuOp927d5e5vmPHjk7bnzVrlomKijI+Pj6mbdu2Zv369WXWebFsxpRxPg4AAMAimLMDAAAsjbAD/J/PP//cMXenrAUApNM/yHe+z4q9e/e6ukScha+xgP/z+++/O90j62wlk+oA/LkVFhY63aj0bI0aNXJMEoZ7IOwAAABL42ssAABgaYQdAABgaYQdAABgaYQdACjD448/rtatW1foOTabTUuXLj3n+j179shmsykzM/OiagNQMYQdAE6GDRsmm80mm80mb29vRUdH6+GHHy71s/AlfdavX+/UXlBQoODgYNlsNq1Zs8bRvnbtWnXp0kVBQUGqVauWmjRposTERJ08eVKStGbNGseYZy9n3kqgREZGRpnbL9G1a1fddtttF7wfHnroIaf79gCouQg7AErp3r27Dhw4oF27dmnGjBmaO3eupkyZUqpfZGSk5s2b59S2ZMmSUr9L9O2336p79+6Ki4tTWlqavv76a82aNUs+Pj4qKipy6rtjxw4dOHDAaQkJCSm17djYWLVq1Uqvv/56qXV79uzR6tWrNXLkyAq/dmOMCgsLVadOHQUHB1f4+QDcD2EHQCl2u11hYWGKjIxU3759FR8fr5UrV5bql5iYqEWLFjnd5fn1119XYmKiU78VK1YoLCxM06dPV4sWLdS4cWN1795dr776qvz8/Jz6hoSEKCwszGk5192tR44cqXfeeafUnbFTUlIUHh6u7t27680331RcXJzq1q2rsLAwDR48WAcPHnT0LTmjtHz5csXGxsput+uLL74o9TXWpk2bdNNNN6l+/foKCAhQx44dtWXLllI1HThwQD169JCfn58uu+wyvfvuu+fe0ZK++eYb9ejRQ3Xq1FFoaKiGDh2qX3/91bH+3XffVcuWLeXn56fg4GDFx8dX6t2ngT8Dwg6A8/rmm2+0bt06+fj4lFoXGxurRo0a6b333pN0+pdl09LSNHToUKd+YWFhOnDggNLS0iq1tiFDhqigoMApUBhj9MYbb2jYsGHy9PTUqVOn9OSTT2rr1q1aunSp9uzZo2HDhpUa69FHH9Uzzzyj7du36+qrry61/tixY0pMTNQXX3yh9evXq0mTJurZs6eOHTvm1O+xxx5TQkKCtm7dqiFDhmjgwIHavn17mfUfPXpUXbp0UUxMjDZv3qzU1FRlZ2drwIABkk4Hp0GDBmnEiBHavn271qxZo9tuu038PBpQQVVye1EANVZiYqLx9PQ0tWvXNna73UgyHh4e5t1333Xqp/+7k/LMmTNN586djTHGPPHEE6Zfv36l7qRcWFhohg0b5rh7dd++fc2sWbNMTk6OY7ySOynXrl3baWnevPl56x04cKDTnZRXrVplJJmdO3eW2X/Tpk1Gkjl27JjTdpcuXerUb8qUKaZVq1bn3G5RUZGpW7eu+fDDD532yT333OPUr127dubee+81xvz/O0F/9dVXxhhjnnzySXPzzTc79d+3b5+RZHbs2GEyMjKMJLNnz57z7gMA58eZHQCldO7cWZmZmdqwYYMSExM1fPhwJSQklNn3zjvvVHp6unbt2qWUlBSNGDGiVB9PT0/NmzdPP//8s6ZPn65LLrlETz/9tK666iodOHDAqe/nn3+uzMxMx/Lxxx+ft9YRI0YoLS1NP/74o6TTX6N17NjRcXuPjIwM9e7dW1FRUapbt646duwoSaXuXxQXF3fe7WRnZ2vUqFFq0qSJAgIC5O/vr7y8vFLjtG/fvtTjc53Z2bp1q1avXu10X6WmTZtKkn788Ue1atVKXbt2VcuWLXX77bfr1Vdf1ZEjR85bJ4DSCDsASqldu7Yuv/xyxwTgDRs26LXXXiuzb3BwsG655RaNHDlS+fn56tGjxznHveSSSzR06FD961//0rZt25Sfn685c+Y49YmOjtbll1/uWBo2bHjeWrt27aqoqCilpKQoNzdX77//vmNi8vHjx9WtWzf5+/trwYIF2rRpk5YsWSJJjqvAznzN55OYmKjMzEy9+OKLWrdunTIzMxUcHFxqnIrIy8tT7969ncJdZmamdu7cqRtvvFGenp5auXKlli9frubNm2vWrFm68sortXv37gveJvBnRNgBcF4eHh76+9//rkmTJjlNRD7TiBEjtGbNGt11113y9PQs17j16tVTeHj4RU+29fDw0PDhw/XGG29o4cKF8vHxUf/+/SVJ3333nX777Tc988wzuuGGG9S0aVOnyckV8eWXX+qBBx5Qz549ddVVV8lutztNJC5x9qXw69evV7Nmzcoc85prrtG2bdvUqFEjp4B3+eWXO8KXzWbT9ddfryeeeEJfffWVfHx8HIENQPkQdgD8odtvv12enp5KTk4uc3337t116NAhTZ06tcz1c+fO1b333qsVK1boxx9/1LZt2/TII49o27Zt6t27t1PfgwcPKisry2k5derUeesbPny49u/fr7///e8aNGiQ4wqvqKgo+fj4aNasWdq1a5eWLVumJ5988gL2gNSkSRO9+eab2r59uzZs2KAhQ4aUupJMkhYvXqzXX39d33//vaZMmaKNGzdqzJgxZY45evRoHT58WIMGDdKmTZv0448/6pNPPtHw4cNVVFSkDRs26Omnn9bmzZu1d+9evf/++zp06NA5wxOAshF2APwhLy8vjRkzRtOnTy/zTIzNZlP9+vXLvGJLktq2bau8vDzdc889uuqqq9SxY0etX79eS5cudcyhKXHllVcqPDzcacnIyDhvfVFRUYqPj9eRI0ec5gw1aNBAKSkpWrx4sZo3b65nnnlGzz333AXsAem1117TkSNHdM0112jo0KF64IEHyvz9nyeeeEKLFi3S1Vdfrfnz5+vtt99W8+bNyxwzIiJCX375pYqKinTzzTerZcuWGjt2rAIDA+Xh4SF/f3+lpaWpZ8+euuKKKzRp0iQ9//zz5/2qEEBpNmO4hhEAAFgXZ3YAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAICl/T/87OzQb65QZQAAAABJRU5ErkJggg==", "text/plain": [ "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDeUlEQVR4nO3deVxU9eL/8feAsogsbmypiEtiau4XNa1MzNLMLVOv5UbZTSiXvKWVmm2klbe00lspmqGYuWRWKuF263rdcSlzyy0T0JRVRYPz+8Of820ClYGBgdPr+XjM49F8zplz3gw+mjefs4zFMAxDAAAAJuXi7AAAAAAlibIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDwGleeuklWSwWnT17tsT3tXr1ajVv3lweHh6yWCxKS0sr8X2WZ/PmzZPFYtGxY8ecHQUoNsoOUAKufVD88eHv769OnTrpm2++KfU8X375pXr06KGAgAC5ubmpatWquvPOO/X2228rIyOj1POUtt9++00PP/ywPD099f7772vBggXy8vK66es++OADWSwWhYeHl0JKACWlgrMDAGb28ssvKzQ0VIZhKCUlRfPmzVO3bt305Zdf6oEHHijx/efl5SkyMlLz5s1T06ZNNXLkSNWqVUuZmZnavHmzXnzxRX399ddKTEws8SzOtG3bNmVmZuqVV15RREREoV8XFxenOnXqaOvWrTp8+LDq169fginLlkcffVQDBgyQu7u7s6MAxUbZAUrQ/fffr9atW1ufR0ZGKiAgQIsWLXJI2cnLy9Ply5fl4eFR4PJp06Zp3rx5GjNmjN5++21ZLBbrslGjRun06dP65JNPirWP8iA1NVWS5OfnV+jXHD16VP/973+1bNkyPfHEE4qLi9PkyZNLKGHxZGdnF2qmyh6urq5ydXV16DYBZ+EwFlCK/Pz85OnpqQoVbP/OeOutt9S+fXtVq1ZNnp6eatWqlT7//PN8r7dYLIqOjlZcXJwaN24sd3d3rV69usB9XbhwQVOnTlXjxo315ptv2hSda4KCgvTcc88Veh9FydmwYUN5eHioVatW2rRpU4FZ09LSNHToUPn5+cnX11fDhg3ThQsXCn4T/2TJkiVq1aqVPD09Vb16dT3yyCM6deqUdfndd9+tIUOGSJLatGkji8WioUOH3nS7cXFxqlKlirp3766HHnpIcXFx180+ZswY1alTR+7u7qpZs6YGDx5scx7SpUuX9NJLL+nWW2+Vh4eHgoKC1KdPHx05ckSStGHDBlksFm3YsMFm28eOHZPFYtG8efOsY0OHDlXlypV15MgRdevWTd7e3ho0aJAk6T//+Y/69eun2rVry93dXbVq1dKYMWN08eLFfLl/+uknPfzww6pRo4Y8PT3VsGFDvfDCC9bl1ztn55tvvlHHjh3l5eUlb29vde/eXT/88IPNOsnJyRo2bJhq1qwpd3d3BQUFqWfPnpz/A6dhZgcoQenp6Tp79qwMw1BqaqpmzpyprKwsPfLIIzbrvfvuu3rwwQc1aNAgXb58WfHx8erXr59WrVql7t2726y7bt06ffbZZ4qOjlb16tVVp06dAvf93XffKS0tTePGjbP7L/Tr7cOenBs3btTixYv19NNPy93dXR988IHuu+8+bd26VU2aNLFZ9+GHH1ZoaKhiYmK0c+dOffzxx/L399fUqVNvmHPevHkaNmyY2rRpo5iYGKWkpOjdd9/V999/r127dsnPz08vvPCCGjZsqA8//NB6WLFevXo3fQ/i4uLUp08fubm5aeDAgZo1a5a2bdumNm3aWNfJyspSx44dtX//fg0fPlwtW7bU2bNntXLlSv3yyy+qXr26cnNz9cADDygxMVEDBgzQqFGjlJmZqYSEBO3bt69QWf7s999/V9euXdWhQwe99dZbqlSpkqSrxe/ChQt68sknVa1aNW3dulUzZ87UL7/8oiVLllhfv2fPHnXs2FEVK1bUiBEjVKdOHR05ckRffvmlXnvttevud8GCBRoyZIi6du2qqVOn6sKFC5o1a5Y6dOigXbt2Wf+d9O3bVz/88IOeeuop1alTR6mpqUpISNCJEyeu++8VKFEGAIeLjY01JOV7uLu7G/Pmzcu3/oULF2yeX7582WjSpIlxzz332IxLMlxcXIwffvjhphneffddQ5KxYsUKm/Hff//dOHPmjM0jLy+vUPuwJ6ckY/v27dax48ePGx4eHkbv3r2tY5MnTzYkGcOHD7d5fe/evY1q1ard8Oe7fPmy4e/vbzRp0sS4ePGidXzVqlWGJGPSpEnWsWu/j23btt1wm9ds377dkGQkJCQYhmEYeXl5Rs2aNY1Ro0bZrDdp0iRDkrFs2bJ827j2ns6dO9eQZEyfPv2666xfv96QZKxfv95m+dGjRw1JRmxsrHVsyJAhhiRj/Pjx+bb359+PYRhGTEyMYbFYjOPHj1vH7rzzTsPb29tm7I95DOP/3rOjR48ahmEYmZmZhp+fn/H444/bvCY5Odnw9fW1jp8/f96QZLz55pv5sgDOwmEsoAS9//77SkhIUEJCgj799FN16tRJjz32mJYtW2aznqenp/W/z58/r/T0dHXs2FE7d+7Mt8277rpLt9122033fe0qq8qVK9uM7927VzVq1LB5/Pbbb4Xahz0527Vrp1atWlmf165dWz179tSaNWuUm5trs+4//vEPm+cdO3bUb7/9dsMrxbZv367U1FSNHDnS5nyi7t27KywsTF999dV1X3szcXFxCggIUKdOnSRdPSzXv39/xcfH22RfunSpmjVrpt69e+fbxrXDhkuXLlX16tX11FNPXXedonjyySfzjf3x95Odna2zZ8+qffv2MgxDu3btkiSdOXNGmzZt0vDhw1W7du1C50lISFBaWpoGDhyos2fPWh+urq4KDw/X+vXrrRnc3Ny0YcMGnT9/vsg/H+BIHMYCStDf/vY3mxOUBw4cqBYtWig6OloPPPCA3NzcJEmrVq3Sq6++qqSkJOXk5FjXL+jDJzQ0tFD79vb2lnT1UMsf1a9fXwkJCZKkTz75RAsWLCj0PuzJ2aBBg3xjt956qy5cuKAzZ84oMDDQOv7nD90qVapIulqofHx8Csxy/PhxSVLDhg3zLQsLC9N3331X4OtuJjc3V/Hx8erUqZOOHj1qHQ8PD9fbb7+txMRE3XvvvZKkI0eOqG/fvjfc3pEjR9SwYcN852kVR4UKFVSzZs184ydOnNCkSZO0cuXKfEUjPT1dkvTzzz9LUr5DiTdz6NAhSdI999xT4PJrvyd3d3dNnTpVzzzzjAICAtS2bVs98MADGjx4sM3vHChNlB2gFLm4uKhTp0569913dejQITVu3Fj/+c9/9OCDD+rOO+/UBx98oKCgIFWsWFGxsbFauHBhvm388a/3GwkLC5Mk7du3Tz179rSOV65c2Xr59fUKQUH7sDenPa53TpFhGMXablGsW7dOp0+fVnx8vOLj4/Mtj4uLs5YdR7nejMqfZ8CucXd3l4uLS751u3TponPnzum5555TWFiYvLy8dOrUKQ0dOlR5eXnFynjt9QsWLCiwtPyxzI0ePVo9evTQihUrtGbNGk2cOFExMTFat26dWrRoUawcQFFQdoBS9vvvv0v6vxmXpUuXysPDQ2vWrLG5p0lsbGyx9tOxY0f5+voqPj5eEyZMyPfhaC97c16bCfijgwcPqlKlSqpRo0axskhSSEiIJOnAgQP5ZhsOHDhgXW6vuLg4+fv76/3338+3bNmyZVq+fLlmz54tT09P1atXT/v27bvh9urVq6ctW7boypUrqlixYoHrXJvJ+vNdna/NXhXG3r17dfDgQc2fP1+DBw+2jl+bxbumbt26knTT3H927URqf3//Qt2rqF69enrmmWf0zDPP6NChQ2revLnefvttffrpp3btF3AEztkBStGVK1e0du1aubm5qVGjRpKuzmpYLBabv+KPHTumFStWFGtflSpV0rPPPqt9+/Zp/PjxBc6S2DNzYm/OzZs325zLc/LkSX3xxRe69957HXL/ltatW8vf31+zZ8+2OaT2zTffaP/+/fmuDiuMixcvatmyZXrggQf00EMP5XtER0crMzNTK1eulHT1qqPdu3dr+fLl+bZ17b3t27evzp49q/fee++664SEhMjV1TXfpfkffPBBobNfe0//+Ds1DEPvvvuuzXo1atTQnXfeqblz5+rEiRMF5ilI165d5ePjo9dff11XrlzJt/zMmTOSrt7y4NKlSzbL6tWrJ29vb5vfE1CamNkBStA333yjn376SdLVG9stXLhQhw4d0vjx463nOHTv3l3Tp0/Xfffdp7///e9KTU3V+++/r/r162vPnj3F2v/48eO1f/9+vfnmm1q7dq369u2rmjVr6vz589q5c6eWLFkif3//Qt0w0N6cTZo0UdeuXW0uPZekKVOmFOtnuqZixYqaOnWqhg0bprvuuksDBw60Xnpep04djRkzxu5trly5UpmZmXrwwQcLXN62bVvVqFFDcXFx6t+/v/75z3/q888/V79+/TR8+HC1atVK586d08qVKzV79mw1a9ZMgwcP1ieffKKxY8dq69at6tixo7Kzs/Xtt99q5MiR6tmzp3x9fdWvXz/NnDlTFotF9erV06pVq6w3QyyMsLAw1atXT+PGjdOpU6fk4+OjpUuXFniS8IwZM9ShQwe1bNlSI0aMUGhoqI4dO6avvvpKSUlJBW7fx8dHs2bN0qOPPqqWLVtqwIABqlGjhk6cOKGvvvpKd9xxh9577z0dPHhQnTt31sMPP6zbbrtNFSpU0PLly5WSkqIBAwYU+ucBHMpp14EBJlbQpeceHh5G8+bNjVmzZtlc4msYhjFnzhyjQYMGhru7uxEWFmbExsZaL8v+I0lGVFSU3XmWL19udOvWzahRo4ZRoUIFw8/Pz+jQoYPx5ptvGmlpaYXeh705P/30U+v6LVq0yHdp9bXXnjlzxmb8z5c938jixYuNFi1aGO7u7kbVqlWNQYMGGb/88kuB27vZpec9evQwPDw8jOzs7OuuM3ToUKNixYrG2bNnDcMwjN9++82Ijo42brnlFsPNzc2oWbOmMWTIEOtyw7h6SfgLL7xghIaGGhUrVjQCAwONhx56yDhy5Ih1nTNnzhh9+/Y1KlWqZFSpUsV44oknjH379hV46bmXl1eB2X788UcjIiLCqFy5slG9enXj8ccfN3bv3p1vG4ZhGPv27TN69+5t+Pn5GR4eHkbDhg2NiRMn5nvP/vw7WL9+vdG1a1fD19fX8PDwMOrVq2cMHTrUepuBs2fPGlFRUUZYWJjh5eVl+Pr6GuHh4cZnn312w/ceKEkWw3DCGYAATM1isSgqKqrAQzcAUNo4ZwcAAJgaZQcAAJgaZQcAAJgaV2MBcDhOBQRQljCzAwAATI2yAwAATI3DWLr6nS+//vqrvL29i/UtxAAAoPQYhqHMzEwFBwff8CtxKDuSfv31V9WqVcvZMQAAQBGcPHlSNWvWvO5yyo4kb29vSVffrGu38AcAAGVbRkaGatWqZf0cvx7KjmQ9dOXj40PZAQCgnLnZKSicoAwAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEzNqWVn06ZN6tGjh4KDg2WxWLRixQqb5YZhaNKkSQoKCpKnp6ciIiJ06NAhm3XOnTunQYMGycfHR35+foqMjFRWVlYp/hQAAKAsc2rZyc7OVrNmzfT+++8XuHzatGmaMWOGZs+erS1btsjLy0tdu3bVpUuXrOsMGjRIP/zwgxISErRq1Spt2rRJI0aMKK0fAQAAlHEWwzAMZ4eQrn6J1/Lly9WrVy9JV2d1goOD9cwzz2jcuHGSpPT0dAUEBGjevHkaMGCA9u/fr9tuu03btm1T69atJUmrV69Wt27d9Msvvyg4OLhQ+87IyJCvr6/S09P5IlAAAMqJwn5+l9lzdo4ePark5GRFRERYx3x9fRUeHq7NmzdLkjZv3iw/Pz9r0ZGkiIgIubi4aMuWLdfddk5OjjIyMmweAADAnMps2UlOTpYkBQQE2IwHBARYlyUnJ8vf399meYUKFVS1alXrOgWJiYmRr6+v9VGrVi0HpwcAAGVFmS07JWnChAlKT0+3Pk6ePOnsSGWOxVL2HgAAFEWZLTuBgYGSpJSUFJvxlJQU67LAwEClpqbaLP/999917tw56zoFcXd3l4+Pj80DAACYU5ktO6GhoQoMDFRiYqJ1LCMjQ1u2bFG7du0kSe3atVNaWpp27NhhXWfdunXKy8tTeHh4qWcGAABlTwVn7jwrK0uHDx+2Pj969KiSkpJUtWpV1a5dW6NHj9arr76qBg0aKDQ0VBMnTlRwcLD1iq1GjRrpvvvu0+OPP67Zs2frypUrio6O1oABAwp9JRaAv56yeFi0bFwXWzJ4v0sX73d+Ti0727dvV6dOnazPx44dK0kaMmSI5s2bp2effVbZ2dkaMWKE0tLS1KFDB61evVoeHh7W18TFxSk6OlqdO3eWi4uL+vbtqxkzZpT6zwIAAMqmMnOfHWfiPjv58ZcBzIx/36WL97t0/ZXe73J/nx0AAABHoOwAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTq+DsAAAAlEUWi7MT5GcYzk5QPjGzAwAATI2ZHaAMKK9/QZbX3AD+WpjZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApsYdlAGgnOCO1UDRUHZgKnwYAAD+jMNYAADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1LjPTgnjvi8AADgXMzsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUynTZyc3N1cSJExUaGipPT0/Vq1dPr7zyiow/XDttGIYmTZqkoKAgeXp6KiIiQocOHXJiagAAUJaU6bIzdepUzZo1S++9957279+vqVOnatq0aZo5c6Z1nWnTpmnGjBmaPXu2tmzZIi8vL3Xt2lWXLl1yYnIAAFBWlOmbCv73v/9Vz5491b17d0lSnTp1tGjRIm3dulXS1Vmdd955Ry+++KJ69uwpSfrkk08UEBCgFStWaMCAAU7LDgAAyoYyPbPTvn17JSYm6uDBg5Kk3bt367vvvtP9998vSTp69KiSk5MVERFhfY2vr6/Cw8O1efPm6243JydHGRkZNg8AAGBOZXpmZ/z48crIyFBYWJhcXV2Vm5ur1157TYMGDZIkJScnS5ICAgJsXhcQEGBdVpCYmBhNmTKl5IIDAIAyo0zP7Hz22WeKi4vTwoULtXPnTs2fP19vvfWW5s+fX6ztTpgwQenp6dbHyZMnHZQYAACUNWV6Zuef//ynxo8fbz33pmnTpjp+/LhiYmI0ZMgQBQYGSpJSUlIUFBRkfV1KSoqaN29+3e26u7vL3d29RLMDAICyoUzP7Fy4cEEuLrYRXV1dlZeXJ0kKDQ1VYGCgEhMTrcszMjK0ZcsWtWvXrlSzAgCAsqlMz+z06NFDr732mmrXrq3GjRtr165dmj59uoYPHy5JslgsGj16tF599VU1aNBAoaGhmjhxooKDg9WrVy/nhgcAAGVCmS47M2fO1MSJEzVy5EilpqYqODhYTzzxhCZNmmRd59lnn1V2drZGjBihtLQ0dejQQatXr5aHh4cTkwMAgLLCYvzxdsR/URkZGfL19VV6erp8fHwcum2LxaGbc4jC/MbJ7TjkLl3kLl3kLl1mzl0Uhf38LtPn7AAAABQXZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJia3WXn4sWLunDhgvX58ePH9c4772jt2rUODQYAAOAIdpednj176pNPPpEkpaWlKTw8XG+//bZ69uypWbNmOTwgAABAcdhddnbu3KmOHTtKkj7//HMFBATo+PHj+uSTTzRjxgyHBwQAACgOu8vOhQsX5O3tLUlau3at+vTpIxcXF7Vt21bHjx93eEAAAIDisLvs1K9fXytWrNDJkye1Zs0a3XvvvZKk1NRU+fj4ODwgAABAcdhddiZNmqRx48apTp06+tvf/qZ27dpJujrL06JFC4cHBAAAKA6LYRiGvS9KTk7W6dOn1axZM7m4XO1LW7dulY+Pj8LCwhwesqRlZGTI19dX6enpDp+dslgcujmHKMxvnNyOQ+7SRe7SRe7SZebcRVHYz+8i3WcnMDBQ3t7eSkhI0MWLFyVJbdq0KZdFBwAAmJvdZee3335T586ddeutt6pbt246ffq0JCkyMlLPPPOMwwMCAAAUh91lZ8yYMapYsaJOnDihSpUqWcf79++v1atXOzQcAABAcVWw9wVr167VmjVrVLNmTZvxBg0acOk5AAAoc+ye2cnOzraZ0bnm3Llzcnd3d0goAAAAR7G77HTs2NH6dRGSZLFYlJeXp2nTpqlTp04ODQcAAFBcdh/GmjZtmjp37qzt27fr8uXLevbZZ/XDDz/o3Llz+v7770siIwAAQJHZPbPTpEkTHTx4UB06dFDPnj2VnZ2tPn36aNeuXapXr15JZAQAACiyIt1U0Gy4qWB+5HYccpcucpcucpcuM+cuisJ+ftt9GGvTpk03XH7nnXfau0kAAIASY3fZufvuu/ONWf5QI3Nzc4sVCAAAwJHsPmfn/PnzNo/U1FStXr1abdq00dq1a0siIwAAQJHZPbPj6+ubb6xLly5yc3PT2LFjtWPHDocEAwAAcIQifRFoQQICAnTgwAFHbQ4AAMAh7J7Z2bNnj81zwzB0+vRpvfHGG2revLmjcgEAADiE3WWnefPmslgs+vMV623bttXcuXMdFgwAAMAR7C47R48etXnu4uKiGjVqyMPDw2GhAAAAHMXuc3ZCQkJsHrVq1SrRonPq1Ck98sgjqlatmjw9PdW0aVNt377dutwwDE2aNElBQUHy9PRURESEDh06VGJ5AABA+VKomZ0ZM2YUeoNPP/10kcP82fnz53XHHXeoU6dO+uabb1SjRg0dOnRIVapUsa4zbdo0zZgxQ/Pnz1doaKgmTpyorl276scff2S2CQAAFO7rIkJDQwu3MYtFP//8c7FDXTN+/Hh9//33+s9//lPgcsMwFBwcrGeeeUbjxo2TJKWnpysgIEDz5s3TgAEDCrUfvi4iP3I7DrlLF7lLF7lLl5lzF4VDvy7iz+fplJaVK1eqa9eu6tevnzZu3KhbbrlFI0eO1OOPP27NlZycrIiICOtrfH19FR4ers2bN1+37OTk5CgnJ8f6PCMjo2R/EAAA4DQOu89OSfj55581a9YsNWjQQGvWrNGTTz6pp59+WvPnz5ckJScnS7p6j58/CggIsC4rSExMjHx9fa2PWrVqldwPAQAAnMruq7Ek6ZdfftHKlSt14sQJXb582WbZ9OnTHRJMkvLy8tS6dWu9/vrrkqQWLVpo3759mj17toYMGVLk7U6YMEFjx461Ps/IyKDwAABgUnaXncTERD344IOqW7eufvrpJzVp0kTHjh2TYRhq2bKlQ8MFBQXptttusxlr1KiRli5dKkkKDAyUJKWkpCgoKMi6TkpKyg1vcOju7i53d3eHZgUAAGWT3YexJkyYoHHjxmnv3r3y8PDQ0qVLdfLkSd11113q16+fQ8Pdcccd+b6C4uDBgwoJCZF09cTpwMBAJSYmWpdnZGRoy5YtateunUOzAACAcsqwU+XKlY3Dhw8bhmEYfn5+xr59+wzDMIykpCQjJCTE3s3d0NatW40KFSoYr732mnHo0CEjLi7OqFSpkvHpp59a13njjTcMPz8/44svvjD27Nlj9OzZ0wgNDTUuXrxY6P2kp6cbkoz09HSH5jcMw7h6DnrZepCb3OQuew9yk/uvnrsoCvv5bfdhLC8vL+t5OkFBQTpy5IgaN24sSTp79qwje5jatGmj5cuXa8KECXr55ZcVGhqqd955R4MGDbKu8+yzzyo7O1sjRoxQWlqaOnTooNWrV3OPHQAAIKmQ99n5o169eql79+56/PHHNW7cOH3xxRcaOnSoli1bpipVqujbb78tqawlhvvs5EduxyF36SJ36SJ36TJz7qJw6H12JOncuXOqWrWqpk+frqysLEnSlClTlJWVpcWLF6tBgwYOvRILAADAEQo9s+Ph4aFevXopMjJSXbp0KelcpYqZnfzI7TjkLl3kLl3kLl1mzl0Uhf38LvTVWB999JHOnDmj++67T3Xq1NFLL72kY8eOOSIrAABAiSl02Xn00UeVmJiow4cPa8iQIZo/f77q16+vLl26aPHixfluLggAAFAW2H2fndDQUE2ZMkVHjx7V6tWr5e/vr+HDhysoKMih33gOAADgCHZfjVWQpUuXWi/9zs3NdUSuUsU5O/mR23HIXbrIXbrIXbrMnLsoHH411p8dP35csbGxmj9/vk6ePKlOnTopMjKyqJsDAAAoEXaVnZycHC1dulRz587Vhg0bdMstt2jo0KEaNmyY6tSpU0IRAQAAiq7QZWfkyJGKj4/XhQsX1LNnT3399dfq0qWLLGVxvgwAAOD/K3TZ+e677zR58mQ98sgjqlatWklmAgAAcJhCl509e/aUZA4AAIASYfel5wAAAOUJZQcAAJgaZQcAAJgaZQcAAJia3WWnTp06evnll3XixImSyAMAAOBQdped0aNHa9myZapbt666dOmi+Ph45eTklEQ2AACAYitS2UlKStLWrVvVqFEjPfXUUwoKClJ0dLR27txZEhkBAACKrMjn7LRs2VIzZszQr7/+qsmTJ+vjjz9WmzZt1Lx5c82dO1cO+H5RAACAYivyF4FeuXJFy5cvV2xsrBISEtS2bVtFRkbql19+0fPPP69vv/1WCxcudGRWAAAAu9lddnbu3KnY2FgtWrRILi4uGjx4sP71r38pLCzMuk7v3r3Vpk0bhwYFAAAoCrvLTps2bdSlSxfNmjVLvXr1UsWKFfOtExoaqgEDBjgkIAAAQHHYXXZ+/vlnhYSE3HAdLy8vxcbGFjkUAACAo9h9gnJqaqq2bNmSb3zLli3avn27Q0IBAAA4it1lJyoqSidPnsw3furUKUVFRTkkFAAAgKPYXXZ+/PFHtWzZMt94ixYt9OOPPzokFAAAgKPYXXbc3d2VkpKSb/z06dOqUKHIV7IDAACUCLvLzr333qsJEyYoPT3dOpaWlqbnn39eXbp0cWg4AACA4rJ7Kuatt97SnXfeqZCQELVo0UKSlJSUpICAAC1YsMDhAQEAAIrD7rJzyy23aM+ePYqLi9Pu3bvl6empYcOGaeDAgQXecwcAAMCZinSSjZeXl0aMGOHoLAAAAA5X5DOKf/zxR504cUKXL1+2GX/wwQeLHQoAAMBRinQH5d69e2vv3r2yWCzWbze3WCySpNzcXMcmBAAAKAa7r8YaNWqUQkNDlZqaqkqVKumHH37Qpk2b1Lp1a23YsKEEIgIAABSd3TM7mzdv1rp161S9enW5uLjIxcVFHTp0UExMjJ5++mnt2rWrJHICAAAUid0zO7m5ufL29pYkVa9eXb/++qskKSQkRAcOHHBsOgAAgGKye2anSZMm2r17t0JDQxUeHq5p06bJzc1NH374oerWrVsSGQEAAIrM7rLz4osvKjs7W5L08ssv64EHHlDHjh1VrVo1LV682OEBAQAAisNiXLucqhjOnTunKlWqWK/IKm8yMjLk6+ur9PR0+fj4OHTbZfEtKcxvnNyOQ+7SRe7SRe7SZebcRVHYz2+7ztm5cuWKKlSooH379tmMV61atdwWHQAAYG52lZ2KFSuqdu3a3EsHAACUG3ZfjfXCCy/o+eef17lz50oiDwAAgEPZfYLye++9p8OHDys4OFghISHy8vKyWb5z506HhQMAACguu8tOr169SiAGAABAybC77EyePLkkcgAAAJQIu8/ZAQAAKE/sntlxcXG54WXmXKkFAADKErvLzvLly22eX7lyRbt27dL8+fM1ZcoUhwUDAABwBIfcQVmSFi5cqMWLF+uLL75wxOZKFXdQzo/cjkPu0kXu0kXu0mXm3EVRIndQvpG2bdsqMTHRUZsDAABwCIeUnYsXL2rGjBm65ZZbHLE5AAAAh7H7nJ0/f+GnYRjKzMxUpUqV9Omnnzo0HAAAQHHZXXb+9a9/2ZQdFxcX1ahRQ+Hh4apSpYpDwwEAABSX3WVn6NChJRADAACgZNh9zk5sbKyWLFmSb3zJkiWaP3++Q0IBAAA4it1lJyYmRtWrV8837u/vr9dff90hoQAAABzF7rJz4sQJhYaG5hsPCQnRiRMnHBIKAADAUewuO/7+/tqzZ0++8d27d6tatWoOCQUAAOAodpedgQMH6umnn9b69euVm5ur3NxcrVu3TqNGjdKAAQNKIiMAAECR2X011iuvvKJjx46pc+fOqlDh6svz8vI0ePBgztkBAABljt0zO25ublq8eLEOHDiguLg4LVu2TEeOHNHcuXPl5uZWEhmt3njjDVksFo0ePdo6dunSJUVFRalatWqqXLmy+vbtq5SUlBLNAQAAyg+7Z3auadCggRo0aODILDe0bds2/fvf/9btt99uMz5mzBh99dVXWrJkiXx9fRUdHa0+ffro+++/L7VsAACg7LJ7Zqdv376aOnVqvvFp06apX79+Dgn1Z1lZWRo0aJA++ugjm7s0p6ena86cOZo+fbruuecetWrVSrGxsfrvf/+r//3vfyWSBQAAlC92l51NmzapW7du+cbvv/9+bdq0ySGh/iwqKkrdu3dXRESEzfiOHTt05coVm/GwsDDVrl1bmzdvvu72cnJylJGRYfMAAADmZPdhrKysrALPzalYsWKJlIb4+Hjt3LlT27Zty7csOTlZbm5u8vPzsxkPCAhQcnLydbcZExOjKVOmODoqAAAog+ye2WnatKkWL16cbzw+Pl633XabQ0Jdc/LkSY0aNUpxcXHy8PBw2HYnTJig9PR06+PkyZMO2zYAAChb7J7ZmThxovr06aMjR47onnvukSQlJiZq0aJFBX5nVnHs2LFDqampatmypXUsNzdXmzZt0nvvvac1a9bo8uXLSktLs5ndSUlJUWBg4HW36+7uLnd3d4dmBQAAZZPdZadHjx5asWKFXn/9dX3++efy9PTU7bffrm+//VZ33XWXQ8N17txZe/futRkbNmyYwsLC9Nxzz6lWrVqqWLGiEhMT1bdvX0nSgQMHdOLECbVr186hWQAAQPlUpEvPu3fvru7du+cb37dvn5o0aVLsUNd4e3vn256Xl5eqVatmHY+MjNTYsWNVtWpV+fj46KmnnlK7du3Utm1bh+UAAADlV5Hvs3NNZmamFi1apI8//lg7duxQbm6uI3IV2r/+9S+5uLiob9++ysnJUdeuXfXBBx+UagYAAFB2WQzDMIrywk2bNunjjz/WsmXLFBwcrD59+qhv375q06aNozOWuIyMDPn6+io9PV0+Pj4O3bbF4tDNOURhfuPkdhxyly5yly5yly4z5y6Kwn5+2zWzk5ycrHnz5mnOnDnKyMjQww8/rJycHK1YscLhV2IBAAA4QqEvPe/Ro4caNmyoPXv26J133tGvv/6qmTNnlmQ2AACAYiv0zM4333yjp59+Wk8++WSpficWAABAcRR6Zue7775TZmamWrVqpfDwcL333ns6e/ZsSWYDAAAotkKXnbZt2+qjjz7S6dOn9cQTTyg+Pl7BwcHKy8tTQkKCMjMzSzInAABAkRT5aizp6g385syZowULFigtLU1dunTRypUrHZmvVHA1Vn7kdhxyly5yly5yly4z5y6Kwn5+2/3dWH/UsGFDTZs2Tb/88osWLVpUnE0BAACUiGLN7JgFMzv5kdtxyF26yF26yF26zJy7KEplZgcAAKCso+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTK9NlJyYmRm3atJG3t7f8/f3Vq1cvHThwwGadS5cuKSoqStWqVVPlypXVt29fpaSkOCkxAAAoa8p02dm4caOioqL0v//9TwkJCbpy5YruvfdeZWdnW9cZM2aMvvzySy1ZskQbN27Ur7/+qj59+jgxNQAAKEsshmEYzg5RWGfOnJG/v782btyoO++8U+np6apRo4YWLlyohx56SJL0008/qVGjRtq8ebPatm1bqO1mZGTI19dX6enp8vHxcWhmi8Whm3OIwvzGye045C5d5C5d5C5dZs5dFIX9/C7TMzt/lp6eLkmqWrWqJGnHjh26cuWKIiIirOuEhYWpdu3a2rx583W3k5OTo4yMDJsHAAAwp3JTdvLy8jR69GjdcccdatKkiSQpOTlZbm5u8vPzs1k3ICBAycnJ191WTEyMfH19rY9atWqVZHQAAOBE5absREVFad++fYqPjy/2tiZMmKD09HTr4+TJkw5ICAAAyqIKzg5QGNHR0Vq1apU2bdqkmjVrWscDAwN1+fJlpaWl2czupKSkKDAw8Lrbc3d3l7u7e0lGBgAAZUSZntkxDEPR0dFavny51q1bp9DQUJvlrVq1UsWKFZWYmGgdO3DggE6cOKF27dqVdlwAAFAGlemZnaioKC1cuFBffPGFvL29refh+Pr6ytPTU76+voqMjNTYsWNVtWpV+fj46KmnnlK7du0KfSUWAAAwtzJddmbNmiVJuvvuu23GY2NjNXToUEnSv/71L7m4uKhv377KyclR165d9cEHH5RyUgAAUFaVq/vslBTus5MfuR2H3KWL3KWL3KXLzLmLwpT32QEAALAXZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJiaacrO+++/rzp16sjDw0Ph4eHaunWrsyMBAIAywBRlZ/HixRo7dqwmT56snTt3qlmzZuratatSU1OdHQ0AADiZKcrO9OnT9fjjj2vYsGG67bbbNHv2bFWqVElz5851djQAAOBk5b7sXL58WTt27FBERIR1zMXFRREREdq8ebMTkwEAgLKggrMDFNfZs2eVm5urgIAAm/GAgAD99NNPBb4mJydHOTk51ufp6emSpIyMjJILWoaU1x+T3KWL3KWL3KWL3KWrpHJf+9w2DOOG65X7slMUMTExmjJlSr7xWrVqOSFN6fP1dXaCoiF36SJ36SJ36SJ36Srp3JmZmfK9wU7KfdmpXr26XF1dlZKSYjOekpKiwMDAAl8zYcIEjR071vo8Ly9P586dU7Vq1WSxWEo0b1FlZGSoVq1aOnnypHx8fJwdp9DIXbrIXbrIXbrIXbrKQ27DMJSZmang4OAbrlfuy46bm5tatWqlxMRE9erVS9LV8pKYmKjo6OgCX+Pu7i53d3ebMT8/vxJO6hg+Pj5l9h/djZC7dJG7dJG7dJG7dJX13Dea0bmm3JcdSRo7dqyGDBmi1q1b629/+5veeecdZWdna9iwYc6OBgAAnMwUZad///46c+aMJk2apOTkZDVv3lyrV6/Od9IyAAD46zFF2ZGk6Ojo6x62MgN3d3dNnjw53+G3so7cpYvcpYvcpYvcpau85i6IxbjZ9VoAAADlWLm/qSAAAMCNUHYAAICpUXYAAICpUXYAAICpUXbKuE2bNqlHjx4KDg6WxWLRihUrnB3ppmJiYtSmTRt5e3vL399fvXr10oEDB5wd66ZmzZql22+/3XoDrXbt2umbb75xdiy7vfHGG7JYLBo9erSzo9zQSy+9JIvFYvMICwtzdqxCOXXqlB555BFVq1ZNnp6eatq0qbZv3+7sWDdUp06dfO+3xWJRVFSUs6PdUG5uriZOnKjQ0FB5enqqXr16euWVV276XUhlQWZmpkaPHq2QkBB5enqqffv22rZtm7Nj2bjZZ4xhGJo0aZKCgoLk6empiIgIHTp0yDlhi4GyU8ZlZ2erWbNmev/9950dpdA2btyoqKgo/e9//1NCQoKuXLmie++9V9nZ2c6OdkM1a9bUG2+8oR07dmj79u2655571LNnT/3www/OjlZo27Zt07///W/dfvvtzo5SKI0bN9bp06etj++++87ZkW7q/PnzuuOOO1SxYkV98803+vHHH/X222+rSpUqzo52Q9u2bbN5rxMSEiRJ/fr1c3KyG5s6dapmzZql9957T/v379fUqVM1bdo0zZw509nRbuqxxx5TQkKCFixYoL179+ree+9VRESETp065exoVjf7jJk2bZpmzJih2bNna8uWLfLy8lLXrl116dKlUk5aTAbKDUnG8uXLnR3DbqmpqYYkY+PGjc6OYrcqVaoYH3/8sbNjFEpmZqbRoEEDIyEhwbjrrruMUaNGOTvSDU2ePNlo1qyZs2PY7bnnnjM6dOjg7BjFNmrUKKNevXpGXl6es6PcUPfu3Y3hw4fbjPXp08cYNGiQkxIVzoULFwxXV1dj1apVNuMtW7Y0XnjhBSelurE/f8bk5eUZgYGBxptvvmkdS0tLM9zd3Y1FixY5IWHRMbODEpeeni5Jqlq1qpOTFF5ubq7i4+OVnZ2tdu3aOTtOoURFRal79+6KiIhwdpRCO3TokIKDg1W3bl0NGjRIJ06ccHakm1q5cqVat26tfv36yd/fXy1atNBHH33k7Fh2uXz5sj799FMNHz68zH758TXt27dXYmKiDh48KEnavXu3vvvuO91///1OTnZjv//+u3Jzc+Xh4WEz7unpWS5mMCXp6NGjSk5Otvl/iq+vr8LDw7V582YnJrOfae6gjLIpLy9Po0eP1h133KEmTZo4O85N7d27V+3atdOlS5dUuXJlLV++XLfddpuzY91UfHy8du7cWebOB7iR8PBwzZs3Tw0bNtTp06c1ZcoUdezYUfv27ZO3t7ez413Xzz//rFmzZmns2LF6/vnntW3bNj399NNyc3PTkCFDnB2vUFasWKG0tDQNHTrU2VFuavz48crIyFBYWJhcXV2Vm5ur1157TYMGDXJ2tBvy9vZWu3bt9Morr6hRo0YKCAjQokWLtHnzZtWvX9/Z8QolOTlZkvJ99VJAQIB1WXlB2UGJioqK0r59+8rNXzINGzZUUlKS0tPT9fnnn2vIkCHauHFjmS48J0+e1KhRo5SQkJDvr8iy7I9/md9+++0KDw9XSEiIPvvsM0VGRjox2Y3l5eWpdevWev311yVJLVq00L59+zR79uxyU3bmzJmj+++/X8HBwc6OclOfffaZ4uLitHDhQjVu3FhJSUkaPXq0goODy/z7vWDBAg0fPly33HKLXF1d1bJlSw0cOFA7duxwdrS/HA5jocRER0dr1apVWr9+vWrWrOnsOIXi5uam+vXrq1WrVoqJiVGzZs307rvvOjvWDe3YsUOpqalq2bKlKlSooAoVKmjjxo2aMWOGKlSooNzcXGdHLBQ/Pz/deuutOnz4sLOj3FBQUFC+8tuoUaNycQhOko4fP65vv/1Wjz32mLOjFMo///lPjR8/XgMGDFDTpk316KOPasyYMYqJiXF2tJuqV6+eNm7cqKysLJ08eVJbt27VlStXVLduXWdHK5TAwEBJUkpKis14SkqKdVl5QdmBwxmGoejoaC1fvlzr1q1TaGiosyMVWV5ennJycpwd44Y6d+6svXv3Kikpyfpo3bq1Bg0apKSkJLm6ujo7YqFkZWXpyJEjCgoKcnaUG7rjjjvy3Urh4MGDCgkJcVIi+8TGxsrf31/du3d3dpRCuXDhglxcbD+qXF1dlZeX56RE9vPy8lJQUJDOnz+vNWvWqGfPns6OVCihoaEKDAxUYmKidSwjI0NbtmwpN+cyXsNhrDIuKyvL5i/do0ePKikpSVWrVlXt2rWdmOz6oqKitHDhQn3xxRfy9va2Htv19fWVp6enk9Nd34QJE3T//ferdu3ayszM1MKFC7VhwwatWbPG2dFuyNvbO9/5UF5eXqpWrVqZPk9q3Lhx6tGjh0JCQvTrr79q8uTJcnV11cCBA50d7YbGjBmj9u3b6/XXX9fDDz+srVu36sMPP9SHH37o7Gg3lZeXp9jYWA0ZMkQVKpSP//336NFDr732mmrXrq3GjRtr165dmj59uoYPH+7saDe1Zs0aGYahhg0b6vDhw/rnP/+psLAwDRs2zNnRrG72GTN69Gi9+uqratCggUJDQzVx4kQFBwerV69ezgtdFM6+HAw3tn79ekNSvseQIUOcHe26CsoryYiNjXV2tBsaPny4ERISYri5uRk1atQwOnfubKxdu9bZsYqkPFx63r9/fyMoKMhwc3MzbrnlFqN///7G4cOHnR2rUL788kujSZMmhru7uxEWFmZ8+OGHzo5UKGvWrDEkGQcOHHB2lELLyMgwRo0aZdSuXdvw8PAw6tata7zwwgtGTk6Os6Pd1OLFi426desabm5uRmBgoBEVFWWkpaU5O5aNm33G5OXlGRMnTjQCAgIMd3d3o3PnzuXq3881FsMoB7ehBAAAKCLO2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEABzh27JgsFouSkpIK/ZqhQ4fe9E60d999t0aPHl2sbMBfHWUH+IvYvHmzXF1dy813IpWEpk2b6h//+EeByxYsWCB3d3edPXu2SNuuVauWTp8+Xaa/ogP4q6LsAH8Rc+bM0VNPPaVNmzbp119/dWqWy5cvO2W/kZGRio+P18WLF/Mti42N1YMPPqjq1avbvd3Lly/L1dVVgYGB5eY7p4C/EsoO8BeQlZWlxYsX68knn1T37t01b968fOt8+eWXatOmjTw8PFS9enX17t3buiwnJ0fPPfecatWqJXd3d9WvX19z5syRJM2bN09+fn4221qxYoUsFov1+UsvvaTmzZvr448/VmhoqDw8PCRJq1evVocOHeTn56dq1arpgQce0JEjR2y29csvv2jgwIGqWrWqvLy81Lp1a23ZskXHjh2Ti4uLtm/fbrP+O++8o5CQkAK/FfuRRx7RxYsXtXTpUpvxo0ePasOGDYqMjNSRI0fUs2dPBQQEqHLlymrTpo2+/fZbm/Xr1KmjV155RYMHD5aPj49GjBiR7zBWbm6uIiMjFRoaKk9PTzVs2FDvvvtuAb8dacqUKapRo4Z8fHz0j3/844ZlMCcnR+PGjdMtt9wiLy8vhYeHa8OGDdblx48fV48ePVSlShV5eXmpcePG+vrrr6+7PeCvgLID/AV89tlnCgsLU8OGDfXII49o7ty5+uPX4n311Vfq3bu3unXrpl27dikxMVF/+9vfrMsHDx6sRYsWacaMGdq/f7/+/e9/q3LlynZlOHz4sJYuXaply5ZZC0F2drbGjh2r7du3KzExUS4uLurdu7e1qGRlZemuu+7SqVOntHLlSu3evVvPPvus8vLyVKdOHUVERCg2NtZmP7GxsRo6dKhcXPL/76169erq2bOn5s6dazM+b9481axZU/fee6+ysrLUrVs3JSYmateuXbrvvvvUo0cPnThxwuY1b731lpo1a6Zdu3Zp4sSJ+faVl5enmjVrasmSJfrxxx81adIkPf/88/rss89s1ktMTNT+/fu1YcMGLVq0SMuWLdOUKVOu+z5GR0dr8+bNio+P1549e9SvXz/dd999OnTokCQpKipKOTk52rRpk/bu3aupU6fa/bsCTMfJX0QKoBS0b9/eeOeddwzDMIwrV64Y1atXN9avX29d3q5dO2PQoEEFvvbAgQOGJCMhIaHA5bGxsYavr6/N2PLly40//u9l8uTJRsWKFY3U1NQb5jxz5owhydi7d69hGIbx73//2/D29jZ+++23AtdfvHixUaVKFePSpUuGYRjGjh07DIvFYhw9evS6+1i9erVhsViMn3/+2TCMq9/qHBISYrz44ovXfU3jxo2NmTNnWp+HhIQYvXr1slnn6NGjhiRj165d191OVFSU0bdvX+vzIUOGGFWrVjWys7OtY7NmzTIqV65s5ObmGoZh+w32x48fN1xdXY1Tp07ZbLdz587GhAkTDMMwjKZNmxovvfTSdTMAf0XM7AAmd+DAAW3dulUDBw6UJFWoUEH9+/e3HoaSpKSkJHXu3LnA1yclJcnV1VV33XVXsXKEhISoRo0aNmOHDh3SwIEDVbduXfn4+KhOnTqSZJ1FSUpKUosWLVS1atUCt9mrVy+5urpq+fLlkq7O0HTq1Mm6nYJ06dJFNWvWtM4IJSYm6sSJExo2bJikq7NJ48aNU6NGjeTn56fKlStr//79+WZ2WrdufdOf+f3331erVq1Uo0YNVa5cWR9++GG+7TRr1kyVKlWyPm/Xrp2ysrJ08uTJfNvbu3evcnNzdeutt6py5crWx8aNG62H/55++mm9+uqruuOOOzR58mTt2bPnpjkBs6PsACY3Z84c/f777woODlaFChVUoUIFzZo1S0uXLlV6erokydPT87qvv9EySXJxcbE5JCZJV65cybeel5dXvrEePXro3Llz+uijj7RlyxZt2bJF0v+dwHyzfbu5uWnw4MGKjY3V5cuXtXDhQg0fPvymeYcOHar58+crLy9PsbGx6tSpk+rWrStJGjdunJYvX67XX39d//nPf5SUlKSmTZvmO4+moJ/nj+Lj4zVu3DhFRkZq7dq1SkpK0rBhw4p1cnZWVpZcXV21Y8cOJSUlWR/79++3ng/02GOP6eeff9ajjz6qvXv3qnXr1po5c2aR9wmYAWUHMLHff/9dn3zyid5++22bD8fdu3crODhYixYtkiTdfvvtSkxMLHAbTZs2VV5enjZu3Fjg8ho1aigzM1PZ2dnWscLca+a3337TgQMH9OKLL6pz585q1KiRzp8/b7PO7bffrqSkJJ07d+6623nsscf07bff6oMPPtDvv/+uPn363HTfw4YN08mTJ7Vs2TItX75ckZGR1mXff/+9hg4dqt69e6tp06YKDAzUsWPHbrrNP/v+++/Vvn17jRw5Ui1atFD9+vXznXwtSbt377a5Oux///ufKleurFq1auVbt0WLFsrNzVVqaqrq169v8wgMDLSuV6tWLf3jH//QsmXL9Mwzz+ijjz6yOz9gJpQdwMRWrVql8+fPKzIyUk2aNLF59O3b13ooa/LkyVq0aJEmT56s/fv3W09sla5eeTRkyBANHz5cK1assF65dO1E2/DwcFWqVEnPP/+8jhw5ooULFxZ4tdefValSRdWqVdOHH36ow4cPa926dRo7dqzNOgMHDlRgYKB69eql77//Xj///LOWLl2qzZs3W9dp1KiR2rZtq+eee04DBw686WyQJIWGhuqee+7RiBEj5O7ublOQGjRoYD2Jevfu3fr73/9e4JVdN9OgQQNt375da9as0cGDBzVx4kRt27Yt33qXL19WZGSkfvzxR3399deaPHmyoqOjCzzB+tZbb9WgQYM0ePBgLVu2TEePHtXWrVsVExOjr776SpI0evRorVmzRkePHtXOnTu1fv16NWrUyO78gJlQdgATmzNnjiIiIuTr65tvWd++fbV9+3bt2bNHd999t5YsWaKVK1eqefPmuueee7R161brurNmzdJDDz2kkSNHKiwsTI8//rh1Jqdq1ar69NNP9fXXX6tp06ZatGiRXnrppZtmc3FxUXx8vHbs2KEmTZpozJgxevPNN23WcXNz09q1a+Xv769u3bqpadOmeuONN+Tq6mqzXmRkpC5fvnzTQ1h/fs358+f197//3XopvCRNnz5dVapUUfv27dWjRw917dpVLVu2LPR2r3niiSfUp08f9e/fX+Hh4frtt980cuTIfOt17txZDRo00J133qn+/fvrwQcfvOH7Fxsbq8GDB+uZZ55Rw4YN1atXL23btk21a9eWdPWS96ioKDVq1Ej33Xefbr31Vn3wwQd25wfMxGL8+WA7AJQzr7zyipYsWcLJuAAKxMwOgHIrKytL+/bt03vvvaennnrK2XEAlFGUHQDlVnR0tFq1aqW7777brkNYAP5aOIwFAABMjZkdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgav8PriEMHNJ5QJIAAAAASUVORK5CYII=\n" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } - ] - }, - { - "cell_type": "code", + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "# Assuming you have a list of RMSE values from rmse1 to rmse10\n", - "rmse_values = [rmse1, rmse2, rmse3, rmse4, rmse5, rmse6, rmse7, rmse8, rmse9, rmse10]\n", + "rmse_values = [rmse1, rmse2, rmse2_1, rmse3, rmse4, rmse5, rmse6, rmse7, rmse8, rmse8_1, rmse9, rmse10]\n", "\n", "# List of corresponding labels for each RMSE value\n", - "labels = ['RMSE1', 'RMSE2', 'RMSE3', 'RMSE4', 'RMSE5', 'RMSE6', 'RMSE7', 'RMSE8', 'RMSE9', 'RMSE10']\n", + "labels = ['RMSE1', 'RMSE2', 'RMSE2_1', 'RMSE3', 'RMSE4', 'RMSE5', 'RMSE6', 'RMSE7', 'RMSE8', 'RMSE8_1', 'RMSE9', 'RMSE10']\n", "\n", "# Plotting the bar graph\n", "plt.bar(labels, rmse_values, color='green')\n", @@ -2488,39 +6917,39 @@ "plt.ylabel('RMSE Values')\n", "plt.title('Bar Graph of RMSE')\n", "plt.show()\n" - ], + ] + }, + { + "cell_type": "code", + "execution_count": 94, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 472 }, - "id": "RFaaCNH6Cfoa", - "outputId": "67a8f358-e3ce-4ad2-9c78-ebc75902beb4" + "id": "nrZu-K-KDCJ2", + "outputId": "d0dd5f18-77bd-41f4-c21b-09e71322b318" }, - "execution_count": 118, "outputs": [ { - "output_type": "display_data", "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/MUlEQVR4nO3deVxUZf//8fcACogCorIlKuW+pOYWmbdLFK6pueR2h2JqqZl5l+l9m2V5Z1qZS6RZKFmCS6mlpUWYW+GuZUmuuAuWKYomopzfH36dX3MDCjoww+n1fDzO4+Fc5zrn+swMMm/Ouc4Zi2EYhgAAAEzKxdEFAAAAFCbCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDoC/hVdeeUUWi0W///57oY+1evVqNWjQQB4eHrJYLDp37lyhjwkgb4QdoJiLjY2VxWKxWfz9/dW6dWutWrWqyOtZsWKFOnXqpICAAJUsWVJ+fn76xz/+obffflvnz58v8nqK2pkzZ9SzZ095enoqOjpaH3/8sby8vHLt+9f3buPGjTnWG4ahkJAQWSwWdezYMdd9nDt3zhqqkpOTc+3Tv3//HD8jNxYPD4/bf7JAMeHm6AIA2Merr76q0NBQGYahtLQ0xcbGqn379lqxYkWeH5T2lJ2drYEDByo2Nlb16tXT0KFDFRISogsXLigpKUnjxo3TV199pcTExEKvxZG2bt2qCxcu6LXXXlN4eHi+tvHw8FBcXJwefPBBm/Z169bp+PHjcnd3z3PbJUuWyGKxKDAwUAsWLNDEiRNz7efu7q4PP/wwR7urq2u+agSKM8IOYBLt2rVT48aNrY8HDhyogIAAxcfH2yXsZGdn68qVK3keCZgyZYpiY2P13HPP6e2335bFYrGue/bZZ3Xq1CnNnz//jsYoDk6fPi1J8vX1zfc27du315IlSzRjxgy5uf3/X8txcXFq1KjRTU+9ffLJJ2rfvr0qV66suLi4PMOOm5ub+vXrl++aADPhNBZgUr6+vvL09LT58JSkt956Sw888IDKlSsnT09PNWrUSJ9++mmO7S0Wi4YPH64FCxaoTp06cnd31+rVq3Md69KlS5o8ebLq1KmjN9980ybo3BAUFKQXX3wx32PcTp01atSQh4eHGjVqpPXr1+da67lz59S/f3/5+vrKx8dHAwYM0KVLl3J/Ef/HkiVL1KhRI3l6eqp8+fLq16+fTpw4YV3fqlUrRUZGSpKaNGkii8Wi/v3733K/vXv31pkzZ5SQkGBtu3Llij799FP16dMnz+2OHj2qDRs2qFevXurVq5dSUlL0ww8/5Ou5AH8nHNkBTCI9PV2///67DMPQ6dOnNXPmTGVkZOT4a3769Ol69NFH1bdvX125ckULFy5Ujx49tHLlSnXo0MGm75o1a7R48WINHz5c5cuXV5UqVXIde+PGjTp37pyef/75Ap8WyWuMgtS5bt06LVq0SCNGjJC7u7vee+89tW3bVlu2bFHdunVt+vbs2VOhoaGaNGmSduzYoQ8//FD+/v6aPHnyTeuMjY3VgAED1KRJE02aNElpaWmaPn26vv/+e+3cuVO+vr76z3/+oxo1amjOnDnW04r33HPPLV+DKlWqKCwsTPHx8WrXrp0kadWqVUpPT1evXr00Y8aMXLeLj4+Xl5eXOnbsKE9PT91zzz1asGCBHnjggVz753aEqGTJkvL29r5ljUCxZgAo1ubNm2dIyrG4u7sbsbGxOfpfunTJ5vGVK1eMunXrGm3atLFpl2S4uLgYv/zyyy1rmD59uiHJWL58uU371atXjd9++81myc7OztcYBalTkrFt2zZr25EjRwwPDw+ja9eu1raXX37ZkGRERUXZbN+1a1ejXLlyN31+V65cMfz9/Y26desaf/75p7V95cqVhiRj/Pjx1rYb78fWrVtvus//7fvuu+8aZcqUsT7vHj16GK1btzYMwzAqV65sdOjQIcf29erVM/r27Wt9/O9//9soX768kZWVZdMvMjIy158RSUZERMQt6wSKO05jASYRHR2thIQEJSQk6JNPPlHr1q315JNPaunSpTb9PD09rf8+e/as0tPT1aJFC+3YsSPHPlu2bKnatWvfcuwbV1mVLl3apn337t2qUKGCzXLmzJl8jVGQOsPCwtSoUSPr40qVKqlz5876+uuvde3aNZu+Tz31lM3jFi1a6MyZMze9Umzbtm06ffq0hg4dajOfqEOHDqpZs6a+/PLLPLfNr549e+rPP//UypUrdeHCBa1cufKmp7B++ukn7d69W71797a29e7dW7///ru+/vrrHP09PDysPx9/Xd544407rh1wdpzGAkyiadOmNhOUe/furYYNG2r48OHq2LGjSpYsKUlauXKlJk6cqF27dikzM9PaP7d5NqGhofkau0yZMpKkjIwMm/aqVata56HMnz9fH3/8cb7HKEid1apVy9FWvXp1Xbp0Sb/99psCAwOt7ZUqVbLpV7ZsWUnXA1Vep3OOHDkiSapRo0aOdTVr1sz1svGCqlChgsLDwxUXF6dLly7p2rVr6t69e579P/nkE3l5eenuu+/WgQMHJF0PNFWqVNGCBQtynOpzdXXN99VhgNlwZAcwKRcXF7Vu3VqnTp3S/v37JUkbNmzQo48+Kg8PD7333nv66quvlJCQoD59+sgwjBz7+OvRlZupWbOmJOnnn3+2aS9durTCw8MVHh6uu+++O9dtcxujoHUWRF5ziu50v/bQp08frVq1SrNnz1a7du3yvKLLMAzFx8fr4sWLql27tqpVq2ZdDh8+rM8//zxH8AT+zjiyA5jY1atXJf3/Iy6fffaZPDw89PXXX9vcu2XevHl3NE6LFi3k4+OjhQsXauzYsXJxubO/owpa540w91f79u1TqVKlVKFChTuqRZIqV64sSdq7d6/atGljs27v3r3W9Xeqa9euGjJkiDZt2qRFixbl2e/G/XdeffVV1apVy2bd2bNnNXjwYC1fvpxLzYH/w5EdwKSysrL0zTffqGTJktYPRFdXV1ksFpt5LIcPH9by5cvvaKxSpUpp9OjR+vnnnzVmzJhcj5IU5MhJQetMSkqymctz7Ngxff7553rkkUfsctO8xo0by9/fX7Nnz7Y5pbZq1SolJyfnOGV0u0qXLq1Zs2bplVdeUadOnfLsd+MU1gsvvKDu3bvbLIMGDVK1atW0YMECu9QEmAFHdgCTWLVqlX799VdJ129sFxcXp/3792vMmDHWuSgdOnTQ1KlT1bZtW/Xp00enT59WdHS0qlatqp9++umOxh8zZoySk5P15ptv6ptvvlG3bt1UsWJFnT17Vjt27NCSJUvk7++frxsGFrTOunXrKiIiwubSc0maMGHCHT2nG0qUKKHJkydrwIABatmypXr37m299LxKlSp67rnn7DKOJOt9evKSmZmpzz77TA8//HCer+Wjjz6q6dOn6/Tp0/L395d0/SjfJ598kmv/rl275vmVFoAZEHYAkxg/frz13x4eHqpZs6ZmzZqlIUOGWNvbtGmjmJgYvfHGGxo5cqRCQ0M1efJkHT58+I7DjouLiz7++GN169ZNH3zwgWbOnKmzZ8+qdOnSqlu3rv773/9q0KBBOa7Yyk1B62zZsqXCwsI0YcIEHT16VLVr11ZsbKzuvffeO3pOf9W/f3+VKlVKb7zxhl588UV5eXmpa9eumjx5coHulnynvvzyS507d+6mR346deqkt99+WwsXLtSIESMkXQ9J//znP3Ptn5KSQtiBqVkMZ5iVBwC3yWKxaNiwYXr33XcdXQoAJ8WcHQAAYGqEHQAAYGqEHQAAYGpMUAZQrDHtEMCtcGQHAACYGmEHAACYGqexJGVnZ+vkyZMqU6ZMrl8yCAAAnI9hGLpw4YKCg4Nv+jU1hB1JJ0+eVEhIiKPLAAAAt+HYsWOqWLFinusJO5LKlCkj6fqLdeO2+gAAwLmdP39eISEh1s/xvBB2JOupK29vb8IOAADFzK2moDBBGQAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmJqbowuAg8RZHDd2H8NxYwMA/nY4sgMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEzNoWFn/fr16tSpk4KDg2WxWLR8+XLruqysLL344ouqV6+evLy8FBwcrCeeeEInT5602ccff/yhvn37ytvbW76+vho4cKAyMjKK+JkAAABn5dCwc/HiRdWvX1/R0dE51l26dEk7duzQSy+9pB07dmjp0qXau3evHn30UZt+ffv21S+//KKEhAStXLlS69ev1+DBg4vqKQAAACdnMQzDcHQRkmSxWLRs2TJ16dIlzz5bt25V06ZNdeTIEVWqVEnJycmqXbu2tm7dqsaNG0uSVq9erfbt2+v48eMKDg7O19jnz5+Xj4+P0tPT5e3tbY+n4/ziLI4bu49T/MgBAIq5/H5+F6s5O+np6bJYLPL19ZUkJSUlydfX1xp0JCk8PFwuLi7avHmzg6oEAADOxM3RBeTX5cuX9eKLL6p3797W9Jaamip/f3+bfm5ubvLz81Nqamqe+8rMzFRmZqb18fnz5wunaAAA4HDF4shOVlaWevbsKcMwNGvWrDve36RJk+Tj42NdQkJC7FAlAABwRk4fdm4EnSNHjighIcHmnFxgYKBOnz5t0//q1av6448/FBgYmOc+x44dq/T0dOty7NixQqsfAAA4llOfxroRdPbv36/vvvtO5cqVs1kfFhamc+fOafv27WrUqJEkac2aNcrOzlazZs3y3K+7u7vc3d0LtXYAAOAcHBp2MjIydODAAevjlJQU7dq1S35+fgoKClL37t21Y8cOrVy5UteuXbPOw/Hz81PJkiVVq1YttW3bVoMGDdLs2bOVlZWl4cOHq1evXvm+EgsAAJibQy89X7t2rVq3bp2jPTIyUq+88opCQ0Nz3e67775Tq1atJF2/qeDw4cO1YsUKubi4qFu3bpoxY4ZKly6d7zq49LyIcek5AMAO8vv57dAjO61atdLNslZ+cpifn5/i4uLsWRYAADARp5+gDAAAcCcIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNTcHF0AkEOcxTHj9jEcMy4AoFBxZAcAAJgaYQcAAJgaYQcAAJgac3YAADfHPDoUcxzZAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApubQsLN+/Xp16tRJwcHBslgsWr58uc16wzA0fvx4BQUFydPTU+Hh4dq/f79Nnz/++EN9+/aVt7e3fH19NXDgQGVkZBThswAAAM7MzZGDX7x4UfXr11dUVJQee+yxHOunTJmiGTNm6KOPPlJoaKheeuklRUREaM+ePfLw8JAk9e3bV6dOnVJCQoKysrI0YMAADR48WHFxcUX9dAAARSnO4rix+xiOGxsF5tCw065dO7Vr1y7XdYZhaNq0aRo3bpw6d+4sSZo/f74CAgK0fPly9erVS8nJyVq9erW2bt2qxo0bS5Jmzpyp9u3b66233lJwcHCRPRcAAOCcnHbOTkpKilJTUxUeHm5t8/HxUbNmzZSUlCRJSkpKkq+vrzXoSFJ4eLhcXFy0efPmPPedmZmp8+fP2ywAAMCcnDbspKamSpICAgJs2gMCAqzrUlNT5e/vb7Pezc1Nfn5+1j65mTRpknx8fKxLSEiInasHAADOwmnDTmEaO3as0tPTrcuxY8ccXRIAACgkTht2AgMDJUlpaWk27WlpadZ1gYGBOn36tM36q1ev6o8//rD2yY27u7u8vb1tFgAAYE5OG3ZCQ0MVGBioxMREa9v58+e1efNmhYWFSZLCwsJ07tw5bd++3dpnzZo1ys7OVrNmzYq8ZgAA4HwcejVWRkaGDhw4YH2ckpKiXbt2yc/PT5UqVdLIkSM1ceJEVatWzXrpeXBwsLp06SJJqlWrltq2batBgwZp9uzZysrK0vDhw9WrVy+uxAIAAJIcHHa2bdum1q1bWx+PGjVKkhQZGanY2FiNHj1aFy9e1ODBg3Xu3Dk9+OCDWr16tfUeO5K0YMECDR8+XA899JBcXFzUrVs3zZgxo8ifCwAAcE4WwzD+9ndGOn/+vHx8fJSenv73mb/jzDfjclRt3CQMyJ2z/p905t9jKBL5/fx22jk7AAAA9kDYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApubUYefatWt66aWXFBoaKk9PT91zzz167bXXZBiGtY9hGBo/fryCgoLk6emp8PBw7d+/34FVAwAAZ3LHYefatWvatWuXzp49a496bEyePFmzZs3Su+++q+TkZE2ePFlTpkzRzJkzrX2mTJmiGTNmaPbs2dq8ebO8vLwUERGhy5cv270eAABQ/BQ47IwcOVIxMTGSrgedli1b6r777lNISIjWrl1r1+J++OEHde7cWR06dFCVKlXUvXt3PfLII9qyZYuk60d1pk2bpnHjxqlz58669957NX/+fJ08eVLLly+3ay0AAKB4KnDY+fTTT1W/fn1J0ooVK5SSkqJff/1Vzz33nP7zn//YtbgHHnhAiYmJ2rdvnyTpxx9/1MaNG9WuXTtJUkpKilJTUxUeHm7dxsfHR82aNVNSUlKe+83MzNT58+dtFgAAYE4FDju///67AgMDJUlfffWVevTooerVqysqKkq7d++2a3FjxoxRr169VLNmTZUoUUINGzbUyJEj1bdvX0lSamqqJCkgIMBmu4CAAOu63EyaNEk+Pj7WJSQkxK51AwAA51HgsBMQEKA9e/bo2rVrWr16tR5++GFJ0qVLl+Tq6mrX4hYvXqwFCxYoLi5OO3bs0EcffaS33npLH3300R3td+zYsUpPT7cux44ds1PFAADA2bgVdIMBAwaoZ8+eCgoKksVisZ5C2rx5s2rWrGnX4l544QXr0R1Jqlevno4cOaJJkyYpMjLSeoQpLS1NQUFB1u3S0tLUoEGDPPfr7u4ud3d3u9YKAACcU4HDziuvvKK6devq2LFj6tGjhzU0uLq6asyYMXYt7tKlS3JxsT345OrqquzsbElSaGioAgMDlZiYaA0358+f1+bNm/X000/btRYAAFA8FTjsSFL37t0lyeby7sjISPtU9BedOnXSf//7X1WqVEl16tTRzp07NXXqVEVFRUmSLBaLRo4cqYkTJ6patWoKDQ3VSy+9pODgYHXp0sXu9QAAgOKnwHN2rl27ptdee0133XWXSpcurUOHDkmSXnrpJesl6fYyc+ZMde/eXUOHDlWtWrX0/PPPa8iQIXrttdesfUaPHq1nnnlGgwcPVpMmTZSRkaHVq1fLw8PDrrUAAIDiqcBh57///a9iY2M1ZcoUlSxZ0tpet25dffjhh3YtrkyZMpo2bZqOHDmiP//8UwcPHtTEiRNtxrVYLHr11VeVmpqqy5cv69tvv1X16tXtWgcAACi+Chx25s+frzlz5qhv3742V1/Vr19fv/76q12LAwAAuFMFDjsnTpxQ1apVc7RnZ2crKyvLLkUBAADYS4HDTu3atbVhw4Yc7Z9++qkaNmxol6IAAADspcBXY40fP16RkZE6ceKEsrOztXTpUu3du1fz58/XypUrC6NGAACA21bgIzudO3fWihUr9O2338rLy0vjx49XcnKyVqxYYb2bMgAAgLO4rfvstGjRQgkJCfauBQAAwO4KfGQHAACgOCnwkR0XFxdZLJY811+7du2OCgIAALCnAoedZcuW2TzOysrSzp079dFHH2nChAl2KwwAAMAeChx2OnfunKOte/fuqlOnjhYtWqSBAwfapTAAAAB7sNucnfvvv1+JiYn22h0AAIBd2CXs/Pnnn5oxY4buuusue+wOAADAbgp8Gqts2bI2E5QNw9CFCxdUqlQpffLJJ3YtDgAA4E4VOOy88847NmHHxcVFFSpUULNmzVS2bFm7FgcAAHCnChx2+vfvXwhlAAAAFI58hZ2ffvop3zu89957b7sYAAAAe8tX2GnQoIEsFosMw7hpP4vFwk0FAQCAU8lX2ElJSSnsOgAAAApFvsJO5cqVC7sOAACAQnFb33ouSXv27NHRo0d15coVm/ZHH330josCAACwlwKHnUOHDqlr167avXu3zTyeG5ejM2cHAAA4kwLfQfnZZ59VaGioTp8+rVKlSumXX37R+vXr1bhxY61du7YQSgQAALh9BT6yk5SUpDVr1qh8+fJycXGRi4uLHnzwQU2aNEkjRozQzp07C6NOAACA21LgIzvXrl1TmTJlJEnly5fXyZMnJV2fxLx37177VgcAAHCHCnxkp27duvrxxx8VGhqqZs2aacqUKSpZsqTmzJmju+++uzBqBAAAuG0FDjvjxo3TxYsXJUmvvvqqOnbsqBYtWqhcuXJatGiR3QsEAAC4E/kOO40bN9aTTz6pPn36yNvbW5JUtWpV/frrr/rjjz9yfBs6AACAM8j3nJ369etr9OjRCgoK0hNPPGFz5ZWfnx9BBwAAOKV8h52YmBilpqYqOjpaR48e1UMPPaSqVavq9ddf14kTJwqzRgAAgNtWoKuxSpUqpf79+2vt2rXat2+fevXqpffff19VqlRRhw4dtHTp0sKqEwAA4LYU+NLzG+655x5NnDhRhw8fVnx8vDZt2qQePXrYszYAAIA7dtvfjSVJa9eu1bx58/TZZ5/Jzc1NgwYNslddAAAAdlHgsHP8+HHFxsYqNjZWhw4dUosWLfTee++pR48e8vT0LIwaAQAAblu+w87ixYs1d+5cJSYmyt/fX5GRkYqKilLVqlULsz4AAIA7ku+w069fP3Xo0EHLli1T+/bt5eJy29N9AAAAiky+w87x48fl7+9fmLUAAADYXb4PzxB0AABAccS5KAAAYGqEHQAAYGqEHQAAYGr5DjtbtmzRtWvX8lyfmZmpxYsX26UoAAAAe8l32AkLC9OZM2esj729vXXo0CHr43Pnzql37972rQ4AAOAO5TvsGIZx08d5tQEAADiSXefsWCwWe+4OAADgjjn9BOUTJ06oX79+KleunDw9PVWvXj1t27bNut4wDI0fP15BQUHy9PRUeHi49u/f78CKAQCAMynQF4Hu2bNHqampkq6HjF9//VUZGRmSpN9//93uxZ09e1bNmzdX69attWrVKlWoUEH79+9X2bJlrX2mTJmiGTNm6KOPPlJoaKheeuklRUREaM+ePfLw8LB7TQAAoHgpUNh56KGHbObldOzYUdL101eGYdj9NNbkyZMVEhKiefPmWdtCQ0Ot/zYMQ9OmTdO4cePUuXNnSdL8+fMVEBCg5cuXq1evXnatBwAAFD/5DjspKSmFWUeuvvjiC0VERKhHjx5at26d7rrrLg0dOlSDBg2y1pSamqrw8HDrNj4+PmrWrJmSkpLyDDuZmZnKzMy0Pj5//nzhPhEAAOAw+Q47lStXvmWfn3/++Y6K+V+HDh3SrFmzNGrUKP373//W1q1bNWLECJUsWVKRkZHWU2oBAQE22wUEBFjX5WbSpEmaMGGCXWsFAADO6Y4nKF+4cEFz5sxR06ZNVb9+fXvUZJWdna377rtPr7/+uho2bKjBgwdr0KBBmj179h3td+zYsUpPT7cux44ds1PFAADA2dx22Fm/fr0iIyMVFBSkt956S23atNGmTZvsWZuCgoJUu3Ztm7ZatWrp6NGjkqTAwEBJUlpamk2ftLQ067rcuLu7y9vb22YBAADmVKCwk5qaqjfeeEPVqlVTjx495O3trczMTC1fvlxvvPGGmjRpYtfimjdvrr1799q07du3z3pKLTQ0VIGBgUpMTLSuP3/+vDZv3qywsDC71gIAAIqnfIedTp06qUaNGvrpp580bdo0nTx5UjNnzizM2vTcc89p06ZNev3113XgwAHFxcVpzpw5GjZsmKTrV4GNHDlSEydO1BdffKHdu3friSeeUHBwsLp06VKotQEAgOIh3xOUV61apREjRujpp59WtWrVCrMmqyZNmmjZsmUaO3asXn31VYWGhmratGnq27evtc/o0aN18eJFDR48WOfOndODDz6o1atXc48dAAAgqQBhZ+PGjYqJiVGjRo1Uq1Yt/fOf/yyS+9h07NjRej+f3FgsFr366qt69dVXC70WAABQ/OT7NNb999+vDz74QKdOndKQIUO0cOFCBQcHKzs7WwkJCbpw4UJh1gkAAHBbCnw1lpeXl6KiorRx40bt3r1b//rXv/TGG2/I399fjz76aGHUCAAAcNvu6D47NWrU0JQpU3T8+HHFx8fbqyYAAAC7scu3nru6uqpLly764osv7LE7AAAAu8n3BOWoqKhb9rFYLIqJibmjggAAAOwp32EnNjZWlStXVsOGDW2++RwAAMCZ5TvsPP3004qPj1dKSooGDBigfv36yc/PrzBrAwAAuGP5nrMTHR2tU6dOafTo0VqxYoVCQkLUs2dPff311xzpAQAATqtAE5Td3d3Vu3dvJSQkaM+ePapTp46GDh2qKlWqKCMjo7BqBAAAuG23fTWWi4uLLBaLDMPQtWvX7FkTAACA3RQo7GRmZio+Pl4PP/ywqlevrt27d+vdd9/V0aNHVbp06cKqEQAA4Lble4Ly0KFDtXDhQoWEhCgqKkrx8fEqX758YdYGAABwx/IddmbPnq1KlSrp7rvv1rp167Ru3bpc+y1dutRuxQEAANypfIedJ554QhaLpTBrAQAAsLsC3VQQAACguLHLd2MBAAA4K8IOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwtWIVdt544w1ZLBaNHDnS2nb58mUNGzZM5cqVU+nSpdWtWzelpaU5rkgAAOBUik3Y2bp1q95//33de++9Nu3PPfecVqxYoSVLlmjdunU6efKkHnvsMQdVCQAAnE2xCDsZGRnq27evPvjgA5UtW9banp6erpiYGE2dOlVt2rRRo0aNNG/ePP3www/atGmTAysGAADOoliEnWHDhqlDhw4KDw+3ad++fbuysrJs2mvWrKlKlSopKSkpz/1lZmbq/PnzNgsAADAnN0cXcCsLFy7Ujh07tHXr1hzrUlNTVbJkSfn6+tq0BwQEKDU1Nc99Tpo0SRMmTLB3qQAAwAk59ZGdY8eO6dlnn9WCBQvk4eFht/2OHTtW6enp1uXYsWN22zcAAHAuTh12tm/frtOnT+u+++6Tm5ub3NzctG7dOs2YMUNubm4KCAjQlStXdO7cOZvt0tLSFBgYmOd+3d3d5e3tbbMAAABzcurTWA899JB2795t0zZgwADVrFlTL774okJCQlSiRAklJiaqW7dukqS9e/fq6NGjCgsLc0TJAADAyTh12ClTpozq1q1r0+bl5aVy5cpZ2wcOHKhRo0bJz89P3t7eeuaZZxQWFqb777/fESUDAAAn49RhJz/eeecdubi4qFu3bsrMzFRERITee+89R5cFAACcRLELO2vXrrV57OHhoejoaEVHRzumIAAA4NSceoIyAADAnSLsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAU3PqsDNp0iQ1adJEZcqUkb+/v7p06aK9e/fa9Ll8+bKGDRumcuXKqXTp0urWrZvS0tIcVDEAAHA2Th121q1bp2HDhmnTpk1KSEhQVlaWHnnkEV28eNHa57nnntOKFSu0ZMkSrVu3TidPntRjjz3mwKoBAIAzcXN0ATezevVqm8exsbHy9/fX9u3b9Y9//EPp6emKiYlRXFyc2rRpI0maN2+eatWqpU2bNun+++93RNkAAMCJOPWRnf+Vnp4uSfLz85Mkbd++XVlZWQoPD7f2qVmzpipVqqSkpCSH1AgAAJyLUx/Z+avs7GyNHDlSzZs3V926dSVJqampKlmypHx9fW36BgQEKDU1Nc99ZWZmKjMz0/r4/PnzhVIzAABwvGJzZGfYsGH6+eeftXDhwjve16RJk+Tj42NdQkJC7FAhAABwRsUi7AwfPlwrV67Ud999p4oVK1rbAwMDdeXKFZ07d86mf1pamgIDA/Pc39ixY5Wenm5djh07VlilAwAAB3PqsGMYhoYPH65ly5ZpzZo1Cg0NtVnfqFEjlShRQomJida2vXv36ujRowoLC8tzv+7u7vL29rZZAACAOTn1nJ1hw4YpLi5On3/+ucqUKWOdh+Pj4yNPT0/5+Pho4MCBGjVqlPz8/OTt7a1nnnlGYWFhXIkFAAAkOXnYmTVrliSpVatWNu3z5s1T//79JUnvvPOOXFxc1K1bN2VmZioiIkLvvfdeEVcKAACclVOHHcMwbtnHw8ND0dHRio6OLoKKAABAcePUc3YAAADuFGEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYmpujCwAAAEUkzuKYcfsYjhn3/3BkBwAAmBpHdgD8vTjqL1vJ4X/dAn9XHNkBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACm5uboAuwlOjpab775plJTU1W/fn3NnDlTTZs2dXRZAJB/cRbHjNvHcMy4ZuWo91HivcyDKcLOokWLNGrUKM2ePVvNmjXTtGnTFBERob1798rf39/R5cEsnPWDyFl/sTprXQD+dkwRdqZOnapBgwZpwIABkqTZs2fryy+/1Ny5czVmzBjHFscvfAAAHKrYz9m5cuWKtm/frvDwcGubi4uLwsPDlZSU5MDKAACAMyj2R3Z+//13Xbt2TQEBATbtAQEB+vXXX3PdJjMzU5mZmdbH6enpkqTz58/bv8BL9t9lvt3s+ThrXZLjaqOugiuOP2POWpfEz9j/cta6JH7GCqowPl/1/z+3DeMWZzKMYu7EiROGJOOHH36waX/hhReMpk2b5rrNyy+/bEhiYWFhYWFhMcFy7Nixm2aFYn9kp3z58nJ1dVVaWppNe1pamgIDA3PdZuzYsRo1apT1cXZ2tv744w+VK1dOFosD59j8xfnz5xUSEqJjx47J29vb0eXYcNbaqKtgnLUuyXlro66Coa6Cc9banLUuwzB04cIFBQcH37RfsQ87JUuWVKNGjZSYmKguXbpIuh5eEhMTNXz48Fy3cXd3l7u7u02br69vIVd6e7y9vZ3qB+uvnLU26ioYZ61Lct7aqKtgqKvgnLU2Z6zLx8fnln2KfdiRpFGjRikyMlKNGzdW06ZNNW3aNF28eNF6dRYAAPj7MkXYefzxx/Xbb79p/PjxSk1NVYMGDbR69eock5YBAMDfjynCjiQNHz48z9NWxZG7u7tefvnlHKfbnIGz1kZdBeOsdUnOWxt1FQx1FZyz1uasdeWXxTBudb0WAABA8VXsbyoIAABwM4QdAABgaoQdAABgaoQdAABgaoSdQtC/f39ZLBY99dRTOdYNGzZMFotF/fv3t2lPSkqSq6urOnTokGObw4cPy2Kx5Lps2rRJknTq1Cn16dNH1atXl4uLi0aOHOk0tS1dulTBwcGyWCwqWbKkwsLC9PXXXxfJuA8//LAqVKggb2/vHOPeyvr16xUSEmLd7/Lly4vk9dq4caOaN2+ucuXKydPTUzVr1tQ777xjsx9HvI9/9f3338vNzU0NGjRweF1r167NdX1qaqrDa5Oufxfff/7zH1WuXFnu7u6qUqWK5s6d69C6boz5v0udOnUc/nr94x//kMVikZubm4KCghQVFaUzZ84U+rgLFixQ/fr1VapUqRzj3sovv/yiypUrW/c7bdq0Inu9oqOjVatWLXl6eqpGjRpq0aKF037+LFmyRDVr1pSHh4fq1aunr776Ktd+hYGwU0hCQkK0cOFC/fnnn9a2y5cvKy4uTpUqVcrRPyYmRs8884zWr1+vkydP5rrPb7/9VqdOnbJZGjVqJOn6L9QKFSpo3Lhxql+/vlPVtn79egUHBysgIEAeHh568MEH1alTJ+3cubPQx3344Yf11Vdfafv27WrdurV13Py4ePGi/Pz8VL58eUmy+fLYwqzby8tLw4cP1/r165WcnKxx48Zp3LhxmjNnjs0+ivp9vOHcuXN64okn9NBDD+W6D0fVtXfvXpv1/v7+TlFbz549lZiYqJiYGO3du1fx8fGqUaOGQ+uaPn26TfuxY8fk5+enHj16OLSu77//Xhs2bJCvr69KlSqlTz75RFu2bNGgQYMKfdwnnnhCAwcO1C+//KIlS5ZYx82PS5cuqUyZMtavHLpy5UqRvF6zZs3S2LFj9corr+iXX37RhAkTtGnTJpUvX97pPn9++OEH9e7dWwMHDtTOnTvVpUsXdenSRT///HMer6p9meY+O87mvvvu08GDB7V06VL17dtX0vUjDZUqVVJoaKhN34yMDC1atEjbtm1TamqqYmNj9e9//zvHPsuVK5fn931VqVJF06dPlySbvxqdobZp06apf//+qlixog4ePKgGDRqoWrVqWrFihZKTkwt13L96/fXX9fnnn2vFihVq2LBhnq/PDe3atdOiRYsUGhqqzz//XJs2bdLjjz8uqXBfr4YNG9rUV6VKFS1dulQbNmzQ4MGDre1F/T7e8NRTT6lPnz5ydXXNcbTLkXX5+/vf8mtfirq21atXa926dTp06JD8/PwkXX8/HV2Xj4+PzS32ly9frrNnz+a463xR15WUlKTSpUurZcuWOnjwoFJTUzVkyBBNnjy50MetUqWKRowYIUkKDQ21jpsfTZo0UePGjXXu3Dl99dVX2r17t3VdYdb98ccfa8iQIdbfS3fffbdee+01paamKiQkxKk+f6ZPn662bdvqhRdekCS99tprSkhI0LvvvqvZs2fnuo09cWSnEEVFRWnevHnWx3Pnzs31KywWL16smjVrqkaNGurXr5/mzp1766+rL6a13Rj3woUL8vPzK9LXJDs72zru7VizZo3130VZ986dO/XDDz+oZcuWOdYV9fs4b948HTp0SC+//PJN+zni56tBgwYKCgrSww8/rO+//94pavviiy/UuHFjTZkyRXfddZeqV6+u559/3uYvbkfU9b9iYmIUHh6uypUrO7SusLAwXbx4UWlpaRowYIDef/99ffrpp2rfvn2hj3vs2DF99dVXMgxDaWlp1nELqnTp0tq8ebP1cWHWnZmZKQ8PD5s2Nzc3nT17VpGRkU71+ZOUlKTw8HCbtoiICCUlJdl9rNwQdgpRv379tHHjRh05ckRHjhzR999/r379+uXoFxMTY21v27at0tPTtW7duhz9HnjgAZUuXdpmKW619evXT+vWrVN6errCwsKK9DV56623lJGRoZ49e+bZ52aSk5OL9PWqWLGi3N3d1bhxYw0bNkxPPvlkjj5F+T7u379fY8aM0SeffCI3t5sfFC7KuoKCgjR79mx99tln+uyzzxQSEqJWrVppx44dDq/t0KFD2rhxo37++WctW7ZM06ZN06effqqhQ4c6tK6/OnnypFatWpXrz1dR19W8eXP94x//0NatWzV69Ght2LBBJUqU0OjRowt93AULFujxxx9XyZIlFRgYKB8fH0VHR+f6mtyMl5eXUlJSiuT1ioiI0Icffqjt27fLMAxt27ZN+/btk2EYatu2rVN9/qSmpub4CqeAgIAcc+sKC6exClGFChXUoUMHxcbGyjAMdejQwTr/44a9e/dqy5YtWrZsmaTrqfzxxx9XTEyMWrVqZdN30aJFqlWrVrGuLSEhQYZhqEuXLlqxYkWRjRsXF6cJEybo888/z3UuR340atSoSF+vDRs2KCMjQ5s2bdKYMWNUtWpV9e7d26ZPUb2P165dU58+fTRhwgRVr179pnUXZV2SVKNGDZs5MA888IAOHjyod955Rx9//LFDa8vOzpbFYtGCBQusp42mTp2q7t2767333pOnp6dD6vqrjz76SL6+vurSpUuu64uyrj179mjLli2qWbOm4uLiNHToUO3evVs9evQo9HGfffZZjR8/XhERETp16pReeOEFPfXUU4qJicl1m7y4urqqdu3aRfJ6vfTSS0pNTdX9998vwzAUEBCgqlWr6ueff3bqzx9HIOwUsqioKOt3duX2V0JMTIyuXr2q4OBga5thGHJ3d9e7775rc149JCREVatWLba1nThxQk8++aTGjRunjz76SOvXry+ScRcuXKgnn3xSS5YsyXEYtSAeeughxcbGSiqa1+vGufV69eopLS1Nr7zySo6wIxXN+3jhwgVt27ZNO3futI6VnZ0twzDk5uamb775Rm3atCnyuvLStGlTbdy4Mc/1RVVbUFCQ7rrrLpv+tWrVkmEYOn78uKpVq+aQuv667dy5c/XPf/5TJUuWzLNfUdU1adIk+fv7q2rVqrr33ns1duxYDRo0SLt27dK//vWvQh23efPm1vkk9957r7y8vNSiRQtNnDhRQUFBeb42uWnatGmR/K7w9PTU3Llz9f777ystLU1BQUF68MEH5ebmpgoVKjjV509gYKDS0tJs2tLS0m45F89eOI1VyNq2basrV64oKytLERERNuuuXr2q+fPn6+2339auXbusy48//qjg4GDFx8ebpraUlBTt2LFD8fHxeumll4ps3Pj4eA0YMEDx8fG5XlZZEA0bNnTYe5mdnW1zNdhfFcX76O3trd27d9vs46mnnlKNGjW0a9cuNWvWzCF15WXXrl03/YAqqtqaN2+ukydPKiMjw9q2b98+ubi4qGLFig6r64Z169bpwIEDGjhw4E37FVVdly5dksVisRk3KytLknLMWbP3uC4uth+Hrq6uknRb81dq1apVpO9jiRIlVLFiRbm6uiolJUUBAQFycXFxqs+fsLAwJSYm2rQlJCQoLCzMruPkhSM7hczV1VXJycnWf//VypUrdfbsWQ0cONAmQUtSt27dFBMTY3OvhDNnzuQ4v+nr62udoLZr1y5J12fX//bbb9q1a5dKliyp2rVrO7S2uLg4bdiwQfXq1VOzZs3022+/ae3atfLw8Cj0cSMjIzV9+nQ1a9bM2s/T0zPHvnOTkZGhP/74QxcuXJAkHT16VIsWLVLZsmULte7o6GhVqlRJNWvWlHT9Evq33nrLeqXI/yqq97Fu3bo27f7+/rm2F3Vd06ZNU2hoqOrUqaPLly/rww8/1Jo1a/TNN9/kWldR1tanTx+99tprGjBggCZMmKDff/9dL7zwgqKiomxOYRV1XTfExMSoWbNmeb6HRV1Xp06dtGzZMnl7e+vQoUM6deqUQkJCVLlyZYWEhBTquIMGDdKsWbOsp7FGjhyppk2b2hz1yMuVK1esvyuuXLmiU6dOadGiRfLy8irU12vfvn3asmWLmjVrprNnz2rq1Kk6e/asNRg60+fPs88+q5YtW+rtt99Whw4dtHDhQm3bti3HLTUKjQG7i4yMNDp37pzn+s6dOxuRkZFGx44djfbt2+faZ/PmzYYk48cffzRSUlIMSbku8fHx1m1yW1+5cmWH19ayZctc10dGRjp83Jv57rvvHFL3jBkzjDp16hilSpUyvL29jYYNGxrvvfeece3aNes+HfUz9lcvv/yyUb9+fZs2R9Q1efJk45577jE8PDwMPz8/o1WrVsaaNWty7NdRr1lycrIRHh5ueHp6GhUrVjRGjRplXLp0yeF1nTt3zvD09DTmzJmT6z4dVVfTpk2NMmXKGJ6enkZQUJDRt29f4/jx44U+7owZM4zatWvnOe7N5DVGy5YtC7XuPXv2GA0aNDA8PT0Nb29vo3PnzkaXLl2c9vNn8eLFRvXq1Y2SJUsaderUMb788st8vb72YPm/IgEAAEyJOTsAAMDUCDv4Wzp69GiOe0b8dTl69KijSwTgJG72u2LDhg2OLg/5wGks/C1dvXpVhw8fznN9lSpVbnnjPAB/DwcOHMhz3V133ZXrZHM4F8IOAAAwNU5jAQAAUyPsAAAAUyPsAAAAUyPsAICk2NhY+fr6FmibKlWqaNq0aTftY7FYtHz58tuuC8CdI+wAuKX+/fvLYrHY3D7+hmHDhslisah///451iUlJcnV1TXX7yU7fPiwLBZLrsumTZty9E9LS1OJEiW0cOHCXGscOHCg7rvvvoI/uf/z+OOPa9++fbe9PQDnRdgBkC8hISFauHCh/vzzT2vb5cuXFRcXp0qVKuW6TUxMjJ555hmtX79eJ0+ezLXPt99+q1OnTtksjRo1ytEvICBAHTp00Ny5c3Osu3jxohYvXnzLL7TMS1ZWljw9PeXv739b2wNwboQdAPly3333KSQkREuXLrW2LV26VJUqVVLDhg1z9M/IyNCiRYv09NNPq0OHDoqNjc11v+XKlVNgYKDNUqJEiVz7Dhw4UImJiTlu+rhkyRJdvXpVffv21erVq/Xggw/K19dX5cqVU8eOHXXw4EFr3xtHlBYtWqSWLVvKw8NDCxYsyHEa6+DBg+rcubMCAgJUunRpNWnSRN9++22Omi5cuKDevXvLy8tLd911l6Kjo2/2MurYsWPq2bOnfH195efnp86dO9vc82nt2rVq2rSpvLy85Ovrq+bNm+vIkSM33SeAmyPsAMi3qKgozZs3z/p47ty5GjBgQK59Fy9erJo1a6pGjRrq16+f5s6dqzu9rVf79u0VEBCQIzjNmzdPjz32mHx9fXXx4kWNGjVK27ZtU2JiolxcXNS1a1dlZ2fbbDNmzBg9++yzSk5OVkRERI6xMjIy1L59eyUmJmrnzp1q27atOnXqlCNovfnmm6pfv7527txp3WdCQkKu9WdlZSkiIkJlypTRhg0b9P3336t06dJq27atrly5oqtXr6pLly5q2bKlfvrpJyUlJWnw4MGyWCx39LoBf3tF9pWjAIqtG9+Affr0acPd3d04fPiwcfjwYcPDw8P47bffrN+k/FcPPPCAMW3aNMMwDCMrK8soX7688d1331nX3/g2ZU9PT8PLy8tmuZkxY8YYoaGhRnZ2tmEYhnHgwAHDYrEY3377ba79f/vtN0OSsXv3bptxb9R2w7x58wwfH5+bjl2nTh1j5syZ1seVK1c22rZta9Pn8ccfN9q1a2d9LMlYtmyZYRiG8fHHHxs1atSw1m4YhpGZmWl4enoaX3/9tXHmzBlDkrF27dqb1gGgYDiyAyDfKlSoYD0lNW/ePHXo0EHly5fP0W/v3r3asmWLevfuLUlyc3PT448/rpiYmBx9Fy1apF27dtksNxMVFaWUlBR99913kq4f1alSpYratGkjSdq/f7969+6tu+++W97e3qpSpYok5Tgi07hx45uOk5GRoeeff161atWSr6+vSpcureTk5Bz7CQsLy/E4OTk5133++OOPOnDggMqUKWP9biU/Pz9dvnxZBw8elJ+fn/r376+IiAh16tRJ06dP16lTp25aJ4Bb48t/ABRIVFSUhg8fLkl5zk+JiYnR1atXFRwcbG0zDEPu7u5699135ePjY20PCQlR1apV8z1+tWrV1KJFC82bN0+tWrXS/PnzNWjQIOupnk6dOqly5cr64IMPFBwcrOzsbNWtW1dXrlyx2Y+Xl9dNx3n++eeVkJCgt956S1WrVpWnp6e6d++eYz8FkZGRoUaNGmnBggU51lWoUEHS9fA2YsQIrV69WosWLdK4ceOUkJCg+++//7bHBf7uCDsACuTG/BKLxZLrXJerV69q/vz5evvtt/XII4/YrOvSpYvi4+NzvYS9IAYOHKinn35ajz76qE6cOGG97P3MmTPau3evPvjgA7Vo0UKStHHjxtsa4/vvv1f//v3VtWtXSdeDSm5fHvu/l8lv2rRJtWrVynWf9913nxYtWiR/f395e3vnOXbDhg3VsGFDjR07VmFhYYqLiyPsAHeA01gACsTV1VXJycnas2ePXF1dc6xfuXKlzp49q4EDB6pu3bo2S7du3XKcyjpz5oxSU1NtlsuXL9+0hh49eqhEiRIaMmSIHnnkEYWEhEiSypYtq3LlymnOnDk6cOCA1qxZo1GjRt3W86xWrZqWLl2qXbt26ccff1SfPn1yTHKWroeiKVOmaN++fYqOjtaSJUv07LPP5rrPvn37qnz58urcubM2bNiglJQUrV27ViNGjNDx48eVkpKisWPHKikpSUeOHNE333yj/fv35xmeAOQPYQdAgXl7e+d5ZCImJkbh4eE2p6pu6Natm7Zt26affvrJ2hYeHq6goCCb5VZ3HC5VqpR69eqls2fPKioqytru4uKihQsXavv27apbt66ee+45vfnmm7f1HKdOnaqyZcvqgQceUKdOnRQREZHrTQv/9a9/adu2bWrYsKEmTpyoqVOn5nrE60bd69evV6VKlfTYY4+pVq1aGjhwoC5fvixvb2+VKlVKv/76q7p166bq1atr8ODBGjZsmIYMGXJbzwHAdRbDuMNrQQEAAJwYR3YAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICp/T+WRF7HOqAsCAAAAABJRU5ErkJggg==", "text/plain": [ "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABB/klEQVR4nO3de1xUdeL/8fcAMpAKiMbNQEnNe0qSrmV5o7xlWl5WJReRdCut1O1meSnblbSLlpm6rYm6mq6mZn2V8msataIppptmZnkjE7QUEA3k8vn90c/5OoEGOshw9vV8PM5jdz7nM+e8B8l5e+acOTZjjBEAAIBFeVR2AAAAgIpE2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QFgOc8//7xsNpt++umnCt9XcnKyWrduLR8fH9lsNmVlZVX4PgGUD2UHqEKSkpJks9mclqCgIHXu3Fnr16+/5nk++OAD9e7dW8HBwfL29lZgYKDuvPNOvfrqq8rJybnmea61n3/+WQMHDpSvr69mz56txYsXq3r16qXO/e2fnZeXl+rWrathw4bp2LFjJeZ36tRJNptNjRo1KnV7GzZscGxr5cqVTuu++uor9e/fX/Xq1ZOPj4/q1q2ru+66S7NmzXKaV79+/RK/TxeW7t27X+FPBXA/XpUdAED5TZkyRZGRkTLGKDMzU0lJSerZs6c++OAD3XPPPRW+/+LiYiUkJCgpKUktW7bUI488ovDwcJ05c0apqamaMGGC1q1bp40bN1Z4lsq0fft2nTlzRi+++KJiYmLK9JwLf3Z5eXnaunWrkpKS9Pnnn2vPnj3y8fFxmuvj46PvvvtOX3zxhdq2beu0bsmSJfLx8VFeXp7T+JYtW9S5c2dFRERoxIgRCgkJUXp6urZu3arXX39djz76qNP81q1b6y9/+UuJnGFhYWV6PUBVQNkBqqAePXooOjra8TghIUHBwcF69913XVJ2iouLdf78+RJvvhdMnz5dSUlJGjt2rF599VXZbDbHuscff1zHjx/XokWLrmofVcGJEyckSQEBAWV+zsV/dg8++KDq1KmjadOmae3atRo4cKDT3AYNGqiwsFDvvvuuU9nJy8vT6tWr1atXL7333ntOz/nb3/4mf39/bd++vUSuC3kvVrduXT3wwANlzg9URXyMBVhAQECAfH195eXl/O+XV155Rbfddptq164tX19ftWnTpsRHHpJks9k0evRoLVmyRM2bN5fdbldycnKp+zp37pymTZum5s2b6+WXX3YqOheEhobq6aefLvM+riRn48aN5ePjozZt2iglJaXUrFlZWRo2bJgCAgLk7++v+Ph4nTt3rvQf4m+sWLFCbdq0ka+vr+rUqaMHHnjA6eOmTp06KS4uTpJ06623ymazadiwYWXa9sXuuOMOSdL3339f6vrBgwdr+fLlKi4udox98MEHOnfuXIlydGE7zZs3L7WABQUFlTsfYAWUHaAKys7O1k8//aSTJ09q7969evjhh5Wbm1viX+ivv/66oqKiNGXKFE2dOlVeXl4aMGCA/ud//qfENj/55BONHTtWf/zjH/X666+rfv36pe77888/V1ZWlgYPHixPT89y5b7UPsqT89NPP9WYMWP0wAMPaMqUKfr555/VvXt37dmzp8TcgQMH6syZM0pMTNTAgQOVlJSkF1544XdzJiUlaeDAgfL09FRiYqJGjBihVatWqUOHDo4TkJ977jmNHDlS0q8fTS1evFh//vOfy/XzkKTDhw9LkmrVqlXq+iFDhuj48ePavHmzY2zp0qXq2rVrqeWlXr16SktLK/XnUZqCggL99NNPJZZffvml3K8FcFsGQJWxYMECI6nEYrfbTVJSUon5586dc3p8/vx506JFC9OlSxencUnGw8PD7N2793czvP7660aSWbNmjdN4YWGhOXnypNNSXFxcpn2UJ6cks2PHDsfYkSNHjI+Pj7nvvvscY5MnTzaSzPDhw52ef99995natWtf9vWdP3/eBAUFmRYtWphffvnFMf7hhx8aSWbSpEmOsQt/Htu3b7/sNi+e+7//+7/m5MmTJj093axcudJcf/31xm63m/T0dKf5HTt2NM2bNzfGGBMdHW0SEhKMMcacPn3aeHt7m4ULF5pNmzYZSWbFihWO53388cfG09PTeHp6mvbt25unnnrKfPTRR+b8+fMlMtWrV6/U3ydJJjEx8XdfE1BVcGQHqIJmz56tDRs2aMOGDfrnP/+pzp0768EHH9SqVauc5vn6+jr+/+nTp5Wdna077rhDO3fuLLHNjh07qlmzZr+77wtXWdWoUcNp/KuvvtL111/vtPz8889l2kd5crZv315t2rRxPI6IiFCfPn300UcfqaioyGnuQw895PT4jjvu0M8//3zZK8V27NihEydO6JFHHnE6n6hXr15q0qRJqUebyiMmJkbXX3+9wsPD1b9/f1WvXl1r167VDTfccMnnDBkyRKtWrdL58+e1cuVKeXp66r777it17l133aXU1FTde++92r17t6ZPn65u3bqpbt26Wrt2bYn57dq1c/wuXbwMHjz4ql4n4E44QRmogtq2bet0gvLgwYMVFRWl0aNH65577pG3t7ck6cMPP9Rf//pX7dq1S/n5+Y75pZ1nExkZWaZ916xZU5KUm5vrNN6wYUNt2LBBkrRo0SItXry4zPsoT87SLsW+6aabdO7cOZ08eVIhISGO8YiICKd5Fz4qOn36tPz8/ErNcuTIEUlS48aNS6xr0qSJPv/881KfV1azZ8/WTTfdpOzsbL3zzjtKSUmR3W6/7HMGDRqkJ554QuvXr9eSJUt0zz33OP4cSnPrrbc6ytHu3bu1evVqzZgxQ/3799euXbucCmedOnXKfCUZUFVxZAewAA8PD3Xu3FnHjx/XgQMHJEmfffaZ7r33Xvn4+Oitt97SunXrtGHDBg0ZMkTGmBLbuPjoyuU0adJEkkqcE1KjRg3FxMQoJiZGN954Y6nPLW0f5c1ZHpc6p+hqt3s12rZtq5iYGPXr109r165VixYtNGTIkBLl8WKhoaHq1KmTXn31VaWkpGjIkCFl2pe3t7duvfVWTZ06VXPmzFFBQYFWrFjhqpcCVBmUHcAiCgsLJf3fEZf33ntPPj4++uijjzR8+HD16NHDJf+Cv+OOO+Tv769ly5Y5XSF0pcqb80KZu9i3336r6667Ttdff/1V56lXr54kaf/+/SXW7d+/37HeFS6cAP3jjz/qzTffvOzcIUOG6LPPPpOfn5969uxZ7n1dOBJ4/PjxK8oKVGWUHcACCgoK9PHHH8vb21tNmzaV9Osbqc1mczqP5fDhw1qzZs1V7eu6667TU089pT179uiZZ54p9ShJeY6clDdnamqq07k86enpev/993X33XeX++qw0kRHRysoKEhz5851+kht/fr12rdvn3r16nXV+7hYp06d1LZtW82cObPEFwRerH///po8ebLeeustx8eUpdm0aVOpP/9169ZJKv3jOcDqOGcHqILWr1+vb775RtKvXxS3dOlSHThwQM8884zjXJRevXrptddeU/fu3TVkyBCdOHFCs2fPVsOGDfWf//znqvb/zDPPaN++fXr55Zf18ccfq1+/frrhhht0+vRp7dy5UytWrFBQUFCZvjCwvDlbtGihbt266bHHHpPdbtdbb70lSWW6pLwsqlWrpmnTpik+Pl4dO3bU4MGDlZmZ6bhUfuzYsS7Zz8WefPJJDRgwQElJSSVOqr7A399fzz///O9u69FHH9W5c+d03333qUmTJjp//ry2bNmi5cuXq379+oqPj3eaf+zYMf3zn/8ssZ0aNWqob9++V/JyAPdTmZeCASif0i499/HxMa1btzZz5sxxutTbGGPmz59vGjVqZOx2u2nSpIlZsGCB47Lsi0kyo0aNKnee1atXm549e5rrr7/eeHl5mYCAANOhQwfz8ssvm6ysrDLvo7w5//nPfzrmR0VFmU2bNjnNu/DckydPOo1f+PkdOnTod1/b8uXLTVRUlLHb7SYwMNDExsaaH374odTtlefS89LmFhUVmQYNGpgGDRqYwsJCY4zzpeeXUtql5+vXrzfDhw83TZo0MTVq1DDe3t6mYcOG5tFHHzWZmZlOz7/cpef16tX73dcEVBU2YyrxTD0AKAebzaZRo0b97vktAHAxztkBAACWRtkBAACWRtkBAACWxtVYAKoMTjEEcCU4sgMAACyNsgMAACyNj7EkFRcX68cff1TNmjVLvfEgAABwP8YYnTlzRmFhYfLwuPTxG8qOpB9//FHh4eGVHQMAAFyB9PR03XDDDZdcT9mRVLNmTUm//rAufNU+AABwbzk5OQoPD3e8j18KZUdyfHTl5+dH2QEAoIr5vVNQOEEZAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYmldlBwAAWJvtBVtlRyjBTDaVHQHXEEd2AACApXFkB6XiX2IAAKvgyA4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALC0Si07KSkp6t27t8LCwmSz2bRmzZpLzn3ooYdks9k0c+ZMp/FTp04pNjZWfn5+CggIUEJCgnJzcys2OAAAqDIqteycPXtWrVq10uzZsy87b/Xq1dq6davCwsJKrIuNjdXevXu1YcMGffjhh0pJSdHIkSMrKjIAAKhivCpz5z169FCPHj0uO+fYsWN69NFH9dFHH6lXr15O6/bt26fk5GRt375d0dHRkqRZs2apZ8+eeuWVV0otRwAA4L+LW5+zU1xcrKFDh+rJJ59U8+bNS6xPTU1VQECAo+hIUkxMjDw8PLRt27ZLbjc/P185OTlOCwAAsCa3LjvTpk2Tl5eXHnvssVLXZ2RkKCgoyGnMy8tLgYGBysjIuOR2ExMT5e/v71jCw8NdmhsAALgPty07aWlpev3115WUlCSbzebSbY8fP17Z2dmOJT093aXbBwAA7sNty85nn32mEydOKCIiQl5eXvLy8tKRI0f0l7/8RfXr15ckhYSE6MSJE07PKyws1KlTpxQSEnLJbdvtdvn5+TktAADAmir1BOXLGTp0qGJiYpzGunXrpqFDhyo+Pl6S1L59e2VlZSktLU1t2rSRJH3yyScqLi5Wu3btrnlmAADgfiq17OTm5uq7775zPD506JB27dqlwMBARUREqHbt2k7zq1WrppCQEDVu3FiS1LRpU3Xv3l0jRozQ3LlzVVBQoNGjR2vQoEFciQUAACRV8sdYO3bsUFRUlKKioiRJ48aNU1RUlCZNmlTmbSxZskRNmjRR165d1bNnT3Xo0EF///vfKyoyAACoYir1yE6nTp1kjCnz/MOHD5cYCwwM1NKlS12YCgAAWInbnqAMAADgCpQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZVadlJSUtS7d2+FhYXJZrNpzZo1jnUFBQV6+umn1bJlS1WvXl1hYWH605/+pB9//NFpG6dOnVJsbKz8/PwUEBCghIQE5ebmXuNXAgAA3FWllp2zZ8+qVatWmj17dol1586d086dOzVx4kTt3LlTq1at0v79+3Xvvfc6zYuNjdXevXu1YcMGffjhh0pJSdHIkSOv1UsAAABuzqsyd96jRw/16NGj1HX+/v7asGGD09ibb76ptm3b6ujRo4qIiNC+ffuUnJys7du3Kzo6WpI0a9Ys9ezZU6+88orCwsIq/DUAAAD3VqXO2cnOzpbNZlNAQIAkKTU1VQEBAY6iI0kxMTHy8PDQtm3bKiklAABwJ5V6ZKc88vLy9PTTT2vw4MHy8/OTJGVkZCgoKMhpnpeXlwIDA5WRkXHJbeXn5ys/P9/xOCcnp2JCAwCASlcljuwUFBRo4MCBMsZozpw5V729xMRE+fv7O5bw8HAXpAQAAO7I7cvOhaJz5MgRbdiwwXFUR5JCQkJ04sQJp/mFhYU6deqUQkJCLrnN8ePHKzs727Gkp6dXWH4AAFC53PpjrAtF58CBA9q0aZNq167ttL59+/bKyspSWlqa2rRpI0n65JNPVFxcrHbt2l1yu3a7XXa7vUKzAwAA91CpZSc3N1ffffed4/GhQ4e0a9cuBQYGKjQ0VP3799fOnTv14YcfqqioyHEeTmBgoLy9vdW0aVN1795dI0aM0Ny5c1VQUKDRo0dr0KBBXIkFAAAkVXLZ2bFjhzp37ux4PG7cOElSXFycnn/+ea1du1aS1Lp1a6fnbdq0SZ06dZIkLVmyRKNHj1bXrl3l4eGhfv366Y033rgm+QEAgPur1LLTqVMnGWMuuf5y6y4IDAzU0qVLXRkLAABYiNufoAwAAHA1KDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKrXspKSkqHfv3goLC5PNZtOaNWuc1htjNGnSJIWGhsrX11cxMTE6cOCA05xTp04pNjZWfn5+CggIUEJCgnJzc6/hqwAAAO6sUsvO2bNn1apVK82ePbvU9dOnT9cbb7yhuXPnatu2bapevbq6deumvLw8x5zY2Fjt3btXGzZs0IcffqiUlBSNHDnyWr0EAADg5rwqc+c9evRQjx49Sl1njNHMmTM1YcIE9enTR5K0aNEiBQcHa82aNRo0aJD27dun5ORkbd++XdHR0ZKkWbNmqWfPnnrllVcUFhZ2zV4LAABwT257zs6hQ4eUkZGhmJgYx5i/v7/atWun1NRUSVJqaqoCAgIcRUeSYmJi5OHhoW3btl1y2/n5+crJyXFaAACANblt2cnIyJAkBQcHO40HBwc71mVkZCgoKMhpvZeXlwIDAx1zSpOYmCh/f3/HEh4e7uL0AADAXbht2alI48ePV3Z2tmNJT0+v7EgAAKCCuG3ZCQkJkSRlZmY6jWdmZjrWhYSE6MSJE07rCwsLderUKcec0tjtdvn5+TktAADAmty27ERGRiokJEQbN250jOXk5Gjbtm1q3769JKl9+/bKyspSWlqaY84nn3yi4uJitWvX7ppnBgAA7qdSr8bKzc3Vd99953h86NAh7dq1S4GBgYqIiNCYMWP017/+VY0aNVJkZKQmTpyosLAw9e3bV5LUtGlTde/eXSNGjNDcuXNVUFCg0aNHa9CgQVyJBQAAJFVy2dmxY4c6d+7seDxu3DhJUlxcnJKSkvTUU0/p7NmzGjlypLKystShQwclJyfLx8fH8ZwlS5Zo9OjR6tq1qzw8PNSvXz+98cYb1/y1AAAA92QzxpjKDlHZcnJy5O/vr+zsbM7f+f9sL9gqO0IJZvJ//a8qUCXx9wkqSlnfv932nB0AAABXoOwAAABLc0nZycrKcsVmAAAAXK7cZWfatGlavny54/HAgQNVu3Zt1a1bV7t373ZpOAAAgKtV7rIzd+5cx+0VNmzYoA0bNmj9+vXq0aOHnnzySZcHBAAAuBrlvvQ8IyPDUXY+/PBDDRw4UHfffbfq16/PF/kBAAC3U+4jO7Vq1XLcSyo5OdlxV3JjjIqKilybDgAA4CqV+8jO/fffryFDhqhRo0b6+eef1aNHD0nSl19+qYYNG7o8IAAAwNUod9mZMWOG6tevr/T0dE2fPl01atSQJB0/flyPPPKIywMCAABcjXKXnWrVqumJJ54oMT527FiXBAIAAHClK/qencWLF6tDhw4KCwvTkSNHJEkzZ87U+++/79JwAAAAV6vcZWfOnDkaN26cevTooaysLMdJyQEBAZo5c6ar8wEAAFyVcpedWbNm6e2339Zzzz0nT09Px3h0dLS++uorl4YDAAC4WuUuO4cOHVJUVFSJcbvdrrNnz7okFAAAgKuUu+xERkZq165dJcaTk5PVtGlTV2QCAABwmXJfjTVu3DiNGjVKeXl5Msboiy++0LvvvqvExET94x//qIiMAAAAV6zcZefBBx+Ur6+vJkyYoHPnzmnIkCEKCwvT66+/rkGDBlVERgAAgCtW7rIjSbGxsYqNjdW5c+eUm5uroKAgV+cCAABwiSsqOxdcd911uu6661yVBQAAwOXKXXYiIyNls9kuuf7gwYNXFQgAAMCVyl12xowZ4/S4oKBAX375pZKTk/Xkk0+6KhcAAIBLlLvsPP7446WOz549Wzt27LjqQAAAAK50RffGKk2PHj303nvvuWpzAAAALuGysrNy5UoFBga6anMAAAAuUe6PsaKiopxOUDbGKCMjQydPntRbb73l0nAAAABXq9xlp2/fvk6PPTw8dP3116tTp05q0qSJq3IBAAC4RLnLzuTJkysiBwAAQIUoU9nJyckp8wb9/PyuOAwAAICrlansBAQEXPaLBKVfz92x2WwqKipySTAAAABXKFPZ2bRpU0XnAAAAqBBlKjsdO3as6BwAAAAV4opvBHru3DkdPXpU58+fdxq/+eabrzoUAACAq5S77Jw8eVLx8fFav359qes5ZwcAALiTcn+D8pgxY5SVlaVt27bJ19dXycnJWrhwoRo1aqS1a9dWREYAAIArVu4jO5988onef/99RUdHy8PDQ/Xq1dNdd90lPz8/JSYmqlevXhWREwAA4IqU+8jO2bNnFRQUJEmqVauWTp48KUlq2bKldu7c6dp0AAAAV6ncZadx48bav3+/JKlVq1aaN2+ejh07prlz5yo0NNSl4YqKijRx4kRFRkbK19dXDRo00IsvvihjjGOOMUaTJk1SaGiofH19FRMTowMHDrg0BwAAqLrK/THW448/ruPHj0v69dYR3bt315IlS+Tt7a2kpCSXhps2bZrmzJmjhQsXqnnz5tqxY4fi4+Pl7++vxx57TJI0ffp0vfHGG1q4cKEiIyM1ceJEdevWTV9//bV8fHxcmgcAAFQ9ZS47/fv314MPPqjY2FjHtym3adNGR44c0TfffKOIiAjVqVPHpeG2bNmiPn36OM4Dql+/vt5991198cUXkn49qjNz5kxNmDBBffr0kSQtWrRIwcHBWrNmjQYNGuTSPAAAoOop88dYp0+fVq9evRQREaFJkybp4MGDkqTrrrtOt9xyi8uLjiTddttt2rhxo7799ltJ0u7du/X555+rR48ekqRDhw4pIyNDMTExjuf4+/urXbt2Sk1NveR28/PzlZOT47QAAABrKnPZ2bhxow4ePKiEhAT985//VKNGjdSlSxctXbpU+fn5FRLumWee0aBBg9SkSRNVq1ZNUVFRGjNmjGJjYyVJGRkZkqTg4GCn5wUHBzvWlSYxMVH+/v6OJTw8vELyAwCAyleuE5Tr1aun559/XgcPHtSGDRsUFhamESNGKDQ0VKNGjVJaWppLw/3rX//SkiVLtHTpUu3cuVMLFy7UK6+8ooULF17VdsePH6/s7GzHkp6e7qLEAADA3Vzx7SK6dOmiLl266MyZM1q6dKmeffZZzZs3T4WFhS4L9+STTzqO7ki/Xt5+5MgRJSYmKi4uTiEhIZKkzMxMpyvBMjMz1bp160tu1263y263uywnAABwX+W+9Pxihw4d0iuvvKKpU6cqOzvb6dwZVzh37pw8PJwjenp6qri4WJIUGRmpkJAQbdy40bE+JydH27ZtU/v27V2aBQAAVE3lPrKTl5enlStX6p133lFKSorCw8OVkJCg+Ph4l5/70rt3b/3tb39TRESEmjdvri+//FKvvfaahg8fLkmy2WwaM2aM/vrXv6pRo0aOS8/DwsLUt29fl2YBAABVU5nLzhdffKF33nlHy5cvV15enu677z4lJyera9eujkvRXW3WrFmaOHGiHnnkEZ04cUJhYWH685//rEmTJjnmPPXUUzp79qxGjhyprKwsdejQQcnJyXzHDgAAkCTZzMVfR3wZHh4eatWqlRISEhQbG6tatWpVdLZrJicnR/7+/srOzpafn19lx3ELthcqpsBeDTO5TL+qANwMf5+gopT1/bvMR3Z27NihW265xSXhAAAArpUyn6BM0QEAAFXRVV2NBQAA4O4oOwAAwNIoOwAAwNLKXHZOnDhx2fWFhYWOu5EDAAC4izKXndDQUKfC07JlS6d7Sv388898azEAAHA7ZS47v/06nsOHD6ugoOCycwAAACqbS8/ZqahvUgYAALhSnKAMAAAsrczfoGyz2XTmzBn5+PjIGCObzabc3Fzl5ORIkuN/AQAA3EmZy44xRjfddJPT46ioKKfHfIwFAADcTZnLzqZNmyoyBwAAQIUoc9np2LFjReYAAACoEGUuO4WFhSoqKpLdbneMZWZmau7cuTp79qzuvfdedejQoUJCAgAAXKkyl50RI0bI29tb8+bNkySdOXNGt956q/Ly8hQaGqoZM2bo/fffV8+ePSssLAAAQHmV+dLzf//73+rXr5/j8aJFi1RUVKQDBw5o9+7dGjdunF5++eUKCQkAAHClylx2jh07pkaNGjkeb9y4Uf369ZO/v78kKS4uTnv37nV9QgAAgKtQ5rLj4+OjX375xfF469atateundP63Nxc16YDAAC4SmUuO61bt9bixYslSZ999pkyMzPVpUsXx/rvv/9eYWFhrk8IAABwFcp8gvKkSZPUo0cP/etf/9Lx48c1bNgwhYaGOtavXr1at99+e4WEBAAAuFLl+p6dtLQ0ffzxxwoJCdGAAQOc1rdu3Vpt27Z1eUAAAICrUeayI0lNmzZV06ZNS103cuRIlwQCAABwpTKXnZSUlDLNu/POO684DAAAgKuVuex06tTJcaNPY0ypc2w2m4qKilyTDAAAwAXKXHZq1aqlmjVratiwYRo6dKjq1KlTkbkAAABcosyXnh8/flzTpk1TamqqWrZsqYSEBG3ZskV+fn7y9/d3LAAAAO6kzGXH29tbf/zjH/XRRx/pm2++0c0336zRo0crPDxczz33nAoLCysyJwAAwBUpc9m5WEREhCZNmqT//d//1U033aSXXnpJOTk5rs4GAABw1cpddvLz87V06VLFxMSoRYsWqlOnjv7nf/5HgYGBFZEPAADgqpT5BOUvvvhCCxYs0LJly1S/fn3Fx8frX//6FyUHAAC4tTKXnT/84Q+KiIjQY489pjZt2kiSPv/88xLz7r33XtelAwAAuErl+gblo0eP6sUXX7zker5nBwAAuJsyl53i4uKKzAEAAFAhruhqrEv55ZdfXLk5AACAq+aSspOfn69XX31VkZGRrtgcAACAy5S57OTn52v8+PGKjo7WbbfdpjVr1kiSFixYoMjISM2cOVNjx451ecBjx47pgQceUO3ateXr66uWLVtqx44djvXGGE2aNEmhoaHy9fVVTEyMDhw44PIcAACgaipz2Zk0aZLmzJmj+vXr6/DhwxowYIBGjhypGTNm6LXXXtPhw4f19NNPuzTc6dOndfvtt6tatWpav369vv76a7366quqVauWY8706dP1xhtvaO7cudq2bZuqV6+ubt26KS8vz6VZAABA1VTmE5RXrFihRYsW6d5779WePXt08803q7CwULt373bcDd3Vpk2bpvDwcC1YsMAxdvFHZcYYzZw5UxMmTFCfPn0kSYsWLVJwcLDWrFmjQYMGVUguAABQdZT5yM4PP/zg+H6dFi1ayG63a+zYsRVWdCRp7dq1io6O1oABAxQUFKSoqCi9/fbbjvWHDh1SRkaGYmJiHGP+/v5q166dUlNTKywXAACoOspcdoqKiuTt7e147OXlpRo1alRIqAsOHjyoOXPmqFGjRvroo4/08MMP67HHHtPChQslSRkZGZKk4OBgp+cFBwc71pUmPz9fOTk5TgsAALCmMn+MZYzRsGHDZLfbJUl5eXl66KGHVL16dad5q1atclm44uJiRUdHa+rUqZKkqKgo7dmzR3PnzlVcXNwVbzcxMVEvvPCCq2ICAAA3VuYjO3FxcQoKCpK/v7/8/f31wAMPKCwszPH4wuJKoaGhatasmdNY06ZNdfToUUlSSEiIJCkzM9NpTmZmpmNdacaPH6/s7GzHkp6e7tLcAADAfZT5yM7FJwlfK7fffrv279/vNPbtt9+qXr16kn49WTkkJEQbN25U69atJUk5OTnatm2bHn744Utu1263O45QAQAAayvXvbGutbFjx+q2227T1KlTNXDgQH3xxRf6+9//rr///e+Sfr0X15gxY/TXv/5VjRo1UmRkpCZOnKiwsDD17du3csMDAAC34NZl59Zbb9Xq1as1fvx4TZkyxfHlhbGxsY45Tz31lM6ePauRI0cqKytLHTp0UHJysnx8fCoxOQAAcBc2Y4yp7BCVLScnR/7+/srOzpafn19lx3ELthcq7isFrpSZ/F//qwpUSfx9gopS1vdvl94IFAAAwN1QdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVVqbLz0ksvyWazacyYMY6xvLw8jRo1SrVr11aNGjXUr18/ZWZmVl5IAADgVqpM2dm+fbvmzZunm2++2Wl87Nix+uCDD7RixQp9+umn+vHHH3X//fdXUkoAAOBuqkTZyc3NVWxsrN5++23VqlXLMZ6dna358+frtddeU5cuXdSmTRstWLBAW7Zs0datWysxMQAAcBdVouyMGjVKvXr1UkxMjNN4WlqaCgoKnMabNGmiiIgIpaamXnJ7+fn5ysnJcVoAAIA1eVV2gN+zbNky7dy5U9u3by+xLiMjQ97e3goICHAaDw4OVkZGxiW3mZiYqBdeeMHVUQEAgBty6yM76enpevzxx7VkyRL5+Pi4bLvjx49Xdna2Y0lPT3fZtgEAgHtx67KTlpamEydO6JZbbpGXl5e8vLz06aef6o033pCXl5eCg4N1/vx5ZWVlOT0vMzNTISEhl9yu3W6Xn5+f0wIAAKzJrT/G6tq1q7766iunsfj4eDVp0kRPP/20wsPDVa1aNW3cuFH9+vWTJO3fv19Hjx5V+/btKyMyAABwM25ddmrWrKkWLVo4jVWvXl21a9d2jCckJGjcuHEKDAyUn5+fHn30UbVv315/+MMfKiMyAABwM25ddspixowZ8vDwUL9+/ZSfn69u3brprbfequxYAADATVS5srN582anxz4+Ppo9e7Zmz55dOYEAAIBbc+sTlAEAAK4WZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFiaW5edxMRE3XrrrapZs6aCgoLUt29f7d+/32lOXl6eRo0apdq1a6tGjRrq16+fMjMzKykxAABwN25ddj799FONGjVKW7du1YYNG1RQUKC7775bZ8+edcwZO3asPvjgA61YsUKffvqpfvzxR91///2VmBoAALgTr8oOcDnJyclOj5OSkhQUFKS0tDTdeeedys7O1vz587V06VJ16dJFkrRgwQI1bdpUW7du1R/+8IfKiA0AANyIWx/Z+a3s7GxJUmBgoCQpLS1NBQUFiomJccxp0qSJIiIilJqaesnt5OfnKycnx2kBAADWVGXKTnFxscaMGaPbb79dLVq0kCRlZGTI29tbAQEBTnODg4OVkZFxyW0lJibK39/fsYSHh1dkdAAAUImqTNkZNWqU9uzZo2XLll31tsaPH6/s7GzHkp6e7oKEAADAHbn1OTsXjB49Wh9++KFSUlJ0ww03OMZDQkJ0/vx5ZWVlOR3dyczMVEhIyCW3Z7fbZbfbKzIyAABwE259ZMcYo9GjR2v16tX65JNPFBkZ6bS+TZs2qlatmjZu3OgY279/v44ePar27dtf67gAAMANufWRnVGjRmnp0qV6//33VbNmTcd5OP7+/vL19ZW/v78SEhI0btw4BQYGys/PT48++qjat2/PlVgAAECSm5edOXPmSJI6derkNL5gwQINGzZMkjRjxgx5eHioX79+ys/PV7du3fTWW29d46QAAMBduXXZMcb87hwfHx/Nnj1bs2fPvgaJAABAVePW5+wAAABcLcoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNK/KDgAAAFzH9oKtsiOUYCabSt0/R3YAAIClcWQHwH8d/uUL/HfhyA4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA07noOAFUEd2sHrgxlB3ADVfVNrKrmBsqC32/r4GMsAABgaZY5sjN79my9/PLLysjIUKtWrTRr1iy1bdu2smPhGuNfYgCA37JE2Vm+fLnGjRunuXPnql27dpo5c6a6deum/fv3KygoqFKz8eYLAEDlssTHWK+99ppGjBih+Ph4NWvWTHPnztV1112nd955p7KjAQCASlbly8758+eVlpammJgYx5iHh4diYmKUmppaickAAIA7qPIfY/30008qKipScHCw03hwcLC++eabUp+Tn5+v/Px8x+Ps7GxJUk5OjusD5rl+k1erTK+T3C5D7muL3NcWua8tS+e+iu0a8zunZ5gq7tixY0aS2bJli9P4k08+adq2bVvqcyZPnmwksbCwsLCwsFhgSU9Pv2xXqPJHdurUqSNPT09lZmY6jWdmZiokJKTU54wfP17jxo1zPC4uLtapU6dUu3Zt2Wzud0Kx9Gt7DQ8PV3p6uvz8/Co7TpmR+9oi97VF7muL3NdWVchtjNGZM2cUFhZ22XlVvux4e3urTZs22rhxo/r27Svp1/KyceNGjR49utTn2O122e12p7GAgIAKTuoafn5+bvtLdznkvrbIfW2R+9oi97Xl7rn9/f1/d06VLzuSNG7cOMXFxSk6Olpt27bVzJkzdfbsWcXHx1d2NAAAUMksUXb++Mc/6uTJk5o0aZIyMjLUunVrJScnlzhpGQAA/PexRNmRpNGjR1/yYysrsNvtmjx5comP39wdua8tcl9b5L62yH1tVdXcpbEZ83vXawEAAFRdVf5LBQEAAC6HsgMAACyNsgMAACyNsgMAACyNsuNiw4YNk81mk81mU7Vq1RQZGamnnnpKeXn/d7OSC+u3bt3q9Nz8/HzHtzhv3rzZMf7pp5+qS5cuCgwM1HXXXadGjRopLi5O58+flyRt3rzZsc3fLhkZGZKkvXv3ql+/fqpfv75sNptmzpxZJXK//fbbuuOOO1SrVi3VqlVLMTEx+uKLL9w+96pVqxQdHa2AgABVr15drVu31uLFi90+98WWLVsmm83m+LJOd86dlJRUYp2Pj4/b55akrKwsjRo1SqGhobLb7brpppu0bt06t87dqVOnUtf36tXLrXNL0syZM9W4cWP5+voqPDxcY8eOdeRy19wFBQWaMmWKGjRoIB8fHwUGBrplzt97n7lg9uzZql+/vnx8fNSuXTunv9MrCmWnAnTv3l3Hjx/XwYMHNWPGDM2bN0+TJ092mhMeHq4FCxY4ja1evVo1atRwGvv666/VvXt3RUdHKyUlRV999ZVmzZolb29vFRUVOc3dv3+/jh8/7rQEBQVJks6dO6cbb7xRL7300iVvo+GOuTdv3qzBgwdr06ZNSk1NVXh4uO6++24dO3bMrXMHBgbqueeeU2pqqv7zn/8oPj5e8fHx+uijj9w69wWHDx/WE088oTvuuEO/5a65/fz8nNYdOXLE7XOfP39ed911lw4fPqyVK1dq//79evvtt1W3bl23zr1q1Sqn8T179sjT01MDBgxw69xLly7VM888o8mTJ2vfvn2aP3++li9frmeffdatc0+YMEHz5s3TrFmz9PXXX6tx48by8PDQxx9/7FY5y/I+s3z5co0bN06TJ0/Wzp071apVK3Xr1k0nTpwodb7LuOZ2nLggLi7O9OnTx2ns/vvvN1FRUY7HksyECROMn5+fOXfunGP8rrvuMhMnTjSSzKZNm4wxxsyYMcPUr1//svvctGmTkWROnz5dpoz16tUzM2bMqHK5jTGmsLDQ1KxZ0yxcuLBK5TbGmKioKDNhwgS3z11YWGhuu+02849//KNETnfNvWDBAuPv73/J9e6ae86cOebGG28058+fr1K5f2vGjBmmZs2aJjc3161zjxo1ynTp0sVpbNy4ceb2229369yhoaHmzTffdDyOi4szoaGhJjY21q1yXqy09xljjGnbtq0ZNWqU43FRUZEJCwsziYmJZdruleLITgXbs2ePtmzZIm9vb6fxNm3aqH79+nrvvfckSUePHlVKSoqGDh3qNC8kJETHjx9XSkrKNcssuW/uc+fOqaCgQIGBgVUmtzFGGzdu1P79+3XnnXe6fe4pU6YoKChICQkJvzvXnXLn5uaqXr16Cg8PV58+fbR37163z7127Vq1b99eo0aNUnBwsFq0aKGpU6eW+Ne0u+X+rfnz52vQoEGqXr26W+e+7bbblJaW5vjY5ODBg1q3bp169uzp1rnz8/OdPpaVJE9PT33++edulfP3nD9/XmlpaYqJiXGMeXh4KCYmRqmpqRW6b47suFhcXJzx9PQ01atXN3a73UgyHh4eZuXKlY45kszq1avNzJkzTefOnY0xxrzwwgvmvvvuM6dPn3Zq3IWFhWbYsGFGkgkJCTF9+/Y1s2bNMtnZ2Y7tXWjc1atXd1qaNWtWasZLHdlx99zGGPPwww+bG2+80fzyyy9unzsrK8tUr17deHl5GbvdbubPn+/2P+/PPvvM1K1b15w8edKR87dHdtwx95YtW8zChQvNl19+aTZv3mzuuece4+fnZ9LT0906d+PGjY3dbjfDhw83O3bsMMuWLTOBgYHm+eefd+vcF9u2bZuRZLZt2+b2vyfGGPP666+batWqGS8vLyPJPPTQQ26fe/DgwaZZs2bm22+/NUVFReauu+4ykowkt8p5sdLeZ44dO2YkmS1btjiNP/nkk6Zt27albsdVKDsuFhcXZ2JiYsyBAwfMrl27TFxcnElISHCac+GX8KeffjI+Pj7m+++/N5GRkeaDDz4o8Ut4wQ8//GAWLVpkRo0aZUJDQ80NN9xgfvzxR2PM//0S7ty50xw4cMCxHD58uNSMlyo77p47MTHR1KpVy+zevbtK5C4qKjIHDhwwX375pXnllVeMv7+/Yz/umDsnJ8fUr1/frFu3zunn+9uy4265S3P+/HnToEEDp48N3TF3o0aNTHh4uCksLHSMvfrqqyYkJMStc19s5MiRpmXLlk5j7pp706ZNJjg42Lz99tvmP//5j1m1apUJDw83U6ZMcevcJ06cMH369DEeHh7G09PT+Pn5mRtuuMF4e3u7Vc6LUXYs7rdvDkVFRaZFixbmH//4h2Pswi+hMcb079/fdOrUyYSGhprCwsJL/hJe7NSpU6ZOnTpm0qRJxpiKOWfH3XK//PLLxt/f32zfvr1K5b5YQkKCufvuu90295dffmkkGU9PT8dis9mMzWYznp6e5rvvvnPL3JfSv39/M2jQIGOMe/68jTHmzjvvNF27dnUaW7dunZFk8vPz3Tb3Bbm5ucbPz8/MnDnTadxdc3fo0ME88cQTTmOLFy82vr6+pqioyG1zX/DLL7+YH374wcTFxZmGDRs6jqq4W05jSn+fyc/PN56eno5cF/zpT38y9957b5m2e6U4Z6eCeXh46Nlnn9WECRP0yy+/lFg/fPhwbd68WX/605/k6elZpm3WqlVLoaGhOnv2rKvjOrhT7unTp+vFF19UcnKyoqOjq0zu3youLlZ+fr7b5m7SpIm++uor7dq1y7Hce++96ty5s3bt2qXw8HC3zF2aoqIiffXVVwoNDS11vbvkvv322/Xdd9+puLjYMfbtt98qNDS0xPkX7pT7ghUrVig/P18PPPDAZee5S+5z587Jw8P5be/C/kwpt4l0l9wX+Pj4qG7duiouLtaPP/6oPn36uGXOS/H29labNm20ceNGx1hxcbE2btyo9u3bu2w/pbHMXc/d2YABA/Tkk09q9uzZeuKJJ5zWde/eXSdPnpSfn1+pz503b5527dql++67Tw0aNFBeXp4WLVqkvXv3atasWU5zT5w44fQ9C5JUu3ZtVatWTefPn9fXX38t6deTxI4dO6Zdu3apRo0aatiwodvmnjZtmiZNmqSlS5eqfv36ju9zqFGjRonLJ90pd2JioqKjo9WgQQPl5+dr3bp1Wrx4sebMmVPqft0ht4+Pj1q0aOE0HhAQIEklxt0pd7Vq1TRlyhT94Q9/UMOGDZWVlaWXX35ZR44c0YMPPujWuR9++GG9+eabevzxx/Xoo4/qwIEDmjp1qh577DG3zn3B/Pnz1bdvX9WuXfuSed0pd+/evfXaa68pKipK7dq103fffaeJEyeqd+/elywB7pB727ZtOnbsmFq3bq1jx45pw4YNkqSnnnrKrXKW5X1m3LhxiouLU3R0tNq2bauZM2fq7Nmzio+PLzWby1TocaP/QqVdumjMr+ebXH/99SY3N9fp8OJv/fbw4s6dO80DDzxgIiMjjd1uN7Vr1zZ33nmnWbt2reM5Fw4vlrakpqYaY4w5dOhQqes7duzo1rnr1atX6vrJkye7de7nnnvONGzY0Pj4+JhatWqZ9u3bm2XLljm24a65f6ssl567Q+4xY8aYiIgI4+3tbYKDg03Pnj3Nzp073T63Mb+eXN2uXTtjt9vNjTfeaP72t785zuFx59zffPONkWQ+/vjjEvt119wFBQXm+eefNw0aNDA+Pj4mPDzcPPLII46PZtw19+bNm03Tpk0d27jxxhtNt27d3C7n773PXDBr1izHf69t27Y1W7duLTWnK9mMKeXYHQAAgEVwzg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AlOL5559X69aty/Ucm82mNWvWXHL94cOHZbPZtGvXrqvKBqB8KDsAnAwbNkw2m002m03VqlVTZGSknnrqqRJfEX9hztatW53G8/PzVbt2bdlsNm3evNkx/umnn6pLly4KDAzUddddp0aNGikuLk7nz5+XJG3evNmxzd8uF24TcrG0tLRS939B165ddf/991/xz+GJJ55wuocPgKqLsgOghO7du+v48eM6ePCgZsyYoXnz5mny5Mkl5oWHh2vBggVOY6tXry5x37Kvv/5a3bt3V3R0tFJSUvTVV19p1qxZ8vb2VlFRkdPc/fv36/jx405LUFBQiX23adNGrVq10jvvvFNi3eHDh7Vp0yYlJCSU+7UbY1RYWKgaNWqU6Z5PANwfZQdACXa7XSEhIQoPD1ffvn0VExPjuPngxeLi4rRs2TKnOy2/8847iouLc5r38ccfKyQkRNOnT1eLFi3UoEEDde/eXW+//bZ8fX2d5gYFBSkkJMRp+e2dqi9ISEjQ8uXLde7cOafxpKQkhYaGqnv37lq8eLGio6NVs2ZNhYSEaMiQITpx4oRj7oUjSuvXr1ebNm1kt9v1+eefl/gYa/v27brrrrtUp04d+fv7q2PHjtq5c2eJTMePH1ePHj3k6+urG2+8UStXrrz0D1rSnj171KNHD9WoUUPBwcEaOnSofvrpJ8f6lStXqmXLlvL19VXt2rUVExPj0jtRA/8NKDsALmvPnj3asmWLvL29S6xr06aN6tevr/fee0+SdPToUaWkpGjo0KFO80JCQnT8+HGlpKS4NFtsbKzy8/OdCoUxRgsXLtSwYcPk6empgoICvfjii9q9e7fWrFmjw4cPa9iwYSW29cwzz+ill17Svn37dPPNN5dYf+bMGcXFxenzzz/X1q1b1ahRI/Xs2VNnzpxxmjdx4kT169dPu3fvVmxsrAYNGqR9+/aVmj8rK0tdunRRVFSUduzYoeTkZGVmZmrgwIGSfi1OgwcP1vDhw7Vv3z5t3rxZ999/v7ilIVBOFX6rUQBVSlxcnPH09DTVq1c3drvdSDIeHh5m5cqVTvP0/++qPHPmTNO5c2djjDEvvPCCue+++0rcVbmwsNAMGzbMSDIhISGmb9++ZtasWSY7O9uxvQt3Va5evbrT0qxZs8vmHTRokNNdlTdu3GgkmQMHDpQ6f/v27UaSOXPmjNN+16xZ4zRv8uTJplWrVpfcb1FRkalZs6b54IMPnH4mDz30kNO8du3amYcfftgY8393hf7yyy+NMca8+OKL5u6773aan56ebiSZ/fv3m7S0NCPJHD58+LI/AwCXx5EdACV07txZu3bt0rZt2xQXF6f4+Hj169ev1LkPPPCAUlNTdfDgQSUlJWn48OEl5nh6emrBggX64YcfNH36dNWtW1dTp05V8+bNdfz4cae5n332mXbt2uVY1q1bd9msw4cPV0pKir7//ntJv36M1rFjRzVs2FDSrycy9+7dWxEREapZs6Y6duwo6dejUBeLjo6+7H4yMzM1YsQINWrUSP7+/vLz81Nubm6J7bRv377E40sd2dm9e7c2bdqkGjVqOJYmTZpIkr7//nu1atVKXbt2VcuWLTVgwAC9/fbbOn369GVzAiiJsgOghOrVq6thw4aOE4C3bdum+fPnlzq3du3auueee5SQkKC8vDz16NHjktutW7euhg4dqjfffFN79+5VXl6e5s6d6zQnMjJSDRs2dCz16tW7bNauXbsqIiJCSUlJysnJ0apVqxwnJp89e1bdunWTn5+flixZou3bt2v16tWS5LgK7OLXfDlxcXHatWuXXn/9dW3ZskW7du1S7dq1S2ynPHJzc9W7d2+ncrdr1y4dOHBAd955pzw9PbVhwwatX79ezZo106xZs9S4cWMdOnToivcJ/Dei7AC4LA8PDz377LOaMGGC04nIFxs+fLg2b96sP/3pT/L09CzTdmvVqqXQ0NCrPtnWw8ND8fHxWrhwoZYuXSpvb2/1799fkvTNN9/o559/1ksvvaQ77rhDTZo0cTo5uTz+/e9/67HHHlPPnj3VvHlz2e12pxOJL/jtpfBbt25V06ZNS93mLbfcor1796p+/fpOBa9hw4aO8mWz2XT77bfrhRde0Jdffilvb29HYQNQNpQdAL9rwIAB8vT01OzZs0td3717d508eVJTpkwpdf28efP08MMP6+OPP9b333+vvXv36umnn9bevXvVu3dvp7knTpxQRkaG01JQUHDZfPHx8Tp27JieffZZDR482HGFV0REhLy9vTVr1iwdPHhQa9eu1YsvvngFPwGpUaNGWrx4sfbt26dt27YpNja2xJVkkrRixQq98847+vbbbzV58mR98cUXGj16dKnbHDVqlE6dOqXBgwdr+/bt+v777/XRRx8pPj5eRUVF2rZtm6ZOnaodO3bo6NGjWrVqlU6ePHnJ8gSgdJQdAL/Ly8tLo0eP1vTp00s9EmOz2VSnTp1Sr9iSpLZt2yo3N1cPPfSQmjdvro4dO2rr1q1as2aN4xyaCxo3bqzQ0FCnJS0t7bL5IiIiFBMTo9OnTzudM3T99dcrKSlJK1asULNmzfTSSy/plVdeuYKfgDR//nydPn1at9xyi4YOHarHHnus1O//eeGFF7Rs2TLdfPPNWrRokd599101a9as1G2GhYXp3//+t4qKinT33XerZcuWGjNmjAICAuTh4SE/Pz+lpKSoZ8+euummmzRhwgS9+uqrl/2oEEBJNmO4hhEAAFgXR3YAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAICl/T/eW9kFikhhAwAAAABJRU5ErkJggg==\n" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } - ] - }, - { - "cell_type": "code", + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "# Assuming you have a list of MAE values from mae1 to mae10\n", - "mae_values = [mae1, mae2, mae3, mae4, mae5, mae6, mae7, mae8, mae9, mae10]\n", + "mae_values = [mae1, mae2, mae2_1, mae3, mae4, mae5, mae6, mae7, mae8, mae8_1, mae9, mae10]\n", "\n", "# List of corresponding labels for each MAE value\n", - "labels = ['MAE1', 'MAE2', 'MAE3', 'MAE4', 'MAE5', 'MAE6', 'MAE7', 'MAE8', 'MAE9', 'MAE10']\n", + "labels = ['MAE1', 'MAE2', 'MAE2_1', 'MAE3', 'MAE4', 'MAE5', 'MAE6', 'MAE7', 'MAE8', 'MAE8_1', 'MAE9', 'MAE10']\n", "\n", "# Plotting the bar graph\n", "plt.bar(labels, mae_values, color='orange')\n", @@ -2528,79 +6957,104 @@ "plt.ylabel('MAE Values')\n", "plt.title('Bar Graph of MAE')\n", "plt.show()\n" - ], + ] + }, + { + "cell_type": "code", + "execution_count": 100, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 472 }, - "id": "nrZu-K-KDCJ2", - "outputId": "69165581-da05-4554-a464-a606eb87a734" + "id": "_c4Pe76fDNM-", + "outputId": "c1784b34-6746-42fd-9f66-b7c1cfd50a21" }, - "execution_count": 119, "outputs": [ { - "output_type": "display_data", "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA930lEQVR4nO3deVwV9f7H8fcB9QAKuCDigopLmrtiFtxSLBMRt25XDTM3sjK9pXazbNGWX6GVqaVplso1U9zSyjXSXErKXFMzywpxAbVUEE1AmN8fPjzXIwflKHgO0+v5eMzj4XznOzOfMwfl7cx3ZiyGYRgCAAAwCQ9XFwAAAFCUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcASryXXnpJFotFf/zxR7Hva/Xq1WrRooW8vLxksVh0+vTpYt8nAOcQbgA3Fh8fL4vFYjcFBgaqffv2WrVq1U2v5/PPP1fXrl1VpUoVlSlTRhUrVlTbtm01YcIEZWRk3PR6brY///xTvXr1kre3t6ZOnaqPPvpIZcuWddj38u/u66+/zrfcMAwFBwfLYrGoS5cuDrdx+vRpW4jat2+fwz4DBgyw+/nw8/NT8+bNNWHCBGVlZdn6XQqABU1paWnXcUQA91TK1QUAuLZXXnlFISEhMgxDx44dU3x8vDp37qzPP/+8wF+MRSkvL0+xsbGKj49X06ZN9fjjjys4OFhnzpxRUlKSXnjhBa1cuVJr164t9lpc6fvvv9eZM2f06quvqkOHDoVax8vLS/PmzdOdd95p175hwwYdPnxYVqu1wHUXLVoki8WioKAgffzxx/q///s/h/2sVqs+/PBDSRcD0ZIlS/Sf//xH33//vRISEuz6Tps2TeXKlcu3jfLlyxfq8wAlAeEGKAGioqLUunVr23xsbKyqVKmi+fPnF0m4ycvLU3Z2try8vBwuf+ONNxQfH68RI0ZowoQJslgstmVPPvmkUlNTNWfOnBvaR0lw/PhxSc4Fgc6dO2vRokV65513VKrU//7JnTdvnkJDQ696KW3u3Lnq3LmzatWqpXnz5hUYbkqVKqW+ffva5h9//HHdfvvtWrBggd5++21Vq1bNtuxf//qXAgICCl0/UBJxWQoogcqXLy9vb2+7X5aS9NZbbyk8PFyVKlWSt7e3QkNDtXjx4nzrWywWDRs2TB9//LEaN24sq9Wq1atXO9zXuXPnNH78eDVu3FhvvvmmXbC5pGrVqnrmmWcKvY/rqbNBgwby8vJSaGioNm7c6LDW06dPa8CAASpfvrz8/f01cOBAnTt3zvFBvMKiRYsUGhoqb29vBQQEqG/fvjpy5IhteUREhPr37y9Juu2222SxWDRgwIBrbjcmJkZ//vmnEhMTbW3Z2dlavHix+vTpU+B6KSkp2rRpkx544AE98MAD+v3337V58+ZCfRYPDw9FRERIkpKTkwu1DmAmnLkBSoD09HT98ccfMgxDx48f17vvvqvMzEy7/61L0uTJk9WtWzc9+OCDys7OVkJCgnr27Knly5crOjraru+6deu0cOFCDRs2TAEBAapdu7bDfX/99dc6ffq0/vOf/8jT09OpugvahzN1btiwQQsWLNATTzwhq9Wq9957T506ddKWLVvUpEkTu769evVSSEiI4uLitH37dn344YcKDAzU+PHjr1pnfHy8Bg4cqNtuu01xcXE6duyYJk+erG+++UY7duxQ+fLl9fzzz6tBgwaaMWOG7TJh3bp1r3kMateurbCwMM2fP19RUVGSpFWrVik9PV0PPPCA3nnnHYfrzZ8/X2XLllWXLl3k7e2tunXr6uOPP1Z4ePg19ylJv/76qySpUqVKdu0nT57M17dUqVJcloK5GADc1uzZsw1J+Sar1WrEx8fn63/u3Dm7+ezsbKNJkybG3XffbdcuyfDw8DD27t17zRomT55sSDKWLVtm137hwgXjxIkTdlNeXl6h9uFMnZKMrVu32toOHjxoeHl5Gffdd5+tbezYsYYkY9CgQXbr33fffUalSpWu+vmys7ONwMBAo0mTJsZff/1la1++fLkhyRgzZoyt7dL38f333191m1f2nTJliuHr62v73D179jTat29vGIZh1KpVy4iOjs63ftOmTY0HH3zQNv/cc88ZAQEBRk5Ojl2//v37G2XLlrV9BwcOHDBef/11w2KxGM2aNbP1u3SMHE0NGjS45ucBShIuSwElwNSpU5WYmKjExETNnTtX7du318MPP6xPPvnErp+3t7ftz6dOnVJ6erruuusubd++Pd8227Vrp0aNGl1z35fugrpyEOru3btVuXJlu+nPP/8s1D6cqTMsLEyhoaG2+Zo1a6p79+5as2aNcnNz7fo+9thjdvN33XWX/vzzz6veybV161YdP35cjz/+uN14oOjoaDVs2FArVqwocN3C6tWrl/766y8tX75cZ86c0fLly696SeqHH37Q7t27FRMTY2uLiYnRH3/8oTVr1uTrf/bsWdt3UK9ePT333HMKCwvT0qVL8/VdsmSJ7Wfp0jR79uwb/oyAO+GyFFACtGnTxm5AcUxMjFq2bKlhw4apS5cuKlOmjCRp+fLl+r//+z/t3LnT7jZgR+NkQkJCCrVvX19fSVJmZqZde7169WzjSObMmaOPPvqo0Ptwps769evna7vlllt07tw5nThxQkFBQbb2mjVr2vWrUKGCpIsBys/Pz2EtBw8elCQ1aNAg37KGDRs6vI3bWZUrV1aHDh00b948nTt3Trm5ufrXv/5VYP+5c+eqbNmyqlOnjg4cOCDp4l1XtWvX1scff5zv0p2Xl5c+//xzSRfvnAoJCVGNGjUcbrtt27YMKIbpEW6AEsjDw0Pt27fX5MmT9csvv6hx48batGmTunXrprZt2+q9995T1apVVbp0ac2ePVvz5s3Lt43Lz55cTcOGDSVJe/bsUffu3W3t5cqVs90OXVAAcLQPZ+t0RkFjggzDuKHtFoU+ffpo8ODBSktLU1RUVIFjXAzD0Pz583X27FmHZ72OHz+uzMxMuzNpnp6ehb41Hfg7INwAJdSFCxck/e+MypIlS+Tl5aU1a9bYPTvlRi853HXXXfL391dCQoJGjx4tD48bu5rtbJ2//PJLvraff/5ZPj4+qly58g3VIkm1atWSJO3fv19333233bL9+/fblt+o++67T48++qi+/fZbLViwoMB+l55/88orr+jWW2+1W3bq1Ck98sgjWrZsWb7B5AD+hzE3QAmUk5OjL774QmXKlLH9AvT09JTFYrEbh5KcnKxly5bd0L58fHw0atQo7dmzR88++6zDsyDOnBlxts6kpCS7sTiHDh3Sp59+qo4dOzp995YjrVu3VmBgoKZPn253iWzVqlXat29fvktA16tcuXKaNm2aXnrpJXXt2rXAfpcuST399NP617/+ZTcNHjxY9evX18cff1wkNQFmxZkboARYtWqVfvrpJ0kXL0vMmzdPv/zyi5599lnbWJLo6Gi9/fbb6tSpk/r06aPjx49r6tSpqlevnn744Ycb2v+zzz6rffv26c0339QXX3yh+++/XzVq1NCpU6e0fft2LVq0SIGBgYV6QJ+zdTZp0kSRkZF2t4JL0ssvv3xDn+mS0qVLa/z48Ro4cKDatWunmJgY263gtWvX1ogRI4pkP5Jsz8kpSFZWlpYsWaJ77723wGPZrVs3TZ48WcePH1dgYKDTNSxevNjhE4rvvfdeValSxentAe6IcAOUAGPGjLH92cvLSw0bNtS0adP06KOP2trvvvtuzZw5U+PGjdPw4cMVEhKi8ePHKzk5+YbDjYeHhz766CPdf//9+uCDD/Tuu+/q1KlTKleunJo0aaLXXntNgwcPdvhL80rO1tmuXTuFhYXp5ZdfVkpKiho1aqT4+Hg1a9bshj7T5QYMGCAfHx+NGzdOzzzzjMqWLav77rtP48ePv6nPf1mxYoVOnz591TM7Xbt21YQJE5SQkKAnnnjC6X0MGTLEYftXX31FuIFpWAx3GGkHAA5YLBYNHTpUU6ZMcXUpAEoQxtwAAABTIdwAAABTIdwAAABTYUAxALfFkEAA14MzNwAAwFQINwAAwFT+dpel8vLydPToUfn6+jp8SR8AAHA/hmHozJkzqlat2jVfA/O3CzdHjx5VcHCwq8sAAADX4dChQwW+9f6Sv1248fX1lXTx4Fx6bD0AAHBvGRkZCg4Otv0ev5q/Xbi5dCnKz8+PcAMAQAlTmCElDCgGAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmUsrVBcA1aj+7wtUlKHlctKtLAACYEGduAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqbg03MTFxem2226Tr6+vAgMD1aNHD+3fv/+q68THx8tisdhNXl5eN6liAADg7lwabjZs2KChQ4fq22+/VWJionJyctSxY0edPXv2quv5+fkpNTXVNh08ePAmVQwAANxdKVfufPXq1Xbz8fHxCgwM1LZt29S2bdsC17NYLAoKCiru8gAAQAnkVmNu0tPTJUkVK1a8ar/MzEzVqlVLwcHB6t69u/bu3Vtg36ysLGVkZNhNAADAvNwm3OTl5Wn48OH6xz/+oSZNmhTYr0GDBpo1a5Y+/fRTzZ07V3l5eQoPD9fhw4cd9o+Li5O/v79tCg4OLq6PAAAA3IDFMAzD1UVI0pAhQ7Rq1Sp9/fXXqlGjRqHXy8nJ0a233qqYmBi9+uqr+ZZnZWUpKyvLNp+RkaHg4GClp6fLz8+vSGoviWo/u8LVJSh5XLSrSwAAlBAZGRny9/cv1O9vl465uWTYsGFavny5Nm7c6FSwkaTSpUurZcuWOnDggMPlVqtVVqu1KMoEAAAlgEsvSxmGoWHDhmnp0qVat26dQkJCnN5Gbm6udu/erapVqxZDhQAAoKRx6ZmboUOHat68efr000/l6+urtLQ0SZK/v7+8vb0lSf369VP16tUVFxcnSXrllVd0xx13qF69ejp9+rTefPNNHTx4UA8//LDLPgcAAHAfLg0306ZNkyRFRETYtc+ePVsDBgyQJKWkpMjD438nmE6dOqXBgwcrLS1NFSpUUGhoqDZv3qxGjRrdrLIBAIAbc5sBxTeLMwOSzIwBxQCAksSZ399ucys4AABAUSDcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAU3FpuImLi9Ntt90mX19fBQYGqkePHtq/f/8111u0aJEaNmwoLy8vNW3aVCtXrrwJ1QIAgJLApeFmw4YNGjp0qL799lslJiYqJydHHTt21NmzZwtcZ/PmzYqJiVFsbKx27NihHj16qEePHtqzZ89NrBwAALgri2EYhquLuOTEiRMKDAzUhg0b1LZtW4d9evfurbNnz2r58uW2tjvuuEMtWrTQ9OnTr7mPjIwM+fv7Kz09XX5+fkVWe0lT+9kVri5ByeOiXV0CAKCEcOb3t1uNuUlPT5ckVaxYscA+SUlJ6tChg11bZGSkkpKSHPbPyspSRkaG3QQAAMzLbcJNXl6ehg8frn/84x9q0qRJgf3S0tJUpUoVu7YqVaooLS3NYf+4uDj5+/vbpuDg4CKtGwAAuBe3CTdDhw7Vnj17lJCQUKTbHT16tNLT023ToUOHinT7AADAvZRydQGSNGzYMC1fvlwbN25UjRo1rto3KChIx44ds2s7duyYgoKCHPa3Wq2yWq1FVisAAHBvLj1zYxiGhg0bpqVLl2rdunUKCQm55jphYWFau3atXVtiYqLCwsKKq0wAAFCCuPTMzdChQzVv3jx9+umn8vX1tY2b8ff3l7e3tySpX79+ql69uuLi4iRJTz75pNq1a6cJEyYoOjpaCQkJ2rp1q2bMmOGyz4Hi4Q53dEnc1QUAJY1Lz9xMmzZN6enpioiIUNWqVW3TggULbH1SUlKUmppqmw8PD9e8efM0Y8YMNW/eXIsXL9ayZcuuOggZAAD8fbj0zE1hHrGzfv36fG09e/ZUz549i6EiAABQ0rnN3VIAAABFgXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMpZSrCwAA/L3VfnaFq0tQ8rhoV5eAIsSZGwAAYCqEGwAAYCpOh5tDhw7p8OHDtvktW7Zo+PDhmjFjRpEWBgAAcD2cDjd9+vTRV199JUlKS0vTvffeqy1btuj555/XK6+8UuQFAgAAOMPpcLNnzx61adNGkrRw4UI1adJEmzdv1scff6z4+Piirg8AAMApToebnJwcWa1WSdKXX36pbt26SZIaNmyo1NTUoq0OAADASU6Hm8aNG2v69OnatGmTEhMT1alTJ0nS0aNHValSpSIvEAAAwBlOh5vx48fr/fffV0REhGJiYtS8eXNJ0meffWa7XAUAAOAqTj/ELyIiQn/88YcyMjJUoUIFW/sjjzwiHx+fIi0OAADAWdf1nBvDMLRt2za9//77OnPmjCSpTJkyhBsAAOByTp+5OXjwoDp16qSUlBRlZWXp3nvvla+vr8aPH6+srCxNnz69OOoEAAAoFKfP3Dz55JNq3bq1Tp06JW9vb1v7fffdp7Vr1xZpcQAAAM5y+szNpk2btHnzZpUpU8auvXbt2jpy5EiRFQYAAHA9nD5zk5eXp9zc3Hzthw8flq+vb5EUBQAAcL2cDjcdO3bUpEmTbPMWi0WZmZkaO3asOnfuXJS1AQAAOM3py1ITJkxQZGSkGjVqpPPnz6tPnz765ZdfFBAQoPnz5xdHjQAAAIXmdLipUaOGdu3apYSEBP3www/KzMxUbGysHnzwQbsBxgAAAK7gdLiRpFKlSqlv375FXQsAAMANczrczJkz56rL+/Xrd93FAAAA3Cinw82TTz5pN5+Tk6Nz587ZnlBMuAEAAK7k9N1Sp06dspsyMzO1f/9+3XnnnQwoBgAALndd75a6Uv369TVu3Lh8Z3UAAAButiIJN9LFQcZHjx4tqs0BAABcF6fH3Hz22Wd284ZhKDU1VVOmTNE//vGPIisMAADgejgdbnr06GE3b7FYVLlyZd19992aMGFCUdUFAABwXZwON3l5ecVRBwAAQJEosjE3AAAA7qBQZ25GjhxZ6A2+/fbb110MAADAjSpUuNmxY0ehNmaxWJza+caNG/Xmm29q27ZtSk1N1dKlS/ON6bnc+vXr1b59+3ztqampCgoKcmrfAADAnAoVbr766qti2fnZs2fVvHlzDRo0SP/85z8Lvd7+/fvl5+dnmw8MDCyO8gAAQAl0XS/OLCpRUVGKiopyer3AwECVL1++6AsCAAAl3nWFm61bt2rhwoVKSUlRdna23bJPPvmkSAq7mhYtWigrK0tNmjTRSy+9dNXn62RlZSkrK8s2n5GRUez1AQAA13H6bqmEhASFh4dr3759Wrp0qXJycrR3716tW7dO/v7+xVGjTdWqVTV9+nQtWbJES5YsUXBwsCIiIrR9+/YC14mLi5O/v79tCg4OLtYaAQCAazl95ub111/XxIkTNXToUPn6+mry5MkKCQnRo48+qqpVqxZHjTYNGjRQgwYNbPPh4eH69ddfNXHiRH300UcO1xk9erTd3V4ZGRkEHAAATMzpMze//vqroqOjJUllypTR2bNnZbFYNGLECM2YMaPIC7yWNm3a6MCBAwUut1qt8vPzs5sAAIB5OR1uKlSooDNnzkiSqlevrj179kiSTp8+rXPnzhVtdYWwc+fOYj9jBAAASg6nL0u1bdtWiYmJatq0qXr27Kknn3xS69atU2Jiou655x6ntpWZmWl31uX333/Xzp07VbFiRdWsWVOjR4/WkSNHNGfOHEnSpEmTFBISosaNG+v8+fP68MMPtW7dOn3xxRfOfgwAAGBShQ43e/bsUZMmTTRlyhSdP39ekvT888+rdOnS2rx5s+6//3698MILTu1869atdg/luzQ2pn///oqPj1dqaqpSUlJsy7Ozs/XUU0/pyJEj8vHxUbNmzfTll186fLAfAAD4eyp0uGnWrJluu+02Pfzww3rggQckSR4eHnr22Weve+cREREyDKPA5fHx8Xbzo0aN0qhRo657fwAAwPwKPeZmw4YNaty4sZ566ilVrVpV/fv316ZNm4qzNgAAAKcVOtzcddddmjVrllJTU/Xuu+8qOTlZ7dq10y233KLx48crLS2tOOsEAAAoFKfvlipbtqwGDhyoDRs26Oeff1bPnj01depU1axZU926dSuOGgEAAArN6XBzuXr16um5557TCy+8IF9fX61YsaKo6gIAALgu1/3izI0bN2rWrFlasmSJPDw81KtXL8XGxhZlbQAAAE5zKtwcPXpU8fHxio+P14EDBxQeHq533nlHvXr1UtmyZYurRgAAgEIrdLiJiorSl19+qYCAAPXr10+DBg2ye88TAACAOyh0uCldurQWL16sLl26yNPTszhrAgAAuG6FDjefffZZcdYBAABQJG7obikAAAB3Q7gBAACmQrgBAACmQrgBAACmUuhw8/jjjyszM9M2P3/+fJ09e9Y2f/r0aXXu3LloqwMAAHBSocPN+++/r3PnztnmH330UR07dsw2n5WVpTVr1hRtdQAAAE4qdLgxDOOq8wAAAO6AMTcAAMBUCDcAAMBUnHpx5pgxY+Tj4yNJys7O1muvvSZ/f39JshuPAwAA4CqFDjdt27bV/v37bfPh4eH67bff8vUBAABwpUKHm/Xr1xdjGQAAAEXDqctSGRkZ+u6775Sdna02bdqocuXKxVUXAADAdSl0uNm5c6c6d+6stLQ0SZKvr68WLlyoyMjIYisOAADAWYW+W+qZZ55RSEiIvvnmG23btk333HOPhg0bVpy1AQAAOK3QZ262bdumL774Qq1atZIkzZo1SxUrVlRGRob8/PyKrUAAAABnFPrMzcmTJ1WjRg3bfPny5VW2bFn9+eefxVIYAADA9XBqQPGPP/5oG3MjXXwFw759+3TmzBlbW7NmzYquOgAAACc5FW7uueeefO+U6tKliywWiwzDkMViUW5ubpEWCAAA4IxCh5vff/+9OOsAAAAoEoUON7Vq1bpmnz179txQMQAAADfqhl+ceebMGc2YMUNt2rRR8+bNi6ImAACA63bd4Wbjxo3q37+/qlatqrfeekt33323vv3226KsDQAAwGlODShOS0tTfHy8Zs6cqYyMDPXq1UtZWVlatmyZGjVqVFw1AgAAFFqhz9x07dpVDRo00A8//KBJkybp6NGjevfdd4uzNgAAAKcV+szNqlWr9MQTT2jIkCGqX79+cdYEAABw3Qp95ubrr7/WmTNnFBoaqttvv11TpkzRH3/8UZy1AQAAOK3Q4eaOO+7QBx98oNTUVD366KNKSEhQtWrVlJeXp8TERLunFAMAALiK03dLlS1bVoMGDdLXX3+t3bt366mnntK4ceMUGBiobt26FUeNAAAAhXZDz7lp0KCB3njjDR0+fFjz588vqpoAAACu2w0/xE+SPD091aNHD3322WdFsTkAAIDrVui7pQYNGnTNPhaLRTNnzryhggAAAG5EocNNfHy8atWqpZYtW+Z7MzgAAIC7KHS4GTJkiObPn6/ff/9dAwcOVN++fVWxYsXirA0AAMBphR5zM3XqVKWmpmrUqFH6/PPPFRwcrF69emnNmjWcyQEAAG7DqQHFVqtVMTExSkxM1I8//qjGjRvr8ccfV+3atZWZmVlcNQIAABTadd8t5eHhIYvFIsMwlJubW5Q1AQAAXDenwk1WVpbmz5+ve++9V7fccot2796tKVOmKCUlReXKlSuuGgEAAAqt0AOKH3/8cSUkJCg4OFiDBg3S/PnzFRAQUJy1AQAAOK3Q4Wb69OmqWbOm6tSpow0bNmjDhg0O+33yySdFVhwAAICzCh1u+vXrJ4vFUpy1AAAA3DCnHuIHAADg7ork3VIAAADugnADAABMhXADAABMhXADAABMxaXhZuPGjeratauqVasmi8WiZcuWXXOd9evXq1WrVrJarapXrx4DnQEAgB2XhpuzZ8+qefPmmjp1aqH6//7774qOjlb79u21c+dODR8+XA8//LDWrFlTzJUCAICSotC3gheHqKgoRUVFFbr/9OnTFRISogkTJkiSbr31Vn399deaOHGiIiMji6tMAABQgpSoMTdJSUnq0KGDXVtkZKSSkpIKXCcrK0sZGRl2EwAAMK8SFW7S0tJUpUoVu7YqVaooIyNDf/31l8N14uLi5O/vb5uCg4NvRqkAAMBFSlS4uR6jR49Wenq6bTp06JCrSwIAAMXIpWNunBUUFKRjx47ZtR07dkx+fn7y9vZ2uI7VapXVar0Z5QEAADdQos7chIWFae3atXZtiYmJCgsLc1FFAADA3bg03GRmZmrnzp3auXOnpIu3eu/cuVMpKSmSLl5S6tevn63/Y489pt9++02jRo3STz/9pPfee08LFy7UiBEjXFE+AABwQy4NN1u3blXLli3VsmVLSdLIkSPVsmVLjRkzRpKUmppqCzqSFBISohUrVigxMVHNmzfXhAkT9OGHH3IbOAAAsHHpmJuIiAgZhlHgckdPH46IiNCOHTuKsSoAAFCSlagxNwAAANdCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKbiFuFm6tSpql27try8vHT77bdry5YtBfaNj4+XxWKxm7y8vG5itQAAwJ25PNwsWLBAI0eO1NixY7V9+3Y1b95ckZGROn78eIHr+Pn5KTU11TYdPHjwJlYMAADcmcvDzdtvv63Bgwdr4MCBatSokaZPny4fHx/NmjWrwHUsFouCgoJsU5UqVW5ixQAAwJ25NNxkZ2dr27Zt6tChg63Nw8NDHTp0UFJSUoHrZWZmqlatWgoODlb37t21d+/eAvtmZWUpIyPDbgIAAObl0nDzxx9/KDc3N9+ZlypVqigtLc3hOg0aNNCsWbP06aefau7cucrLy1N4eLgOHz7ssH9cXJz8/f1tU3BwcJF/DgAA4D5cflnKWWFhYerXr59atGihdu3a6ZNPPlHlypX1/vvvO+w/evRopaen26ZDhw7d5IoBAMDNVMqVOw8ICJCnp6eOHTtm137s2DEFBQUVahulS5dWy5YtdeDAAYfLrVarrFbrDdcKAABKBpeeuSlTpoxCQ0O1du1aW1teXp7Wrl2rsLCwQm0jNzdXu3fvVtWqVYurTAAAUIK49MyNJI0cOVL9+/dX69at1aZNG02aNElnz57VwIEDJUn9+vVT9erVFRcXJ0l65ZVXdMcdd6hevXo6ffq03nzzTR08eFAPP/ywKz8GAABwEy4PN71799aJEyc0ZswYpaWlqUWLFlq9erVtkHFKSoo8PP53gunUqVMaPHiw0tLSVKFCBYWGhmrz5s1q1KiRqz4CAABwIy4PN5I0bNgwDRs2zOGy9evX281PnDhREydOvAlVAQCAkqjE3S0FAABwNYQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKqVcXQAAlDS1n13h6hIkScnjol1dAuCWOHMDAABMhXADAABMhXADAABMhTE3AACYBOPBLuLMDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBW3CDdTp05V7dq15eXlpdtvv11btmy5av9FixapYcOG8vLyUtOmTbVy5cqbVCkAAHB3Lg83CxYs0MiRIzV27Fht375dzZs3V2RkpI4fP+6w/+bNmxUTE6PY2Fjt2LFDPXr0UI8ePbRnz56bXDkAAHBHLg83b7/9tgYPHqyBAweqUaNGmj59unx8fDRr1iyH/SdPnqxOnTrp6aef1q233qpXX31VrVq10pQpU25y5QAAwB2VcuXOs7OztW3bNo0ePdrW5uHhoQ4dOigpKcnhOklJSRo5cqRdW2RkpJYtW1acpQIlXu1nV7i6BCWPi75mn5JSZ0nAsSxaHM+Sw6Xh5o8//lBubq6qVKli116lShX99NNPDtdJS0tz2D8tLc1h/6ysLGVlZdnm09PTJUkZGRk3UnqBmoxdUyzbdcaelyOv2Scv69xNqOTqrvUduEON0rXr5DsvvML8vSsJdbpDjVLJqNMs37lUMup0hxql4vkde2mbhmFcs69Lw83NEBcXp5dffjlfe3BwsAuquTn8J7m6gsKhzqJTEmqUqLOolYQ6S0KNEnUWteKs88yZM/L3979qH5eGm4CAAHl6eurYsWN27ceOHVNQUJDDdYKCgpzqP3r0aLvLWHl5eTp58qQqVaoki8Vyg5+g6GVkZCg4OFiHDh2Sn5+fq8txqCTUKFFnUSsJdZaEGiXqLGoloc6SUKPk3nUahqEzZ86oWrVq1+zr0nBTpkwZhYaGau3aterRo4eki+Fj7dq1GjZsmMN1wsLCtHbtWg0fPtzWlpiYqLCwMIf9rVarrFarXVv58uWLovxi5efn53Y/WFcqCTVK1FnUSkKdJaFGiTqLWkmosyTUKLlvndc6Y3OJyy9LjRw5Uv3791fr1q3Vpk0bTZo0SWfPntXAgQMlSf369VP16tUVFxcnSXryySfVrl07TZgwQdHR0UpISNDWrVs1Y8YMV34MAADgJlwebnr37q0TJ05ozJgxSktLU4sWLbR69WrboOGUlBR5ePzvjvXw8HDNmzdPL7zwgp577jnVr19fy5YtU5MmTVz1EQAAgBtxebiRpGHDhhV4GWr9+vX52nr27KmePXsWc1WuYbVaNXbs2HyX0txJSahRos6iVhLqLAk1StRZ1EpCnSWhRqnk1HktFqMw91QBAACUEC5/QjEAAEBRItwAAABTIdwAAABTIdwAAABTIdxcpwEDBshiseixxx7Lt2zo0KGyWCwaMGCAXXtSUpI8PT0VHZ3/xWfJycmyWCy2qVKlSurYsaN27Nhh6xMREWHX59J0eQ2vvfaawsPD5ePjo/Lly7tVnZfqSE5OVmxsrEJCQuTt7S1/f39ZLBb169fvph6vK+uoW7euxo4dq+zs7Hz7k/J/5+fPn9eAAQPUtGlTeXh4uOw779atm2rWrCkvLy9VrVpVdevWdZvv3FENWVlZatGixVX7uLLO2rVrF/qzuPp4rlixQrfffrs8PT1lsVgUEhLiNjWuX7++wH8H/vnPf7pNnZL0888/q3v37goICJCfn5+qVKnidt/5pX9/atSoofLly6tSpUp65JFHlJmZ6Va/cxxJSUlRdHS0fHx8FBgYqKeffloXLlxw2LeoEG5uQHBwsBISEvTXX3/Z2s6fP6958+apZs2a+frPnDlT//73v7Vx40YdPXrU4Ta//PJLpaamas2aNcrMzFRUVJROnz5tWz548GClpqbaTW+88YZteXZ2tnr27KkhQ4a4VZ29evVSjRo1lJCQoF27dikvL0/vv/++tm/frtzcXHl4eGj79u039Xj99NNPtjr27t2riRMnavr06Xruuecc7uvKY5mbmytvb28NGTJEnp6e8vb2vinH8srvvH379lq4cKH279+vJUuW6MyZMypTpozLv/Mr67xk1KhRtsenBwUFuWWdr7zyisOfXXeqc8mSJXrooYc0cOBAde/eXUFBQTp+/Ljb1BgeHp5vWf369eXp6al169a5TZ2S1KVLF124cEHr1q3Ttm3bVKFCBVksFs2fP99t6jx37pwsFotOnDihDRs2aPXq1dq7d68eeught/udc7nc3FxFR0crOztbmzdv1n//+1/Fx8drzJgxDvsXGQPXpX///kb37t2NJk2aGHPnzrW1f/zxx0azZs2M7t27G/3797e1nzlzxihXrpzx008/Gb179zZee+01u+39/vvvhiRjx44dtrZvvvnGkGSsXr3aMAzDaNeunfHkk08Wqr7Zs2cb/v7+blPntepo3LixUa5cOZcdr0veeOMNIyQkxOGyq32GChUqGEFBQS79zi+5++67DUlG48aN3e5nc+XKlUbDhg2NvXv3GpKMiIgIl/9sXqlWrVrGxIkTbfPu8nfocjk5OUb16tWNDz/80G1rvFJ2drZhtVqNhg0bulWdJ06cMCQZGzdutLX16dPHkGTUrl3bbeoMCwszypQpY3fsfvjhB0OS0bBhQ5d/x5d+51xp5cqVhoeHh5GWlmZrmzZtmuHn52dkZWUVatvXgzM3N2jQoEGaPXu2bX7WrFm2V0dcbuHChWrYsKEaNGigvn37atasWdd8bfulMwEFXSYpiXUWVEdOTo7dQ6NcdbzS09NVsWJFpz9DvXr18vVzxWc4efKkfvvtN1WsWFGxsbFu8Z1fcuzYMQ0ePFgfffSRfHx8bO3u8rN5uXHjxqlSpUpq2bKl9uzZI8Mw3KrO7du368iRI/Lw8FDLli21YMECJSUlKSoqym1qvNJnn32mrKws1axZ062OZaVKldSgQQPNmTNHZ8+e1YULF7R//36VKVNGDz/8sNvUeekM9+XH7tI2WrZs6ZKaCiMpKUlNmza1vXVAkiIjI5WRkaG9e/cW2X7yKbbYZHKX/qd0/Phxw2q1GsnJyUZycrLh5eVlnDhxIl+KDg8PNyZNmmQYxsX/dQUEBBhfffWVbfmVKfrUqVPGfffdZ5QrV86WeNu1a2eULl3aKFu2rN10+f8sLrnyzI2r6yxVqpQRGhrqsI7vvvvOKFWqlBEWFuay42UYhvHLL78Yfn5+xowZMxwuv9qx7N27d74zNzfzM4waNcrw8fExJBkBAQFGVFSUy7/zy+vMy8szOnXqZLz66qt224yIiHCrOg3DMCZMmGB89dVXxq5du4xp06YZpUuXNurWretWdc6fP9+QZNSsWdNYvHix0aVLF6N69epGhQoV3KbGK0VFRRnVq1d3i3+Prqzz0KFDRmhoqGGxWAxPT0/D29vb7X42u3fvblgsFmPMmDGG1Wo1du3aZXTq1MmQZDz//PMu/44LOnMzePBgo2PHjnZtZ8+eNSQZK1euzNe/qLjF6xdKssqVKys6Olrx8fEyDEPR0dEKCAiw67N//35t2bJFS5culSSVKlVKvXv31syZMxUREWHXNzw8XB4eHjp79qzq1KmjBQsW2CXeBx98UM8//7zdOpcvd9c6R40apezs7Hx13H333erTp4+qVaumW265xWXH68iRI+rUqZN69uypwYMHO30svby8btqxdPQZnn76acXGxurgwYPq27evtm/froCAALf52Xz33Xd15swZjR49ulDH05V/h0aOHGn7c7NmzfTRRx8pKSlJfn5+blNnXl6eJOn555/X/fffr88//1ytWrVSUlKSGjVq5BY1Xu7w4cNas2aN2rZtK8m9vnPDMDR06FAFBgZq06ZN8vb2Vp8+ffTtt9/qwoULblNn+fLl1apVK73//vvKyspSq1at1KZNG1mtVvn6+rqkJndGuCkCgwYNsr0ba+rUqfmWz5w5UxcuXLANopQu/oWyWq2aMmWK3SvcFyxYoEaNGqlSpUoOR577+/s7vATi7nX6+fnZBqldqiM3N1e5ubm65557lJ6eflPqcOTo0aNq3769wsPDC/12+SuP5cKFC+2W3+zPEBAQoICAAN1yyy1q27atFi9erG+//dZtfjbXrVunpKSkfO+rWb9+vfr37+82dTpSuXJlGYah5ORkt6mzatWqkqRGjRrZ2jw8PFSnTh3Vrl1b8fHxLq/xcrNnz1alSpUUHBysjIwMSe7z7+a6deu0fPlynTp1Sn5+fpKkO+64Q4cPH9Z///tft6lTkmrUqKGtW7dq7ty5euGFF3T06FFlZ2erTp06SkpKcklN1xIUFKQtW7bYtR07dsy2rLgw5qYIdOrUSdnZ2crJyVFkZKTdsgsXLmjOnDmaMGGCdu7caZt27dqlatWqaf78+Xb9g4ODVbdu3QJvqTNDnZ06ddJff/2l1NRU3XnnnZo9e7YsFstNr0O6eMYmIiJCoaGhmj17tt0b6K/1GdzhWF5NVlaW29T5zjvvaNeuXbZ9rFy5UpJ022236bXXXnObOh05efKkJCkwMNBt6gwNDZXVatX+/fttbXl5eUpOTlb79u3dosZLDMPQ7Nmz1a9fP7u/X+5yLM+dOydJDv/u5+XluU2dl4uJiVFOTo4yMjLk5eWle++91+U1FSQsLEy7d+/W8ePHbW2JiYny8/OzC+dFjTM3RcDT01P79u2z/flyl/5HEBsba5eWJen+++/XzJkzHT5LoSDnzp1TWlqaXZvValWFChUkXXyewMmTJ5WSkqLc3FydPHlSZ86cUWZmpsqVK+eyOv/66y/l5ORIktLS0lS2bFk1bNhQb7/9tk6cOKHz58/rr7/+uqnH61KwqVWrlt566y2dOHHC1uda/6O49J3/9NNP2r17t06ePKmcnBydPHlS77777k37DN99952+//573XnnnapQoYJ+/fVXbdiwQT4+PgoLC3Obn80rb1MtV66cJKls2bKqUaOGJLlFnUlJSfruu+/Uvn17+fr6KikpSVu2bFFwcLDt75g71Onn56fHHntMY8eOVXBwsNLT07Vr1y5JUu/evdWnTx+X13jJunXr9Pvvv+vhhx/WuHHjbO3u8rMZFhamChUqqH///hozZoy8vb21detWnTt3TtHR0W5TpyT99ttv2r59u8qVK6cRI0boxRdf1Pjx4+2Ciat/5+zcuVOSVK9ePZUrV04dO3ZUo0aN9NBDD+mNN95QWlqaXnjhBQ0dOrR43zxebKN5TO7S4NKCXBrc1aVLF6Nz584O+3z33XeGJGPXrl0Ob8u7Urt27QxJ+abIyEi7uhz1uXwgmavqDAwMNAzj4sAzR8sl3dTjdbU6HHH0ndeqVcvh+jfrM/zwww9G+/btjYoVKxpWq9WoXbu2ccstt9j9TFzJVT+bl7t8QLE71blt2zbj9ttvN/z9/Q0vLy/j1ltvNVq1amV07drVreo0jIu3Vj/11FNGYGCgUapUKaNy5crGnj173KpGwzCMmJgYIzw83DAM9/138/vvvzc6duxoVKxY0fD19TUCAgKMO+64w63q7N+/v1GjRg2jYsWKRpkyZYxmzZoZc+bMcfmxK8zvnOTkZCMqKsrw9vY2AgICjKeeesrIyckpcL9FwWIY17g3DAAAoARhzA0AADAVwg1QgKioKJUrV87h9Prrr7u6PABAAbgsBRTgyJEjdu+VuVzFihWv+SRjAIBrEG4AAICpcFkKAACYCuEGAACYCuEGAACYCuEGACRZLBYtW7as0P1feukltWjR4qp9BgwYoB49etxQXQCcR7gB/uYGDBggi8Xi8JHsQ4cOlcVi0YABA/ItS0pKkqenp6Kjo/MtS05OlsVisU2VKlVSx44dtWPHDlufiIgIuz6XpoIeDd+1a1d16tTJ4bJNmzbJYrHohx9+KOSnzi81NVVRUVHXvT4A90G4AaDg4GAlJCTY3fp+/vx5zZs3L997oS6ZOXOm/v3vf2vjxo06evSowz5ffvmlUlNTtWbNGmVmZioqKsr2dnhJGjx4sFJTU+2mN954w+G2YmNjlZiYqMOHD+dbNnv2bLVu3VrNmjVz4lNflJ2dLeni+8SK9V03AG4awg0AtWrVSsHBwfrkk09sbZ988olq1qypli1b5uufmZmpBQsWaMiQIYqOjlZ8fLzD7VaqVElBQUFq3bq13nrrLR07dkzfffedbbmPj4+CgoLsJj8/P4fb6tKliypXrpxvX5mZmVq0aJFiY2P1559/KiYmRtWrV5ePj4+aNm2a7y3IERERGjZsmIYPH66AgADbm56vvCz1zDPP6JZbbpGPj4/q1KmjF1980fby18u9//77Cg4Olo+Pj3r16qX09HSH9UsX3zIdFxenkJAQeXt7q3nz5lq8eLFt+alTp/Tggw+qcuXK8vb2Vv369TV79uwCtwfAMcINAEnSoEGD7H6Rzpo1SwMHDnTYd+HChWrYsKEaNGigvn37atasWbrWI7O8vb0l/e9MibNKlSqlfv36KT4+3m5fixYtUm5urmJiYnT+/HmFhoZqxYoV2rNnjx555BE99NBD2rJli922/vvf/6pMmTL65ptvNH36dIf78/X1VXx8vH788UdNnjxZH3zwgSZOnGjX58CBA1q4cKE+//xzrV69Wjt27NDjjz9e4GeIi4vTnDlzNH36dO3du1cjRoxQ3759tWHDBknSiy++qB9//FGrVq3Svn37NG3aNAUEBFzX8QL+1or1tZwA3N6lNzUfP37csFqtRnJyspGcnGx4eXkZJ06csL1t+HLh4eHGpEmTDMMwjJycHCMgIMDuLcBXvnH41KlTxn333WeUK1fOSEtLMwzj4huHS5cubZQtW9Zumjt3boG17tu3L98bh++66y6jb9++Ba4THR1tPPXUU7b5du3aGS1btszXT5KxdOnSArfz5ptvGqGhobb5sWPHGp6ensbhw4dtbatWrTI8PDyM1NRUwzDs34J9/vx5w8fHx9i8ebPddmNjY42YmBjDMAyja9euxsCBAwusAUDhlHJxtgLgJipXrmy7xGQYhqKjox2eNdi/f7+2bNmipUuXSrp4RqV3796aOXOmIiIi7PqGh4fLw8NDZ8+eVZ06dbRgwQJVqVLFtvzBBx/U888/b7fO5cuv1LBhQ4WHh2vWrFmKiIjQgQMHtGnTJr3yyiuSpNzcXL3++utauHChjhw5ouzsbGVlZcnHx8duO6Ghodc8HgsWLNA777yjX3/9VZmZmbpw4UK+S2Y1a9ZU9erVbfNhYWHKy8vT/v37FRQUZNf3wIEDOnfunO6991679uzsbNulvyFDhuj+++/X9u3b1bFjR/Xo0UPh4eHXrBWAPcINAJtBgwZp2LBhkqSpU6c67DNz5kxduHBB1apVs7UZhiGr1aopU6bI39/f1r5gwQI1atRIlSpVUvny5fNty9/fX/Xq1XOqxtjYWP373//W1KlTNXv2bNWtW1ft2rWTJL355puaPHmyJk2apKZNm6ps2bIaPnx4vkthZcuWveo+kpKS9OCDD+rll19WZGSk/P39lZCQoAkTJjhV6+UyMzMlSStWrLALRJJsA5mjoqJ08OBBrVy5UomJibrnnns0dOhQvfXWW9e9X+DviDE3AGw6deqk7Oxs5eTk2AbaXu7ChQuaM2eOJkyYoJ07d9qmXbt2qVq1avkG7wYHB6tu3boOg8316tWrlzw8PDRv3jzNmTNHgwYNksVikSR988036t69u/r27avmzZurTp06+vnnn53ex+bNm1WrVi09//zzat26terXr6+DBw/m65eSkmJ3p9i3334rDw8PNWjQIF/fRo0ayWq1KiUlRfXq1bObgoODbf0qV66s/v37a+7cuZo0aZJmzJjhdP3A3x1nbgDYeHp6at++fbY/X2n58uU6deqUYmNj7c7QSNL999+vmTNnFvicGkfOnTuntLQ0uzar1aoKFSoUuE65cuXUu3dvjR49WhkZGXbP4Klfv74WL16szZs3q0KFCnr77bd17NgxNWrUqNA1XdpOSkqKEhISdNttt2nFihW2y3CX8/LyUv/+/fXWW28pIyNDTzzxhHr16pXvkpR0cYDyf/7zH40YMUJ5eXm68847lZ6erm+++UZ+fn7q37+/xowZo9DQUDVu3FhZWVlavny5br31VqdqB8CZGwBX8PPzK/B27JkzZ6pDhw75go10Mdxs3brVqQfpffDBB6patardFBMTc831YmNjderUKUVGRtpdHnvhhRfUqlUrRUZGKiIiQkFBQdf1hOBu3bppxIgRGjZsmFq0aKHNmzfrxRdfzNevXr16+uc//6nOnTurY8eOatasmd57770Ct/vqq6/qxRdfVFxcnG699VZ16tRJK1asUEhIiCSpTJkyGj16tJo1a6a2bdvK09NTCQkJTtcP/N1ZDOMa928CAACUIJy5AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApvL/s2EKz3IU2acAAAAASUVORK5CYII=", "text/plain": [ "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6NklEQVR4nO3deVRV9eL+8ecACogCOTCYqJSzlJqmoXlNozCH1JyHGwqpleZ0q6v3qmVZppU567VQ1ASHUktzyOg6hpqmpTknzoJDCqKJCvv3h1/Pr3MBZTjAYfd+rbXX6uzxOcTiPH72cCyGYRgCAAAwKafCDgAAAJCfKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsA/hLefvttWSwWXbx4Md+PtXbtWtWtW1dubm6yWCy6cuVKvh8TQNYoO0ARFxUVJYvFYjP5+PioefPmWrNmTYHnWblypdq2bStfX18VL15cpUuX1t/+9jd9/PHHSk5OLvA8Be3SpUvq0qWL3N3dNX36dC1YsEAeHh6Zrvvn/3dbtmzJsNwwDAUEBMhisahNmzaZ7uPKlSvWUnXgwIFM1+ndu3eG35G7k5ubW+7fLFBEuBR2AAD28c477ygwMFCGYSgxMVFRUVFq1aqVVq5cmeUHpT2lp6crIiJCUVFReuSRR/Tqq68qICBAV69eVVxcnEaOHKnVq1crNjY237MUph9//FFXr17Vu+++q5CQkGxt4+bmpujoaD355JM28zdu3KjTp0/L1dU1y22XLl0qi8UiPz8/LVy4UGPHjs10PVdXV3322WcZ5js7O2crI1CUUXYAk3juuefUoEED6+uIiAj5+voqJibGLmUnPT1dN2/ezHIkYMKECYqKitLQoUP18ccfy2KxWJcNHjxY586d0/z58/N0jKLg/PnzkiRvb+9sb9OqVSstXbpUU6ZMkYvL//+zHB0drfr169/z1Nvnn3+uVq1aqVKlSoqOjs6y7Li4uKhXr17ZzgSYCaexAJPy9vaWu7u7zYenJH300Udq3LixypQpI3d3d9WvX19ffPFFhu0tFosGDhyohQsXqnbt2nJ1ddXatWszPdb169c1fvx41a5dWx9++KFN0bnL399f//znP7N9jNzkrF69utzc3FS/fn1t2rQp06xXrlxR79695e3tLS8vL/Xp00fXr1/P/If4P5YuXar69evL3d1dZcuWVa9evXTmzBnr8qeeekphYWGSpMcff1wWi0W9e/e+7367d++uS5cuaf369dZ5N2/e1BdffKEePXpkud3Jkye1efNmdevWTd26dVN8fLx++OGHbL0X4K+EkR3AJJKSknTx4kUZhqHz589r6tSpSklJyfCv+cmTJ+v5559Xz549dfPmTS1atEidO3fWqlWr1Lp1a5t1v//+ey1ZskQDBw5U2bJlVbly5UyPvWXLFl25ckWvv/56jk+LZHWMnOTcuHGjFi9erEGDBsnV1VUzZsxQy5YttWPHDgUFBdms26VLFwUGBmrcuHH66aef9Nlnn8nHx0fjx4+/Z86oqCj16dNHjz/+uMaNG6fExERNnjxZW7du1e7du+Xt7a1///vfql69umbPnm09rfjwww/f92dQuXJlBQcHKyYmRs8995wkac2aNUpKSlK3bt00ZcqUTLeLiYmRh4eH2rRpI3d3dz388MNauHChGjdunOn6mY0QFS9eXJ6envfNCBRpBoAibe7cuYakDJOrq6sRFRWVYf3r16/bvL5586YRFBRktGjRwma+JMPJycn49ddf75th8uTJhiRjxYoVNvNv375tXLhwwWZKT0/P1jFyklOSsXPnTuu8EydOGG5ubkaHDh2s89566y1DkhEeHm6zfYcOHYwyZcrc8/3dvHnT8PHxMYKCgow//vjDOn/VqlWGJGP06NHWeXf/f/z444/33Of/rjtt2jSjVKlS1vfduXNno3nz5oZhGEalSpWM1q1bZ9j+kUceMXr27Gl9/a9//csoW7ascevWLZv1wsLCMv0dkWSEhobeNydQ1HEaCzCJ6dOna/369Vq/fr0+//xzNW/eXC+99JKWLVtms567u7v1vy9fvqykpCQ1bdpUP/30U4Z9NmvWTLVq1brvse/eZVWyZEmb+Xv37lW5cuVspkuXLmXrGDnJGRwcrPr161tfV6xYUe3atdO6deuUlpZms+7LL79s87pp06a6dOnSPe8U27lzp86fP69XX33V5nqi1q1bq0aNGvrmm2+y3Da7unTpoj/++EOrVq3S1atXtWrVqnuewvrll1+0d+9ede/e3Tqve/fuunjxotatW5dhfTc3N+vvx5+nDz74IM/ZAUfHaSzAJBo2bGhzgXL37t1Vr149DRw4UG3atFHx4sUlSatWrdLYsWO1Z88epaamWtfP7DqbwMDAbB27VKlSkqSUlBSb+VWqVLFehzJ//nwtWLAg28fISc6qVatmmFetWjVdv35dFy5ckJ+fn3V+xYoVbdZ74IEHJN0pVFmdzjlx4oQkqXr16hmW1ahRI9PbxnOqXLlyCgkJUXR0tK5fv660tDR16tQpy/U///xzeXh46KGHHtLRo0cl3Sk0lStX1sKFCzOc6nN2ds723WGA2TCyA5iUk5OTmjdvrnPnzunIkSOSpM2bN+v555+Xm5ubZsyYodWrV2v9+vXq0aOHDMPIsI8/j67cS40aNSRJ+/bts5lfsmRJhYSEKCQkRA899FCm22Z2jJzmzImsrinK637toUePHlqzZo1mzZql5557Lss7ugzDUExMjK5du6ZatWqpatWq1un48eP66quvMhRP4K+MkR3AxG7fvi3p/4+4fPnll3Jzc9O6detsnt0yd+7cPB2nadOm8vLy0qJFizRixAg5OeXt31E5zXm3zP3Z4cOHVaJECZUrVy5PWSSpUqVKkqRDhw6pRYsWNssOHTpkXZ5XHTp0UP/+/bVt2zYtXrw4y/XuPn/nnXfeUc2aNW2WXb58Wf369dOKFSu41Rz4P4zsACZ169YtffvttypevLj1A9HZ2VkWi8XmOpbjx49rxYoVeTpWiRIl9Oabb2rfvn0aPnx4pqMkORk5yWnOuLg4m2t5Tp06pa+++krPPvusXR6a16BBA/n4+GjWrFk2p9TWrFmjAwcOZDhllFslS5bUzJkz9fbbb6tt27ZZrnf3FNYbb7yhTp062Ux9+/ZV1apVtXDhQrtkAsyAkR3AJNasWaODBw9KuvNgu+joaB05ckTDhw+3XovSunVrTZw4US1btlSPHj10/vx5TZ8+XVWqVNEvv/ySp+MPHz5cBw4c0Icffqhvv/1WHTt2VIUKFXT58mX99NNPWrp0qXx8fLL1wMCc5gwKClJoaKjNreeSNGbMmDy9p7uKFSum8ePHq0+fPmrWrJm6d+9uvfW8cuXKGjp0qF2OI8n6nJ6spKam6ssvv9QzzzyT5c/y+eef1+TJk3X+/Hn5+PhIujPK9/nnn2e6focOHbL8SgvADCg7gEmMHj3a+t9ubm6qUaOGZs6cqf79+1vnt2jRQpGRkfrggw80ZMgQBQYGavz48Tp+/Hiey46Tk5MWLFigjh076tNPP9XUqVN1+fJllSxZUkFBQXrvvffUt2/fDHdsZSanOZs1a6bg4GCNGTNGJ0+eVK1atRQVFaVHH300T+/pz3r37q0SJUrogw8+0D//+U95eHioQ4cOGj9+fI6elpxX33zzja5cuXLPkZ+2bdvq448/1qJFizRo0CBJd0rS3//+90zXj4+Pp+zA1CyGI1yVBwC5ZLFYNGDAAE2bNq2wowBwUFyzAwAATI2yAwAATI2yAwAATI0LlAEUaVx2COB+GNkBAACmRtkBAACmxmksSenp6Tp79qxKlSqV6ZcMAgAAx2MYhq5evary5cvf82tqKDuSzp49q4CAgMKOAQAAcuHUqVOqUKFClsspO5JKlSol6c4P6+5j9QEAgGNLTk5WQECA9XM8K5QdyXrqytPTk7IDAEARc79LULhAGQAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmJpLYQeAg4q2FHaCjHoYhZ0AAFAEMbIDAABMjbIDAABMjbIDAABMjbIDAABMjQuUAQD5ixseUMgY2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZWqGVn06ZNatu2rcqXLy+LxaIVK1bYLDcMQ6NHj5a/v7/c3d0VEhKiI0eO2Kzz+++/q2fPnvL09JS3t7ciIiKUkpJSgO8CAAA4skItO9euXVOdOnU0ffr0TJdPmDBBU6ZM0axZs7R9+3Z5eHgoNDRUN27csK7Ts2dP/frrr1q/fr1WrVqlTZs2qV+/fgX1FgAAgIOzGIZhFHYISbJYLFq+fLnat28v6c6oTvny5fWPf/xDr7/+uiQpKSlJvr6+ioqKUrdu3XTgwAHVqlVLP/74oxo0aCBJWrt2rVq1aqXTp0+rfPny2Tp2cnKyvLy8lJSUJE9Pz3x5f0VOtKWwE2TUwyF+VQHkFH9PkE+y+/ntsNfsxMfHKyEhQSEhIdZ5Xl5eatSokeLi4iRJcXFx8vb2thYdSQoJCZGTk5O2b99e4JkBAIDjcSnsAFlJSEiQJPn6+trM9/X1tS5LSEiQj4+PzXIXFxeVLl3auk5mUlNTlZqaan2dnJxsr9gAAMDBOOzITn4aN26cvLy8rFNAQEBhRwIAAPnEYcuOn5+fJCkxMdFmfmJionWZn5+fzp8/b7P89u3b+v33363rZGbEiBFKSkqyTqdOnbJzegAA4CgctuwEBgbKz89PsbGx1nnJycnavn27goODJUnBwcG6cuWKdu3aZV3n+++/V3p6uho1apTlvl1dXeXp6WkzAQAAcyrUa3ZSUlJ09OhR6+v4+Hjt2bNHpUuXVsWKFTVkyBCNHTtWVatWVWBgoEaNGqXy5ctb79iqWbOmWrZsqb59+2rWrFm6deuWBg4cqG7dumX7TiwAAGBuhVp2du7cqebNm1tfDxs2TJIUFhamqKgovfnmm7p27Zr69eunK1eu6Mknn9TatWvl5uZm3WbhwoUaOHCgnn76aTk5Oaljx46aMmVKgb8XAADgmBzmOTuFiefsZILnYgCwF/6eIJ8U+efsAAAA2ANlBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmJpDl520tDSNGjVKgYGBcnd318MPP6x3331XhmFY1zEMQ6NHj5a/v7/c3d0VEhKiI0eOFGJqAADgSBy67IwfP14zZ87UtGnTdODAAY0fP14TJkzQ1KlTretMmDBBU6ZM0axZs7R9+3Z5eHgoNDRUN27cKMTkAADAUbgUdoB7+eGHH9SuXTu1bt1aklS5cmXFxMRox44dku6M6kyaNEkjR45Uu3btJEnz58+Xr6+vVqxYoW7duhVadgAA4BgcemSncePGio2N1eHDhyVJP//8s7Zs2aLnnntOkhQfH6+EhASFhIRYt/Hy8lKjRo0UFxeX5X5TU1OVnJxsMwEAAHNy6JGd4cOHKzk5WTVq1JCzs7PS0tL03nvvqWfPnpKkhIQESZKvr6/Ndr6+vtZlmRk3bpzGjBmTf8EBAIDDcOiRnSVLlmjhwoWKjo7WTz/9pHnz5umjjz7SvHnz8rTfESNGKCkpyTqdOnXKTokBAICjceiRnTfeeEPDhw+3XnvzyCOP6MSJExo3bpzCwsLk5+cnSUpMTJS/v791u8TERNWtWzfL/bq6usrV1TVfswMAAMfg0CM7169fl5OTbURnZ2elp6dLkgIDA+Xn56fY2Fjr8uTkZG3fvl3BwcEFmhUAADgmhx7Zadu2rd577z1VrFhRtWvX1u7duzVx4kSFh4dLkiwWi4YMGaKxY8eqatWqCgwM1KhRo1S+fHm1b9++cMMDAACH4NBlZ+rUqRo1apReffVVnT9/XuXLl1f//v01evRo6zpvvvmmrl27pn79+unKlSt68skntXbtWrm5uRVicgAA4Cgsxp8fR/wXlZycLC8vLyUlJcnT07Ow4ziGaEthJ8iox1/+VxUomvh7gnyS3c9vh75mBwAAIK8oOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNTyXHbS0tK0Z88eXb582R55AAAA7CrHZWfIkCGKjIyUdKfoNGvWTI899pgCAgK0YcMGe+cDAADIkxyXnS+++EJ16tSRJK1cuVLx8fE6ePCghg4dqn//+992DwgAAJAXOS47Fy9elJ+fnyRp9erV6ty5s6pVq6bw8HDt3bvX7gEBAADyIsdlx9fXV/v371daWprWrl2rZ555RpJ0/fp1OTs72z0gAABAXrjkdIM+ffqoS5cu8vf3l8ViUUhIiCRp+/btqlGjht0DAgAA5EWOy87bb7+toKAgnTp1Sp07d5arq6skydnZWcOHD7d7QAAAgLzIcdmRpE6dOkmSbty4YZ0XFhZmn0QAAAB2lONrdtLS0vTuu+/qwQcfVMmSJXXs2DFJ0qhRo6y3pAMAADiKHJed9957T1FRUZowYYKKFy9unR8UFKTPPvvMruEAAADyKsdlZ/78+Zo9e7Z69uxpc/dVnTp1dPDgQbuGAwAAyKscl50zZ86oSpUqGeanp6fr1q1bdgkFAABgLzkuO7Vq1dLmzZszzP/iiy9Ur149u4QCAACwlxzfjTV69GiFhYXpzJkzSk9P17Jly3To0CHNnz9fq1atyo+MAAAAuZbjkZ127dpp5cqV+u677+Th4aHRo0frwIEDWrlypfVpygAAAI4iV8/Zadq0qdavX2/vLAAAAHaX45EdAACAoiTHIztOTk6yWCxZLk9LS8tTIAAAAHvKcdlZvny5zetbt25p9+7dmjdvnsaMGWO3YAAAAPaQ47LTrl27DPM6deqk2rVra/HixYqIiLBLMAAAAHuw2zU7TzzxhGJjY+21OwAAALuwS9n5448/NGXKFD344IP22B0AAIDd5Pg01gMPPGBzgbJhGLp69apKlCihzz//3K7hAAAA8irHZeeTTz6xKTtOTk4qV66cGjVqpAceeMCu4QAAAPIqx2Wnd+/e+RADAAAgf2Sr7Pzyyy/Z3uGjjz6a6zAAAAD2lq2yU7duXVksFhmGcc/1LBYLDxUEAAAOJVtlJz4+Pr9zAAAA5ItslZ1KlSrldw4AAIB8kevn7Ozfv19r167V119/bTPZ25kzZ9SrVy+VKVNG7u7ueuSRR7Rz507rcsMwNHr0aPn7+8vd3V0hISE6cuSI3XMAAICiKcd3Yx07dkwdOnTQ3r17ba7juXs7uj2v2bl8+bKaNGmi5s2ba82aNSpXrpyOHDlic4v7hAkTNGXKFM2bN0+BgYEaNWqUQkNDtX//frm5udktCwAAKJpyPLIzePBgBQYG6vz58ypRooR+/fVXbdq0SQ0aNNCGDRvsGm78+PEKCAjQ3Llz1bBhQwUGBurZZ5/Vww8/LOnOqM6kSZM0cuRItWvXTo8++qjmz5+vs2fPasWKFXbNAgAAiqYcl524uDi98847Klu2rJycnOTk5KQnn3xS48aN06BBg+wa7uuvv1aDBg3UuXNn+fj4qF69evr000+ty+Pj45WQkKCQkBDrPC8vLzVq1EhxcXFZ7jc1NVXJyck2EwAAMKccl520tDSVKlVKklS2bFmdPXtW0p2LmA8dOmTXcMeOHdPMmTNVtWpVrVu3Tq+88ooGDRqkefPmSZISEhIkSb6+vjbb+fr6WpdlZty4cfLy8rJOAQEBds0NAAAcR46v2QkKCtLPP/+swMBANWrUSBMmTFDx4sU1e/ZsPfTQQ3YNl56ergYNGuj999+XJNWrV0/79u3TrFmzFBYWluv9jhgxQsOGDbO+Tk5OpvAAAGBSOR7ZGTlypNLT0yVJ77zzjuLj49W0aVOtXr1aU6ZMsWs4f39/1apVy2ZezZo1dfLkSUmSn5+fJCkxMdFmncTEROuyzLi6usrT09NmAgAA5pTtkZ0GDRropZdeUo8ePazloEqVKjp48KB+//33DN+Gbg9NmjTJcGrs8OHD1uf+BAYGys/PT7Gxsapbt66kO6M027dv1yuvvGLXLAAAoGjK9shOnTp19Oabb8rf318vvviizZ1XpUuXtnvRkaShQ4dq27Ztev/993X06FFFR0dr9uzZGjBggKQ7t7sPGTJEY8eO1ddff629e/fqxRdfVPny5dW+fXu75wEAAEVPtstOZGSkEhISNH36dJ08eVJPP/20qlSpovfff19nzpzJl3CPP/64li9frpiYGAUFBendd9/VpEmT1LNnT+s6b775pl577TX169dPjz/+uFJSUrR27VqesQMAACRJFuN+3+6Zhd9++01z587VggULdPbsWT377LOKiIjQCy+8YO+M+S45OVleXl5KSkri+p27ou0/UpdnPXL1qwqgsPH3BPkku5/fuf66iIcfflhjx47V8ePHFRMTo23btqlz58653R0AAEC+yPGt53+2YcMGzZ07V19++aVcXFzUt29fe+UCAACwixyXndOnTysqKkpRUVE6duyYmjZtqhkzZqhz585yd3fPj4wAAAC5lu2ys2TJEs2ZM0exsbHy8fFRWFiYwsPDVaVKlfzMBwAAkCfZLju9evVS69attXz5crVq1UpOTrm+3AcAAKDAZLvsnD59Wj4+PvmZBQAAwO6yPTxD0QEAAEUR56IAAICpUXYAAICpUXYAAICpZbvs7NixQ2lpaVkuT01N1ZIlS+wSCgAAwF6yXXaCg4N16dIl62tPT08dO3bM+vrKlSvq3r27fdMBAADkUbbLzv9+X2hm3x+ay+8UBQAAyDd2vWbHYnHAb7YFAAB/aVygDAAATC1HXwS6f/9+JSQkSLpzyurgwYNKSUmRJF28eNH+6QAAAPIoR2Xn6aeftrkup02bNpLunL4yDIPTWAAAwOFku+zEx8fnZw4AAIB8ke2yU6lSpfuus2/fvjyFAQAAsLc8X6B89epVzZ49Ww0bNlSdOnXskQkAAMBucl12Nm3apLCwMPn7++ujjz5SixYttG3bNntmAwAAyLMcXaCckJCgqKgoRUZGKjk5WV26dFFqaqpWrFihWrVq5VdGAACAXMv2yE7btm1VvXp1/fLLL5o0aZLOnj2rqVOn5mc2AACAPMv2yM6aNWs0aNAgvfLKK6patWp+ZgIAALCbbI/sbNmyRVevXlX9+vXVqFEjTZs2jQcJAgAAh5ftsvPEE0/o008/1blz59S/f38tWrRI5cuXV3p6utavX6+rV6/mZ04AAIBcyfHdWB4eHgoPD9eWLVu0d+9e/eMf/9AHH3wgHx8fPf/88/mREQAAINfy9Jyd6tWra8KECTp9+rRiYmLslQkAAMBu7PKt587Ozmrfvr2+/vpre+wOAADAbrJ9N1Z4ePh917FYLIqMjMxTIAAAAHvKdtmJiopSpUqVVK9ePZtvPgcAAHBk2S47r7zyimJiYhQfH68+ffqoV69eKl26dH5mAwAAyLNsX7Mzffp0nTt3Tm+++aZWrlypgIAAdenSRevWrWOkBwAAOKwcXaDs6uqq7t27a/369dq/f79q166tV199VZUrV1ZKSkp+ZQQAAMi1XN+N5eTkJIvFIsMwlJaWZs9MAAAAdpOjspOamqqYmBg988wzqlatmvbu3atp06bp5MmTKlmyZH5lBAAAyLVsX6D86quvatGiRQoICFB4eLhiYmJUtmzZ/MwGAACQZ9kuO7NmzVLFihX10EMPaePGjdq4cWOm6y1btsxu4QAAAPIq22XnxRdflMViyc8sAAAAdpejhwoCAAAUNXb5biwAAABHRdkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmVqTKzgcffCCLxaIhQ4ZY5924cUMDBgxQmTJlVLJkSXXs2FGJiYmFFxIAADiUIlN2fvzxR/3nP//Ro48+ajN/6NChWrlypZYuXaqNGzfq7NmzeuGFFwopJQAAcDRFouykpKSoZ8+e+vTTT/XAAw9Y5yclJSkyMlITJ05UixYtVL9+fc2dO1c//PCDtm3bVoiJAQCAoygSZWfAgAFq3bq1QkJCbObv2rVLt27dsplfo0YNVaxYUXFxcVnuLzU1VcnJyTYTAAAwJ5fCDnA/ixYt0k8//aQff/wxw7KEhAQVL15c3t7eNvN9fX2VkJCQ5T7HjRunMWPG2DsqAABwQA49snPq1CkNHjxYCxculJubm932O2LECCUlJVmnU6dO2W3fAADAsTh02dm1a5fOnz+vxx57TC4uLnJxcdHGjRs1ZcoUubi4yNfXVzdv3tSVK1dstktMTJSfn1+W+3V1dZWnp6fNBAAAzMmhT2M9/fTT2rt3r828Pn36qEaNGvrnP/+pgIAAFStWTLGxserYsaMk6dChQzp58qSCg4MLIzIAAHAwDl12SpUqpaCgIJt5Hh4eKlOmjHV+RESEhg0bptKlS8vT01OvvfaagoOD9cQTTxRGZAAA4GAcuuxkxyeffCInJyd17NhRqampCg0N1YwZMwo7FgAAcBAWwzCMwg5R2JKTk+Xl5aWkpCSu37kr2lLYCTLq8Zf/VQWKJv6eIJ9k9/PboS9QBgAAyCvKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDWHLjvjxo3T448/rlKlSsnHx0ft27fXoUOHbNa5ceOGBgwYoDJlyqhkyZLq2LGjEhMTCykxAABwNA5ddjZu3KgBAwZo27ZtWr9+vW7duqVnn31W165ds64zdOhQrVy5UkuXLtXGjRt19uxZvfDCC4WYGgAAOBKLYRhGYYfIrgsXLsjHx0cbN27U3/72NyUlJalcuXKKjo5Wp06dJEkHDx5UzZo1FRcXpyeeeCJb+01OTpaXl5eSkpLk6emZn2+h6Ii2FHaCjHoUmV9VAH/G3xPkk+x+fjv0yM7/SkpKkiSVLl1akrRr1y7dunVLISEh1nVq1KihihUrKi4uLsv9pKamKjk52WYCAADmVGTKTnp6uoYMGaImTZooKChIkpSQkKDixYvL29vbZl1fX18lJCRkua9x48bJy8vLOgUEBORndAAAUIiKTNkZMGCA9u3bp0WLFuV5XyNGjFBSUpJ1OnXqlB0SAgAAR+RS2AGyY+DAgVq1apU2bdqkChUqWOf7+fnp5s2bunLlis3oTmJiovz8/LLcn6urq1xdXfMzMgAAcBAOPbJjGIYGDhyo5cuX6/vvv1dgYKDN8vr166tYsWKKjY21zjt06JBOnjyp4ODggo4LAAAckEOP7AwYMEDR0dH66quvVKpUKet1OF5eXnJ3d5eXl5ciIiI0bNgwlS5dWp6ennrttdcUHByc7TuxAACAuTl02Zk5c6Yk6amnnrKZP3fuXPXu3VuS9Mknn8jJyUkdO3ZUamqqQkNDNWPGjAJOCgAAHJVDl53sPALIzc1N06dP1/Tp0wsgEQAAKGoc+podAACAvKLsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU3Mp7AAAAMCOoi2FnSCjHkahHp6RHQAAYGqM7AD46+FfvsBfCiM7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1FwKOwAAAA4p2lLYCTLqYRR2giLJNGVn+vTp+vDDD5WQkKA6depo6tSpatiwYWHHArKnqP5RLaq5iyp+3kCumKLsLF68WMOGDdOsWbPUqFEjTZo0SaGhoTp06JB8fHwKOx4KEh8GAID/YYqyM3HiRPXt21d9+vSRJM2aNUvffPON5syZo+HDhxduOD58AQAoVEX+AuWbN29q165dCgkJsc5zcnJSSEiI4uLiCjEZAABwBEV+ZOfixYtKS0uTr6+vzXxfX18dPHgw021SU1OVmppqfZ2UlCRJSk5Otn/A6/bfZZ5l532S237IXbDIXbDIXbDMnDtXu72zX8O4zxkLo4g7c+aMIcn44YcfbOa/8cYbRsOGDTPd5q233jIkMTExMTExMZlgOnXq1D27QpEf2SlbtqycnZ2VmJhoMz8xMVF+fn6ZbjNixAgNGzbM+jo9PV2///67ypQpI4vFAa+x0Z32GhAQoFOnTsnT07Ow42QbuQsWuQsWuQsWuQtWUchtGIauXr2q8uXL33O9Il92ihcvrvr16ys2Nlbt27eXdKe8xMbGauDAgZlu4+rqKldXV5t53t7e+ZzUPjw9PR32l+5eyF2wyF2wyF2wyF2wHD23l5fXfdcp8mVHkoYNG6awsDA1aNBADRs21KRJk3Tt2jXr3VkAAOCvyxRlp2vXrrpw4YJGjx6thIQE1a1bV2vXrs1w0TIAAPjrMUXZkaSBAwdmedrKDFxdXfXWW29lOP3m6MhdsMhdsMhdsMhdsIpq7sxYDON+92sBAAAUXUX+oYIAAAD3QtkBAACmRtkBAACmRtkBAACmRtnJZ71795bFYtHLL7+cYdmAAQNksVjUu3dvm/lxcXFydnZW69atM2xz/PhxWSyWTKdt27ZJks6dO6cePXqoWrVqcnJy0pAhQ4pE7mXLlumZZ55RuXLl5OnpqeDgYK1bt87hc2/ZskVNmjRRmTJl5O7urho1auiTTz7JUe7Cyv5nW7dulYuLi+rWrevwuTds2JDp8oSEBIfNLN35Xr5///vfqlSpklxdXVW5cmXNmTMnW5kLM/vdY/7vVLt2bYfNLEkLFy5UnTp1VKJECfn7+ys8PFyXLl3KVubCzj59+nTVrFlT7u7uql69uubPn+9QGbP7ObN06VLVqFFDbm5ueuSRR7R69eos30d+ouwUgICAAC1atEh//PGHdd6NGzcUHR2tihUrZlg/MjJSr732mjZt2qSzZ89mus/vvvtO586ds5nq168v6c4f1HLlymnkyJGqU6dOkcm9adMmPfPMM1q9erV27dql5s2bq23bttq9e7dD5/bw8NDAgQO1adMmHThwQCNHjtTIkSM1e/bsHOUujOx3XblyRS+++KKefvrpHGcuzNyHDh2yWe7j4+PQmbt06aLY2FhFRkbq0KFDiomJUfXq1bOdubCyT5482Wb+qVOnVLp0aXXu3NlhM2/dulUvvviiIiIi9Ouvv2rp0qXasWOH+vbtm+3MhZV95syZGjFihN5++239+uuvGjNmjAYMGKCVK1c6TMbsfM788MMP6t69uyIiIrR79261b99e7du31759+7J8H/nFNM/ZcWSPPfaYfvvtNy1btkw9e/aUdGcUo2LFigoMDLRZNyUlRYsXL9bOnTuVkJCgqKgo/etf/8qwzzJlymT53V+VK1fW5MmTJSnH/2oszNyTJk2yef3+++/rq6++0sqVK1WvXj2HzV2vXj2bfJUrV9ayZcu0efNm9evXL9u5CyP7XS+//LJ69OghZ2dnrVixIkeZCzO3j49Prr/qpaAzr127Vhs3btSxY8dUunRpSXd+V4pCdi8vL5tH8q9YsUKXL1/O0VPqCzpzXFycKleurEGDBkmSAgMD1b9/f40fPz7bmQsr+4IFC9S/f3917dpVkvTQQw/pxx9/1Pjx49W2bVuHyJidz5nJkyerZcuWeuONNyRJ7777rtavX69p06Zp1qxZmW6TXxjZKSDh4eGaO3eu9fWcOXMy/UOxZMkS1ahRQ9WrV1evXr00Z86c+391fT4qzNzp6em6evWq9YOhqOTevXu3fvjhBzVr1ixX2xd09rlz5+rYsWN66623cpW3sHJLUt26deXv769nnnlGW7dudejMX3/9tRo0aKAJEybowQcfVLVq1fT666/b/EvcUbP/r8jISIWEhKhSpUoOmzk4OFinTp3S6tWrZRiGEhMT9cUXX6hVq1Y52k9hZE9NTZWbm5vNPHd3d+3YsUO3bt1yiIzZERcXp5CQEJt5oaGhiouLs/ux7oeyU0B69eqlLVu26MSJEzpx4oS2bt2qXr16ZVgvMjLSOr9ly5ZKSkrSxo0bM6zXuHFjlSxZ0mYyW+6PPvpIKSkp6tKlS5HIXaFCBbm6uqpBgwYaMGCAXnrppRznLujsR44c0fDhw/X555/LxSVvA70Fmdvf31+zZs3Sl19+qS+//FIBAQF66qmn9NNPPzls5mPHjmnLli3at2+fli9frkmTJumLL77Qq6++mqPMhZH9z86ePas1a9bk6ve7IDM3adJECxcuVNeuXVW8eHH5+fnJy8tL06dPz3Hugs4eGhqqzz77TLt27ZJhGNq5c6c+++wz3bp1SxcvXnSIjNmRkJCQ4WubfH19s31tnT1xGquAlCtXTq1bt1ZUVJQMw1Dr1q1VtmxZm3UOHTqkHTt2aPny5ZIkFxcXde3aVZGRkXrqqads1l28eLFq1qxp2tzR0dEaM2aMvvrqqxxdh1GYuTdv3qyUlBRt27ZNw4cPV5UqVdS9e3eHzZ6WlqYePXpozJgxqlatWo5zFlZuSapevbrNtS6NGzfWb7/9pk8++UQLFixwyMzp6emyWCxauHCh9ZTQxIkT1alTJ82YMUPu7u7Zzl3Q2f9s3rx58vb2Vvv27XOUt6Az79+/X4MHD9bo0aMVGhqqc+fO6Y033tDLL7+syMhIh84+atQoJSQk6IknnpBhGPL19VVYWJgmTJggJ6esxyiK6udMQaDsFKDw8HDr93dl9q+LyMhI3b59W+XLl7fOMwxDrq6umjZtms0584CAAFWpUiX/Q6vgcy9atEgvvfSSli5dmmEI1JFz3z0v/sgjjygxMVFvv/12rspOQWW/evWqdu7cqd27d1uPlZ6eLsMw5OLiom+//VYtWrRwuNxZadiwobZs2ZKjvAWZ2d/fXw8++KDN+jVr1pRhGDp9+rSqVq3qsNn/vO2cOXP097//XcWLF89x3oLMPG7cODVp0sR6vcijjz4qDw8PNW3aVGPHjpW/v7/DZnd3d9ecOXP0n//8R4mJifL399fs2bNVqlQplStXziEyZoefn58SExNt5iUmJt73Wrz8wGmsAtSyZUvdvHlTt27dUmhoqM2y27dva/78+fr444+1Z88e6/Tzzz+rfPnyiomJKaTUBZs7JiZGffr0UUxMTKa3RDpq7v+Vnp6u1NRUh87u6empvXv32uzj5ZdfVvXq1bVnzx41atTIIXNnZc+ePbn6ACuozE2aNNHZs2eVkpJinXf48GE5OTmpQoUKOc5dkNnv2rhxo44ePaqIiIhc5S3IzNevX88wCuLs7CxJub4+paB/3sWKFVOFChXk7OysRYsWqU2bNvcc2SmMjPcSHBys2NhYm3nr169XcHCwXY+THYzsFCBnZ2cdOHDA+t9/tmrVKl2+fFkRERE2zVqSOnbsqMjISJtnKFy6dCnDeU9vb2/rRW179uyRdOeq+wsXLmjPnj0qXry4atWq5bC5o6OjFRYWpsmTJ6tRo0bW9dzd3TPs25FyT58+XRUrVlSNGjUk3bmF/qOPPrLeBZIbBZU9KCjIZr6Pj0+m8x0t96RJkxQYGKjatWvrxo0b+uyzz/T999/r22+/ddjMPXr00Lvvvqs+ffpozJgxunjxot544w2Fh4fn+BRWQWe/KzIyUo0aNcr170dBZm7btq369u2rmTNnWk9jDRkyRA0bNrQZ1XDE7IcPH9aOHTvUqFEjXb58WRMnTtS+ffs0b948h8ko3f9zZvDgwWrWrJk+/vhjtW7dWosWLdLOnTtz9ViOPDOQr8LCwox27dplubxdu3ZGWFiY0aZNG6NVq1aZrrN9+3ZDkvHzzz8b8fHxhqRMp5iYGOs2mS2vVKmSQ+du1qxZpsvDwsIcOveUKVOM2rVrGyVKlDA8PT2NevXqGTNmzDDS0tKynbuwsv+vt956y6hTp47D5x4/frzx8MMPG25ubkbp0qWNp556yvj+++8dOrNhGMaBAweMkJAQw93d3ahQoYIxbNgw4/r169nOXZjZr1y5Yri7uxuzZ8/OUd7CzDxlyhSjVq1ahru7u+Hv72/07NnTOH36tMNn379/v1G3bl3D3d3d8PT0NNq1a2ccPHjQoTIaRvY+Z5YsWWJUq1bNKF68uFG7dm3jm2++yTJnfrIYRiHe1wwAAJDPuGYHAACYGmUHAACYGmUHAACYGmUHAACYGmUHAACYGmUHAACYGmUHAACYGmUHACRFRUXJ29s7R9tUrlxZkyZNuuc6FotFK1asyHUuAHlH2QFwX71795bFYrF5lPxdAwYMkMViUe/evTMsi4uLk7Ozc6bfc3b8+HFZLJZMp23btmVYPzExUcWKFdOiRYsyzRgREaHHHnss52/u/3Tt2lWHDx/O9fYAHBdlB0C2BAQEaNGiRfrjjz+s827cuKHo6GhVrFgx020iIyP12muvadOmTTp79mym63z33Xc6d+6czVS/fv0M6/n6+qp169aaM2dOhmXXrl3TkiVLcv0Flbdu3ZK7u7t8fHxytT0Ax0bZAZAtjz32mAICArRs2TLrvGXLlqlixYqqV69ehvVTUlK0ePFivfLKK2rdurWioqIy3W+ZMmXk5+dnMxUrVizTdSMiIhQbG6uTJ0/azF+6dKlu376tnj17au3atXryySfl7e2tMmXKqE2bNvrtt9+s694dUVq8eLGaNWsmNzc3LVy4MMNprN9++03t2rWTr6+vSpYsqccff1zfffddhkxXr15V9+7d5eHhoQcffFDTp0+/149Rp06dUpcuXeTt7a3SpUurXbt2On78uHX5hg0b1LBhQ3l4eMjb21tNmjTRiRMn7rlPAPdG2QGQbeHh4Zo7d6719Zw5c9SnT59M112yZIlq1Kih6tWrq1evXpozZ47y+lV8rVq1kq+vb4biNHfuXL3wwgvy9vbWtWvXNGzYMO3cuVOxsbFycnJShw4dlJ6ebrPN8OHDNXjwYB04cEChoaEZjpWSkqJWrVopNjZWu3fvVsuWLdW2bdsMRevDDz9UnTp1tHv3bus+169fn2n+W7duKTQ0VKVKldLmzZu1detWlSxZUi1bttTNmzd1+/ZttW/fXs2aNdMvv/yiuLg49evXTxaLJU8/N+Avr1C+fhRAkXL3W5XPnz9vuLq6GsePHzeOHz9uuLm5GRcuXLB+q/KfNW7c2Jg0aZJhGIZx69Yto2zZssZ///tf6/K736zs7u5ueHh42Ez3Mnz4cCMwMNBIT083DMMwjh49algsFuO7777LdP0LFy4Ykoy9e/faHPdutrvmzp1reHl53fPYtWvXNqZOnWp9XalSJaNly5Y263Tt2tV47rnnrK8lGcuXLzcMwzAWLFhgVK9e3ZrdMAwjNTXVcHd3N9atW2dcunTJkGRs2LDhnjkA5AwjOwCyrVy5ctZTUnPnzlXr1q1VtmzZDOsdOnRIO3bsUPfu3SVJLi4u6tq1qyIjIzOsu3jxYu3Zs8dmupfw8HDFx8frv//9r6Q7ozqVK1dWixYtJElHjhxR9+7d9dBDD8nT01OVK1eWpAwjMg0aNLjncVJSUvT666+rZs2a8vb2VsmSJXXgwIEM+wkODs7w+sCBA5nu8+eff9bRo0dVqlQplSxZUiVLllTp0qV148YN/fbbbypdurR69+6t0NBQtW3bVpMnT9a5c+fumRPA/bkUdgAARUt4eLgGDhwoSVlenxIZGanbt2+rfPny1nmGYcjV1VXTpk2Tl5eXdX5AQICqVKmS7eNXrVpVTZs21dy5c/XUU09p/vz56tu3r/VUT9u2bVWpUiV9+umnKl++vNLT0xUUFKSbN2/a7MfDw+Oex3n99de1fv16ffTRR6pSpYrc3d3VqVOnDPvJiZSUFNWvX18LFy7MsKxcuXKS7pS3QYMGae3atVq8eLFGjhyp9evX64knnsj1cYG/OsoOgBy5e32JxWLJ9FqX27dva/78+fr444/17LPP2ixr3769YmJiMr2FPSciIiL0yiuv6Pnnn9eZM2est71funRJhw4d0qeffqqmTZtKkrZs2ZKrY2zdulW9e/dWhw4dJN0pKn++kPiu/71Nftu2bapZs2am+3zssce0ePFi+fj4yNPTM8tj16tXT/Xq1dOIESMUHBys6Ohoyg6QB5zGApAjzs7OOnDggPbv3y9nZ+cMy1etWqXLly8rIiJCQUFBNlPHjh0znMq6dOmSEhISbKYbN27cM0Pnzp1VrFgx9e/fX88++6wCAgIkSQ888IDKlCmj2bNn6+jRo/r+++81bNiwXL3PqlWratmyZdqzZ49+/vln9ejRI8NFztKdUjRhwgQdPnxY06dP19KlSzV48OBM99mzZ0+VLVtW7dq10+bNmxUfH68NGzZo0KBBOn36tOLj4zVixAjFxcXpxIkT+vbbb3XkyJEsyxOA7KHsAMgxT0/PLEcmIiMjFRISYnOq6q6OHTtq586d+uWXX6zzQkJC5O/vbzPd74nDJUqUULdu3XT58mWFh4db5zs5OWnRokXatWuXgoKCNHToUH344Ye5eo8TJ07UAw88oMaNG6tt27YKDQ3N9KGF//jHP7Rz507Vq1dPY8eO1cSJEzMd8bqbe9OmTapYsaJeeOEF1axZUxEREbpx44Y8PT1VokQJHTx4UB07dlS1atXUr18/DRgwQP3798/VewBwh8Uw8ngvKAAAgANjZAcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJja/wPwsxxbql1RiQAAAABJRU5ErkJggg==\n" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } - ] - }, - { - "cell_type": "code", + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "# Assuming you have a list of MAPE values from mape1 to mape10\n", - "mape_values = [mape1, mape2, mape3, mape4, mape5, mape6, mape7, mape8, mape9, mape10]\n", + "mape_values = [mape1, mape2, mape2_1, mape3, mape4, mape5, mape6, mape7, mape8, mape8_1, mape9, mape10]\n", "\n", "# List of corresponding labels for each MAPE value\n", - "labels = ['MAPE1', 'MAPE2', 'MAPE3', 'MAPE4', 'MAPE5', 'MAPE6', 'MAPE7', 'MAPE8', 'MAPE9', 'MAPE10']\n", + "labels = ['MAPE1', 'MAPE2', 'MAPE2_1', 'MAPE3', 'MAPE4', 'MAPE5', 'MAPE6', 'MAPE7', 'MAPE8', 'MAPE2_1', 'MAPE9', 'MAPE10']\n", "\n", "# Plotting the bar graph\n", - "plt.bar(labels, mape_values, color='purple')\n", + "plt.bar(labels, mape_values)\n", "plt.xlabel('MAPE Variables')\n", "plt.ylabel('MAPE Values')\n", "plt.title('Bar Graph of MAPE')\n", "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "bCF5ZehcARcw", + "outputId": "ed3103b5-2636-48c5-82ba-60f8b3dfd729" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Length of labels: 12\n", + "Length of mape_values: 10\n" + ] + } ], + "source": [ + "print(\"Length of labels:\", len(labels))\n", + "print(\"Length of mape_values:\", len(mape_values))" + ] + }, + { + "cell_type": "code", + "execution_count": 97, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 472 }, - "id": "_c4Pe76fDNM-", - "outputId": "0e3d2f74-9042-4e2d-92c6-5ce61e967bd4" + "id": "ZDPV0M5rDTi6", + "outputId": "2b5b43fb-f025-41ff-dc55-6193541132e0" }, - "execution_count": 120, "outputs": [ { - "output_type": "display_data", "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAHHCAYAAABdm0mZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQuUlEQVR4nO3deXhMZ/8G8Hsmy0wiO9mQCKJ2QWyhKEJQKdqSl5BQpWqpSjdqSdBKVW2trRRRr1YssdcSabRoWkopbUWoilYSQSUiss7z+8Mv583IhJmYmMlxf65rrsucOct3nvPkzO2sCiGEABEREZHMKE1dABEREVFlYMghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEisxEVFQWFQoEbN25U+rL279+Pli1bQq1WQ6FQ4Pbt25W+TGMYMWIEfHx8DJrm8OHDUCgUOHz4cKXURGSuGHKInoCYmBgoFAqtl5ubG7p164Z9+/Y98Xp2796N4OBguLu7w9raGi4uLujSpQsWLFiA7OzsJ17Pk3bz5k0MHjwYNjY2WLZsGTZs2IBq1arpHPfBdadWq/HMM89gwoQJyMjIeMKVE5EhLE1dANHTZPbs2ahbty6EEMjIyEBMTAz69u2L3bt3o1+/fpW+fI1Gg1GjRiEmJgbNmzfHuHHj4OXlhTt37iApKQnTp0/HN998g4SEhEqvxZROnDiBO3fuYM6cOQgMDNRrmpJ1l5eXh6NHj2LFihX45ptvcO7cOdja2lZyxf+zevVqaDQag6bp0qUL7t27B2tr60qqisg8MeQQPUF9+vRBmzZtpPejRo2Cu7s7vv76a6OEHI1Gg4KCAqjVap2ff/zxx4iJicHkyZOxYMECKBQK6bNJkyYhLS0NX3755WMtoyq4fv06AMDJyUnvaUqvu1dffRXVq1fHwoULsXPnTgwZMkTnNHfv3i13D1FFWVlZGTyNUqms0uuLqKJ4uIrIhJycnGBjYwNLS+3/b3zyySfo2LEjqlevDhsbG/j7+2Pr1q1lplcoFJgwYQI2btyIpk2bQqVSYf/+/TqXlZubi3nz5qFp06aYP3++VsAp4enpiffee0/vZVSkzoYNG0KtVsPf3x/ff/+9zlpv376NESNGwMnJCY6Ojhg5ciRyc3N1N+IDtmzZAn9/f9jY2KBGjRoYNmwY/vnnH+nz5557DuHh4QCAtm3bQqFQYMSIEXrNu7Tu3bsDAC5fvgzg/rkydnZ2uHTpEvr27Qt7e3uEhoYCuB8MFy9ejKZNm0KtVsPd3R2vvfYa/v333zLz3bdvH7p27Qp7e3s4ODigbdu2+Oqrr6TPdZ2Ts2nTJvj7+0vTNG/eHEuWLJE+L++cnEe1Venv9c8//2DAgAGws7ODq6sr3n77bRQXFxvcbkRPEkMO0ROUlZWFGzduIDMzE7/99htef/115OTkYNiwYVrjLVmyBK1atcLs2bMxd+5cWFpaYtCgQdi7d2+ZeX777beYPHkyQkJCsGTJknJPSj169Chu376NIUOGwMLCwqC6y1uGIXV+9913ePPNNzFs2DDMnj0bN2/eRO/evXHu3Lky4w4ePBh37txBdHQ0Bg8ejJiYGMyaNeuRdcbExGDw4MGwsLBAdHQ0Ro8ejbi4ODz77LPSicXTpk3DmDFjANw/BLVhwwa89tprBrUHAFy6dAkAUL16dWlYUVERgoKC4Obmhk8++QQvvfQSAOC1117DO++8g06dOmHJkiUYOXIkNm7ciKCgIBQWFmrV//zzz+PWrVuYOnUqPvroI7Rs2bLc4AoA8fHxGDJkCJydnTFv3jx89NFHeO6553Ds2LHHbqsSxcXFCAoKQvXq1fHJJ5+ga9euWLBgAVatWmVosxE9WYKIKt26desEgDIvlUolYmJiyoyfm5ur9b6goEA0a9ZMdO/eXWs4AKFUKsVvv/32yBqWLFkiAIgdO3ZoDS8qKhKZmZlaL41Go9cyDKkTgPj555+lYVeuXBFqtVoMHDhQGhYZGSkAiFdeeUVr+oEDB4rq1as/9PsVFBQINzc30axZM3Hv3j1p+J49ewQAMXPmTGlYyfo4ceLEQ+dZetxDhw6JzMxMcfXqVbFp0yZRvXp1YWNjI/7++28hhBDh4eECgJgyZYrW9EeOHBEAxMaNG7WG79+/X2v47du3hb29vWjfvr1W/UIIrfURHh4u6tSpI72fNGmScHBwEEVFReV+h8TERAFAJCYmGtxWJd9r9uzZWvNs1aqV8Pf3L3eZROaAe3KInqBly5YhPj4e8fHx+O9//4tu3brh1VdfRVxcnNZ4NjY20r///fdfZGVloXPnzjh16lSZeXbt2hVNmjR55LJLrpqys7PTGn727Fm4urpqvW7evKnXMgypMyAgAP7+/tJ7b29v9O/fHwcOHChz2GPs2LFa7zt37oybN28+9Mqvn3/+GdevX8e4ceO0zj95/vnn0ahRI517lwwRGBgIV1dXeHl54T//+Q/s7Oywfft21KpVS2u8119/Xev9li1b4OjoiJ49e+LGjRvSy9/fH3Z2dkhMTARwf4/MnTt3MGXKlDLnz+g6tFjCyckJd+/eRXx8vN7fpSJtpWud/Pnnn3ovk8gUeOIx0RPUrl07rROPhwwZglatWmHChAno16+fdPXLnj178MEHH+D06dPIz8+Xxtf1Y1e3bl29lm1vbw8AyMnJ0Rru6+sr/UB++eWX2LBhg97LMKTOBg0alBn2zDPPIDc3F5mZmfDw8JCGe3t7a43n7OwM4H6QcnBw0FnLlStXAAANGzYs81mjRo1w9OhRndPpa9myZXjmmWdgaWkJd3d3NGzYEEql9v8TLS0tUbt2ba1hKSkpyMrKgpubm875lpwEXXL4q1mzZgbVNW7cOGzevBl9+vRBrVq10KtXLwwePBi9e/cudxpD20qtVsPV1VVrmLOzs85ziojMCUMOkQkplUp069YNS5YsQUpKCpo2bYojR47ghRdeQJcuXbB8+XJ4enrCysoK69at0zoBtUTpvSkP06hRIwDAuXPn0L9/f2m4nZ2ddBl1eUFA1zIMrdMQ5Z0zJIR4rPk+jgcDqi4qlapM8NFoNHBzc8PGjRt1TvNgeDCUm5sbTp8+jQMHDmDfvn3Yt28f1q1bh7CwMKxfv/6x5l3C0HO4iMwFQw6RiRUVFQH43x6Wbdu2Qa1W48CBA1CpVNJ469ate6zldO7cGY6Ojti0aROmTp1a5sfYUIbWmZKSUmbYhQsXYGtr+9g/9ABQp04dAEBycrJ05VOJ5ORk6fMnrX79+jh06BA6der00EBav359APdDqK+vr0HLsLa2RnBwMIKDg6HRaDBu3Dh8/vnnmDFjhs55mWtbERkbz8khMqHCwkIcPHgQ1tbWaNy4MYD7/2tWKBRa56n89ddf2LFjx2Mty9bWFu+++y7OnTuHKVOm6NwrYsieEkPrTEpK0jpX5+rVq9i5cyd69epllD0Fbdq0gZubG1auXKl16Gzfvn34448/8Pzzzz/2Mipi8ODBKC4uxpw5c8p8VlRUJF3J1KtXL9jb2yM6Ohp5eXla4z1svTx4/pRSqUSLFi0AQKsdSjPXtiIyNu7JIXqC9u3bh/PnzwO4fy7GV199hZSUFEyZMkU61+T555/HwoUL0bt3bwwdOhTXr1/HsmXL4Ovri19//fWxlj9lyhT88ccfmD9/Pg4ePIiXXnoJtWvXxr///otTp05hy5YtcHNz0+vGcYbW2axZMwQFBeGNN96ASqXC8uXLAUCvS8P1YWVlhXnz5mHkyJHo2rUrhgwZgoyMDOmS98mTJxtlOYbq2rUrXnvtNURHR+P06dPo1asXrKyskJKSgi1btmDJkiV4+eWX4eDggEWLFuHVV19F27ZtMXToUDg7O+PMmTPIzc0t99DTq6++ilu3bqF79+6oXbs2rly5gs8++wwtW7aUgvODzLWtiIzOtBd3ET0ddF1CrlarRcuWLcWKFSu0LhEWQog1a9aIBg0aCJVKJRo1aiTWrVsnXV5dGgAxfvx4g+vZvn276Nu3r3B1dRWWlpbCyclJPPvss2L+/Pni9u3bei/D0Dr/+9//SuO3atVKuqS5RMm0mZmZWsNL2u/y5cuP/G6xsbGiVatWQqVSCRcXFxEaGipd5v3g/Ay5hPxR44aHh4tq1aqV+/mqVauEv7+/sLGxEfb29qJ58+bi3XffFdeuXdMab9euXaJjx47CxsZGODg4iHbt2omvv/5aazmlLyHfunWr6NWrl3BzcxPW1tbC29tbvPbaayItLU0a58FLyEvo01blfS9d65nI3CiEMOGZfET0VFAoFBg/fjyWLl1q6lKI6CnCc3KIiIhIlhhyiIiISJYYcoiIiEiWeHUVEVU6nvpHRKbAPTlEREQkSww5REREJEtP3eEqjUaDa9euwd7e/qFP9iUiIiLzIYTAnTt3ULNmTb0fS/PUhZxr167By8vL1GUQERFRBVy9ehW1a9fWa9ynLuTY29sDuN9IJbfRJyIiIvOWnZ0NLy8v6XdcH09dyCk5ROXg4MCQQ0REVMUYcqoJTzwmIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWTJpyPn+++8RHByMmjVrQqFQYMeOHY+c5vDhw2jdujVUKhV8fX0RExNT6XUSERFR1WPSkHP37l34+flh2bJleo1/+fJlPP/88+jWrRtOnz6NN998E6+++ioOHDhQyZUSERFRVWPSB3T26dMHffr00Xv8lStXom7duliwYAEAoHHjxjh69CgWLVqEoKCgyiqTiIiIqqAqdU5OUlISAgMDtYYFBQUhKSnJRBURERGRuTLpnhxDpaenw93dXWuYu7s7srOzce/ePdjY2JSZJj8/H/n5+dL77OzsSq+TiIiITK9K7cmpiOjoaDg6OkovLy8vU5dEpSkUpnsRUdXCbQUZqEqFHA8PD2RkZGgNy8jIgIODg869OAAwdepUZGVlSa+rV68+iVLND8MEEdHThdv9qnW4KiAgAN98843WsPj4eAQEBJQ7jUqlgkqlquzSiMhcmXKDK4Tplk1Ept2Tk5OTg9OnT+P06dMA7l8ifvr0aaSmpgK4vxcmLCxMGn/s2LH4888/8e677+L8+fNYvnw5Nm/ejMmTJ5uifCIiIjJjJt2T8/PPP6Nbt27S+4iICABAeHg4YmJikJaWJgUeAKhbty727t2LyZMnY8mSJahduza++OILXj5ORGRMptr7xT1fZGQKIZ6uXpWdnQ1HR0dkZWXBwcHB1OU8Oea6y95c6yL5YB8znLmGHHOty1zJrO9X5Pe7Sp14TERERKQvhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlS1MXQEREVKXJ7GnfcsI9OURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkS5amLoCIDKRQmGa5Qjz8c3Oti4ieWtyTQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJsBEhGZgqlungjwBor01OCeHCIiIpIl7skxNt7anoiIyCxwTw4RERHJEvfkEOnC8yWIiKo87skhIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZMnnIWbZsGXx8fKBWq9G+fXscP378oeMvXrwYDRs2hI2NDby8vDB58mTk5eU9oWqJiIioqjBpyImNjUVERAQiIyNx6tQp+Pn5ISgoCNevX9c5/ldffYUpU6YgMjISf/zxB9asWYPY2Fi8//77T7hyIiIiMncmDTkLFy7E6NGjMXLkSDRp0gQrV66Era0t1q5dq3P8H374AZ06dcLQoUPh4+ODXr16YciQIY/c+0NERERPH5OFnIKCApw8eRKBgYH/K0apRGBgIJKSknRO07FjR5w8eVIKNX/++Se++eYb9O3bt9zl5OfnIzs7W+tFRERE8mdpqgXfuHEDxcXFcHd31xru7u6O8+fP65xm6NChuHHjBp599lkIIVBUVISxY8c+9HBVdHQ0Zs2aZdTaiYiIyPyZ/MRjQxw+fBhz587F8uXLcerUKcTFxWHv3r2YM2dOudNMnToVWVlZ0uvq1atPsGIiIiIyFZPtyalRowYsLCyQkZGhNTwjIwMeHh46p5kxYwaGDx+OV199FQDQvHlz3L17F2PGjMG0adOgVJbNbCqVCiqVyvhfgIiIiMyayfbkWFtbw9/fHwkJCdIwjUaDhIQEBAQE6JwmNze3TJCxsLAAAAghKq9YIiIiqnJMticHACIiIhAeHo42bdqgXbt2WLx4Me7evYuRI0cCAMLCwlCrVi1ER0cDAIKDg7Fw4UK0atUK7du3x8WLFzFjxgwEBwdLYYeIiIgIMHHICQkJQWZmJmbOnIn09HS0bNkS+/fvl05GTk1N1dpzM336dCgUCkyfPh3//PMPXF1dERwcjA8//NBUX4GIiIjMlEI8Zcd5srOz4ejoiKysLDg4OBh/AQqF8eepj0etRlPVBTy8NtZVlrmuS9ZlOPYxw7Auw1XVPlYBFfn9rlJXVxERERHpiyGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGTJ4JCzf/9+HD16VHq/bNkytGzZEkOHDsW///5r1OKIiIiIKsrgkPPOO+8gOzsbAHD27Fm89dZb6Nu3Ly5fvoyIiAijF0hERERUEZaGTnD58mU0adIEALBt2zb069cPc+fOxalTp9C3b1+jF0hERERUEQbvybG2tkZubi4A4NChQ+jVqxcAwMXFRdrDQ0RERGRqBu/JefbZZxEREYFOnTrh+PHjiI2NBQBcuHABtWvXNnqBRERERBVh8J6cpUuXwtLSElu3bsWKFStQq1YtAMC+ffvQu3dvoxdIREREVBEKIYQwdRFPUnZ2NhwdHZGVlQUHBwfjL0ChMP489fGo1WiquoCH18a6yjLXdcm6DMc+ZhjWZbiq2scqoCK/3xW6T86lS5cwffp0DBkyBNevXwdwf0/Ob7/9VpHZERERERmdwSHnu+++Q/PmzfHTTz8hLi4OOTk5AIAzZ84gMjLS6AUSERERVYTBIWfKlCn44IMPEB8fD2tra2l49+7d8eOPPxq1OCIiIqKKMjjknD17FgMHDiwz3M3NDTdu3DBKUURERESPy+CQ4+TkhLS0tDLDf/nlF+lKKyIiIiJTMzjk/Oc//8F7772H9PR0KBQKaDQaHDt2DG+//TbCwsIqo0YiIiIigxkccubOnYtGjRrBy8sLOTk5aNKkCbp06YKOHTti+vTplVEjERERkcEqfJ+c1NRUnDt3Djk5OWjVqhUaNGhg7NoqBe+TYwJV8T4O5loXwD72IHOtC2AfMxTrMlxV7WMVUJHfb4Mf61DC29sb3t7eFZ2ciIiIqFIZHHJeeeWVh36+du3aChdDREREZCwGh5x///1X631hYSHOnTuH27dvo3v37kYrjIiIiOhxGBxytm/fXmaYRqPB66+/jvr16xulKCIiIqLHVaFnV5WZiVKJiIgILFq0yBizIyIiInpsRgk5wP2HdhYVFRlrdkRERESPxeDDVREREVrvhRBIS0vD3r17ER4ebrTCiIiIiB6HwSHnl19+0XqvVCrh6uqKBQsWPPLKKyIiIqInxeCQk5iYaNQCli1bhvnz5yM9PR1+fn747LPP0K5du3LHv337NqZNm4a4uDjcunULderUweLFi9G3b1+j1kVERERVW4VvBmgMsbGxiIiIwMqVK9G+fXssXrwYQUFBSE5OhpubW5nxCwoK0LNnT7i5uWHr1q2oVasWrly5AicnpydfPBEREZk1vR7r0KpVKyj0vD30qVOn9F54+/bt0bZtWyxduhTA/UvRvby8MHHiREyZMqXM+CtXrsT8+fNx/vx5WFlZ6b2c0vhYBxOoircdN9e6APaxB5lrXQD7mKFYl+Gqah+rgEp7rMOAAQMepy6dCgoKcPLkSUydOlUaplQqERgYiKSkJJ3T7Nq1CwEBARg/fjx27twJV1dXDB06FO+99x4sLCx0TpOfn4/8/HzpfXZ2tnG/CBEREZklvUJOZGSk0Rd848YNFBcXw93dXWu4u7s7zp8/r3OaP//8E99++y1CQ0PxzTff4OLFixg3bhwKCwvLrTE6OhqzZs0yev1ERERk3ox2n5wnQaPRwM3NDatWrYK/vz9CQkIwbdo0rFy5stxppk6diqysLOl19erVJ1gxERERmYrBJx4XFxdj0aJF2Lx5M1JTU1FQUKD1+a1bt/SaT40aNWBhYYGMjAyt4RkZGfDw8NA5jaenJ6ysrLQOTTVu3Bjp6ekoKCiAtbV1mWlUKhVUKpVeNREREZF8GLwnZ9asWVi4cCFCQkKQlZWFiIgIvPjii1AqlYiKitJ7PtbW1vD390dCQoI0TKPRICEhAQEBATqn6dSpEy5evAiNRiMNu3DhAjw9PXUGHCIiInqKCQPVq1dP7NmzRwghhJ2dnbh48aIQQoglS5aIIUOGGDSvTZs2CZVKJWJiYsTvv/8uxowZI5ycnER6eroQQojhw4eLKVOmSOOnpqYKe3t7MWHCBJGcnCz27Nkj3NzcxAcffKD3MrOysgQAkZWVZVCtert/TvmTf5lrXY+qjXVVnXXJutjHWJd51VWV+1gFVOT32+DDVenp6WjevDkAwM7ODllZWQCAfv36YcaMGQbNKyQkBJmZmZg5cybS09PRsmVL7N+/XzoZOTU1FUrl/3Y2eXl54cCBA5g8eTJatGiBWrVqYdKkSXjvvfcM/RpEREQkcwaHnNq1ayMtLQ3e3t6oX78+Dh48iNatW+PEiRMVOvdlwoQJmDBhgs7PDh8+XGZYQEAAfvzxR4OXQ0RERE8Xg8/JGThwoHQezcSJEzFjxgw0aNAAYWFhfHYVERERmQ297ngMAEuXLsWwYcPKPEIhKSkJSUlJaNCgAYKDgyujRqPiHY9N4GG1sa6yzHVdsi7DsY8ZhnUZrqr2sQqoyO+33iHH0dERhYWFGDhwIEaNGoXu3bs/VrGmwpBjAlXxj9Bc6wLYxx5krnUB7GOGYl2Gq6p9rAIq8vut9+Gq9PR0rFy5EteuXUPPnj1Rt25dzJkzhzfXIyIiIrOkd8ixsbFBWFgYEhMTkZKSguHDh2PNmjWoW7cuevfujS1btqCwsLAyayUiIiLSW4Ue61CvXj3Mnj0bly9fxr59+1C9enWMGDECtWrVMnZ9RERERBXyWM+uUigUsLS0hEKhgBCCe3KIiIjIbFQo5Fy9ehWzZ89GvXr10LNnT1y7dg2rV69GWlqasesjIiIiqhC9bwZYUFCAuLg4rF27Ft9++y08PT0RHh6OV155BfXq1avMGomIiIgMpnfI8fDwQG5uLvr164fdu3cjKChI65ELREREROZE75Azffp0DB8+HK6urpVZDxEREZFR6B1yIiIiKrMOIiIiIqPi8SYiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJb1PPC5RXFyMmJgYJCQk4Pr169BoNFqff/vtt0YrjoiIiKiiDA45kyZNQkxMDJ5//nk0a9YMClM+yp2IiIioHAaHnE2bNmHz5s3o27dvZdRDREREZBQGn5NjbW0NX1/fyqiFiIiIyGgMDjlvvfUWlixZAiFEZdRDREREZBQGH646evQoEhMTsW/fPjRt2hRWVlZan8fFxRmtOCIiIqKKMjjkODk5YeDAgZVRCxEREZHRGBxy1q1bVxl1EBERERmVwSGnRGZmJpKTkwEADRs25NPJiYiIyKwYfOLx3bt38corr8DT0xNdunRBly5dULNmTYwaNQq5ubmVUSMRERGRwQwOOREREfjuu++we/du3L59G7dv38bOnTvx3Xff4a233qqMGomIiIgMphAGXgteo0YNbN26Fc8995zW8MTERAwePBiZmZnGrM/osrOz4ejoiKysLDg4OBh/Aaa6A/SjVqMp70z9sNpYV1nmui5Zl+HYxwzDugxXVftYBVTk99vgPTm5ublwd3cvM9zNzY2Hq4iIiMhsGBxyAgICEBkZiby8PGnYvXv3MGvWLAQEBBi1OCIiIqKKMvjqqiVLliAoKAi1a9eGn58fAODMmTNQq9U4cOCA0QskIiIiqgiDQ06zZs2QkpKCjRs34vz58wCAIUOGIDQ0FDY2NkYvkIiIiKgiKnSfHFtbW4wePdrYtRAREREZjV4hZ9euXejTpw+srKywa9euh477wgsvGKUwIiIioseh1yXkSqUS6enpcHNzg1JZ/rnKCoUCxcXFRi3Q2HgJuQlUxUsczbUugH3sQeZaF8A+ZijWZbiq2scqoCK/33rtydFoNDr/TURERGSuDL6EXJfbt28bYzZERERERmNwyJk3bx5iY2Ol94MGDYKLiwtq1aqFM2fOGLU4IiIioooyOOSsXLkSXl5eAID4+HgcOnQI+/fvR58+ffDOO+8YvUAiIiKiijD4EvL09HQp5OzZsweDBw9Gr1694OPjg/bt2xu9QCIiIqKKMHhPjrOzM65evQoA2L9/PwIDAwEAQgizv7KKiIiInh4G78l58cUXMXToUDRo0AA3b95Enz59AAC//PILfH19jV4gERERUUUYHHIWLVoEHx8fXL16FR9//DHs7OwAAGlpaRg3bpzRCyQiIiKqCL1uBignvBmgCVTFm1WZa10A+9iDzLUugH3MUKzLcFW1j1VApd0MkI91ICIioqqGj3UwNv5Po6yq+D8Nc60LYB97kLnWBbCPGYp1Ga6q9rEK4GMdiIiIiP6fUR7rQERERGRuDA45b7zxBj799NMyw5cuXYo333zTGDURERERPTaDQ862bdvQqVOnMsM7duyIrVu3GqUoIiIiosdlcMi5efMmHB0dywx3cHDAjRs3jFIUERER0eMyOOT4+vpi//79ZYbv27cP9erVM0pRRERERI/L4DseR0REYMKECcjMzET37t0BAAkJCViwYAEWL15s7PqIiIiIKsTgkPPKK68gPz8fH374IebMmQMA8PHxwYoVKxAWFmb0AomIiIgq4rEe65CZmQkbGxvp+VVVAW8GaAJV8WZV5loXwD72IHOtC2AfMxTrMlxV7WMVUJHf7wrdJ6eoqAiHDh1CXFwcSjLStWvXkJOTU5HZERERERmdwYerrly5gt69eyM1NRX5+fno2bMn7O3tMW/ePOTn52PlypWVUScRERGRQQzekzNp0iS0adMG//77L2xsbKThAwcOREJCglGLIyIiIqoog/fkHDlyBD/88AOsra21hvv4+OCff/4xWmFEREREj8PgPTkajUbnk8b//vtv2NvbG6UoIiIiosdlcMjp1auX1v1wFAoFcnJyEBkZib59+1aoiGXLlsHHxwdqtRrt27fH8ePH9Zpu06ZNUCgUGDBgQIWWS0RERPJlcMj55JNPcOzYMTRp0gR5eXkYOnSodKhq3rx5BhcQGxuLiIgIREZG4tSpU/Dz80NQUBCuX7/+0On++usvvP322+jcubPByyQiIiL5q9B9coqKihAbG4szZ84gJycHrVu3RmhoqNaJyPpq37492rZti6VLlwK4fzjMy8sLEydOxJQpU3ROU1xcjC5duuCVV17BkSNHcPv2bezYsUOv5fE+OSZQFe/jYK51AexjDzLXugD2MUOxLsNV1T5WARX5/TboxOPCwkI0atQIe/bsQWhoKEJDQytUaImCggKcPHkSU6dOlYYplUoEBgYiKSmp3Olmz54NNzc3jBo1CkeOHHnoMvLz85Gfny+9z87OfqyaiYiIqGow6HCVlZUV8vLyjLbwGzduoLi4GO7u7lrD3d3dkZ6ernOao0ePYs2aNVi9erVey4iOjoajo6P08vLyeuy6iYiIyPwZfE7O+PHjMW/ePBQVFVVGPQ91584dDB8+HKtXr0aNGjX0mmbq1KnIysqSXlevXq3kKomIiMgcGHyfnBMnTiAhIQEHDx5E8+bNUa1aNa3P4+Li9J5XjRo1YGFhgYyMDK3hGRkZ8PDwKDP+pUuX8NdffyE4OFgaptFoAACWlpZITk5G/fr1taZRqVRQqVR610RERETyYHDIcXJywksvvWSUhVtbW8Pf3x8JCQnSZeAajQYJCQmYMGFCmfEbNWqEs2fPag2bPn067ty5gyVLlvBQFBEREUkMDjnr1q0zagEREREIDw9HmzZt0K5dOyxevBh3797FyJEjAQBhYWGoVasWoqOjoVar0axZM63pnZycAKDMcCIiInq66R1yNBoN5s+fj127dqGgoAA9evRAZGRkhS4bLy0kJASZmZmYOXMm0tPT0bJlS+zfv186GTk1NRVKZYUelk5ERERPMb3vkzNnzhxERUUhMDAQNjY2OHDgAIYMGYK1a9dWdo1GxfvkmEBVvI+DudYFsI89yFzrAtjHDMW6DFdV+1gFVOT3W+9dJF9++SWWL1+OAwcOYMeOHdi9ezc2btwonfhLREREZE70Djmpqalaz6YKDAyEQqHAtWvXKqUwIiIiosehd8gpKiqCWq3WGmZlZYXCwkKjF0VERET0uPQ+8VgIgREjRmjdcyYvLw9jx47VuleOIffJISIiIqoseoec8PDwMsOGDRtm1GKIiIiIjEXvkGPs++MQERERVSbegIaIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZMksQs6yZcvg4+MDtVqN9u3b4/jx4+WOu3r1anTu3BnOzs5wdnZGYGDgQ8cnIiKip5PJQ05sbCwiIiIQGRmJU6dOwc/PD0FBQbh+/brO8Q8fPowhQ4YgMTERSUlJ8PLyQq9evfDPP/884cqJiIjInCmEEMKUBbRv3x5t27bF0qVLAQAajQZeXl6YOHEipkyZ8sjpi4uL4ezsjKVLlyIsLOyR42dnZ8PR0RFZWVlwcHB47PrLUCiMP099PGo1mqou4OG1sa6yzHVdsi7DsY8ZhnUZrqr2sQqoyO+3SffkFBQU4OTJkwgMDJSGKZVKBAYGIikpSa955ObmorCwEC4uLjo/z8/PR3Z2ttaLiIiI5M+kIefGjRsoLi6Gu7u71nB3d3ekp6frNY/33nsPNWvW1ApKpUVHR8PR0VF6eXl5PXbdREREZP5Mfk7O4/joo4+wadMmbN++HWq1Wuc4U6dORVZWlvS6evXqE66SiIiITMHSlAuvUaMGLCwskJGRoTU8IyMDHh4eD532k08+wUcffYRDhw6hRYsW5Y6nUqmgUqmMUi8RERFVHSbdk2NtbQ1/f38kJCRIwzQaDRISEhAQEFDudB9//DHmzJmD/fv3o02bNk+iVCIiIqpiTLonBwAiIiIQHh6ONm3aoF27dli8eDHu3r2LkSNHAgDCwsJQq1YtREdHAwDmzZuHmTNn4quvvoKPj4907o6dnR3s7OxM9j2IiIjIvJg85ISEhCAzMxMzZ85Eeno6WrZsif3790snI6empkKp/N8OpxUrVqCgoAAvv/yy1nwiIyMRFRX1JEsnIiIiM2by++Q8abxPjglUxfs4mGtdAPvYg8y1LoB9zFCsy3BVtY9VQJW7Tw4RERFRZWHIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlkyi5CzbNky+Pj4QK1Wo3379jh+/PhDx9+yZQsaNWoEtVqN5s2b45tvvnlClRIREVFVYfKQExsbi4iICERGRuLUqVPw8/NDUFAQrl+/rnP8H374AUOGDMGoUaPwyy+/YMCAARgwYADOnTv3hCsnIiIic6YQQghTFtC+fXu0bdsWS5cuBQBoNBp4eXlh4sSJmDJlSpnxQ0JCcPfuXezZs0ca1qFDB7Rs2RIrV6585PKys7Ph6OiIrKwsODg4GO+LlFAojD9PfTxqNZqqLuDhtbGussx1XbIuw7GPGYZ1Ga6q9rEKqMjvt0n35BQUFODkyZMIDAyUhimVSgQGBiIpKUnnNElJSVrjA0BQUFC54xMREdHTydKUC79x4waKi4vh7u6uNdzd3R3nz5/XOU16errO8dPT03WOn5+fj/z8fOl9VlYWgPuJUFbM+fuYa22syzCsy3DmWhvrMoy51gWYb22VUFfJ77YhB6BMGnKehOjoaMyaNavMcC8vLxNUU4kcHU1dQfnMtTbWZRjWZThzrY11GcZc6wLMt7ZKrOvOnTtw1HP+Jg05NWrUgIWFBTIyMrSGZ2RkwMPDQ+c0Hh4eBo0/depURERESO81Gg1u3bqF6tWrQ2HK45UPyM7OhpeXF65evVo55wpVkLnWBZhvbazLMKzLcOZaG+syDOsyjBACd+7cQc2aNfWexqQhx9raGv7+/khISMCAAQMA3A8hCQkJmDBhgs5pAgICkJCQgDfffFMaFh8fj4CAAJ3jq1QqqFQqrWFOTk7GKL9SODg4mFWnKmGudQHmWxvrMgzrMpy51sa6DMO69KfvHpwSJj9cFRERgfDwcLRp0wbt2rXD4sWLcffuXYwcORIAEBYWhlq1aiE6OhoAMGnSJHTt2hULFizA888/j02bNuHnn3/GqlWrTPk1iIiIyMyYPOSEhIQgMzMTM2fORHp6Olq2bIn9+/dLJxenpqZCqfzfRWAdO3bEV199henTp+P9999HgwYNsGPHDjRr1sxUX4GIiIjMkMlDDgBMmDCh3MNThw8fLjNs0KBBGDRoUCVX9WSpVCpERkaWObRmauZaF2C+tbEuw7Auw5lrbazLMKyr8pn8ZoBERERElcHkj3UgIiIiqgwMOURERCRLDDlEREQkSww5JqJQKLBjxw6jj/u4TFmXubbJo5hr3azLMOZal6HLexrazFzb41HMpW5zqeOJECTCw8MFAAFAWFlZifr164tZs2aJwsLCSltmWlqayMvLM1ld27ZtEz179hQuLi4CgPjll1+06tJn2fp8B0OkpqaKiIgI0axZM2Frays8PT3F8OHDxT///FNm3PKWXdE2KygoEO+++65eyy6vlg8++EAEBAQIGxsb4ejoaJS69BEZGSkaNmwobG1thZOTk+jRo4f48ccfTd7HSnvttdcEALFo0SKT11V63iWvoKAgvftzZdb2+++/i+DgYOHg4CBsbW1FmzZtxJUrV0zeZg+2V8lrxowZYtiwYXot15jbi5J53blzR4wfP17UqlVLqNVq0bhxY7FixQq9lvs47aXPch9W9+effy66du0q7O3ttdqzdB1Xr1416vZVCCHS09NFeHi4cHNzE2q1WgQFBYkLFy7oVbMxlff7U9q9e/fEuHHjhIuLi6hWrZp48cUXRXp6usHLYsgR9zt77969RVpamvjrr7/E8uXLhUKhEHPnzi0zbn5+vizq+vLLL8WsWbPE6tWrdXYyU7TJ7du3RWBgoIiNjRXnz58XSUlJol27dsLf31/veVS0bmMse+bMmWLhwoUiIiJCZ8iprPbcuHGjiI+PF5cuXRLnzp0To0aNEg4ODuL69euPnPZJrOe4uDjh5+cnatasKRYtWqTXNJVZV+l5l7xu3bpVoemNWdvFixeFi4uLeOedd8SpU6fExYsXxc6dO0VGRoZJ6xJCaLVVWlqaWLt2rVAoFOLSpUsm3X6OHj1a1K9fXyQmJorLly+Lzz//XFhYWIidO3c+ctrHqftxliuEEIsWLRLR0dEiOjpaABA9evSo9PbTaDSiQ4cOonPnzuL48ePi/PnzYsyYMcLb21vk5ORUeL4V8ajfHyGEGDt2rPDy8hIJCQni559/Fh06dBAdO3Y0eFkMOeJ+Z+/fv7/WsJ49e4oOHTpIn33wwQfC09NT+Pj4CCHu73UYNGiQcHR0FM7OzuKFF14Qly9f1prHmjVrRJMmTYS1tbXw8PAQ48ePlz4DILZv3y6EuN9xx48fLzw8PIRKpRLe3t5i7ty50rJLj9uzZ0/RokUL4eHhIZRKpbCxsRG2traiTp06Ul116tQRlpaWwsbGRqhUKuHo6CjGjRsnCgoKytTl6uqq1clKlhUeHi6Cg4O16lKr1cLLy0urLmdnZ6lNDh48KM1PoVCIOnXqiHPnzmm1c8uWLYW7u7s0TrNmzaS6dLVJ9erVBQBRq1YtrT/60uMKIcSvv/4qunXrJpRKpbCyshKjR48Wd+7ckdrM1dVVeHl5iaZNmwo7OzuhUCiEvb29KCgoKHddHj9+XAAQV65cMWhddu/eXSgUiie+LkvqysrKkv5naA59TKlUiiFDhog6deqIRYsWmbwuR0dHoVQqK/Q3WdKPH+x/AQEBwsHBQep/bdq0ER4eHtLfxssvvyxq1qwp1Gq1UCgUwsrKSgwbNkyqSwgh2rZtKxwdHc16e1FSV//+/UX37t0FANGtWzfRv39/rboUCoWwtrYWrVu3lrafAISbm5u03F69eglLS0tpD8Z//vMf6W9WCCE6duwo7O3thYWFhVAqlUKlUkl1lXzHpk2bipkzZ2q1h7W1tXjuued0tp0QxtlWlLRl6e1+69atxbRp0wzaVgwYMEAAEEqlUquP9ezZU6ttP/jgA+Hq6irUarVQq9XC0dFR1K1bV2ub9dJLL4n+/fuL+fPnCw8PD1GtWjXh7Ows1REaGioAiHPnzkl1FBcXixo1aohu3brp7OsPaz+1Wi1cXFy02q/k76N0HS4uLlr9qbTLly/rDDm3b98WVlZWYsuWLdKwP/74QwAQSUlJZebzMDwnpxw2NjYoKCgAACQkJCA5ORnx8fHYs2cPCgsLERQUBHt7exw5cgTHjh2DnZ0devfuLU2zYsUKjB8/HmPGjMHZs2exa9cu+Pr66lzWp59+il27dmHz5s1ITk7Gxo0b4ePjo3Nca2tr/P7777C2toZarcazzz4LZ2dn+Pn5SXVZWVlBpVLhhRdeQM+ePWFnZ4d169YhJiamTF2rV68utw3+/PNPrbratGkDCwsLqU0AICoqCnv27MHt27fRt29f2NraYtu2bVizZg1u3LiBjh07Sm1y/vx5nD59GvXr18c333yDTz75BMnJyYiJiSm3TaZNmwYAWLNmTbltcvfuXQQFBcHZ2Rn9+vVD27ZtcejQIekGkzY2NiguLkZ6ejouXLiA7t2747PPPkNhYSG++OKLctfljRs3oFAosHXrVoPW5enTp2Fra/vE1+WuXbvg4+ODVatWlXm+iyn62OjRo9GqVSu8+eabaNeuXbnt9aTreuaZZ2Bra4u8vDxs3rwZr7/+Om7evFnhuu7evYtTp05BqVSiX79+sLS0xPnz59GuXTtpexEfH4/MzEwEBwdj9+7d6NixIzZu3IgvvvgCALBs2TKcOHECHTt2RNu2bZGXl4fdu3frPBfClNuLXbt2wd3dHXv37sWoUaPKratHjx7w8fGBnZ2dtP0EgGnTpqGwsBA9e/bEkSNH0LVrV+zcuRNdunTBtm3b8PrrrwO4v/386aefUFBQgEGDBmHTpk0YPnw4YmJitLYXHTt2xNq1a7F9+3bExsZi3bp1sLCwQOfOnctdV8bYVgwcOBD16tWDUqlE7969cfDgQVy4cAG5ubkGbSt++OEHAEDXrl211qONjY00XkJCAn777TcIIfDss8/ihx9+gKOjIzIzM9G1a1dpmxUfH49vv/0Wly5dwpgxY1BYWIicnBzMmDEDu3btkh5qqVarpXkrlUoUFhbi+PHjevf1kvY7ceIEtmzZotV+JRITE3Hp0iUkJiZi/fr1Zdbbo5w8eRKFhYUIDAyUhjVq1Aje3t5ISkrSez4AeE6OENp7cjQajYiPjxcqlUq8/fbbIjw8XLi7u2vtJtywYYNo2LCh0Gg00rD8/HxhY2MjDhw4IIQQombNmmLatGnlLhOl0vHEiRNF9+7dteZXui4AIi4uTsTHxwtLS0uhUqlEaGioVNfevXuFUqkUS5cuFQ0bNhRhYWGiTp06oqioSKqrc+fOIiQkpExdDybpkrrCw8NF3bp1Rffu3UVxcbHONin9HV555RWhVCq1Ev2OHTsEALFp0yYhhBA2NjbCwcFBFBUVSeMMGjRIhISE6GyT5557TrRq1UoMHTr0oe23atUq4ezsLHJycqQ227t3r1AoFGLz5s1CpVKJpk2bimrVqmmty0GDBon27duXuy59fX3F0KFDDV6XjRs3Fg4ODk90Xe7evVtUq1ZNKBQKUbNmTWkvlCn72Ny5c0XPnj2lZerak2OKur7++muxc+dO8euvv4rt27eLxo0bi7Zt2+pVV0ltJeNqNBrx5ptvCgBi0qRJ0t/Gjh07hFKpFOnp6WLDhg3CwcFBeHt7S30/Pz9fWFhYiK5duwohhPDw8BAAhK2trVi4cKH45ZdfRHR0tFAoFOLw4cMmb7PS5s2bJ5ydncW9e/e09jZMnDhRdOvWTRw8eFDn9rPkO2zYsEG4u7sLJycn6TBJfn6+UKlUQqFQiPT0dFGzZk3RvHlzqa4SJduLknnl5eWJRo0aCQDCwsJCWFtbi/Xr15f792msbUVeXp4ICwuT9phaWlqK9evXG7ytaNWqlQAg+vbtK4TQ/v0paVt3d3exfPlyqe6S3589e/ZIfaykP7m5uYmioiKpjtLb14KCAuHt7S0GDRokAIjNmzeLjz76SAAQLi4uOvv6w9qvREl/KjlfJjw8vNz19qDy9uRs3LhRWFtblxm/bdu24t133y23fXUxi8c6mIM9e/bAzs4OhYWF0Gg0GDp0KKKiojB+/Hg0b94c1tbW0rhnzpzBxYsXYW9vrzWPvLw8XLp0CdevX8e1a9fQo0cPvZY9YsQI9OzZEw0bNkTv3r3Rr18/9OrVS6oLAAYPHgwAaNCgAWrUqAFLS0uprk6dOkGj0eDo0aO4ePEiLl26BCGE9L/5vLw8WFhY4O+//zaortTUVFy+fBmWlpZQKBTo3r27VptkZGRotYlGo4GHh0eZ+fz000/o1q0b7t27hxYtWkh7gwDA09MTZ8+eLTPNsGHD8Oyzz0KpVKJdu3Y4ePCg1CYP+uOPP+Dn54dq1apJbXbo0CEIITBkyBCEhoaiqKgIt2/fRuPGjaV16enpiR9//BHXrl0rsy7v3buHvLw8zJ49G76+vgaty7Vr1+LevXt44403nti67NatG06fPo0bN25g9erV0jJK1/Uk+5iXlxciIyNx6tQpKBSKh7bXk+773bp1k5bfvHlztGjRAvXr19e7rhJDhgyBRqNBUVER3N3d8eGHH0p/G8899xw0Gg2Sk5Nx5swZ3LlzB3fv3tXaw1ZcXIy0tDRcv34d6enpAID+/ftj8uTJAICWLVvihx9+wMqVK03eZqWtXbsWoaGhWnsE9uzZA2tra9y7dw+JiYlo1KgROnfujLi4OJ3bz+vXr0OhUEjPKASAgoICCCGkv8lmzZrBy8vroduLzz77DLm5ubC3t4ezszPq1q2L1157DTVr1tTaC1DCWNuKwsJCFBYWQq1WIz8/Hy+++CJef/115ObmGrStWL9+PQBg3759sLGxgUajkX5/vvzySwD3+2hKSopUd8nvT0hICDQaDerWrQulUoni4mK4urri5s2b0nq7c+eO1F5WVlaIi4uT9sD95z//Qc+ePdGxY0ecOHHioX29vPYDIPWn5ORkaX02bdpUr+38k8DDVf+v5EciJSUF9+7dw/r166UVWXqFAkBOTg78/f1x+vRprdeFCxcwdOhQrV2N+mjdujUuX76MOXPm4N69exg8eDBefvllqS4AWL58Oe7du4fevXtLnefBunJzc+Hv74/g4GA899xzWnU1atSoQm1y6tQpfPbZZxgxYgROnDiB8PBwncsuLCyEvb29VnscOXIEABAYGCi1SemOD9y/PFGj0ZSZV3R0NJ555hksXboUxcXFWm2iT90lyz548CDWr18PKysrKJVKrboVCgWKioq01uWJEycQEBCAhg0b4vvvv4ebm5sBLXZ/Xc6fPx8qleqJrstq1arB19cXHTp0wJo1a2Bpqf3/lyfdx3799Vdcv34d3t7esLS0hKWlJa5cuYK33nrLpHXpUq9ePdSoUUPvukosXLgQKSkpmDhxIho3bvzQ7UX16tW16jp9+jTCw8Ph6uoq/W0olUo0adJEa9rGjRsjNTXVbNrsyJEjSE5Oxquvvqo1vFu3bvj1119x7tw5bNy4Ec8++yzCwsJw+PBhne3h7u6ONm3aaLXHyZMnAUDreUlWVlZa05beXuTn5+P999/H8uXL8ffff+Pjjz9GgwYNoNFoMGzYMJ31P6gi24off/wRGo0Gn3/+Oc6ePYsLFy5g1apVeOmll/RaZonWrVvjq6++AgB4eHjA0tISPXr0kH5/SpT3+1NS9xdffIHTp09j4MCBqFOnjtbvz4Pb15JtHXA/rO7fvx9FRUUIDw9/aF831MPWmz48PDxQUFCA27dvaw3PyMjQ+R/ph2HI+X8lPxIlG+WHad26NVJSUuDm5gZfX1+tl6OjI+zt7eHj4yOdt6IPBwcHhISEYPXq1YiNjcW2bduQn58vdXBXV1dYWlqicePGOHPmDIqKiqRpjx07BqVSiS5duiAlJQVqtRp2dnZadalUKlhaWhpUV7Vq1dCqVSuMHz8ea9as0arrQX5+fsjJyZHa0dfXF2lpaVAqlfD394e9vT3s7Oxw48aNhy6zqKgIgwcPRkpKChITE/Hqq69qtcmtW7fKTFPSJnfv3pXqLll206ZNH7o8e3t7aV3WqVMH77//PtLS0nDkyBHUrVu3QuvSxsYG1tbWJl2XujYoT7KPqdVq/Prrr1o/YjVr1sQ777xj0rp0tdfff/9d5pyc8uoq3f88PT3h7e2Npk2bavW/0nU1bNgQrVu3RnZ2NlQqlVZdTk5OsLS0lPqYp6endO5KiQsXLqBOnTpm02Zr1qyBv78//Pz8tOop+btv2rQphg4dKtV15coV6Zy8EiXtceHCBXh6epbZXrRq1Qo+Pj5IS0sr871LKy4uRmFhIZRKpVZ79OjRAxkZGZW2rXByckJRURFq166ttd23sbGBWq02aFtRsr5atWqFrVu3Yt++fcjOzn5o3SW/P5cuXYJSqUSPHj3g6+sLBwcHWFlZ6b3NcnR0REpKCn7++WcMGjTooX1dVx0lSvd1Y/H394eVlZXWd0hOTkZqaioCAgIMmhcPV1VAaGgo5s+fj/79+2P27NmoXbs2rly5gri4OLz77ruoXbs2oqKiMHbsWLi5uaFPnz64c+cOjh07hokTJ5aZ38KFC+Hp6YlWrVpBqVRiy5Yt8PDwkHb/PrjsyMhIHD16FPXq1UNiYiImTpyI4cOH4/XXX8fnn3+OxMRE+Pr64vLly1JdJZ2ypK5q1aqhSZMmuHLlCgCU2bgCwMWLF/H111/rVdfChQvx1Vdfwc/PD/Pnz4eVlRXefvttPPPMMygsLARwPwglJSXh008/ldqk5H8VJT7++GOkpaUhJCQEW7duRbNmzaBUKhEbGwsPDw84OTnpXB+RkZEIDw9HYWEhbt68KbVJ6d3huri5uUEIgRdeeAFFRUW4dOkS5syZg6lTp2LcuHGoWbMmpk+fjgkTJjxyXaampmLJkiVITU1FYWEhdu7ciZiYGLi7u1fquvzpp58wZswY2Nra4vDhw7h58yb++eefMuvnSfexOnXqaLWXlZVVmf+FmaKupKQkjB07FjY2Nti/fz+SkpLg6+uLlJSUR9ZVkf4XGhqKt99+G8ePH8eRI0ek7cXhw4el/3VHRUVhzJgx+Oqrr9CwYUM0b94c//3vf7F7924cPnwYX3/9tUnbzM3NDZ07d0ZsbCxeeOGFMm1QXl1qtbrM/+pDQ0Px8ccfIzU1Fc8//zymTJmCP/74A1FRUXjxxRfh7u6OqKgojBo1CkIIpKSkSH2oNFtbW3Tt2hUjR47E6NGj0bVrV/z88884ePAgHBwcKm1bMXz4cPj5+WHSpElITk7G6dOn0aJFC3z55ZcYPHgwFixY8MhtRXp6OubPny8FmoyMDKxcuRLu7u6PrPu9995DtWrVMHz4cPTq1Qu5ubk4fPgwfvrpJ3h7e2utt/bt2yM3NxenTp3CsWPH4OHhAVdXVwD3TyN488030bRpU9y8eRPnz583qK9HRUUhMzNT7/Yr7datW0hNTcW1a9cA/O/3x8PDAx4eHnB0dMSoUaMQEREBFxcXODg4YOLEiQgICECHDh30Xg4AnngshO5LyB/1WVpamggLCxM1atQQKpVK1KtXT4wePVpkZWVJ46xcuVI0bNhQWFlZCU9PTzFx4kTpMzxwMlfLli1FtWrVhIODg+jRo4c4deqUzktChbh/CV/JJaEPXsKXlpYm6tevL6ytrbXqGjt2rHSS48qVK6UTHXW9Sk489vPzM6iub7/9Vmu+9vb2YsSIEVKblMyzdJv4+flJdZVXDwDRunVrcerUKZ3tV9Im5V0WWrJsLy8vrXU5adIk0bVrV5GWliZefPHFcpedmJio17rUdZM5AGLVqlWVti4/++wzYWdnJy3L1tZWvPDCC2VOPDZFH3uwvXSdePyk6/r000+Fra2tVh8dPXq0SE9P16uukr5kaP8bPHiw8PLy0tpeNGvWTHTq1Eka58G/yxo1aogdO3aU6e+mWpcWFhYCgBgzZoxW3y858VhXXcHBwdLfXOm60tLSRHBwsLCyspIuoW7UqJHWzTc7dOgg7OzstPpQyd9sybzS0tJEx44dpUvRlUqlaNCggTh58qRWjcbcVoSFhQkXFxehVCqFhYWFsLCwEL6+vmLBggVCo9Hota2IjIzUua2IiorS2bal61ar1cLJyUk0aNBAVK9eXVpvDRo0kE5gLllvzs7OQqFQSHUsWbJE1K5dW+pf06dPF8uXLy+3rz+s/R51CXlpJe1XYt26dTq/f2RkpDROyc0AnZ2dha2trRg4cKBIS0sThlL8/5cgIiIikhWek0NERESyxJBDpIe5c+fCzs5O56tPnz6mLo+IzMTGjRvL3VY86uRmMj4eriLSw61bt3RebQDcv5qqVq1aT7giIjJHd+7c0bqHWGlWVlY6r5ajysOQQ0RERLLEw1VEREQkSww5REREJEsMOURERCRLDDlEZBQKhQI7duww+rjm6LnnnsObb76p9/iHDx+GQqEo8yye0mJiYnTeZZaIKo4hh0hmRowYAYVCAYVCAWtra/j6+mL27Nlazy+qDGlpaXpfTm/IuBWxYMECODs7Iy8vr8xnubm5cHBwwKefflrh+cfFxWHOnDmPUyIRPQEMOUQy1Lt3b6SlpSElJQVvvfUWoqKiMH/+fJ3jPvgAxYry8PDQeoK0scatiOHDh+Pu3buIi4sr89nWrVtRUFCg95OqSytpKxcXF9jb2z92nURUuRhyiGRIpVLBw8MDderUweuvv47AwEDs2rULwP09PQMGDMCHH36ImjVrSk8Pvnr1KgYPHgwnJye4uLigf//++Ouvv7Tmu3btWjRt2hQqlQqenp6YMGGC9FnpQ1AFBQWYMGECPD09oVarUadOHURHR+scFwDOnj2L7t27w8bGBtWrV8eYMWOQk5MjfV5S8yeffAJPT09Ur14d48ePlx7++iA3NzcEBwdj7dq1ZT5bu3YtBgwYABcXF7z33nt45plnYGtri3r16mHGjBla84yKikLLli3xxRdfoG7dulCr1QDKHq7asGED2rRpA3t7e3h4eGDo0KG4fv16mWUfO3YMLVq0gFqtRocOHXDu3Dmd9ZfYuXMnWrduDbVajXr16mHWrFnSHjkhBKKiouDt7Q2VSoWaNWvijTfeeOj8iJ42DDlETwEbGxutPTYJCQlITk5GfHw89uzZg8LCQgQFBcHe3h5HjhzBsWPHYGdnh969e0vTrVixAuPHj8eYMWNw9uxZ7Nq1C76+vjqX9+mnn2LXrl3YvHkzkpOTsXHjRvj4+Ogc9+7duwgKCoKzszNOnDiBLVu24NChQ1oBCgASExNx6dIlJCYmYv369YiJiUFMTEy533nUqFH49ttvceXKFWnYn3/+ie+//x6jRo0CANjb2yMmJga///47lixZgtWrV2PRokVa87l48SK2bduGuLg4nD59WueyCgsLMWfOHJw5cwY7duzAX3/9hREjRpQZ75133sGCBQtw4sQJuLq6Ijg4uNygduTIEYSFhWHSpEn4/fff8fnnnyMmJgYffvghAGDbtm1YtGgRPv/8c6SkpGDHjh1o3rx5ue1B9FQy+JGeRGTWSj8FWKPRiPj4eKFSqcTbb78tfe7u7i7y8/OlaTZs2CAaNmwoNBqNNCw/P1/Y2NiIAwcOCCGEqFmzppg2bVq5y0WppxVPnDhRdO/eXWt+5Y27atUq4ezsLHJycqTP9+7dK5RKpUhPT5dqrlOnjigqKpLGGTRokAgJCSm3nqKiIlGrVi2tJxvPmDFDeHt7i+LiYp3TzJ8/X/j7+0vvIyMjhZWVlbh+/brWeF27dhWTJk0qd9knTpwQAKSnMycmJgoAYtOmTdI4N2/eFDY2NiI2NlYIcf/JzI6OjtLnPXr0EHPnztWa74YNG4Snp6cQQogFCxaIZ555RhQUFJRbB9HTjntyiGRoz549sLOzg1qtRp8+fRASEoKoqCjp8+bNm8Pa2lp6f+bMGVy8eBH29vbSc3ZcXFyQl5eHS5cu4fr167h27Rp69Oih1/JHjBiB06dPo2HDhnjjjTdw8ODBcsf9448/4Ofnh2rVqknDOnXqBI1Gg+TkZGlY06ZNYWFhIb339PTUeUiohIWFBcLDwxETEwMhBDQaDdavX4+RI0dCqby/6YuNjUWnTp3g4eEBOzs7TJ8+HampqVrzqVOnDlxdXR/6fU+ePIng4GB4e3vD3t4eXbt2BYAy8woICJD+7eLigoYNG+KPP/7QOc8zZ85g9uzZWs8+Gj16NNLS0pCbm4tBgwbh3r17qFevHkaPHo3t27dX+snlRFWNpakLICLj69atG1asWAFra2vUrFkTlpbaf+qlAwUA5OTkwN/fHxs3biwzL1dXVykU6Kt169a4fPky9u3bh0OHDmHw4MEIDAzE1q1bDf8y/8/KykrrvUKhgEajeeg0r7zyCqKjo/Htt99Co9Hg6tWrGDlyJAAgKSkJoaGhmDVrFoKCguDo6IhNmzZhwYIFWvN4sK0eVHK4LSgoCBs3boSrqytSU1MRFBT0WCd15+TkYNasWXjxxRfLfKZWq+Hl5YXk5GQcOnQI8fHxGDduHObPn4/vvvuuTFsRPa0YcohkqFq1auWeL6NL69atERsbCzc3Nzg4OOgcx8fHBwkJCejWrZte83RwcEBISAhCQkLw8ssvo3fv3rh16xZcXFy0xmvcuDFiYmJw9+5dKVAcO3YMSqVSOim6ourXr4+uXbti7dq1EEIgMDBQekDiDz/8gDp16mDatGnS+KXP39HX+fPncfPmTXz00Ufw8vICAPz88886x/3xxx/h7e0NAPj3339x4cIFNG7cWOe4rVu3RnJy8kPXo42NDYKDgxEcHIzx48ejUaNGOHv2LFq3bm3w9yCSI4YcIkJoaCjmz5+P/v37Y/bs2ahduzauXLmCuLg4vPvuu6hduzaioqIwduxYuLm5oU+fPrhz5w6OHTuGiRMnlpnfwoUL4enpiVatWkGpVGLLli3w8PDQebO70NBQREZGIjw8HFFRUcjMzMTEiRMxfPhwuLu7P/Z3GzVqFEaPHg0AWicqN2jQAKmpqdi0aRPatm2LvXv3Yvv27QbP39vbG9bW1vjss88wduxYnDt3rtx76MyePRvVq1eHu7s7pk2bhho1amDAgAE6x505cyb69esHb29vvPzyy1AqlThz5gzOnTuHDz74ADExMSguLkb79u1ha2uL//73v7CxseFTrolK4Tk5RARbW1t8//338Pb2xosvvojGjRtj1KhRyMvLk/bshIeHY/HixVi+fDmaNm2Kfv36ISUlRef87O3t8fHHH6NNmzZo27Yt/vrrL3zzzTc6D3vZ2triwIEDuHXrFtq2bYuXX34ZPXr0wNKlS43y3V566SWoVCrY2tpqBYoXXngBkydPxoQJE9CyZUv88MMPmDFjhsHzd3V1RUxMDLZs2YImTZrgo48+wieffKJz3I8++giTJk2Cv78/0tPTsXv3bq1zo0oLCgrCnj17cPDgQbRt2xYdOnTAokWLpBDj5OSE1atXo1OnTmjRogUOHTqE3bt3o3r16gZ/ByK5UgghhKmLICIiIjI27skhIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZ+j+kAJmILEPk8AAAAABJRU5ErkJggg==", "text/plain": [ "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABH10lEQVR4nO3de3zP9f//8ft7YydsDrNTDXNoctZkn+2rTI1Zjv3KYRFGKvEpreNKRIdFiLJahFEYUipEWiEscqr0kdIHc9jmEJtNNuz1+8PF+9O7bWzs8J7X7Xq5vC4fr+fr+Xq+Hq/l0+69Xs/X62UxDMMQAACAiThUdAEAAADljQAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAE4Ib38ssvy2Kx6MSJE2V+rNWrV6tNmzZycXGRxWLR6dOny/yYAEqOAARUYomJibJYLDaLl5eXOnXqpC+//LLc6/niiy/Uo0cPeXt7y8nJSbVr19add96pKVOmKCsrq9zrKW8nT55U37595erqqvj4eH344YeqVq1aoX3//s9u48aNBbYbhiF/f39ZLBZ179690DFOnz5tDVp79uwptM+QIUNs/n64u7urdevWmjJlinJzc639LofEopb09PRr+IkA9qtKRRcA4PpNmDBBAQEBMgxDGRkZSkxM1D333KMvvviiyF+epSk/P1/Dhg1TYmKiWrZsqccee0z+/v46c+aMUlJSNGbMGK1atUrJycllXktF+uGHH3TmzBm98sorCg8PL9Y+Li4uWrhwoTp06GDTvn79eh0+fFjOzs5F7rt06VJZLBb5+PhowYIFevXVVwvt5+zsrA8++EDSpdC0bNkyPf300/rhhx+UlJRk0/e9995T9erVC4xRs2bNYp0PUFkQgIAbQGRkpNq1a2ddHzZsmLy9vbVo0aJSCUD5+fnKy8uTi4tLodsnTZqkxMREPfnkk5oyZYosFot12xNPPKG0tDTNnz//uo5RGRw7dkxSycLCPffco6VLl+rtt99WlSr/+1fywoULFRQUdMXbdh999JHuuece1a9fXwsXLiwyAFWpUkUDBw60rj/22GMKDg7W4sWLNXXqVPn5+Vm33X///fL09Cx2/UBlxS0w4AZUs2ZNubq62vxClaTJkycrNDRUderUkaurq4KCgvTxxx8X2N9isWjUqFFasGCBmjdvLmdnZ61evbrQY509e1YTJ05U8+bN9eabb9qEn8t8fX313HPPFfsY11JnYGCgXFxcFBQUpA0bNhRa6+nTpzVkyBDVrFlTHh4eio6O1tmzZwv/If7D0qVLFRQUJFdXV3l6emrgwIE6cuSIdXtYWJgGDx4sSbr99ttlsVg0ZMiQq44bFRWlkydPau3atda2vLw8ffzxx3rggQeK3C81NVXfffed+vfvr/79+2v//v3avHlzsc7FwcFBYWFhkqQDBw4Uax/gRsMVIOAGkJmZqRMnTsgwDB07dkzvvPOOsrOzbf6rX5KmT5+unj17asCAAcrLy1NSUpL69OmjFStWqFu3bjZ9v/nmGy1ZskSjRo2Sp6enGjRoUOixN27cqNOnT+vpp5+Wo6Njieou6hglqXP9+vVavHixHn/8cTk7O+vdd99V165dtXXrVrVo0cKmb9++fRUQEKC4uDjt2LFDH3zwgby8vDRx4sQr1pmYmKjo6GjdfvvtiouLU0ZGhqZPn65NmzZp586dqlmzpl588UUFBgZq5syZ1luSjRo1uurPoEGDBgoJCdGiRYsUGRkpSfryyy+VmZmp/v376+233y50v0WLFqlatWrq3r27XF1d1ahRIy1YsEChoaFXPaYk/fHHH5KkOnXq2LT/+eefBfpWqVKFW2C48RgAKq25c+cakgoszs7ORmJiYoH+Z8+etVnPy8szWrRoYdx111027ZIMBwcH45dffrlqDdOnTzckGcuXL7dpv3DhgnH8+HGbJT8/v1jHKEmdkoxt27ZZ2w4ePGi4uLgY9957r7Vt3LhxhiRj6NChNvvfe++9Rp06da54fnl5eYaXl5fRokUL46+//rK2r1ixwpBkjB071tp2+Z/HDz/8cMUx/9l3xowZRo0aNazn3adPH6NTp06GYRhG/fr1jW7duhXYv2XLlsaAAQOs6y+88ILh6elpnD9/3qbf4MGDjWrVqln/Gezbt894/fXXDYvFYrRq1cra7/LPqLAlMDDwqucDVDbcAgNuAPHx8Vq7dq3Wrl2rjz76SJ06ddJDDz2kTz75xKafq6ur9c+nTp1SZmam7rjjDu3YsaPAmB07dlSzZs2ueuzLT3f9c+Lszz//rLp169osJ0+eLNYxSlJnSEiIgoKCrOv16tVTr169tGbNGl28eNGm76OPPmqzfscdd+jkyZNXfEJt27ZtOnbsmB577DGb+UndunVT06ZNtXLlyiL3La6+ffvqr7/+0ooVK3TmzBmtWLHiire/fvrpJ/3888+KioqytkVFRenEiRNas2ZNgf45OTnWfwaNGzfWCy+8oJCQEH366acF+i5btsz6d+nyMnfu3Os+R8DecAsMuAG0b9/eZhJ0VFSU2rZtq1GjRql79+5ycnKSJK1YsUKvvvqqdu3aZfMIdGHzdgICAop17Bo1akiSsrOzbdobN25sndcyf/58ffjhh8U+RknqbNKkSYG2W265RWfPntXx48fl4+Njba9Xr55Nv1q1akm6FLLc3d0LreXgwYOSpMDAwALbmjZtWugj7CVVt25dhYeHa+HChTp79qwuXryo+++/v8j+H330kapVq6aGDRtq3759ki49TdagQQMtWLCgwG1CFxcXffHFF5IuPREWEBCgm2++udCx77zzTiZBwxQIQMANyMHBQZ06ddL06dP1+++/q3nz5vruu+/Us2dP3XnnnXr33Xfl6+urqlWrau7cuVq4cGGBMf5+FeZKmjZtKknavXu3evXqZW2vXr269VHwokJCYccoaZ0lUdQcJcMwrmvc0vDAAw9o+PDhSk9PV2RkZJFzbgzD0KJFi5STk1Po1bNjx44pOzvb5oqco6NjsR/LB8yCAATcoC5cuCDpf1dmli1bJhcXF61Zs8bm3TLXe3vjjjvukIeHh5KSkhQbGysHh+u7s17SOn///fcCbb/99pvc3NxUt27d66pFkurXry9J2rt3r+666y6bbXv37rVuv1733nuvHnnkEX3//fdavHhxkf0uvx9owoQJuvXWW222nTp1Sg8//LCWL19eYAI8AFvMAQJuQOfPn9dXX30lJycn6y9JR0dHWSwWm3kxBw4c0PLly6/rWG5ubnr22We1e/duPf/884VeTSnJFZaS1pmSkmIzN+jQoUP67LPP1KVLlxI/lVaYdu3aycvLSwkJCTa347788kvt2bOnwO2ma1W9enW99957evnll9WjR48i+12+/fXMM8/o/vvvt1mGDx+uJk2aaMGCBaVSE3Aj4woQcAP48ssv9euvv0q6dAtk4cKF+v333/X8889b57Z069ZNU6dOVdeuXfXAAw/o2LFjio+PV+PGjfXTTz9d1/Gff/557dmzR2+++aa++uor3Xfffbr55pt16tQp7dixQ0uXLpWXl1exXnJY0jpbtGihiIgIm8fgJWn8+PHXdU6XVa1aVRMnTlR0dLQ6duyoqKgo62PwDRo00JNPPlkqx5FkfY9QUXJzc7Vs2TJ17ty5yJ9lz549NX36dB07dkxeXl4lruHjjz8u9E3QnTt3lre3d4nHA+wVAQi4AYwdO9b6ZxcXFzVt2lTvvfeeHnnkEWv7XXfdpdmzZ+uNN97Q6NGjFRAQoIkTJ+rAgQPXHYAcHBz04Ycf6r777tOsWbP0zjvv6NSpU6pevbpatGih1157TcOHDy/0F+s/lbTOjh07KiQkROPHj1dqaqqaNWumxMREtWrV6rrO6e+GDBkiNzc3vfHGG3ruuedUrVo13XvvvZo4cWK5vh9n5cqVOn369BWvEPXo0UNTpkxRUlKSHn/88RIfY8SIEYW2f/vttwQg3FAshj3M/gOAa2CxWDRy5EjNmDGjoksBUMkwBwgAAJgOAQgAAJgOAQgAAJgOk6ABVFpMYQRwrbgCBAAATIcABAAATIdbYIXIz8/X0aNHVaNGjUI/vggAAOyPYRg6c+aM/Pz8rvpZHgJQIY4ePSp/f/+KLgMAAFyDQ4cO6eabb75iHwJQIWrUqCHp0g/w8mcEAACAfcvKypK/v7/19/iVEIAKcfm2l7u7OwEIAIBKpjjTV5gEDQAATIcABAAATIcABAAATIcABAAATIcABAAATKdCA1BcXJxuv/121ahRQ15eXurdu7f27t171f2WLl2qpk2bysXFRS1bttSqVatsthuGobFjx8rX11eurq4KDw/X77//XlanAQAAKpkKDUDr16/XyJEj9f3332vt2rU6f/68unTpopycnCL32bx5s6KiojRs2DDt3LlTvXv3Vu/evbV7925rn0mTJuntt99WQkKCtmzZomrVqikiIkLnzp0rj9MCAAB2zmLY0eeUjx8/Li8vL61fv1533nlnoX369eunnJwcrVixwtr2r3/9S23atFFCQoIMw5Cfn5+eeuopPf3005KkzMxMeXt7KzExUf37979qHVlZWfLw8FBmZibvAQIAoJIoye9vu5oDlJmZKUmqXbt2kX1SUlIUHh5u0xYREaGUlBRJ0v79+5Wenm7Tx8PDQ8HBwdY+AADA3OzmTdD5+fkaPXq0/u///k8tWrQosl96erq8vb1t2ry9vZWenm7dfrmtqD7/lJubq9zcXOt6VlbWNZ0DAACoHOzmCtDIkSO1e/duJSUllfux4+Li5OHhYV34ECoAADc2uwhAo0aN0ooVK/Ttt99e9eutPj4+ysjIsGnLyMiQj4+PdfvltqL6/FNsbKwyMzOty6FDh671VAAAQCVQoQHIMAyNGjVKn376qb755hsFBARcdZ+QkBAlJyfbtK1du1YhISGSpICAAPn4+Nj0ycrK0pYtW6x9/snZ2dn64VM+gAoAwI2vQucAjRw5UgsXLtRnn32mGjVqWOfoeHh4yNXVVZI0aNAg3XTTTYqLi5MkPfHEE+rYsaOmTJmibt26KSkpSdu2bdPMmTMlXfoC7OjRo/Xqq6+qSZMmCggI0EsvvSQ/Pz/17t27Qs4TAADYlwoNQO+9954kKSwszKZ97ty5GjJkiCQpNTVVDg7/u1AVGhqqhQsXasyYMXrhhRfUpEkTLV++3Gbi9LPPPqucnBw9/PDDOn36tDp06KDVq1fLxcWlzM8JAADYP7t6D5C94D1AhRtvGV/RJdgYZ4yr6BIAAHak0r4HCAAAoDwQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOlUaADasGGDevToIT8/P1ksFi1fvvyK/YcMGSKLxVJgad68ubXPyy+/XGB706ZNy/hMAABAZVKhASgnJ0etW7dWfHx8sfpPnz5daWlp1uXQoUOqXbu2+vTpY9OvefPmNv02btxYFuUDAIBKqkpFHjwyMlKRkZHF7u/h4SEPDw/r+vLly3Xq1ClFR0fb9KtSpYp8fHxKrU4AAHBjqdRzgGbPnq3w8HDVr1/fpv3333+Xn5+fGjZsqAEDBig1NfWK4+Tm5iorK8tmAQAAN64KvQJ0PY4ePaovv/xSCxcutGkPDg5WYmKiAgMDlZaWpvHjx+uOO+7Q7t27VaNGjULHiouL0/jx48ujbACApPEW+/p37jhjXEWXgHJWaa8AzZs3TzVr1lTv3r1t2iMjI9WnTx+1atVKERERWrVqlU6fPq0lS5YUOVZsbKwyMzOty6FDh8q4egAAUJEq5RUgwzA0Z84cPfjgg3Jycrpi35o1a+qWW27Rvn37iuzj7OwsZ2fn0i4TAADYqUp5BWj9+vXat2+fhg0bdtW+2dnZ+uOPP+Tr61sOlQEAgMqgQgNQdna2du3apV27dkmS9u/fr127dlknLcfGxmrQoEEF9ps9e7aCg4PVokWLAtuefvpprV+/XgcOHNDmzZt17733ytHRUVFRUWV6LgAAoPKo0Ftg27ZtU6dOnazrMTExkqTBgwcrMTFRaWlpBZ7gyszM1LJlyzR9+vRCxzx8+LCioqJ08uRJ1a1bVx06dND333+vunXrlt2JAACASqVCA1BYWJgMwyhye2JiYoE2Dw8PnT17tsh9kpKSSqM0AABwA6uUc4AAAACuBwEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYToUGoA0bNqhHjx7y8/OTxWLR8uXLr9h/3bp1slgsBZb09HSbfvHx8WrQoIFcXFwUHBysrVu3luFZAACAyqZCA1BOTo5at26t+Pj4Eu23d+9epaWlWRcvLy/rtsWLFysmJkbjxo3Tjh071Lp1a0VEROjYsWOlXT4AAKikqlTkwSMjIxUZGVni/by8vFSzZs1Ct02dOlXDhw9XdHS0JCkhIUErV67UnDlz9Pzzz19PuQAA4AZRKecAtWnTRr6+vurcubM2bdpkbc/Ly9P27dsVHh5ubXNwcFB4eLhSUlKKHC83N1dZWVk2CwAAuHFVqgDk6+urhIQELVu2TMuWLZO/v7/CwsK0Y8cOSdKJEyd08eJFeXt72+zn7e1dYJ7Q38XFxcnDw8O6+Pv7l+l5AACAilWht8BKKjAwUIGBgdb10NBQ/fHHH3rrrbf04YcfXvO4sbGxiomJsa5nZWURggAAuIFVqgBUmPbt22vjxo2SJE9PTzk6OiojI8OmT0ZGhnx8fIocw9nZWc7OzmVaJwAAsB+V6hZYYXbt2iVfX19JkpOTk4KCgpScnGzdnp+fr+TkZIWEhFRUiQAAwM5U6BWg7Oxs7du3z7q+f/9+7dq1S7Vr11a9evUUGxurI0eOaP78+ZKkadOmKSAgQM2bN9e5c+f0wQcf6JtvvtFXX31lHSMmJkaDBw9Wu3bt1L59e02bNk05OTnWp8IAAAAqNABt27ZNnTp1sq5fnoczePBgJSYmKi0tTampqdbteXl5euqpp3TkyBG5ubmpVatW+vrrr23G6Nevn44fP66xY8cqPT1dbdq00erVqwtMjAYAAOZlMQzDqOgi7E1WVpY8PDyUmZkpd3f3ii7Hboy3jK/oEmyMM8ZVdAkArhH/PkFZKMnv70o/BwgAAKCkCEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0ShyADh06pMOHD1vXt27dqtGjR2vmzJklPviGDRvUo0cP+fn5yWKxaPny5Vfs/8knn6hz586qW7eu3N3dFRISojVr1tj0efnll2WxWGyWpk2blrg2AABw4ypxAHrggQf07bffSpLS09PVuXNnbd26VS+++KImTJhQorFycnLUunVrxcfHF6v/hg0b1LlzZ61atUrbt29Xp06d1KNHD+3cudOmX/PmzZWWlmZdNm7cWKK6AADAja1KSXfYvXu32rdvL0lasmSJWrRooU2bNumrr77So48+qrFjxxZ7rMjISEVGRha7/7Rp02zWX3/9dX322Wf64osv1LZtW2t7lSpV5OPjU+xxAQCAuZT4CtD58+fl7OwsSfr666/Vs2dPSVLTpk2VlpZWutVdRX5+vs6cOaPatWvbtP/+++/y8/NTw4YNNWDAAKWmppZrXQAAwL6VOAA1b95cCQkJ+u6777R27Vp17dpVknT06FHVqVOn1Au8ksmTJys7O1t9+/a1tgUHBysxMVGrV6/We++9p/379+uOO+7QmTNnihwnNzdXWVlZNgsAALhxlTgATZw4Ue+//77CwsIUFRWl1q1bS5I+//xz662x8rBw4UKNHz9eS5YskZeXl7U9MjJSffr0UatWrRQREaFVq1bp9OnTWrJkSZFjxcXFycPDw7r4+/uXxykAAIAKUuI5QGFhYTpx4oSysrJUq1Yta/vDDz8sNze3Ui2uKElJSXrooYe0dOlShYeHX7FvzZo1dcstt2jfvn1F9omNjVVMTIx1PSsrixAEAMAN7JreA2QYhrZv367333/femvJycmpXALQokWLFB0drUWLFqlbt25X7Z+dna0//vhDvr6+RfZxdnaWu7u7zQIAAG5cJb4CdPDgQXXt2lWpqanKzc1V586dVaNGDU2cOFG5ublKSEgo9ljZ2dk2V2b279+vXbt2qXbt2qpXr55iY2N15MgRzZ8/X9Kl216DBw/W9OnTFRwcrPT0dEmSq6urPDw8JElPP/20evToofr16+vo0aMaN26cHB0dFRUVVdJTBQAAN6gSXwF64okn1K5dO506dUqurq7W9nvvvVfJycklGmvbtm1q27at9RH2mJgYtW3b1voofVpams0TXDNnztSFCxc0cuRI+fr6WpcnnnjC2ufw4cOKiopSYGCg+vbtqzp16uj7779X3bp1S3qqAADgBlXiK0DfffedNm/eLCcnJ5v2Bg0a6MiRIyUaKywsTIZhFLk9MTHRZn3dunVXHTMpKalENQAAAPMp8RWg/Px8Xbx4sUD74cOHVaNGjVIpCgAAoCyVOAB16dLF5o3MFotF2dnZGjdunO65557SrA0AAKBMlPgW2JQpUxQREaFmzZrp3LlzeuCBB/T777/L09NTixYtKosaAQAASlWJA9DNN9+sH3/8UUlJSfrpp5+UnZ2tYcOGacCAATaTogEAAOxViQOQdOljowMHDiztWgAAAMpFiQPQ5XfyFGXQoEHXXAwAAEB5KHEA+vs7d6RLX4c/e/as9U3QBCAAAGDvSvwU2KlTp2yW7Oxs7d27Vx06dGASNAAAqBSu6Vtg/9SkSRO98cYbBa4OAQAA2KNSCUDSpYnRR48eLa3hAAAAykyJ5wB9/vnnNuuGYSgtLU0zZszQ//3f/5VaYQAAAGWlxAGod+/eNusWi0V169bVXXfdpSlTppRWXQAAAGWmxAEoPz+/LOoAAAAoN6U2BwgAAKCyKNYVoJiYmGIPOHXq1GsuBgAAoDwUKwDt3LmzWINZLJbrKgYAAKA8FCsAffvtt2VdBwAAQLlhDhAAADCda/oa/LZt27RkyRKlpqYqLy/PZtsnn3xSKoUBAACUlRJfAUpKSlJoaKj27NmjTz/9VOfPn9cvv/yib775Rh4eHmVRIwAAQKkqcQB6/fXX9dZbb+mLL76Qk5OTpk+frl9//VV9+/ZVvXr1yqJGAACAUlXiAPTHH3+oW7dukiQnJyfl5OTIYrHoySef1MyZM0u9QAAAgNJW4gBUq1YtnTlzRpJ00003affu3ZKk06dP6+zZs6VbHQAAQBko8SToO++8U2vXrlXLli3Vp08fPfHEE/rmm2+0du1a3X333WVRIwAAQKkqdgDavXu3WrRooRkzZujcuXOSpBdffFFVq1bV5s2bdd9992nMmDFlVigAAEBpKXYAatWqlW6//XY99NBD6t+/vyTJwcFBzz//fJkVBwAAUBaKPQdo/fr1at68uZ566in5+vpq8ODB+u6778qyNgAAgDJR7AB0xx13aM6cOUpLS9M777yjAwcOqGPHjrrllls0ceJEpaenl2WdAAAApabET4FVq1ZN0dHRWr9+vX777Tf16dNH8fHxqlevnnr27FkWNQIAAJSq6/oWWOPGjfXCCy9ozJgxqlGjhlauXFladQEAAJSZa/oWmCRt2LBBc+bM0bJly+Tg4KC+fftq2LBhpVkbAABAmShRADp69KgSExOVmJioffv2KTQ0VG+//bb69u2ratWqlVWNAAAAparYASgyMlJff/21PD09NWjQIA0dOlSBgYFlWRsAAECZKHYAqlq1qj7++GN1795djo6OZVkTAABAmSr2JOjPP/9cvXr1KtXws2HDBvXo0UN+fn6yWCxavnz5VfdZt26dbrvtNjk7O6tx48ZKTEws0Cc+Pl4NGjSQi4uLgoODtXXr1lKrGQAAVH7X9RTY9crJyVHr1q0VHx9frP779+9Xt27d1KlTJ+3atUujR4/WQw89pDVr1lj7LF68WDExMRo3bpx27Nih1q1bKyIiQseOHSur0wAAAJXMNT8FVhoiIyMVGRlZ7P4JCQkKCAjQlClTJEm33nqrNm7cqLfeeksRERGSpKlTp2r48OGKjo627rNy5UrNmTOHz3YAAABJFXwFqKRSUlIUHh5u0xYREaGUlBRJUl5enrZv327Tx8HBQeHh4dY+hcnNzVVWVpbNAgAAblyVKgClp6fL29vbps3b21tZWVn666+/dOLECV28eLHQPlf6VEdcXJw8PDysi7+/f5nUDwAA7EOxA9Bjjz2m7Oxs6/qiRYuUk5NjXT99+rTuueee0q2unMTGxiozM9O6HDp0qKJLAgAAZajYAej999/X2bNnreuPPPKIMjIyrOu5ubk2k5HLgo+Pj80xJSkjI0Pu7u5ydXWVp6enHB0dC+3j4+NT5LjOzs5yd3e3WQAAwI2r2AHIMIwrrpeHkJAQJScn27StXbtWISEhkiQnJycFBQXZ9MnPz1dycrK1DwAAQIXOAcrOztauXbu0a9cuSZcec9+1a5dSU1MlXbo1NWjQIGv/Rx99VP/973/17LPP6tdff9W7776rJUuW6Mknn7T2iYmJ0axZszRv3jzt2bNHI0aMUE5OjvWpMAAAgAp9DH7btm3q1KmTdT0mJkaSNHjwYCUmJiotLc0ahiQpICBAK1eu1JNPPqnp06fr5ptv1gcffGB9BF6S+vXrp+PHj2vs2LFKT09XmzZttHr16gITowEAgHmVKACNHTtWbm5uki49cv7aa6/Jw8NDkmzmBxVXWFjYFW+lFfaW57CwMO3cufOK444aNUqjRo0qcT0AAMAcih2A7rzzTu3du9e6Hhoaqv/+978F+gAAANi7YgegdevWlWEZAAAA5adEt8CysrK0ZcsW5eXlqX379qpbt25Z1QUAAFBmih2Adu3apXvuucf6RuUaNWpoyZIlNhOQAQAAKoNiPwb/3HPPKSAgQJs2bdL27dt19913M9EYAABUSsW+ArR9+3Z99dVXuu222yRJc+bMUe3atZWVlcWbkwEAQKVS7CtAf/75p26++Wbres2aNVWtWjWdPHmyTAoDAAAoKyWaBP2f//zH5qvqhmFoz549OnPmjLWtVatWpVcdAABAGShRALr77rsLvLiwe/fuslgsMgxDFotFFy9eLNUCAQAASluxA9D+/fvLsg4AAIByU+wAVL9+/av22b1793UVAwAAUB6u+2vwZ86c0cyZM9W+fXu1bt26NGoCAAAoU9ccgDZs2KDBgwfL19dXkydP1l133aXvv/++NGsDAAAoEyWaBJ2enq7ExETNnj1bWVlZ6tu3r3Jzc7V8+XI1a9asrGoEAAAoVcW+AtSjRw8FBgbqp59+0rRp03T06FG98847ZVkbAABAmSj2FaAvv/xSjz/+uEaMGKEmTZqUZU0AAABlqthXgDZu3KgzZ84oKChIwcHBmjFjhk6cOFGWtQEAAJSJYgegf/3rX5o1a5bS0tL0yCOPKCkpSX5+fsrPz9fatWtt3gYNAABgz0r8FFi1atU0dOhQbdy4UT///LOeeuopvfHGG/Ly8lLPnj3LokYAAIBSdV3vAQoMDNSkSZN0+PBhLVq0qLRqAgAAKFPX/SJESXJ0dFTv3r31+eefl8ZwAAAAZarYT4ENHTr0qn0sFotmz559XQUBAACUtWIHoMTERNWvX19t27Yt8EV4AACAyqTYAWjEiBFatGiR9u/fr+joaA0cOFC1a9cuy9oAAADKRLHnAMXHxystLU3PPvusvvjiC/n7+6tv375as2YNV4QAAEClUqJJ0M7OzoqKitLatWv1n//8R82bN9djjz2mBg0aKDs7u6xqBAAAKFXX/BSYg4ODLBaLDMPQxYsXS7MmAACAMlWiAJSbm6tFixapc+fOuuWWW/Tzzz9rxowZSk1NVfXq1cuqRgAAgFJV7EnQjz32mJKSkuTv76+hQ4dq0aJF8vT0LMvaAAAAykSxA1BCQoLq1aunhg0bav369Vq/fn2h/T755JNSKw4AAKAsFDsADRo0SBaLpSxrAQAAKBclehEiAADAjaBUvgUGAABQmRCAAACA6dhFAIqPj1eDBg3k4uKi4OBgbd26tci+YWFhslgsBZZu3bpZ+wwZMqTA9q5du5bHqQAAgEqg2HOAysrixYsVExOjhIQEBQcHa9q0aYqIiNDevXvl5eVVoP8nn3yivLw86/rJkyfVunVr9enTx6Zf165dNXfuXOu6s7Nz2Z0EAACoVCr8CtDUqVM1fPhwRUdHq1mzZkpISJCbm5vmzJlTaP/atWvLx8fHuqxdu1Zubm4FApCzs7NNv1q1apXH6QAAgEqgQgNQXl6etm/frvDwcGubg4ODwsPDlZKSUqwxZs+erf79+6tatWo27evWrZOXl5cCAwM1YsQInTx5ssgxcnNzlZWVZbMAAIAbV4UGoBMnTujixYvy9va2aff29lZ6evpV99+6dat2796thx56yKa9a9eumj9/vpKTkzVx4kStX79ekZGRRX6zLC4uTh4eHtbF39//2k8KAADYvQqfA3Q9Zs+erZYtW6p9+/Y27f3797f+uWXLlmrVqpUaNWqkdevW6e677y4wTmxsrGJiYqzrWVlZhCAAAG5gFXoFyNPTU46OjsrIyLBpz8jIkI+PzxX3zcnJUVJSkoYNG3bV4zRs2FCenp7at29fodudnZ3l7u5uswAAgBtXhQYgJycnBQUFKTk52dqWn5+v5ORkhYSEXHHfpUuXKjc3VwMHDrzqcQ4fPqyTJ0/K19f3umsGAACVX4U/BRYTE6NZs2Zp3rx52rNnj0aMGKGcnBxFR0dLuvQNstjY2AL7zZ49W71791adOnVs2rOzs/XMM8/o+++/14EDB5ScnKxevXqpcePGioiIKJdzAgAA9q3C5wD169dPx48f19ixY5Wenq42bdpo9erV1onRqampcnCwzWl79+7Vxo0b9dVXXxUYz9HRUT/99JPmzZun06dPy8/PT126dNErr7zCu4AAAIAkOwhAkjRq1CiNGjWq0G3r1q0r0BYYGCjDMArt7+rqqjVr1pRmeQAA4AZT4bfAAAAAyhsBCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmI5dBKD4+Hg1aNBALi4uCg4O1tatW4vsm5iYKIvFYrO4uLjY9DEMQ2PHjpWvr69cXV0VHh6u33//vaxPAwAAVBIVHoAWL16smJgYjRs3Tjt27FDr1q0VERGhY8eOFbmPu7u70tLSrMvBgwdttk+aNElvv/22EhIStGXLFlWrVk0RERE6d+5cWZ8OAACoBCo8AE2dOlXDhw9XdHS0mjVrpoSEBLm5uWnOnDlF7mOxWOTj42NdvL29rdsMw9C0adM0ZswY9erVS61atdL8+fN19OhRLV++vBzOCAAA2LsKDUB5eXnavn27wsPDrW0ODg4KDw9XSkpKkftlZ2erfv368vf3V69evfTLL79Yt+3fv1/p6ek2Y3p4eCg4OLjIMXNzc5WVlWWzAACAG1eFBqATJ07o4sWLNldwJMnb21vp6emF7hMYGKg5c+bos88+00cffaT8/HyFhobq8OHDkmTdryRjxsXFycPDw7r4+/tf76kBAAA7VuG3wEoqJCREgwYNUps2bdSxY0d98sknqlu3rt5///1rHjM2NlaZmZnW5dChQ6VYMQAAsDcVGoA8PT3l6OiojIwMm/aMjAz5+PgUa4yqVauqbdu22rdvnyRZ9yvJmM7OznJ3d7dZAADAjatCA5CTk5OCgoKUnJxsbcvPz1dycrJCQkKKNcbFixf1888/y9fXV5IUEBAgHx8fmzGzsrK0ZcuWYo8JAABubFUquoCYmBgNHjxY7dq1U/v27TVt2jTl5OQoOjpakjRo0CDddNNNiouLkyRNmDBB//rXv9S4cWOdPn1ab775pg4ePKiHHnpI0qUnxEaPHq1XX31VTZo0UUBAgF566SX5+fmpd+/eFXWaAADAjlR4AOrXr5+OHz+usWPHKj09XW3atNHq1autk5hTU1Pl4PC/C1WnTp3S8OHDlZ6erlq1aikoKEibN29Ws2bNrH2effZZ5eTk6OGHH9bp06fVoUMHrV69usALEwEAgDlZDMMwKroIe5OVlSUPDw9lZmYyH+hvxlvGV3QJNsYZ4yq6BADXiH+foCyU5Pd3pXsKDAAA4HoRgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOnYRQCKj49XgwYN5OLiouDgYG3durXIvrNmzdIdd9yhWrVqqVatWgoPDy/Qf8iQIbJYLDZL165dy/o0AABAJVHhAWjx4sWKiYnRuHHjtGPHDrVu3VoRERE6duxYof3XrVunqKgoffvtt0pJSZG/v7+6dOmiI0eO2PTr2rWr0tLSrMuiRYvK43QAAEAlUOEBaOrUqRo+fLiio6PVrFkzJSQkyM3NTXPmzCm0/4IFC/TYY4+pTZs2atq0qT744APl5+crOTnZpp+zs7N8fHysS61atcrjdAAAQCVQoQEoLy9P27dvV3h4uLXNwcFB4eHhSklJKdYYZ8+e1fnz51W7dm2b9nXr1snLy0uBgYEaMWKETp48WeQYubm5ysrKslkAAMCNq0ID0IkTJ3Tx4kV5e3vbtHt7eys9Pb1YYzz33HPy8/OzCVFdu3bV/PnzlZycrIkTJ2r9+vWKjIzUxYsXCx0jLi5OHh4e1sXf3//aTwoAANi9KhVdwPV44403lJSUpHXr1snFxcXa3r9/f+ufW7ZsqVatWqlRo0Zat26d7r777gLjxMbGKiYmxrqelZVFCAIA4AZWoVeAPD095ejoqIyMDJv2jIwM+fj4XHHfyZMn64033tBXX32lVq1aXbFvw4YN5enpqX379hW63dnZWe7u7jYLAAC4cVVoAHJyclJQUJDNBObLE5pDQkKK3G/SpEl65ZVXtHr1arVr1+6qxzl8+LBOnjwpX1/fUqkbAABUbhX+FFhMTIxmzZqlefPmac+ePRoxYoRycnIUHR0tSRo0aJBiY2Ot/SdOnKiXXnpJc+bMUYMGDZSenq709HRlZ2dLkrKzs/XMM8/o+++/14EDB5ScnKxevXqpcePGioiIqJBzBAAA9qXC5wD169dPx48f19ixY5Wenq42bdpo9erV1onRqampcnD4X0577733lJeXp/vvv99mnHHjxunll1+Wo6OjfvrpJ82bN0+nT5+Wn5+funTpoldeeUXOzs7lem4AAMA+VXgAkqRRo0Zp1KhRhW5bt26dzfqBAweuOJarq6vWrFlTSpUBAIAbUYXfAgMAAChvBCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6dvEiRACoaOMt4yu6BBvjjHEVXQJwQ+MKEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0egwcA4AbHax4K4goQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHbsIQPHx8WrQoIFcXFwUHBysrVu3XrH/0qVL1bRpU7m4uKhly5ZatWqVzXbDMDR27Fj5+vrK1dVV4eHh+v3338vyFAAAQCVS4QFo8eLFiomJ0bhx47Rjxw61bt1aEREROnbsWKH9N2/erKioKA0bNkw7d+5U79691bt3b+3evdvaZ9KkSXr77beVkJCgLVu2qFq1aoqIiNC5c+fK67QAAIAdq/AANHXqVA0fPlzR0dFq1qyZEhIS5Obmpjlz5hTaf/r06erataueeeYZ3XrrrXrllVd02223acaMGZIuXf2ZNm2axowZo169eqlVq1aaP3++jh49quXLl5fjmQEAAHtVpSIPnpeXp+3btys2Ntba5uDgoPDwcKWkpBS6T0pKimJiYmzaIiIirOFm//79Sk9PV3h4uHW7h4eHgoODlZKSov79+5f+icCujbeMr+gSbIwzxhWrH3WXjuLWXVnx8y5f/LxvHBUagE6cOKGLFy/K29vbpt3b21u//vprofukp6cX2j89Pd26/XJbUX3+KTc3V7m5udb1zMxMSVJWVlYJzqb44jziymTcaxWbGXv1TpLOyb5uIRb3nw91lw7qLl/UXb6ou3yV1e/Xy+MahnH1zkYFOnLkiCHJ2Lx5s037M888Y7Rv377QfapWrWosXLjQpi0+Pt7w8vIyDMMwNm3aZEgyjh49atOnT58+Rt++fQsdc9y4cYYkFhYWFhYWlhtgOXTo0FUzSIVeAfL09JSjo6MyMjJs2jMyMuTj41PoPj4+Plfsf/l/MzIy5Ovra9OnTZs2hY4ZGxtrc1stPz9ff/75p+rUqSOLxVLi8yoPWVlZ8vf316FDh+Tu7l7R5RQbdZcv6i5f1F2+qLt8VYa6DcPQmTNn5Ofnd9W+FRqAnJycFBQUpOTkZPXu3VvSpfCRnJysUaNGFbpPSEiIkpOTNXr0aGvb2rVrFRISIkkKCAiQj4+PkpOTrYEnKytLW7Zs0YgRIwod09nZWc7OzjZtNWvWvK5zKy/u7u52+xfxSqi7fFF3+aLu8kXd5cve6/bw8ChWvwoNQJIUExOjwYMHq127dmrfvr2mTZumnJwcRUdHS5IGDRqkm266SXFxl+bNPPHEE+rYsaOmTJmibt26KSkpSdu2bdPMmTMlSRaLRaNHj9arr76qJk2aKCAgQC+99JL8/PysIQsAAJhbhQegfv366fjx4xo7dqzS09PVpk0brV692jqJOTU1VQ4O/3taPzQ0VAsXLtSYMWP0wgsvqEmTJlq+fLlatGhh7fPss88qJydHDz/8sE6fPq0OHTpo9erVcnFxKffzAwAA9qfCA5AkjRo1qshbXuvWrSvQ1qdPH/Xp06fI8SwWiyZMmKAJEyaUVol2x9nZWePGjStw687eUXf5ou7yRd3li7rLV2WtuygWwyjOs2IAAAA3jgp/EzQAAEB5IwABAADTIQABAADTIQABAADTIQCVgyFDhshisejRRx8tsG3kyJGyWCwaMmSITXtKSoocHR3VrVu3AvscOHBAFovFutSpU0ddunTRzp07rX3CwsJs+lxe/l7Da6+9ptDQULm5uRX64kd7rPvAgQMaNmyYAgIC5OrqqkaNGmncuHHKy8uz67olqWfPnqpXr55cXFzk6+urBx98UEePHrX7ui/Lzc1VmzZtZLFYtGvXLruvu0GDBgW2v/HGG3ZftyStXLlSwcHBcnV1Va1atWzeYWaPda9bt67Q7RaLRT/88IPd1i1Jv/32m3r16iVPT0+5u7urQ4cO+vbbb+365y1JO3bsUOfOnVWzZk05OzvLYrFo2LBhdlXj1X7HSJdeddOtWze5ubnJy8tLzzzzjC5cuFBo39JGACon/v7+SkpK0l9//WVtO3funBYuXKh69eoV6D979mz9+9//1oYNG2x+Sf7d119/rbS0NK1Zs0bZ2dmKjIzU6dOnrduHDx+utLQ0m2XSpEnW7Xl5eerTp0+Rb8i2x7p//fVX5efn6/3339cvv/yit956SwkJCXrhhRfsum5J6tSpk5YsWaK9e/dq2bJl+uOPP3T//ffbfd2XPfvss0W+Xt5e654wYYLN9n//+992X/eyZcv04IMPKjo6Wj/++KM2bdqkBx54wK7rDg0NLbDtoYceUkBAgNq1a2e3dUtS9+7ddeHCBX3zzTfavn27Wrdure7du9t8PNve6j569KjCw8PVuHFjbdmyRZ07d5aTk5M+/PBDu6lRuvrvmIsXL6pbt27Ky8vT5s2bNW/ePCUmJmrs2LGF9i91V/1aGK7b4MGDjV69ehktWrQwPvroI2v7ggULjFatWhm9evUyBg8ebG0/c+aMUb16dePXX381+vXrZ7z22ms24+3fv9+QZOzcudPadvkjsKtXrzYMwzA6duxoPPHEE8Wqb+7cuYaHh0elq/uySZMmGQEBAZWu7s8++8ywWCxGXl6e3de9atUqo2nTpsYvv/xSYEx7rbt+/frGW2+9VeR2e6z7/Pnzxk033WR88MEHlaruf8rLyzPq1q1rTJgwwa7rPn78uCHJ2LBhg7UtKyvLkGSsXbvWbut+//33DS8vL+PixYvWGjt16mRIMiZPnmwXNf5dUb9jVq1aZTg4OBjp6enWtvfee89wd3c3cnNzizX29eAKUDkaOnSo5s6da12fM2eO9ZMff7dkyRI1bdpUgYGBGjhwoObMmSPjKq9rcnV1lSSbW0Glxd7rzszMVO3atStV3X/++acWLFig0NBQVa1a1a7rzsjI0PDhw/Xhhx/Kzc2tyH72VrckvfHGG6pTp47atm2rN998s9BL6/ZU944dO3TkyBE5ODiobdu28vX1VWRkpHbv3m3Xdf/T559/rpMnTxZajz3VXadOHQUGBmr+/PnKycnRhQsX9P7778vLy0tBQUF2W3dubq6cnJxsvpLg6OhorcseaiyOlJQUtWzZ0vrlB0mKiIhQVlaWfvnll1I7TlEIQOVo4MCB2rhxow4ePKiDBw9q06ZNGjhwYIF+s2fPtrZ37dpVmZmZWr9+fZHjnj59Wq+88oqqV6+u9u3bW9vfffddVa9e3WZZsGDBDVX3vn379M477+iRRx6pFHU/99xzqlatmurUqaPU1FR99tlndl23YRgaMmSIHn30UZtbGYWxp7ol6fHHH1dSUpK+/fZbPfLII3r99df17LPP2nXd//3vfyVJL7/8ssaMGaMVK1aoVq1aCgsL059//mm3dRd2zIiICN18880FttlT3RaLRV9//bV27typGjVqyMXFRVOnTtXq1atVq1Ytu637rrvuUnp6ut58803l5eUpLy/PGhh+++03u6ixONLT023CjyTr+t9vQZYVu/gUhlnUrVtX3bp1U2JiogzDULdu3eTp6WnTZ+/evdq6das+/fRTSVKVKlXUr18/zZ49W2FhYTZ9Q0ND5eDgoJycHDVs2FCLFy+2+cs0YMAAvfjiizb7/PMvW2Wu+8iRI+ratav69Omj4cOHV4q6n3nmGQ0bNkwHDx7U+PHjNWjQIK1YsUIWi8Uu637nnXd05swZxcbGFvj5/pM91S1d+tDyZa1atZKTk5MeeeQRxcXF2bzK357qzs/PlyS9+OKLuu+++yRJc+fO1c0336ylS5faBH17qvvvDh8+rDVr1mjJkiUFttlb3YZhaOTIkfLy8tJ3330nV1dXffDBB+rRo4d++OEH+fr62mXdzZs317x58xQTE6PY2FgZhqGGDRvK29tbnp6edlFjZUAAKmdDhw61fvcsPj6+wPbZs2frwoULNpNNDcOQs7OzZsyYIQ8PD2v74sWL1axZM9WpU6fQGfYeHh5q3LjxDVn30aNH1alTJ4WGhmrmzJmVpm5PT095enrqlltu0a233ip/f399//33CgkJscu6v/nmG6WkpBT49k+7du00YMAAzZs3zy7rLkxwcLAuXLigAwcOKDAw0C7rvvwLt1mzZtY2Z2dnNWzYUKmpqQX620vdfzd37lzVqVNHPXv2LLKPvdT9zTffaMWKFTp16pTc3d0lXbqqsXbtWs2bN0/PP/+8XdYtSQ888IAeeOABZWRkKCYmRllZWVq1apWio6OVmJhoFzVejY+Pj7Zu3WrTlpGRYd1W1rgFVs66du2qvLw8nT9/XhERETbbLly4oPnz52vKlCnatWuXdfnxxx/l5+enRYsW2fT39/dXo0aNiny88Eat+8iRIwoLC1NQUJDmzp1rcx/cnuv+p8v/tZ+bm2u3db/99tv68ccfrcdYtWqVpEv/Ynzttdfstu7C7Nq1Sw4ODvLy8rLbuoOCguTs7Ky9e/da286fP68DBw6ofv36dlv3ZYZhaO7cuRo0aFCBuW32WPfZs2clqcC/QxwcHKz//7THuv/O29tbVatW1eHDh+Xi4qKnn37a7mosSkhIiH7++WcdO3bM2rZ27Vq5u7vb/EdAWeEKUDlzdHTUnj17rH/+u8v/JTJs2DCbFC5J9913n2bPnl3ouyiKcvbs2QL3UZ2dna33tlNTU/Xnn38qNTVVFy9etL7bpXHjxqpevbpd1n05/NSvX1+TJ0/W8ePHrX0K+y8Ge6l7y5Yt+uGHH9ShQwfVqlVLf/zxh1566SU1atSowNUfe6r7n4/PXv570ahRo0Lnd9hL3SkpKdqyZYs6deqkGjVqKCUlRU8++aQGDhxYYG6HPdXt7u6uRx99VOPGjZO/v7/q16+vN998U5LUp08fu637sm+++Ub79+/XQw89dMWx7KXukJAQ1apVS4MHD9bYsWPl6uqqWbNmaf/+/YW+H8de6pakGTNmKDQ0VNWrV9evv/6qn376SW+99Zbq1KljNzVe7XdMly5d1KxZMz344IOaNGmS0tPTNWbMGI0cObJ8vjhf1o+Z4X+PURbl8iOK3bt3N+65555C+2zZssWQZPz444+FPqL4Tx07djQkFVgiIiJs6iqsz7fffmu3dc+dO7fQ7X//q2yPdf/0009Gp06djNq1axvOzs5GgwYNjEcffdQ4fPiwXdf9T4WNaY91b9++3QgODjY8PDwMFxcX49ZbbzVef/1149y5c3Zdt2FceoT8qaeeMry8vIwaNWoY4eHhxu7du+2+bsMwjKioKCM0NLTQMey17h9++MHo0qWLUbt2baNGjRrGv/71L2PVqlV2X/eDDz5o1K5d23BycjJq1apl3HbbbXZX49V+xxiGYRw4cMCIjIw0XF1dDU9PT+Opp54yzp8/X+RxS5PFMK7y7BsAAMANhjlAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAFBMFotFy5cvL3b/l19+WW3atLlinyFDhqh3797XVReAkiMAAbiqIUOGyGKxFPqa/JEjR8pisWjIkCEFtqWkpMjR0bHQzwocOHBAFovFutSpU0ddunTRzp07rX3CwsJs+lxeinpdf48ePdS1a9dCt3333XeyWCz66aefinnWBaWlpSkyMvKa9wdgPwhAAIrF399fSUlJ+uuvv6xt586d08KFCwt8M+yy2bNn69///rc2bNigo0ePFtrn66+/VlpamtasWaPs7GxFRkbq9OnT1u3Dhw9XWlqazTJp0qRCxxo2bJjWrl2rw4cPF9g2d+5ctWvXTq1atSrBWV+Sl5cn6dL35srlG0UAyhwBCECx3HbbbfL399cnn3xibfvkk09Ur149tW3btkD/7OxsLV68WCNGjFC3bt2UmJhY6Lh16tSRj4+P2rVrp8mTJysjI0Nbtmyxbndzc5OPj4/N4u7uXuhY3bt3V926dQscKzs7W0uXLtWwYcN08uRJRUVF6aabbpKbm5tatmxZ4CvYYWFhGjVqlEaPHi1PT0/rV7X/eQvsueee0y233CI3Nzc1bNhQL730ks6fP1+grvfff1/+/v5yc3NT3759lZmZWWj9kpSfn6+4uDgFBATI1dVVrVu31scff2zdfurUKQ0YMEB169aVq6urmjRporlz5xY5HoDCEYAAFNvQoUNtftnOmTNH0dHRhfZdsmSJmjZtqsDAQA0cOFBz5szR1T496OrqKul/V1xKqkqVKho0aJASExNtjrV06VJdvHhRUVFROnfunIKCgrRy5Urt3r1bDz/8sB588EFt3brVZqx58+bJyclJmzZtUkJCQqHHq1GjhhITE/Wf//xH06dP16xZs/TWW2/Z9Nm3b5+WLFmiL774QqtXr9bOnTv12GOPFXkOcXFxmj9/vhISEvTLL79Yv2K/fv16SdJLL72k//znP/ryyy+1Z88evffee/L09LymnxdgauXyyVUAldrlL2IfO3bMcHZ2Ng4cOGAcOHDAcHFxMY4fP2792vTfhYaGGtOmTTMMwzDOnz9veHp62nwF+p9fnD516pRx7733GtWrVzfS09MNw7j0xemqVasa1apVs1k++uijImvds2dPgS9O33HHHcbAgQOL3Kdbt27GU089ZV3v2LGj0bZt2wL9JBmffvppkeO8+eabRlBQkHV93LhxhqOjo3H48GFr25dffmk4ODgYaWlphmHYfm383Llzhpubm7F582abcYcNG2ZERUUZhmEYPXr0MKKjo4usAUDxVKng/AWgEqlbt671dpZhGOrWrVuhVx/27t2rrVu36tNPP5V06cpMv379NHv2bIWFhdn0DQ0NlYODg3JyctSwYUMtXrxY3t7e1u0DBgzQiy++aLPP37f/U9OmTRUaGqo5c+YoLCxM+/bt03fffacJEyZIki5evKjXX39dS5Ys0ZEjR5SXl6fc3Fy5ubnZjBMUFHTVn8fixYv19ttv648//lB2drYuXLhQ4PZcvXr1dNNNN1nXQ0JClJ+fr71798rHx8em7759+3T27Fl17tzZpj0vL896m3HEiBG67777tGPHDnXp0kW9e/dWaGjoVWsFYIsABKBEhg4dqlGjRkmS4uPjC+0ze/ZsXbhwQX5+ftY2wzDk7OysGTNmyMPDw9q+ePFiNWvWTHXq1FHNmjULjOXh4aHGjRuXqMZhw4bp3//+t+Lj4zV37lw1atRIHTt2lCS9+eabmj59uqZNm6aWLVuqWrVqGj16dIHbbtWqVbviMVJSUjRgwACNHz9eERER8vDwUFJSkqZMmVKiWv8uOztbkrRy5Uqb0CTJOvk6MjJSBw8e1KpVq7R27VrdfffdGjlypCZPnnzNxwXMiDlAAEqka9euysvL0/nz562Tg//uwoULmj9/vqZMmaJdu3ZZlx9//FF+fn4FJhz7+/urUaNGhYafa9W3b185ODho4cKFmj9/voYOHSqLxSJJ2rRpk3r16qWBAweqdevWatiwoX777bcSH2Pz5s2qX7++XnzxRbVr105NmjTRwYMHC/RLTU21eQLu+++/l4ODgwIDAwv0bdasmZydnZWamqrGjRvbLP7+/tZ+devW1eDBg/XRRx9p2rRpmjlzZonrB8yOK0AASsTR0VF79uyx/vmfVqxYoVOnTmnYsGE2V3ok6b777tPs2bOLfI9PYc6ePav09HSbNmdnZ9WqVavIfapXr65+/fopNjZWWVlZNu8oatKkiT7++GNt3rxZtWrV0tSpU5WRkaFmzZoVu6bL46SmpiopKUm33367Vq5cab3l93cuLi4aPHiwJk+erKysLD3++OPq27dvgdtf0qVJ1U8//bSefPJJ5efnq0OHDsrMzNSmTZvk7u6uwYMHa+zYsQoKClLz5s2Vm5urFStW6NZbby1R7QC4AgTgGri7uxf5KPrs2bMVHh5eIPxIlwLQtm3bSvQywlmzZsnX19dmiYqKuup+w4YN06lTpxQREWFzK27MmDG67bbbFBERobCwMPn4+FzTm5h79uypJ598UqNGjVKbNm20efNmvfTSSwX6NW7cWP/v//0/3XPPPerSpYtatWqld999t8hxX3nlFb300kuKi4vTrbfeqq5du2rlypUKCAiQJDk5OSk2NlatWrXSnXfeKUdHRyUlJZW4fsDsLIZxledSAQAAbjBcAQIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKbz/wGv+ZTScaIQRQAAAABJRU5ErkJggg==\n" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } - ] - }, - { - "cell_type": "code", + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "# Assuming you have a list of precision values from precision1 to precision10\n", - "precision_values = [precision1, precision2, precision3, precision4, precision5, precision6, precision7, precision8, precision9, precision10]\n", + "precision_values = [precision1, precision2, precision2_1, precision3, precision4, precision5, precision6, precision7, precision8, precision8_1, precision9, precision10]\n", "\n", "# List of corresponding labels for each precision value\n", - "labels = ['Precision1', 'Precision2', 'Precision3', 'Precision4', 'Precision5', 'Precision6', 'Precision7', 'Precision8', 'Precision9', 'Precision10']\n", + "labels = ['Precision1', 'Precision2', 'Precision2_1', 'Precision3', 'Precision4', 'Precision5', 'Precision6', 'Precision7', 'Precision8', 'Precision8_1', 'Precision9', 'Precision10']\n", "\n", "# Plotting the bar graph\n", "plt.bar(labels, precision_values, color='red')\n", @@ -2608,39 +7062,39 @@ "plt.ylabel('Precision Values')\n", "plt.title('Bar Graph of Precision')\n", "plt.show()\n" - ], + ] + }, + { + "cell_type": "code", + "execution_count": 98, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 472 }, - "id": "ZDPV0M5rDTi6", - "outputId": "9db63164-3f42-47be-d302-d80d381d9b91" + "id": "39LBleNeDeuw", + "outputId": "66c1cd08-96bb-46bb-afd3-7792e2b71345" }, - "execution_count": 121, "outputs": [ { - "output_type": "display_data", "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFVUlEQVR4nO3df3zO9eL/8ee1za7NMD83msUwSjKaH01Gq62hRDkSObZZOYo4dnxEYeQci/Krg/TD73OKQh3FEc1RiSizQsjv0WHzc2Njy/b+/uG767hs2DWba3t73G+363Zr773f1+u59/V2Xc/evy6LYRiGAAAATMLF2QEAAABKEuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGQLk1btw4WSwWnTp1qtTHWrNmjVq0aCEPDw9ZLBadO3eu1McsLRaLRePGjbP9vGDBAlksFh0+fNhpmYCSRLkByqD8D5urHz4+PgoLC9O///3v257n888/V9euXeXr6yt3d3dVr15dHTp00JQpU5SRkXHb89xup0+f1jPPPCNPT0/NmjVLixcvlpeXV6HzXvvaubm5yc/PT9HR0frtt99uc3LgzuTm7AAAru/1119XQECADMNQamqqFixYoC5duujzzz/XE088Uerj5+XlKTY2VgsWLND999+vl156Sf7+/jp//rw2b96s0aNHa/Xq1UpMTCz1LM70ww8/6Pz585owYYLCw8OLtEz+a3fp0iV9//33WrBggTZu3KidO3fKw8OjlBMDdzbKDVCGde7cWa1atbL9HBsbK19fX3300UclUm7y8vKUk5Nz3Q/byZMna8GCBRo2bJimTJkii8Vi+93QoUN1/PhxLVq06JbGKA/S0tIkSVWrVi3yMle/ds8//7xq1qypSZMmaeXKlXrmmWdKIyaA/4/DUkA5UrVqVXl6esrNzf7/S9566y21a9dONWrUkKenp4KDg7Vs2bICy1ssFg0ePFj//Oc/dd9998lqtWrNmjWFjpWVlaVJkybpvvvu05tvvmlXbPLVqVNHr7zySpHHKE7OJk2ayMPDQ8HBwfrmm28KzXru3DlFR0eratWq8vb2VkxMjLKysgpfidf45JNPFBwcLE9PT9WsWVN9+/a1O3z08MMPKyoqSpLUunVrWSwWRUdHF+m5rxYaGipJOnDggN30PXv26A9/+IOqV68uDw8PtWrVSitXriz0bxw2bJjq168vq9WqunXrql+/frbzjXJycjR27FgFBwfL29tbXl5eCg0N1X/+8x+HswLlHXtugDIsPT1dp06dkmEYSktL09///ndduHBBffv2tZtvxowZevLJJ/Xcc88pJydHS5YsUc+ePfXFF1/o8ccft5t3/fr1+vjjjzV48GDVrFlT9evXL3TsjRs36ty5cxo+fLhcXV0dyn29MRzJ+fXXX2vp0qUaMmSIrFarZs+erU6dOmnr1q1q1qyZ3bzPPPOMAgIClJCQoKSkJH3wwQfy8fHRpEmTbphzwYIFiomJUevWrZWQkKDU1FTNmDFD3333nbZv366qVavqtddeU5MmTfTee+/ZDjU1bNjQofUhyXaybrVq1WzTdu3apYceekh+fn4aOXKkvLy89PHHH6t79+5avny5nnrqKUnShQsXFBoaqt27d6t///564IEHdOrUKa1cuVLHjh1TzZo1lZGRoQ8++EC9e/fWCy+8oPPnz2vu3LmKjIzU1q1b1aJFC4czA+WWAaDMmT9/viGpwMNqtRoLFiwoMH9WVpbdzzk5OUazZs2MRx55xG66JMPFxcXYtWvXTTPMmDHDkGR89tlndtMvX75snDx50u6Rl5dXpDEcySnJ+PHHH23Tjhw5Ynh4eBhPPfWUbVp8fLwhyejfv7/d8k899ZRRo0aNG/59OTk5ho+Pj9GsWTPj4sWLtulffPGFIckYO3asbVr+6/HDDz/c8Dmvnverr74yTp48aRw9etRYtmyZUatWLcNqtRpHjx61zfvoo48a999/v3Hp0iXbtLy8PKNdu3ZGYGCgbdrYsWMNScaKFSsKjJe/7i9fvmxkZ2fb/e7s2bOGr69vgfUjyYiPjy+Q+dChQzf9+4DygMNSQBk2a9YsrVu3TuvWrdM//vEPhYWF6fnnn9eKFSvs5vP09LT999mzZ5Wenq7Q0FAlJSUVeM6OHTuqadOmNx07/yqoSpUq2U3fsWOHatWqZfc4ffp0kcZwJGdISIiCg4NtP999993q1q2bvvzyS+Xm5trNO3DgQLufQ0NDdfr06RteyfXjjz8qLS1NL730kt35QI8//rjuuecerVq16rrLFkV4eLhq1aolf39//eEPf5CXl5dWrlypunXrSpLOnDmj9evX65lnntH58+d16tQpnTp1SqdPn1ZkZKT27dtnOzy2fPlyBQUF2fbkXC3/cKGrq6vc3d0lXTnP6cyZM7p8+bJatWpV6PoFzIzDUkAZ1qZNG7sTinv37q2WLVtq8ODBeuKJJ2wfZl988YX++te/Kjk5WdnZ2bb5CztPJiAgoEhjV65cWdKVQyJXa9SokdatWydJWrRokRYvXlzkMRzJGRgYWGBa48aNlZWVpZMnT6p27dq26XfffbfdfPmHfs6ePasqVaoUmuXIkSOSpCZNmhT43T333KONGzcWulxRzZo1S40bN1Z6errmzZunb775Rlar1fb7/fv3yzAMjRkzRmPGjCn0OdLS0uTn56cDBw6oR48eNx1z4cKFmjJlivbs2aPff//dNr2orzlgFpQboBxxcXFRWFiYZsyYoX379um+++7Tt99+qyeffFIdOnTQ7NmzVadOHVWoUEHz58/Xhx9+WOA5rt57ciP33HOPJGnnzp3q1q2bbXqlSpVsl0NfrwAUNoajOR1xvXOCDMO4pee9FVcX0+7du6t9+/bq06eP9u7dq0qVKikvL0+SNHz4cEVGRhb6HI0aNSryeP/4xz8UHR2t7t276//+7//k4+MjV1dXJSQkFDiJGTA7yg1Qzly+fFnS//aoLF++XB4eHvryyy/t9gzMnz//lsYJDQ2Vt7e3lixZolGjRsnF5daOYjuac9++fQWm/frrr6pYsaJq1ap1S1kkqV69epKkvXv36pFHHrH73d69e22/Lwn5JSMsLEwzZ87UyJEj1aBBA0lShQoVbnrvnIYNG2rnzp03nGfZsmVq0KCBVqxYYbcnLD4+/tb/AKCc4ZwboBz5/ffftXbtWrm7u+vee++VdOWD02Kx2J2HcvjwYX322We3NFbFihU1YsQI7dy5UyNHjix0L4gje0Yczbl582a7c0WOHj2qf/3rX3rsscccvnqrMK1atZKPj4/mzJljd4js3//+t3bv3l3g6q1b9fDDD6tNmzaaPn26Ll26JB8fHz388MN69913dfz48QLznzx50vbfPXr00E8//aRPP/20wHz5r0H+Orn6NdmyZYs2b95con8HUB6w5wYow/79739rz549kq6cf/Hhhx9q3759GjlypO1ckscff1xTp05Vp06d1KdPH6WlpWnWrFlq1KiRfv7551saf+TIkdq9e7fefPNNrV27Vj169FDdunV19uxZJSUl6ZNPPpGPj0+RbtDnaM5mzZopMjLS7lJwSRo/fvwt/U35KlSooEmTJikmJkYdO3ZU7969bZeC169fX8OGDSuRca72f//3f+rZs6cWLFiggQMHatasWWrfvr3uv/9+vfDCC2rQoIFSU1O1efNmHTt2TD/99JNtuWXLlqlnz57q37+/goODdebMGa1cuVJz5sxRUFCQnnjiCa1YsUJPPfWUHn/8cR06dEhz5sxR06ZNC5w3BZieMy/VAlC4wi4F9/DwMFq0aGG88847dpdeG4ZhzJ071wgMDDSsVqtxzz33GPPnz7ddJn01ScagQYMczvPpp58aXbp0MWrVqmW4ubkZVatWNdq3b2+8+eabxrlz54o8hqM5//GPf9jmb9mypfGf//zHbr78ZU+ePGk33ZFLm5cuXWq0bNnSsFqtRvXq1Y3nnnvOOHbsWKHP58il4IXNm5ubazRs2NBo2LChcfnyZcMwDOPAgQNGv379jNq1axsVKlQw/Pz8jCeeeMJYtmyZ3bKnT582Bg8ebPj5+Rnu7u5G3bp1jaioKOPUqVOGYVy5JHzixIlGvXr1bOvriy++MKKioox69erZPZe4FBwmZzEMJ55xBwCFsFgsGjRokGbOnOnsKADKIc65AQAApkK5AQAApkK5AQAApsLVUgDKHE4FBHAr2HMDAABMhXIDAABM5Y47LJWXl6f//ve/qly5cqFf1gcAAMoewzB0/vx53XXXXTf9Opg7rtz897//lb+/v7NjAACAYjh69Kjq1q17w3nuuHJTuXJlSVdWTv7t6wEAQNmWkZEhf39/2+f4jdxx5Sb/UFSVKlUoNwAAlDNFOaWEE4oBAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpOLXcfPPNN+ratavuuusuWSwWffbZZzddZsOGDXrggQdktVrVqFEjLViwoNRzAgCA8sOp5SYzM1NBQUGaNWtWkeY/dOiQHn/8cYWFhSk5OVl//vOf9fzzz+vLL78s5aQAAKC8cOoXZ3bu3FmdO3cu8vxz5sxRQECApkyZIkm69957tXHjRk2bNk2RkZGlFRMAAJQj5eqcm82bNys8PNxuWmRkpDZv3uykRAAAoKxx6p4bR504cUK+vr5203x9fZWRkaGLFy/K09OzwDLZ2dnKzs62/ZyRkVHqOQEAgPOUqz03xZGQkCBvb2/bw9/f39mRnMLixEd5zAUAKL/KVbmpXbu2UlNT7aalpqaqSpUqhe61kaRRo0YpPT3d9jh69OjtiAoAKGH8jxCKqlwdlgoJCdHq1avtpq1bt04hISHXXcZqtcpqtZZ2NAAAyhRnFjPDiWNLTt5zc+HCBSUnJys5OVnSlUu9k5OTlZKSIunKXpd+/frZ5h84cKAOHjyoESNGaM+ePZo9e7Y+/vhjDRs2zBnxAZQDHPp0HOsL5Z1Ty82PP/6oli1bqmXLlpKkuLg4tWzZUmPHjpUkHT9+3FZ0JCkgIECrVq3SunXrFBQUpClTpuiDDz7gMnAAAGBjMQzD2XuPbquMjAx5e3srPT1dVapUcXac26as7p4sq7lgHmxjjnPWOrvZ+iqrucoqs237jnx+l6sTigEAAG6GcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEzFzdkBAAAozyxOHNtw4thlGeUGKGec9UZ6szfRspoLwJ2Hw1IAAMBUKDcAAMBUKDcAAMBUKDcAAMBUKDcAAMBUuFoKAJyAy4eB0sOeGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCpcLQUUgitZAKD8Ys8NAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFaeXm1mzZql+/fry8PBQ27ZttXXr1hvOP336dDVp0kSenp7y9/fXsGHDdOnSpduU9uYsTnoAAIArnFpuli5dqri4OMXHxyspKUlBQUGKjIxUWlpaofN/+OGHGjlypOLj47V7927NnTtXS5cu1auvvnqbkwMAgLLKqeVm6tSpeuGFFxQTE6OmTZtqzpw5qlixoubNm1fo/Js2bdJDDz2kPn36qH79+nrsscfUu3fvm+7tAQAAdw6nlZucnBxt27ZN4eHh/wvj4qLw8HBt3ry50GXatWunbdu22crMwYMHtXr1anXp0uW642RnZysjI8PuAQAAzMvNWQOfOnVKubm58vX1tZvu6+urPXv2FLpMnz59dOrUKbVv316GYejy5csaOHDgDQ9LJSQkaPz48SWaHQAAlF1OP6HYERs2bNDEiRM1e/ZsJSUlacWKFVq1apUmTJhw3WVGjRql9PR02+Po0aO3MTEAALjdnLbnpmbNmnJ1dVVqaqrd9NTUVNWuXbvQZcaMGaM//vGPev755yVJ999/vzIzMzVgwAC99tprcnEp2NWsVqusVmvJ/wEAAKBMctqeG3d3dwUHBysxMdE2LS8vT4mJiQoJCSl0maysrAIFxtXVVZJkGEbphQUAAOWG0/bcSFJcXJyioqLUqlUrtWnTRtOnT1dmZqZiYmIkSf369ZOfn58SEhIkSV27dtXUqVPVsmVLtW3bVvv379eYMWPUtWtXW8kBAAB3NqeWm169eunkyZMaO3asTpw4oRYtWmjNmjW2k4xTUlLs9tSMHj1aFotFo0eP1m+//aZatWqpa9eu+tvf/uasPwEAAJQxFuMOO56TkZEhb29vpaenq0qVKiX+/M66W/DNXkRn3sX4RtnIVVBZfS3J5Ti2MceQy3HldRsrDkc+v8vV1VIAAAA3Q7kBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACm4nC5uXjxorKysmw/HzlyRNOnT9fatWtLNBgAAEBxOFxuunXrpkWLFkmSzp07p7Zt22rKlCnq1q2b3nnnnRIPCAAA4AiHy01SUpJCQ0MlScuWLZOvr6+OHDmiRYsW6e233y7xgAAAAI5wuNxkZWWpcuXKkqS1a9fq6aeflouLix588EEdOXKkxAMCAAA4wuFy06hRI3322Wc6evSovvzySz322GOSpLS0NFWpUqXEAwIAADjC4XIzduxYDR8+XPXr11ebNm0UEhIi6cpenJYtW5Z4QAAAAEdYDMMwHF3oxIkTOn78uIKCguTicqUfbd26VVWqVNE999xT4iFLUkZGhry9vZWenl4qe5osJf6MRXOzF9FZuaQbZyNXQWX1tSSX49jGHEMux5XXbaw4HPn8LtZ9bmrXrq3KlStr3bp1unjxoiSpdevWZb7YAAAA83O43Jw+fVqPPvqoGjdurC5duuj48eOSpNjYWP3lL38p8YAAAACOcLjcDBs2TBUqVFBKSooqVqxom96rVy+tWbOmRMMBAAA4ys3RBdauXasvv/xSdevWtZseGBjIpeAAAMDpHN5zk5mZabfHJt+ZM2dktVpLJBQAAEBxOVxuQkNDbV+/IEkWi0V5eXmaPHmywsLCSjQcAACAoxwuN5MnT9Z7772nzp07KycnRyNGjFCzZs30zTffaNKkSQ4HmDVrlurXry8PDw+1bdtWW7duveH8586d06BBg1SnTh1ZrVY1btxYq1evdnhcAABgTg6Xm2bNmunXX39V+/bt1a1bN2VmZurpp5/W9u3b1bBhQ4eea+nSpYqLi1N8fLySkpIUFBSkyMhIpaWlFTp/Tk6OIiIidPjwYS1btkx79+7V+++/Lz8/P0f/DAAAYFLFuolfSWnbtq1at26tmTNnSpLy8vLk7++vl19+WSNHjiww/5w5c/Tmm29qz549qlChQrHG5CZ+t195vMlUWc0lsY1dq6zmktjGHEUux5XXbaw4HPn8dvhqqW+++eaGv+/QoUORnicnJ0fbtm3TqFGjbNNcXFwUHh6uzZs3F7rMypUrFRISokGDBulf//qXatWqpT59+uiVV16Rq6troctkZ2crOzvb9nNGRkaR8gEAgPLJ4XLz8MMPF5hmsfyvH+bm5hbpeU6dOqXc3Fz5+vraTff19dWePXsKXebgwYNav369nnvuOa1evVr79+/XSy+9pN9//13x8fGFLpOQkKDx48cXKRMAACj/HD7n5uzZs3aPtLQ0rVmzRq1bt9batWtLI6NNXl6efHx89N577yk4OFi9evXSa6+9pjlz5lx3mVGjRik9Pd32OHr0aKlmBAAAzuXwnhtvb+8C0yIiIuTu7q64uDht27atSM9Ts2ZNubq6KjU11W56amqqateuXegyderUUYUKFewOQd177706ceKEcnJy5O7uXmAZq9XK/XcAALiDFOuLMwvj6+urvXv3Fnl+d3d3BQcHKzEx0TYtLy9PiYmJCgkJKXSZhx56SPv371deXp5t2q+//qo6deoUWmwAAMCdx+E9Nz///LPdz4Zh6Pjx43rjjTfUokULh54rLi5OUVFRatWqldq0aaPp06crMzNTMTExkqR+/frJz89PCQkJkqQXX3xRM2fO1NChQ/Xyyy9r3759mjhxooYMGeLonwEAAEzK4XLTokULWSwWXXsF+YMPPqh58+Y59Fy9evXSyZMnNXbsWJ04cUItWrTQmjVrbCcZp6SkyMXlfzuX/P399eWXX2rYsGFq3ry5/Pz8NHToUL3yyiuO/hkAAMCkHL7PzbVfjuni4qJatWrJw8OjRIOVFu5zc/uVx/swlNVcEtvYtcpqLoltzFHkclx53caKo1Tvc1OvXr1iBwMAAChtRSo3b7/9dpGfkPNfAACAMxXpsFRAQEDRnsxi0cGDB285VGnisNTtVx53m5bVXBLb2LXKai6JbcxR5HJced3GiqPED0sdOnSoRIIBAACUthK7zw0AAEBZ4PAJxZJ07NgxrVy5UikpKcrJybH73dSpU0skGAAAQHE4XG4SExP15JNPqkGDBtqzZ4+aNWumw4cPyzAMPfDAA6WREQAAoMgcPiw1atQoDR8+XDt27JCHh4eWL1+uo0ePqmPHjurZs2dpZAQAACgyh8vN7t271a9fP0mSm5ubLl68qEqVKun111/XpEmTSjwgAACAIxwuN15eXrbzbOrUqaMDBw7Yfnfq1KmSSwYAAFAMDp9z8+CDD2rjxo2699571aVLF/3lL3/Rjh07tGLFCj344IOlkREAAKDIilxuzpw5o+rVq2vq1Km6cOGCJGn8+PG6cOGCli5dqsDAQK6UAgAATlfkL8708PBQ9+7dFRsbq4iIiNLOVWq4Q/HtVx7voFlWc0lsY9cqq7kktjFHkctx5XUbKw5HPr+LfM7N+++/r5MnT6pTp06qX7++xo0bp8OHD99qVgAAgBJV5HLzxz/+UYmJidq/f7+ioqK0cOFCNWrUSBEREVq6dGmBm/kBAAA4g8NXSwUEBGj8+PE6dOiQ1qxZIx8fH/Xv31916tThG8EBAIDTFfmcmxtZvny5BgwYoHPnzik3N7ckcpUazrm5/crjMeGymktiG7tWWc0lsY05ilyOK6/bWHGU+LeCF+bIkSOaP3++Fi5cqKNHjyosLEyxsbHFfToAAIAS4VC5yc7O1vLlyzVv3jxt2LBBfn5+io6OVkxMjOrXr19KEQEAAIquyOXmpZde0pIlS5SVlaVu3bpp9erVioiIkMXizB1fAAAA9opcbjZu3Kj4+Hj17dtXNWrUKM1MAAAAxVbkcvPzzz+XZg4AAIAS4fCl4AAAAGUZ5QYAAJgK5QYAAJgK5QYAAJhKkU4oduRk4ubNmxc7DAAAwK0qUrlp0aKFLBaLrvdNDfm/s1gsZf7rFwAAgLkVqdwcOnSotHMAAACUiCKVm3r16pV2DgAAgBJRpHKzcuXKIj/hk08+WewwAAAAt6pI5aZ79+5FejLOuQEAAM5WpHKTl5dX2jkAAABKBPe5AQAAplLkL868WmZmpr7++mulpKQoJyfH7ndDhgwpkWAAAADF4XC52b59u7p06aKsrCxlZmaqevXqOnXqlCpWrCgfHx/KDQAAcCqHD0sNGzZMXbt21dmzZ+Xp6anvv/9eR44cUXBwsN56663SyAgAAFBkDpeb5ORk/eUvf5GLi4tcXV2VnZ0tf39/TZ48Wa+++mppZAQAACgyh8tNhQoV5OJyZTEfHx+lpKRIkry9vXX06NGSTQcAAOAgh8+5admypX744QcFBgaqY8eOGjt2rE6dOqXFixerWbNmpZERAACgyBzeczNx4kTVqVNHkvS3v/1N1apV04svvqiTJ0/q3XffLfGAAAAAjrAY1/uqb5PKyMiQt7e30tPTVaVKlRJ/fkuJP2PR3OxFdFYu6cbZyFVQWX0tyeU4tjHHkMtx5XUbKw5HPr8d3nNz6NAh7du3r8D0ffv26fDhw44+HQAAQIlyuNxER0dr06ZNBaZv2bJF0dHRJZEJAACg2BwuN9u3b9dDDz1UYPqDDz6o5OTkksgEAABQbA6XG4vFovPnzxeYnp6ezjeCAwAAp3O43HTo0EEJCQl2RSY3N1cJCQlq3759iYYDAABwlMP3uZk0aZI6dOigJk2aKDQ0VJL07bffKiMjQ+vXry/xgAAAAI5weM9N06ZN9fPPP+uZZ55RWlqazp8/r379+mnPnj3cxA8AADgd97kpYdyHoaDyeB+GsppLYhu7VlnNJbGNOYpcjiuv21hxlOp9bqQrh6H69u2rdu3a6bfffpMkLV68WBs3bizO0wEAAJQYh8vN8uXLFRkZKU9PTyUlJSk7O1vSlaulJk6cWOIBAQAAHOFwufnrX/+qOXPm6P3331eFChVs0x966CElJSWVaDgAAABHOVxu9u7dqw4dOhSY7u3trXPnzpVEJgAAgGJzuNzUrl1b+/fvLzB948aNatCgQYmEAgAAKC6Hy80LL7ygoUOHasuWLbJYLPrvf/+rf/7znxo+fLhefPHF0sgIAABQZA7fxG/kyJHKy8vTo48+qqysLHXo0EFWq1XDhw/Xyy+/XBoZAQAAiqzY97nJycnR/v37deHCBTVt2lSVKlXSxYsX5enpWdIZSxT3ubn9yuN9GMpqLolt7FplNZfENuYocjmuvG5jxVHq97mRJHd3dzVt2lRt2rRRhQoVNHXqVAUEBBT36QAAAEpEkctNdna2Ro0apVatWqldu3b67LPPJEnz589XQECApk2bpmHDhpVWTgAAgCIpcrkZO3as3nnnHdWvX1+HDx9Wz549NWDAAE2bNk1Tp07V4cOH9corrxQrxKxZs1S/fn15eHiobdu22rp1a5GWW7JkiSwWi7p3716scQEAgPkUudx88sknWrRokZYtW6a1a9cqNzdXly9f1k8//aRnn31Wrq6uxQqwdOlSxcXFKT4+XklJSQoKClJkZKTS0tJuuNzhw4c1fPhw2zeTAwAASA6Um2PHjik4OFiS1KxZM1mtVg0bNkwWy62dsjR16lS98MILiomJUdOmTTVnzhxVrFhR8+bNu+4yubm5eu655zR+/HjurQMAAOwUudzk5ubK3d3d9rObm5sqVap0S4Pn5ORo27ZtCg8P/18gFxeFh4dr8+bN113u9ddfl4+Pj2JjY286RnZ2tjIyMuweAADAvIp8nxvDMBQdHS2r1SpJunTpkgYOHCgvLy+7+VasWFHkwU+dOqXc3Fz5+vraTff19dWePXsKXWbjxo2aO3eukpOTizRGQkKCxo8fX+RMAACgfCtyuYmKirL7uW/fviUe5mbOnz+vP/7xj3r//fdVs2bNIi0zatQoxcXF2X7OyMiQv79/aUUEAABOVuRyM3/+/BIfvGbNmnJ1dVVqaqrd9NTUVNWuXbvA/AcOHNDhw4fVtWtX27S8vDxJVw6T7d27Vw0bNrRbxmq12vY2AQAA8yv2TfxKgru7u4KDg5WYmGiblpeXp8TERIWEhBSY/5577tGOHTuUnJxsezz55JMKCwtTcnIye2QAAIDj3y1V0uLi4hQVFaVWrVqpTZs2mj59ujIzMxUTEyNJ6tevn/z8/JSQkCAPDw81a9bMbvmqVatKUoHpAADgzuT0ctOrVy+dPHlSY8eO1YkTJ9SiRQutWbPGdpJxSkqKXFycuoMJAACUI8X+4szyii/OvP3K4xe7ldVcEtvYtcpqLoltzFHkclx53caK47Z8cSYAAEBZRLkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmUibKzaxZs1S/fn15eHiobdu22rp163Xnff/99xUaGqpq1aqpWrVqCg8Pv+H8AADgzuL0crN06VLFxcUpPj5eSUlJCgoKUmRkpNLS0gqdf8OGDerdu7f+85//aPPmzfL399djjz2m33777TYnBwAAZZHFMAzDmQHatm2r1q1ba+bMmZKkvLw8+fv76+WXX9bIkSNvunxubq6qVaummTNnql+/fjedPyMjQ97e3kpPT1eVKlVuOf+1LCX+jEVzsxfRWbmkG2cjV0Fl9bUkl+PYxhxDLseV122sOBz5/HbqnpucnBxt27ZN4eHhtmkuLi4KDw/X5s2bi/QcWVlZ+v3331W9evVCf5+dna2MjAy7BwAAMC+nlptTp04pNzdXvr6+dtN9fX114sSJIj3HK6+8orvuusuuIF0tISFB3t7etoe/v/8t5wYAAGWX08+5uRVvvPGGlixZok8//VQeHh6FzjNq1Cilp6fbHkePHr3NKQEAwO3k5szBa9asKVdXV6WmptpNT01NVe3atW+47FtvvaU33nhDX331lZo3b37d+axWq6xWa4nkBQAAZZ9T99y4u7srODhYiYmJtml5eXlKTExUSEjIdZebPHmyJkyYoDVr1qhVq1a3IyoAACgnnLrnRpLi4uIUFRWlVq1aqU2bNpo+fboyMzMVExMjSerXr5/8/PyUkJAgSZo0aZLGjh2rDz/8UPXr17edm1OpUiVVqlTJaX8HAAAoG5xebnr16qWTJ09q7NixOnHihFq0aKE1a9bYTjJOSUmRi8v/djC98847ysnJ0R/+8Ae754mPj9e4ceNuZ3QAAFAGOf0+N7cb97m5/crjfRjKai6JbexaZTWXxDbmKHI5rrxuY8VRbu5zAwAAUNIoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFTKRLmZNWuW6tevLw8PD7Vt21Zbt2694fyffPKJ7rnnHnl4eOj+++/X6tWrb1NSAABQ1jm93CxdulRxcXGKj49XUlKSgoKCFBkZqbS0tELn37Rpk3r37q3Y2Fht375d3bt3V/fu3bVz587bnBwAAJRFFsMwDGcGaNu2rVq3bq2ZM2dKkvLy8uTv76+XX35ZI0eOLDB/r169lJmZqS+++MI27cEHH1SLFi00Z86cm46XkZEhb29vpaenq0qVKiX3h/x/lhJ/xqK52YvorFzSjbORq6Cy+lqSy3FsY44hl+PK6zZWHI58fjt1z01OTo62bdum8PBw2zQXFxeFh4dr8+bNhS6zefNmu/klKTIy8rrzAwCAO4ubMwc/deqUcnNz5evrazfd19dXe/bsKXSZEydOFDr/iRMnCp0/Oztb2dnZtp/T09MlXWmAZlKW/5qymo1cjiGX48pqNnI5pqzmksputtLIlf+5XZQDTk4tN7dDQkKCxo8fX2C6v7+/E9KUHm9nB7iBspqNXI4hl+PKajZyOaas5pLKbrbSzHX+/Hl5e994BKeWm5o1a8rV1VWpqal201NTU1W7du1Cl6ldu7ZD848aNUpxcXG2n/Py8nTmzBnVqFFDFoszj0jay8jIkL+/v44ePVoq5wIVV1nNJZXdbORyDLkcV1azkcsx5HKMYRg6f/687rrrrpvO69Ry4+7uruDgYCUmJqp79+6SrpSPxMREDR48uNBlQkJClJiYqD//+c+2aevWrVNISEih81utVlmtVrtpVatWLYn4paJKlSplamPKV1ZzSWU3G7kcQy7HldVs5HIMuYruZnts8jn9sFRcXJyioqLUqlUrtWnTRtOnT1dmZqZiYmIkSf369ZOfn58SEhIkSUOHDlXHjh01ZcoUPf7441qyZIl+/PFHvffee878MwAAQBnh9HLTq1cvnTx5UmPHjtWJEyfUokULrVmzxnbScEpKilxc/ndRV7t27fThhx9q9OjRevXVVxUYGKjPPvtMzZo1c9afAAAAyhCnlxtJGjx48HUPQ23YsKHAtJ49e6pnz56lnOr2slqtio+PL3AIzdnKai6p7GYjl2PI5biymo1cjiFX6XH6TfwAAABKktO/fgEAAKAkUW4AAICpUG4AAICpUG7KGYvFos8++0ySdPjwYVksFiUnJzs1Uz5nZSvL6+RGympucjmurGYjV9kY91aVldxlJUdRUG4cEB0dLYvFIovFogoVKiggIEAjRozQpUuXnB3NLlv+w8fHp9SzXT2uJP3pT3/SiBEj7L7PS5J++ukn9e7dW/7+/vL09NS9996rGTNmlGq2G41b1Nfy+PHj6tOnjxo3biwXFxe7m0eWhrFjx9pyubi4yM3NTa6urqpbt64GDx7stO9EuzpX/vp6+eWX5efnJ4vFonPnzjkll1T4tp//WLJkidNyXbvOatWqpVq1aslqtcrHx0eDBg1yeq7rPdLS0kp83KK+V0jSDz/8oEcffVRVq1ZVtWrVFBkZqZ9++qnEMxVl3CeffLJI7xWXLl1SdHS07r//frm5udluTFtS3n77bVksFgUEBEiSHn/8cVuOxMREtWvXTpUrV1bt2rX1yiuv6PLlyyU6flEMGTJEwcHBslqtatGiRaHz/PzzzwoNDZWHh4f8/f01efLkUslCuXFQp06ddPz4cR08eFDTpk3Tu+++q/j4eGfHknQlW//+/TVhwgR17NhRp0+fvi3Z8teJJPXv31/vvvuupk2bZjfPtm3b5OPjo3/84x/atWuXXnvtNY0aNUozZ84s1WzXG3f37t1Fei2zs7NVq1YtjR49WkFBQaWaNV+nTp20e/duTZgwQW+88Ya8vLzUvn17ffXVVxo4cOBtyXC9XFevrzlz5pSZS0U7deokSXrrrbc0b948Va5cWYMGDSrxD5ji5Dp+/LhGjhyp3NxcZWZmKjo6Wl999ZUiIyOdmuvgwYP68ccf7dZXZGSkOnbsKB8fn1Ib92bvFRcuXFCnTp109913a8uWLdq4caMqV66syMhI/f7776WS60bjrlu3TpGRkTd9r8jNzZWnp6eGDBmi8PDwUsnYqVMnbd26VZI0fPhwvfvuu3rxxRfVpUsXderUSdu3b9fSpUu1cuVKjRw5slQy3Ez//v3Vq1evQn+XkZGhxx57TPXq1dO2bdv05ptvaty4caVyE17KjYOsVqtq164tf39/de/eXeHh4Vq3bp2kK18dkZCQoICAAHl6eiooKEjLli2zW37Xrl164oknVKVKFVWuXFmhoaE6cOCApCv/1xAREaGaNWvK29tbHTt2VFJSkkPZ5s6dq9GjR+vhhx+2/cMs7Wz560SS2rZtq/DwcG3cuNFu3AkTJui9997TkCFDlJSUpL59+yomJkYrVqwo1XXSv39/zZgxQx07dlSDBg1s46akpBTptQwLC9N7772nKVOmKCcn57a8llarVffcc49ee+01DR8+XBEREfr111/10ksv6ZtvvnHaNnb1+jp+/LiqVq0qV1dXu/XlzG1fkho2bKiYmBhFRERo06ZN8vDwcGq2/K9/mTJlij755BN17txZP/zwg5o3b64nnnjCqbkCAgIUHBxsW1/ffPON1q9fr5iYGKe+VzRp0kRnzpzRli1btGPHDt13332Kj49Xamqqvvrqq1Lbhvbs2aMzZ87o9ddfV5MmTWzjXrp0Sbm5uTd9r2jWrJkWLFigmTNnFtirU1Kvo9VqVa1atSRJYWFhCg8P17///W81b95co0eP1ieffKLo6GgdPHhQU6dO1eLFi0slx/W8/fbbGjRokBo0aFDo7//5z38qJydH8+bN03333adnn31WQ4YM0dSpUx0apygoN7dg586d2rRpk9zd3SVd+QbyRYsWac6cOdq1a5eGDRumvn376uuvv5Yk/fbbb+rQoYOsVqvWr1+vbdu2qX///rbdh+fPn1dUVJQ2btyo77//XoGBgerSpYvOnz/vcLa0tDRlZmaWerZr/0/qyJEj2rRpkypUqCBJmjdv3nXHTU9Pl6en521bJ/nS09ML7HEoymu5e/duHTt27JbWl6O583NJ0ooVK1SzZk2nb2O//PKLxowZY9tNL0lTp051ei5JGjRokKpWrarPP/9c6enpMgzD6f8u161bp7y8PG3ZskX/+te/tHPnTj3zzDMaOXJkmVhn+dtYenq6KlasqEOHDjn1vWLmzJmqWrWqGjdurL59+2rt2rWaO3euGjVqpL59+5ba+mjSpIlq1KihuXPnKicnRxcvXtTcuXPl7e2tihUrFlhfN3qv+Pbbb3Xq1KlSfR3379+vTZs2yWKxyMPDwy7HBx98IMMwFBsb65TPn+vZvHmzOnToYFt3khQZGam9e/fq7NmzJTaOJMlAkUVFRRmurq6Gl5eXYbVaDUmGi4uLsWzZMuPSpUtGxYoVjU2bNtktExsba/Tu3dswDMMYNWqUERAQYOTk5BRpvNzcXKNy5crG559/bpsmyfj0008NwzCMQ4cOGZKM7du3F5pNUqlne+SRR2zj5o/p4uJizJ4925BkeHh4FDpuRESE4ebmZvTq1avU1klhvvvuO8PNzc2IiIhw+LWsXbu20bhx41taXzfL3bVr10JfR0lGly5dnLaNXZ3LYrHY1te4ceMMSWVi23d3dzfc3d0NSYbFYjHc3NyMKVOmOH2d5WfKX2cTJ040wsLCDIvFYnz99ddOy3Xttu/n52cMGDCgTLxX7Nixw2jYsKFtviZNmhgvvfRSqb9X5I/r4uJiuLi4GE2aNDF69Ojh8HtFYGCg4efnd0vr69rcYWFhhqurq1GxYkW79Td69GjDYrEYVqvV+Pbbb41jx44ZoaGhhiTj4Ycfvi3/Bq8VHx9vBAUFFZgeERFhDBgwwG7arl27DEnGL7/8UqRcRVUmvn6hPAkLC9M777yjzMxMTZs2TW5uburRo4d27dqlrKwsRURE2M2fk5Ojli1bSpKSk5MVGhpq+z+Va6Wmpmr06NHasGGD0tLSlJubq6ysLKWkpDicLSoqSkePHi31bJmZmbZxAwMDFRYWpgYNGqhz586Srpxkd+24+ScQxsfHa9OmTaW6Tq62c+dOdevWTfHx8dq/f7/Dr2VWVpaM/39D79J8La/ONXHiROXm5qpfv34aNmyYU7exsLAw+fv767ffflOdOnXk5uamjh072tZNWdn281/Lu+66S5MnT3b6OmvevLmmTp2qiIgI3X333Ro1apTat2+vDh06KDIy0nZo73bnunp9nTlzRp9//rkeffRRvffee05/r7h48aLthPrGjRvr3nvv1aJFi9StW7dS24YuXryo2NhYPfTQQ/roo4+Um5urt956S4mJierYsaPefffdIr9XXLx40fZt2iX5OoaFhem1115TWFiYunbtKh8fH02YMEHZ2dl68803FRoaKkm2PSPffvutgoODSzxHeUC5cZCXl5caNWok6cpu1KCgIM2dO9f2xZ2rVq2Sn5+f3TL5h0A8PT1v+NxRUVE6ffq0ZsyYoXr16slqtSokJKTAuR5FydatWzdNnjy51LPl5eXZjTt48GDFx8dr6dKltmWvHnffvn3q27ev+vTpo9GjR6tHjx6luk7y/fLLL3r00Uc1YMAAjR49WtHR0Q6/ls8995ztd6X5Wl6d66OPPlJQUJBOnjypESNGaODAgVq0aJGaN29ut8zt2Ma8vLyUlJSkHTt2SLpyrsG8efNsv+/Ro4fGjBlz23PlZ7v2tXzkkUeUmpoqyXn/Lr28vGzbzAcffKDHH3/cbhsbNGhQgZPEb1euq9dXzZo15e/vr3r16kly7nvFd999pylTpmjz5s1ycXGR1WqVr6+vKlaseMMP2lvdhj788EMdPnzYNm7+tIoVKyojI8Oh94oRI0YoMzPzltZXYbm9vLxUv359SdK4ceMUFRWluXPnqkePHnrzzTe1bNkyNWnSRMeOHVPnzp318ccfq3Xr1iWeo7hq165t+zeZL//n/HOxSgrl5ha4uLjo1VdfVVxcnH799VdZrValpKTY/m/2Ws2bN9fChQv1+++/F9qev/vuO82ePVtdunSRJB09etR23NZR+ZeCjx49ulSz5V+WmC9/nQwdOlTSlf+DyB93165dio6OVmxsrO3yv9uxTnbt2qVHHnlEUVFR+tvf/lboPEV5LT09PVW5cuXblvvaXPPnz5d05f4STz/9dKHzl3au5cuX6+LFi5Kk1atXa+LEiUpPT5e7u7vatGlj+wC43bmulr/OBgwYoKpVq+rixYtO/Xf50EMPSbpS7PNfy++//96W1dnrLCsrS1lZWcrNzVXTpk2d/l5RuXJlubu7KzAw0HbZ+OXLl+Xi4qI9e/aU2vrIysqSi4uLbcz8jBaLxbbH9urcN3qvqFKlivLy8m5pfd1MYTmysrLUrFkzffzxx/L391e3bt1sewZv57/B6wkJCdFrr71ml2HdunVq0qSJqlWrVqJjcULxLerZs6dcXV317rvvavjw4Ro2bJgWLlyoAwcOKCkpSX//+9+1cOFCSbLdp+TZZ5/Vjz/+qH379mnx4sXau3evJCkwMFCLFy/W7t27tWXLFj333HM3bdvX2r9/v5KTk3XixAlZrVbl5eUpPj5ew4YNu23Z8teJJNvhlL/97W/q0KGDgoOD5e3trbffflsnTpzQs88+W6rrZOfOnQoLC9Njjz2muLg4nThxQidOnCj0/j/Xey0///xzffTRRzp48KC2bNmi5ORkRURElGru1atXa/78+dq5c6dat26t33//XVFRUapbt64mTpzotG2sYcOGatasmZo1a6a4uDjbG9TLL7+s+Ph4p+U6ceKEPvjgA+3cuVP79+/X6dOnlZmZqVatWjn932Xjxo3VrVs3DR06VH5+fsrLy1Pnzp1Vs2ZNzZs3z6nvF5Jse04qVap029/HCnuvyMzM1JkzZ/TMM8/otdde08SJExUTEyMPDw9dvny51NZHRESEzp49q0GDBmn37t3atWuXYmJiZLFYVLNmzUJzX7u+1qxZo48++kjbtm3T3r17lZycrI4dO5ba65ifo3fv3urXr5+GDBmip59+WgkJCRo6dKhmz57ttM+fixcvKjk5WcnJyba9P3369JG7u7tiY2O1a9cuLV26VDNmzFBcXJxD4xRJiZ7BY3JRUVFGt27dCkxPSEgwatWqZVy4cMGYPn260aRJE6NChQpGrVq1jMjISLuTBn/66SfjscceMypWrGhUrlzZCA0NNQ4cOGAYhmEkJSUZrVq1Mjw8PIzAwEDjk08+MerVq2dMmzbNtrxucFJlt27djI4dO9qdhJr/2LVrV6lka926tW2dXJ1txIgRhiRj06ZNxvTp040aNWoUmqtevXqltk4M48qJbYWN6+XlVeTX8nbm7tq1q9GtWzdj/fr1RkhIiOHt7W14eHgYNWrUMCpWrGgcO3bMKdtYfq5rvfDCC4Ykp+XK3/ZDQkKMFi1aGJUqVTK8vLyMoKAgo3v37k79d3n1OktPTzf69+9vVK1a1fD09DTc3d2NPXv2OD2XYRhGSEiI0adPn1J/Hyvqe0WTJk0MNzc3o0KFCoabm5tRqVIl45FHHjE2b95cqu8VhmEYa9euNR566CHD29vbqFatmvHII48YXbp0uaX3CkklkjssLMzo1q1bgdwJCQlGhQoVjCpVqhhubm6Gh4eH4ebmdlv/Dea73ufPoUOH7DK0b9/esFqthp+fn/HGG28UWLclwfL/AwMAAJgCh6UAAICpUG5wR7vvvvtUqVKlQh///Oc/nR0PQBnRuXPn675XTJw40dnxcA0OS+GOduTIket+X42vr6/t6igAd7bffvvNdqXgtapXr67q1avf5kS4EcoNAAAwFQ5LAQAAU6HcAAAAU6HcAAAAU6HcAHA6i8Wizz77TNKVr5ewWCxKTk6+7TmKM3Z0dLS6d+9+w3kefvhh/fnPf76lbACKjnID3MGio6NlsVhksVhUoUIFBQQEaMSIEYV+PUVZcf/99xf4ssl8ixcvltVqLfZ34vj7++v48eO2L0QEUD5RboA7XKdOnXT8+HEdPHhQ06ZN07vvvqv4+Hhnx7qu2NhYLVmypNDLcufPn68nn3yywHcBFUVOTo5cXV1Vu3ZtubnxncJAeUa5Ae5wVqtVtWvXlr+/v7p3767w8HCtW7fO9vu8vDwlJCQoICBAnp6eCgoK0rJly+yeY9euXXriiSdUpUoVVa5cWaGhoTpw4IAk6YcfflBERIRq1qwpb29vdezYUUlJScXO27dvX128eFHLly+3m37o0CFt2LBBsbGxOnDggLp16yZfX19VqlRJrVu31ldffWU3f/369TVhwgT169dPVapU0YABAwoclsrNzVVsbKztb2/SpIlmzJhRaK7x48erVq1aqlKligYOHGj7ssDCZGdna/jw4fLz85OXl5fatm2rDRs22H5/5MgRde3aVdWqVZOXl5fuu+8+rV69ungrDLgDUW4A2OzcuVObNm2Su7u7bVpCQoIWLVqkOXPmaNeuXRo2bJj69u2rr7/+WtKVm5t16NBBVqtV69ev17Zt29S/f39dvnxZknT+/HlFRUVp48aN+v777xUYGKguXbro/PnzxcpYs2ZNdevWTfPmzbObvmDBAtWtW1ePPfaYLly4oC5duigxMVHbt29Xp06d1LVrV6WkpNgt89ZbbykoKEjbt2/XmDFjCoyVl5enunXr6pNPPtEvv/yisWPH6tVXX9XHH39sN19iYqJ2796tDRs26KOPPtKKFSs0fvz46/4NgwcP1ubNm7VkyRL9/PPP6tmzpzp16qR9+/ZJkgYNGqTs7Gx988032rFjhyZNmqRKlSoVa30Bd6RS+TpOAOVCVFSU4erqanh5eRlWq9WQZLi4uBjLli0zDMMwLl26ZFSsWNHYtGmT3XKxsbFG7969DcMwjFGjRhkBAQFGTk5OkcbMzc01KleubHz++ee2abrJtw1fa82aNYbFYjEOHjxoGIZh5OXlGfXq1TNGjx593WXuu+8+4+9//7vt53r16hndu3e3m6coYw8aNMjo0aOH7eeoqCijevXqRmZmpm3aO++8Y1SqVMnIzc01DOPKtyUPHTrUMAzDOHLkiOHq6mr89ttvds/76KOPGqNGjTIMwzDuv/9+Y9y4cdfNAODGOLAM3OHCwsL0zjvvKDMzU9OmTZObm5t69OghSdq/f7+ysrIUERFht0xOTo5atmwpSUpOTlZoaKgqVKhQ6POnpqZq9OjR2rBhg9LS0pSbm6usrKwCe1EcERERobp162r+/Pl6/fXXlZiYqJSUFMXExEiSLly4oHHjxmnVqlU6fvy4Ll++rIsXLxYYs1WrVjcda9asWZo3b55SUlJ08eJF5eTkqEWLFnbzBAUFqWLFirafQ0JCdOHCBR09elT16tWzm3fHjh3Kzc1V48aN7aZnZ2erRo0akqQhQ4boxRdf1Nq1axUeHq4ePXqoefPmRV4/wJ2OcgPc4by8vNSoUSNJ0rx58xQUFKS5c+cqNjZWFy5ckCStWrVKfn5+dstZrVZJkqen5w2fPyoqSqdPn9aMGTNUr149Wa1WhYSE3PCclJtxcXFRdHS0Fi5cqHHjxmn+/PkKCwtTgwYNJEnDhw/XunXr9NZbb6lRo0by9PTUH/7whwJjenl53XCcJUuWaPjw4ZoyZYpCQkJUuXJlvfnmm9qyZUuxs1+4cEGurq7atm2bXF1d7X6Xf+jp+eefV2RkpFatWqW1a9cqISFBU6ZM0csvv1zscYE7CeUGgI2Li4teffVVxcXFqU+fPmratKmsVqtSUlLUsWPHQpdp3ry5Fi5cqN9//73QvTffffedZs+erS5dukiSjh49WuxLta8WExOjv/71r1qxYoU+/fRTffDBB3ZjRkdH66mnnpJ0pVAcPnzY4TG+++47tWvXTi+99JJtWv6J0lf76aefdPHiRVvR+/7771WpUiX5+/sXmLdly5bKzc1VWlqaQkNDrzu2v7+/Bg4cqIEDB2rUqFF6//33KTdAEXFCMQA7PXv2lKurq2bNmqXKlStr+PDhGjZsmBYuXKgDBw4oKSlJf//737Vw4UJJV06OzcjI0LPPPqsff/xR+/bt0+LFi7V3715JUmBgoBYvXqzdu3dry5Yteu655266t6coAgIC9Mgjj2jAgAGyWq16+umnbb8LDAzUihUrlJycrJ9++kl9+vRRXl6ew2MEBgbqxx9/1Jdffqlff/1VY8aM0Q8//FBgvpycHMXGxuqXX37R6tWrFR8fr8GDB8vFpeBbbOPGjfXcc8+pX79+WrFihQ4dOqStW7cqISFBq1atkiT9+c9/1pdffqlDhw4pKSlJ//nPf3Tvvfc6nB+4U1FuANhxc3PT4MGDNXnyZGVmZmrChAkaM2aMEhISdO+996pTp05atWqVAgICJEk1atTQ+vXrdeHCBXXs2FHBwcF6//33bXtx5s6dq7Nnz+qBBx7QH//4Rw0ZMkQ+Pj4lkjU2NlZnz55Vnz595OHhYZs+depUVatWTe3atVPXrl0VGRmpBx54wOHn/9Of/qSnn35avXr1Utu2bXX69Gm7vTj5Hn30UQUGBqpDhw7q1auXnnzySY0bN+66zzt//nz169dPf/nLX9SkSRN1795dP/zwg+6++25JVy5BHzRokG19N27cWLNnz3Y4P3CnshiGYTg7BAAAQElhzw0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADCV/wcuiWwhrgYr0QAAAABJRU5ErkJggg==", "text/plain": [ "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHHklEQVR4nO3deZyNdeP/8fcZZmM2g1kwQ5YQsowlqUTDWLMUbsSQtFiSuVu4yVgqlYQ7W7nTVLdusiRL1omS9CXi5r6z3sKNsWaMZTbn8/ujn3M7zdAczswcl9fz8TiPh3Odz3Vd73PNcN6u6zrXZTPGGAEAAFiEV2EHAAAAcCfKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQCPMXr0aNlsNp0+fTrf17Vy5UrVqVNHfn5+stlsOnfuXL6v0x369OmjChUquDTP+vXrZbPZtH79+nzJBHgayg1QAJKSkmSz2ZweYWFhatasmVasWFHgeZYuXar27dsrPDxcPj4+Cg0N1UMPPaSJEyfq/PnzBZ6noJ05c0Zdu3aVv7+/pk2bpk8//VTFixfPdezvf3Z+fn66++67NWjQIJ04caKAkwPIi6KFHQC4k4wdO1Z33XWXjDE6ceKEkpKS1KZNGy1dulTt2rXL9/Xb7Xb169dPSUlJqlWrlgYMGKCoqCilpaVp06ZNGjlypL766islJyfne5bCtGXLFqWlpWncuHGKjY3N0zxXf3bp6en67rvvNGPGDH311VfatWuXihUrls+J/2fWrFmy2+0uzfPQQw/p8uXL8vHxyadUgGeh3AAFqHXr1qpfv77jeb9+/RQeHq5//OMfbik3drtdmZmZ8vPzy/X1t99+W0lJSRo6dKgmTpwom83meG3IkCE6fvy4Pvnkk1tax+3g5MmTkqSQkJA8z3Ptz+6pp55SyZIl9e677+rLL79U9+7dc53n4sWL190jdLO8vb1dnsfLy+u2/nkBruKwFFCIQkJC5O/vr6JFnf+f8c477+j+++9XyZIl5e/vr5iYGC1YsCDH/DabTYMGDdKcOXNUo0YN+fr6auXKlbmu69KlS3rrrbdUo0YNTZgwwanYXBUZGalXXnklz+u4mZxVq1aVn5+fYmJi9O233+aa9dy5c+rTp49CQkIUHBysvn376tKlS7lvxN+ZP3++YmJi5O/vr1KlSumJJ57Q0aNHHa8//PDDio+PlyQ1aNBANptNffr0ydOyr9W8eXNJ0sGDByX9di5MQECADhw4oDZt2igwMFA9e/aU9FshnDx5smrUqCE/Pz+Fh4frmWee0a+//ppjuStWrFDTpk0VGBiooKAgNWjQQJ999pnj9dzOuZk7d65iYmIc89SqVUtTpkxxvH69c27+aFtd+76OHj2qjh07KiAgQKVLl9aLL76oK1euuLzdgIJAuQEKUGpqqk6fPq1Tp07pX//6l5577jlduHBBTzzxhNO4KVOmqG7duho7dqzeeOMNFS1aVF26dNHy5ctzLPPrr7/W0KFD1a1bN02ZMuW6J5t+9913OnfunLp3764iRYq4lPt663Al5zfffKMXXnhBTzzxhMaOHaszZ86oVatW2rVrV46xXbt2VVpamsaPH6+uXbsqKSlJY8aM+cOcSUlJ6tq1q4oUKaLx48erf//+WrRokR544AHHCcMjRozQ008/Lem3Q02ffvqpnnnmGZe2hyQdOHBAklSyZEnHtOzsbMXFxSksLEzvvPOOHnvsMUnSM888o5deeklNmjTRlClT1LdvX82ZM0dxcXHKyspyyt+2bVudPXtWw4cP15tvvqk6depct7BK0po1a9S9e3eVKFFCb731lt588009/PDD2rhx4y1vq6uuXLmiuLg4lSxZUu+8846aNm2qiRMn6oMPPnB1swEFwwDIdx999JGRlOPh6+trkpKScoy/dOmS0/PMzExTs2ZN07x5c6fpkoyXl5f517/+9YcZpkyZYiSZxYsXO03Pzs42p06dcnrY7fY8rcOVnJLMjz/+6Jh26NAh4+fnZzp16uSYlpiYaCSZJ5980mn+Tp06mZIlS97w/WVmZpqwsDBTs2ZNc/nyZcf0ZcuWGUlm1KhRjmlXfx5btmy54TKvHbt27Vpz6tQpc+TIETN37lxTsmRJ4+/vb/773/8aY4yJj483ksywYcOc5t+wYYORZObMmeM0feXKlU7Tz507ZwIDA02jRo2c8htjnH4e8fHxpnz58o7nQ4YMMUFBQSY7O/u672HdunVGklm3bp3L2+rq+xo7dqzTMuvWrWtiYmKuu06gMLHnBihA06ZN05o1a7RmzRr9/e9/V7NmzfTUU09p0aJFTuP8/f0df/7111+VmpqqBx98UNu2bcuxzKZNm+qee+75w3Vf/RZUQECA0/SdO3eqdOnSTo8zZ87kaR2u5GzcuLFiYmIcz6Ojo9WhQwetWrUqx+GNZ5991un5gw8+qDNnztzwm1w//vijTp48qQEDBjidX9K2bVtVq1Yt171JroiNjVXp0qUVFRWlP/3pTwoICNAXX3yhsmXLOo177rnnnJ7Pnz9fwcHBatGihU6fPu14xMTEKCAgQOvWrZP02x6YtLQ0DRs2LMf5MbkdQrwqJCREFy9e1Jo1a/L8Xm5mW+X2M/nPf/6T53UCBYkTioEC1LBhQ6cTirt37666detq0KBBateunePbLMuWLdNrr72m7du3KyMjwzE+tw+5u+66K0/rDgwMlCRduHDBaXrlypUdH4yffPKJPv300zyvw5WcVapUyTHt7rvv1qVLl3Tq1ClFREQ4pkdHRzuNK1GihKTfClRQUFCuWQ4dOiRJqlq1ao7XqlWrpu+++y7X+fJq2rRpuvvuu1W0aFGFh4eratWq8vJy/v9h0aJFVa5cOadp+/btU2pqqsLCwnJd7tWTm68e5qpZs6ZLuQYMGKDPP/9crVu3VtmyZdWyZUt17dpVrVq1uu48rm4rPz8/lS5d2mlaiRIlcj1nCPAElBugEHl5ealZs2aaMmWK9u3bpxo1amjDhg169NFH9dBDD2n69OmKjIyUt7e3PvroI6cTS6+6du/JjVSrVk2StGvXLnXo0MExPSAgwPF16OsVgNzW4WpOV1zvnCBjzC0t91b8vpjmxtfXN0fhsdvtCgsL05w5c3Kd5/elwVVhYWHavn27Vq1apRUrVmjFihX66KOP1Lt3b3388ce3tOyrXD1HCyhslBugkGVnZ0v63x6VhQsXys/PT6tWrZKvr69j3EcffXRL63nwwQcVHBysuXPnavjw4Tk+hF3las59+/blmLZ3714VK1bslj/gJal8+fKSpD179ji+yXTVnj17HK8XtEqVKmnt2rVq0qTJDYtopUqVJP1WPitXruzSOnx8fNS+fXu1b99edrtdAwYM0Pvvv69XX30112V56rYC3IVzboBClJWVpdWrV8vHx0fVq1eX9Nv/km02m9N5KL/88osWL158S+sqVqyYXn75Ze3atUvDhg3LdS+IK3tGXM25adMmp3Nxjhw5oi+//FItW7Z0y56B+vXrKywsTDNnznQ6RLZixQr9/PPPatu27S2v42Z07dpVV65c0bhx43K8lp2d7fhmUsuWLRUYGKjx48crPT3dadyNfi6/Pz/Ky8tL9957ryQ5bYdreeq2AtyFPTdAAVqxYoV2794t6bdzLT777DPt27dPw4YNc5xL0rZtW7377rtq1aqVevTooZMnT2ratGmqXLmy/vnPf97S+ocNG6aff/5ZEyZM0OrVq/XYY4+pXLly+vXXX7Vt2zbNnz9fYWFhebrgm6s5a9asqbi4OD3//PPy9fXV9OnTJSlPX/HOC29vb7311lvq27evmjZtqu7du+vEiROOr64PHTrULetxVdOmTfXMM89o/Pjx2r59u1q2bClvb2/t27dP8+fP15QpU/T4448rKChIkyZN0lNPPaUGDRqoR48eKlGihHbs2KFLly5d9xDTU089pbNnz6p58+YqV66cDh06pPfee0916tRxFObf89RtBbhN4X5ZC7gz5PZVcD8/P1OnTh0zY8YMp6/6GmPMhx9+aKpUqWJ8fX1NtWrVzEcffeT4mvS1JJmBAwe6nOeLL74wbdq0MaVLlzZFixY1ISEh5oEHHjATJkww586dy/M6XM3597//3TG+bt26jq8mX3V13lOnTjlNv7r9Dh48+Ifvbd68eaZu3brG19fXhIaGmp49ezq+rv375bnyVfA/GhsfH2+KFy9+3dc/+OADExMTY/z9/U1gYKCpVauWefnll82xY8ecxi1ZssTcf//9xt/f3wQFBZmGDRuaf/zjH07rufar4AsWLDAtW7Y0YWFhxsfHx0RHR5tnnnnGHD9+3DHm918Fvyov2+p67yu3nzPgKWzGFOIZegDuCDabTQMHDtTUqVMLOwqAOwDn3AAAAEuh3AAAAEuh3AAAAEvh21IA8h2n9gEoSOy5AQAAlkK5AQAAlnLHHZay2+06duyYAgMDb3inXQAA4DmMMUpLS1OZMmX+8PYxd1y5OXbsmKKiogo7BgAAuAlHjhxRuXLlbjjmjis3gYGBkn7bOFcvdw8AADzb+fPnFRUV5fgcv5E7rtxcPRQVFBREuQEA4DaTl1NKOKEYAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYSqGWm2+//Vbt27dXmTJlZLPZtHjx4j+cZ/369apXr558fX1VuXJlJSUl5XtOAABw+yjUcnPx4kXVrl1b06ZNy9P4gwcPqm3btmrWrJm2b9+uF154QU899ZRWrVqVz0kBAMDtolBvnNm6dWu1bt06z+Nnzpypu+66SxMnTpQkVa9eXd99950mTZqkuLi4/IoJAABuI7fVOTebNm1SbGys07S4uDht2rSpkBIBAABPU6h7blyVkpKi8PBwp2nh4eE6f/68Ll++LH9//xzzZGRkKCMjw/H8/Pnz+Z4TAAAUnttqz83NGD9+vIKDgx2PqKiowo7kmWw2z3sAAHATbqtyExERoRMnTjhNO3HihIKCgnLdayNJw4cPV2pqquNx5MiRgogKAAAKyW11WKpx48b66quvnKatWbNGjRs3vu48vr6+8vX1ze9oAADAQxRqublw4YL279/veH7w4EFt375doaGhio6O1vDhw3X06FF98sknkqRnn31WU6dO1csvv6wnn3xSX3/9tT7//HMtX768sN4CgNuBJx7mNKawE8Aq+P3OoVDLzY8//qhmzZo5nickJEiS4uPjlZSUpOPHj+vw4cOO1++66y4tX75cQ4cO1ZQpU1SuXDn97W9/42vgAOBJ+LBFIbMZc2f9xM+fP6/g4GClpqYqKCiosON4Dv4xgpXx+12w2N4F6w7Z3q58ft9WJxQDAAD8EcoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwlKKFHQC4I9lshZ0gJ2P+eMztmhvAHYU9NwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFK4zg0AeCquKwTcFPbcAAAAS6HcAAAAS+GwlLuxGxkAgELFnhsAAGAp7LnB7Y09ZQCA32HPDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTuLQUAgMS96iyEPTcAAMBSKDcAAMBSKDcAAMBSCr3cTJs2TRUqVJCfn58aNWqkzZs333D85MmTVbVqVfn7+ysqKkpDhw5Venp6AaUFAACerlDLzbx585SQkKDExERt27ZNtWvXVlxcnE6ePJnr+M8++0zDhg1TYmKifv75Z3344YeaN2+e/vKXvxRwcgAA4KkKtdy8++676t+/v/r27at77rlHM2fOVLFixTR79uxcx3///fdq0qSJevTooQoVKqhly5bq3r37H+7tAQAAd45CKzeZmZnaunWrYmNj/xfGy0uxsbHatGlTrvPcf//92rp1q6PM/Oc//9FXX32lNm3aXHc9GRkZOn/+vNMDAABYV6Fd5+b06dO6cuWKwsPDnaaHh4dr9+7duc7To0cPnT59Wg888ICMMcrOztazzz57w8NS48eP15gxY9yaHQAAeK5CP6HYFevXr9cbb7yh6dOna9u2bVq0aJGWL1+ucePGXXee4cOHKzU11fE4cuRIASYGAAAFrdD23JQqVUpFihTRiRMnnKafOHFCERERuc7z6quvqlevXnrqqackSbVq1dLFixf19NNPa8SIEfLyytnVfH195evr6/43AAAAPFKh7bnx8fFRTEyMkpOTHdPsdruSk5PVuHHjXOe5dOlSjgJTpEgRSZLhEtUAAECFfG+phIQExcfHq379+mrYsKEmT56sixcvqm/fvpKk3r17q2zZsho/frwkqX379nr33XdVt25dNWrUSPv379err76q9u3bO0oOAAC4sxVquenWrZtOnTqlUaNGKSUlRXXq1NHKlSsdJxkfPnzYaU/NyJEjZbPZNHLkSB09elSlS5dW+/bt9frrrxfWWwAAAB7GZu6w4znnz59XcHCwUlNTFRQU5P4V3K53lSW3+5C7YJG7YJG7YFk5t4tc+fy+rb4tBQAA8EcoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFJcLjcrV67Ud99953g+bdo01alTRz169NCvv/7q1nAAAACucrncvPTSSzp//rwkaefOnfrzn/+sNm3a6ODBg0pISHB7QAAAAFcUdXWGgwcP6p577pEkLVy4UO3atdMbb7yhbdu2qU2bNm4PCAAA4AqX99z4+Pjo0qVLkqS1a9eqZcuWkqTQ0FDHHh0AAIDC4vKemwceeEAJCQlq0qSJNm/erHnz5kmS9u7dq3Llyrk9IAAAgCtc3nMzdepUFS1aVAsWLNCMGTNUtmxZSdKKFSvUqlUrtwcEAABwhc0YYwo7REE6f/68goODlZqaqqCgIPevwGZz/zJvVV5+xOR2H3IXLHIXLHIXLCvndpErn983dZ2bAwcOaOTIkerevbtOnjwp6bc9N//6179uZnEAAABu43K5+eabb1SrVi393//9nxYtWqQLFy5Iknbs2KHExES3BwQAAHCFy+Vm2LBheu2117RmzRr5+Pg4pjdv3lw//PCDW8MBAAC4yuVys3PnTnXq1CnH9LCwMJ0+fdotoQAAAG6Wy+UmJCREx48fzzH9p59+cnxzCgAAoLC4XG7+9Kc/6ZVXXlFKSopsNpvsdrs2btyoF198Ub17986PjAAAAHnmcrl54403VK1aNUVFRenChQu655579NBDD+n+++/XyJEj8yMjAABAnt30dW4OHz6sXbt26cKFC6pbt66qVKni7mz5guvcXAe53YfcBYvcBYvcBcvKuV3kyue3y7dfuCo6OlrR0dE3OzsAAEC+cLncPPnkkzd8ffbs2TcdBgAA4Fa5XG5+/fVXp+dZWVnatWuXzp07p+bNm7stGAAAwM1wudx88cUXOabZ7XY999xzqlSpkltCAQAA3KyburdUjoV4eSkhIUGTJk1yx+IAAABumlvKjfTbzTSzs7PdtTgAAICb4vJhqYSEBKfnxhgdP35cy5cvV3x8vNuCAQAA3AyXy81PP/3k9NzLy0ulS5fWxIkT//CbVAAAAPnN5XKzbt06twaYNm2aJkyYoJSUFNWuXVvvvfeeGjZseN3x586d04gRI7Ro0SKdPXtW5cuX1+TJk9WmTRu35gIAALenm76InzvMmzdPCQkJmjlzpho1aqTJkycrLi5Oe/bsUVhYWI7xmZmZatGihcLCwrRgwQKVLVtWhw4dUkhISMGHBwAAHilPt1+oW7eubHm8vPO2bdvyvPJGjRqpQYMGmjp1qqTfvlIeFRWlwYMHa9iwYTnGz5w5UxMmTNDu3bvl7e2d5/Vci9svXAe53YfcBYvcBYvcBcvKuV3k9tsvdOzY0R25nGRmZmrr1q0aPny4Y5qXl5diY2O1adOmXOdZsmSJGjdurIEDB+rLL79U6dKl1aNHD73yyisqUqSI2zMCAIDbT57KTWJiottXfPr0aV25ckXh4eFO08PDw7V79+5c5/nPf/6jr7/+Wj179tRXX32l/fv3a8CAAcrKyrpuxoyMDGVkZDienz9/3n1vAgAAeBy3XeemINjtdoWFhemDDz5QTEyMunXrphEjRmjmzJnXnWf8+PEKDg52PKKiogowMQAAKGgul5srV67onXfeUcOGDRUREaHQ0FCnR16VKlVKRYoU0YkTJ5ymnzhxQhEREbnOExkZqbvvvtvpEFT16tWVkpKizMzMXOcZPny4UlNTHY8jR47kOSMAALj9uFxuxowZo3fffVfdunVTamqqEhIS1LlzZ3l5eWn06NF5Xo6Pj49iYmKUnJzsmGa325WcnKzGjRvnOk+TJk20f/9+2e12x7S9e/cqMjJSPj4+uc7j6+uroKAgpwcAALAw46KKFSuaZcuWGWOMCQgIMPv37zfGGDNlyhTTvXt3l5Y1d+5c4+vra5KSksy///1v8/TTT5uQkBCTkpJijDGmV69eZtiwYY7xhw8fNoGBgWbQoEFmz549ZtmyZSYsLMy89tpreV5namqqkWRSU1Ndyppnv50j7lkPcpOb3J73IDe57/TcLnLl89vl69ykpKSoVq1akqSAgAClpqZKktq1a6dXX33VpWV169ZNp06d0qhRo5SSkqI6depo5cqVjpOMDx8+LC+v/+1cioqK0qpVqzR06FDde++9Klu2rIYMGaJXXnnF1bcBAAAsyuVyU65cOR0/flzR0dGqVKmSVq9erXr16mnLli3y9fV1OcCgQYM0aNCgXF9bv359jmmNGzfWDz/84PJ6AADAncHlc246derkOE9m8ODBevXVV1WlShX17t2be0sBAIBCl6crFEvS1KlT9cQTT+S41cGmTZu0adMmValSRe3bt8+PjG7FFYqvg9zuQ+6CRe6CRe6CZeXcLnLl8zvP5SY4OFhZWVnq1KmT+vXrp+bNm7slbEGj3FwHud2H3AWL3AWL3AXLyrld5Mrnd54PS6WkpGjmzJk6duyYWrRoobvuukvjxo3jujEAAMCj5Lnc+Pv7q3fv3lq3bp327dunXr166cMPP9Rdd92lVq1aaf78+crKysrPrAAAAH/opm6/ULFiRY0dO1YHDx7UihUrVLJkSfXp00dly5Z1dz4AAACX3NK9pWw2m4oWLSqbzSZjDHtuAABAobupcnPkyBGNHTtWFStWVIsWLXTs2DHNmjVLx48fd3c+AAAAl+T5In6ZmZlatGiRZs+era+//lqRkZGKj4/Xk08+qYoVK+ZnRgAAgDzLc7mJiIjQpUuX1K5dOy1dulRxcXFOt0YAAADwBHkuNyNHjlSvXr1UunTp/MwDAABwS/JcbhISEvIzBwAAgFtwXAkAAFgK5QYAAFgK5QYAAFgK5QYAAFhKnk8ovurKlStKSkpScnKyTp48Kbvd7vT6119/7bZwAAAArnK53AwZMkRJSUlq27atatasKZsn3modAADcsVwuN3PnztXnn3+uNm3a5EceAACAW+LyOTc+Pj6qXLlyfmQBAAC4ZS6Xmz//+c+aMmWKjDH5kQcAAOCWuHxY6rvvvtO6deu0YsUK1ahRQ97e3k6vL1q0yG3hAAAAXOVyuQkJCVGnTp3yIwsAAMAtc7ncfPTRR/mRAwAAwC1cLjdXnTp1Snv27JEkVa1albuFAwAAj+DyCcUXL17Uk08+qcjISD300EN66KGHVKZMGfXr10+XLl3Kj4wAAAB55nK5SUhI0DfffKOlS5fq3LlzOnfunL788kt98803+vOf/5wfGQEAAPLMZlz8TnepUqW0YMECPfzww07T161bp65du+rUqVPuzOd258+fV3BwsFJTUxUUFOT+FXjiFZvz8iMmt/uQu2CRu2CRu2BZObeLXPn8dnnPzaVLlxQeHp5jelhYGIelAABAoXO53DRu3FiJiYlKT093TLt8+bLGjBmjxo0buzUcAACAq1z+ttSUKVMUFxencuXKqXbt2pKkHTt2yM/PT6tWrXJ7QAAAAFe4XG5q1qypffv2ac6cOdq9e7ckqXv37urZs6f8/f3dHhAAAMAVN3Wdm2LFiql///7uzgIAAHDL8lRulixZotatW8vb21tLliy54dhHH33ULcEAAABuRp6+Cu7l5aWUlBSFhYXJy+v65yDbbDZduXLFrQHdja+CXwe53YfcBYvcBYvcBcvKuV3kyud3nvbc2O32XP8MAADgaVz+Knhuzp07547FAAAA3DKXy81bb72lefPmOZ536dJFoaGhKlu2rHbs2OHWcAAAAK5yudzMnDlTUVFRkqQ1a9Zo7dq1WrlypVq3bq2XXnrJ7QEBAABc4fJXwVNSUhzlZtmyZeratatatmypChUqqFGjRm4PCAAA4AqX99yUKFFCR44ckSStXLlSsbGxkiRjjMd/UwoAAFify3tuOnfurB49eqhKlSo6c+aMWrduLUn66aefVLlyZbcHBAAAcIXL5WbSpEmqUKGCjhw5orffflsBAQGSpOPHj2vAgAFuDwgAAOCKPF3Ez0q4iN91kNt9yF2wyF2wyF2wrJzbRW6/iB+3XwAAALcLbr/gbrdrgya3+5C7YJG7YJG7YFk5t4u4/QIAALhjueX2CwAAAJ7C5XLz/PPP669//WuO6VOnTtULL7zgjkwAAAA3zeVys3DhQjVp0iTH9Pvvv18LFixwSygAAICb5XK5OXPmjIKDg3NMDwoK0unTp90SCgAA4Ga5XG4qV66slStX5pi+YsUKVaxY0S2hAAAAbpbLVyhOSEjQoEGDdOrUKTVv3lySlJycrIkTJ2ry5MnuzgcAAOASl8vNk08+qYyMDL3++usaN26cJKlChQqaMWOGevfu7faAAAAArril2y+cOnVK/v7+jvtL3Q64iN91kNt9yF2wyF2wyF2wrJzbRa58ft/UdW6ys7O1du1aLVq0SFe70bFjx3ThwoWbWRwAAIDbuHxY6tChQ2rVqpUOHz6sjIwMtWjRQoGBgXrrrbeUkZGhmTNn5kdOAACAPHF5z82QIUNUv359/frrr/L393dM79Spk5KTk90aDgAAwFUu77nZsGGDvv/+e/n4+DhNr1Chgo4ePeq2YAAAADfD5T03drs91zt///e//1VgYKBbQgEAANwsl8tNy5Ytna5nY7PZdOHCBSUmJqpNmzY3FWLatGmqUKGC/Pz81KhRI23evDlP882dO1c2m00dO3a8qfUCAADrcbncvPPOO9q4caPuuecepaenq0ePHo5DUm+99ZbLAebNm6eEhAQlJiZq27Ztql27tuLi4nTy5MkbzvfLL7/oxRdf1IMPPujyOgEAgHXd1HVusrOzNW/ePO3YsUMXLlxQvXr11LNnT6cTjPOqUaNGatCggaZOnSrpt8NeUVFRGjx4sIYNG5brPFeuXNFDDz2kJ598Uhs2bNC5c+e0ePHiPK2P69xcB7ndh9wFi9wFi9wFy8q5XeTK57dLJxRnZWWpWrVqWrZsmXr27KmePXveUtDMzExt3bpVw4cPd0zz8vJSbGysNm3adN35xo4dq7CwMPXr108bNmy44ToyMjKUkZHheH7+/PlbygwAADybS4elvL29lZ6e7raVnz59WleuXFF4eLjT9PDwcKWkpOQ6z3fffacPP/xQs2bNytM6xo8fr+DgYMcjKirqlnMDAADP5fI5NwMHDtRbb72l7Ozs/MhzQ2lpaerVq5dmzZqlUqVK5Wme4cOHKzU11fE4cuRIPqcEAACFyeXr3GzZskXJyclavXq1atWqpeLFizu9vmjRojwvq1SpUipSpIhOnDjhNP3EiROKiIjIMf7AgQP65Zdf1L59e8c0u90uSSpatKj27NmjSpUqOc3j6+srX1/fPGcCAAC3N5fLTUhIiB577DG3rNzHx0cxMTFKTk52fJ3bbrcrOTlZgwYNyjG+WrVq2rlzp9O0kSNHKi0tTVOmTOGQEwAAcL3cfPTRR24NkJCQoPj4eNWvX18NGzbU5MmTdfHiRfXt21eS1Lt3b5UtW1bjx4+Xn5+fatas6TR/SEiIJOWYDgAA7kx5Ljd2u10TJkzQkiVLlJmZqUceeUSJiYk39fXva3Xr1k2nTp3SqFGjlJKSojp16mjlypWOk4wPHz4sL6+bunk5AAC4A+X5Ojfjxo3T6NGjFRsbK39/f61atUrdu3fX7Nmz8zujW3Gdm+sgt/uQu2CRu2CRu2BZObeLXPn8zvMukU8++UTTp0/XqlWrtHjxYi1dulRz5sxxnNALAADgCfJcbg4fPux076jY2FjZbDYdO3YsX4IBAADcjDyXm+zsbPn5+TlN8/b2VlZWlttDAQAA3Kw8n1BsjFGfPn2crhmTnp6uZ5991ulaN65c5wYAAMDd8lxu4uPjc0x74okn3BoGAADgVuW53Lj7+jYAAAD5gQvIAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS/GIcjNt2jRVqFBBfn5+atSokTZv3nzdsbNmzdKDDz6oEiVKqESJEoqNjb3heAAAcGcp9HIzb948JSQkKDExUdu2bVPt2rUVFxenkydP5jp+/fr16t69u9atW6dNmzYpKipKLVu21NGjRws4OQAA8EQ2Y4wpzACNGjVSgwYNNHXqVEmS3W5XVFSUBg8erGHDhv3h/FeuXFGJEiU0depU9e7d+w/Hnz9/XsHBwUpNTVVQUNAt58/BZnP/Mm9VXn7E5HYfchcschcschcsK+d2kSuf34W65yYzM1Nbt25VbGysY5qXl5diY2O1adOmPC3j0qVLysrKUmhoaK6vZ2Rk6Pz5804PAABgXYVabk6fPq0rV64oPDzcaXp4eLhSUlLytIxXXnlFZcqUcSpI1xo/fryCg4Mdj6ioqFvODQAAPFehn3NzK958803NnTtXX3zxhfz8/HIdM3z4cKWmpjoeR44cKeCUAACgIBUtzJWXKlVKRYoU0YkTJ5ymnzhxQhERETec95133tGbb76ptWvX6t57773uOF9fX/n6+rolLwAA8HyFuufGx8dHMTExSk5Odkyz2+1KTk5W48aNrzvf22+/rXHjxmnlypWqX79+QUQFAAC3iULdcyNJCQkJio+PV/369dWwYUNNnjxZFy9eVN++fSVJvXv3VtmyZTV+/HhJ0ltvvaVRo0bps88+U4UKFRzn5gQEBCggIKDQ3gcAAPAMhV5uunXrplOnTmnUqFFKSUlRnTp1tHLlSsdJxocPH5aX1/92MM2YMUOZmZl6/PHHnZaTmJio0aNHF2R0AADggQr9OjcFjevcXAe53YfcBYvcBYvcBcvKuV1021znBgAAwN0oNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFI8otxMmzZNFSpUkJ+fnxo1aqTNmzffcPz8+fNVrVo1+fn5qVatWvrqq68KKCkAAPB0hV5u5s2bp4SEBCUmJmrbtm2qXbu24uLidPLkyVzHf//99+revbv69eunn376SR07dlTHjh21a9euAk4OAAA8kc0YYwozQKNGjdSgQQNNnTpVkmS32xUVFaXBgwdr2LBhOcZ369ZNFy9e1LJlyxzT7rvvPtWpU0czZ878w/WdP39ewcHBSk1NVVBQkPveyFU2m/uXeavy8iMmt/uQu2CRu2CRu2BZObeLXPn8LtQ9N5mZmdq6datiY2Md07y8vBQbG6tNmzblOs+mTZucxktSXFzcdccDAIA7S9HCXPnp06d15coVhYeHO00PDw/X7t27c50nJSUl1/EpKSm5js/IyFBGRobjeWpqqqTfGuAd43Z9r+QuWOQuWOQuWOQuWPmQ++rndl4OOBVquSkI48eP15gxY3JMj4qKKoQ0hSQ4uLAT3BxyFyxyFyxyFyxyF6x8zJ2WlqbgP1h+oZabUqVKqUiRIjpx4oTT9BMnTigiIiLXeSIiIlwaP3z4cCUkJDie2+12nT17ViVLlpTNE49T6rd2GhUVpSNHjuTPeUH5hNwFi9wFi9wFi9wF63bIbYxRWlqaypQp84djC7Xc+Pj4KCYmRsnJyerYsaOk38pHcnKyBg0alOs8jRs3VnJysl544QXHtDVr1qhx48a5jvf19ZWvr6/TtJCQEHfEz3dBQUEe+0t2I+QuWOQuWOQuWOQuWJ6e+4/22FxV6IelEhISFB8fr/r166thw4aaPHmyLl68qL59+0qSevfurbJly2r8+PGSpCFDhqhp06aaOHGi2rZtq7lz5+rHH3/UBx98UJhvAwAAeIhCLzfdunXTqVOnNGrUKKWkpKhOnTpauXKl46Thw4cPy8vrf1/quv/++/XZZ59p5MiR+stf/qIqVapo8eLFqlmzZmG9BQAA4EEKvdxI0qBBg657GGr9+vU5pnXp0kVdunTJ51SFx9fXV4mJiTkOp3k6chcschcschcsches2zX39RT6RfwAAADcqdBvvwAAAOBOlBsAAGAplBsAAGAplBsPYLPZtHjxYrePzW/kLljkLljkLljkzl+3S063MXASHx9vJBlJxtvb21SqVMmMGTPGZGVl5ds6jx8/btLT029p7K3kXrhwoWnRooUJDQ01ksxPP/3k8bkzMzPNyy+/bGrWrGmKFStmIiMjTa9evczRo0c9OrcxxiQmJpqqVauaYsWKmZCQEPPII4+YH374weNzX+uZZ54xksykSZM8Pve18159xMXFeXxuY4z597//bdq3b2+CgoJMsWLFTP369c2hQ4c8Ovfvt/XVx9tvv+3RudPS0szAgQNN2bJljZ+fn6levbqZMWPGTWe50Vh3fs6kpKSY+Ph4ExkZafz9/U1cXJzZu3evW3K6U14+Zy5fvmwGDBhgQkNDTfHixU3nzp1NSkrKTa2PcvM78fHxplWrVub48ePml19+MdOnTzc2m8288cYbOcZmZGQUQsLc3UruTz75xIwZM8bMmjXLpXLjDjeb+9y5cyY2NtbMmzfP7N6922zatMk0bNjQxMTEeHRuY4yZM2eOWbNmjTlw4IDZtWuX6devnwkKCjInT5706NxXLVq0yNSuXduUKVMmT+XGHW4l97XzXn2cPXvW43Pv37/fhIaGmpdeesls27bN7N+/33z55ZfmxIkTHp372u18/PhxM3v2bGOz2cyBAwc8Onf//v1NpUqVzLp168zBgwfN+++/b4oUKWK+/PJLj8p5Lbvdbu677z7z4IMPms2bN5vdu3ebp59+2kRHR5sLFy64PfetyMvnzLPPPmuioqJMcnKy+fHHH819991n7r///ptaH+Xmd+Lj402HDh2cprVo0cLcd999jtdee+01ExkZaSpUqGCMMebw4cOmS5cuJjg42JQoUcI8+uij5uDBg07L+PDDD80999xjfHx8TEREhBk4cKDjNUnmiy++MMb89os8cOBAExERYXx9fU10dLTTL/y1Y40x5p///Kdp1qyZ8fLyMt7e3qZ///4mLS3Nkbt06dImKirK1KhRwwQEBBibzWYCAwNNZmZmjtyxsbE5fuluh9xXt/fmzZuNJHPo0KHbKndqaqqRZNauXevxuYODg42fn59ZtWqVKV++vKPceHJub29v4+3tfdv9vfT29jY+Pj63Xe7f/3536NDBNG/e3ONze3l5GX9/f6ftXa9ePTNixAi35776WXI1t5+fnylatKgJCwszPXr0cHzO+Pv7m2LFipkJEyaY0qVLGx8fH+Pj4+PYvsnJyUaS2bVrl9P2lWSCg4Pdvn39/PxMaGio0/Y15n+fmxMmTDAREREmNDTUDBgwwGRmZprfO3jwYK7l5ty5c8bb29vMnz/fMe3nn382ksymTZtyLOePcM5NHvj7+yszM1OSlJycrD179mjNmjVatmyZsrKyFBcXp8DAQG3YsEEbN25UQECAWrVq5ZhnxowZGjhwoJ5++mnt3LlTS5YsUeXKlXNd11//+lctWbJEn3/+ufbs2aM5c+aoQoUKuY69ePGi4uLiVKJECbVr104NGjTQ2rVrHRdE9Pf315UrV5SSkqK9e/eqefPmeu+995SVlaW//e1vOXIXL15ckpSVlXVb5b66vU+fPi2bzaYFCxbcNrnj4uI0ffp0BQcHa9u2bR6d+5tvvlHVqlVVo0YNPf/88zL//xJZnv570rp1a/n6+mrVqlW6++679fTTT+vMmTMenTsgIEBFixbVM888o82bN6ty5cpq0KCBFi9e7NG5f//73aJFCy1btkz9+vXz+NydOnVSxYoV5eXlpVatWmn16tXau3evLl26lC+5r1y54si9ZcsWNWzYUOfOndP//d//OT5nWrRoIZvNpr179yooKEhNmzaVl5eXXnjhBQUEBKhfv36SJD8/P6ftGx4ergceeMDt23fLli2aP3++0/a9at26dTpw4IDWrVunjz/+WElJSUpKSsp1mbnZunWrsrKyFBsb65hWrVo1RUdHa9OmTXlejoPLdcjirt1zY7fbzZo1a4yvr6958cUXTXx8vAkPD3faTfjpp5+aqlWrGrvd7piWkZFh/P39zapVq4wxxpQpU8aMGDHiuuvUNS158ODBpnnz5k7Lu97YDz74wJQoUcJcuHDBkXv58uXGZrOZzz//3Pj6+poaNWqY4sWLO+Xu0qWLadSoUY7ce/bsMZLM9OnTb6vcV7d35cqVTY8ePW6L3EuXLjXFihUzkkxoaKjZvHmzx+d+4403TIsWLUx6errx9/c3YWFhZtKkSR6f+x//+If58ssvzdatW42Pj4+JiooyDRo08Ojcx44dM5JMsWLFzNtvv238/PxM3759jc1mM6VKlfLY3L//e+nt7W0CAgLM5cuXPXp72+12k56ebnr37u04F6Zo0aLm448/zpfc8fHxpnbt2qZEiRImLS3N8TnTuXNnI8mULl3aZGRkmPj4eFO+fHnz8ccfO3J26dLFdOvWzfHvXunSpU2XLl1MZGSkGTZsmHnzzTeNJNOyZUu3b9+rli9fbry8vBznw1zNmZ2d7RhzNefvXW/PzZw5c4yPj0+O8Q0aNDAvv/xyrjlvxCNuv+Bpli1bpoCAAGVlZclut6tHjx4aPXq0Bg4cqFq1asnHx8cxdseOHdq/f78CAwOdlpGenq4DBw7o5MmTOnbsmB555JE8rbtPnz5q0aKFqlatqlatWqldu3Zq2bJlrmN//vln1a5d27HHZdmyZVq7dq2MMerevbt69uyp7OxsnTt3TtWrV3fkjoyM1A8//KBjx4455Tb//3/iR44cua1yS9Lly5eVnp6usWPHqnLlyrdNbpvNpqpVq+qxxx7z6O1dvHhxpaeny9/fXyVLlnT8OS0tzaNz/357Z2VlqX///ho1apQkeWzuq//jzszM1JgxY5SRkaEGDRro6NGjWr16tcfmzm1733///Tp//rzH/55kZWUpKytLfn5+ysjIUOfOnfXcc8/p0qVL+ZL7n//8p2w2m0qWLOn4nBk/frwWLVqk6OhoR84aNWpo586djs+ZzMxM2e12LVu2TOnp6RoyZIiWLFmi48eP6+2331aLFi3UunVrx7/n7t6+ktSkSRPZ7Xbt2bPHcR/IGjVqqEiRIo4xkZGR2rlzZ562W37gsFQumjVrpu3bt2vfvn26fPmyPv74Y8cP9tofsCRduHBBMTEx2r59u9Nj79696tGjh/z9/V1ad7169XTw4EGNGzdOly9fVteuXfX444/nOfeGDRskSatXr9bHH38sb29veXl5OeW22WzKzs7OkXv58uWSpNatW982ubds2aLGjRuratWq+vbbbxUWFnZb5N6+fbt27NihvXv3asWKFfL29vbo3EOHDpUxRunp6bp8+bJsNpvOnj2rxMREj86d29/L559/XqGhoR6de8uWLSpSpIgGDRrk9O9J9erVPTr3tdt61qxZkqTXXnvN4/89+eGHH2S32/X+++9r586d2rt3rz744AM99thj+ZY7KipK9evXz/Vz5trt5e3t7fQ506NHD8ef9+7dq2HDhumHH36QJC1YsEArV67UmTNnVLFiRbfkzKvf/xtms9lkt9vzPH9ERIQyMzN17tw5p+knTpxQRESEy3koN7koXry4KleurOjoaBUteuOdW/Xq1dO+ffsUFhamypUrOz2Cg4MVGBioChUqKDk5Oc/rDwoKUrdu3TRr1izNmzdPCxcu1NmzZ3OMq169unbs2KGLFy86ch8/flxeXl6qUaPGDdcRGBiYI/fVY66BgYG3Re7y5cvrL3/5i44fP64NGzborrvuui1y5/Z7IkkhISEem7t///7auXOnduzY4XiUKVNGL7/8ssqWLeuxuXPb3mlpafr1118VFhbmsbnLlSunhg0b6vTp006/J4cOHVLx4sU9Nve123vVqlWKiYnRAw884PF/L0NCQpSdna1y5co5bW9/f3/5+fnlS+4SJUpo3759KlmypONzZuPGjZKkgIAAp7HXfs6EhITI398/18+ZrVu3at++ffrxxx/VoUMHt+T8/fa9mtPLy0tVq1bN83b5IzExMfL29nba1nv27NHhw4fVuHFjl5fHYalb1LNnT02YMEEdOnTQ2LFjVa5cOR06dEiLFi3Syy+/rHLlymn06NF69tlnFRYWptatWystLU0bN27U4MGDcyzv3XffVWRkpOrWrSsvLy/Nnz9fERERCgkJyXXdiYmJio+PV1ZWls6cOaPBgwerV69ejl2F1xMWFiZjjDp06KAXX3xRkhy7EL///ntJ0tChQ/XKK694ZO5HH31U2dnZOnDggMaNG6fhw4drwIABKlOmjEaOHKlBgwZ5ZO527dqpfPny6tSpkzIzM7V48WIZY3T06FGNGjVK48aN88jcffv2zfH7bbPZFBERoddff91jf7/btWunsmXLqkuXLsrMzNS8efO0f/9+Va5cWS+//LIGDx7skbk7dOigtm3bavTo0QoPD9fJkydVpUoVLV26VK+88oomTpzosbnHjh2r4OBgzZ07V40bN9Z///tfj/93sFevXqpdu7aGDBmiPXv2aPv27br33nv1ySefqGvXrvmyvaOionTy5EnFx8dr9OjROnXqlAYPHqxKlSrluDP3tZ8zpUqV0uXLl7V+/XotWrRI99xzj6pVq6YBAwZo5MiRmj59umJjY1WqVCm99957bt2+1+bMy/a91tmzZ3X48GEdO3ZM0m/FRfptj01ERISCg4PVr18/JSQkKDQ0VEFBQRo8eLAaN26s++67L8/ruYo9N7eoWLFi+vbbbxUdHa3OnTurevXq6tevn9LT0xUUFCRJio+P1+TJkzV9+nTVqFFD7dq10759+3JdXmBgoN5++23Vr19fDRo00C+//KKvvvpKXl45f1TFihXTqlWrdPbsWS1btkybN2/WI488oqlTp/5h7iJFijhy/+lPf1K7du00fPhwSdLAgQNVt25dnT171mNzlyxZUhs3blRKSor69++vDz/8UDExMYqMjFSlSpU8Nnd0dLQ+//xzPfbYY+revbuWLFmitLQ0bdiwQX/5y188Ovfvf7+vrsvTf78XLlzo2N5r165VTEyMNmzYoKeeesqjc0+ePFmSNGXKFH322Wf6/PPPtXDhQr3++usenbtz586KiYlRZmamypcvf9v8O3jkyBEdOHBAL774ov7+979rxowZev3115WUlJQvuYsUKeLI3aBBAz3++ON65JFH1KhRo1zf49Wcy5cv15YtWxx/D8+fP69evXppxIgRKl68uLy8vLRu3bp82b7X5szL9r3WkiVLVLduXbVt21aS9Kc//Ul169bVzJkzHWMmTZqkdu3a6bHHHtNDDz2kiIgILVq0yKX1XGUzNzrrCAAA4DbDnhsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAbmGz2bR48WK3j/VEDz/8sF544YU8j1+/fr1sNluO++ZcKykpKdcrxAJwHeUGsJg+ffrIZrPJZrPJx8dHlStX1tixY5WdnZ2v6z1+/Lhat27t9rE3Y+LEiSpRooTS09NzvHbp0iUFBQXpr3/9600vf9GiRRo3btytRASQjyg3gAW1atVKx48f1759+/TnP/9Zo0eP1oQJE3Idm5mZ6ZZ1RkRE5LgnjjvG3oxevXrp4sWLuV66fcGCBcrMzNQTTzzh8nKvbqvQ0FAFBgbeck4A+YNyA1iQr6+vIiIiVL58eT333HOKjY3VkiVLJP22Z6djx456/fXXVaZMGcedfY8cOaKuXbsqJCREoaGh6tChg3755Ren5c6ePVs1atSQr6+vIiMjNWjQIMdr1x5qyszM1KBBgxQZGSk/Pz+VL19e48ePz3Ws9NtNW5s3by5/f3+VLFlSTz/9tC5cuOB4/Wrmd955R5GRkSpZsqQGDhyorKysXN9/WFiY2rdvr9mzZ+d4bfbs2erYsaNCQ0P1yiuv6O6771axYsVUsWJFvfrqq07LHD16tOrUqaO//e1vuuuuu+Tn5ycp52GpTz/9VPXr11dgYKAiIiLUo0cPnTx5Mse6N27cqHvvvVd+fn667777tGvXrlzzX/Xll1+qXr168vPzU8WKFTVmzBjHHjhjjEaPHq3o6Gj5+vqqTJkyev7552+4POBOQbkB7gD+/v5Oe2iSk5O1Z88erVmzRsuWLVNWVpbi4uIUGBioDRs2aOPGjQoICFCrVq0c882YMUMDBw7U008/rZ07d2rJkiWqXLlyruv761//qiVLlujzzz/Xnj17NGfOHFWoUCHXsRcvXlRcXJxKlCihLVu2aP78+Vq7dq1TcZKkdevW6cCBA1q3bp0+/vhjJSUlKSkp6brvuV+/fvr666916NAhx7T//Oc/+vbbb9WvXz9Jv91AMCkpSf/+9781ZcoUzZo1S5MmTXJazv79+7Vw4UItWrRI27dvz3VdWVlZGjdunHbs2KHFixfrl19+UZ8+fXKMe+mllzRx4kRt2bJFpUuXVvv27a9b0DZs2KDevXtryJAh+ve//633339fSUlJev311yVJCxcu1KRJk/T+++9r3759Wrx4sWrVqnXd7QHcUQwAS4mPjzcdOnQwxhhjt9vNmjVrjK+vr3nxxRcdr4eHh5uMjAzHPJ9++qmpWrWqsdvtjmkZGRnG39/frFq1yhhjTJkyZcyIESOuu15J5osvvjDGGDN48GDTvHlzp+Vdb+wHH3xgSpQoYS5cuOB4ffny5cbLy8ukpKQ4MpcvX95kZ2c7xnTp0sV069btunmys7NN2bJlTWJiomPaq6++aqKjo82VK1dynWfChAkmJibG8TwxMdF4e3ubkydPOo1r2rSpGTJkyHXXvWXLFiPJpKWlGWOMWbdunZFk5s6d6xhz5swZ4+/vb+bNm2eMMeajjz4ywcHBjtcfeeQR88Ybbzgt99NPPzWRkZHGGGMmTpxo7r77bpOZmXndHMCdij03gAUtW7ZMAQEB8vPzU+vWrdWtWzeNHj3a8XqtWrXk4+PjeL5jxw7t379fgYGBCggIUEBAgEJDQ5Wenq4DBw7o5MmTOnbsmB555JE8rb9Pnz7avn27qlatqueff16rV6++7tiff/5ZtWvXVvHixR3TmjRpIrvdrj179jim1ahRQ0WKFHE8j4yMzPXQz1VFihRRfHy8kpKSZIyR3W7Xxx9/rL59+8rL67d/+ubNm6cmTZooIiJCAQEBGjlypA4fPuy0nPLly6t06dI3fL9bt25V+/btFR0drcDAQDVt2lSSciyrcePGjj+HhoaqatWq+vnnn3Nd5o4dOzR27FjHzyMgIED9+/fX8ePHdenSJXXp0kWXL19WxYoV1b9/f33xxRf5ftI4cLsoWtgBALhfs2bNNGPGDPn4+KhMmTIqWtT5r/q1RUKSLly4oJiYGM2ZMyfHskqXLu0oA3lVr149HTx4UCtWrNDatWvVtWtXxcbGasGCBa6/mf/P29vb6bnNZpPdbr/hPE8++aTGjx+vr7/+Wna7XUeOHFHfvn0lSZs2bVLPnj01ZswYxcXFKTg4WHPnztXEiROdlvH7bfV7Vw+rxcXFac6cOSpdurQOHz6suLi4WzpZ+8KFCxozZow6d+6c4zU/Pz9FRUVpz549Wrt2rdasWaMBAwZowoQJ+uabb3JsK+BOQ7kBLKh48eLXPR8mN/Xq1dO8efMUFhamoKCgXMdUqFBBycnJatasWZ6WGRQUpG7duqlbt256/PHH1apVK509e1ahoaFO46pXr66kpCRdvHjRUSQ2btwoLy8vx8nON6tSpUpq2rSpZs+eLWOMYmNjVb58eUnS999/r/Lly2vEiBGO8deen5NXu3fv1pkzZ/Tmm28qKipKkvTjjz/mOvaHH35QdHS0JOnXX3/V3r17Vb169VzH1qtXT3v27Lnhz9Hf31/t27dX+/btNXDgQFWrVk07d+5UvXr1XH4fgJVQbgCoZ8+emjBhgjp06KCxY8eqXLlyOnTokBYtWqSXX35Z5cqV0+jRo/Xss88qLCxMrVu3VlpamjZu3KjBgwfnWN67776ryMhI1a1bV15eXpo/f74iIiJyvUhdz549lZiYqPj4eI0ePVqnTp3S4MGD1atXL4WHh9/ye+vXr5/69+8vSU4nIFepUkWHDx/W3Llz1aBBAy1fvlxffPGFy8uPjo6Wj4+P3nvvPT377LPatWvXda+BM3bsWJUsWVLh4eEaMWKESpUqpY4dO+Y6dtSoUWrXrp2io6P1+OOPy8vLSzt27NCuXbv02muvKSkpSVeuXFGjRo1UrFgx/f3vf5e/v7+jvAF3Ms65AaBixYrp22+/VXR0tDp37qzq1aurX79+Sk9Pd+zJiY+P1+TJkzV9+nTVqFFD7dq10759+3JdXmBgoN5++23Vr19fDRo00C+//KKvvvoq18NbxYoV06pVq3T27Fk1aNBAjz/+uB555BFNnTrVLe/tsccek6+vr4oVK+ZUJB599FENHTpUgwYNUp06dfT999/r1VdfdXn5pUuXVlJSkubPn6977rlHb775pt55551cx7755psaMmSIYmJilJKSoqVLlzqd+3StuLg4LVu2TKtXr1aDBg103333adKkSY7yEhISolmzZqlJkya69957tXbtWi1dulQlS5Z0+T0AVmMzxpjCDgEAAOAu7LkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACW8v8A1rYhCY9bpSkAAAAASUVORK5CYII=\n" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } - ] - }, - { - "cell_type": "code", + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "# Assuming you have a list of recall values from recall1 to recall10\n", - "recall_values = [recall1, recall2, recall3, recall4, recall5, recall6, recall7, recall8, recall9, recall10]\n", + "recall_values = [recall1, recall2, recall2_1, recall3, recall4, recall5, recall6, recall7, recall8, recall8_1, recall9, recall10]\n", "\n", "# List of corresponding labels for each recall value\n", - "labels = ['Recall1', 'Recall2', 'Recall3', 'Recall4', 'Recall5', 'Recall6', 'Recall7', 'Recall8', 'Recall9', 'Recall10']\n", + "labels = ['Recall1', 'Recall2', 'Recall2_1', 'Recall3', 'Recall4', 'Recall5', 'Recall6', 'Recall7', 'Recall8', 'Recall8_1', 'Recall9', 'Recall10']\n", "\n", "# Plotting the bar graph\n", "plt.bar(labels, recall_values, color='cyan')\n", @@ -2648,42 +7102,22 @@ "plt.ylabel('Recall Values')\n", "plt.title('Bar Graph of Recall')\n", "plt.show()\n" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 472 - }, - "id": "39LBleNeDeuw", - "outputId": "3c6c40bc-f1da-44fb-da14-25ec6d6cf278" - }, - "execution_count": 122, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/z0lEQVR4nO3deVxU9eL/8feAMOACroAhV3HfEg03MjQTxSyXFjPNRKX8WdoieUu7JlrdyMqtcmlx75qWmtfSXMKsa1KmiFtqaiJkCuKGIELC+f3h17nOBY1RluH4ej4e83jEZ87ynoM5b89qMQzDEAAAgEm4lHYAAACAokS5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AVBmTZgwQRaLRWlpacW+rrVr16ply5by8PCQxWLR2bNni32dxcVisWjChAm2n+fPny+LxaLExMRSywQUJcoN4ISufNlc/fLx8VHnzp319ddfl3ieL7/8Uj179pSvr6/c3d1VtWpVdezYUZMnT1Z6enqJ5ylpp06d0iOPPCJPT0/NmDFDixYtUoUKFQqc9n9/d+XKlZO/v78GDx6sY8eOlXBy4NZUrrQDALi2V199VYGBgTIMQykpKZo/f7569OihL7/8Uvfff3+xrz8vL0+RkZGaP3++br/9dj399NMKCAjQ+fPnFRcXp3HjxmnNmjWKjY0t9iyl6eeff9b58+f12muvKSwsrFDzXPndXbx4UT/++KPmz5+vzZs3a8+ePfLw8CjmxMCtjXIDOLF7771XrVu3tv0cGRkpX19fffrpp0VSbvLy8pSTk3PNL9u33npL8+fP16hRozR58mRZLBbbe88995yOHz+uhQsX3tQ6yoLU1FRJUuXKlQs9z9W/uyeeeELVq1fXpEmTtGrVKj3yyCPFERPA/+GwFFCGVK5cWZ6enipXzv7fJe+8847uvPNOVatWTZ6engoODtayZcvyzW+xWDRy5Ej961//UrNmzWS1WrV27doC13XhwgVNmjRJzZo109tvv21XbK6oWbOmXnrppUKv40ZyNmrUSB4eHgoODtb3339fYNazZ89q8ODBqly5sry9vTVkyBBduHCh4I34Pz7//HMFBwfL09NT1atX18CBA+0OH919992KiIiQJLVp00YWi0WDBw8u1LKvFhoaKkk6fPiw3fj+/fv18MMPq2rVqvLw8FDr1q21atWqAj/jqFGjVKdOHVmtVtWqVUuDBg2ynW+Uk5Oj8ePHKzg4WN7e3qpQoYJCQ0P17bffOpwVKOvYcwM4sXPnziktLU2GYSg1NVXvvfeeMjIyNHDgQLvppk+frl69eumxxx5TTk6OlixZor59++qrr77SfffdZzftxo0b9dlnn2nkyJGqXr266tSpU+C6N2/erLNnz2r06NFydXV1KPe11uFIzu+++05Lly7Vs88+K6vVqpkzZ6p79+7aunWrmjdvbjftI488osDAQMXExCg+Pl4ff/yxfHx8NGnSpOvmnD9/voYMGaI2bdooJiZGKSkpmj59un744Qft2LFDlStX1j/+8Q81atRIH374oe1QU7169RzaHpJsJ+tWqVLFNrZ371516NBB/v7+GjNmjCpUqKDPPvtMffr00fLly/XAAw9IkjIyMhQaGqp9+/Zp6NChuuOOO5SWlqZVq1bp999/V/Xq1ZWenq6PP/5Y/fv315NPPqnz589rzpw5Cg8P19atW9WyZUuHMwNllgHA6cybN8+QlO9ltVqN+fPn55v+woULdj/n5OQYzZs3N+655x67cUmGi4uLsXfv3r/MMH36dEOSsXLlSrvxS5cuGSdPnrR75eXlFWodjuSUZGzbts02dvToUcPDw8N44IEHbGPR0dGGJGPo0KF28z/wwANGtWrVrvv5cnJyDB8fH6N58+ZGVlaWbfyrr74yJBnjx4+3jV35ffz888/XXebV037zzTfGyZMnjeTkZGPZsmVGjRo1DKvVaiQnJ9um7dKli3H77bcbFy9etI3l5eUZd955p9GgQQPb2Pjx4w1JxooVK/Kt78q2v3TpkpGdnW333pkzZwxfX99820eSER0dnS/zkSNH/vLzAWUBh6UAJzZjxgxt2LBBGzZs0CeffKLOnTvriSee0IoVK+ym8/T0tP33mTNndO7cOYWGhio+Pj7fMjt16qSmTZv+5bqvXAVVsWJFu/Hdu3erRo0adq9Tp04Vah2O5AwJCVFwcLDt57/97W/q3bu31q1bp9zcXLtphw8fbvdzaGioTp06dd0rubZt26bU1FQ9/fTTducD3XfffWrcuLFWr159zXkLIywsTDVq1FBAQIAefvhhVahQQatWrVKtWrUkSadPn9bGjRv1yCOP6Pz580pLS1NaWppOnTql8PBwHTx40HZ4bPny5QoKCrLtybnalcOFrq6ucnd3l3T5PKfTp0/r0qVLat26dYHbFzAzDksBTqxt27Z2JxT3799frVq10siRI3X//ffbvsy++uorvf7660pISFB2drZt+oLOkwkMDCzUuitVqiTp8iGRq9WvX18bNmyQJC1cuFCLFi0q9DocydmgQYN8Yw0bNtSFCxd08uRJ+fn52cb/9re/2U135dDPmTNn5OXlVWCWo0ePSpIaNWqU773GjRtr8+bNBc5XWDNmzFDDhg117tw5zZ07V99//72sVqvt/UOHDskwDL3yyit65ZVXClxGamqq/P39dfjwYT300EN/uc4FCxZo8uTJ2r9/v/7880/beGF/54BZUG6AMsTFxUWdO3fW9OnTdfDgQTVr1kz/+c9/1KtXL3Xs2FEzZ85UzZo15ebmpnnz5mnx4sX5lnH13pPrady4sSRpz5496t27t228YsWKtsuhr1UAClqHozkdca1zggzDuKnl3oyri2mfPn101113acCAATpw4IAqVqyovLw8SdLo0aMVHh5e4DLq169f6PV98sknGjx4sPr06aO///3v8vHxkaurq2JiYvKdxAyYHeUGKGMuXbok6b97VJYvXy4PDw+tW7fObs/AvHnzbmo9oaGh8vb21pIlSzR27Fi5uNzcUWxHcx48eDDf2K+//qry5curRo0aN5VFkmrXri1JOnDggO655x679w4cOGB7vyhcKRmdO3fW+++/rzFjxqhu3bqSJDc3t7+8d069evW0Z8+e606zbNky1a1bVytWrLDbExYdHX3zHwAoYzjnBihD/vzzT61fv17u7u5q0qSJpMtfnBaLxe48lMTERK1cufKm1lW+fHm9+OKL2rNnj8aMGVPgXhBH9ow4mjMuLs7uXJHk5GT9+9//Vrdu3Ry+eqsgrVu3lo+Pj2bPnm13iOzrr7/Wvn378l29dbPuvvtutW3bVtOmTdPFixfl4+Oju+++Wx988IGOHz+eb/qTJ0/a/vuhhx7Szp079cUXX+Sb7srv4Mo2ufp38tNPPykuLq5IPwdQFrDnBnBiX3/9tfbv3y/p8vkXixcv1sGDBzVmzBjbuST33XefpkyZou7du2vAgAFKTU3VjBkzVL9+fe3ateum1j9mzBjt27dPb7/9ttavX6+HHnpItWrV0pkzZxQfH6/PP/9cPj4+hbpBn6M5mzdvrvDwcLtLwSVp4sSJN/WZrnBzc9OkSZM0ZMgQderUSf3797ddCl6nTh2NGjWqSNZztb///e/q27ev5s+fr+HDh2vGjBm66667dPvtt+vJJ59U3bp1lZKSori4OP3+++/auXOnbb5ly5apb9++Gjp0qIKDg3X69GmtWrVKs2fPVlBQkO6//36tWLFCDzzwgO677z4dOXJEs2fPVtOmTfOdNwWYXmleqgWgYAVdCu7h4WG0bNnSmDVrlt2l14ZhGHPmzDEaNGhgWK1Wo3Hjxsa8efNsl0lfTZIxYsQIh/N88cUXRo8ePYwaNWoY5cqVMypXrmzcddddxttvv22cPXu20OtwNOcnn3xim75Vq1bGt99+azfdlXlPnjxpN+7Ipc1Lly41WrVqZVitVqNq1arGY489Zvz+++8FLs+RS8ELmjY3N9eoV6+eUa9ePePSpUuGYRjG4cOHjUGDBhl+fn6Gm5ub4e/vb9x///3GsmXL7OY9deqUMXLkSMPf399wd3c3atWqZURERBhpaWmGYVy+JPyNN94wateubdteX331lREREWHUrl3bblniUnCYnMUwSvGMOwAogMVi0YgRI/T++++XdhQAZRDn3AAAAFOh3AAAAFOh3AAAAFPhaikATodTAQHcDPbcAAAAU6HcAAAAU7nlDkvl5eXpjz/+UKVKlQp8WB8AAHA+hmHo/Pnzuu222/7ycTC3XLn5448/FBAQUNoxAADADUhOTlatWrWuO80tV24qVaok6fLGuXL7egAA4NzS09MVEBBg+x6/nluu3Fw5FOXl5UW5AQCgjCnMKSWcUAwAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEylVMvN999/r549e+q2226TxWLRypUr/3KeTZs26Y477pDValX9+vU1f/78Ys8JAADKjlItN5mZmQoKCtKMGTMKNf2RI0d03333qXPnzkpISNDzzz+vJ554QuvWrSvmpAAAoKwo1Qdn3nvvvbr33nsLPf3s2bMVGBioyZMnS5KaNGmizZs3a+rUqQoPDy+umAAAoAwpU+fcxMXFKSwszG4sPDxccXFx15wnOztb6enpdi8AAGBeZarcnDhxQr6+vnZjvr6+Sk9PV1ZWVoHzxMTEyNvb2/YKCAgoiagAAKCUlKlycyPGjh2rc+fO2V7JycmlHckpWZzwBQDAjSjVc24c5efnp5SUFLuxlJQUeXl5ydPTs8B5rFarrFZrScQDAABOoEztuQkJCVFsbKzd2IYNGxQSElJKiQAAgLMp1XKTkZGhhIQEJSQkSLp8qXdCQoKSkpIkXT6kNGjQINv0w4cP12+//aYXX3xR+/fv18yZM/XZZ59p1KhRpREfAFCA0j6kzWFulGq52bZtm1q1aqVWrVpJkqKiotSqVSuNHz9eknT8+HFb0ZGkwMBArV69Whs2bFBQUJAmT56sjz/+mMvAAQCAjcUwDKO0Q5Sk9PR0eXt769y5c/Ly8irtOE7DGf9lc0v9wUSx4s93yWJ7l6xbZXs78v1dps65AQAA+CuUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCrlSjsAAADOwFLaAQpglHaAMoo9NwAAwFQoNwAAwFQ4LAWUgrK6+7us5gZwa2HPDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXucwMATor7CgE3hj03AADAVCg3AADAVCg3AADAVDjnBmUa5yQAAP4Xe24AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICplHq5mTFjhurUqSMPDw+1a9dOW7duve7006ZNU6NGjeTp6amAgACNGjVKFy9eLKG0AADA2ZVquVm6dKmioqIUHR2t+Ph4BQUFKTw8XKmpqQVOv3jxYo0ZM0bR0dHat2+f5syZo6VLl+rll18u4eTXZnHCFwAAt5JSLTdTpkzRk08+qSFDhqhp06aaPXu2ypcvr7lz5xY4/ZYtW9ShQwcNGDBAderUUbdu3dS/f/+/3NsDAABuHaVWbnJycrR9+3aFhYX9N4yLi8LCwhQXF1fgPHfeeae2b99uKzO//fab1qxZox49epRIZgAA4PzKldaK09LSlJubK19fX7txX19f7d+/v8B5BgwYoLS0NN11110yDEOXLl3S8OHDr3tYKjs7W9nZ2baf09PTi+YDAAAAp1TqJxQ7YtOmTXrjjTc0c+ZMxcfHa8WKFVq9erVee+21a84TExMjb29v2ysgIKAEEwMAgJJmMQzDKI0V5+TkqHz58lq2bJn69OljG4+IiNDZs2f173//O988oaGhat++vd5++23b2CeffKJhw4YpIyNDLi75u1pBe24CAgJ07tw5eXl5Fe2HknOewFuYXzC5iw65Sxa5Sxa5S5aZczsqPT1d3t7ehfr+LrU9N+7u7goODlZsbKxtLC8vT7GxsQoJCSlwngsXLuQrMK6urpKka3U0q9UqLy8vuxcAADCvUjvnRpKioqIUERGh1q1bq23btpo2bZoyMzM1ZMgQSdKgQYPk7++vmJgYSVLPnj01ZcoUtWrVSu3atdOhQ4f0yiuvqGfPnraSAwAAbm2lWm769eunkydPavz48Tpx4oRatmyptWvX2k4yTkpKsttTM27cOFksFo0bN07Hjh1TjRo11LNnT/3zn/8srY8AAACcTKmdc1NaHDlmdyPK6rFPchcdcpcscpcscpcsM+d2VJk45wYAAKA4UG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpOFxusrKydOHCBdvPR48e1bRp07R+/foiDQYAAHAjHC43vXv31sKFCyVJZ8+eVbt27TR58mT17t1bs2bNKvKAAAAAjnC43MTHxys0NFSStGzZMvn6+uro0aNauHCh3n333SIPCAAA4AiHy82FCxdUqVIlSdL69ev14IMPysXFRe3bt9fRo0eLPCAAAIAjHC439evX18qVK5WcnKx169apW7dukqTU1FR5eXkVeUAAAABHOFxuxo8fr9GjR6tOnTpq27atQkJCJF3ei9OqVasiDwgAAOAIi2EYhqMznThxQsePH1dQUJBcXC73o61bt8rLy0uNGzcu8pBFKT09Xd7e3jp37lyx7GmyFPkSb15hfsHkLjrkLlnkLlnkLllmzu0oR76/b+g+N35+fqpUqZI2bNigrKwsSVKbNm2cvtgAAADzc7jcnDp1Sl26dFHDhg3Vo0cPHT9+XJIUGRmpF154ocgDAgAAOMLhcjNq1Ci5ubkpKSlJ5cuXt43369dPa9euLdJwAAAAjirn6Azr16/XunXrVKtWLbvxBg0acCk4AAAodQ7vucnMzLTbY3PF6dOnZbVaiyQUAADAjXK43ISGhtoevyBJFotFeXl5euutt9S5c+ciDQcAAOAoh8vNW2+9pQ8//FD33nuvcnJy9OKLL6p58+b6/vvvNWnSJIcDzJgxQ3Xq1JGHh4fatWunrVu3Xnf6s2fPasSIEapZs6asVqsaNmyoNWvWOLxeAABgTg6Xm+bNm+vXX3/VXXfdpd69eyszM1MPPvigduzYoXr16jm0rKVLlyoqKkrR0dGKj49XUFCQwsPDlZqaWuD0OTk56tq1qxITE7Vs2TIdOHBAH330kfz9/R39GAAAwKRu6CZ+RaVdu3Zq06aN3n//fUlSXl6eAgIC9Mwzz2jMmDH5pp89e7befvtt7d+/X25ubje0Tm7iVzByFx1ylyxylyxylywz53aUI9/fDl8t9f3331/3/Y4dOxZqOTk5Odq+fbvGjh1rG3NxcVFYWJji4uIKnGfVqlUKCQnRiBEj9O9//1s1atTQgAED9NJLL8nV1bXAebKzs5WdnW37OT09vVD5AABA2eRwubn77rvzjVks/+2Nubm5hVpOWlqacnNz5evrazfu6+ur/fv3FzjPb7/9po0bN+qxxx7TmjVrdOjQIT399NP6888/FR0dXeA8MTExmjhxYqEyAQCAss/hc27OnDlj90pNTdXatWvVpk0brV+/vjgy2uTl5cnHx0cffvihgoOD1a9fP/3jH//Q7NmzrznP2LFjde7cOdsrOTm5WDMCAIDS5fCeG29v73xjXbt2lbu7u6KiorR9+/ZCLad69epydXVVSkqK3XhKSor8/PwKnKdmzZpyc3OzOwTVpEkTnThxQjk5OXJ3d883j9Vq5f47AADcQm7owZkF8fX11YEDBwo9vbu7u4KDgxUbG2sby8vLU2xsrEJCQgqcp0OHDjp06JDy8vJsY7/++qtq1qxZYLEBAAC3Hof33OzatcvuZ8MwdPz4cb355ptq2bKlQ8uKiopSRESEWrdurbZt22ratGnKzMzUkCFDJEmDBg2Sv7+/YmJiJElPPfWU3n//fT333HN65plndPDgQb3xxht69tlnHf0YAADApBwuNy1btpTFYtH/XkHevn17zZ0716Fl9evXTydPntT48eN14sQJtWzZUmvXrrWdZJyUlCQXl//uXAoICNC6des0atQotWjRQv7+/nruuef00ksvOfoxAACASTl8n5v/fTimi4uLatSoIQ8PjyINVly4z03ByF10yF2yyF2yyF2yzJzbUcV6n5vatWvfcDAAAIDiVqhy8+677xZ6gZz/AgAASlOhDksFBgYWbmEWi3777bebDlWcOCxVMHIXHXKXLHKXLHKXLDPndlSRH5Y6cuRIkQQDAAAobkV2nxsAAABn4PAJxZL0+++/a9WqVUpKSlJOTo7de1OmTCmSYAAAADfC4XITGxurXr16qW7dutq/f7+aN2+uxMREGYahO+64ozgyAgAAFJrDh6XGjh2r0aNHa/fu3fLw8NDy5cuVnJysTp06qW/fvsWREQAAoNAcLjf79u3ToEGDJEnlypVTVlaWKlasqFdffVWTJk0q8oAAAACOcLjcVKhQwXaeTc2aNXX48GHbe2lpaUWXDAAA4AY4fM5N+/bttXnzZjVp0kQ9evTQCy+8oN27d2vFihVq3759cWQEAAAotEKXm9OnT6tq1aqaMmWKMjIyJEkTJ05URkaGli5dqgYNGnClFAAAKHWFfnCmh4eH+vTpo8jISHXt2rW4cxUb7lBcMHIXHXKXLHKXLHKXLDPndpQj39+FPufmo48+0smTJ9W9e3fVqVNHEyZMUGJi4s1mBQAAKFKFLjePP/64YmNjdejQIUVERGjBggWqX7++unbtqqVLl+a7mR8AAEBpcPhqqcDAQE2cOFFHjhzR2rVr5ePjo6FDh6pmzZo8ERwAAJS6Qp9zcz3Lly/XsGHDdPbsWeXm5hZFrmLDOTcFI3fRIXfJInfJInfJMnNuRxX5U8ELcvToUc2bN08LFixQcnKyOnfurMjIyBtdHAAAQJFwqNxkZ2dr+fLlmjt3rjZt2iR/f38NHjxYQ4YMUZ06dYopIgAAQOEVutw8/fTTWrJkiS5cuKDevXtrzZo16tq1qywWZ9whBgAAblWFLjebN29WdHS0Bg4cqGrVqhVnJgAAgBtW6HKza9eu4swBAABQJBy+FBwAAMCZUW4AAICpUG4AAICpUG4AAICpFOqEYkdOJm7RosUNhwEAALhZhSo3LVu2lMVi0bWe1HDlPYvF4vSPXwAAAOZWqHJz5MiR4s4BAABQJApVbmrXrl3cOQAAAIpEocrNqlWrCr3AXr163XAYAACAm1WoctOnT59CLYxzbgAAQGkrVLnJy8sr7hwAAABFgvvcAAAAUyn0gzOvlpmZqe+++05JSUnKycmxe+/ZZ58tkmAAAAA3wuFys2PHDvXo0UMXLlxQZmamqlatqrS0NJUvX14+Pj6UGwAAUKocPiw1atQo9ezZU2fOnJGnp6d+/PFHHT16VMHBwXrnnXeKIyMAAEChOVxuEhIS9MILL8jFxUWurq7Kzs5WQECA3nrrLb388svFkREAAKDQHC43bm5ucnG5PJuPj4+SkpIkSd7e3kpOTi7adAAAAA5y+JybVq1a6eeff1aDBg3UqVMnjR8/XmlpaVq0aJGaN29eHBkBAAAKzeE9N2+88YZq1qwpSfrnP/+pKlWq6KmnntLJkyf1wQcfFHlAAAAAR1iMaz3q26TS09Pl7e2tc+fOycvLq8iXbynyJd68wvyCyV10yF2yyF2yyF2yzJzbUY58fzu85+bIkSM6ePBgvvGDBw8qMTHR0cUBAAAUKYfLzeDBg7Vly5Z84z/99JMGDx5cFJkAAABumMPlZseOHerQoUO+8fbt2yshIaEoMgEAANwwh8uNxWLR+fPn842fO3eOJ4IDAIBS53C56dixo2JiYuyKTG5urmJiYnTXXXcVaTgAAABHOXyfm0mTJqljx45q1KiRQkNDJUn/+c9/lJ6ero0bNxZ5QAAAAEc4vOemadOm2rVrlx555BGlpqbq/PnzGjRokPbv389N/AAAQKnjPjdFrKzeb4DcRYfcJYvcJYvcJcvMuR1VrPe5kS4fhho4cKDuvPNOHTt2TJK0aNEibd68+UYWBwAAUGQcLjfLly9XeHi4PD09FR8fr+zsbEmXr5Z64403ijwgAACAIxwuN6+//rpmz56tjz76SG5ubrbxDh06KD4+vkjDAQAAOMrhcnPgwAF17Ngx37i3t7fOnj1bFJkAAABumMPlxs/PT4cOHco3vnnzZtWtW7dIQgEAANwoh8vNk08+qeeee04//fSTLBaL/vjjD/3rX//S6NGj9dRTTxVHRgAAgEJz+CZ+Y8aMUV5enrp06aILFy6oY8eOslqtGj16tJ555pniyAgAAFBoN3yfm5ycHB06dEgZGRlq2rSpKlasqKysLHl6ehZ1xiLFfW4KRu6iQ+6SRe6SRe6SZebcjir2+9xIkru7u5o2baq2bdvKzc1NU6ZMUWBg4I0uDgAAoEgUutxkZ2dr7Nixat26te68806tXLlSkjRv3jwFBgZq6tSpGjVq1A2FmDFjhurUqSMPDw+1a9dOW7duLdR8S5YskcViUZ8+fW5ovQAAwHwKXW7Gjx+vWbNmqU6dOkpMTFTfvn01bNgwTZ06VVOmTFFiYqJeeuklhwMsXbpUUVFRio6OVnx8vIKCghQeHq7U1NTrzpeYmKjRo0fbHt4JAAAgOVBuPv/8cy1cuFDLli3T+vXrlZubq0uXLmnnzp169NFH5erqekMBpkyZoieffFJDhgxR06ZNNXv2bJUvX15z58695jy5ubl67LHHNHHiRC4/BwAAdgpdbn7//XcFBwdLkpo3by6r1apRo0bJYrnxU5lycnK0fft2hYWF/TeQi4vCwsIUFxd3zfleffVV+fj4KDIy8obXDQAAzKnQl4Ln5ubK3d39vzOWK6eKFSve1MrT0tKUm5srX19fu3FfX1/t37+/wHk2b96sOXPmKCEhoVDryM7Otj3/Srp8tjUAADCvQpcbwzA0ePBgWa1WSdLFixc1fPhwVahQwW66FStWFG3Cq5w/f16PP/64PvroI1WvXr1Q88TExGjixInFlgkAADiXQpebiIgIu58HDhx40yuvXr26XF1dlZKSYjeekpIiPz+/fNMfPnxYiYmJ6tmzp20sLy9P0uU9SQcOHFC9evXs5hk7dqyioqJsP6enpysgIOCmswMAAOdU6HIzb968Il+5u7u7goODFRsba7ucOy8vT7GxsRo5cmS+6Rs3bqzdu3fbjY0bN07nz5/X9OnTCywtVqvVtrcJAACYn8OPXyhqUVFRioiIUOvWrdW2bVtNmzZNmZmZGjJkiCRp0KBB8vf3V0xMjDw8PNS8eXO7+StXrixJ+cYBAMCtqdTLTb9+/XTy5EmNHz9eJ06cUMuWLbV27VrbScZJSUlycbnhGykDAIBbzA0/W6qs4tlSBSN30SF3ySJ3ySJ3yTJzbkeVyLOlAAAAnBHlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmIpTlJsZM2aoTp068vDwULt27bR169ZrTvvRRx8pNDRUVapUUZUqVRQWFnbd6QEAwK2l1MvN0qVLFRUVpejoaMXHxysoKEjh4eFKTU0tcPpNmzapf//++vbbbxUXF6eAgAB169ZNx44dK+HkAADAGVkMwzBKM0C7du3Upk0bvf/++5KkvLw8BQQE6JlnntGYMWP+cv7c3FxVqVJF77//vgYNGvSX06enp8vb21vnzp2Tl5fXTef/X5YiX+LNK8wvmNxFh9wli9wli9wly8y5HeXI93ep7rnJycnR9u3bFRYWZhtzcXFRWFiY4uLiCrWMCxcu6M8//1TVqlULfD87O1vp6el2LwAAYF6lWm7S0tKUm5srX19fu3FfX1+dOHGiUMt46aWXdNttt9kVpKvFxMTI29vb9goICLjp3AAAwHmV+jk3N+PNN9/UkiVL9MUXX8jDw6PAacaOHatz587ZXsnJySWcEgAAlKRypbny6tWry9XVVSkpKXbjKSkp8vPzu+6877zzjt5880198803atGixTWns1qtslqtRZIXAAA4v1Ldc+Pu7q7g4GDFxsbaxvLy8hQbG6uQkJBrzvfWW2/ptdde09q1a9W6deuSiAoAAMqIUt1zI0lRUVGKiIhQ69at1bZtW02bNk2ZmZkaMmSIJGnQoEHy9/dXTEyMJGnSpEkaP368Fi9erDp16tjOzalYsaIqVqxYap8DAAA4h1IvN/369dPJkyc1fvx4nThxQi1bttTatWttJxknJSXJxeW/O5hmzZqlnJwcPfzww3bLiY6O1oQJE0oyOgAAcEKlfp+bksZ9bgpG7qJD7pJF7pJF7pJl5tyOKjP3uQEAAChqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqTlFuZsyYoTp16sjDw0Pt2rXT1q1brzv9559/rsaNG8vDw0O333671qxZU0JJAQCAsyv1crN06VJFRUUpOjpa8fHxCgoKUnh4uFJTUwucfsuWLerfv78iIyO1Y8cO9enTR3369NGePXtKODkAAHBGFsMwjNIM0K5dO7Vp00bvv/++JCkvL08BAQF65plnNGbMmHzT9+vXT5mZmfrqq69sY+3bt1fLli01e/bsv1xfenq6vL29de7cOXl5eRXdB/k/liJf4s0rzC+Y3EWH3CWL3CWL3CXLzLkd5cj3d6nuucnJydH27dsVFhZmG3NxcVFYWJji4uIKnCcuLs5uekkKDw+/5vQAAODWUq40V56Wlqbc3Fz5+vrajfv6+mr//v0FznPixIkCpz9x4kSB02dnZys7O9v287lz5yRdboC3irL6Scldsshdsshdsshdsooj95Xv7cIccCrVclMSYmJiNHHixHzjAQEBpZCmdHiXdoAbRO6SRe6SRe6SRe6SVZy5z58/L2/v66+hVMtN9erV5erqqpSUFLvxlJQU+fn5FTiPn5+fQ9OPHTtWUVFRtp/z8vJ0+vRpVatWTRaLMx6pvNxOAwIClJycXCznBRUXcpcscpcscpcscpesspDbMAydP39et912219OW6rlxt3dXcHBwYqNjVWfPn0kXS4fsbGxGjlyZIHzhISEKDY2Vs8//7xtbMOGDQoJCSlweqvVKqvVajdWuXLloohf7Ly8vJz2D9n1kLtkkbtkkbtkkbtkOXvuv9pjc0WpH5aKiopSRESEWrdurbZt22ratGnKzMzUkCFDJEmDBg2Sv7+/YmJiJEnPPfecOnXqpMmTJ+u+++7TkiVLtG3bNn344Yel+TEAAICTKPVy069fP508eVLjx4/XiRMn1LJlS61du9Z20nBSUpJcXP57Udedd96pxYsXa9y4cXr55ZfVoEEDrVy5Us2bNy+tjwAAAJxIqZcbSRo5cuQ1D0Nt2rQp31jfvn3Vt2/fYk5VeqxWq6Kjo/MdTnN25C5Z5C5Z5C5Z5C5ZZTX3tZT6TfwAAACKUqk/fgEAAKAoUW4AAICpUG4AAICpUG7KMIvFopUrV0qSEhMTZbFYlJCQUKqZCoPcJa+sZi+Lucti5ivKYvaymPmKspC9LGQsCOXmBg0ePFgWi0UWi0Vubm4KDAzUiy++qIsXL5Z2NJtnn31WwcHBslqtatmypSTnz71z5071799fAQEB8vT0VJMmTTR9+nSnz33q1Cl1795dt912m6xWqwICAjRy5Eilp6c7ffarnTp1SrVq1ZLFYtGAAQOcPveVfAW9nDWzJM2fP18tWrSQh4eHfHx8NGLECKf/czJ//vwyub1//vlndenSRZUrV1aVKlUUHh6unTt3Ov32li4/FPrqbVy5cmWNHj3aqTIW9D3zv3bt2qXQ0FB5eHgoICBAb731VrHncopLwcuq7t27a968efrzzz+1fft2RUREyGKxaNKkSaUdzWbo0KH66aeftGvXLtuYM+fevn27fHx89MknnyggIEBbtmzRsGHDdPvttzt1bhcXF/Xu3Vuvv/66atSooUOHDmnEiBE6ffq03N3dnTr71SIjI9WiRQsdO3ZMknP/Wbli3rx56t69u6TLN/k8e/asFixY4LSZp0yZosmTJ+vtt99Wu3btlJmZqcTERK1YscKpt3e/fv1s2/mK4OBgZWVl6ZdffnHKzBkZGerevbt69eqlmTNn6tKlS4qOjlZ4eLi6devm1Nt7586d+uabb1S/fn0tXLhQv//+u0aNGqX33ntPrq6uTpHxioK+Z65IT09Xt27dFBYWptmzZ2v37t0aOnSoKleurGHDhhVbJvbc3ASr1So/Pz8FBASoT58+CgsL04YNGyRdfoxETEyMAgMD5enpqaCgIC1btsxu/r179+r++++Xl5eXKlWqpNDQUB0+fFjS5X9tdO3aVdWrV5e3t7c6deqk+Ph4h/K9++67GjFihOrWrVtmcg8dOlTTp09Xp06dVLduXQ0cOFBDhgxRUlKSU+euUqWKnnrqKbVu3Vq1a9dWly5d9PTTT+s///mP02/zK2bNmqWzZ89q9OjRtrGykLty5cry8/OTn5+fPD095enp6bSZz5w5o3HjxmnhwoUaMGCA6tWrpxYtWqhXr15Ov72vbNcrL1dXVx0/flyBgYFOm3n//v06ffq0Xn31VTVq1EjNmjVTdHS0UlJSlJGR4dTbe+nSpapSpYqaNWumkJAQ9e3bV7NmzdKlS5e0bt06p8goXft75op//etfysnJ0dy5c9WsWTM9+uijevbZZzVlyhSH1uMoyk0R2bNnj7Zs2SJ3d3dJl59GvnDhQs2ePVt79+7VqFGjNHDgQH333XeSpGPHjqljx46yWq3auHGjtm/frqFDh+rSpUuSLj/1NCIiQps3b9aPP/6oBg0aqEePHjp//vwtl/vcuXP5bizl7Ln/+OMPrVixQp06dcr3njNm/+WXX/Tqq69q4cKFdncEd/bckjRixAhVr15dbdu21cGDB50684YNG5SXl6djx46pSZMmqlWrlh555BElJyeXme19xcKFC1WuXDm7hxg6W+ZGjRqpWrVqmjNnjnJycpSVlaU5c+aoSZMmqlixolNv7+zsbLm6utqNnThxQnl5ecrJyXGKjIURFxenjh072rardPlw24EDB3TmzJkiW08+Bm5IRESE4erqalSoUMGwWq2GJMPFxcVYtmyZcfHiRaN8+fLGli1b7OaJjIw0+vfvbxiGYYwdO9YIDAw0cnJyCrW+3Nxco1KlSsaXX35pG5NkfPHFF4ZhGMaRI0cMScaOHTvyzRsdHW0EBQWVudyGYRg//PCDUa5cOaNr165lIvejjz5qeHp6GpKMnj17GllZWU6/zS9evGi0aNHCWLRokWEYhvHtt98akoz+/fs7dW7DMIxXX33V2Lx5sxEfH2+8+eabhouLi+Hi4uK0mWNiYgw3NzejUaNGxtq1a424uDijS5cuRqNGjYzHH3/c6bf31Zo0aWI0atTI6TPv3r3bqFevnu3PRqNGjYzExESn//9y3bp1tkxXZ5RkPP/8806R8WpXf89crWvXrsawYcPsxvbu3WtIMn755ZdC5boRnHNzEzp37qxZs2YpMzNTU6dOVbly5fTQQw9p7969unDhgrp27Wo3fU5Ojlq1aiVJSkhIUGhoqNzc3ApcdkpKisaNG6dNmzYpNTVVubm5unDhgpKSkm6Z3Hv27FHv3r0VHR2tQ4cOlYncU6dOVXR0tH799VeNHTtWUVFRkpx7m48dO1ZNmjTRwIED873nzLkl6ZVXXrH9d6tWrbR48WIdOHBACQkJTpk5Ly9Pf/75p959911169ZNkvTpp5/aDo04+/a+Ii4uTvv27dP999+vgIAAp82clZWlyMhIdejQQZ9++qlyc3P1zjvv6L777lOrVq2cent369ZNrVu31o4dO5SVlSV3d3fdcccdio+PV/v27XXo0KFSz+jMKDc3oUKFCqpfv74kae7cuQoKCtKcOXNsD/FcvXq1/P397ea5cnjF09PzusuOiIjQqVOnNH36dNWuXVtWq1UhISG23ZFmz/3LL7+oS5cuGjZsmMaNG6fBgweXidxXzkdo3LixqlatqtDQUD3yyCNOnX3jxo3avXu37Vi98X9PZFmyZIkaNmzotLkLUqNGDe3atUsBAQGyWq1Ol7lmzZqSpKZNm9plrl69ujIzM+Xj41MmtvfHH3+sli1bqlq1ajp79qzTZl68eLESExMVFxdnO9y6ePFiValSRdWqVVOVKlWcNrskNWvWTP7+/po5c6aqVKmi3377Tc2bN9fu3btVp04dp8j4V/z8/JSSkmI3duVnPz+/IlvP/6LcFBEXFxe9/PLLioqK0q+//iqr1aqkpKQCz7mQpBYtWtiu6CioVf/www+aOXOmevToIUlKTk5WWlraLZF77969uueeexQREaF//vOfZSb3/8rLy5Mk5ebmOnX25cuXKysry/bzzz//rKFDh+ree++1fQZnzF2Q06dPy83NzfaXu7Nl7tChgyTpwIEDqlWrli1zWlqagoKC7KZ1tuxXZGRk6LPPPlNMTIy2bdvm1JkvXLggFxcXWSwWu4wWi8VW4p01+9WunNe0dOlSVa1aVXPmzNFLL73kVBmvJSQkRP/4xz/sMmzYsEGNGjVSlSpVinRdV+OE4iLUt29fubq66oMPPtDo0aM1atQoLViwQIcPH1Z8fLzee+89LViwQJJs90B59NFHtW3bNh08eFCLFi3SgQMHJEkNGjTQokWLtG/fPv3000967LHH/rKF/69Dhw4pISFBJ06cUFZWlhISEnT69Gm7Lyxny71nzx517txZ3bp1U1RUlE6cOKETJ04UeF8HZ8q9Zs0azZs3T3v27FFiYqJWr16t4cOHq0OHDvlOXHS27PXq1VPz5s1tr8DAQEmSt7d3vhO5nSn3l19+qY8//lh79uzRoUOHNGvWLO3atSvfVRvOlLlhw4bq3bu3nnvuOW3ZskV79uxRRESEGjduXOC/Yp0p+xVLly7VpUuXCjyM6WyZu3btqjNnzmjEiBHat2+f9u7dqyFDhqhcuXK2vWjOml26/Pdhenq69u7dq9dee01vvvmmPvzwQ6fKWND3TEJCgm3vz4ABA+Tu7q7IyEjt3btXS5cu1fTp022H7ItNsZ3NY3IRERFG7969843HxMQYNWrUMDIyMoxp06YZjRo1Mtzc3IwaNWoY4eHhxnfffWebdufOnUa3bt2M8uXLG5UqVTJCQ0ONw4cPG4ZhGPHx8Ubr1q0NDw8Po0GDBsbnn39u1K5d25g6daptfv3FiV6dOnWynYB29atr165Omzs6OrrAzBUqVHDq7b1x40YjJCTE8Pb2ti3jpZdeMs6cOVMm/qxc7eoTip0599dff220bNnSqFixolGhQgUjKCjIaN++vdGrVy+nzWwYhnHu3Dlj6NChRuXKlY2qVasaDzzwgJGUlFRm/pyEhIQYAwYMMAyjbPw9uH79eqNDhw6Gt7e3UaVKFeOee+4x4uLiykR2Pz8/o1y5coaHh4fRrl07Y82aNU6X8VrfM0eOHLHLcNdddxlWq9Xw9/c33nzzzXzbvahZ/i88AACAKXBYCgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBkCps1gsWrlypSQpMTFRFotFCQkJJZ7jRtY9ePBg9enT57rT3H333Xr++edvKhuAwqPcALewwYMHy2KxyGKxyM3NTYGBgXrxxRcLfNyFs7j99ts1fPjwAt9btGiRrFbrDT8fJyAgQMePH7c9OBFA2US5AW5x3bt31/Hjx/Xbb79p6tSp+uCDDxQdHV3asa4pMjJSS5YssXvY5xXz5s1Tr169VL16dYeXm5OTI1dXV/n5+alcOZ4pDJRllBvgFme1WuXn56eAgAD16dNHYWFh2rBhg+39vLw8xcTEKDAwUJ6engoKCtKyZcvslrF3717df//98vLyUqVKlRQaGqrDhw9LuvyU8a5du6p69ery9vZWp06dFB8ff8N5Bw4cqKysLC1fvtxu/MiRI9q0aZMiIyN1+PBh9e7dW76+vqpYsaLatGmjb775xm76OnXq6LXXXtOgQYPk5eWlYcOG5TsslZubq8jISNtnb9SokaZPn15grokTJ6pGjRry8vLS8OHDbQ8OLEh2drZGjx4tf39/VahQQe3atdOmTZts7x89elQ9e/ZUlSpVVKFCBTVr1kxr1qy5sQ0G3IIoNwBs9uzZoy1btsjd3d02FhMTo4ULF2r27Nnau3evRo0apYEDB+q7776TJB07dkwdO3aU1WrVxo0btX37dg0dOlSXLl2SJJ0/f14RERHavHmzfvzxRzVo0EA9evTQ+fPnbyhj9erV1bt3b82dO9dufP78+apVq5a6deumjIwM9ejRQ7GxsdqxY4e6d++unj17KikpyW6ed955R0FBQdqxY4deeeWVfOvKy8tTrVq19Pnnn+uXX37R+PHj9fLLL+uzzz6zmy42Nlb79u3Tpk2b9Omnn2rFihWaOHHiNT/DyJEjFRcXpyVLlmjXrl3q27evunfvroMHD0qSRowYoezsbH3//ffavXu3Jk2aVODT5QFcQ7E/mhOA04qIiDBcXV2NChUqGFar1ZBkuLi4GMuWLTMMwzAuXrxolC9f3tiyZYvdfJGRkUb//v0NwzCMsWPHGoGBgUZOTk6h1pmbm2tUqlTJ+PLLL21jcuCp5YZhGGvXrjUsFovx22+/GYZhGHl5eUbt2rWNcePGXXOeZs2aGe+9957t59q1axt9+vSxm6Yw6x4xYoTx0EMP2X6OiIgwqlatamRmZtrGZs2aZVSsWNHIzc01DOPyk5Ofe+45wzAM4+jRo4arq6tx7Ngxu+V26dLFGDt2rGEYhnH77bcbEyZMuGYGANfHgWXgFte5c2fNmjVLmZmZmjp1qsqVK6eHHnpIknTo0CFduHBBXbt2tZsnJydHrVq1kiQlJCQoNDRUbm5uBS4/JSVF48aN06ZNm5Samqrc3FxduHAh314UR3Tt2lW1atXSvHnz9Oqrryo2NlZJSUkaMmSIJCkjI0MTJkzQ6tWrdfz4cV26dElZWVn51tm6deu/XNeMGTM0d+5cJSUlKSsrSzk5OWrZsqXdNEFBQSpfvrzt55CQEGVkZCg5OVm1a9e2m3b37t3Kzc1Vw4YN7cazs7NVrVo1SdKzzz6rp556SuvXr1dYWJgeeughtWjRotDbB7jVUW6AW1yFChVUv359SdLcuXMVFBSkOXPmKDIyUhkZGZKk1atXy9/f324+q9UqSfL09Lzu8iMiInTq1ClNnz5dtWvXltVqVUhIyHXPSfkrLi4uGjx4sBYsWKAJEyZo3rx56ty5s+rWrStJGj16tDZs2KB33nlH9evXl6enpx5++OF866xQocJ117NkyRKNHj1akydPVkhIiCpVqqS3335bP/300w1nz8jIkKurq7Zv3y5XV1e7964cenriiScUHh6u1atXa/369YqJidHkyZP1zDPP3PB6gVsJ5QaAjYuLi15++WVFRUVpwIABatq0qaxWq5KSktSpU6cC52nRooUWLFigP//8s8C9Nz/88INmzpypHj16SJKSk5Nv+FLtqw0ZMkSvv/66VqxYoS+++EIff/yx3ToHDx6sBx54QNLlQpGYmOjwOn744Qfdeeedevrpp21jV06UvtrOnTuVlZVlK3o//vijKlasqICAgHzTtmrVSrm5uUpNTVVoaOg11x0QEKDhw4dr+PDhGjt2rD766CPKDVBInFAMwE7fvn3l6uqqGTNmqFKlSho9erRGjRqlBQsW6PDhw4qPj9d7772nBQsWSLp8cmx6eroeffRRbdu2TQcPHtSiRYt04MABSVKDBg20aNEi7du3Tz/99JMee+yxv9zbUxiBgYG65557NGzYMFmtVj344IO29xo0aKAVK1YoISFBO3fu1IABA5SXl+fwOho0aKBt27Zp3bp1+vXXX/XKK6/o559/zjddTk6OIiMj9csvv2jNmjWKjo7WyJEj5eKS/6/Yhg0b6rHHHtOgQYO0YsUKHTlyRFu3blVMTIxWr14tSXr++ee1bt06HTlyRPHx8fr222/VpEkTh/MDtyrKDQA75cqV08iRI/XWW28pMzNTr732ml555RXFxMSoSZMm6t69u1avXq3AwEBJUrVq1bRx40ZlZGSoU6dOCg4O1kcffWTbizNnzhydOXNGd9xxhx5//HE9++yz8vHxKZKskZGROnPmjAYMGCAPDw/b+JQpU1SlShXdeeed6tmzp8LDw3XHHXc4vPz/9//+nx588EH169dP7dq106lTp+z24lzRpUsXNWjQQB07dlS/fv3Uq1cvTZgw4ZrLnTdvngYNGqQXXnhBjRo1Up8+ffTzzz/rb3/7m6TLl6CPGDHCtr0bNmyomTNnOpwfuFVZDMMwSjsEAABAUWHPDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMJX/D3PqyuT3IxkKAAAAAElFTkSuQmCC\n" - }, - "metadata": {} - } ] }, { "cell_type": "code", - "source": [], + "execution_count": 98, "metadata": { "id": "13cZXvb0DsvK" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [] } ], "metadata": { "colab": { - "provenance": [] + "provenance": [], + "toc_visible": true }, "kernelspec": { "display_name": "Python 3 (ipykernel)", @@ -2700,9 +7134,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.16" + "version": "3.12.2" } }, "nbformat": 4, "nbformat_minor": 0 -} \ No newline at end of file +} diff --git a/Stock_Price_Prediction.ipynb b/Stock_Price_Prediction.ipynb index c82b075..19803fe 100644 --- a/Stock_Price_Prediction.ipynb +++ b/Stock_Price_Prediction.ipynb @@ -17,62 +17,51 @@ }, { "cell_type": "code", - "source": [ - "from google.colab import drive\n", - "drive.mount('/content/drive')\n", - "df = pd.read_csv('drive/My Drive/Colab Notebooks/Stock Price Prediction RNN/SBIN.csv')" - ], + "execution_count": 4, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "SOQbXSiB-g5G", - "outputId": "6ae02a27-02b0-4bd9-a1ae-a7029056f32e" + "outputId": "55ee6ec8-9146-4ebf-c2fe-b4b06bc3a5c4" }, - "execution_count": 22, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n" ] } + ], + "source": [ + "from google.colab import drive\n", + "drive.mount('/content/drive')\n", + "df = pd.read_csv('drive/My Drive/Colab Notebooks/Stock Price Prediction RNN/SBIN.csv')" ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 6, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 206 }, "id": "Sc4id6VxL8BS", - "outputId": "568d039c-faf4-4636-bfc1-70b9ef83367b" + "outputId": "78207ea2-5b80-47a2-a1b1-0548765b6455" }, "outputs": [ { - "output_type": "execute_result", "data": { - "text/plain": [ - " Date Open High Low Close Adj Close \\\n", - "0 01-01-1996 18.691147 18.978922 18.540184 18.823240 12.409931 \n", - "1 02-01-1996 18.894005 18.964767 17.738192 18.224106 12.014931 \n", - "2 03-01-1996 18.327892 18.568489 17.643839 17.738192 11.694577 \n", - "3 04-01-1996 17.502312 17.832542 17.223972 17.676863 11.654142 \n", - "4 05-01-1996 17.738192 17.785366 17.459852 17.577793 11.588827 \n", - "\n", - " Volume \n", - "0 43733533.0 \n", - "1 56167280.0 \n", - "2 68296318.0 \n", - "3 86073880.0 \n", - "4 76613039.0 " - ], + "application/vnd.google.colaboratory.intrinsic+json": { + "summary": "{\n \"name\": \"df\",\n \"rows\": 7074,\n \"fields\": [\n {\n \"column\": \"Date\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 7074,\n \"samples\": [\n \"11-08-2016\",\n \"30-10-2007\",\n \"17-01-2017\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Open\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 154.7732294451065,\n \"min\": 13.478195,\n \"max\": 703.650024,\n \"num_unique_values\": 4758,\n \"samples\": [\n 174.399994,\n 31.0324,\n 187.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"High\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 156.34507839355788,\n \"min\": 13.935802,\n \"max\": 728.349976,\n \"num_unique_values\": 5403,\n \"samples\": [\n 473.0,\n 495.450012,\n 78.321663\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Low\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 152.98051601861624,\n \"min\": 13.214009,\n \"max\": 694.200012,\n \"num_unique_values\": 5488,\n \"samples\": [\n 60.2957,\n 22.677523,\n 16.983376\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 154.63054905628158,\n \"min\": 13.346102,\n \"max\": 725.25,\n \"num_unique_values\": 5975,\n \"samples\": [\n 633.599976,\n 241.100006,\n 107.834999\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Adj Close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 152.90324918554683,\n \"min\": 9.53141,\n \"max\": 725.25,\n \"num_unique_values\": 6575,\n \"samples\": [\n 12.345289,\n 223.836212,\n 16.758821\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Volume\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 34627439.399630256,\n \"min\": 0.0,\n \"max\": 446948261.0,\n \"num_unique_values\": 6948,\n \"samples\": [\n 29959130.0,\n 1648453.0,\n 14077470.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", + "type": "dataframe", + "variable_name": "df" + }, "text/html": [ "\n", - "
\n", + "
\n", "
\n", "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Close
5286257.350006
3408129.464996
5477279.350006
6906588.500000
53021.644367
\n", + "

" + ], "text/plain": [ "5286 257.350006\n", "3408 129.464996\n", @@ -903,8 +960,9 @@ "Name: Close, dtype: float64" ] }, + "execution_count": 18, "metadata": {}, - "execution_count": 34 + "output_type": "execute_result" } ], "source": [ @@ -913,28 +971,432 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 19, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 74 + "height": 80 }, "id": "qBhQ9HbYMI3d", - "outputId": "52e0655f-1d23-47b7-decc-7a7ca35c0470" + "outputId": "daac2bc7-a480-4013-8e06-717bb8c1fa65" }, "outputs": [ { - "output_type": "execute_result", "data": { + "text/html": [ + "
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], "text/plain": [ "LinearRegression()" - ], - "text/html": [ - "
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ] }, + "execution_count": 19, "metadata": {}, - "execution_count": 35 + "output_type": "execute_result" } ], "source": [ @@ -944,7 +1406,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 20, "metadata": { "id": "X269co2kMS4z" }, @@ -956,7 +1418,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 21, "metadata": { "id": "QK8GvDYPOd0Y" }, @@ -975,18 +1437,18 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 22, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "dEi49xtEOtne", - "outputId": "0000b074-3187-41de-fbac-4ae75cbda6bd" + "outputId": "60b53406-81c4-4531-cbb0-77b9ffde8890" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "RMSE: 1.6881364643681482\n", "MAE: 0.9433353485344729\n", @@ -1024,30 +1486,33 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 23, "metadata": { "id": "o7K9r7EXWRjQ" }, "outputs": [], "source": [ - "from sklearn.svm import SVR" + "from sklearn.svm import SVR\n", + "from sklearn.model_selection import GridSearchCV" ] }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 24, "metadata": { "id": "0xQewd7QWTtq" }, "outputs": [], "source": [ "# Create an SVR model\n", - "model2 = SVR()" + "model2 = SVR()\n", + "param_grid = {'C':[0.1, 1], 'epsilon':[0.01, 0.1, 0.5], 'kernel':['sigmoid']}\n", + "GV_SVR = GridSearchCV(model2, param_grid = param_grid, scoring = 'accuracy', n_jobs = -1)" ] }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 25, "metadata": { "id": "DuNes3s6U2IV" }, @@ -1063,96 +1528,543 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 26, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 74 + "height": 191 }, "id": "22SaCsQmfhgP", - "outputId": "2121e992-399d-4b78-e42c-fc20b9d52189" - }, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "SVR()" - ], - "text/html": [ - "
SVR()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" - ] - }, - "metadata": {}, - "execution_count": 42 - } - ], - "source": [ - "# Train the model\n", - "model2.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": { - "id": "OQ1nL4oYfkAC" - }, - "outputs": [], - "source": [ - "# Make predictions on the test set\n", - "pred2 = model2.predict(X_test)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": { - "id": "nRYTwydsfpjb" - }, - "outputs": [], - "source": [ - "# Calculate evaluation metrics\n", - "rmse2 = np.sqrt(mean_squared_error(y_test, pred2))\n", - "mae2 = mean_absolute_error(y_test, pred2)\n", - "mape2 = mean_absolute_percentage_error(y_test, pred2)\n", - "accuracy2 = accuracy_score(y_test > pred2, y_test > pred2.round())\n", - "precision2 = precision_score(y_test > pred2, y_test > pred2.round())\n", - "confusion2 = confusion_matrix(y_test > pred2, y_test > pred2.round())\n", - "recall2 = recall_score(y_test > pred2, y_test > pred2.round())\n", - "f12 = f1_score(y_test > pred2, y_test > pred2.round())" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "656J5oz5fzq6", - "outputId": "ce67d2d8-0bc8-4e6d-d6b5-6b78e7e1c59b" + "outputId": "7867aa8e-a7dc-49e4-d0aa-310423e9c696" }, "outputs": [ { + "name": "stderr", "output_type": "stream", - "name": "stdout", "text": [ - "RMSE: 147.71103599153602\n", - "MAE: 110.99419106508152\n", - "MAPE: 1.9715076513294716\n", - "Accuracy: 0.9992932862190813\n", - "Precision: 1.0\n", - "Confusion Matrix:\n", - " [[727 0]\n", - " [ 1 687]]\n", - "Recall: 0.998546511627907\n", - "F1 Score: 0.9992727272727273\n" + "/usr/local/lib/python3.10/dist-packages/sklearn/model_selection/_search.py:1103: UserWarning: One or more of the test scores are non-finite: [nan nan nan nan nan nan]\n", + " warnings.warn(\n" ] + }, + { + "data": { + "text/html": [ + "
GridSearchCV(estimator=SVR(), n_jobs=-1,\n",
+              "             param_grid={'C': [0.1, 1], 'epsilon': [0.01, 0.1, 0.5],\n",
+              "                         'kernel': ['sigmoid']},\n",
+              "             scoring='accuracy')
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "GridSearchCV(estimator=SVR(), n_jobs=-1,\n", + " param_grid={'C': [0.1, 1], 'epsilon': [0.01, 0.1, 0.5],\n", + " 'kernel': ['sigmoid']},\n", + " scoring='accuracy')" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "# Print the evaluation metrics\n", + "# Train the model\n", + "GV_SVR.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "id": "OQ1nL4oYfkAC" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred2 = GV_SVR.predict(X_test)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "U6-EppR68Jsu", + "outputId": "cfa67a46-ab8c-478d-c13e-fe884ef7ebae" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'C': 0.1, 'epsilon': 0.01, 'kernel': 'sigmoid'}" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "GV_SVR.best_params_" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "id": "nRYTwydsfpjb" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics with grid search\n", + "rmse2 = np.sqrt(mean_squared_error(y_test, pred2))\n", + "mae2 = mean_absolute_error(y_test, pred2)\n", + "mape2 = mean_absolute_percentage_error(y_test, pred2)\n", + "accuracy2 = accuracy_score(y_test > pred2, y_test > pred2.round())\n", + "precision2 = precision_score(y_test > pred2, y_test > pred2.round())\n", + "confusion2 = confusion_matrix(y_test > pred2, y_test > pred2.round())\n", + "recall2 = recall_score(y_test > pred2, y_test > pred2.round())\n", + "f12 = f1_score(y_test > pred2, y_test > pred2.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "656J5oz5fzq6", + "outputId": "c62c2076-2a10-43da-935d-c593c2d7be79" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 158.5191296342117\n", + "MAE: 127.61818666535594\n", + "MAPE: 2.6724681150799072\n", + "Accuracy: 0.9985865724381625\n", + "Precision: 0.9970457902511078\n", + "Confusion Matrix:\n", + " [[738 2]\n", + " [ 0 675]]\n", + "Recall: 1.0\n", + "F1 Score: 0.9985207100591716\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics with grid search\n", "print(\"RMSE:\", rmse2)\n", "print(\"MAE:\", mae2)\n", "print(\"MAPE:\", mape2)\n", @@ -1163,6 +2075,512 @@ "print(\"F1 Score:\", f12)" ] }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "tIlc-wCE8Jsv", + "outputId": "fc6a39f5-b546-444e-a522-8bbcf889be14" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
SVR()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "SVR()" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#fitting without grid search\n", + "model2.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "id": "f3u1h6Dk8Jsv" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred2_1 = model2.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "id": "F-NgJx2d8Jsv" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics without grid search\n", + "rmse2_1 = np.sqrt(mean_squared_error(y_test, pred2_1))\n", + "mae2_1 = mean_absolute_error(y_test, pred2_1)\n", + "mape2_1 = mean_absolute_percentage_error(y_test, pred2_1)\n", + "accuracy2_1 = accuracy_score(y_test > pred2_1, y_test > pred2_1.round())\n", + "precision2_1 = precision_score(y_test > pred2_1, y_test > pred2_1.round())\n", + "confusion2_1 = confusion_matrix(y_test > pred2_1, y_test > pred2_1.round())\n", + "recall2_1 = recall_score(y_test > pred2_1, y_test > pred2_1.round())\n", + "f12_1 = f1_score(y_test > pred2_1, y_test > pred2_1.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "_BB1EERE8Jsv", + "outputId": "11c94daf-d2db-4447-a5b9-b753e648b56c" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 147.71103599153602\n", + "MAE: 110.99419106508152\n", + "MAPE: 1.9715076513294716\n", + "Accuracy: 0.9992932862190813\n", + "Precision: 1.0\n", + "Confusion Matrix:\n", + " [[727 0]\n", + " [ 1 687]]\n", + "Recall: 0.998546511627907\n", + "F1 Score: 0.9992727272727273\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics without grid search\n", + "print(\"RMSE:\", rmse2_1)\n", + "print(\"MAE:\", mae2_1)\n", + "print(\"MAPE:\", mape2_1)\n", + "print(\"Accuracy:\", accuracy2_1)\n", + "print(\"Precision:\", precision2_1)\n", + "print(\"Confusion Matrix:\\n\", confusion2_1)\n", + "print(\"Recall:\", recall2_1)\n", + "print(\"F1 Score:\", f12_1)" + ] + }, { "cell_type": "markdown", "metadata": { @@ -1174,7 +2592,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 35, "metadata": { "id": "f7raXT_hf2ij" }, @@ -1187,7 +2605,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 36, "metadata": { "id": "TadNM7MEU7fh" }, @@ -1203,28 +2621,432 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 37, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 74 + "height": 80 }, "id": "fF002Yepgk55", - "outputId": "d148c589-4879-4e2d-8b0f-5b5ca01a2a53" + "outputId": "4ff3a76e-04be-452e-8927-a7739bc306fb" }, "outputs": [ { - "output_type": "execute_result", "data": { + "text/html": [ + "
RandomForestRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], "text/plain": [ "RandomForestRegressor()" - ], - "text/html": [ - "
RandomForestRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ] }, + "execution_count": 37, "metadata": {}, - "execution_count": 48 + "output_type": "execute_result" } ], "source": [ @@ -1234,7 +3056,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 38, "metadata": { "id": "8nRU_pzEgnCt" }, @@ -1246,7 +3068,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 39, "metadata": { "id": "4aKEXGVUgsry" }, @@ -1265,29 +3087,29 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 40, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "8pPzsCY1g305", - "outputId": "72c4ea56-2610-41c6-f286-4c8289d3f0ac" + "outputId": "bc5eeab1-5d75-4be3-b26f-70c4fe533a47" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "RMSE: 2.189635498596314\n", - "MAE: 1.250413817712252\n", - "MAPE: 0.007984509559881612\n", - "Accuracy: 0.8551236749116607\n", - "Precision: 0.8558823529411764\n", + "RMSE: 2.2227552163641375\n", + "MAE: 1.2618627107561857\n", + "MAPE: 0.008011786688180922\n", + "Accuracy: 0.8537102473498234\n", + "Precision: 0.8575624082232012\n", "Confusion Matrix:\n", - " [[628 98]\n", - " [107 582]]\n", - "Recall: 0.8447024673439768\n", - "F1 Score: 0.8502556610664718\n" + " [[624 97]\n", + " [110 584]]\n", + "Recall: 0.8414985590778098\n", + "F1 Score: 0.8494545454545455\n" ] } ], @@ -1314,7 +3136,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 41, "metadata": { "id": "TI8idoxOg6jF" }, @@ -1327,7 +3149,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 42, "metadata": { "id": "7r9xJDtOVBEA" }, @@ -1343,21 +3165,424 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 43, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 248 + "height": 254 }, "id": "2gpbDxshhexj", - "outputId": "b2b1a681-7ede-4d66-be5d-1a8606d0f470" + "outputId": "2cdbacc9-909a-43c9-cf04-cc4f70015e43" }, "outputs": [ { - "output_type": "execute_result", "data": { - "text/plain": [ - "XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + "text/html": [ + "
XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
               "             colsample_bylevel=None, colsample_bynode=None,\n",
               "             colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
               "             enable_categorical=False, eval_metric=None, feature_types=None,\n",
@@ -1367,10 +3592,7 @@
               "             max_delta_step=None, max_depth=None, max_leaves=None,\n",
               "             min_child_weight=None, missing=nan, monotone_constraints=None,\n",
               "             multi_strategy=None, n_estimators=None, n_jobs=None,\n",
-              "             num_parallel_tree=None, random_state=None, ...)"
-            ],
-            "text/html": [
-              "
XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
+              "             num_parallel_tree=None, random_state=None, ...)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + " num_parallel_tree=None, random_state=None, ...)" ] }, + "execution_count": 43, "metadata": {}, - "execution_count": 54 + "output_type": "execute_result" } ], "source": [ @@ -1404,7 +3630,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 44, "metadata": { "id": "Jj9DXdUPhh9V" }, @@ -1416,7 +3642,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 45, "metadata": { "id": "TdH60Sllhn5O" }, @@ -1435,18 +3661,18 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 46, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "qpnLeFyZhwB3", - "outputId": "4dcac062-ec60-4b2c-ab4b-dcda1b0f2341" + "outputId": "1637d31a-e785-4414-dfe5-f7fa4fd282e9" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "RMSE: 2.733930065274145\n", "MAE: 1.502457380471909\n", @@ -1457,7 +3683,7 @@ " [[613 75]\n", " [ 89 638]]\n", "Recall: 0.8775790921595599\n", - "F1 Score: 0.8861111111111112\n" + "F1 Score: 0.8861111111111111\n" ] } ], @@ -1484,7 +3710,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 47, "metadata": { "id": "DyhhdlZAhx94" }, @@ -1497,7 +3723,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 48, "metadata": { "id": "Z_AD0lVOVHwB" }, @@ -1513,21 +3739,424 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 49, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 248 + "height": 254 }, "id": "RAIwxIp5iH9Z", - "outputId": "d2b4aa97-7e07-4015-c308-76a292b0929f" + "outputId": "cc66ca33-11cc-4e5d-e7e1-f39b41466c28" }, "outputs": [ { - "output_type": "execute_result", "data": { - "text/plain": [ - "XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + "text/html": [ + "
XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
               "             colsample_bylevel=None, colsample_bynode=None,\n",
               "             colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
               "             enable_categorical=False, eval_metric=None, feature_types=None,\n",
@@ -1537,10 +4166,7 @@
               "             max_delta_step=None, max_depth=None, max_leaves=None,\n",
               "             min_child_weight=None, missing=nan, monotone_constraints=None,\n",
               "             multi_strategy=None, n_estimators=None, n_jobs=None,\n",
-              "             num_parallel_tree=None, random_state=None, ...)"
-            ],
-            "text/html": [
-              "
XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
+              "             num_parallel_tree=None, random_state=None, ...)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + " num_parallel_tree=None, random_state=None, ...)" ] }, + "execution_count": 49, "metadata": {}, - "execution_count": 60 + "output_type": "execute_result" } ], "source": [ @@ -1574,7 +4204,7 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 50, "metadata": { "id": "XmJds5fYiKT3" }, @@ -1586,7 +4216,7 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 51, "metadata": { "id": "lZ1A0-L8iNCM" }, @@ -1605,18 +4235,18 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 52, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "7IkE-RAmiWNo", - "outputId": "cf4c1d84-412b-4a18-f70c-65ce637772ea" + "outputId": "d69e485e-0462-409a-f9aa-59e5ca7c4bef" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "RMSE: 2.733930065274145\n", "MAE: 1.502457380471909\n", @@ -1627,7 +4257,7 @@ " [[613 75]\n", " [ 89 638]]\n", "Recall: 0.8775790921595599\n", - "F1 Score: 0.8861111111111112\n" + "F1 Score: 0.8861111111111111\n" ] } ], @@ -1654,7 +4284,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 53, "metadata": { "id": "HNq66cXRiYPJ" }, @@ -1667,7 +4297,7 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 54, "metadata": { "id": "qPHH6rG0VW4V" }, @@ -1683,28 +4313,432 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 55, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 74 + "height": 80 }, "id": "P0oB5wjQivBr", - "outputId": "8726c583-6782-4504-b0ac-d2ef4ccbca4c" + "outputId": "827e151d-e13e-4924-ef50-c5e1d13f6161" }, "outputs": [ { - "output_type": "execute_result", "data": { + "text/html": [ + "
AdaBoostRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], "text/plain": [ "AdaBoostRegressor()" - ], - "text/html": [ - "
AdaBoostRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ] }, + "execution_count": 55, "metadata": {}, - "execution_count": 66 + "output_type": "execute_result" } ], "source": [ @@ -1714,7 +4748,7 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 56, "metadata": { "id": "Bf1m5ukOi2VM" }, @@ -1726,7 +4760,7 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 57, "metadata": { "id": "oFWSqC4ai6gd" }, @@ -1745,29 +4779,29 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 58, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "BsajWJGBjC80", - "outputId": "1af1194f-9a33-40af-8578-c99832509c1b" + "outputId": "076cff01-ff0a-449b-d86c-df9f1363fecd" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "RMSE: 9.283285018137352\n", - "MAE: 7.574989783595977\n", - "MAPE: 0.16829256716397573\n", - "Accuracy: 0.9901060070671378\n", - "Precision: 0.9900990099009901\n", + "RMSE: 10.504089217159294\n", + "MAE: 8.746118088217727\n", + "MAPE: 0.20512996006219347\n", + "Accuracy: 0.9943462897526502\n", + "Precision: 0.9939879759519038\n", "Confusion Matrix:\n", - " [[901 5]\n", - " [ 9 500]]\n", - "Recall: 0.9823182711198428\n", - "F1 Score: 0.9861932938856016\n" + " [[911 3]\n", + " [ 5 496]]\n", + "Recall: 0.9900199600798403\n", + "F1 Score: 0.992\n" ] } ], @@ -1794,7 +4828,7 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 59, "metadata": { "id": "23DZ2biSjF9a" }, @@ -1807,7 +4841,7 @@ }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 60, "metadata": { "id": "Ajo2RAVAVb7H" }, @@ -1823,28 +4857,432 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 61, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 74 + "height": 80 }, "id": "6mQEQf-ykc9F", - "outputId": "f1a62020-4125-4aea-e7e4-11acffdc5169" + "outputId": "78dc7661-96e4-46af-b65a-c705018c58a3" }, "outputs": [ { - "output_type": "execute_result", "data": { + "text/html": [ + "
DecisionTreeRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], "text/plain": [ "DecisionTreeRegressor()" - ], - "text/html": [ - "
DecisionTreeRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ] }, + "execution_count": 61, "metadata": {}, - "execution_count": 72 + "output_type": "execute_result" } ], "source": [ @@ -1854,7 +5292,7 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 62, "metadata": { "id": "BFJ9q_tvkgRC" }, @@ -1866,7 +5304,7 @@ }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 63, "metadata": { "id": "9IxfYZbYkjv1" }, @@ -1885,29 +5323,29 @@ }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 64, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "AnZXMYb8kooV", - "outputId": "273fa9ed-d6f2-4c4d-fb0e-a643f5ef5732" + "outputId": "93527d46-9366-49ce-b895-7a12ae87f742" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "RMSE: 3.193539964582351\n", - "MAE: 1.6240937361593886\n", - "MAPE: 0.010136361140005275\n", - "Accuracy: 0.8579505300353357\n", - "Precision: 0.8700410396716827\n", + "RMSE: 3.136698143876249\n", + "MAE: 1.6416165234385407\n", + "MAPE: 0.010224639636659394\n", + "Accuracy: 0.8600706713780919\n", + "Precision: 0.8687845303867403\n", "Confusion Matrix:\n", - " [[578 95]\n", - " [106 636]]\n", - "Recall: 0.8571428571428571\n", - "F1 Score: 0.8635437881873728\n" + " [[588 95]\n", + " [103 629]]\n", + "Recall: 0.8592896174863388\n", + "F1 Score: 0.864010989010989\n" ] } ], @@ -1934,20 +5372,23 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 65, "metadata": { "id": "JVDSed7yktFY" }, "outputs": [], "source": [ "from sklearn.neighbors import KNeighborsRegressor\n", + "from sklearn.model_selection import GridSearchCV\n", "# Create a KNN model\n", - "model8 = KNeighborsRegressor()" + "model8 = KNeighborsRegressor()\n", + "param_grid = {'n_neighbors':[3, 5, 7, 9, 11, 15, 20, 23, 25, 30, 60, 70, 150]}\n", + "GV_KNN = GridSearchCV(model8, param_grid, cv=5, scoring='neg_mean_squared_error')" ] }, { "cell_type": "code", - "execution_count": 77, + "execution_count": 66, "metadata": { "id": "XJHb5SxrVgVp" }, @@ -1963,28 +5404,432 @@ }, { "cell_type": "code", - "execution_count": 78, + "execution_count": 67, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 74 + "height": 80 }, "id": "9fn64o-ZlBka", - "outputId": "dc5e6af2-de37-46ee-cde7-e0a3baa31a1f" + "outputId": "bc388b6b-cf36-4a91-eb52-8fe7a861308b" }, "outputs": [ { - "output_type": "execute_result", "data": { + "text/html": [ + "
KNeighborsRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], "text/plain": [ "KNeighborsRegressor()" - ], - "text/html": [ - "
KNeighborsRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ] }, + "execution_count": 67, "metadata": {}, - "execution_count": 78 + "output_type": "execute_result" } ], "source": [ @@ -1994,73 +5839,610 @@ }, { "cell_type": "code", - "execution_count": 79, + "execution_count": 68, "metadata": { "id": "hbfbbjcSlDn7" }, "outputs": [], "source": [ - "# Make predictions on the test set\n", - "pred8 = model8.predict(X_test)" + "# Make predictions on the test set\n", + "pred8 = model8.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "id": "hnWyNv3blHdL" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse8 = np.sqrt(mean_squared_error(y_test, pred8))\n", + "mae8 = mean_absolute_error(y_test, pred8)\n", + "mape8 = mean_absolute_percentage_error(y_test, pred8)\n", + "accuracy8 = accuracy_score(y_test > pred8, y_test > pred8.round())\n", + "precision8 = precision_score(y_test > pred8, y_test > pred8.round())\n", + "confusion8 = confusion_matrix(y_test > pred8, y_test > pred8.round())\n", + "recall8 = recall_score(y_test > pred8, y_test > pred8.round())\n", + "f18 = f1_score(y_test > pred8, y_test > pred8.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IPoDRkcMlMAr", + "outputId": "5aee40b5-c7c1-4fad-f419-37d08a504146" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 148.73183825029315\n", + "MAE: 109.35229571264969\n", + "MAPE: 1.75024316976612\n", + "Accuracy: 0.9908127208480565\n", + "Precision: 0.9887820512820513\n", + "Confusion Matrix:\n", + " [[785 7]\n", + " [ 6 617]]\n", + "Recall: 0.9903691813804173\n", + "F1 Score: 0.9895749799518845\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse8)\n", + "print(\"MAE:\", mae8)\n", + "print(\"MAPE:\", mape8)\n", + "print(\"Accuracy:\", accuracy8)\n", + "print(\"Precision:\", precision8)\n", + "print(\"Confusion Matrix:\\n\", confusion8)\n", + "print(\"Recall:\", recall8)\n", + "print(\"F1 Score:\", f18)" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "5qW5X1Xe8Js7", + "outputId": "6abf26c0-873e-42e2-9aab-c2bd93a5ae84" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
KNeighborsRegressor(n_neighbors=150)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "KNeighborsRegressor(n_neighbors=150)" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "GV_KNN.fit(X_train, y_train)\n", + "pred8_1 = GV_KNN.predict(X_test)\n", + "GV_KNN.best_estimator_" ] }, { "cell_type": "code", - "execution_count": 80, + "execution_count": 72, "metadata": { - "id": "hnWyNv3blHdL" + "id": "voNSUlHk8Js7" }, "outputs": [], "source": [ - "# Calculate evaluation metrics\n", - "rmse8 = np.sqrt(mean_squared_error(y_test, pred8))\n", - "mae8 = mean_absolute_error(y_test, pred8)\n", - "mape8 = mean_absolute_percentage_error(y_test, pred8)\n", - "accuracy8 = accuracy_score(y_test > pred8, y_test > pred8.round())\n", - "precision8 = precision_score(y_test > pred8, y_test > pred8.round())\n", - "confusion8 = confusion_matrix(y_test > pred8, y_test > pred8.round())\n", - "recall8 = recall_score(y_test > pred8, y_test > pred8.round())\n", - "f18 = f1_score(y_test > pred8, y_test > pred8.round())" + "# Calculate evaluation metrics with grid search\n", + "rmse8_1 = np.sqrt(mean_squared_error(y_test, pred8_1))\n", + "mae8_1 = mean_absolute_error(y_test, pred8_1)\n", + "mape8_1 = mean_absolute_percentage_error(y_test, pred8_1)\n", + "accuracy8_1 = accuracy_score(y_test > pred8_1, y_test > pred8_1.round())\n", + "precision8_1 = precision_score(y_test > pred8_1, y_test > pred8_1.round())\n", + "confusion8_1 = confusion_matrix(y_test > pred8_1, y_test > pred8_1.round())\n", + "recall8_1 = recall_score(y_test > pred8_1, y_test > pred8_1.round())\n", + "f18_1 = f1_score(y_test > pred8_1, y_test > pred8_1.round())" ] }, { "cell_type": "code", - "execution_count": 81, + "execution_count": 73, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, - "id": "IPoDRkcMlMAr", - "outputId": "9892f42f-e65f-46c0-eeed-77ce32f6a7eb" + "id": "VMnot_fX8Js8", + "outputId": "71c354e6-71e6-4d31-ee2f-2a03f65d24fe" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "RMSE: 148.73183825029315\n", - "MAE: 109.35229571264969\n", - "MAPE: 1.75024316976612\n", - "Accuracy: 0.9908127208480565\n", - "Precision: 0.9887820512820513\n", + "RMSE: 137.20694663964096\n", + "MAE: 101.08872313712585\n", + "MAPE: 1.7323302969000884\n", + "Accuracy: 0.9985865724381625\n", + "Precision: 1.0\n", "Confusion Matrix:\n", - " [[785 7]\n", - " [ 6 617]]\n", - "Recall: 0.9903691813804173\n", - "F1 Score: 0.9895749799518845\n" + " [[865 0]\n", + " [ 2 548]]\n", + "Recall: 0.9963636363636363\n", + "F1 Score: 0.9981785063752276\n" ] } ], "source": [ - "# Print the evaluation metrics\n", - "print(\"RMSE:\", rmse8)\n", - "print(\"MAE:\", mae8)\n", - "print(\"MAPE:\", mape8)\n", - "print(\"Accuracy:\", accuracy8)\n", - "print(\"Precision:\", precision8)\n", - "print(\"Confusion Matrix:\\n\", confusion8)\n", - "print(\"Recall:\", recall8)\n", - "print(\"F1 Score:\", f18)" + "# Print the evaluation metrics with grid search\n", + "print(\"RMSE:\", rmse8_1)\n", + "print(\"MAE:\", mae8_1)\n", + "print(\"MAPE:\", mape8_1)\n", + "print(\"Accuracy:\", accuracy8_1)\n", + "print(\"Precision:\", precision8_1)\n", + "print(\"Confusion Matrix:\\n\", confusion8_1)\n", + "print(\"Recall:\", recall8_1)\n", + "print(\"F1 Score:\", f18_1)" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 524 + }, + "id": "Swebseye8Js8", + "outputId": "c501acf3-094c-4ba6-f0d7-1a0901cdb2e0" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1AAAAH7CAYAAADCX341AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVWElEQVR4nO3de3iU9Z3//9fMJDM5TjBASJAgEa2agihHU/uluqWEGq2stqtWLZ7qwgYU2FW0VSn2W7G6rWhRaO1e4G+Rou631AI1bsrJWoJRECFEUCEFNBkSjMmEkOPM/fsDZsiQBCaQ5L5n8nxc11wy9/3Jnfd8QoFXPyebYRiGAAAAAABnZDe7AAAAAACIFAQoAAAAAAgTAQoAAAAAwkSAAgAAAIAwEaAAAAAAIEwEKAAAAAAIEwEKAAAAAMJEgAIAAACAMBGgAAAAACBMMWYXYCa/36/y8nIlJyfLZrOZXQ4AAAAAkxiGobq6Og0ePFh2+2nGmYwueOqpp4yxY8caSUlJxsCBA40bb7zR2LNnT0ibb33rW4akkNe//uu/hrQ5cOCAcd111xnx8fHGwIEDjf/4j/8wWlpaQtps3LjRuPLKKw2n02kMHz7cWLZsWbt6Fi9ebFxwwQWGy+Uyxo8fb7z33ntd+TjGoUOH2tXKixcvXrx48eLFixevvvs6dOjQaTNEl0agNm/erPz8fI0bN06tra36yU9+osmTJ6u0tFSJiYnBdj/+8Y/15JNPBt8nJCQEf+3z+ZSXl6f09HRt2bJFFRUV+tGPfqTY2Fg99dRTkqSysjLl5eVp+vTpevXVV7V+/Xrdd999ysjIUG5uriTptdde09y5c7V06VJNmDBBixYtUm5urvbu3au0tLSwPk9ycrIk6dChQ3K73V3pCgAAAABRxOv1KjMzM5gROmMzDMM4229SVVWltLQ0bd68WRMnTpQkXXPNNbriiiu0aNGiDr/mrbfe0vXXX6/y8nINGjRIkrR06VLNmzdPVVVVcjqdmjdvntatW6eSkpLg1916662qqalRQUGBJGnChAkaN26cFi9eLOn4dLzMzEzNmjVLjzzySFj1e71epaSkqLa2lgAFAAAA9GHhZoNz2kSitrZWkpSamhpy/dVXX9WAAQM0YsQIPfroozp27FjwXlFRkUaOHBkMT5KUm5srr9er3bt3B9tMmjQp5Jm5ubkqKiqSJDU3N2vbtm0hbex2uyZNmhRs05GmpiZ5vd6QFwAAAACE66w3kfD7/Zo9e7auvvpqjRgxInj9hz/8oS644AINHjxYO3fu1Lx587R371798Y9/lCR5PJ6Q8CQp+N7j8Zy2jdfrVUNDg7766iv5fL4O2+zZs6fTmhcuXKgFCxac7UcGAAAA0MeddYDKz89XSUmJ3n333ZDr999/f/DXI0eOVEZGhr797W9r3759Gj58+NlX2g0effRRzZ07N/g+MM8RAAAAAMJxVgFq5syZWrt2rd555x0NGTLktG0nTJggSfrss880fPhwpaenq7i4OKTN4cOHJUnp6enB/wautW3jdrsVHx8vh8Mhh8PRYZvAMzricrnkcrnC+5AAAAAAcIourYEyDEMzZ87U6tWrtWHDBmVlZZ3xa3bs2CFJysjIkCTl5ORo165dqqysDLYpLCyU2+1WdnZ2sM369etDnlNYWKicnBxJktPp1JgxY0La+P1+rV+/PtgGAAAAALpbl0ag8vPztXLlSr355ptKTk4OrllKSUlRfHy89u3bp5UrV+q6665T//79tXPnTs2ZM0cTJ07U5ZdfLkmaPHmysrOzdeedd+qZZ56Rx+PRY489pvz8/ODo0PTp07V48WI9/PDDuueee7Rhwwa9/vrrWrduXbCWuXPnatq0aRo7dqzGjx+vRYsWqb6+XnfffXd39Q0AAAAAhOjSNuY2m63D68uWLdNdd92lQ4cO6Y477lBJSYnq6+uVmZmpf/7nf9Zjjz0WshXggQMHNGPGDG3atEmJiYmaNm2ann76acXEnMxzmzZt0pw5c1RaWqohQ4bo8ccf11133RXyfRcvXqxnn31WHo9HV1xxhV544YXglMFwsI05AAAAACn8bHBO50BFOgIUAAAAAKmXzoECAAAAgL6EAAUAAAAAYSJAAQAAAECYCFAAAAAAECYCFAAAAACEqUvnQKFn+PyGisuqVVnXqLTkOI3PSpXD3vGW8QAAAADMQ4AyWUFJhRasKVVFbWPwWkZKnObfkK0pIzJMrAwAAADAqZjCZ6KCkgrNWLE9JDxJkqe2UTNWbFdBSYVJlQEAAADoCAHKJD6/oQVrStXRKcaBawvWlMrn77PnHAMAAACWQ4AySXFZdbuRp7YMSRW1jSouq+69ogAAAACcFgHKJJV1nYens2kHAAAAoOcRoEySlhzXre0AAAAA9DwClEnGZ6UqIyVOnW1WbtPx3fjGZ6X2ZlkAAAAAToMAZRKH3ab5N2RLUrsQFXg//4ZszoMCAAAALIQAZaIpIzK05I7RSk8JnaaXnhKnJXeM5hwoAAAAwGI4SNdkU0Zk6DvZ6Zr8683ad6Re/zH5a5pxzUWMPAEAAAAWxAiUBTjsNg0+L16SdP558YQnAAAAwKIIUBaRHHd8MNDb0GpyJQAAAAA6Q4CyiGRXrCSprrHF5EoAAAAAdIYAZRGBEai6RkagAAAAAKsiQFmEO/74CJSXAAUAAABYFgHKIk6OQDGFDwAAALAqApRFJMcxAgUAAABYHQHKIhiBAgAAAKyPAGURbCIBAAAAWB8ByiLccWxjDgAAAFgdAcoiAgGKg3QBAAAA6yJAWURgCl9Di08tPr/J1QAAAADoCAHKIpJOBChJOso6KAAAAMCSCFAWEeuwK8HpkMRGEgAAAIBVEaAsJDCNz8tGEgAAAIAlEaAs5ORhugQoAAAAwIoIUBbCWVAAAACAtRGgLCQ5eBYUAQoAAACwIgKUhbiDI1BM4QMAAACsiABlIckcpgsAAABYGgHKQhiBAgAAAKyNAGUhbCIBAAAAWBsBykLc8Sc2kWhiBAoAAACwIgKUhTACBQAAAFgbAcpCkl2BTSQYgQIAAACsiABlIYxAAQAAANZGgLKQ4DbmBCgAAADAkghQFuKOZxtzAAAAwMoIUBYSGIFqavWrqdVncjUAAAAATkWAspAkV0zw16yDAgAAAKyHAGUhDrstGKIIUAAAAID1EKAsxh3HOigAAADAqghQFhNYB8UIFAAAAGA9BCiLCZwFxWG6AAAAgPUQoCyGw3QBAAAA6yJAWczJw3QZgQIAAACshgBlMScP02UECgAAALAaApTFMAIFAAAAWBcBymJYAwUAAABYFwHKYk5uY84IFAAAAGA1BCiLcTMCBQAAAFgWAcpi3BykCwAAAFgWAcpiggfpMoUPAAAAsBwClMUkMwIFAAAAWFaXAtTChQs1btw4JScnKy0tTVOnTtXevXs7bGsYhr773e/KZrPpT3/6U8i9gwcPKi8vTwkJCUpLS9NDDz2k1tbQwLBp0yaNHj1aLpdLF110kZYvX97ue7z44osaNmyY4uLiNGHCBBUXF3fl41jSyV34WmQYhsnVAAAAAGirSwFq8+bNys/P19atW1VYWKiWlhZNnjxZ9fX17douWrRINput3XWfz6e8vDw1Nzdry5YteuWVV7R8+XI98cQTwTZlZWXKy8vTtddeqx07dmj27Nm677779PbbbwfbvPbaa5o7d67mz5+v7du3a9SoUcrNzVVlZWVXPpLluOOPj0C1+Aw1tfpNrgYAAABAWzbjHIY5qqqqlJaWps2bN2vixInB6zt27ND111+vDz74QBkZGVq9erWmTp0qSXrrrbd0/fXXq7y8XIMGDZIkLV26VPPmzVNVVZWcTqfmzZundevWqaSkJPjMW2+9VTU1NSooKJAkTZgwQePGjdPixYslSX6/X5mZmZo1a5YeeeSRsOr3er1KSUlRbW2t3G732XZDtzIMQ8N/8hf5Dan4p99WWnKc2SUBAAAAUS/cbHBOa6Bqa2slSampqcFrx44d0w9/+EO9+OKLSk9Pb/c1RUVFGjlyZDA8SVJubq68Xq92794dbDNp0qSQr8vNzVVRUZEkqbm5Wdu2bQtpY7fbNWnSpGCbjjQ1Ncnr9Ya8rMZmsynJdWIjiQbWQQEAAABWctYByu/3a/bs2br66qs1YsSI4PU5c+boG9/4hm688cYOv87j8YSEJ0nB9x6P57RtvF6vGhoadOTIEfl8vg7bBJ7RkYULFyolJSX4yszMDP8D9yIO0wUAAACs6awDVH5+vkpKSrRq1argtT//+c/asGGDFi1a1B21dbtHH31UtbW1wdehQ4fMLqlDgXVQ7MQHAAAAWMtZBaiZM2dq7dq12rhxo4YMGRK8vmHDBu3bt0/9+vVTTEyMYmKOT0W7+eabdc0110iS0tPTdfjw4ZDnBd4Hpvx11sbtdis+Pl4DBgyQw+HosE1H0wYDXC6X3G53yMuKTu7ER4ACAAAArKRLAcowDM2cOVOrV6/Whg0blJWVFXL/kUce0c6dO7Vjx47gS5Kee+45LVu2TJKUk5OjXbt2heyWV1hYKLfbrezs7GCb9evXhzy7sLBQOTk5kiSn06kxY8aEtPH7/Vq/fn2wTSRzc5guAAAAYEkxXWmcn5+vlStX6s0331RycnJwvVFKSori4+OVnp7e4QjQ0KFDg2Fr8uTJys7O1p133qlnnnlGHo9Hjz32mPLz8+VyuSRJ06dP1+LFi/Xwww/rnnvu0YYNG/T6669r3bp1wWfOnTtX06ZN09ixYzV+/HgtWrRI9fX1uvvuu8+6M6yCNVAAAACANXUpQC1ZskSSgtPxApYtW6a77rorrGc4HA6tXbtWM2bMUE5OjhITEzVt2jQ9+eSTwTZZWVlat26d5syZo+eff15DhgzR73//e+Xm5gbb3HLLLaqqqtITTzwhj8ejK664QgUFBe02lohETOEDAAAArOmczoGKdFY8B0qS/vPtvVq88TPd9Y1h+tn3vm52OQAAAEDU65VzoNAzklkDBQAAAFgSAcqCAmugOEgXAAAAsBYClAWdXAPFCBQAAABgJQQoC+IgXQAAAMCaCFAWFByBamIECgAAALASApQFBQ/SZQ0UAAAAYCkEKAsKbCJxtKlVfXiXeQAAAMByCFAWFJjC5/MbOtbsM7kaAAAAAAEEKAuKj3Uoxm6TxEYSAAAAgJUQoCzIZrOxlTkAAABgQQQoiwoepkuAAgAAACyDAGVRgREoL1P4AAAAAMsgQFmUO47DdAEAAACrIUBZFGugAAAAAOshQFlUcA0Uh+kCAAAAlkGAsihGoAAAAADrIUBZlDsYoBiBAgAAAKyCAGVR7vjAJhKMQAEAAABWQYCyqGRGoAAAAADLIUBZFAfpAgAAANZDgLIoRqAAAAAA6yFAWRQH6QIAAADWQ4CyqMAIFFP4AAAAAOsgQFlUYA3U0aZW+f2GydUAAAAAkAhQlhUYgTIM6Wgz0/gAAAAAKyBAWVRcrENOx/EfD+ugAAAAAGsgQFmYOz6wEx/roAAAAAArIEBZWDI78QEAAACWQoCysOBOfA2MQAEAAABWQICyMA7TBQAAAKyFAGVhJw/TZQQKAAAAsAIClIWdPEyXESgAAADACghQFhbYRMLLCBQAAABgCQQoC2MNFAAAAGAtBCgLYxtzAAAAwFoIUBbmjuMgXQAAAMBKCFAWxggUAAAAYC0EKAtzc5AuAAAAYCkEKAtjBAoAAACwFgKUhbnjWQMFAAAAWAkBysICI1D1zT61+vwmVwMAAACAAGVhgXOgJOloE9P4AAAAALMRoCws1mFXXOzxHxHroAAAAADzEaAsLjCNz8s6KAAAAMB0BCiLO3mYLiNQAAAAgNkIUBbHVuYAAACAdRCgLC6Zw3QBAAAAyyBAWZw7OAJFgAIAAADMRoCyuJOH6TKFDwAAADAbAcrigmugOAcKAAAAMB0ByuKSXYERKKbwAQAAAGYjQFncyU0kGIECAAAAzEaAsjgO0gUAAACsgwBlce54zoECAAAArIIAZXGBKXysgQIAAADMR4CyuOAaKEagAAAAANMRoCyOg3QBAAAA6yBAWVwgQDW2+NXi85tcDQAAANC3EaAsLunEFD6JjSQAAAAAsxGgLM5htynR6ZDEND4AAADAbASoCBA8C4rDdAEAAABTdSlALVy4UOPGjVNycrLS0tI0depU7d27N6TNv/7rv2r48OGKj4/XwIEDdeONN2rPnj0hbQ4ePKi8vDwlJCQoLS1NDz30kFpbQ8PBpk2bNHr0aLlcLl100UVavnx5u3pefPFFDRs2THFxcZowYYKKi4u78nEiBluZAwAAANbQpQC1efNm5efna+vWrSosLFRLS4smT56s+vr6YJsxY8Zo2bJl+vjjj/X222/LMAxNnjxZPp9PkuTz+ZSXl6fm5mZt2bJFr7zyipYvX64nnngi+IyysjLl5eXp2muv1Y4dOzR79mzdd999evvtt4NtXnvtNc2dO1fz58/X9u3bNWrUKOXm5qqysvJc+8RyAofpspU5AAAAYC6bYRjG2X5xVVWV0tLStHnzZk2cOLHDNjt37tSoUaP02Wefafjw4Xrrrbd0/fXXq7y8XIMGDZIkLV26VPPmzVNVVZWcTqfmzZundevWqaSkJPicW2+9VTU1NSooKJAkTZgwQePGjdPixYslSX6/X5mZmZo1a5YeeeSRDmtpampSU1NT8L3X61VmZqZqa2vldrvPtht63F3LirVpb5We/f7l+sHYTLPLAQAAAKKO1+tVSkrKGbPBOa2Bqq2tlSSlpqZ2eL++vl7Lli1TVlaWMjOP/8O/qKhII0eODIYnScrNzZXX69Xu3buDbSZNmhTyrNzcXBUVFUmSmpubtW3btpA2drtdkyZNCrbpyMKFC5WSkhJ8BWqyuuAaKEagAAAAAFOddYDy+/2aPXu2rr76ao0YMSLk3ksvvaSkpCQlJSXprbfeUmFhoZxOpyTJ4/GEhCdJwfcej+e0bbxerxoaGnTkyBH5fL4O2wSe0ZFHH31UtbW1wdehQ4fO7sP3MtZAAQAAANZw1gEqPz9fJSUlWrVqVbt7t99+uz788ENt3rxZX/va1/Qv//IvamxsPKdCu4PL5ZLb7Q55RYLAYbqcAwUAAACY66wC1MyZM7V27Vpt3LhRQ4YMaXc/JSVFF198sSZOnKj/+Z//0Z49e7R69WpJUnp6ug4fPhzSPvA+PT39tG3cbrfi4+M1YMAAORyODtsEnhFNGIECAAAArKFLAcowDM2cOVOrV6/Whg0blJWVFdbXGIYR3LwhJydHu3btCtktr7CwUG63W9nZ2cE269evD3lOYWGhcnJyJElOp1NjxowJaeP3+7V+/fpgm2jiDgYoRqAAAAAAM3UpQOXn52vFihVauXKlkpOT5fF45PF41NDQIEnav3+/Fi5cqG3btungwYPasmWLfvCDHyg+Pl7XXXedJGny5MnKzs7WnXfeqY8++khvv/22HnvsMeXn58vlckmSpk+frv379+vhhx/Wnj179NJLL+n111/XnDlzgrXMnTtXL7/8sl555RV9/PHHmjFjhurr63X33Xd3V99YxslNJBiBAgAAAMwU05XGS5YskSRdc801IdeXLVumu+66S3Fxcfrb3/6mRYsW6auvvtKgQYM0ceJEbdmyRWlpaZIkh8OhtWvXasaMGcrJyVFiYqKmTZumJ598Mvi8rKwsrVu3TnPmzNHzzz+vIUOG6Pe//71yc3ODbW655RZVVVXpiSeekMfj0RVXXKGCgoJ2G0tEg2RGoAAAAABLOKdzoCJduHu9m+39f1TrB0uLlDUgURv/4xqzywEAAACiTq+cA4XewSYSAAAAgDUQoCJAcA1UA1P4AAAAADMRoCJAYASq2edXY4vP5GoAAACAvosAFQGSnDGy2Y7/mo0kAAAAAPMQoCKA3W5Tkot1UAAAAIDZCFARwn1iHRQjUAAAAIB5CFARIrAOisN0AQAAAPMQoCIEh+kCAAAA5iNARYiTU/gYgQIAAADMQoCKEIxAAQAAAOYjQEWIk4fpMgIFAAAAmIUAFSFObiLBCBQAAABgFgJUhHDHs405AAAAYDYCVIQ4uQaKKXwAAACAWQhQESKZg3QBAAAA0xGgIgQH6QIAAADmI0BFCDfbmAMAAACmI0BFCA7SBQAAAMxHgIoQbddAGYZhcjUAAABA30SAihCBNVCtfkMNLT6TqwEAAAD6JgJUhEhwOuSw2ySxDgoAAAAwCwEqQthsNs6CAgAAAExGgIogJ7cyZwQKAAAAMAMBKoIkuzhMFwAAADATASqCJLkckqQNHx9W0b4v5fOzGx8AAADQm2LMLgDhKSip0Eef10qSXik6oFeKDigjJU7zb8jWlBEZJlcHAAAA9A2MQEWAgpIKzVixXU2t/pDrntpGzVixXQUlFSZVBgAAAPQtBCiL8/kNLVhTqo4m6wWuLVhTynQ+AAAAoBcQoCyuuKxaFbWNnd43JFXUNqq4rLr3igIAAAD6KAKUxVXWdR6ezqYdAAAAgLNHgLK4tOS4bm0HAAAA4OwRoCxufFaqMlLiZOvkvk1SRkqcxmel9mZZAAAAQJ9EgLI4h92m+TdkS1K7EBV4P/+GbDnsnUUsAAAAAN2FABUBpozI0JI7Ris9JXSaXnpKnJbcMZpzoAAAAIBeQoCKEFNGZOjdef+kb1+WJkmaesVgvTvvnwhPAAAAQC8iQEUQh92mbwwfIElqavUzbQ8AAADoZQSoCHPhwERJ0v6qepMrAQAAAPoeAlSEuWhgkiSp7Ei9fH7D5GoAAACAvoUAFWEG94uXK8auZp9fn391zOxyAAAAgD6FABVhHHabsgYcn8a3r+qoydUAAAAAfQsBKgINPzGNj3VQAAAAQO8iQEWg4QMZgQIAAADMQICKQMPTjo9A7atkBAoAAADoTQSoCHThgBNT+I4wAgUAAAD0JgJUBAqcBXXkaLNqjjWbXA0AAADQdxCgIlCiK0YZKXGSpH1sJAEAAAD0GgJUhAqMQu1nIwkAAACg1xCgIlRgK3NGoAAAAIDeQ4CKUCcDFCNQAAAAQG8hQEUoAhQAAADQ+whQESqwBurgl8fU4vObXA0AAADQNxCgIlS6O04JToda/YYOVh8zuxwAAACgTyBARSi73RYchdpXyTQ+AAAAoDcQoCLYhQOOr4Paf4Sd+AAAAIDeQICKYMGNJBiBAgAAAHoFASqCDU87MYWPnfgAAACAXkGAimCBKXz7quplGIbJ1QAAAADRjwAVwbIGJMpmk2obWlRd32x2OQAAAEDUI0BFsHinQ+f3i5d0fBQKAAAAQM8iQEW44EYSrIMCAAAAelyXAtTChQs1btw4JScnKy0tTVOnTtXevXuD96urqzVr1ixdcsklio+P19ChQ/XAAw+otrY25DkHDx5UXl6eEhISlJaWpoceekitra0hbTZt2qTRo0fL5XLpoosu0vLly9vV8+KLL2rYsGGKi4vThAkTVFxc3JWPExUCZ0HtJ0ABAAAAPa5LAWrz5s3Kz8/X1q1bVVhYqJaWFk2ePFn19cenj5WXl6u8vFz/+Z//qZKSEi1fvlwFBQW69957g8/w+XzKy8tTc3OztmzZoldeeUXLly/XE088EWxTVlamvLw8XXvttdqxY4dmz56t++67T2+//XawzWuvvaa5c+dq/vz52r59u0aNGqXc3FxVVlaea59ElJMjUEzhAwAAAHqazTiH7duqqqqUlpamzZs3a+LEiR22eeONN3THHXeovr5eMTExeuutt3T99dervLxcgwYNkiQtXbpU8+bNU1VVlZxOp+bNm6d169appKQk+Jxbb71VNTU1KigokCRNmDBB48aN0+LFiyVJfr9fmZmZmjVrlh555JGw6vd6vUpJSVFtba3cbvfZdoOpivZ9qdte3qoL+ido80PXml0OAAAAEJHCzQbntAYqMDUvNTX1tG3cbrdiYmIkSUVFRRo5cmQwPElSbm6uvF6vdu/eHWwzadKkkOfk5uaqqKhIktTc3Kxt27aFtLHb7Zo0aVKwTUeamprk9XpDXpFu+IkpfIeqj6mp1WdyNQAAAEB0O+sA5ff7NXv2bF199dUaMWJEh22OHDmin//857r//vuD1zweT0h4khR87/F4TtvG6/WqoaFBR44ckc/n67BN4BkdWbhwoVJSUoKvzMzM8D+wRQ1MdinZFSO/IR348pjZ5QAAAABR7awDVH5+vkpKSrRq1aoO73u9XuXl5Sk7O1s/+9nPzvbbdKtHH31UtbW1wdehQ4fMLumc2Ww2XZh2Yh1UJRtJAAAAAD0p5my+aObMmVq7dq3eeecdDRkypN39uro6TZkyRcnJyVq9erViY2OD99LT09vtlnf48OHgvcB/A9fatnG73YqPj5fD4ZDD4eiwTeAZHXG5XHK5XF37sBFg+MBEfXSohq3MAQAAgB7WpREowzA0c+ZMrV69Whs2bFBWVla7Nl6vV5MnT5bT6dSf//xnxcXFhdzPycnRrl27QnbLKywslNvtVnZ2drDN+vXrQ76usLBQOTk5kiSn06kxY8aEtPH7/Vq/fn2wTV8S2IlvPzvxAQAAAD2qSwEqPz9fK1as0MqVK5WcnCyPxyOPx6OGhgZJJ8NTfX29/uu//kterzfYxuc7vsHB5MmTlZ2drTvvvFMfffSR3n77bT322GPKz88Pjg5Nnz5d+/fv18MPP6w9e/bopZde0uuvv645c+YEa5k7d65efvllvfLKK/r44481Y8YM1dfX6+677+6uvokYgY0kGIECAAAAelaXpvAtWbJEknTNNdeEXF+2bJnuuusubd++Xe+9954k6aKLLgppU1ZWpmHDhsnhcGjt2rWaMWOGcnJylJiYqGnTpunJJ58Mts3KytK6des0Z84cPf/88xoyZIh+//vfKzc3N9jmlltuUVVVlZ544gl5PB5dccUVKigoaLexRF/Q9iwowzBks9lMrggAAACITud0DlSki4ZzoCSpqdWnyx4vkN+Qin/ybaW54878RQAAAACCeuUcKFiDK8ahoakJkqTPmMYHAAAA9BgCVJRoO40PAAAAQM8gQEWJC09sJLGfESgAAACgxxCgogQjUAAAAEDPI0BFieFpJwJUJSNQAAAAQE8hQEWJwAjUFzUNamj2mVwNAAAAEJ0IUFEiNdGpfgmxkqSyI0zjAwAAAHoCASqKnFwHxTQ+AAAAoCcQoKLI8BM78RGgAAAAgJ5BgIoiF54YgdrPTnwAAABAjyBARRGm8AEAAAA9iwAVRYYHD9Otl99vmFwNAAAAEH0IUFEkMzVBMXabGlp88ngbzS4HAAAAiDoEqCgS67Drgv4JkpjGBwAAAPQEAlSUuXDA8Wl8f/rwCxXt+1I+pvIBAAAA3SbG7ALQfQpKKrRl/5eSpP+3/Qv9v+1fKCMlTvNvyNaUERkmVwcAAABEPkagokRBSYVmrNiu+iZfyHVPbaNmrNiugpIKkyoDAAAAogcBKgr4/IYWrClVR5P1AtcWrCllOh8AAABwjghQUaC4rFoVtZ3vumdIqqhtVHFZde8VBQAAAEQhAlQUqKwLb8vycNsBAAAA6BgBKgqkJcd1azsAAAAAHSNARYHxWanKSImTrZP7NkkZKXEan5Xam2UBAAAAUYcAFQUcdpvm35AtSe1CVOD9/Buy5bB3FrEAAAAAhIMAFSWmjMjQkjtGKz0ldJreILdLS+4YzTlQAAAAQDfgIN0oMmVEhr6Tna7ismr926vb9NWxFv3n90fpm18baHZpAAAAQFRgBCrKOOw25Qzvr5zh/SVJu8q9JlcEAAAARA8CVJQaNaSfJGnn5zWm1gEAAABEEwJUlLo8GKBqzS0EAAAAiCIEqCg1ckiKbDbpi5oGHTnaZHY5AAAAQFQgQEWpJFeMhg9MksQ0PgAAAKC7EKCi2OVDUiRJHx1iGh8AAADQHQhQUYyNJAAAAIDuRYCKYoERqJ2f18owDJOrAQAAACIfASqKXZbhVozdpi/rm/VFTYPZ5QAAAAARjwAVxeJiHbo0I1kS25kDAAAA3YEAFeUC50F9dKjG1DoAAACAaECAinKjAjvxsZEEAAAAcM4IUFEuMAJV8oVXfj8bSQAAAADnggAV5S5OS1JcrF1Hm1q1/8hRs8sBAAAAIhoBKsrFOOwaMZgDdQEAAIDuQIDqAy7nQF0AAACgWxCg+oBRmYGNJBiBAgAAAM4FAaoPGHViBKq0wqvmVr+5xQAAAAARjADVB1zQP0Ep8bFqbvXrk8N1ZpcDAAAARCwCVB9gs9l0OedBAQAAAOeMANVHBALUTnbiAwAAAM4aAaqPCOzExwgUAAAAcPYIUH1EYCOJTyuPqqHZZ24xAAAAQIQiQPUR6SlxSkt2yec3tLucaXwAAADA2SBA9SEnp/ERoAAAAICzQYDqQ0YFNpJgHRQAAABwVghQfcjlmf0kSTsZgQIAAADOCgGqD7n8/OMjUGVH6lV7rMXkagAAAIDIQ4DqQ85LdGpoaoIkaecXNeYWAwAAAEQgAlQfEzxQl2l8AAAAQJcRoPqYwHlQHx2qMbUOAAAAIBIRoPqYUWwkAQAAAJw1AlQfM+J8t+w2yeNtVKW30exyAAAAgIhCgOpjEpwxujgtWRIH6gIAAABdRYDqgy7nQF0AAADgrHQpQC1cuFDjxo1TcnKy0tLSNHXqVO3duzekze9+9ztdc801crvdstlsqqmpafec6upq3X777XK73erXr5/uvfdeHT16NKTNzp079X/+z/9RXFycMjMz9cwzz7R7zhtvvKFLL71UcXFxGjlypP7yl7905eP0WYEDdRmBAgAAALqmSwFq8+bNys/P19atW1VYWKiWlhZNnjxZ9fX1wTbHjh3TlClT9JOf/KTT59x+++3avXu3CgsLtXbtWr3zzju6//77g/e9Xq8mT56sCy64QNu2bdOzzz6rn/3sZ/rd734XbLNlyxbddtttuvfee/Xhhx9q6tSpmjp1qkpKSrrykfqkUSdGoLYdqNabH36hon1fyuc3TK4KAAAAsD6bYRhn/S/nqqoqpaWlafPmzZo4cWLIvU2bNunaa6/VV199pX79+gWvf/zxx8rOztb777+vsWPHSpIKCgp03XXX6fPPP9fgwYO1ZMkS/fSnP5XH45HT6ZQkPfLII/rTn/6kPXv2SJJuueUW1dfXa+3atcFnX3XVVbriiiu0dOnSsOr3er1KSUlRbW2t3G732XZDxFnzUblm/eHDkGsZKXGaf0O2pozIMKkqAAAAwDzhZoNzWgNVW3t8ClhqamrYX1NUVKR+/foFw5MkTZo0SXa7Xe+9916wzcSJE4PhSZJyc3O1d+9effXVV8E2kyZNCnl2bm6uioqKOv3eTU1N8nq9Ia++pqCkQg+cEp4kyVPbqBkrtqugpMKEqgAAAIDIcNYByu/3a/bs2br66qs1YsSIsL/O4/EoLS0t5FpMTIxSU1Pl8XiCbQYNGhTSJvD+TG0C9zuycOFCpaSkBF+ZmZlh1x0NfH5DC9aUqqMhx8C1BWtKmc4HAAAAdOKsA1R+fr5KSkq0atWq7qynRz366KOqra0Nvg4dOmR2Sb2quKxaFbWdn/1kSKqobVRxWXXvFQUAAABEkJiz+aKZM2cGN38YMmRIl742PT1dlZWVIddaW1tVXV2t9PT0YJvDhw+HtAm8P1ObwP2OuFwuuVyuLtUbTSrrwjs4N9x2AAAAQF/TpREowzA0c+ZMrV69Whs2bFBWVlaXv2FOTo5qamq0bdu24LUNGzbI7/drwoQJwTbvvPOOWlpagm0KCwt1ySWX6Lzzzgu2Wb9+fcizCwsLlZOT0+Wa+oq05LhubQcAAAD0NV0KUPn5+VqxYoVWrlyp5ORkeTweeTweNTQ0BNt4PB7t2LFDn332mSRp165d2rFjh6qrj08Lu+yyyzRlyhT9+Mc/VnFxsf7+979r5syZuvXWWzV48GBJ0g9/+EM5nU7de++92r17t1577TU9//zzmjt3bvD7PPjggyooKNCvfvUr7dmzRz/72c/0wQcfaObMmefcKdFqfFaqMlLiZOvkvk3Hd+MbnxX+piAAAABAX9Klbcxtto7/6b1s2TLdddddkqSf/exnWrBgwWnbVFdXa+bMmVqzZo3sdrtuvvlmvfDCC0pKSgq237lzp/Lz8/X+++9rwIABmjVrlubNmxfyzDfeeEOPPfaY/vGPf+jiiy/WM888o+uuuy7cj9MntzEvKKnQjBXbJandZhI2SUvuGM1W5gAAAOhzws0G53QOVKTriwFKOh6iFqwpDdlQItZh029uu5LwBAAAgD4p3GxwVptIILJNGZGh72Snq7isWmVHjuqJN3erxWfo/H4JZpcGAAAAWNo5HaSLyOWw25QzvL9+OOECXTfy+KjTyuKDJlcFAAAAWBsBCrpt/FBJ0p93fKGjTa0mVwMAAABYFwEKuurCVF04IFH1zT6t+ajc7HIAAAAAyyJAQTabLTgKtfI9pvEBAAAAnSFAQZJ085ghcjrs2vVFrXZ9Xmt2OQAAAIAlEaAgSUpNdGrKiHRJ0h/eZxQKAAAA6AgBCkGBaXxvfshmEgAAAEBHCFAIYjMJAAAA4PQIUAhqu5nEHzgTCgAAAGiHAIUQgc0kdn5eq5Iv2EwCAAAAaIsAhRBtN5NYySgUAAAAEIIAhXbabiZRz2YSAAAAQBABCu203Uziz2wmAQAAAAQRoNBO280kXn5nv97c8YWK9n0pn98wuTIAAADAXDFmFwBr6pcQK0naf6ReD67aIUnKSInT/BuyNWVEhomVAQAAAOZhBArtFJRU6OH/2dnuuqe2UTNWbFdBSYUJVQEAAADmI0AhhM9vaMGaUnU0WS9wbcGaUqbzAQAAoE8iQCFEcVm1KmobO71vSKqobVRxWXXvFQUAAABYBAEKISrrOg9PZ9MOAAAAiCYEKIRIS47r1nYAAABANCFAIcT4rFRlpMTJdpo26W6Xxmel9lpNAAAAgFUQoBDCYbdp/g3ZktRpiMpIiZf9dAkLAAAAiFIEKLQzZUSGltwxWukpodP0BiQ55bBLHx6q0X+9W2ZSdQAAAIB5OEgXHZoyIkPfyU5XcVm1KusalZYcp/FZqVr53gE9/uZuLXxrjy4f0o+pfAAAAOhTGIFCpxx2m3KG99eNV5yvnOH95bDbdMdVF2jqFYPl8xvKX7ldlV524wMAAEDfQYBCl9hsNj1100hdMihZVXVNmrnyQ7X4/GaXBQAAAPQKAhS6LMEZoyV3jFaSK0bF/6jWMwV7zC4JAAAA6BUEKJyVCwcm6T9/cLkk6eW/lekvuypMrggAAADoeQQonLUpIzL0rxMvlCQ9/D87ta/qqMkVAQAAAD2LAIVz8lDuJRqflaqjTa2asWKbjjW3ml0SAAAA0GMIUDgnMQ67Fv/wSqUlu/TJ4aN65P/tkmEYZpcFAAAA9AgCFM5ZWnKcXrx9tBx2m/78Ubn+e+sBs0sCAAAAegQBCt1i3LBUPfrdSyVJP19bqu0HvzK5IgAAAKD7EaDQbe79ZpbyRmaoxWfo31Zs15dHm8wuCQAAAOhWBCh0G5vNpl9+/3JdODBRHm+jHlj1oXx+1kMBAAAgehCg0K2SXDH67R1jlOB06O+ffalfF+41uyQAAACg2xCg0O0uHpSsp28+fsjuixv36a+lh02uCAAAAOgeBCj0iO+NGqy7vjFMkjTn9R3aX3VURfu+1Js7vlDRvi+Z2gcAAICIFGN2AYheP7nuMu38vEbbD9Zo8nPvqLVNaMpIidP8G7I1ZUSGiRUCAAAAXcMIFHqMM8auH4zNlKSQ8CRJntpGzVixXQUlFWaUBgAAAJwVAhR6jM9v6IX1n3Z4LxCnFqwpZTofAAAAIgYBCj2muKxaFbWNnd43JFXUNqq4rLr3igIAAADOAQEKPaayrvPwdDbtAAAAALMRoNBj0pLjurUdAAAAYDYCFHrM+KxUZaTEyXaaNv0TnRqfldprNQEAAADnggCFHuOw2zT/hmxJ6jRE1Ta06O+fHem9ogAAAIBzQIBCj5oyIkNL7hit9JTQaXrpKXEaeb5brX5D9/1/H2jjnkqTKgQAAADCZzMMo8/uIe31epWSkqLa2lq53W6zy4lqPr+h4rJqVdY1Ki05TuOzUuXzG5r1h+16e/dhOR12vXj7aH0ne5DZpQIAAKAPCjcbEKAIUKZq8fk1e9UOrdtVoRi7TYt/eKWmjMgwuywAAAD0MeFmA6bwwVSxDruev/UK3XjFYLX6DeWv/FBrPio3uywAAACgQwQomC7GYdev/+UK3TT6fPn8hh5c9aH+9OEXZpcFAAAAtEOAgiU47DY9+/1RumVspvyGNOf1HfqfbZ+bXRYAAAAQggAFy3DYbVp400jdPmGoDEN66H8+0qrig2aXBQAAAAQRoGApdrtN/3fqCN31jWEyDOmRP+7Sf289YHZZAAAAgCQCFCzIZjt+AO9938ySJD3+pxIt+3uZyVUBAAAABChYlM1m00/zLtP0bw2XJC1YU6qX39lvclUAAADo6whQsCybzaZ5Uy7RA/90kSTpF3/5WC9u/MzkqgAAANCXEaBgaTabTXMnX6K53/maJOnZt/fq+b9+anJVAAAA6KsIUIgID3z7Yj085RJJ0nN//US/+t+9MgzD5KoAAADQ13QpQC1cuFDjxo1TcnKy0tLSNHXqVO3duzekTWNjo/Lz89W/f38lJSXp5ptv1uHDh0PaHDx4UHl5eUpISFBaWpoeeughtba2hrTZtGmTRo8eLZfLpYsuukjLly9vV8+LL76oYcOGKS4uThMmTFBxcXFXPg4izL9dc5F+et1lkqTfbPhMTxfsIUQBAACgV3UpQG3evFn5+fnaunWrCgsL1dLSosmTJ6u+vj7YZs6cOVqzZo3eeOMNbd68WeXl5brpppuC930+n/Ly8tTc3KwtW7bolVde0fLly/XEE08E25SVlSkvL0/XXnutduzYodmzZ+u+++7T22+/HWzz2muvae7cuZo/f762b9+uUaNGKTc3V5WVlefSH7C4H0+8UPNvyJYk/Xbzfv3fdR8TogAAANBrbMY5/OuzqqpKaWlp2rx5syZOnKja2loNHDhQK1eu1Pe//31J0p49e3TZZZepqKhIV111ld566y1df/31Ki8v16BBgyRJS5cu1bx581RVVSWn06l58+Zp3bp1KikpCX6vW2+9VTU1NSooKJAkTZgwQePGjdPixYslSX6/X5mZmZo1a5YeeeSRsOr3er1KSUlRbW2t3G732XYDTPDfWw/o8T8d//0xLecCPX59tt7/x1eqrGtUWnKcxmelymG3mVwlAAAAIkW42eCc1kDV1tZKklJTUyVJ27ZtU0tLiyZNmhRsc+mll2ro0KEqKiqSJBUVFWnkyJHB8CRJubm58nq92r17d7BN22cE2gSe0dzcrG3btoW0sdvtmjRpUrBNR5qamuT1ekNeiEx3XnWBnr5ppGw26ZWiA7p8wf/qtpe36sFVO3Tby1v1zV9uUEFJhdllAgAAIMqcdYDy+/2aPXu2rr76ao0YMUKS5PF45HQ61a9fv5C2gwYNksfjCbZpG54C9wP3TtfG6/WqoaFBR44ckc/n67BN4BkdWbhwoVJSUoKvzMzMrn9wWMat44fqR1ddIEk61uwLueepbdSMFdsJUQAAAOhWZx2g8vPzVVJSolWrVnVnPT3q0UcfVW1tbfB16NAhs0vCOfD5Df1v6eEO7wXmpS5YUyqfnzVSAAAA6B5nFaBmzpyptWvXauPGjRoyZEjwenp6upqbm1VTUxPS/vDhw0pPTw+2OXVXvsD7M7Vxu92Kj4/XgAED5HA4OmwTeEZHXC6X3G53yAuRq7isWhW1jZ3eNyRV1DaquKy694oCAABAVOtSgDIMQzNnztTq1au1YcMGZWVlhdwfM2aMYmNjtX79+uC1vXv36uDBg8rJyZEk5eTkaNeuXSG75RUWFsrtdis7OzvYpu0zAm0Cz3A6nRozZkxIG7/fr/Xr1wfbIPpV1nUens6mHQAAAHAmMV1pnJ+fr5UrV+rNN99UcnJycL1RSkqK4uPjlZKSonvvvVdz585Vamqq3G63Zs2apZycHF111VWSpMmTJys7O1t33nmnnnnmGXk8Hj322GPKz8+Xy+WSJE2fPl2LFy/Www8/rHvuuUcbNmzQ66+/rnXr1gVrmTt3rqZNm6axY8dq/PjxWrRokerr63X33Xd3V9/A4tKS47q1HQAAAHAmXQpQS5YskSRdc801IdeXLVumu+66S5L03HPPyW636+abb1ZTU5Nyc3P10ksvBds6HA6tXbtWM2bMUE5OjhITEzVt2jQ9+eSTwTZZWVlat26d5syZo+eff15DhgzR73//e+Xm5gbb3HLLLaqqqtITTzwhj8ejK664QgUFBe02lkD0Gp+VqoyUOHlqG9XZKiebJJ/P35tlAQAAIIqd0zlQkY5zoCJfQUmFZqzYLkkhIcrW5n2M3aanb75c3x8z5NQvBwAAACT10jlQgNmmjMjQkjtGKz0ldJpeekqcXrj1Ct0warBa/Yb+442P9OvCT9SH//8CAAAAdANGoBiBigo+v6HismpV1jUqLTlO47NS5bDb5Pcb+lXhXr24cZ8k6aYrz9fCm0fKFeMwuWIAAABYSbjZoEtroACrcthtyhnev911u92mh3IvVeZ5Cfrpn0r0xw+/UHltg357x1ilJMSaUCkAAAAiGVP40CfcOn6olt01TkmuGG3dX62blvxdh6qPSTo+elW070u9ueMLFe37koN3AQAA0Cmm8DGFr0/Z4/Hq7mXvq6K2UQOSnLrn6iz999YDIQfyZqTEaf4N2ZoyIsPESgEAANCbws0GBCgCVJ9z2Nuoe5a/r93l3g7v2078d8kdowlRAAAAfQS78AGdGOSO0x9+fJVcMR3/9g/8PwoL1pQynQ8AAAAhCFDok3aXe9XU2vkBu4akitpGFZdV915RAAAAsDwCFPqkyrrGMzfqQjsAAAD0DQQo9ElpyXFnbtSFdgAAAOgbCFDok8ZnpSojJS64YURH+sXHanxWaq/VBAAAAOsjQKFPcthtmn9DtiR1GqJqGlr0f9eVqsXn56woAAAASGIbc7Yx7+MKSiq0YE1pu3Ogrhx6nv6yq0KS9LVBSao51qLKuqaQNpwVBQAAED04ByoMBChIks9vqLisWpV1jUpLjtP4rFQ57DYVlHj04KoPO9ytj7OiAAAAoku42SCmF2sCLMlhtylneP9217+TPUjJcTFqOtrc7p6h4yFqwZpSfSc7XQ776VZTAQAAIFqwBgroRHFZtY50EJ4COCsKAACg7yFAAZ3grCgAAACcigAFdCLcM6BWbD2gjyu8PVwNAAAArIAABXQinLOiJOn9f3yl7z7/N/3bq9u011PXK7UBAADAHAQooBOnOyvKduI1/4Zs3TBqsGw26S+7PJry/DuauXK7PqskSAEAAEQjtjFnG3OcQWdnRbU9B2qvp07Pr/9Ef9nlkSTZbNKNowbrgW9frAsHJplSNwAAAMLHOVBhIEAhXJ2dFXWq0nKvFv31E/1v6WFJkt0mTb3yfD3wTxdr2IDE3i4bAAAAYSJAhYEAhZ5S8kWtFv31E/3140pJx6cD3jz6fM36p4uVmZpgcnUAAAA4FQEqDAQo9LSPDtXoub9+ok17qyRJMXabfjB2iPKvvUhDzjsZpMId4QIAAEDPIECFgQCF3rL94Fd6rvAT/e3TI5KkWIdNt4zLVP61F+mjQzVnXGMFAACAnkWACgMBCr3tg39U67m/fqK/f/alpOMjUq3+9v8TDIw9LbljNCEKAACgF4SbDdjGHOhFY4el6tX7rtKq+6/SuGHndRieJClwdcGaUvk6aQMAAIDeR4ACTHDVhf019ztfO20bQ1JFbaM27a3snaIAAABwRjFmFwD0VZV1TWG1u/eVDzQ0NUHZGW5lD3YH/5uREiebjY0mAAAAehMBCjBJWnJc2G0PVh/TwepjKtjtCV7rlxB7PEwFgtVgt4YPTFKsg4FlAACAnkKAAkwyPitVGSlx8tQ2qqNVTjZJ6SlxWjvrm9p7uE6l5V6VVnhVWu7VZ5VHVXOsRVv2fakt+74Mfo3TYdfX0pPaBKsUXZaRrOS42F77XAAAANGMXfjYhQ8mKiip0IwV2yUpJESdaRe+plafPj18NBioAuHqaFNrh9+n7RTAr58YrUp3MwUQAAAggG3Mw0CAghUUlFR0yzlQfr+hz79qUGlFbchoVXmb57Z1XkJsyJqq7IwUXTgwkSmAAACgTyJAhYEABavw+Q0Vl1Wrsq5RaclxGp+VKoe9e0aHvqpv1scVJwNVaYVXn1Ye7XB7dGeMXZcMSg5ZV3VpOlMAAQBA9CNAhYEAhb6qscWnzyqPBgPV7vJafVxR1+kUwAv6J7TbsIIpgAAAIJoQoMJAgAJO8vsNHfrqWMj0v9IKb8jUwrZSE53ttla/cECiYpgCCAAAIhABKgwEKODMqgNTANvuAljV+RTAS9OTQ4LVpRluJbnY8BMAAFgbASoMBCjg7DS2BHYBDN2wor7Z12H7Yf0T2m1YMcjtYgogAACwDAJUGAhQQPfx+w0drD4WMv2vtNwrj/f0UwAD26pnZ7iVxRRAAABgEgJUGAhQQM/78miTPq6oCxmt2ldV3+EUQFdgCmCb0apL091KZAogAADoYQSoMBCgAHM0tvj0yeG6kJGqjys6ngJos0nD+ie227AiLZkpgAAAoPsQoMJAgAKsIzAFcHe5N2S06rC3qcP2/ROdIYHq64PdyhqQ1G3nZwEAgL6FABUGAhRgfUeONrXbBXBf1VF1MANQcbF2XZLuDt0FMD2ZKYAAAOCMCFBhIEABkamxxae9nrqQDSs+rvDqWCdTALP6J+qytqNVGW4NZAogAABogwAVBgIUED38fkMHqo8fBLy7vDYYrirrOp4COCDJqcvajFQxBRAAgL6NABUGAhQQ/arqTkwBbDNatf80UwAvTXefsgtgshKcTAEEACDaEaDCQIAC+qaGZp/2BncBrD2xC2CdGlo6mQI4oKNdAONMqBwAAPQUAlQYCFAAAnx+Qwe+rA+OVO0+MVpV1ekUQFdIoAocBMwUQAAAIhMBKgwEKABnUlnXePwg4OAugLXaf6ReHf3J2XYK4NeDuwC6Fe909H7hAACgSwhQYSBAATgbx5pb2+0CuKeTKYD2wBTAwSkho1UDk10mVA4AADpDgAoDAQpAd/H5Df3jy/qQ86p2l3t15GjHUwAHJrvarasa1v/spgD6/IaKy6pVWdeotOQ4jc9KjaiphJFePwAgOhCgwkCAAtDTKusaQ0JVaYVXZZ1MAYyPdejSjORTDgI+/RTAgpIKLVhTqoraxuC1jJQ4zb8hW1NGZPTER+pWkV4/ACB6EKDCQIACYIZjza3a46kLCVZ7PF41tvjbtbXbpAsHJrUbrRqQ5FJBSYVmrNiuU/8QD4zdLLljtKVDSKTXDwCILgSoMBCgAFiFz2+o7Eh9yEhVaXmtjhxt7rD9wCSnvI2tamptH7qk4yEkPSVO7877J0tOh/P5DX3zlxtCRp7asnr9AIDoQ4AKAwEKgNVV1jUe31L9RKj6uNyrsi87ngLYGZvteCCx2Wwn/nviuo7fsAXb2NrcO9k+0EaBa6c8T8Fntr138nu0bR/Q1OrrNBy2NemyNA1PS1KiM0aJrhgluRxKdMUE3ye6HEpyxSjBGaMkV4ziYu0h3wcAgHARoMJAgAIQieqbWvXy3/Zr0V8/NbsUy7Hb1CZgHQ9XicGA5TgRwo6/b3s/0eVoE9JilHDiXnysg0AGAH1EuNkgphdrAgB0g0RXjCZk9Zd05gC19I7RGn3BeZIhGZIMQzJOrDoygteMkBGtQJu296WTX68299q1P+X5p94PPGfX5zV6/M3dZ6z/5tHn67wEp+qbW3W0yadjTa062tSq+uZW1Tf5VN/UevzVfHwLeb8h1TW2qq6x9YzPDofdJiU6jweqQLgKhLNEV5vA5WwbxmKU6HR0eC/BSSADgEhHgAKACDQ+K1UZKXHy1Da224RBOrmG6DvZ6ZZcQzTy/BS9tGnfGet/5vujwqrf7zd0rKVNwGry6WhTq441n3xfHwxex8NYfaf3fapvbpVhnAhkTa2qa2qV1PGW9F1hs0kJsW3C2BnC1+lGxxJdMUqIdchuwZ8vAEQzAhQARCCH3ab5N2RrxortskkhISTwz+n5N2RbMjxJ3V+/3W5T0omAkdYN9fn9hhpafCEjXScDWZuRrxNh62jb922CWtv3/hMjdPXNPtU3+1RZd+6BTJISQgKXI7geLLBmLOE068faBrPA11r19wwAWAVroFgDBSCCRfo5SpFef7gMw1Bjiz8YtI6HsZPBLDANsf6U+yeD2cn7gWv+HvrbOz44QtY2jIWGr0AYSwj82hkYHWsT1E60J5ABiBRsIhEGAhSAaODzGyouq1ZlXaPSkuM0Pis1ov7RGun1m8EwDDW1tg9kIYErMHJ2YjTs2IlpjW3XkwUDWbNPvh5KZHGx9g438+hwuqLzNGvLTqw9i3HYe6ROAOixAPXOO+/o2Wef1bZt21RRUaHVq1dr6tSpwfuHDx/WvHnz9L//+7+qqanRxIkT9Zvf/EYXX3xxsE1jY6P+/d//XatWrVJTU5Nyc3P10ksvadCgQcE2Bw8e1IwZM7Rx40YlJSVp2rRpWrhwoWJiTs463LRpk+bOnavdu3crMzNTjz32mO66666wPwsBCgCAk4EsELzCWT/WdppioH3g1/VNrWrtoUDmirEH14IlOsNYK9Z2ymIHYS2WQAbghB7bha++vl6jRo3SPffco5tuuinknmEYmjp1qmJjY/Xmm2/K7Xbr17/+tSZNmqTS0lIlJiZKkubMmaN169bpjTfeUEpKimbOnKmbbrpJf//73yVJPp9PeXl5Sk9P15YtW1RRUaEf/ehHio2N1VNPPSVJKisrU15enqZPn65XX31V69ev13333aeMjAzl5uZ29WMBANBn2Ww2xcU6FBfrUP+k7nlmU6uv8/DVZlri0abWE5t/dBzM6puPj541+/wnnutXU2uzvqzvnjqdgUB22s08Tre2LDS8OWMIZEC0O6cpfDabLWQE6pNPPtEll1yikpISff3rX5ck+f1+paen66mnntJ9992n2tpaDRw4UCtXrtT3v/99SdKePXt02WWXqaioSFdddZXeeustXX/99SovLw+OSi1dulTz5s1TVVWVnE6n5s2bp3Xr1qmkpCRYz6233qqamhoVFBR0WG9TU5Oamk4u2vV6vcrMzGQECgAAi2s+MUIWzvqwtvc7W2/W3OrvkTqdDvspo2Pt148lBLfEbzOdsZONPlwxjh6pE0B7ppwDFQgncXFxwWt2u10ul0vvvvuu7rvvPm3btk0tLS2aNGlSsM2ll16qoUOHBgNUUVGRRo4cGTKlLzc3VzNmzNDu3bt15ZVXqqioKOQZgTazZ8/utL6FCxdqwYIF3fRpAQBAb3HG2OWMceq8RGe3PK/Fd5pAdtrdFduEseaTa8uaTgSyZp9fzcf8qjnW0i11xjpsnWzmEXow9Kmbd4QcFN2mvSvGzllkwDnq1gAVCEKPPvqofvvb3yoxMVHPPfecPv/8c1VUVEiSPB6PnE6n+vXrF/K1gwYNksfjCbZpG54C9wP3TtfG6/WqoaFB8fHx7ep79NFHNXfu3OD7wAgUAADoW2IddvVLcKpfQvcFsmNNvjbTFU8GsZO7K/rarC0LvX/q2WSNLf4TzzVU29Ci2obuCWQxdlvo4c7tdlI8EcxOWTvW0cYeSQQy9FHdGqBiY2P1xz/+Uffee69SU1PlcDg0adIkffe735UVNvtzuVxyuVxmlwEAAKJMrMOulAS7UhJiu+V5rT6/6pt9JzbnOGX9WJvzyNquHzva3Hpid8WT68cCI2YNLb7jz/Ub8ja2ytvY2i11Ok4JZKfdSbGDnRdPDWRxsQQyWF+3H6Q7ZswY7dixQ7W1tWpubtbAgQM1YcIEjR07VpKUnp6u5uZm1dTUhIxCHT58WOnp6cE2xcXFIc89fPhw8F7gv4Frbdu43e4OR58AAAAiRYzDrpR4u1LiuyeQ+fxGyJTDztaPne48slN/HXhuXWOr6ropkNltCq4BO+1Ois5TR8dCN/oIbOyR4HQQyNDtuj1ABaSkpEiSPv30U33wwQf6+c9/Lul4wIqNjdX69et18803S5L27t2rgwcPKicnR5KUk5OjX/ziF6qsrFRa2vEz5QsLC+V2u5WdnR1s85e//CXkexYWFgafAQAAgOMcdpvccbFyx3VPIPP7DR1rOSV8tVkrdrTplLB2mvVjgeAmSX5DqmtqVV1T9wQyWzCQOUKCWGDtWGebd5xcW9bmvStGCbEO2Tmnrs/rcoA6evSoPvvss+D7srIy7dixQ6mpqRo6dKjeeOMNDRw4UEOHDtWuXbv04IMPaurUqZo8ebKk48Hq3nvv1dy5c5Wamiq3261Zs2YpJydHV111lSRp8uTJys7O1p133qlnnnlGHo9Hjz32mPLz84NT8KZPn67Fixfr4Ycf1j333KMNGzbo9ddf17p167qjXwAAANAJu92mpBOjQYPO3PyM/H5DDSGBrP16srbrxwLryTpeb3b814YhGYZ09EQbqemMdZyJzSYlxLbdPbHt+rGT68lOHTFL6GxjD2dMnw1kkXyIepe3Md+0aZOuvfbadtenTZum5cuX64UXXtCzzz6rw4cPKyMjQz/60Y/0+OOPy+k8uUgzcJDuH/7wh5CDdAPT8yTpwIEDmjFjhjZt2qTExERNmzZNTz/9dLuDdOfMmaPS0lINGTJEjz/+OAfpAgAA9HGGcTyQhRwGfcr6sVN3XOzsPLLA+x46G1oJTkcHOyl2fPBzp2vL2oyiRUIIKSip0II1paqobQxey0iJ0/wbsjVlRIZpdYWbDc7pHKhIR4ACAADAmRiGocYWf6dTEo+dGsya22zm0cHasvqmngtk8bGOkEB1pt0VTxfWEp0OxTi693DogpIKzVixXad+/EDsW3LHaNNClCnnQAEAAADRxmazKd7pULzToYHJ576js2EYamr169Qt7YObdLQJX0dPrBdru36s7aja0RMBzXcikTW0+NTQ4tORo83nXKckuWLsp9lJMXTzjsBmHm3vB0fOnMd3WVywprRdeJIkQ8dD1II1pfpOdrqlR9IIUAAAAEAvstlsiot1KC7WoQFJ3RfI2p8v1v48slN3Xgw9SPpk2xbf8ZjT1OpXU2uzvqzvnkB22s8hqaK2UcVl1coZ3r/Hv9/ZIkABAAAAEaxtIOuf1D3PbGr1hawBC27e0em29+3XjwWmN9Y3+dTs84f9vSvrGs/cyEQEKAAAAAAhXDEOuWIcSk10nrlxGJpb/dq8t1I//u9tZ2yblhzXLd+zp3TvqjAAAAAAOIUzxq5/umyQMlLi1NnqJpuO78Y3Piu1N0vrMgIUAAAAgB7nsNs0/4ZsSWoXogLv59+QbekNJCQCFAAAAIBeMmVEhpbcMVrpKaHT9NJT4kzdwrwrWAMFAAAAoNdMGZGh72Snq7isWpV1jUpLPj5tz+ojTwEEKAAAAAC9ymG3WXqr8tNhCh8AAAAAhIkABQAAAABhIkABAAAAQJgIUAAAAAAQJgIUAAAAAISJAAUAAAAAYSJAAQAAAECYCFAAAAAAECYCFAAAAACEiQAFAAAAAGEiQAEAAABAmAhQAAAAABAmAhQAAAAAhCnG7ALMZBiGJMnr9ZpcCQAAAAAzBTJBICN0pk8HqLq6OklSZmamyZUAAAAAsIK6ujqlpKR0et9mnCliRTG/36/y8nIlJyfLZrN1yzO9Xq8yMzN16NAhud3ubnkmwkPfm4v+Nxf9by7631z0v7nof3PR/93HMAzV1dVp8ODBsts7X+nUp0eg7Ha7hgwZ0iPPdrvd/CY2CX1vLvrfXPS/ueh/c9H/5qL/zUX/d4/TjTwFsIkEAAAAAISJAAUAAAAAYSJAdTOXy6X58+fL5XKZXUqfQ9+bi/43F/1vLvrfXPS/ueh/c9H/va9PbyIBAAAAAF3BCBQAAAAAhIkABQAAAABhIkABAAAAQJgIUAAAAAAQJgIUAAAAAISJANWNXnzxRQ0bNkxxcXGaMGGCiouLzS4pKi1cuFDjxo1TcnKy0tLSNHXqVO3duzekTWNjo/Lz89W/f38lJSXp5ptv1uHDh02qOHo9/fTTstlsmj17dvAafd+zvvjiC91xxx3q37+/4uPjNXLkSH3wwQfB+4Zh6IknnlBGRobi4+M1adIkffrppyZWHD18Pp8ef/xxZWVlKT4+XsOHD9fPf/5ztd3Mlv7vPu+8845uuOEGDR48WDabTX/6059C7ofT19XV1br99tvldrvVr18/3XvvvTp69GgvforIdbr+b2lp0bx58zRy5EglJiZq8ODB+tGPfqTy8vKQZ9D/Z+9Mv//bmj59umw2mxYtWhRynf7vOQSobvLaa69p7ty5mj9/vrZv365Ro0YpNzdXlZWVZpcWdTZv3qz8/Hxt3bpVhYWFamlp0eTJk1VfXx9sM2fOHK1Zs0ZvvPGGNm/erPLyct10000mVh193n//ff32t7/V5ZdfHnKdvu85X331la6++mrFxsbqrbfeUmlpqX71q1/pvPPOC7Z55pln9MILL2jp0qV67733lJiYqNzcXDU2NppYeXT45S9/qSVLlmjx4sX6+OOP9ctf/lLPPPOMfvOb3wTb0P/dp76+XqNGjdKLL77Y4f1w+vr222/X7t27VVhYqLVr1+qdd97R/fff31sfIaKdrv+PHTum7du36/HHH9f27dv1xz/+UXv37tX3vve9kHb0/9k70+//gNWrV2vr1q0aPHhwu3v0fw8y0C3Gjx9v5OfnB9/7fD5j8ODBxsKFC02sqm+orKw0JBmbN282DMMwampqjNjYWOONN94Itvn4448NSUZRUZFZZUaVuro64+KLLzYKCwuNb33rW8aDDz5oGAZ939PmzZtnfPOb3+z0vt/vN9LT041nn302eK2mpsZwuVzGH/7wh94oMarl5eUZ99xzT8i1m266ybj99tsNw6D/e5IkY/Xq1cH34fR1aWmpIcl4//33g23eeustw2azGV988UWv1R4NTu3/jhQXFxuSjAMHDhiGQf93p876//PPPzfOP/98o6SkxLjggguM5557LniP/u9ZjEB1g+bmZm3btk2TJk0KXrPb7Zo0aZKKiopMrKxvqK2tlSSlpqZKkrZt26aWlpaQn8ell16qoUOH8vPoJvn5+crLywvpY4m+72l//vOfNXbsWP3gBz9QWlqarrzySr388svB+2VlZfJ4PCH9n5KSogkTJtD/3eAb3/iG1q9fr08++USS9NFHH+ndd9/Vd7/7XUn0f28Kp6+LiorUr18/jR07Nthm0qRJstvteu+993q95mhXW1srm82mfv36SaL/e5rf79edd96phx56SF//+tfb3af/e1aM2QVEgyNHjsjn82nQoEEh1wcNGqQ9e/aYVFXf4Pf7NXv2bF199dUaMWKEJMnj8cjpdAb/EA8YNGiQPB6PCVVGl1WrVmn79u16//33292j73vW/v37tWTJEs2dO1c/+clP9P777+uBBx6Q0+nUtGnTgn3c0Z9F9P+5e+SRR+T1enXppZfK4XDI5/PpF7/4hW6//XZJov97UTh97fF4lJaWFnI/JiZGqamp/Dy6WWNjo+bNm6fbbrtNbrdbEv3f0375y18qJiZGDzzwQIf36f+eRYBCRMvPz1dJSYneffdds0vpEw4dOqQHH3xQhYWFiouLM7ucPsfv92vs2LF66qmnJElXXnmlSkpKtHTpUk2bNs3k6qLf66+/rldffVUrV67U17/+de3YsUOzZ8/W4MGD6X/0WS0tLfqXf/kXGYahJUuWmF1On7Bt2zY9//zz2r59u2w2m9nl9ElM4esGAwYMkMPhaLfT2OHDh5Wenm5SVdFv5syZWrt2rTZu3KghQ4YEr6enp6u5uVk1NTUh7fl5nLtt27apsrJSo0ePVkxMjGJiYrR582a98MILiomJ0aBBg+j7HpSRkaHs7OyQa5dddpkOHjwoScE+5s+invHQQw/pkUce0a233qqRI0fqzjvv1Jw5c7Rw4UJJ9H9vCqev09PT223k1Nraqurqan4e3SQQng4cOKDCwsLg6JNE//ekv/3tb6qsrNTQoUODfxcfOHBA//7v/65hw4ZJov97GgGqGzidTo0ZM0br168PXvP7/Vq/fr1ycnJMrCw6GYahmTNnavXq1dqwYYOysrJC7o8ZM0axsbEhP4+9e/fq4MGD/DzO0be//W3t2rVLO3bsCL7Gjh2r22+/Pfhr+r7nXH311e227P/kk090wQUXSJKysrKUnp4e0v9er1fvvfce/d8Njh07Jrs99K9Nh8Mhv98vif7vTeH0dU5OjmpqarRt27Zgmw0bNsjv92vChAm9XnO0CYSnTz/9VH/961/Vv3//kPv0f8+58847tXPnzpC/iwcPHqyHHnpIb7/9tiT6v8eZvYtFtFi1apXhcrmM5cuXG6Wlpcb9999v9OvXz/B4PGaXFnVmzJhhpKSkGJs2bTIqKiqCr2PHjgXbTJ8+3Rg6dKixYcMG44MPPjBycnKMnJwcE6uOXm134TMM+r4nFRcXGzExMcYvfvEL49NPPzVeffVVIyEhwVixYkWwzdNPP23069fPePPNN42dO3caN954o5GVlWU0NDSYWHl0mDZtmnH++ecba9euNcrKyow//vGPxoABA4yHH3442Ib+7z51dXXGhx9+aHz44YeGJOPXv/618eGHHwZ3eQunr6dMmWJceeWVxnvvvWe8++67xsUXX2zcdtttZn2kiHK6/m9ubja+973vGUOGDDF27NgR8ndxU1NT8Bn0/9k70+//U526C59h0P89iQDVjX7zm98YQ4cONZxOpzF+/Hhj69atZpcUlSR1+Fq2bFmwTUNDg/Fv//ZvxnnnnWckJCQY//zP/2xUVFSYV3QUOzVA0fc9a82aNcaIESMMl8tlXHrppcbvfve7kPt+v994/PHHjUGDBhkul8v49re/bezdu9ekaqOL1+s1HnzwQWPo0KFGXFycceGFFxo//elPQ/7BSP93n40bN3b4Z/20adMMwwivr7/88kvjtttuM5KSkgy3223cfffdRl1dnQmfJvKcrv/Lyso6/bt448aNwWfQ/2fvTL//T9VRgKL/e47NMNocoQ4AAAAA6BRroAAAAAAgTAQoAAAAAAgTAQoAAAAAwkSAAgAAAIAwEaAAAAAAIEwEKAAAAAAIEwEKAAAAAMJEgAIAAACAMBGgAAAAACBMBCgAAAAACBMBCgAAAADC9P8D/+8PbuAfWTAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "results = GV_KNN.cv_results_\n", + "mse = -results['mean_test_score']\n", + "k_values = results['param_n_neighbors'].data\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(k_values, mse, marker='o', linestyle='-')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3aOBO56I8Js8" + }, + "source": [ + "The code shows that the elboq point occurs around n=30." ] }, { @@ -2074,7 +6456,7 @@ }, { "cell_type": "code", - "execution_count": 82, + "execution_count": 75, "metadata": { "id": "bJk1-9VhlRL6" }, @@ -2087,7 +6469,7 @@ }, { "cell_type": "code", - "execution_count": 83, + "execution_count": 76, "metadata": { "id": "sZVPMR9Wlo7-" }, @@ -2103,11 +6485,24 @@ }, { "cell_type": "code", - "execution_count": 84, + "execution_count": 77, "metadata": { - "id": "vd1fDjQiltP4" + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vd1fDjQiltP4", + "outputId": "54545c64-073b-41c5-d03a-cc9cbff204f2" }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" + ] + } + ], "source": [ "# Create an ANN model\n", "model9 = Sequential()\n", @@ -2118,7 +6513,7 @@ }, { "cell_type": "code", - "execution_count": 85, + "execution_count": 78, "metadata": { "id": "ZIf94WLMlv04" }, @@ -2130,24 +6525,24 @@ }, { "cell_type": "code", - "execution_count": 86, + "execution_count": 79, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "FX5DTKqslxWf", - "outputId": "9253b26c-1a79-4390-975e-d14c28a5e2a8" + "outputId": "d2353bcd-1508-469b-e4a4-9344af25a2cc" }, "outputs": [ { - "output_type": "execute_result", "data": { "text/plain": [ - "" + "" ] }, + "execution_count": 79, "metadata": {}, - "execution_count": 86 + "output_type": "execute_result" } ], "source": [ @@ -2157,20 +6552,20 @@ }, { "cell_type": "code", - "execution_count": 87, + "execution_count": 80, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "OVW2qpNsmGVq", - "outputId": "34343782-f560-4dee-c307-ff0d0c52ab5a" + "outputId": "36e4620e-9823-4b12-d6d2-509c0bcf2a88" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "45/45 [==============================] - 0s 1ms/step\n" + "\u001b[1m45/45\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step\n" ] } ], @@ -2181,7 +6576,7 @@ }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 81, "metadata": { "id": "CqRmjMj2maJY" }, @@ -2200,29 +6595,29 @@ }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 82, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "5zuwkC1emmh3", - "outputId": "5d6a0e05-3112-4d27-f5fb-ed665867b22d" + "outputId": "3154af15-1dba-4edc-9b4e-f012f6ff6886" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "RMSE: 2.7570259701356035\n", - "MAE: 1.7412277270507284\n", - "MAPE: 0.012205298865408084\n", - "Accuracy: 0.8904593639575972\n", - "Precision: 0.8242753623188406\n", + "RMSE: 2.7525331773064208\n", + "MAE: 1.7070852219826735\n", + "MAPE: 0.011166669166884299\n", + "Accuracy: 0.901060070671378\n", + "Precision: 0.9446640316205533\n", "Confusion Matrix:\n", - " [[805 97]\n", - " [ 58 455]]\n", - "Recall: 0.8869395711500975\n", - "F1 Score: 0.8544600938967135\n" + " [[558 42]\n", + " [ 98 717]]\n", + "Recall: 0.8797546012269939\n", + "F1 Score: 0.9110546378653113\n" ] } ], @@ -2249,7 +6644,7 @@ }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 83, "metadata": { "id": "nCoyUanhnDKw" }, @@ -2262,7 +6657,7 @@ }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 84, "metadata": { "id": "ThcXESVEVv0U" }, @@ -2278,7 +6673,7 @@ }, { "cell_type": "code", - "execution_count": 92, + "execution_count": 85, "metadata": { "id": "uACvajfImrbB" }, @@ -2297,11 +6692,24 @@ }, { "cell_type": "code", - "execution_count": 93, + "execution_count": 86, "metadata": { - "id": "r066pVYpnXH5" + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "r066pVYpnXH5", + "outputId": "faddb972-58cc-43a7-eb04-4829ec65f019" }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/layers/rnn/rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(**kwargs)\n" + ] + } + ], "source": [ "# Create an LSTM model\n", "model = Sequential()\n", @@ -2311,7 +6719,7 @@ }, { "cell_type": "code", - "execution_count": 94, + "execution_count": 87, "metadata": { "id": "YpSfHu6gov35" }, @@ -2323,24 +6731,24 @@ }, { "cell_type": "code", - "execution_count": 95, + "execution_count": 88, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "0vHjcluaoxzP", - "outputId": "1eaafd31-9f91-4655-f437-e9199c0f7933" + "outputId": "8ca3e888-84d1-4c79-e045-cfa9d3e76d5f" }, "outputs": [ { - "output_type": "execute_result", "data": { "text/plain": [ - "" + "" ] }, + "execution_count": 88, "metadata": {}, - "execution_count": 95 + "output_type": "execute_result" } ], "source": [ @@ -2350,20 +6758,20 @@ }, { "cell_type": "code", - "execution_count": 96, + "execution_count": 89, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "gEE06_TjozYv", - "outputId": "30306af7-2ec8-4733-db96-d3416a7fc6d4" + "outputId": "5a39a4df-0a56-45f5-ac4b-c2b00f0f15d0" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "44/44 [==============================] - 0s 4ms/step\n" + "\u001b[1m44/44\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 9ms/step\n" ] } ], @@ -2374,7 +6782,7 @@ }, { "cell_type": "code", - "execution_count": 113, + "execution_count": 90, "metadata": { "id": "7k6C8DrxpB_Q" }, @@ -2393,29 +6801,29 @@ }, { "cell_type": "code", - "execution_count": 114, + "execution_count": 91, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "i_6-UUDhpi0c", - "outputId": "3dcc5761-03b6-4b52-dfe6-08dece835c8d" + "outputId": "af51da10-aedc-479d-80ca-96880408422c" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "RMSE: 10.083053125286519\n", - "MAE: 7.973378150691296\n", - "MAPE: 0.12730792351246625\n", - "Accuracy: 0.9886201991465149\n", - "Precision: 0.9904912836767037\n", - "Recall: 0.984251968503937\n", - "F1 Score: 0.9873617693522907\n", + "RMSE: 11.43451426022395\n", + "MAE: 9.387460991819042\n", + "MAPE: 0.1689158970124316\n", + "Accuracy: 0.9957325746799431\n", + "Precision: 0.9965277777777778\n", + "Recall: 0.9930795847750865\n", + "F1 Score: 0.9948006932409013\n", "Confusion Matrix:\n", - " [[765 6]\n", - " [ 10 625]]\n" + " [[826 2]\n", + " [ 4 574]]\n" ] } ], @@ -2433,14 +6841,35 @@ }, { "cell_type": "code", + "execution_count": 92, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "qpWPtph9CGip", + "outputId": "746d4c8b-bd76-4873-d9b3-b21e078b15bd" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABE9klEQVR4nO3deXhM9+LH8c8kZBFJrNmKiKWiqP0GRauClqqtiqvXllu9FbXVbWmLul2Utm6L4rYlVENUieqGNIq217XH0qo1liJBySIIkvP7w2N+HQkyMjGT0/freeZ5mu85c84nyan55DvnnLEYhmEIAADApNycHQAAAKAoUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAOM2rr74qi8WiM2fOFPm+Vq5cqQYNGsjLy0sWi0VpaWlFvs/ibN68ebJYLDp8+LCzowCFRtkBisD1F4o/PgICAtSmTRt9++23dz3Pl19+qc6dOyswMFAeHh4qV66cWrdurXfffVcZGRl3Pc/d9vvvv+vJJ5+Ut7e3PvjgAy1YsEA+Pj63fd7MmTNlsVgUERFxF1ICKColnB0AMLN//etfCgsLk2EYSk1N1bx589SxY0d9+eWXeuyxx4p8/7m5uYqKitK8efNUr149DRkyRJUrV1ZmZqY2bNigV155Rd98840SExOLPIszbd68WZmZmXrttdcUGRlZ4OfFxsaqatWq2rRpkw4cOKAaNWoUYUrX8re//U29e/eWp6ens6MAhUbZAYrQo48+qiZNmli/joqKUmBgoBYtWuSQspObm6vLly/Ly8sr3+VTpkzRvHnzNHLkSL377ruyWCzWZcOHD9fJkyf1ySefFGofxcGpU6ckSWXKlCnwc5KTk/Xf//5Xy5Yt0zPPPKPY2FhNmDChiBIWTlZWVoFmquzh7u4ud3d3h24TcBbexgLuojJlysjb21slStj+nfHOO++oRYsWKl++vLy9vdW4cWN9/vnneZ5vsVg0dOhQxcbGqk6dOvL09NTKlSvz3deFCxc0efJk1alTR2+//bZN0bkuODhYL774YoH3cSc5a9WqJS8vLzVu3Fjr16/PN2taWpoGDBigMmXKyN/fXwMHDtSFCxfy/yHeYMmSJWrcuLG8vb1VoUIFPfXUUzp+/Lh1+UMPPaT+/ftLkpo2bSqLxaIBAwbcdruxsbEqW7asOnXqpCeeeEKxsbE3zT5y5EhVrVpVnp6eqlSpkvr162dzHtKlS5f06quv6t5775WXl5eCg4PVvXt3HTx4UJK0du1aWSwWrV271mbbhw8flsVi0bx586xjAwYMUOnSpXXw4EF17NhRvr6+6tu3ryTphx9+UM+ePVWlShV5enqqcuXKGjlypC5evJgn96+//qonn3xSFStWlLe3t2rVqqWXX37Zuvxm5+x8++23atWqlXx8fOTr66tOnTrp559/tlknJSVFAwcOVKVKleTp6ang4GB16dKF83/gNMzsAEUoPT1dZ86ckWEYOnXqlKZPn67z58/rqaeeslnv/fff1+OPP66+ffvq8uXLiouLU8+ePfXVV1+pU6dONuuuWbNGn332mYYOHaoKFSqoatWq+e77xx9/VFpamkaPHm33X+g324c9OdetW6fFixdr2LBh8vT01MyZM/XII49o06ZNqlu3rs26Tz75pMLCwjRp0iRt27ZNH3/8sQICAjR58uRb5pw3b54GDhyopk2batKkSUpNTdX777+vn376Sdu3b1eZMmX08ssvq1atWvrwww+tbytWr179tj+D2NhYde/eXR4eHurTp49mzZqlzZs3q2nTptZ1zp8/r1atWmnPnj0aNGiQGjVqpDNnzmjFihX67bffVKFCBeXk5Oixxx5TYmKievfureHDhyszM1MJCQnavXt3gbLc6OrVq+rQoYNatmypd955R6VKlZJ0rfhduHBBzz77rMqXL69NmzZp+vTp+u2337RkyRLr83fu3KlWrVqpZMmSGjx4sKpWraqDBw/qyy+/1BtvvHHT/S5YsED9+/dXhw4dNHnyZF24cEGzZs1Sy5YttX37dutx0qNHD/3888967rnnVLVqVZ06dUoJCQk6evToTY9XoEgZABwuJibGkJTn4enpacybNy/P+hcuXLD5+vLly0bdunWNhx9+2GZckuHm5mb8/PPPt83w/vvvG5KM5cuX24xfvXrVOH36tM0jNze3QPuwJ6ckY8uWLdaxI0eOGF5eXka3bt2sYxMmTDAkGYMGDbJ5frdu3Yzy5cvf8vu7fPmyERAQYNStW9e4ePGidfyrr74yJBnjx4+3jl3/fWzevPmW27xuy5YthiQjISHBMAzDyM3NNSpVqmQMHz7cZr3x48cbkoxly5bl2cb1n+ncuXMNScbUqVNvus73339vSDK+//57m+XJycmGJCMmJsY61r9/f0OSMWbMmDzbu/H3YxiGMWnSJMNisRhHjhyxjrVu3drw9fW1GftjHsP4/59ZcnKyYRiGkZmZaZQpU8Z4+umnbZ6TkpJi+Pv7W8fPnTtnSDLefvvtPFkAZ+FtLKAIffDBB0pISFBCQoI+/fRTtWnTRn//+9+1bNkym/W8vb2t/33u3Dmlp6erVatW2rZtW55tPvjgg7rvvvtuu+/rV1mVLl3aZnzXrl2qWLGizeP3338v0D7sydm8eXM1btzY+nWVKlXUpUsXrVq1Sjk5OTbr/uMf/7D5ulWrVvr9999veaXYli1bdOrUKQ0ZMsTmfKJOnTopPDxcX3/99U2fezuxsbEKDAxUmzZtJF17W65Xr16Ki4uzyb506VLVr19f3bp1y7ON628bLl26VBUqVNBzzz1303XuxLPPPptn7I+/n6ysLJ05c0YtWrSQYRjavn27JOn06dNav369Bg0apCpVqhQ4T0JCgtLS0tSnTx+dOXPG+nB3d1dERIS+//57awYPDw+tXbtW586du+PvD3Ak3sYCitBf/vIXmxOU+/Tpo4YNG2ro0KF67LHH5OHhIUn66quv9PrrryspKUnZ2dnW9fN78QkLCyvQvn19fSVde6vlj2rUqKGEhARJ0ieffKIFCxYUeB/25KxZs2aesXvvvVcXLlzQ6dOnFRQUZB2/8UW3bNmykq4VKj8/v3yzHDlyRJJUq1atPMvCw8P1448/5vu828nJyVFcXJzatGmj5ORk63hERITeffddJSYmqn379pKkgwcPqkePHrfc3sGDB1WrVq0852kVRokSJVSpUqU840ePHtX48eO1YsWKPEUjPT1dknTo0CFJyvNW4u3s379fkvTwww/nu/z678nT01OTJ0/W888/r8DAQDVr1kyPPfaY+vXrZ/M7B+4myg5wF7m5ualNmzZ6//33tX//ftWpU0c//PCDHn/8cbVu3VozZ85UcHCwSpYsqZiYGC1cuDDPNv741/uthIeHS5J2796tLl26WMdLly5tvfz6ZoUgv33Ym9MeNzunyDCMQm33TqxZs0YnT55UXFyc4uLi8iyPjY21lh1HudmMyo0zYNd5enrKzc0tz7rt2rXT2bNn9eKLLyo8PFw+Pj46fvy4BgwYoNzc3EJlvP78BQsW5Fta/ljmRowYoc6dO2v58uVatWqVxo0bp0mTJmnNmjVq2LBhoXIAd4KyA9xlV69elfT/My5Lly6Vl5eXVq1aZXNPk5iYmELtp1WrVvL391dcXJzGjh2b58XRXvbmvD4T8Ef79u1TqVKlVLFixUJlkaTQ0FBJ0t69e/PMNuzdu9e63F6xsbEKCAjQBx98kGfZsmXLFB8fr9mzZ8vb21vVq1fX7t27b7m96tWra+PGjbpy5YpKliyZ7zrXZ7JuvKvz9dmrgti1a5f27dun+fPnq1+/ftbx67N411WrVk2Sbpv7RtdPpA4ICCjQvYqqV6+u559/Xs8//7z279+vBg0a6N1339Wnn35q134BR+CcHeAuunLlilavXi0PDw/Vrl1b0rVZDYvFYvNX/OHDh7V8+fJC7atUqVJ64YUXtHv3bo0ZMybfWRJ7Zk7szblhwwabc3mOHTumL774Qu3bt3fI/VuaNGmigIAAzZ492+YttW+//VZ79uzJc3VYQVy8eFHLli3TY489pieeeCLPY+jQocrMzNSKFSskXbvqaMeOHYqPj8+zres/2x49eujMmTOaMWPGTdcJDQ2Vu7t7nkvzZ86cWeDs13+mf/ydGoah999/32a9ihUrqnXr1po7d66OHj2ab578dOjQQX5+fnrzzTd15cqVPMtPnz4t6dotDy5dumSzrHr16vL19bX5PQF3EzM7QBH69ttv9euvv0q6dmO7hQsXav/+/RozZoz1HIdOnTpp6tSpeuSRR/TXv/5Vp06d0gcffKAaNWpo586dhdr/mDFjtGfPHr399ttavXq1evTooUqVKuncuXPatm2blixZooCAgALdMNDenHXr1lWHDh1sLj2XpIkTJxbqe7quZMmSmjx5sgYOHKgHH3xQffr0sV56XrVqVY0cOdLuba5YsUKZmZl6/PHH813erFkzVaxYUbGxserVq5f++c9/6vPPP1fPnj01aNAgNW7cWGfPntWKFSs0e/Zs1a9fX/369dMnn3yiUaNGadOmTWrVqpWysrL03XffaciQIerSpYv8/f3Vs2dPTZ8+XRaLRdWrV9dXX31lvRliQYSHh6t69eoaPXq0jh8/Lj8/Py1dujTfk4SnTZumli1bqlGjRho8eLDCwsJ0+PBhff3110pKSsp3+35+fpo1a5b+9re/qVGjRurdu7cqVqyoo0eP6uuvv9YDDzygGTNmaN++fWrbtq2efPJJ3XfffSpRooTi4+OVmpqq3r17F/j7ARzKadeBASaW36XnXl5eRoMGDYxZs2bZXOJrGIYxZ84co2bNmoanp6cRHh5uxMTEWC/L/iNJRnR0tN154uPjjY4dOxoVK1Y0SpQoYZQpU8Zo2bKl8fbbbxtpaWkF3oe9OT/99FPr+g0bNsxzafX1554+fdpm/MbLnm9l8eLFRsOGDQ1PT0+jXLlyRt++fY3ffvst3+3d7tLzzp07G15eXkZWVtZN1xkwYIBRsmRJ48yZM4ZhGMbvv/9uDB061LjnnnsMDw8Po1KlSkb//v2tyw3j2iXhL7/8shEWFmaULFnSCAoKMp544gnj4MGD1nVOnz5t9OjRwyhVqpRRtmxZ45lnnjF2796d76XnPj4++Wb75ZdfjMjISKN06dJGhQoVjKefftrYsWNHnm0YhmHs3r3b6Natm1GmTBnDy8vLqFWrljFu3Lg8P7Mbfwfff/+90aFDB8Pf39/w8vIyqlevbgwYMMB6m4EzZ84Y0dHRRnh4uOHj42P4+/sbERERxmeffXbLnz1QlCyG4YQzAAGYmsViUXR0dL5v3QDA3cY5OwAAwNQoOwAAwNQoOwAAwNS4GguAw3EqIABXwswOAAAwNcoOAAAwNd7G0rXPfDlx4oR8fX0L9SnEAADg7jEMQ5mZmQoJCbnlR+JQdiSdOHFClStXdnYMAABwB44dO6ZKlSrddDllR5Kvr6+kaz+s67fwBwAAri0jI0OVK1e2vo7fDGVHsr515efnR9kBAKCYud0pKJygDAAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATM2pZWf9+vXq3LmzQkJCZLFYtHz5cpvlhmFo/PjxCg4Olre3tyIjI7V//36bdc6ePau+ffvKz89PZcqUUVRUlM6fP38XvwsAAODKnFp2srKyVL9+fX3wwQf5Lp8yZYqmTZum2bNna+PGjfLx8VGHDh106dIl6zp9+/bVzz//rISEBH311Vdav369Bg8efLe+BQAA4OIshmEYzg4hXfsQr/j4eHXt2lXStVmdkJAQPf/88xo9erQkKT09XYGBgZo3b5569+6tPXv26L777tPmzZvVpEkTSdLKlSvVsWNH/fbbbwoJCSnQvjMyMuTv76/09HQ+CBQAgGKioK/fLnvOTnJyslJSUhQZGWkd8/f3V0REhDZs2CBJ2rBhg8qUKWMtOpIUGRkpNzc3bdy48abbzs7OVkZGhs0DAACYk8uWnZSUFElSYGCgzXhgYKB1WUpKigICAmyWlyhRQuXKlbOuk59JkybJ39/f+qhcubKD0wMAAFfhsmWnKI0dO1bp6enWx7Fjx5wd6a6zWJz3cNVsAIoXV/53DK6lhLMD3ExQUJAkKTU1VcHBwdbx1NRUNWjQwLrOqVOnbJ539epVnT171vr8/Hh6esrT09PxoQG4PGe+ULnGGZL4M3PW8e/sY99lZ3bCwsIUFBSkxMRE61hGRoY2btyo5s2bS5KaN2+utLQ0bd261brOmjVrlJubq4iIiLueGQAAuB6nzuycP39eBw4csH6dnJyspKQklStXTlWqVNGIESP0+uuvq2bNmgoLC9O4ceMUEhJivWKrdu3aeuSRR/T0009r9uzZunLlioYOHarevXsX+EosAMCt/VlnA2AeTi07W7ZsUZs2baxfjxo1SpLUv39/zZs3Ty+88IKysrI0ePBgpaWlqWXLllq5cqW8vLysz4mNjdXQoUPVtm1bubm5qUePHpo2bdpd/14AAIBrcpn77DjTn/E+O6583gJ/RaIoufKx76pc9f9Jfpf2c9Xf5Z0q9vfZAQAAcATKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMLUSzg4AAICZWCzO27dhOG/froyZHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGpcjQUUc6565Yer5gLw58PMDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDVuKggALsJZN2LkJowwO2Z2AACAqTGzAxQQf3UDQPHEzA4AADA1yg4AADA1yg4AADA1yg4AADA1yg4AADA1yg4AADA1yg4AADA17rNTxJx1bxaJ+7MAACAxswMAAEyOsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEzNpctOTk6Oxo0bp7CwMHl7e6t69ep67bXXZPzhmmrDMDR+/HgFBwfL29tbkZGR2r9/vxNTAwAAV+LSZWfy5MmaNWuWZsyYoT179mjy5MmaMmWKpk+fbl1nypQpmjZtmmbPnq2NGzfKx8dHHTp00KVLl5yYHAAAuAqXvqngf//7X3Xp0kWdOnWSJFWtWlWLFi3Spk2bJF2b1Xnvvff0yiuvqEuXLpKkTz75RIGBgVq+fLl69+7ttOwAAMA1uPTMTosWLZSYmKh9+/ZJknbs2KEff/xRjz76qCQpOTlZKSkpioyMtD7H399fERER2rBhw023m52drYyMDJsHAAAwJ5ee2RkzZowyMjIUHh4ud3d35eTk6I033lDfvn0lSSkpKZKkwMBAm+cFBgZal+Vn0qRJmjhxYtEFBwAALsOlZ3Y+++wzxcbGauHChdq2bZvmz5+vd955R/Pnzy/UdseOHav09HTr49ixYw5KDAAAXI1Lz+z885//1JgxY6zn3tSrV09HjhzRpEmT1L9/fwUFBUmSUlNTFRwcbH1eamqqGjRocNPtenp6ytPTs0izAwAA1+DSMzsXLlyQm5ttRHd3d+Xm5kqSwsLCFBQUpMTEROvyjIwMbdy4Uc2bN7+rWQEAgGty6Zmdzp0764033lCVKlVUp04dbd++XVOnTtWgQYMkSRaLRSNGjNDrr7+umjVrKiwsTOPGjVNISIi6du3q3PAAAMAluHTZmT59usaNG6chQ4bo1KlTCgkJ0TPPPKPx48db13nhhReUlZWlwYMHKy0tTS1bttTKlSvl5eXlxOQAAMBVWIw/3o74TyojI0P+/v5KT0+Xn5+fQ7dtsTh0c3a51W/WVXNJzstGLvsVx2PMVXNJHGM3ctVcEseYvYqqaRT09dulz9kBAAAoLMoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNbvLzsWLF3XhwgXr10eOHNF7772n1atXOzQYAACAI9hddrp06aJPPvlEkpSWlqaIiAi9++676tKli2bNmuXwgAAAAIVhd9nZtm2bWrVqJUn6/PPPFRgYqCNHjuiTTz7RtGnTHB4QAACgMOwuOxcuXJCvr68kafXq1erevbvc3NzUrFkzHTlyxOEBAQAACsPuslOjRg0tX75cx44d06pVq9S+fXtJ0qlTp+Tn5+fwgAAAAIVhd9kZP368Ro8erapVq+ovf/mLmjdvLunaLE/Dhg0dHhAAAKAwLIZhGPY+KSUlRSdPnlT9+vXl5natL23atEl+fn4KDw93eMiilpGRIX9/f6Wnpzt8dspicejm7HKr36yr5pKcl41c9iuOx5ir5pI4xm7kqrkkjjF72d80Cqagr993dJ+doKAg+fr6KiEhQRcvXpQkNW3atFgWHQAAYG52l53ff/9dbdu21b333quOHTvq5MmTkqSoqCg9//zzDg8IAABQGHaXnZEjR6pkyZI6evSoSpUqZR3v1auXVq5c6dBwAAAAhVXC3iesXr1aq1atUqVKlWzGa9asyaXnAADA5dg9s5OVlWUzo3Pd2bNn5enp6ZBQAAAAjmJ32WnVqpX14yIkyWKxKDc3V1OmTFGbNm0cGg4AAKCw7H4ba8qUKWrbtq22bNmiy5cv64UXXtDPP/+ss2fP6qeffiqKjAAAAHfM7pmdunXrat++fWrZsqW6dOmirKwsde/eXdu3b1f16tWLIiMAAMAdu6ObCpoNNxW8u4rrTa/IlVdxPMZcNZfEMXYjV80lcYzZy9k3FbT7baz169ffcnnr1q3t3SQAAECRsbvsPPTQQ3nGLH+oijk5OYUKBAAA4Eh2n7Nz7tw5m8epU6e0cuVKNW3aVKtXry6KjAAAAHfM7pkdf3//PGPt2rWTh4eHRo0apa1btzokGAAAgCPc0QeB5icwMFB79+511OYAAAAcwu6ZnZ07d9p8bRiGTp48qbfeeksNGjRwVC4AAACHsLvsNGjQQBaLRTdesd6sWTPNnTvXYcEAAAAcwe6yk5ycbPO1m5ubKlasKC8vL4eFAgAAcBS7z9kJDQ21eVSuXLlIi87x48f11FNPqXz58vL29la9evW0ZcsW63LDMDR+/HgFBwfL29tbkZGR2r9/f5HlAQAAxUuBZnamTZtW4A0OGzbsjsPc6Ny5c3rggQfUpk0bffvtt6pYsaL279+vsmXLWteZMmWKpk2bpvnz5yssLEzjxo1Thw4d9MsvvzDbBAAACvZxEWFhYQXbmMWiQ4cOFTrUdWPGjNFPP/2kH374Id/lhmEoJCREzz//vEaPHi1JSk9PV2BgoObNm6fevXsXaD98XMTdVVxvZ06uvIrjMeaquSSOsRu5ai6JY8xexeLjIm48T+duWbFihTp06KCePXtq3bp1uueeezRkyBA9/fTT1lwpKSmKjIy0Psff318RERHasGHDTctOdna2srOzrV9nZGQU7TcCAACcxmH32SkKhw4d0qxZs1SzZk2tWrVKzz77rIYNG6b58+dLklJSUiRdu8fPHwUGBlqX5WfSpEny9/e3PipXrlx03wQAAHAqu6/GkqTffvtNK1as0NGjR3X58mWbZVOnTnVIMEnKzc1VkyZN9Oabb0qSGjZsqN27d2v27Nnq37//HW937NixGjVqlPXrjIwMCg8AACZld9lJTEzU448/rmrVqunXX39V3bp1dfjwYRmGoUaNGjk0XHBwsO677z6bsdq1a2vp0qWSpKCgIElSamqqgoODreukpqbe8gaHnp6e8vT0dGhWAADgmux+G2vs2LEaPXq0du3aJS8vLy1dulTHjh3Tgw8+qJ49ezo03AMPPJDnIyj27dun0NBQSddOnA4KClJiYqJ1eUZGhjZu3KjmzZs7NAsAACimDDuVLl3aOHDggGEYhlGmTBlj9+7dhmEYRlJSkhEaGmrv5m5p06ZNRokSJYw33njD2L9/vxEbG2uUKlXK+PTTT63rvPXWW0aZMmWML774wti5c6fRpUsXIywszLh48WKB95Oenm5IMtLT0x2a3zAM49o56M55FMdczsxGrj/HMeaquTjGik8ujjHH57pTBX39tvttLB8fH+t5OsHBwTp48KDq1KkjSTpz5owje5iaNm2q+Ph4jR07Vv/6178UFham9957T3379rWu88ILLygrK0uDBw9WWlqaWrZsqZUrV3KPHQAAIKmA99n5o65du6pTp056+umnNXr0aH3xxRcaMGCAli1bprJly+q7774rqqxFhvvs3F23O+Jc9T4Q5MqrOB5jrppL4hi7kavmkjjG7GVf0yg4h95nR5LOnj2rcuXKaerUqTp//rwkaeLEiTp//rwWL16smjVrOvRKLAAAAEcocNkJCQlR165dFRUVpXbt2km69pbW7NmziywcAABAYRX4aqyPPvpIp0+f1iOPPKKqVavq1Vdf1eHDh4swGgAAQOEVuOz87W9/U2Jiog4cOKD+/ftr/vz5qlGjhtq1a6fFixfnubkgAACAK7D7PjthYWGaOHGikpOTtXLlSgUEBGjQoEEKDg526CeeAwAAOILdV2PlZ+nSpdZLv3NychyR667iaqy7q7heLUCuvIrjMeaquSSOsRu5ai6JY8xexeZqrBsdOXJEMTExmj9/vo4dO6Y2bdooKirqTjcHAABQJOwqO9nZ2Vq6dKnmzp2rtWvX6p577tGAAQM0cOBAVa1atYgiAgAA3LkCl50hQ4YoLi5OFy5cUJcuXfTNN9+oXbt2sjhzvg4AAOA2Clx2fvzxR02YMEFPPfWUypcvX5SZAAAAHKbAZWfnzp1FmQMAAKBI2H3pOQAAQHFC2QEAAKZG2QEAAKZG2QEAAKZmd9mpWrWq/vWvf+no0aNFkQcAAMCh7C47I0aM0LJly1StWjW1a9dOcXFxys7OLopsAAAAhXZHZScpKUmbNm1S7dq19dxzzyk4OFhDhw7Vtm3biiIjAADAHbvjc3YaNWqkadOm6cSJE5owYYI+/vhjNW3aVA0aNNDcuXPlgM8XBQAAKLQ7/iDQK1euKD4+XjExMUpISFCzZs0UFRWl3377TS+99JK+++47LVy40JFZAQAA7GZ32dm2bZtiYmK0aNEiubm5qV+/fvr3v/+t8PBw6zrdunVT06ZNHRoUAADgTthddpo2bap27dpp1qxZ6tq1q0qWLJlnnbCwMPXu3dshAQEAAArD7rJz6NAhhYaG3nIdHx8fxcTE3HEoAAAAR7H7BOVTp05p48aNecY3btyoLVu2OCQUAACAo9hddqKjo3Xs2LE848ePH1d0dLRDQgEAADiK3WXnl19+UaNGjfKMN2zYUL/88otDQgEAADiK3WXH09NTqampecZPnjypEiXu+Ep2AACAImF32Wnfvr3Gjh2r9PR061haWppeeukltWvXzqHhAAAACsvuqZh33nlHrVu3VmhoqBo2bChJSkpKUmBgoBYsWODwgAAAAIVhd9m55557tHPnTsXGxmrHjh3y9vbWwIED1adPn3zvuQMAAOBMd3SSjY+PjwYPHuzoLAAAAA53x2cU//LLLzp69KguX75sM/74448XOhQAAICj3NEdlLt166Zdu3bJYrFYP93cYrFIknJychybEAAAoBDsvhpr+PDhCgsL06lTp1SqVCn9/PPPWr9+vZo0aaK1a9cWQUQAAIA7Z/fMzoYNG7RmzRpVqFBBbm5ucnNzU8uWLTVp0iQNGzZM27dvL4qcAAAAd8TumZ2cnBz5+vpKkipUqKATJ05IkkJDQ7V3717HpgMAACgku2d26tatqx07digsLEwRERGaMmWKPDw89OGHH6patWpFkREAAOCO2V12XnnlFWVlZUmS/vWvf+mxxx5Tq1atVL58eS1evNjhAQEAAArDYly/nKoQzp49q7Jly1qvyCpuMjIy5O/vr/T0dPn5+Tl02878kdzqN+uquSTnZSOX/YrjMeaquSSOsRu5ai6JY8xehW8a+Svo67dd5+xcuXJFJUqU0O7du23Gy5UrV2yLDgAAMDe7yk7JkiVVpUoV7qUDAACKDbuvxnr55Zf10ksv6ezZs0WRBwAAwKHsPkF5xowZOnDggEJCQhQaGiofHx+b5du2bXNYOAAAgMKyu+x07dq1CGIAAAAUDbvLzoQJE4oiBwAAQJGw+5wdAACA4sTumR03N7dbXmbOlVoAAMCV2F124uPjbb6+cuWKtm/frvnz52vixIkOCwYAAOAIDrmDsiQtXLhQixcv1hdffOGIzd1V3EH57iqud/gkV17F8Rhz1VwSx9iNXDWXxDFmr2J1B+VbadasmRITEx21OQAAAIdwSNm5ePGipk2bpnvuuccRmwMAAHAYu8/ZufEDPw3DUGZmpkqVKqVPP/3UoeEAAAAKy+6y8+9//9um7Li5ualixYqKiIhQ2bJlHRoOAACgsOwuOwMGDCiCGAAAAEXD7nN2YmJitGTJkjzjS5Ys0fz58x0SCgAAwFHsLjuTJk1ShQoV8owHBATozTffdEgoAAAAR7G77Bw9elRhYWF5xkNDQ3X06FGHhAIAAHAUu8tOQECAdu7cmWd8x44dKl++vENCAQAAOIrdZadPnz4aNmyYvv/+e+Xk5CgnJ0dr1qzR8OHD1bt376LICAAAcMfsvhrrtdde0+HDh9W2bVuVKHHt6bm5uerXrx/n7AAAAJdj98yOh4eHFi9erL179yo2NlbLli3TwYMHNXfuXHl4eBRFRqu33npLFotFI0aMsI5dunRJ0dHRKl++vEqXLq0ePXooNTW1SHMAAIDiw+6Znetq1qypmjVrOjLLLW3evFn/+c9/dP/999uMjxw5Ul9//bWWLFkif39/DR06VN27d9dPP/1017IBAADXZffMTo8ePTR58uQ841OmTFHPnj0dEupG58+fV9++ffXRRx/Z3KU5PT1dc+bM0dSpU/Xwww+rcePGiomJ0X//+1/973//K5IsAACgeLG77Kxfv14dO3bMM/7oo49q/fr1Dgl1o+joaHXq1EmRkZE241u3btWVK1dsxsPDw1WlShVt2LDhptvLzs5WRkaGzQMAAJiT3W9jnT9/Pt9zc0qWLFkkpSEuLk7btm3T5s2b8yxLSUmRh4eHypQpYzMeGBiolJSUm25z0qRJmjhxoqOjAgAAF2T3zE69evW0ePHiPONxcXG67777HBLqumPHjmn48OGKjY2Vl5eXw7Y7duxYpaenWx/Hjh1z2LYBAIBrsXtmZ9y4cerevbsOHjyohx9+WJKUmJioRYsW5fuZWYWxdetWnTp1So0aNbKO5eTkaP369ZoxY4ZWrVqly5cvKy0tzWZ2JzU1VUFBQTfdrqenpzw9PR2aFQAAuCa7y07nzp21fPlyvfnmm/r888/l7e2t+++/X999950efPBBh4Zr27atdu3aZTM2cOBAhYeH68UXX1TlypVVsmRJJSYmqkePHpKkvXv36ujRo2revLlDswAAgOLpji4979Spkzp16pRnfPfu3apbt26hQ13n6+ubZ3s+Pj4qX768dTwqKkqjRo1SuXLl5Ofnp+eee07NmzdXs2bNHJYDAAAUX3d8n53rMjMztWjRIn388cfaunWrcnJyHJGrwP7973/Lzc1NPXr0UHZ2tjp06KCZM2fe1QwAAMB1WQzDMO7kievXr9fHH3+sZcuWKSQkRN27d1ePHj3UtGlTR2cschkZGfL391d6err8/Pwcum2LxaGbs8utfrOumktyXjZy2a84HmOumkviGLuRq+aSOMbsdWdN4/YK+vpt18xOSkqK5s2bpzlz5igjI0NPPvmksrOztXz5codfiQUAAOAIBb70vHPnzqpVq5Z27typ9957TydOnND06dOLMhsAAEChFXhm59tvv9WwYcP07LPP3tXPxAIAACiMAs/s/Pjjj8rMzFTjxo0VERGhGTNm6MyZM0WZDQAAoNAKXHaaNWumjz76SCdPntQzzzyjuLg4hYSEKDc3VwkJCcrMzCzKnAAAAHfkjq/Gkq7dwG/OnDlasGCB0tLS1K5dO61YscKR+e4Krsa6u4rr1QLkyqs4HmOumkviGLuRq+aSOMbs5eyrsez+bKw/qlWrlqZMmaLffvtNixYtKsymAAAAikShZnbMgpmdu6u4/uVBrryK4zHmqrkkjrEbuWouiWPMXsV6ZgcAAMDVUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpuXTZmTRpkpo2bSpfX18FBASoa9eu2rt3r806ly5dUnR0tMqXL6/SpUurR48eSk1NdVJiAADgaly67Kxbt07R0dH63//+p4SEBF25ckXt27dXVlaWdZ2RI0fqyy+/1JIlS7Ru3TqdOHFC3bt3d2JqAADgSiyGYRjODlFQp0+fVkBAgNatW6fWrVsrPT1dFStW1MKFC/XEE09Ikn799VfVrl1bGzZsULNmzQq03YyMDPn7+ys9PV1+fn4OzWyxOHRzdrnVb9ZVc0nOy0Yu+xXHY8xVc0kcYzdy1VwSx5i9iqppFPT126Vndm6Unp4uSSpXrpwkaevWrbpy5YoiIyOt64SHh6tKlSrasGHDTbeTnZ2tjIwMmwcAADCnYlN2cnNzNWLECD3wwAOqW7euJCklJUUeHh4qU6aMzbqBgYFKSUm56bYmTZokf39/66Ny5cpFGR0AADhRsSk70dHR2r17t+Li4gq9rbFjxyo9Pd36OHbsmAMSAgAAV1TC2QEKYujQofrqq6+0fv16VapUyToeFBSky5cvKy0tzWZ2JzU1VUFBQTfdnqenpzw9PYsyMgAAcBEuPbNjGIaGDh2q+Ph4rVmzRmFhYTbLGzdurJIlSyoxMdE6tnfvXh09elTNmze/23EBAIALcumZnejoaC1cuFBffPGFfH19refh+Pv7y9vbW/7+/oqKitKoUaNUrlw5+fn56bnnnlPz5s0LfCUWAAAwN5cuO7NmzZIkPfTQQzbjMTExGjBggCTp3//+t9zc3NSjRw9lZ2erQ4cOmjlz5l1OCgAAXFWxus9OUeE+O3dXcb0PBLnyKo7HmKvmkjjGbuSquSSOMXtxnx0AAIAiRNkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmZpqy88EHH6hq1ary8vJSRESENm3a5OxIAADABZii7CxevFijRo3ShAkTtG3bNtWvX18dOnTQqVOnnB0NAAA4mSnKztSpU/X0009r4MCBuu+++zR79myVKlVKc+fOdXY0AADgZMW+7Fy+fFlbt25VZGSkdczNzU2RkZHasGGDE5MBAABXUMLZAQrrzJkzysnJUWBgoM14YGCgfv3113yfk52drezsbOvX6enpkqSMjIyiC+oErvrtkMs+rppLct1s5LIPueznqtn+bLmuv24bhnHL9Yp92bkTkyZN0sSJE/OMV65c2Qlpio6/v7MT5I9c9nHVXJLrZiOXfchlP1fN9mfNlZmZKf9b7KTYl50KFSrI3d1dqampNuOpqakKCgrK9zljx47VqFGjrF/n5ubq7NmzKl++vCwWS5HmLaiMjAxVrlxZx44dk5+fn7Pj2HDVbOSyj6vmklw3G7nsQy77uWo2V81lGIYyMzMVEhJyy/WKfdnx8PBQ48aNlZiYqK5du0q6Vl4SExM1dOjQfJ/j6ekpT09Pm7EyZcoUcdI74+fn51IH1h+5ajZy2cdVc0mum41c9iGX/Vw1myvmutWMznXFvuxI0qhRo9S/f381adJEf/nLX/Tee+8pKytLAwcOdHY0AADgZKYoO7169dLp06c1fvx4paSkqEGDBlq5cmWek5YBAMCfjynKjiQNHTr0pm9bFUeenp6aMGFCnrfbXIGrZiOXfVw1l+S62chlH3LZz1WzuWqugrIYt7teCwAAoBgr9jcVBAAAuBXKDgAAMDXKDgAAMDXKDgAAMDXKjgtav369OnfurJCQEFksFi1fvtzZkTRp0iQ1bdpUvr6+CggIUNeuXbV3795ise8PP/xQDz30kPz8/GSxWJSWllZ0Yf9g1qxZuv/++6034WrevLm+/fbbu7Jve7z11luyWCwaMWKEU3O8+uqrslgsNo/w8HCnZrru+PHjeuqpp1S+fHl5e3urXr162rJli7NjqWrVqnl+ZhaLRdHR0U7NlZOTo3HjxiksLEze3t6qXr26Xnvttdt+fpGz97ts2TK1b9/eejf9pKSkIs37R5mZmRoxYoRCQ0Pl7e2tFi1aaPPmzXdt/9fd7vXHMAyNHz9ewcHB8vb2VmRkpPbv33/Xc9qLsuOCsrKyVL9+fX3wwQfOjmK1bt06RUdH63//+58SEhJ05coVtW/fXllZWS6/7wsXLuiRRx7RSy+9VMRJbVWqVElvvfWWtm7dqi1btujhhx9Wly5d9PPPP9/VHLeyefNm/ec//9H999/v7CiSpDp16ujkyZPWx48//ujsSDp37pweeOABlSxZUt9++61++eUXvfvuuypbtqyzo2nz5s02P6+EhARJUs+ePZ2aa/LkyZo1a5ZmzJihPXv2aPLkyZoyZYqmT5/u0vvNyspSy5YtNXny5CLNmZ+///3vSkhI0IIFC7Rr1y61b99ekZGROn78+F3NcbvXnylTpmjatGmaPXu2Nm7cKB8fH3Xo0EGXLl26qzntZsClSTLi4+OdHSOPU6dOGZKMdevWFZt9f//994Yk49y5c0UTrADKli1rfPzxx07b/x9lZmYaNWvWNBISEowHH3zQGD58uFPzTJgwwahfv75TM+TnxRdfNFq2bOnsGAUyfPhwo3r16kZubq5Tc3Tq1MkYNGiQzVj37t2Nvn37Fov9JicnG5KM7du3OzDdzV24cMFwd3c3vvrqK5vxRo0aGS+//PJdyZCfG19/cnNzjaCgIOPtt9+2jqWlpRmenp7GokWLnJCw4JjZwR1JT0+XJJUrV+5Pte87lZOTo7i4OGVlZal58+bOjiNJio6OVqdOnRQZGensKFb79+9XSEiIqlWrpr59++ro0aPOjqQVK1aoSZMm6tmzpwICAtSwYUN99NFHzo6Vx+XLl/Xpp59q0KBBTv9A4xYtWigxMVH79u2TJO3YsUM//vijHn30UVPut7CuXr2qnJwceXl52Yx7e3u7xOzmdcnJyUpJSbH5N8Pf318RERHasGGDE5PdnmnuoIy7Jzc3VyNGjNADDzygunXr/mn2fSd27dql5s2b69KlSypdurTi4+N13333OTuW4uLitG3bNqecE3AzERERmjdvnmrVqqWTJ09q4sSJatWqlXbv3i1fX1+n5Tp06JBmzZqlUaNG6aWXXtLmzZs1bNgweXh4qH///k7LdaPly5crLS1NAwYMcHYUjRkzRhkZGQoPD5e7u7tycnL0xhtvqG/fvqbcb2H5+vqqefPmeu2111S7dm0FBgZq0aJF2rBhg2rUqOHseFYpKSmSlOejmAIDA63LXBVlB3aLjo7W7t27nfIXhzP3fSdq1aqlpKQkpaen6/PPP1f//v21bt06pxaeY8eOafjw4UpISMjzl6Qz/fGv7/vvv18REREKDQ3VZ599pqioKKflys3NVZMmTfTmm29Kkho2bKjdu3dr9uzZLlV25syZo0cffVQhISHOjqLPPvtMsbGxWrhwoerUqaOkpCSNGDFCISEhRfozc9Z+HWHBggUaNGiQ7rnnHrm7u6tRo0bq06ePtm7d6uxo5uDs99Fwa3Kxc3aio6ONSpUqGYcOHSp2+3aFc3batm1rDB482Gn7NwzDiI+PNyQZ7u7u1ockw2KxGO7u7sbVq1edmu+PmjRpYowZM8apGapUqWJERUXZjM2cOdMICQlxUqK8Dh8+bLi5uRnLly93dhTDMAyjUqVKxowZM2zGXnvtNaNWrVrFYr93+5ydPzp//rxx4sQJwzAM48knnzQ6dux41zNcd+Prz8GDB/P9ubRu3doYNmzY3Q1nJ87ZQYEYhqGhQ4cqPj5ea9asUVhY2J9i346Wm5ur7Oxsp2Zo27atdu3apaSkJOujSZMm6tu3r5KSkuTu7u7UfNedP39eBw8eVHBwsFNzPPDAA3ludbBv3z6FhoY6KVFeMTExCggIUKdOnZwdRdK1KyDd3GxfXtzd3ZWbm2vK/TqSj4+PgoODde7cOa1atUpdunRxdiSrsLAwBQUFKTEx0TqWkZGhjRs3usy5iDfD21gu6Pz58zpw4ID16+TkZCUlJalcuXKqUqWKUzJFR0dr4cKF+uKLL+Tr62t9f9bf31/e3t4uve+UlBSlpKRYf6a7du2Sr6+vqlSpUqQnOY8dO1aPPvqoqlSposzMTC1cuFBr167VqlWrimyfBeHr65vnfCcfHx+VL1/eqedBjR49Wp07d1ZoaKhOnDihCRMmyN3dXX369HFaJkkaOXKkWrRooTfffFNPPvmkNm3apA8//FAffvihU3Ndl5ubq5iYGPXv318lSrjGP+mdO3fWG2+8oSpVqqhOnTravn27pk6dqkGDBrn0fs+ePaujR4/qxIkTkmQtuUFBQQoKCiqy3JK0atUqGYahWrVq6cCBA/rnP/+p8PBwDRw4sEj3e6Pbvf6MGDFCr7/+umrWrKmwsDCNGzdOISEh6tq1613NaTcnzywhH9ffbrnx0b9/f6dlyi+PJCMmJsbl9z1hwgSnZB80aJARGhpqeHh4GBUrVjTatm1rrF69ukj3eadc4dLzXr16GcHBwYaHh4dxzz33GL169TIOHDjg1EzXffnll0bdunUNT09PIzw83Pjwww+dHclq1apVhiRj7969zo5ilZGRYQwfPtyoUqWK4eXlZVSrVs14+eWXjezsbJfeb0xMTL7/VkyYMKFIcxuGYSxevNioVq2a4eHhYQQFBRnR0dFGWlpake/3Rrd7/cnNzTXGjRtnBAYGGp6enkbbtm1d6ti7GYthFPEtLQEAAJyIc3YAAICpUXZQrMXGxqp06dL5PurUqePseABcxA8//HDTfytKly7t7HgoYryNhWItMzNTqamp+S4rWbKkS10xA8B5Ll68eMvPmXKlm/fB8Sg7AADA1HgbCwAAmBplBwAAmBplBwAAmBplBwAc4PDhw7JYLEpKSirwcwYMGHDbO88+9NBDGjFiRKGyAX92lB3gT2LDhg1yd3d3mc9PcoZ69erpH//4R77LFixYIE9PT505c+aOtl25cmWdPHnSqR+5ASB/lB3gT2LOnDl67rnntH79eutn/zjL5cuXnbLfqKgoxcXF6eLFi3mWxcTE6PHHH1eFChXs3u7ly5fl7u6uoKAgl/l8KgD/j7ID/AmcP39eixcv1rPPPqtOnTpp3rx5edb58ssv1bRpU3l5ealChQrq1q2bdVl2drZefPFFVa5cWZ6enqpRo4bmzJkjSZo3b57KlCljs63ly5fLYrFYv3711VfVoEEDffzxxwoLC5OXl5ckaeXKlWrZsqXKlCmj8uXL67HHHtPBgwdttvXbb7+pT58+KleunHx8fNSkSRNt3LhRhw8flpubm7Zs2WKz/nvvvafQ0NB8P+n6qaee0sWLF7V06VKb8eTkZK1du1ZRUVE6ePCgunTposDAQJUuXVpNmzbVd999Z7N+1apV9dprr6lfv37y8/PT4MGD87yNlZOTo6ioKIWFhcnb21u1atXS+++/n89vR5o4caIqVqwoPz8//eMf/7hlGczOztbo0aN1zz33yMfHRxEREVq7dq11+ZEjR9S5c2eVLVtWPj4+qlOnjr755pubbg/4M6DsAH8Cn332mcLDw1WrVi099dRTmjt3rv54i62vv/5a3bp1U8eOHbV9+3YlJibqL3/5i3V5v379tGjRIk2bNk179uzRf/7zH7vvOnvgwAEtXbpUy5YtsxaCrKwsjRo1Slu2bFFiYqLc3NzUrVs3a1E5f/68HnzwQR0/flwrVqzQjh079MILLyg3N1dVq1ZVZGSkYmJibPYTExOjAQMGyM0t7z9vFSpUUJcuXTR37lyb8Xnz5qlSpUpq3769zp8/r44dOyoxMVHbt2/XI488os6dO+vo0aM2z3nnnXdUv359bd++XePGjcuzr9zcXFWqVElLlizRL7/8ovHjx+ull17SZ599ZrNeYmKi9uzZo7Vr12rRokVatmyZJk6ceNOf49ChQ7VhwwbFxcVp586d6tmzpx555BHt379fkhQdHa3s7GytX79eu3bt0uTJk7lDMODEDyEFcJe0aNHCeO+99wzDMIwrV64YFSpUML7//nvr8ubNmxt9+/bN97l79+41JBkJCQn5Lo+JiTH8/f1txuLj440//vMyYcIEo2TJksapU6dumfP06dOGJGPXrl2GYRjGf/7zH8PX19f4/fff811/8eLFRtmyZY1Lly4ZhmEYW7duNSwWi5GcnHzTfaxcudKwWCzGoUOHDMO49inOoaGhxiuvvHLT59SpU8eYPn269evQ0FCja9euNuskJycbkozt27ffdDvR0dFGjx49rF/379/fKFeunJGVlWUdmzVrllG6dGkjJyfHMAzbT6Q/cuSI4e7ubhw/ftxmu23btjXGjh1rGIZh1KtXz3j11VdvmgH4M2JmBzC5vXv3atOmTerTp48kqUSJEurVq5f1bShJSkpKUtu2bfN9flJSktzd3fXggw8WKkdoaKgqVqxoM7Z//3716dNH1apVk5+fn6pWrSpJ1lmUpKQkNWzYUOXKlct3m127dpW7u7vi4+MlXZuhadOmjXU7+WnXrp0qVapknRFKTEzU0aNHNXDgQEnXZpNGjx6t2rVrq0yZMipdurT27NmTZ2anSZMmt/2eP/jgAzVu3FgVK1ZU6dKl9eGHH+bZTv369VWqVCnr182bN9f58+d17NixPNvbtWuXcnJydO+999p8rtO6deusb/8NGzZMr7/+uh544AFNmDBBO3fuvG1OwOwoO4DJzZkzR1evXlVISIhKlCihEiVKaNasWVq6dKnS09MlSd7e3jd9/q2WSZKbm5vNW2KSdOXKlTzr+fj45Bnr3Lmzzp49q48++kgbN27Uxo0bJf3/Ccy327eHh4f69eunmJgYXb58WQsXLtSgQYNum3fAgAGaP3++cnNzFRMTozZt2qhatWqSpNGjRys+Pl5vvvmmfvjhByUlJalevXp5zqPJ7/v5o7i4OI0ePVpRUVFavXq1kpKSNHDgwEKdnH3+/Hm5u7tr69atSkpKsj727NljPR/o73//uw4dOqS//e1v2rVrl5o0aaLp06ff8T4BM6DsACZ29epVffLJJ3r33XdtXhx37NihkJAQLVq0SJJ0//33KzExMd9t1KtXT7m5uVq3bl2+yytWrKjMzExlZWVZxwpyr5nff/9de/fu1SuvvKK2bduqdu3aOnfunM06999/v5KSknT27Nmbbufvf/+7vvvuO82cOVNXr15V9+7db7vvgQMH6tixY1q2bJni4+MVFRVlXfbTTz9pwIAB6tatm+rVq6egoCAdPnz4ttu80U8//aQWLVpoyJAhatiwoWrUqJHn5GtJ2rFjh83VYf/73/9UunRpVa5cOc+6DRs2VE5Ojk6dOqUaNWrYPIKCgqzrVa5cWf/4xz+0bNkyPf/88/roo4/szg+YCWUHMLGvvvpK586dU1RUlOrWrWvz6NGjh/WtrAkTJmjRokWaMGGC9uzZYz2xVbp25VH//v01aNAgLV++3Hrl0vUTbSMiIlSqVCm99NJLOnjwoBYuXJjv1V43Klu2rMqXL68PP/xQBw4c0Jo1azRq1Cibdfr06aOgoCB17dpVP/30kw4dOqSlS5dqw4YN1nVq166tZs2a6cUXX1SfPn1uOxskSWFhYXr44Yc1ePBgeXp62hSkmjVrWk+i3rFjh/7617/me2XX7dSsWVNbtmzRqlWrtG/fPo0bN06bN2/Os97ly5cVFRWlX375Rd98840mTJigoUOH5nuC9b333qu+ffuqX79+WrZsmZKTk7Vp0yZNmjRJX3/9tSRpxIgRWrVqlZKTk7Vt2zZ9//33ql27tt35ATOh7AAmNmfOHEVGRsrf3z/Psh49emjLli3auXOnHnroIS1ZskQrVqxQgwYN9PDDD2vTpk3WdWfNmqUnnnhCQ4YMUXh4uJ5++mnrTE65cuX06aef6ptvvlG9evW0aNEivfrqq7fN5ubmpri4OG3dulV169bVyJEj9fbbb9us4+HhodWrVysgIEAdO3ZUvXr19NZbb8nd3d1mvaioKF2+fPm2b2Hd+Jxz587pr3/9q/VSeEmaOnWqypYtqxYtWqhz587q0KGDGjVqVODtXvfMM8+oe/fu6tWrlyIiIvT7779ryJAhedZr27atatasqdatW6tXr156/PHHb/nzi4mJUb9+/fT888+rVq1a6tq1qzZv3qwqVapIunbJe3R0tGrXrq1HHnlE9957r2bOnGl3fsBMLMaNb7YDQDHz2muvacmSJZyMCyBfzOwAKLbOnz+v3bt3a8aMGXruueecHQeAi6LsACi2hg4dqsaNG+uhhx6y6y0sAH8uvI0FAABMjZkdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgav8H/GzqtXu8YtUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "# Assuming you have a list of accuracies from accuracy1 to accuracy10\n", - "accuracies = [accuracy1*100, accuracy2*100, accuracy3*100, accuracy4*100, accuracy5*100, accuracy6*100, accuracy7*100, accuracy8*100, accuracy9*100, accuracy10*100]\n", + "accuracies = [accuracy1*100, accuracy2*100, accuracy2_1*100, accuracy3*100, accuracy4*100, accuracy5*100, accuracy6*100, accuracy7*100, accuracy8*100, accuracy8_1*100, accuracy9*100, accuracy10*100]\n", "\n", "# List of corresponding labels for each accuracy\n", - "labels = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10']\n", + "labels = ['1', '2', '2_1', '3', '4', '5', '6', '7', '8', '8_1', '9', '10']\n", "\n", "# Plotting the bar graph\n", "plt.bar(labels, accuracies, color='blue')\n", @@ -2448,39 +6877,39 @@ "plt.ylabel('Accuracy Values')\n", "plt.title('Bar Graph of Accuracies')\n", "plt.show()\n" - ], + ] + }, + { + "cell_type": "code", + "execution_count": 93, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 472 }, - "id": "qpWPtph9CGip", - "outputId": "c099cb8d-96af-4223-f499-743040aecdf1" + "id": "RFaaCNH6Cfoa", + "outputId": "e624dad4-1663-4a68-90ec-b569e5b0b46a" }, - "execution_count": 117, "outputs": [ { - "output_type": "display_data", "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIKElEQVR4nO3dfVxUZf7/8fdwN+ANICh3BUpmqWlKoGZZ3lHepWmYeZPhzdpWWqmblbumZW2k3Wi5pNaWZGm2Vpq1SZqpVOIdhltmZqlpJmipIBoocP3+8Mv8HEEDBWY4vZ6Px3k8mutcc53PnDkO785cZ47NGGMEAABgUR6uLgAAAKAqEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAWM7jjz8um82mX3/9tcq3lZqaqtatW8vX11c2m01Hjx6t8m0CqBjCDlCDpKSkyGazOS0hISHq3Lmzli9fXu31fPjhh+rdu7dCQ0Pl4+OjoKAg3XjjjXr++eeVm5tb7fVUt99++00DBgyQn5+fkpOT9eabb6p27dpl9j37vfPy8tIll1yiYcOGaf/+/aX6d+rUSTabTU2aNClzvJUrVzrGevfdd53Wff311+rfv78aNmwoX19fXXLJJbrppps0a9Ysp36NGjUqdTyVLN27d7/AvQK4Hy9XFwCg4qZOnaro6GgZY5Sdna2UlBT17NlTH374oW655ZYq335xcbFGjhyplJQUtWzZUvfdd58iIyN17Ngxpaena9KkSfr444+1atWqKq/FlTZt2qRjx47pySefVHx8fLmeU/Le5efna/369UpJSdEXX3yhb775Rr6+vk59fX199cMPP2jjxo1q27at07oFCxbI19dX+fn5Tu3r1q1T586dFRUVpVGjRiksLEz79u3T+vXr9eKLL+r+++936t+6dWv97W9/K1VnREREuV4PUBMQdoAaqEePHoqLi3M8HjlypEJDQ/X2229XStgpLi7WyZMnS/3xLTF9+nSlpKRo3Lhxev7552Wz2RzrHnzwQR04cEDz58+/qG3UBAcPHpQkBQYGlvs5Z753f/nLX1S/fn1NmzZNy5Yt04ABA5z6Nm7cWIWFhXr77bedwk5+fr6WLFmiXr166b333nN6zj//+U8FBARo06ZNpeoqqfdMl1xyie68885y1w/URHyNBVhAYGCg/Pz85OXl/P8vzz33nK677joFBwfLz89PsbGxpb7ykCSbzaYxY8ZowYIFuuqqq2S325Wamlrmtk6cOKFp06bpqquu0rPPPusUdEqEh4frkUceKfc2LqTOK6+8Ur6+voqNjVVaWlqZtR49elTDhg1TYGCgAgICNHz4cJ04caLsnXiWxYsXKzY2Vn5+fqpfv77uvPNOp6+bOnXqpMTERElSmzZtZLPZNGzYsHKNfaYbbrhBkvTjjz+WuX7QoEF65513VFxc7Gj78MMPdeLEiVLhqGScq666qswAFhISUuH6ACsg7AA1UE5Ojn799VcdOnRI27Zt07333qu8vLxS/4f+4osvKiYmRlOnTtXTTz8tLy8v3X777frvf/9baszPPvtM48aN0x133KEXX3xRjRo1KnPbX3zxhY4ePapBgwbJ09OzQnWfaxsVqXPt2rUaO3as7rzzTk2dOlW//fabunfvrm+++aZU3wEDBujYsWNKSkrSgAEDlJKSoieeeOIP60xJSdGAAQPk6emppKQkjRo1Su+//746dOjgmID8j3/8Q3fffbek019Nvfnmm/rrX/9aof0hSXv27JEk1atXr8z1gwcP1oEDB7RmzRpH28KFC9W1a9cyw0vDhg2VkZFR5v4oy6lTp/Trr7+WWn7//fcKvxbAbRkANca8efOMpFKL3W43KSkppfqfOHHC6fHJkydNixYtTJcuXZzaJRkPDw+zbdu2P6zhxRdfNJLM0qVLndoLCwvNoUOHnJbi4uJybaMidUoymzdvdrT99NNPxtfX1/Tr18/RNmXKFCPJjBgxwun5/fr1M8HBwed9fSdPnjQhISGmRYsW5vfff3e0f/TRR0aSmTx5sqOt5P3YtGnTecc8s++nn35qDh06ZPbt22feffdd06BBA2O3282+ffuc+nfs2NFcddVVxhhj4uLizMiRI40xxhw5csT4+PiYN954w6xevdpIMosXL3Y8b8WKFcbT09N4enqa9u3bm4cffth88skn5uTJk6VqatiwYZnHkySTlJT0h68JqCk4swPUQMnJyVq5cqVWrlypt956S507d9Zf/vIXvf/++079/Pz8HP995MgR5eTk6IYbbtCWLVtKjdmxY0c1b978D7ddcpVVnTp1nNq//vprNWjQwGn57bffyrWNitTZvn17xcbGOh5HRUXp1ltv1SeffKKioiKnvvfcc4/T4xtuuEG//fbbea8U27x5sw4ePKj77rvPaT5Rr1691LRp0zLPNlVEfHy8GjRooMjISPXv31+1a9fWsmXLdOmll57zOYMHD9b777+vkydP6t1335Wnp6f69etXZt+bbrpJ6enp6tOnj7Zu3arp06erW7duuuSSS7Rs2bJS/du1a+c4ls5cBg0adFGvE3AnTFAGaqC2bds6TVAeNGiQYmJiNGbMGN1yyy3y8fGRJH300Ud66qmnlJmZqYKCAkf/subZREdHl2vbdevWlSTl5eU5tV9++eVauXKlJGn+/Pl68803y72NitRZ1qXYV1xxhU6cOKFDhw4pLCzM0R4VFeXUr+SroiNHjsjf37/MWn766SdJ0pVXXllqXdOmTfXFF1+U+bzySk5O1hVXXKGcnBy9/vrrSktLk91uP+9zBg4cqIceekjLly/XggULdMsttzjeh7K0adPGEY62bt2qJUuWaMaMGerfv78yMzOdAmf9+vXLfSUZUFNxZgewAA8PD3Xu3FkHDhzQzp07JUmff/65+vTpI19fX7388sv6+OOPtXLlSg0ePFjGmFJjnHl25XyaNm0qSaXmhNSpU0fx8fGKj4/XZZddVuZzy9pGReusiHPNKbrYcS9G27ZtFR8fr4SEBC1btkwtWrTQ4MGDS4XHM4WHh6tTp056/vnnlZaWpsGDB5drWz4+PmrTpo2efvppzZ49W6dOndLixYsr66UANQZhB7CIwsJCSf//jMt7770nX19fffLJJxoxYoR69OhRKf8Hf8MNNyggIECLFi1yukLoQlW0zpIwd6bvv/9etWrVUoMGDS66noYNG0qSduzYUWrdjh07HOsrQ8kE6F9++UX/+te/ztt38ODB+vzzz+Xv76+ePXtWeFslZwIPHDhwQbUCNRlhB7CAU6dOacWKFfLx8VGzZs0knf5DarPZnOax7NmzR0uXLr2obdWqVUsPP/ywvvnmGz366KNlniWpyJmTitaZnp7uNJdn3759+uCDD3TzzTdX+OqwssTFxSkkJERz5sxx+kpt+fLl2r59u3r16nXR2zhTp06d1LZtW82cObPUDwSeqX///poyZYpefvllx9eUZVm9enWZ+//jjz+WVPbXc4DVMWcHqIGWL1+u7777TtLpH4pbuHChdu7cqUcffdQxF6VXr1564YUX1L17dw0ePFgHDx5UcnKyLr/8cv3vf/+7qO0/+uij2r59u5599lmtWLFCCQkJuvTSS3XkyBFt2bJFixcvVkhISLl+MLCidbZo0ULdunXTAw88ILvdrpdfflmSynVJeXl4e3tr2rRpGj58uDp27KhBgwYpOzvbcan8uHHjKmU7Z5owYYJuv/12paSklJpUXSIgIECPP/74H451//3368SJE+rXr5+aNm2qkydPat26dXrnnXfUqFEjDR8+3Kn//v379dZbb5Uap06dOurbt++FvBzA/bjyUjAAFVPWpee+vr6mdevWZvbs2U6XehtjzGuvvWaaNGli7Ha7adq0qZk3b57jsuwzSTKjR4+ucD1LliwxPXv2NA0aNDBeXl4mMDDQdOjQwTz77LPm6NGj5d5GRet86623HP1jYmLM6tWrnfqVPPfQoUNO7SX7b/fu3X/42t555x0TExNj7Ha7CQoKMkOGDDE///xzmeNV5NLzsvoWFRWZxo0bm8aNG5vCwkJjjPOl5+dS1qXny5cvNyNGjDBNmzY1derUMT4+Pubyyy83999/v8nOznZ6/vkuPW/YsOEfviagprAZ48KZegBQATabTaNHj/7D+S0AcCbm7AAAAEsj7AAAAEsj7AAAAEvjaiwANQZTDAFcCM7sAAAASyPsAAAAS+NrLEnFxcX65ZdfVLdu3TJvPAgAANyPMUbHjh1TRESEPDzOff6GsCPpl19+UWRkpKvLAAAAF2Dfvn269NJLz7mesCOpbt26kk7vrJKf2gcAAO4tNzdXkZGRjr/j50LYkRxfXfn7+xN2AACoYf5oCgoTlAEAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKW5NOykpaWpd+/eioiIkM1m09KlS0v12b59u/r06aOAgADVrl1bbdq00d69ex3r8/PzNXr0aAUHB6tOnTpKSEhQdnZ2Nb4KAADgzlwado4fP65WrVopOTm5zPU//vijOnTooKZNm2rNmjX63//+p8cee0y+vr6OPuPGjdOHH36oxYsXa+3atfrll1902223VddLAAAAbs5mjDGuLkI6/euHS5YsUd++fR1tAwcOlLe3t958880yn5OTk6MGDRpo4cKF6t+/vyTpu+++U7NmzZSenq5rr722XNvOzc1VQECAcnJy+AVlAABqiPL+/XbbOTvFxcX673//qyuuuELdunVTSEiI2rVr5/RVV0ZGhk6dOqX4+HhHW9OmTRUVFaX09PRzjl1QUKDc3FynBQAAWJPbhp2DBw8qLy9PzzzzjLp3764VK1aoX79+uu2227R27VpJUlZWlnx8fBQYGOj03NDQUGVlZZ1z7KSkJAUEBDgW7ngOAIB1uW3YKS4uliTdeuutGjdunFq3bq1HH31Ut9xyi+bMmXNRY0+cOFE5OTmOZd++fZVRMgAAcENue9fz+vXry8vLS82bN3dqb9asmb744gtJUlhYmE6ePKmjR486nd3Jzs5WWFjYOce22+2y2+1VUjcAAHAvbntmx8fHR23atNGOHTuc2r///ns1bNhQkhQbGytvb2+tWrXKsX7Hjh3au3ev2rdvX631AgAA9+TSMzt5eXn64YcfHI93796tzMxMBQUFKSoqShMmTNAdd9yhG2+8UZ07d1Zqaqo+/PBDrVmzRpIUEBCgkSNHavz48QoKCpK/v7/uv/9+tW/fvtxXYv2Z2Z6wuWS7ZopbXAAIAPiTcGnY2bx5szp37ux4PH78eElSYmKiUlJS1K9fP82ZM0dJSUl64IEHdOWVV+q9995Thw4dHM+ZMWOGPDw8lJCQoIKCAnXr1k0vv/xytb8WAADgntzmd3Zc6c/6Ozuc2QEA1GQ1/nd2AAAAKgNhBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWJqXqwsAALg32xM2l23bTDEu2zasgzM7AADA0gg7AADA0vgaC27HVafMOV0OANbEmR0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBpLg07aWlp6t27tyIiImSz2bR06dJz9r3nnntks9k0c+ZMp/bDhw9ryJAh8vf3V2BgoEaOHKm8vLyqLRwAANQYLg07x48fV6tWrZScnHzefkuWLNH69esVERFRat2QIUO0bds2rVy5Uh999JHS0tJ09913V1XJAACghvFy5cZ79OihHj16nLfP/v37df/99+uTTz5Rr169nNZt375dqamp2rRpk+Li4iRJs2bNUs+ePfXcc8+VGY4AAMCfi1vP2SkuLtbQoUM1YcIEXXXVVaXWp6enKzAw0BF0JCk+Pl4eHh7asGHDOcctKChQbm6u0wIAAKzJrcPOtGnT5OXlpQceeKDM9VlZWQoJCXFq8/LyUlBQkLKyss45blJSkgICAhxLZGRkpdYNAADch9uGnYyMDL344otKSUmRzWar1LEnTpyonJwcx7Jv375KHR8AALgPtw07n3/+uQ4ePKioqCh5eXnJy8tLP/30k/72t7+pUaNGkqSwsDAdPHjQ6XmFhYU6fPiwwsLCzjm23W6Xv7+/0wIAAKzJpROUz2fo0KGKj493auvWrZuGDh2q4cOHS5Lat2+vo0ePKiMjQ7GxsZKkzz77TMXFxWrXrl211wwAANyPS8NOXl6efvjhB8fj3bt3KzMzU0FBQYqKilJwcLBTf29vb4WFhenKK6+UJDVr1kzdu3fXqFGjNGfOHJ06dUpjxozRwIEDuRILAABIcvHXWJs3b1ZMTIxiYmIkSePHj1dMTIwmT55c7jEWLFigpk2bqmvXrurZs6c6dOigV155papKBgAANYxLz+x06tRJxphy99+zZ0+ptqCgIC1cuLASqwIA1AS2Jyr34pWKMFPK/7cLrue2E5QBAAAqA2EHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYmkvDTlpamnr37q2IiAjZbDYtXbrUse7UqVN65JFH1LJlS9WuXVsRERG666679MsvvziNcfjwYQ0ZMkT+/v4KDAzUyJEjlZeXV82vBAAAuCuXhp3jx4+rVatWSk5OLrXuxIkT2rJlix577DFt2bJF77//vnbs2KE+ffo49RsyZIi2bdumlStX6qOPPlJaWpruvvvu6noJAADAzXm5cuM9evRQjx49ylwXEBCglStXOrX961//Utu2bbV3715FRUVp+/btSk1N1aZNmxQXFydJmjVrlnr27KnnnntOERERVf4aAACAe6tRc3ZycnJks9kUGBgoSUpPT1dgYKAj6EhSfHy8PDw8tGHDhnOOU1BQoNzcXKcFAABYU40JO/n5+XrkkUc0aNAg+fv7S5KysrIUEhLi1M/Ly0tBQUHKyso651hJSUkKCAhwLJGRkVVaOwAAcJ0aEXZOnTqlAQMGyBij2bNnX/R4EydOVE5OjmPZt29fJVQJAADckUvn7JRHSdD56aef9NlnnznO6khSWFiYDh486NS/sLBQhw8fVlhY2DnHtNvtstvtVVYzAABwH259Zqck6OzcuVOffvqpgoODnda3b99eR48eVUZGhqPts88+U3Fxsdq1a1fd5QIAADfk0jM7eXl5+uGHHxyPd+/erczMTAUFBSk8PFz9+/fXli1b9NFHH6moqMgxDycoKEg+Pj5q1qyZunfvrlGjRmnOnDk6deqUxowZo4EDB3IlFgAAkOTisLN582Z17tzZ8Xj8+PGSpMTERD3++ONatmyZJKl169ZOz1u9erU6deokSVqwYIHGjBmjrl27ysPDQwkJCXrppZeqpX4AAOD+XBp2OnXqJGPMOdefb12JoKAgLVy4sDLLAgAAFuLWc3YAAAAuFmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYWqWEnaNHj1bGMAAAAJWuwmFn2rRpeueddxyPBwwYoODgYF1yySXaunVrhcZKS0tT7969FRERIZvNpqVLlzqtN8Zo8uTJCg8Pl5+fn+Lj47Vz506nPocPH9aQIUPk7++vwMBAjRw5Unl5eRV9WQAAwKIqHHbmzJmjyMhISdLKlSu1cuVKLV++XD169NCECRMqNNbx48fVqlUrJScnl7l++vTpeumllzRnzhxt2LBBtWvXVrdu3ZSfn+/oM2TIEG3btk0rV67URx99pLS0NN19990VfVkAAMCivCr6hKysLEfY+eijjzRgwADdfPPNatSokdq1a1ehsXr06KEePXqUuc4Yo5kzZ2rSpEm69dZbJUnz589XaGioli5dqoEDB2r79u1KTU3Vpk2bFBcXJ0maNWuWevbsqeeee04REREVfXkAAMBiKnxmp169etq3b58kKTU1VfHx8ZJOh5OioqJKK2z37t3KyspyjC9JAQEBateundLT0yVJ6enpCgwMdAQdSYqPj5eHh4c2bNhQabUAAICaq8Jndm677TYNHjxYTZo00W+//eY4M/PVV1/p8ssvr7TCsrKyJEmhoaFO7aGhoY51WVlZCgkJcVrv5eWloKAgR5+yFBQUqKCgwPE4Nze3ssoGAABupsJndmbMmKExY8aoefPmWrlyperUqSNJOnDggO67775KL7AqJCUlKSAgwLGUfC0HAACsp8Jndry9vfXQQw+Vah83blylFFQiLCxMkpSdna3w8HBHe3Z2tlq3bu3oc/DgQafnFRYW6vDhw47nl2XixIkaP36843Fubi6BBwAAi7qg39l588031aFDB0VEROinn36SJM2cOVMffPBBpRUWHR2tsLAwrVq1ytGWm5urDRs2qH379pKk9u3b6+jRo8rIyHD0+eyzz1RcXHzeydJ2u13+/v5OCwAAsKYKh53Zs2dr/Pjx6tGjh44ePeqYlBwYGKiZM2dWaKy8vDxlZmYqMzNT0ulJyZmZmdq7d69sNpvGjh2rp556SsuWLdPXX3+tu+66SxEREerbt68kqVmzZurevbtGjRqljRs36ssvv9SYMWM0cOBArsQCAACSLiDszJo1S6+++qr+8Y9/yNPT09EeFxenr7/+ukJjbd68WTExMYqJiZEkjR8/XjExMZo8ebIk6eGHH9b999+vu+++W23atFFeXp5SU1Pl6+vrGGPBggVq2rSpunbtqp49e6pDhw565ZVXKvqyAACARVV4zs7u3bsd4eRMdrtdx48fr9BYnTp1kjHmnOttNpumTp2qqVOnnrNPUFCQFi5cWKHtAgCAP48Kn9mJjo52fO10ptTUVDVr1qwyagIAAKg0FT6zM378eI0ePVr5+fkyxmjjxo16++23lZSUpH//+99VUSMAAMAFq3DY+ctf/iI/Pz9NmjRJJ06c0ODBgxUREaEXX3xRAwcOrIoaAQAALliFw450+uabQ4YM0YkTJ5SXl1fqV4wBAADcxQWFnRK1atVSrVq1KqsWAACASlfhsBMdHS2bzXbO9bt27bqoggAAACpThcPO2LFjnR6fOnVKX331lVJTUzVhwoTKqgsAAKBSVDjsPPjgg2W2Jycna/PmzRddEAAAQGW6oHtjlaVHjx567733Kms4AACASlFpYefdd99VUFBQZQ0HAABQKSr8NVZMTIzTBGVjjLKysnTo0CG9/PLLlVocAADAxapw2Cm543gJDw8PNWjQQJ06dVLTpk0rqy4AAIBKUeGwM2XKlKqoAwAAoEqUK+zk5uaWe0B/f/8LLgYAAKCylSvsBAYGnveHBKXTc3dsNpuKiooqpTAAAIDKUK6ws3r16qquAwAAoEqUK+x07NixqusAAACoEhd8I9ATJ05o7969OnnypFP71VdffdFFAQAAVJYKh51Dhw5p+PDhWr58eZnrmbMDAADcSYV/QXns2LE6evSoNmzYID8/P6WmpuqNN95QkyZNtGzZsqqoEQAA4IJV+MzOZ599pg8++EBxcXHy8PBQw4YNddNNN8nf319JSUnq1atXVdQJAABwQSp8Zuf48eMKCQmRJNWrV0+HDh2SJLVs2VJbtmyp3OoAAAAuUoXDzpVXXqkdO3ZIklq1aqW5c+dq//79mjNnjsLDwyu9QAAAgItR4a+xHnzwQR04cEDS6VtHdO/eXQsWLJCPj49SUlIquz4AAICLUu6w079/f/3lL3/RkCFDHL+mHBsbq59++knfffedoqKiVL9+/SorFAAA4EKU+2usI0eOqFevXoqKitLkyZO1a9cuSVKtWrV0zTXXEHQAAIBbKnfYWbVqlXbt2qWRI0fqrbfeUpMmTdSlSxctXLhQBQUFVVkjAADABavQBOWGDRvq8ccf165du7Ry5UpFRERo1KhRCg8P1+jRo5WRkVFVdQIAAFyQCl+NVaJLly566623lJWVpaSkJC1atEjt2rWrzNoAAAAu2gXfG0uSdu/erZSUFKWkpCgnJ0fx8fGVVRcAAEClqPCZnfz8fL311lvq0qWLmjRpovnz52vkyJHavXu3UlNTq6JGAACAC1buMzsbN27U66+/rnfeeUf5+fnq16+fUlNT1bVrV8el6AAAAO6m3GHn2muvVatWrfTkk09qyJAhqlevXlXWBQAAUCnKHXY2b96sa665piprAQAAqHTlnrPjiqBTVFSkxx57TNHR0fLz81Pjxo315JNPyhjj6GOM0eTJkxUeHi4/Pz/Fx8dr586d1V4rAABwTxd86Xl1mDZtmmbPnq1//etf2r59u6ZNm6bp06dr1qxZjj7Tp0/XSy+9pDlz5mjDhg2qXbu2unXrpvz8fBdWDgAA3MVFXXpe1datW6dbb71VvXr1kiQ1atRIb7/9tjZu3Cjp9FmdmTNnatKkSbr11lslSfPnz1doaKiWLl2qgQMHuqx2AADgHtz6zM51112nVatW6fvvv5ckbd26VV988YV69Ogh6fTv/GRlZTn9vk9AQIDatWun9PT0c45bUFCg3NxcpwUAAFhTucPOwYMHz7u+sLDQccalsjz66KMaOHCgmjZtKm9vb8XExGjs2LEaMmSIJCkrK0uSFBoa6vS80NBQx7qyJCUlKSAgwLFERkZWat0AAMB9lDvshIeHOwWeli1bat++fY7Hv/32m9q3b1+pxf3nP//RggULtHDhQm3ZskVvvPGGnnvuOb3xxhsXNe7EiROVk5PjWM58HQAAwFrKPWfnzCugJGnPnj06derUeftcrAkTJjjO7kinA9ZPP/2kpKQkJSYmKiwsTJKUnZ2t8PBwx/Oys7PVunXrc45rt9tlt9srtVYAAOCeKnXOTmX/kvKJEyfk4eFcoqenp4qLiyVJ0dHRCgsL06pVqxzrc3NztWHDhko/ywQAAGomt74aq3fv3vrnP/+pqKgoXXXVVfrqq6/0wgsvaMSIEZJOh6uxY8fqqaeeUpMmTRQdHa3HHntMERER6tu3r2uLBwAAbqHcYcdms+nYsWPy9fWVMUY2m015eXmOK5mq4oqmWbNm6bHHHtN9992ngwcPKiIiQn/96181efJkR5+HH35Yx48f1913362jR4+qQ4cOSk1Nla+vb6XXAwAAah6bKedEGw8PD6evqUoCz9mPi4qKKr/KKpabm6uAgADl5OTI39/f1eVUG9sTrrmBq5ly/kPOXesC/qxc9W9SOv+/S3etC9WnvH+/y31mZ/Xq1ZVSGAAAQHUqd9jp2LFjVdYBAABQJcoddgoLC1VUVOR0yXZ2drbmzJmj48ePq0+fPurQoUOVFAkAAHChyh12Ro0aJR8fH82dO1eSdOzYMbVp00b5+fkKDw/XjBkz9MEHH6hnz55VViwAAEBFlft3dr788kslJCQ4Hs+fP19FRUXauXOntm7dqvHjx+vZZ5+tkiIBAAAuVLnDzv79+9WkSRPH41WrVikhIUEBAQGSpMTERG3btq3yKwQAALgI5Q47vr6++v333x2P169fr3bt2jmtz8vLq9zqAAAALlK5w07r1q315ptvSpI+//xzZWdnq0uXLo71P/74oyIiIiq/QgAAgItQ7gnKkydPVo8ePfSf//xHBw4c0LBhw5xuvrlkyRJdf/31VVIkAADAharQ7+xkZGRoxYoVCgsL0+233+60vnXr1mrbtm2lFwgAAHAxKnQj0GbNmqlZs2Zlrrv77rsrpSAAAIDKVO6wk5aWVq5+N9544wUXAwAAUNnKHXY6derkuPHnue4dWlNvBAoAAKyr3GGnXr16qlu3roYNG6ahQ4eqfv36VVkXAABApSj3pecHDhzQtGnTlJ6erpYtW2rkyJFat26d/P39FRAQ4FgAAADcSbnDjo+Pj+644w598skn+u6773T11VdrzJgxioyM1D/+8Q8VFhZWZZ0AAAAXpNxh50xRUVGaPHmyPv30U11xxRV65plnlJubW9m1AQAAXLQKh52CggItXLhQ8fHxatGiherXr6///ve/CgoKqor6AAAALkq5Jyhv3LhR8+bN06JFi9SoUSMNHz5c//nPfwg5AADArZU77Fx77bWKiorSAw88oNjYWEnSF198Uapfnz59Kq86AACAi1ShX1Deu3evnnzyyXOu53d2AACAuyl32CkuLq7KOgAAAKrEBV2NdS6///57ZQ4HAABw0Sol7BQUFOj5559XdHR0ZQwHAABQacoddgoKCjRx4kTFxcXpuuuu09KlSyVJ8+bNU3R0tGbOnKlx48ZVVZ0AAAAXpNxzdiZPnqy5c+cqPj5e69at0+23367hw4dr/fr1euGFF3T77bfL09OzKmsFAACosHKHncWLF2v+/Pnq06ePvvnmG1199dUqLCzU1q1bHXdDBwAAcDfl/hrr559/dvy+TosWLWS32zVu3DiCDgAAcGvlDjtFRUXy8fFxPPby8lKdOnWqpCgAAIDKUu6vsYwxGjZsmOx2uyQpPz9f99xzj2rXru3U7/3336/cCgEAAC5CucNOYmKi0+M777yz0osBAACobOUOO/PmzavKOgAAAKpEpf6CMgAAgLtx+7Czf/9+3XnnnQoODpafn59atmypzZs3O9YbYzR58mSFh4fLz89P8fHx2rlzpwsrBgAA7sStw86RI0d0/fXXy9vbW8uXL9e3336r559/XvXq1XP0mT59ul566SXNmTNHGzZsUO3atdWtWzfl5+e7sHIAAOAuyj1nxxWmTZumyMhIp/lCZ95/yxijmTNnatKkSbr11lslSfPnz1doaKiWLl2qgQMHVnvNAADAvbj1mZ1ly5YpLi5Ot99+u0JCQhQTE6NXX33VsX737t3KyspSfHy8oy0gIEDt2rVTenr6OcctKChQbm6u0wIAAKzJrcPOrl27NHv2bDVp0kSffPKJ7r33Xj3wwAN64403JElZWVmSpNDQUKfnhYaGOtaVJSkpSQEBAY4lMjKy6l4EAABwKbcOO8XFxbrmmmv09NNPKyYmRnfffbdGjRqlOXPmXNS4EydOVE5OjmPZt29fJVUMAADcjVuHnfDwcDVv3typrVmzZtq7d68kKSwsTJKUnZ3t1Cc7O9uxrix2u13+/v5OCwAAsCa3DjvXX3+9duzY4dT2/fffq2HDhpJOT1YOCwvTqlWrHOtzc3O1YcMGtW/fvlprBQAA7smtr8YaN26crrvuOj399NMaMGCANm7cqFdeeUWvvPKKJMlms2ns2LF66qmn1KRJE0VHR+uxxx5TRESE+vbt69riAQCAW3DrsNOmTRstWbJEEydO1NSpUxUdHa2ZM2dqyJAhjj4PP/ywjh8/rrvvvltHjx5Vhw4dlJqaKl9fXxdWDgAA3IVbhx1JuuWWW3TLLbecc73NZtPUqVM1derUaqwKAADUFG49ZwcAAOBiEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAICl1aiw88wzz8hms2ns2LGOtvz8fI0ePVrBwcGqU6eOEhISlJ2d7boiAQCAW6kxYWfTpk2aO3eurr76aqf2cePG6cMPP9TixYu1du1a/fLLL7rttttcVCUAAHA3NSLs5OXlaciQIXr11VdVr149R3tOTo5ee+01vfDCC+rSpYtiY2M1b948rVu3TuvXr3dhxQAAwF3UiLAzevRo9erVS/Hx8U7tGRkZOnXqlFN706ZNFRUVpfT09HOOV1BQoNzcXKcFAABYk5erC/gjixYt0pYtW7Rp06ZS67KysuTj46PAwECn9tDQUGVlZZ1zzKSkJD3xxBOVXSoAAHBDbn1mZ9++fXrwwQe1YMEC+fr6Vtq4EydOVE5OjmPZt29fpY0NAADci1uHnYyMDB08eFDXXHONvLy85OXlpbVr1+qll16Sl5eXQkNDdfLkSR09etTpednZ2QoLCzvnuHa7Xf7+/k4LAACwJrf+Gqtr1676+uuvndqGDx+upk2b6pFHHlFkZKS8vb21atUqJSQkSJJ27NihvXv3qn379q4oGQAAuBm3Djt169ZVixYtnNpq166t4OBgR/vIkSM1fvx4BQUFyd/fX/fff7/at2+va6+91hUlAwAAN+PWYac8ZsyYIQ8PDyUkJKigoEDdunXTyy+/7OqyAACAm6hxYWfNmjVOj319fZWcnKzk5GTXFAQAANyaW09QBgAAuFiEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGluH3aSkpLUpk0b1a1bVyEhIerbt6927Njh1Cc/P1+jR49WcHCw6tSpo4SEBGVnZ7uoYgAA4E7cPuysXbtWo0eP1vr167Vy5UqdOnVKN998s44fP+7oM27cOH344YdavHix1q5dq19++UW33XabC6sGAADuwsvVBfyR1NRUp8cpKSkKCQlRRkaGbrzxRuXk5Oi1117TwoUL1aVLF0nSvHnz1KxZM61fv17XXnutK8oGAABuwu3P7JwtJydHkhQUFCRJysjI0KlTpxQfH+/o07RpU0VFRSk9Pb3MMQoKCpSbm+u0AAAAa6pRYae4uFhjx47V9ddfrxYtWkiSsrKy5OPjo8DAQKe+oaGhysrKKnOcpKQkBQQEOJbIyMiqLh0AALhIjQo7o0eP1jfffKNFixZd1DgTJ05UTk6OY9m3b18lVQgAANyN28/ZKTFmzBh99NFHSktL06WXXupoDwsL08mTJ3X06FGnszvZ2dkKCwsrcyy73S673V7VJQMAADfg9md2jDEaM2aMlixZos8++0zR0dFO62NjY+Xt7a1Vq1Y52nbs2KG9e/eqffv21V0uAABwM25/Zmf06NFauHChPvjgA9WtW9cxDycgIEB+fn4KCAjQyJEjNX78eAUFBcnf31/333+/2rdvz5VYAADA/cPO7NmzJUmdOnVyap83b56GDRsmSZoxY4Y8PDyUkJCggoICdevWTS+//HI1VwoAANyR24cdY8wf9vH19VVycrKSk5OroSIAAFCTuP2cHQAAgItB2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJbm9jcCBQAAlcP2hM0l2zVT/vim3lWJMzsAAMDSOLMD4E/nz/p/t8CfFWd2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApXm5ugAAwGm2J2wu2a6ZYlyyXaC6EHaAGs5VfyCl8/+RdNe6gKrGse9+LBN2kpOT9eyzzyorK0utWrXSrFmz1LZtW1eXBQvhAwwAaiZLhJ133nlH48eP15w5c9SuXTvNnDlT3bp1044dOxQSEuLS2vgDCQCAa1ligvILL7ygUaNGafjw4WrevLnmzJmjWrVq6fXXX3d1aQAAwMVqfNg5efKkMjIyFB8f72jz8PBQfHy80tPTXVgZAABwBzX+a6xff/1VRUVFCg0NdWoPDQ3Vd999V+ZzCgoKVFBQ4Hick5MjScrNza38AvMrf8jy+sPX46LaqKvizlsbdZXiru8ldVVcjTzG3LUuyX2PsYsc15g/mLZharj9+/cbSWbdunVO7RMmTDBt27Yt8zlTpkwxklhYWFhYWFgssOzbt++8WaHGn9mpX7++PD09lZ2d7dSenZ2tsLCwMp8zceJEjR8/3vG4uLhYhw8fVnBwsGw2100oPltubq4iIyO1b98++fv7u7ocB+qqGOqqOHetjboqxl3rkty3NuqqGGOMjh07poiIiPP2q/Fhx8fHR7GxsVq1apX69u0r6XR4WbVqlcaMGVPmc+x2u+x2u1NbYGBgFVd64fz9/d3q4CpBXRVDXRXnrrVRV8W4a12S+9ZGXeUXEBDwh31qfNiRpPHjxysxMVFxcXFq27atZs6cqePHj2v48OGuLg0AALiYJcLOHXfcoUOHDmny5MnKyspS69atlZqaWmrSMgAA+POxRNiRpDFjxpzza6uaym63a8qUKaW+cnM16qoY6qo4d62NuirGXeuS3Lc26qoaNmP+6HotAACAmqvG/6ggAADA+RB2AACApRF2AACApRF2AACApRF2KsGwYcNks9lks9nk7e2t6OhoPfzww8rP//83ISlZv379eqfnFhQUOH65ec2aNY72tWvXqkuXLgoKClKtWrXUpEkTJSYm6uTJk5KkNWvWOMY8e8nKypIk9e3b16k9ODjYpXWNHj1a+fn5evXVV3XDDTc42tu0aaONGzdWyz4p2Xa9evVUr149xcfHO237j97L999/32nczMzMaqm7c+fOTu12u129evVy+TF25v7y8vKSzWZTkyZNXF5Xhw4dSq3z8vJyeV2SNHjwYKd13t7e6t+/v8trCwsLK3N99+7dXVLXnj17Sm3XbrcrMjJS48aNU35+fpW/VzNnztSVV14pPz8/p+1Kf/xZkZaW5jTu0qVLq3R/nVlHhw4dFB0dLV9fX7Vq1colx9O2bduUkJCgRo0ayWazaebMmSpLcnKyGjVqJF9fX7Vr187p87gyEXYqSffu3XXgwAHt2rVLM2bM0Ny5czVlyhSnPpGRkZo3b55T25IlS1SnTh2ntm+//Vbdu3dXXFyc0tLS9PXXX2vWrFny8fFRUVGRU98dO3bowIEDTktISIgkqbCwUI0aNdLs2bPVoEED9e3bt9rq6tevnzp37qytW7dq8+bNev311/XWW29pypQpWrNmjQYNGiRJCg8PV25urm6++Wbt37+/yvdJybZXr16t9PR0RUZGOm1bOv97efz4cUlSUFCQzlaVddvtdsXExGjt2rVKS0vTnXfeqY8//lh33XVXlb+X56urZH9t3LhR9evXV7NmzbRnzx6XH/uS5Onp6XT81apVy+V1nTx5UitWrFCDBg30wQcf6Msvv9SUKVP0ySefuLy2zp07O/2bffHFFyVJHh7Ofyaqoq4bbrjB6b2qW7euXn75ZUnSwoULJUnBwcFKSEjQa6+9pnfeeUd///vfq3R/LFy4UI8++qimTJmi7du3O223RHk+K+rXr6+zVWbdAwYMUOfOnbV//37t2rVLMTExWrdunWJjY/Xtt9/qnnvukXQ6zFbn8XTixAlddtlleuaZZ85566Z33nlH48eP15QpU7Rlyxa1atVK3bp108GDB8vsf1Eq53acf26JiYnm1ltvdWq77bbbTExMjOOxJDNp0iTj7+9vTpw44Wi/6aabzGOPPWYkmdWrVxtjjJkxY4Zp1KjRebe5evVqI8kcOXKkXHU1bNjQzJgxo9rqGjRoUIX2SZ06dcwbb7xR5fvkbIWFhaZu3bqObZf3vRwzZoyRZNLT0x3t1fVelggICDBhYWFOdbniGOvTp4+57rrrzL///W+TmJhowsPDXX7sX3/99cbLy8upzR3+Tc6ePdvUqVPH9O7d2+1qO/sYmzFjhvHy8jKtWrWq8rp69uzp1H7m/hg9enSp7Y4fP95cf/31Vbo/Ro8ebbp06eLUVrJdYyr2uS/JLFq0yNFemXWfXUd4eLhp1apVqTpatGhRrcfTmUr+/pytbdu2ZvTo0Y7HRUVFJiIiwiQlJZVr3IrgzE4V+Oabb7Ru3Tr5+Pg4tcfGxqpRo0Z67733JEl79+5VWlqahg4d6tQvLCxMBw4cUFpaWqXWdeDAAZfVdb59EhUVpYKCAgUFBVX7Pjlx4oROnTpV5pma89XdsmVLSdKqVaskVe97aYzRv//9b+Xk5JS6p5srjrEdO3YoJCREI0eO1JEjR3T48GG3OPYLCwvVsGFDRUZGqnPnzkpLS3N5XcuWLVNISIj+97//KTQ0VC1atNCDDz7olp8XycnJ8vb2lq+vb7XWdfa/ueuuu07S6XsylZyp/vjjj3XddddV6f647rrrlJGR4fhaZdeuXfr444/Vs2fPctVdIjY2VpKUnp4uqerfx+PHj2vPnj2l6sjOznbp8XS2kydPKiMjQ/Hx8Y42Dw8PxcfHO/ZVpar0+PQnlJiYaDw9PU3t2rWN3W43koyHh4d59913HX0kmSVLlpiZM2eazp07G2OMeeKJJ0y/fv3MkSNHnJJ1YWGhGTZsmJFkwsLCTN++fc2sWbNMTk6OY7ySZF27dm2npXnz5mXWJala6/Ly8nJs84+2ff311xtfX1/z+++/V/k+Odu9995rLrvsMvP7779X6L2cO3eukWTatGlTre/lmfvTZrO5/Bjr3r27kWRq1arl2F+SXF5Xz549jYeHh/Hz8zPe3t6OuubOnevSuq688krj4eFhbDabU23u8F6eeez7+PhU6+dFWcvZ2/X09DQeHh5Gkrnnnnuq5bPixRdfNN7e3o7Ps3vuuafM/fVHn/v6vzMrVfE+ltR2Zh2SzKxZs0xRUZFZsWKF4zO5Oo+nM5V1Zmf//v1Gklm3bp1T+4QJE0zbtm3LHOdiEHYqQWJioomPjzc7d+40mZmZJjEx0YwcOdKpT8lB/+uvvxpfX1/z448/mujoaPPhhx+WOthK/Pzzz2b+/Plm9OjRJjw83Fx66aXml19+Mcb8/4Nty5YtZufOnY5lz549ZdYVHh5u2rRpU2119e7d21x33XXm008/NcuWLTMJCQllbvvOO+80AQEBxm63V8s+OVNSUpKpV6+e2bp1a4Xfy5KwU111JyYmmq5du5pPP/3ULFq0yMTFxRlvb2+n7VT3MZabm2tq165tWrdu7dhfjRs3NlFRUaX2lyuP/czMTDN06FBTt25dM2nSJJfW1aRJE1OrVi3TtWtXR21xcXHGz8/PrfZZQkKCCQwMrLbPi3bt2jk+K/r162fuuOMOx/NL+tx3330mLS3N+Pj4mPDwcFOvXr0q3R+rV682oaGh5tVXXzX/+9//zPvvv28iIyPN1KlTyzzGzve5L8n4+PhUyfvYr18/06FDB0cdd9xxh4mKijIeHh7G09PTXHHFFUaS8fb2rtbj6UyEHYs4+zvToqIi06JFC/Pvf//b0VZy0BtjTP/+/U2nTp1MeHi4KSwsPOfBdqbDhw+b+vXrm8mTJxtjLmzOzvPPP19tdZ09Z+dc+6RWrVpm06ZN1bZPSjz77LMmICDAbNq06Zz77Hx1l4Sd+Pj4an8vS+qqV6+e0/9JVfcx9tVXXzn+L9LT09PpzJPNZjM//PCDS+o61/7y9/d3nIlzVV033nijCQ8Pd6rto48+MpLMnDlzXFpbyT7Ly8sz/v7+5oUXXqi2z4sz5+yc/W+uQ4cOpbbbrFkzI8mcPHmyyvZHhw4dzEMPPeTU9uabbxo/Pz9TVFRUoc99SaZ9+/ZV8j6eq47Zs2ebn3/+2RQXFxtJ5tJLL3Xsv+r8rDWm7LBTUFBgPD09He9ribvuusv06dOnXONWBHN2qoCHh4f+/ve/a9KkSfr9999LrR8xYoTWrFmju+66S56enuUas169egoPD3fM8K9pdZ297enTp0uSJk+erLi4uGrdJ9OnT9eTTz6p1NRUxcXFVajus916660uey+vvvpq/fDDDy47xpo2bao+ffqoc+fOyszMVGZmpm699VY1b95cwcHBZV6F4qpj3xij2rVra9u2bS79N3n99dcrNzdXxhhH2w8//KDAwEA9/vjjbvF5sXjxYhUUFOiuu+5yyefF2f/mTpw4UWq727dvl5eXV6krxS5mu2c7ceJEqfFLXueZ79+56j5b165dq+V9LKnjiSeeUFBQkAoLCyVJ7dq1k+S6f4Nn8/HxUWxsrGPeoyQVFxdr1apVat++faVtp4Rl7nrubm6//XZNmDBBycnJeuihh5zWde/eXYcOHZK/v3+Zz507d64yMzPVr18/NW7cWPn5+Zo/f762bdumWbNmOfU9ePCg0+9zSKcv0fT29lZxcbFycnKUmZmpkydPav/+/erQoYOMMVVeV35+vvLz851+s6Jv376aMGGC+vfvr08//VSSFBISoqysLLVu3Vq7d+9WREREle6TadOmafLkyVq4cKEaNWrkqK9OnTqlLsEsceZ7OWLECEnSvn37JJ2+rPSzzz5T48aNq7Tur7/+Wna7Xbt27VJBQYE+/vhjffHFF6pbt67LjjFfX1/Vq1dPNptNLVq0kCQFBgaqcePGysnJ0auvvuqyY3/r1q3y8/PTrl27dPToUT377LM6fPiwAgMDXfpv8t5779Wzzz6rr7/+Wt9//7127typp59+WuPGjdMrr7zi0tpKvPbaa+rbt6+Cg4Or7XOsoKDA6bPihhtukKenp5KTk9W7d29t2bJFn3/+uVq1aiVPT081atRIsbGxZf6xrqz90bt3b73wwguKiYlRu3bt9MMPP+ixxx5T7969zxkSztxfJZd87969W9LpwPDZZ58pMjLyovfXmXX//vvvys/P16lTp+Tt7a0NGzbIy+v0n/a//e1v2rFjh6TTPwciVd/xdPLkSX377beS5Pj7k5mZqTp16ujyyy+XJI0fP16JiYmKi4tT27ZtNXPmTB0/flzDhw8vs7aLUunniv6EyroE0ZjTc0IaNGhg8vLynE7Dnu3s04hbtmwxd955p4mOjjZ2u90EBwebG2+80SxbtszxnPNN7Cu5HDohIaHM9dHR0S6rKykpyTHJ8OxlypQpVb5PGjZseN5t/9F7OWfOnPM+v6rqvvrqq03t2rWNr6+vqVevnmnfvr1ZtGiRy4+xs/dXyWNX19WsWTPj5+dnfHx8TGhoqOnZs6fZsmWLy+sy5vTk6Xr16hm73W4uu+wy889//tMUFha6vLaSeWGSzIoVKxzPdVVd9957r2nQoIE5evSokU5PlvX19TWRkZHmvvvuc3yFUlX749SpU+bxxx83jRs3LnO7f/RZ8fHHH5c5fmJiYpXWvWbNGtOsWTPj6elpbDabGThwoEuOp927d5e5vmPHjk7bnzVrlomKijI+Pj6mbdu2Zv369WXWebFsxpRxPg4AAMAimLMDAAAsjbAD/J/PP//cMXenrAUApNM/yHe+z4q9e/e6ukScha+xgP/z+++/O90j62wlk+oA/LkVFhY63aj0bI0aNXJMEoZ7IOwAAABL42ssAABgaYQdAABgaYQdAABgaYQdACjD448/rtatW1foOTabTUuXLj3n+j179shmsykzM/OiagNQMYQdAE6GDRsmm80mm80mb29vRUdH6+GHHy71s/AlfdavX+/UXlBQoODgYNlsNq1Zs8bRvnbtWnXp0kVBQUGqVauWmjRposTERJ08eVKStGbNGseYZy9n3kqgREZGRpnbL9G1a1fddtttF7wfHnroIaf79gCouQg7AErp3r27Dhw4oF27dmnGjBmaO3eupkyZUqpfZGSk5s2b59S2ZMmSUr9L9O2336p79+6Ki4tTWlqavv76a82aNUs+Pj4qKipy6rtjxw4dOHDAaQkJCSm17djYWLVq1Uqvv/56qXV79uzR6tWrNXLkyAq/dmOMCgsLVadOHQUHB1f4+QDcD2EHQCl2u11hYWGKjIxU3759FR8fr5UrV5bql5iYqEWLFjnd5fn1119XYmKiU78VK1YoLCxM06dPV4sWLdS4cWN1795dr776qvz8/Jz6hoSEKCwszGk5192tR44cqXfeeafUnbFTUlIUHh6u7t27680331RcXJzq1q2rsLAwDR48WAcPHnT0LTmjtHz5csXGxsput+uLL74o9TXWpk2bdNNNN6l+/foKCAhQx44dtWXLllI1HThwQD169JCfn58uu+wyvfvuu+fe0ZK++eYb9ejRQ3Xq1FFoaKiGDh2qX3/91bH+3XffVcuWLeXn56fg4GDFx8dX6t2ngT8Dwg6A8/rmm2+0bt06+fj4lFoXGxurRo0a6b333pN0+pdl09LSNHToUKd+YWFhOnDggNLS0iq1tiFDhqigoMApUBhj9MYbb2jYsGHy9PTUqVOn9OSTT2rr1q1aunSp9uzZo2HDhpUa69FHH9Uzzzyj7du36+qrry61/tixY0pMTNQXX3yh9evXq0mTJurZs6eOHTvm1O+xxx5TQkKCtm7dqiFDhmjgwIHavn17mfUfPXpUXbp0UUxMjDZv3qzU1FRlZ2drwIABkk4Hp0GDBmnEiBHavn271qxZo9tuu038PBpQQVVye1EANVZiYqLx9PQ0tWvXNna73UgyHh4e5t1333Xqp/+7k/LMmTNN586djTHGPPHEE6Zfv36l7qRcWFhohg0b5rh7dd++fc2sWbNMTk6OY7ySOynXrl3baWnevPl56x04cKDTnZRXrVplJJmdO3eW2X/Tpk1Gkjl27JjTdpcuXerUb8qUKaZVq1bn3G5RUZGpW7eu+fDDD532yT333OPUr127dubee+81xvz/O0F/9dVXxhhjnnzySXPzzTc79d+3b5+RZHbs2GEyMjKMJLNnz57z7gMA58eZHQCldO7cWZmZmdqwYYMSExM1fPhwJSQklNn3zjvvVHp6unbt2qWUlBSNGDGiVB9PT0/NmzdPP//8s6ZPn65LLrlETz/9tK666iodOHDAqe/nn3+uzMxMx/Lxxx+ft9YRI0YoLS1NP/74o6TTX6N17NjRcXuPjIwM9e7dW1FRUapbt646duwoSaXuXxQXF3fe7WRnZ2vUqFFq0qSJAgIC5O/vr7y8vFLjtG/fvtTjc53Z2bp1q1avXu10X6WmTZtKkn788Ue1atVKXbt2VcuWLXX77bfr1Vdf1ZEjR85bJ4DSCDsASqldu7Yuv/xyxwTgDRs26LXXXiuzb3BwsG655RaNHDlS+fn56tGjxznHveSSSzR06FD961//0rZt25Sfn685c+Y49YmOjtbll1/uWBo2bHjeWrt27aqoqCilpKQoNzdX77//vmNi8vHjx9WtWzf5+/trwYIF2rRpk5YsWSJJjqvAznzN55OYmKjMzEy9+OKLWrdunTIzMxUcHFxqnIrIy8tT7969ncJdZmamdu7cqRtvvFGenp5auXKlli9frubNm2vWrFm68sortXv37gveJvBnRNgBcF4eHh76+9//rkmTJjlNRD7TiBEjtGbNGt11113y9PQs17j16tVTeHj4RU+29fDw0PDhw/XGG29o4cKF8vHxUf/+/SVJ3333nX777Tc988wzuuGGG9S0aVOnyckV8eWXX+qBBx5Qz549ddVVV8lutztNJC5x9qXw69evV7Nmzcoc85prrtG2bdvUqFEjp4B3+eWXO8KXzWbT9ddfryeeeEJfffWVfHx8HIENQPkQdgD8odtvv12enp5KTk4uc3337t116NAhTZ06tcz1c+fO1b333qsVK1boxx9/1LZt2/TII49o27Zt6t27t1PfgwcPKisry2k5derUeesbPny49u/fr7///e8aNGiQ4wqvqKgo+fj4aNasWdq1a5eWLVumJ5988gL2gNSkSRO9+eab2r59uzZs2KAhQ4aUupJMkhYvXqzXX39d33//vaZMmaKNGzdqzJgxZY45evRoHT58WIMGDdKmTZv0448/6pNPPtHw4cNVVFSkDRs26Omnn9bmzZu1d+9evf/++zp06NA5wxOAshF2APwhLy8vjRkzRtOnTy/zTIzNZlP9+vXLvGJLktq2bau8vDzdc889uuqqq9SxY0etX79eS5cudcyhKXHllVcqPDzcacnIyDhvfVFRUYqPj9eRI0ec5gw1aNBAKSkpWrx4sZo3b65nnnlGzz333AXsAem1117TkSNHdM0112jo0KF64IEHyvz9nyeeeEKLFi3S1Vdfrfnz5+vtt99W8+bNyxwzIiJCX375pYqKinTzzTerZcuWGjt2rAIDA+Xh4SF/f3+lpaWpZ8+euuKKKzRp0iQ9//zz5/2qEEBpNmO4hhEAAFgXZ3YAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAICl/T/87OzQb65QZQAAAABJRU5ErkJggg==", "text/plain": [ "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDeUlEQVR4nO3deVxU9eL/8feAsogsbmypiEtiau4XNa1MzNLMLVOv5UbZTSiXvKWVmm2klbe00lspmqGYuWRWKuF263rdcSlzyy0T0JRVRYPz+8Of820ClYGBgdPr+XjM49F8zplz3gw+mjefs4zFMAxDAAAAJuXi7AAAAAAlibIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDwGleeuklWSwWnT17tsT3tXr1ajVv3lweHh6yWCxKS0sr8X2WZ/PmzZPFYtGxY8ecHQUoNsoOUAKufVD88eHv769OnTrpm2++KfU8X375pXr06KGAgAC5ubmpatWquvPOO/X2228rIyOj1POUtt9++00PP/ywPD099f7772vBggXy8vK66es++OADWSwWhYeHl0JKACWlgrMDAGb28ssvKzQ0VIZhKCUlRfPmzVO3bt305Zdf6oEHHijx/efl5SkyMlLz5s1T06ZNNXLkSNWqVUuZmZnavHmzXnzxRX399ddKTEws8SzOtG3bNmVmZuqVV15RREREoV8XFxenOnXqaOvWrTp8+LDq169fginLlkcffVQDBgyQu7u7s6MAxUbZAUrQ/fffr9atW1ufR0ZGKiAgQIsWLXJI2cnLy9Ply5fl4eFR4PJp06Zp3rx5GjNmjN5++21ZLBbrslGjRun06dP65JNPirWP8iA1NVWS5OfnV+jXHD16VP/973+1bNkyPfHEE4qLi9PkyZNLKGHxZGdnF2qmyh6urq5ydXV16DYBZ+EwFlCK/Pz85OnpqQoVbP/OeOutt9S+fXtVq1ZNnp6eatWqlT7//PN8r7dYLIqOjlZcXJwaN24sd3d3rV69usB9XbhwQVOnTlXjxo315ptv2hSda4KCgvTcc88Veh9FydmwYUN5eHioVatW2rRpU4FZ09LSNHToUPn5+cnX11fDhg3ThQsXCn4T/2TJkiVq1aqVPD09Vb16dT3yyCM6deqUdfndd9+tIUOGSJLatGkji8WioUOH3nS7cXFxqlKlirp3766HHnpIcXFx180+ZswY1alTR+7u7qpZs6YGDx5scx7SpUuX9NJLL+nWW2+Vh4eHgoKC1KdPHx05ckSStGHDBlksFm3YsMFm28eOHZPFYtG8efOsY0OHDlXlypV15MgRdevWTd7e3ho0aJAk6T//+Y/69eun2rVry93dXbVq1dKYMWN08eLFfLl/+uknPfzww6pRo4Y8PT3VsGFDvfDCC9bl1ztn55tvvlHHjh3l5eUlb29vde/eXT/88IPNOsnJyRo2bJhq1qwpd3d3BQUFqWfPnpz/A6dhZgcoQenp6Tp79qwMw1BqaqpmzpyprKwsPfLIIzbrvfvuu3rwwQc1aNAgXb58WfHx8erXr59WrVql7t2726y7bt06ffbZZ4qOjlb16tVVp06dAvf93XffKS0tTePGjbP7L/Tr7cOenBs3btTixYv19NNPy93dXR988IHuu+8+bd26VU2aNLFZ9+GHH1ZoaKhiYmK0c+dOffzxx/L399fUqVNvmHPevHkaNmyY2rRpo5iYGKWkpOjdd9/V999/r127dsnPz08vvPCCGjZsqA8//NB6WLFevXo3fQ/i4uLUp08fubm5aeDAgZo1a5a2bdumNm3aWNfJyspSx44dtX//fg0fPlwtW7bU2bNntXLlSv3yyy+qXr26cnNz9cADDygxMVEDBgzQqFGjlJmZqYSEBO3bt69QWf7s999/V9euXdWhQwe99dZbqlSpkqSrxe/ChQt68sknVa1aNW3dulUzZ87UL7/8oiVLllhfv2fPHnXs2FEVK1bUiBEjVKdOHR05ckRffvmlXnvttevud8GCBRoyZIi6du2qqVOn6sKFC5o1a5Y6dOigXbt2Wf+d9O3bVz/88IOeeuop1alTR6mpqUpISNCJEyeu++8VKFEGAIeLjY01JOV7uLu7G/Pmzcu3/oULF2yeX7582WjSpIlxzz332IxLMlxcXIwffvjhphneffddQ5KxYsUKm/Hff//dOHPmjM0jLy+vUPuwJ6ckY/v27dax48ePGx4eHkbv3r2tY5MnTzYkGcOHD7d5fe/evY1q1ard8Oe7fPmy4e/vbzRp0sS4ePGidXzVqlWGJGPSpEnWsWu/j23btt1wm9ds377dkGQkJCQYhmEYeXl5Rs2aNY1Ro0bZrDdp0iRDkrFs2bJ827j2ns6dO9eQZEyfPv2666xfv96QZKxfv95m+dGjRw1JRmxsrHVsyJAhhiRj/Pjx+bb359+PYRhGTEyMYbFYjOPHj1vH7rzzTsPb29tm7I95DOP/3rOjR48ahmEYmZmZhp+fn/H444/bvCY5Odnw9fW1jp8/f96QZLz55pv5sgDOwmEsoAS9//77SkhIUEJCgj799FN16tRJjz32mJYtW2aznqenp/W/z58/r/T0dHXs2FE7d+7Mt8277rpLt9122033fe0qq8qVK9uM7927VzVq1LB5/Pbbb4Xahz0527Vrp1atWlmf165dWz179tSaNWuUm5trs+4//vEPm+cdO3bUb7/9dsMrxbZv367U1FSNHDnS5nyi7t27KywsTF999dV1X3szcXFxCggIUKdOnSRdPSzXv39/xcfH22RfunSpmjVrpt69e+fbxrXDhkuXLlX16tX11FNPXXedonjyySfzjf3x95Odna2zZ8+qffv2MgxDu3btkiSdOXNGmzZt0vDhw1W7du1C50lISFBaWpoGDhyos2fPWh+urq4KDw/X+vXrrRnc3Ny0YcMGnT9/vsg/H+BIHMYCStDf/vY3mxOUBw4cqBYtWig6OloPPPCA3NzcJEmrVq3Sq6++qqSkJOXk5FjXL+jDJzQ0tFD79vb2lnT1UMsf1a9fXwkJCZKkTz75RAsWLCj0PuzJ2aBBg3xjt956qy5cuKAzZ84oMDDQOv7nD90qVapIulqofHx8Csxy/PhxSVLDhg3zLQsLC9N3331X4OtuJjc3V/Hx8erUqZOOHj1qHQ8PD9fbb7+txMRE3XvvvZKkI0eOqG/fvjfc3pEjR9SwYcN852kVR4UKFVSzZs184ydOnNCkSZO0cuXKfEUjPT1dkvTzzz9LUr5DiTdz6NAhSdI999xT4PJrvyd3d3dNnTpVzzzzjAICAtS2bVs98MADGjx4sM3vHChNlB2gFLm4uKhTp0569913dejQITVu3Fj/+c9/9OCDD+rOO+/UBx98oKCgIFWsWFGxsbFauHBhvm388a/3GwkLC5Mk7du3Tz179rSOV65c2Xr59fUKQUH7sDenPa53TpFhGMXablGsW7dOp0+fVnx8vOLj4/Mtj4uLs5YdR7nejMqfZ8CucXd3l4uLS751u3TponPnzum5555TWFiYvLy8dOrUKQ0dOlR5eXnFynjt9QsWLCiwtPyxzI0ePVo9evTQihUrtGbNGk2cOFExMTFat26dWrRoUawcQFFQdoBS9vvvv0v6vxmXpUuXysPDQ2vWrLG5p0lsbGyx9tOxY0f5+voqPj5eEyZMyPfhaC97c16bCfijgwcPqlKlSqpRo0axskhSSEiIJOnAgQP5ZhsOHDhgXW6vuLg4+fv76/3338+3bNmyZVq+fLlmz54tT09P1atXT/v27bvh9urVq6ctW7boypUrqlixYoHrXJvJ+vNdna/NXhXG3r17dfDgQc2fP1+DBw+2jl+bxbumbt26knTT3H927URqf3//Qt2rqF69enrmmWf0zDPP6NChQ2revLnefvttffrpp3btF3AEztkBStGVK1e0du1aubm5qVGjRpKuzmpYLBabv+KPHTumFStWFGtflSpV0rPPPqt9+/Zp/PjxBc6S2DNzYm/OzZs325zLc/LkSX3xxRe69957HXL/ltatW8vf31+zZ8+2OaT2zTffaP/+/fmuDiuMixcvatmyZXrggQf00EMP5XtER0crMzNTK1eulHT1qqPdu3dr+fLl+bZ17b3t27evzp49q/fee++664SEhMjV1TXfpfkffPBBobNfe0//+Ds1DEPvvvuuzXo1atTQnXfeqblz5+rEiRMF5ilI165d5ePjo9dff11XrlzJt/zMmTOSrt7y4NKlSzbL6tWrJ29vb5vfE1CamNkBStA333yjn376SdLVG9stXLhQhw4d0vjx463nOHTv3l3Tp0/Xfffdp7///e9KTU3V+++/r/r162vPnj3F2v/48eO1f/9+vfnmm1q7dq369u2rmjVr6vz589q5c6eWLFkif3//Qt0w0N6cTZo0UdeuXW0uPZekKVOmFOtnuqZixYqaOnWqhg0bprvuuksDBw60Xnpep04djRkzxu5trly5UpmZmXrwwQcLXN62bVvVqFFDcXFx6t+/v/75z3/q888/V79+/TR8+HC1atVK586d08qVKzV79mw1a9ZMgwcP1ieffKKxY8dq69at6tixo7Kzs/Xtt99q5MiR6tmzp3x9fdWvXz/NnDlTFotF9erV06pVq6w3QyyMsLAw1atXT+PGjdOpU6fk4+OjpUuXFniS8IwZM9ShQwe1bNlSI0aMUGhoqI4dO6avvvpKSUlJBW7fx8dHs2bN0qOPPqqWLVtqwIABqlGjhk6cOKGvvvpKd9xxh9577z0dPHhQnTt31sMPP6zbbrtNFSpU0PLly5WSkqIBAwYU+ucBHMpp14EBJlbQpeceHh5G8+bNjVmzZtlc4msYhjFnzhyjQYMGhru7uxEWFmbExsZaL8v+I0lGVFSU3XmWL19udOvWzahRo4ZRoUIFw8/Pz+jQoYPx5ptvGmlpaYXeh705P/30U+v6LVq0yHdp9bXXnjlzxmb8z5c938jixYuNFi1aGO7u7kbVqlWNQYMGGb/88kuB27vZpec9evQwPDw8jOzs7OuuM3ToUKNixYrG2bNnDcMwjN9++82Ijo42brnlFsPNzc2oWbOmMWTIEOtyw7h6SfgLL7xghIaGGhUrVjQCAwONhx56yDhy5Ih1nTNnzhh9+/Y1KlWqZFSpUsV44oknjH379hV46bmXl1eB2X788UcjIiLCqFy5slG9enXj8ccfN3bv3p1vG4ZhGPv27TN69+5t+Pn5GR4eHkbDhg2NiRMn5nvP/vw7WL9+vdG1a1fD19fX8PDwMOrVq2cMHTrUepuBs2fPGlFRUUZYWJjh5eVl+Pr6GuHh4cZnn312w/ceKEkWw3DCGYAATM1isSgqKqrAQzcAUNo4ZwcAAJgaZQcAAJgaZQcAAJgaV2MBcDhOBQRQljCzAwAATI2yAwAATI3DWLr6nS+//vqrvL29i/UtxAAAoPQYhqHMzEwFBwff8CtxKDuSfv31V9WqVcvZMQAAQBGcPHlSNWvWvO5yyo4kb29vSVffrGu38AcAAGVbRkaGatWqZf0cvx7KjmQ9dOXj40PZAQCgnLnZKSicoAwAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEzNqWVn06ZN6tGjh4KDg2WxWLRixQqb5YZhaNKkSQoKCpKnp6ciIiJ06NAhm3XOnTunQYMGycfHR35+foqMjFRWVlYp/hQAAKAsc2rZyc7OVrNmzfT+++8XuHzatGmaMWOGZs+erS1btsjLy0tdu3bVpUuXrOsMGjRIP/zwgxISErRq1Spt2rRJI0aMKK0fAQAAlHEWwzAMZ4eQrn6J1/Lly9WrVy9JV2d1goOD9cwzz2jcuHGSpPT0dAUEBGjevHkaMGCA9u/fr9tuu03btm1T69atJUmrV69Wt27d9Msvvyg4OLhQ+87IyJCvr6/S09P5IlAAAMqJwn5+l9lzdo4ePark5GRFRERYx3x9fRUeHq7NmzdLkjZv3iw/Pz9r0ZGkiIgIubi4aMuWLdfddk5OjjIyMmweAADAnMps2UlOTpYkBQQE2IwHBARYlyUnJ8vf399meYUKFVS1alXrOgWJiYmRr6+v9VGrVi0HpwcAAGVFmS07JWnChAlKT0+3Pk6ePOnsSGWOxVL2HgAAFEWZLTuBgYGSpJSUFJvxlJQU67LAwEClpqbaLP/999917tw56zoFcXd3l4+Pj80DAACYU5ktO6GhoQoMDFRiYqJ1LCMjQ1u2bFG7du0kSe3atVNaWpp27NhhXWfdunXKy8tTeHh4qWcGAABlTwVn7jwrK0uHDx+2Pj969KiSkpJUtWpV1a5dW6NHj9arr76qBg0aKDQ0VBMnTlRwcLD1iq1GjRrpvvvu0+OPP67Zs2frypUrio6O1oABAwp9JRaAv56yeFi0bFwXWzJ4v0sX73d+Ti0727dvV6dOnazPx44dK0kaMmSI5s2bp2effVbZ2dkaMWKE0tLS1KFDB61evVoeHh7W18TFxSk6OlqdO3eWi4uL+vbtqxkzZpT6zwIAAMqmMnOfHWfiPjv58ZcBzIx/36WL97t0/ZXe73J/nx0AAABHoOwAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTq+DsAAAAlEUWi7MT5GcYzk5QPjGzAwAATI2ZHaAMKK9/QZbX3AD+WpjZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApsYdlAGgnOCO1UDRUHZgKnwYAAD+jMNYAADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1LjPTgnjvi8AADgXMzsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUynTZyc3N1cSJExUaGipPT0/Vq1dPr7zyiow/XDttGIYmTZqkoKAgeXp6KiIiQocOHXJiagAAUJaU6bIzdepUzZo1S++9957279+vqVOnatq0aZo5c6Z1nWnTpmnGjBmaPXu2tmzZIi8vL3Xt2lWXLl1yYnIAAFBWlOmbCv73v/9Vz5491b17d0lSnTp1tGjRIm3dulXS1Vmdd955Ry+++KJ69uwpSfrkk08UEBCgFStWaMCAAU7LDgAAyoYyPbPTvn17JSYm6uDBg5Kk3bt367vvvtP9998vSTp69KiSk5MVERFhfY2vr6/Cw8O1efPm6243JydHGRkZNg8AAGBOZXpmZ/z48crIyFBYWJhcXV2Vm5ur1157TYMGDZIkJScnS5ICAgJsXhcQEGBdVpCYmBhNmTKl5IIDAIAyo0zP7Hz22WeKi4vTwoULtXPnTs2fP19vvfWW5s+fX6ztTpgwQenp6dbHyZMnHZQYAACUNWV6Zuef//ynxo8fbz33pmnTpjp+/LhiYmI0ZMgQBQYGSpJSUlIUFBRkfV1KSoqaN29+3e26u7vL3d29RLMDAICyoUzP7Fy4cEEuLrYRXV1dlZeXJ0kKDQ1VYGCgEhMTrcszMjK0ZcsWtWvXrlSzAgCAsqlMz+z06NFDr732mmrXrq3GjRtr165dmj59uoYPHy5JslgsGj16tF599VU1aNBAoaGhmjhxooKDg9WrVy/nhgcAAGVCmS47M2fO1MSJEzVy5EilpqYqODhYTzzxhCZNmmRd59lnn1V2drZGjBihtLQ0dejQQatXr5aHh4cTkwMAgLLCYvzxdsR/URkZGfL19VV6erp8fHwcum2LxaGbc4jC/MbJ7TjkLl3kLl3kLl1mzl0Uhf38LtPn7AAAABQXZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJia3WXn4sWLunDhgvX58ePH9c4772jt2rUODQYAAOAIdpednj176pNPPpEkpaWlKTw8XG+//bZ69uypWbNmOTwgAABAcdhddnbu3KmOHTtKkj7//HMFBATo+PHj+uSTTzRjxgyHBwQAACgOu8vOhQsX5O3tLUlau3at+vTpIxcXF7Vt21bHjx93eEAAAIDisLvs1K9fXytWrNDJkye1Zs0a3XvvvZKk1NRU+fj4ODwgAABAcdhddiZNmqRx48apTp06+tvf/qZ27dpJujrL06JFC4cHBAAAKA6LYRiGvS9KTk7W6dOn1axZM7m4XO1LW7dulY+Pj8LCwhwesqRlZGTI19dX6enpDp+dslgcujmHKMxvnNyOQ+7SRe7SRe7SZebcRVHYz+8i3WcnMDBQ3t7eSkhI0MWLFyVJbdq0KZdFBwAAmJvdZee3335T586ddeutt6pbt246ffq0JCkyMlLPPPOMwwMCAAAUh91lZ8yYMapYsaJOnDihSpUqWcf79++v1atXOzQcAABAcVWw9wVr167VmjVrVLNmTZvxBg0acOk5AAAoc+ye2cnOzraZ0bnm3Llzcnd3d0goAAAAR7G77HTs2NH6dRGSZLFYlJeXp2nTpqlTp04ODQcAAFBcdh/GmjZtmjp37qzt27fr8uXLevbZZ/XDDz/o3Llz+v7770siIwAAQJHZPbPTpEkTHTx4UB06dFDPnj2VnZ2tPn36aNeuXapXr15JZAQAACiyIt1U0Gy4qWB+5HYccpcucpcucpcuM+cuisJ+ftt9GGvTpk03XH7nnXfau0kAAIASY3fZufvuu/ONWf5QI3Nzc4sVCAAAwJHsPmfn/PnzNo/U1FStXr1abdq00dq1a0siIwAAQJHZPbPj6+ubb6xLly5yc3PT2LFjtWPHDocEAwAAcIQifRFoQQICAnTgwAFHbQ4AAMAh7J7Z2bNnj81zwzB0+vRpvfHGG2revLmjcgEAADiE3WWnefPmslgs+vMV623bttXcuXMdFgwAAMAR7C47R48etXnu4uKiGjVqyMPDw2GhAAAAHMXuc3ZCQkJsHrVq1SrRonPq1Ck98sgjqlatmjw9PdW0aVNt377dutwwDE2aNElBQUHy9PRURESEDh06VGJ5AABA+VKomZ0ZM2YUeoNPP/10kcP82fnz53XHHXeoU6dO+uabb1SjRg0dOnRIVapUsa4zbdo0zZgxQ/Pnz1doaKgmTpyorl276scff2S2CQAAFO7rIkJDQwu3MYtFP//8c7FDXTN+/Hh9//33+s9//lPgcsMwFBwcrGeeeUbjxo2TJKWnpysgIEDz5s3TgAEDCrUfvi4iP3I7DrlLF7lLF7lLl5lzF4VDvy7iz+fplJaVK1eqa9eu6tevnzZu3KhbbrlFI0eO1OOPP27NlZycrIiICOtrfH19FR4ers2bN1+37OTk5CgnJ8f6PCMjo2R/EAAA4DQOu89OSfj55581a9YsNWjQQGvWrNGTTz6pp59+WvPnz5ckJScnS7p6j58/CggIsC4rSExMjHx9fa2PWrVqldwPAQAAnMruq7Ek6ZdfftHKlSt14sQJXb582WbZ9OnTHRJMkvLy8tS6dWu9/vrrkqQWLVpo3759mj17toYMGVLk7U6YMEFjx461Ps/IyKDwAABgUnaXncTERD344IOqW7eufvrpJzVp0kTHjh2TYRhq2bKlQ8MFBQXptttusxlr1KiRli5dKkkKDAyUJKWkpCgoKMi6TkpKyg1vcOju7i53d3eHZgUAAGWT3YexJkyYoHHjxmnv3r3y8PDQ0qVLdfLkSd11113q16+fQ8Pdcccd+b6C4uDBgwoJCZF09cTpwMBAJSYmWpdnZGRoy5YtateunUOzAACAcsqwU+XKlY3Dhw8bhmEYfn5+xr59+wzDMIykpCQjJCTE3s3d0NatW40KFSoYr732mnHo0CEjLi7OqFSpkvHpp59a13njjTcMPz8/44svvjD27Nlj9OzZ0wgNDTUuXrxY6P2kp6cbkoz09HSH5jcMw7h6DnrZepCb3OQuew9yk/uvnrsoCvv5bfdhLC8vL+t5OkFBQTpy5IgaN24sSTp79qwje5jatGmj5cuXa8KECXr55ZcVGhqqd955R4MGDbKu8+yzzyo7O1sjRoxQWlqaOnTooNWrV3OPHQAAIKmQ99n5o169eql79+56/PHHNW7cOH3xxRcaOnSoli1bpipVqujbb78tqawlhvvs5EduxyF36SJ36SJ36TJz7qJw6H12JOncuXOqWrWqpk+frqysLEnSlClTlJWVpcWLF6tBgwYOvRILAADAEQo9s+Ph4aFevXopMjJSXbp0KelcpYqZnfzI7TjkLl3kLl3kLl1mzl0Uhf38LvTVWB999JHOnDmj++67T3Xq1NFLL72kY8eOOSIrAABAiSl02Xn00UeVmJiow4cPa8iQIZo/f77q16+vLl26aPHixfluLggAAFAW2H2fndDQUE2ZMkVHjx7V6tWr5e/vr+HDhysoKMih33gOAADgCHZfjVWQpUuXWi/9zs3NdUSuUsU5O/mR23HIXbrIXbrIXbrMnLsoHH411p8dP35csbGxmj9/vk6ePKlOnTopMjKyqJsDAAAoEXaVnZycHC1dulRz587Vhg0bdMstt2jo0KEaNmyY6tSpU0IRAQAAiq7QZWfkyJGKj4/XhQsX1LNnT3399dfq0qWLLGVxvgwAAOD/K3TZ+e677zR58mQ98sgjqlatWklmAgAAcJhCl509e/aUZA4AAIASYfel5wAAAOUJZQcAAJgaZQcAAJgaZQcAAJia3WWnTp06evnll3XixImSyAMAAOBQdped0aNHa9myZapbt666dOmi+Ph45eTklEQ2AACAYitS2UlKStLWrVvVqFEjPfXUUwoKClJ0dLR27txZEhkBAACKrMjn7LRs2VIzZszQr7/+qsmTJ+vjjz9WmzZt1Lx5c82dO1cO+H5RAACAYivyF4FeuXJFy5cvV2xsrBISEtS2bVtFRkbql19+0fPPP69vv/1WCxcudGRWAAAAu9lddnbu3KnY2FgtWrRILi4uGjx4sP71r38pLCzMuk7v3r3Vpk0bhwYFAAAoCrvLTps2bdSlSxfNmjVLvXr1UsWKFfOtExoaqgEDBjgkIAAAQHHYXXZ+/vlnhYSE3HAdLy8vxcbGFjkUAACAo9h9gnJqaqq2bNmSb3zLli3avn27Q0IBAAA4it1lJyoqSidPnsw3furUKUVFRTkkFAAAgKPYXXZ+/PFHtWzZMt94ixYt9OOPPzokFAAAgKPYXXbc3d2VkpKSb/z06dOqUKHIV7IDAACUCLvLzr333qsJEyYoPT3dOpaWlqbnn39eXbp0cWg4AACA4rJ7Kuatt97SnXfeqZCQELVo0UKSlJSUpICAAC1YsMDhAQEAAIrD7rJzyy23aM+ePYqLi9Pu3bvl6empYcOGaeDAgQXecwcAAMCZinSSjZeXl0aMGOHoLAAAAA5X5DOKf/zxR504cUKXL1+2GX/wwQeLHQoAAMBRinQH5d69e2vv3r2yWCzWbze3WCySpNzcXMcmBAAAKAa7r8YaNWqUQkNDlZqaqkqVKumHH37Qpk2b1Lp1a23YsKEEIgIAABSd3TM7mzdv1rp161S9enW5uLjIxcVFHTp0UExMjJ5++mnt2rWrJHICAAAUid0zO7m5ufL29pYkVa9eXb/++qskKSQkRAcOHHBsOgAAgGKye2anSZMm2r17t0JDQxUeHq5p06bJzc1NH374oerWrVsSGQEAAIrM7rLz4osvKjs7W5L08ssv64EHHlDHjh1VrVo1LV682OEBAQAAisNiXLucqhjOnTunKlWqWK/IKm8yMjLk6+ur9PR0+fj4OHTbZfEtKcxvnNyOQ+7SRe7SRe7SZebcRVHYz2+7ztm5cuWKKlSooH379tmMV61atdwWHQAAYG52lZ2KFSuqdu3a3EsHAACUG3ZfjfXCCy/o+eef17lz50oiDwAAgEPZfYLye++9p8OHDys4OFghISHy8vKyWb5z506HhQMAACguu8tOr169SiAGAABAybC77EyePLkkcgAAAJQIu8/ZAQAAKE/sntlxcXG54WXmXKkFAADKErvLzvLly22eX7lyRbt27dL8+fM1ZcoUhwUDAABwBIfcQVmSFi5cqMWLF+uLL75wxOZKFXdQzo/cjkPu0kXu0kXu0mXm3EVRIndQvpG2bdsqMTHRUZsDAABwCIeUnYsXL2rGjBm65ZZbHLE5AAAAh7H7nJ0/f+GnYRjKzMxUpUqV9Omnnzo0HAAAQHHZXXb+9a9/2ZQdFxcX1ahRQ+Hh4apSpYpDwwEAABSX3WVn6NChJRADAACgZNh9zk5sbKyWLFmSb3zJkiWaP3++Q0IBAAA4it1lJyYmRtWrV8837u/vr9dff90hoQAAABzF7rJz4sQJhYaG5hsPCQnRiRMnHBIKAADAUewuO/7+/tqzZ0++8d27d6tatWoOCQUAAOAodpedgQMH6umnn9b69euVm5ur3NxcrVu3TqNGjdKAAQNKIiMAAECR2X011iuvvKJjx46pc+fOqlDh6svz8vI0ePBgztkBAABljt0zO25ublq8eLEOHDiguLg4LVu2TEeOHNHcuXPl5uZWEhmt3njjDVksFo0ePdo6dunSJUVFRalatWqqXLmy+vbtq5SUlBLNAQAAyg+7Z3auadCggRo0aODILDe0bds2/fvf/9btt99uMz5mzBh99dVXWrJkiXx9fRUdHa0+ffro+++/L7VsAACg7LJ7Zqdv376aOnVqvvFp06apX79+Dgn1Z1lZWRo0aJA++ugjm7s0p6ena86cOZo+fbruuecetWrVSrGxsfrvf/+r//3vfyWSBQAAlC92l51NmzapW7du+cbvv/9+bdq0ySGh/iwqKkrdu3dXRESEzfiOHTt05coVm/GwsDDVrl1bmzdvvu72cnJylJGRYfMAAADmZPdhrKysrALPzalYsWKJlIb4+Hjt3LlT27Zty7csOTlZbm5u8vPzsxkPCAhQcnLydbcZExOjKVOmODoqAAAog+ye2WnatKkWL16cbzw+Pl633XabQ0Jdc/LkSY0aNUpxcXHy8PBw2HYnTJig9PR06+PkyZMO2zYAAChb7J7ZmThxovr06aMjR47onnvukSQlJiZq0aJFBX5nVnHs2LFDqampatmypXUsNzdXmzZt0nvvvac1a9bo8uXLSktLs5ndSUlJUWBg4HW36+7uLnd3d4dmBQAAZZPdZadHjx5asWKFXn/9dX3++efy9PTU7bffrm+//VZ33XWXQ8N17txZe/futRkbNmyYwsLC9Nxzz6lWrVqqWLGiEhMT1bdvX0nSgQMHdOLECbVr186hWQAAQPlUpEvPu3fvru7du+cb37dvn5o0aVLsUNd4e3vn256Xl5eqVatmHY+MjNTYsWNVtWpV+fj46KmnnlK7du3Utm1bh+UAAADlV5Hvs3NNZmamFi1apI8//lg7duxQbm6uI3IV2r/+9S+5uLiob9++ysnJUdeuXfXBBx+UagYAAFB2WQzDMIrywk2bNunjjz/WsmXLFBwcrD59+qhv375q06aNozOWuIyMDPn6+io9PV0+Pj4O3bbF4tDNOURhfuPkdhxyly5yly5yly4z5y6Kwn5+2zWzk5ycrHnz5mnOnDnKyMjQww8/rJycHK1YscLhV2IBAAA4QqEvPe/Ro4caNmyoPXv26J133tGvv/6qmTNnlmQ2AACAYiv0zM4333yjp59+Wk8++WSpficWAABAcRR6Zue7775TZmamWrVqpfDwcL333ns6e/ZsSWYDAAAotkKXnbZt2+qjjz7S6dOn9cQTTyg+Pl7BwcHKy8tTQkKCMjMzSzInAABAkRT5aizp6g385syZowULFigtLU1dunTRypUrHZmvVHA1Vn7kdhxyly5yly5yly4z5y6Kwn5+2/3dWH/UsGFDTZs2Tb/88osWLVpUnE0BAACUiGLN7JgFMzv5kdtxyF26yF26yF26zJy7KEplZgcAAKCso+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTK9NlJyYmRm3atJG3t7f8/f3Vq1cvHThwwGadS5cuKSoqStWqVVPlypXVt29fpaSkOCkxAAAoa8p02dm4caOioqL0v//9TwkJCbpy5YruvfdeZWdnW9cZM2aMvvzySy1ZskQbN27Ur7/+qj59+jgxNQAAKEsshmEYzg5RWGfOnJG/v782btyoO++8U+np6apRo4YWLlyohx56SJL0008/qVGjRtq8ebPatm1bqO1mZGTI19dX6enp8vHxcWhmi8Whm3OIwvzGye045C5d5C5d5C5dZs5dFIX9/C7TMzt/lp6eLkmqWrWqJGnHjh26cuWKIiIirOuEhYWpdu3a2rx583W3k5OTo4yMDJsHAAAwp3JTdvLy8jR69GjdcccdatKkiSQpOTlZbm5u8vPzs1k3ICBAycnJ191WTEyMfH19rY9atWqVZHQAAOBE5absREVFad++fYqPjy/2tiZMmKD09HTr4+TJkw5ICAAAyqIKzg5QGNHR0Vq1apU2bdqkmjVrWscDAwN1+fJlpaWl2czupKSkKDAw8Lrbc3d3l7u7e0lGBgAAZUSZntkxDEPR0dFavny51q1bp9DQUJvlrVq1UsWKFZWYmGgdO3DggE6cOKF27dqVdlwAAFAGlemZnaioKC1cuFBffPGFvL29refh+Pr6ytPTU76+voqMjNTYsWNVtWpV+fj46KmnnlK7du0KfSUWAAAwtzJddmbNmiVJuvvuu23GY2NjNXToUEnSv/71L7m4uKhv377KyclR165d9cEHH5RyUgAAUFaVq/vslBTus5MfuR2H3KWL3KWL3KXLzLmLwpT32QEAALAXZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJiaacrO+++/rzp16sjDw0Ph4eHaunWrsyMBAIAywBRlZ/HixRo7dqwmT56snTt3qlmzZuratatSU1OdHQ0AADiZKcrO9OnT9fjjj2vYsGG67bbbNHv2bFWqVElz5851djQAAOBk5b7sXL58WTt27FBERIR1zMXFRREREdq8ebMTkwEAgLKggrMDFNfZs2eVm5urgIAAm/GAgAD99NNPBb4mJydHOTk51ufp6emSpIyMjJILWoaU1x+T3KWL3KWL3KWL3KWrpHJf+9w2DOOG65X7slMUMTExmjJlSr7xWrVqOSFN6fP1dXaCoiF36SJ36SJ36SJ36Srp3JmZmfK9wU7KfdmpXr26XF1dlZKSYjOekpKiwMDAAl8zYcIEjR071vo8Ly9P586dU7Vq1WSxWEo0b1FlZGSoVq1aOnnypHx8fJwdp9DIXbrIXbrIXbrIXbrKQ27DMJSZmang4OAbrlfuy46bm5tatWqlxMRE9erVS9LV8pKYmKjo6OgCX+Pu7i53d3ebMT8/vxJO6hg+Pj5l9h/djZC7dJG7dJG7dJG7dJX13Dea0bmm3JcdSRo7dqyGDBmi1q1b629/+5veeecdZWdna9iwYc6OBgAAnMwUZad///46c+aMJk2apOTkZDVv3lyrV6/Od9IyAAD46zFF2ZGk6Ojo6x62MgN3d3dNnjw53+G3so7cpYvcpYvcpYvcpau85i6IxbjZ9VoAAADlWLm/qSAAAMCNUHYAAICpUXYAAICpUXYAAICpUXbKuE2bNqlHjx4KDg6WxWLRihUrnB3ppmJiYtSmTRt5e3vL399fvXr10oEDB5wd66ZmzZql22+/3XoDrXbt2umbb75xdiy7vfHGG7JYLBo9erSzo9zQSy+9JIvFYvMICwtzdqxCOXXqlB555BFVq1ZNnp6eatq0qbZv3+7sWDdUp06dfO+3xWJRVFSUs6PdUG5uriZOnKjQ0FB5enqqXr16euWVV276XUhlQWZmpkaPHq2QkBB5enqqffv22rZtm7Nj2bjZZ4xhGJo0aZKCgoLk6empiIgIHTp0yDlhi4GyU8ZlZ2erWbNmev/9950dpdA2btyoqKgo/e9//1NCQoKuXLmie++9V9nZ2c6OdkM1a9bUG2+8oR07dmj79u2655571LNnT/3www/OjlZo27Zt07///W/dfvvtzo5SKI0bN9bp06etj++++87ZkW7q/PnzuuOOO1SxYkV98803+vHHH/X222+rSpUqzo52Q9u2bbN5rxMSEiRJ/fr1c3KyG5s6dapmzZql9957T/v379fUqVM1bdo0zZw509nRbuqxxx5TQkKCFixYoL179+ree+9VRESETp065exoVjf7jJk2bZpmzJih2bNna8uWLfLy8lLXrl116dKlUk5aTAbKDUnG8uXLnR3DbqmpqYYkY+PGjc6OYrcqVaoYH3/8sbNjFEpmZqbRoEEDIyEhwbjrrruMUaNGOTvSDU2ePNlo1qyZs2PY7bnnnjM6dOjg7BjFNmrUKKNevXpGXl6es6PcUPfu3Y3hw4fbjPXp08cYNGiQkxIVzoULFwxXV1dj1apVNuMtW7Y0XnjhBSelurE/f8bk5eUZgYGBxptvvmkdS0tLM9zd3Y1FixY5IWHRMbODEpeeni5Jqlq1qpOTFF5ubq7i4+OVnZ2tdu3aOTtOoURFRal79+6KiIhwdpRCO3TokIKDg1W3bl0NGjRIJ06ccHakm1q5cqVat26tfv36yd/fXy1atNBHH33k7Fh2uXz5sj799FMNHz68zH758TXt27dXYmKiDh48KEnavXu3vvvuO91///1OTnZjv//+u3Jzc+Xh4WEz7unpWS5mMCXp6NGjSk5Otvl/iq+vr8LDw7V582YnJrOfae6gjLIpLy9Po0eP1h133KEmTZo4O85N7d27V+3atdOlS5dUuXJlLV++XLfddpuzY91UfHy8du7cWebOB7iR8PBwzZs3Tw0bNtTp06c1ZcoUdezYUfv27ZO3t7ez413Xzz//rFmzZmns2LF6/vnntW3bNj399NNyc3PTkCFDnB2vUFasWKG0tDQNHTrU2VFuavz48crIyFBYWJhcXV2Vm5ur1157TYMGDXJ2tBvy9vZWu3bt9Morr6hRo0YKCAjQokWLtHnzZtWvX9/Z8QolOTlZkvJ99VJAQIB1WXlB2UGJioqK0r59+8rNXzINGzZUUlKS0tPT9fnnn2vIkCHauHFjmS48J0+e1KhRo5SQkJDvr8iy7I9/md9+++0KDw9XSEiIPvvsM0VGRjox2Y3l5eWpdevWev311yVJLVq00L59+zR79uxyU3bmzJmj+++/X8HBwc6OclOfffaZ4uLitHDhQjVu3FhJSUkaPXq0goODy/z7vWDBAg0fPly33HKLXF1d1bJlSw0cOFA7duxwdrS/HA5jocRER0dr1apVWr9+vWrWrOnsOIXi5uam+vXrq1WrVoqJiVGzZs307rvvOjvWDe3YsUOpqalq2bKlKlSooAoVKmjjxo2aMWOGKlSooNzcXGdHLBQ/Pz/deuutOnz4sLOj3FBQUFC+8tuoUaNycQhOko4fP65vv/1Wjz32mLOjFMo///lPjR8/XgMGDFDTpk316KOPasyYMYqJiXF2tJuqV6+eNm7cqKysLJ08eVJbt27VlStXVLduXWdHK5TAwEBJUkpKis14SkqKdVl5QdmBwxmGoejoaC1fvlzr1q1TaGiosyMVWV5ennJycpwd44Y6d+6svXv3Kikpyfpo3bq1Bg0apKSkJLm6ujo7YqFkZWXpyJEjCgoKcnaUG7rjjjvy3Urh4MGDCgkJcVIi+8TGxsrf31/du3d3dpRCuXDhglxcbD+qXF1dlZeX56RE9vPy8lJQUJDOnz+vNWvWqGfPns6OVCihoaEKDAxUYmKidSwjI0NbtmwpN+cyXsNhrDIuKyvL5i/do0ePKikpSVWrVlXt2rWdmOz6oqKitHDhQn3xxRfy9va2Htv19fWVp6enk9Nd34QJE3T//ferdu3ayszM1MKFC7VhwwatWbPG2dFuyNvbO9/5UF5eXqpWrVqZPk9q3Lhx6tGjh0JCQvTrr79q8uTJcnV11cCBA50d7YbGjBmj9u3b6/XXX9fDDz+srVu36sMPP9SHH37o7Gg3lZeXp9jYWA0ZMkQVKpSP//336NFDr732mmrXrq3GjRtr165dmj59uoYPH+7saDe1Zs0aGYahhg0b6vDhw/rnP/+psLAwDRs2zNnRrG72GTN69Gi9+uqratCggUJDQzVx4kQFBwerV69ezgtdFM6+HAw3tn79ekNSvseQIUOcHe26CsoryYiNjXV2tBsaPny4ERISYri5uRk1atQwOnfubKxdu9bZsYqkPFx63r9/fyMoKMhwc3MzbrnlFqN///7G4cOHnR2rUL788kujSZMmhru7uxEWFmZ8+OGHzo5UKGvWrDEkGQcOHHB2lELLyMgwRo0aZdSuXdvw8PAw6tata7zwwgtGTk6Os6Pd1OLFi426desabm5uRmBgoBEVFWWkpaU5O5aNm33G5OXlGRMnTjQCAgIMd3d3o3PnzuXq3881FsMoB7ehBAAAKCLO2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEABzh27JgsFouSkpIK/ZqhQ4fe9E60d999t0aPHl2sbMBfHWUH+IvYvHmzXF1dy813IpWEpk2b6h//+EeByxYsWCB3d3edPXu2SNuuVauWTp8+Xaa/ogP4q6LsAH8Rc+bM0VNPPaVNmzbp119/dWqWy5cvO2W/kZGRio+P18WLF/Mti42N1YMPPqjq1avbvd3Lly/L1dVVgYGB5eY7p4C/EsoO8BeQlZWlxYsX68knn1T37t01b968fOt8+eWXatOmjTw8PFS9enX17t3buiwnJ0fPPfecatWqJXd3d9WvX19z5syRJM2bN09+fn4221qxYoUsFov1+UsvvaTmzZvr448/VmhoqDw8PCRJq1evVocOHeTn56dq1arpgQce0JEjR2y29csvv2jgwIGqWrWqvLy81Lp1a23ZskXHjh2Ti4uLtm/fbrP+O++8o5CQkAK/FfuRRx7RxYsXtXTpUpvxo0ePasOGDYqMjNSRI0fUs2dPBQQEqHLlymrTpo2+/fZbm/Xr1KmjV155RYMHD5aPj49GjBiR7zBWbm6uIiMjFRoaKk9PTzVs2FDvvvtuAb8dacqUKapRo4Z8fHz0j3/844ZlMCcnR+PGjdMtt9wiLy8vhYeHa8OGDdblx48fV48ePVSlShV5eXmpcePG+vrrr6+7PeCvgLID/AV89tlnCgsLU8OGDfXII49o7ty5+uPX4n311Vfq3bu3unXrpl27dikxMVF/+9vfrMsHDx6sRYsWacaMGdq/f7/+/e9/q3LlynZlOHz4sJYuXaply5ZZC0F2drbGjh2r7du3KzExUS4uLurdu7e1qGRlZemuu+7SqVOntHLlSu3evVvPPvus8vLyVKdOHUVERCg2NtZmP7GxsRo6dKhcXPL/76169erq2bOn5s6dazM+b9481axZU/fee6+ysrLUrVs3JSYmateuXbrvvvvUo0cPnThxwuY1b731lpo1a6Zdu3Zp4sSJ+faVl5enmjVrasmSJfrxxx81adIkPf/88/rss89s1ktMTNT+/fu1YcMGLVq0SMuWLdOUKVOu+z5GR0dr8+bNio+P1549e9SvXz/dd999OnTokCQpKipKOTk52rRpk/bu3aupU6fa/bsCTMfJX0QKoBS0b9/eeOeddwzDMIwrV64Y1atXN9avX29d3q5dO2PQoEEFvvbAgQOGJCMhIaHA5bGxsYavr6/N2PLly40//u9l8uTJRsWKFY3U1NQb5jxz5owhydi7d69hGIbx73//2/D29jZ+++23AtdfvHixUaVKFePSpUuGYRjGjh07DIvFYhw9evS6+1i9erVhsViMn3/+2TCMq9/qHBISYrz44ovXfU3jxo2NmTNnWp+HhIQYvXr1slnn6NGjhiRj165d191OVFSU0bdvX+vzIUOGGFWrVjWys7OtY7NmzTIqV65s5ObmGoZh+w32x48fN1xdXY1Tp07ZbLdz587GhAkTDMMwjKZNmxovvfTSdTMAf0XM7AAmd+DAAW3dulUDBw6UJFWoUEH9+/e3HoaSpKSkJHXu3LnA1yclJcnV1VV33XVXsXKEhISoRo0aNmOHDh3SwIEDVbduXfn4+KhOnTqSZJ1FSUpKUosWLVS1atUCt9mrVy+5urpq+fLlkq7O0HTq1Mm6nYJ06dJFNWvWtM4IJSYm6sSJExo2bJikq7NJ48aNU6NGjeTn56fKlStr//79+WZ2WrdufdOf+f3331erVq1Uo0YNVa5cWR9++GG+7TRr1kyVKlWyPm/Xrp2ysrJ08uTJfNvbu3evcnNzdeutt6py5crWx8aNG62H/55++mm9+uqruuOOOzR58mTt2bPnpjkBs6PsACY3Z84c/f777woODlaFChVUoUIFzZo1S0uXLlV6erokydPT87qvv9EySXJxcbE5JCZJV65cybeel5dXvrEePXro3Llz+uijj7RlyxZt2bJF0v+dwHyzfbu5uWnw4MGKjY3V5cuXtXDhQg0fPvymeYcOHar58+crLy9PsbGx6tSpk+rWrStJGjdunJYvX67XX39d//nPf5SUlKSmTZvmO4+moJ/nj+Lj4zVu3DhFRkZq7dq1SkpK0rBhw4p1cnZWVpZcXV21Y8cOJSUlWR/79++3ng/02GOP6eeff9ajjz6qvXv3qnXr1po5c2aR9wmYAWUHMLHff/9dn3zyid5++22bD8fdu3crODhYixYtkiTdfvvtSkxMLHAbTZs2VV5enjZu3Fjg8ho1aigzM1PZ2dnWscLca+a3337TgQMH9OKLL6pz585q1KiRzp8/b7PO7bffrqSkJJ07d+6623nsscf07bff6oMPPtDvv/+uPn363HTfw4YN08mTJ7Vs2TItX75ckZGR1mXff/+9hg4dqt69e6tp06YKDAzUsWPHbrrNP/v+++/Vvn17jRw5Ui1atFD9+vXznXwtSbt377a5Oux///ufKleurFq1auVbt0WLFsrNzVVqaqrq169v8wgMDLSuV6tWLf3jH//QsmXL9Mwzz+ijjz6yOz9gJpQdwMRWrVql8+fPKzIyUk2aNLF59O3b13ooa/LkyVq0aJEmT56s/fv3W09sla5eeTRkyBANHz5cK1assF65dO1E2/DwcFWqVEnPP/+8jhw5ooULFxZ4tdefValSRdWqVdOHH36ow4cPa926dRo7dqzNOgMHDlRgYKB69eql77//Xj///LOWLl2qzZs3W9dp1KiR2rZtq+eee04DBw686WyQJIWGhuqee+7RiBEj5O7ublOQGjRoYD2Jevfu3fr73/9e4JVdN9OgQQNt375da9as0cGDBzVx4kRt27Yt33qXL19WZGSkfvzxR3399deaPHmyoqOjCzzB+tZbb9WgQYM0ePBgLVu2TEePHtXWrVsVExOjr776SpI0evRorVmzRkePHtXOnTu1fv16NWrUyO78gJlQdgATmzNnjiIiIuTr65tvWd++fbV9+3bt2bNHd999t5YsWaKVK1eqefPmuueee7R161brurNmzdJDDz2kkSNHKiwsTI8//rh1Jqdq1ar69NNP9fXXX6tp06ZatGiRXnrppZtmc3FxUXx8vHbs2KEmTZpozJgxevPNN23WcXNz09q1a+Xv769u3bqpadOmeuONN+Tq6mqzXmRkpC5fvnzTQ1h/fs358+f197//3XopvCRNnz5dVapUUfv27dWjRw917dpVLVu2LPR2r3niiSfUp08f9e/fX+Hh4frtt980cuTIfOt17txZDRo00J133qn+/fvrwQcfvOH7Fxsbq8GDB+uZZ55Rw4YN1atXL23btk21a9eWdPWS96ioKDVq1Ej33Xefbr31Vn3wwQd25wfMxGL8+WA7AJQzr7zyipYsWcLJuAAKxMwOgHIrKytL+/bt03vvvaennnrK2XEAlFGUHQDlVnR0tFq1aqW7777brkNYAP5aOIwFAABMjZkdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgav8PriEMHNJ5QJIAAAAASUVORK5CYII=\n" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } - ] - }, - { - "cell_type": "code", + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "# Assuming you have a list of RMSE values from rmse1 to rmse10\n", - "rmse_values = [rmse1, rmse2, rmse3, rmse4, rmse5, rmse6, rmse7, rmse8, rmse9, rmse10]\n", + "rmse_values = [rmse1, rmse2, rmse2_1, rmse3, rmse4, rmse5, rmse6, rmse7, rmse8, rmse8_1, rmse9, rmse10]\n", "\n", "# List of corresponding labels for each RMSE value\n", - "labels = ['RMSE1', 'RMSE2', 'RMSE3', 'RMSE4', 'RMSE5', 'RMSE6', 'RMSE7', 'RMSE8', 'RMSE9', 'RMSE10']\n", + "labels = ['RMSE1', 'RMSE2', 'RMSE2_1', 'RMSE3', 'RMSE4', 'RMSE5', 'RMSE6', 'RMSE7', 'RMSE8', 'RMSE8_1', 'RMSE9', 'RMSE10']\n", "\n", "# Plotting the bar graph\n", "plt.bar(labels, rmse_values, color='green')\n", @@ -2488,39 +6917,39 @@ "plt.ylabel('RMSE Values')\n", "plt.title('Bar Graph of RMSE')\n", "plt.show()\n" - ], + ] + }, + { + "cell_type": "code", + "execution_count": 94, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 472 }, - "id": "RFaaCNH6Cfoa", - "outputId": "67a8f358-e3ce-4ad2-9c78-ebc75902beb4" + "id": "nrZu-K-KDCJ2", + "outputId": "d0dd5f18-77bd-41f4-c21b-09e71322b318" }, - "execution_count": 118, "outputs": [ { - "output_type": "display_data", "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/MUlEQVR4nO3deVxUZf//8fcACogCorIlKuW+pOYWmbdLFK6pueR2h2JqqZl5l+l9m2V5Z1qZS6RZKFmCS6mlpUWYW+GuZUmuuAuWKYomopzfH36dX3MDCjoww+n1fDzO4+Fc5zrn+swMMm/Ouc4Zi2EYhgAAAEzKxdEFAAAAFCbCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDoC/hVdeeUUWi0W///57oY+1evVqNWjQQB4eHrJYLDp37lyhjwkgb4QdoJiLjY2VxWKxWfz9/dW6dWutWrWqyOtZsWKFOnXqpICAAJUsWVJ+fn76xz/+obffflvnz58v8nqK2pkzZ9SzZ095enoqOjpaH3/8sby8vHLt+9f3buPGjTnWG4ahkJAQWSwWdezYMdd9nDt3zhqqkpOTc+3Tv3//HD8jNxYPD4/bf7JAMeHm6AIA2Merr76q0NBQGYahtLQ0xcbGqn379lqxYkWeH5T2lJ2drYEDByo2Nlb16tXT0KFDFRISogsXLigpKUnjxo3TV199pcTExEKvxZG2bt2qCxcu6LXXXlN4eHi+tvHw8FBcXJwefPBBm/Z169bp+PHjcnd3z3PbJUuWyGKxKDAwUAsWLNDEiRNz7efu7q4PP/wwR7urq2u+agSKM8IOYBLt2rVT48aNrY8HDhyogIAAxcfH2yXsZGdn68qVK3keCZgyZYpiY2P13HPP6e2335bFYrGue/bZZ3Xq1CnNnz//jsYoDk6fPi1J8vX1zfc27du315IlSzRjxgy5uf3/X8txcXFq1KjRTU+9ffLJJ2rfvr0qV66suLi4PMOOm5ub+vXrl++aADPhNBZgUr6+vvL09LT58JSkt956Sw888IDKlSsnT09PNWrUSJ9++mmO7S0Wi4YPH64FCxaoTp06cnd31+rVq3Md69KlS5o8ebLq1KmjN9980ybo3BAUFKQXX3wx32PcTp01atSQh4eHGjVqpPXr1+da67lz59S/f3/5+vrKx8dHAwYM0KVLl3J/Ef/HkiVL1KhRI3l6eqp8+fLq16+fTpw4YV3fqlUrRUZGSpKaNGkii8Wi/v3733K/vXv31pkzZ5SQkGBtu3Llij799FP16dMnz+2OHj2qDRs2qFevXurVq5dSUlL0ww8/5Ou5AH8nHNkBTCI9PV2///67DMPQ6dOnNXPmTGVkZOT4a3769Ol69NFH1bdvX125ckULFy5Ujx49tHLlSnXo0MGm75o1a7R48WINHz5c5cuXV5UqVXIde+PGjTp37pyef/75Ap8WyWuMgtS5bt06LVq0SCNGjJC7u7vee+89tW3bVlu2bFHdunVt+vbs2VOhoaGaNGmSduzYoQ8//FD+/v6aPHnyTeuMjY3VgAED1KRJE02aNElpaWmaPn26vv/+e+3cuVO+vr76z3/+oxo1amjOnDnW04r33HPPLV+DKlWqKCwsTPHx8WrXrp0kadWqVUpPT1evXr00Y8aMXLeLj4+Xl5eXOnbsKE9PT91zzz1asGCBHnjggVz753aEqGTJkvL29r5ljUCxZgAo1ubNm2dIyrG4u7sbsbGxOfpfunTJ5vGVK1eMunXrGm3atLFpl2S4uLgYv/zyyy1rmD59uiHJWL58uU371atXjd9++81myc7OztcYBalTkrFt2zZr25EjRwwPDw+ja9eu1raXX37ZkGRERUXZbN+1a1ejXLlyN31+V65cMfz9/Y26desaf/75p7V95cqVhiRj/Pjx1rYb78fWrVtvus//7fvuu+8aZcqUsT7vHj16GK1btzYMwzAqV65sdOjQIcf29erVM/r27Wt9/O9//9soX768kZWVZdMvMjIy158RSUZERMQt6wSKO05jASYRHR2thIQEJSQk6JNPPlHr1q315JNPaunSpTb9PD09rf8+e/as0tPT1aJFC+3YsSPHPlu2bKnatWvfcuwbV1mVLl3apn337t2qUKGCzXLmzJl8jVGQOsPCwtSoUSPr40qVKqlz5876+uuvde3aNZu+Tz31lM3jFi1a6MyZMze9Umzbtm06ffq0hg4dajOfqEOHDqpZs6a+/PLLPLfNr549e+rPP//UypUrdeHCBa1cufKmp7B++ukn7d69W71797a29e7dW7///ru+/vrrHP09PDysPx9/Xd544407rh1wdpzGAkyiadOmNhOUe/furYYNG2r48OHq2LGjSpYsKUlauXKlJk6cqF27dikzM9PaP7d5NqGhofkau0yZMpKkjIwMm/aqVata56HMnz9fH3/8cb7HKEid1apVy9FWvXp1Xbp0Sb/99psCAwOt7ZUqVbLpV7ZsWUnXA1Vep3OOHDkiSapRo0aOdTVr1sz1svGCqlChgsLDwxUXF6dLly7p2rVr6t69e579P/nkE3l5eenuu+/WgQMHJF0PNFWqVNGCBQtynOpzdXXN99VhgNlwZAcwKRcXF7Vu3VqnTp3S/v37JUkbNmzQo48+Kg8PD7333nv66quvlJCQoD59+sgwjBz7+OvRlZupWbOmJOnnn3+2aS9durTCw8MVHh6uu+++O9dtcxujoHUWRF5ziu50v/bQp08frVq1SrNnz1a7du3yvKLLMAzFx8fr4sWLql27tqpVq2ZdDh8+rM8//zxH8AT+zjiyA5jY1atXJf3/Iy6fffaZPDw89PXXX9vcu2XevHl3NE6LFi3k4+OjhQsXauzYsXJxubO/owpa540w91f79u1TqVKlVKFChTuqRZIqV64sSdq7d6/atGljs27v3r3W9Xeqa9euGjJkiDZt2qRFixbl2e/G/XdeffVV1apVy2bd2bNnNXjwYC1fvpxLzYH/w5EdwKSysrL0zTffqGTJktYPRFdXV1ksFpt5LIcPH9by5cvvaKxSpUpp9OjR+vnnnzVmzJhcj5IU5MhJQetMSkqymctz7Ngxff7553rkkUfsctO8xo0by9/fX7Nnz7Y5pbZq1SolJyfnOGV0u0qXLq1Zs2bplVdeUadOnfLsd+MU1gsvvKDu3bvbLIMGDVK1atW0YMECu9QEmAFHdgCTWLVqlX799VdJ129sFxcXp/3792vMmDHWuSgdOnTQ1KlT1bZtW/Xp00enT59WdHS0qlatqp9++umOxh8zZoySk5P15ptv6ptvvlG3bt1UsWJFnT17Vjt27NCSJUvk7++frxsGFrTOunXrKiIiwubSc0maMGHCHT2nG0qUKKHJkydrwIABatmypXr37m299LxKlSp67rnn7DKOJOt9evKSmZmpzz77TA8//HCer+Wjjz6q6dOn6/Tp0/L395d0/SjfJ598kmv/rl275vmVFoAZEHYAkxg/frz13x4eHqpZs6ZmzZqlIUOGWNvbtGmjmJgYvfHGGxo5cqRCQ0M1efJkHT58+I7DjouLiz7++GN169ZNH3zwgWbOnKmzZ8+qdOnSqlu3rv773/9q0KBBOa7Yyk1B62zZsqXCwsI0YcIEHT16VLVr11ZsbKzuvffeO3pOf9W/f3+VKlVKb7zxhl588UV5eXmpa9eumjx5coHulnynvvzyS507d+6mR346deqkt99+WwsXLtSIESMkXQ9J//znP3Ptn5KSQtiBqVkMZ5iVBwC3yWKxaNiwYXr33XcdXQoAJ8WcHQAAYGqEHQAAYGqEHQAAYGpMUAZQrDHtEMCtcGQHAACYGmEHAACYGqexJGVnZ+vkyZMqU6ZMrl8yCAAAnI9hGLpw4YKCg4Nv+jU1hB1JJ0+eVEhIiKPLAAAAt+HYsWOqWLFinusJO5LKlCkj6fqLdeO2+gAAwLmdP39eISEh1s/xvBB2JOupK29vb8IOAADFzK2moDBBGQAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmJqbowuAg8RZHDd2H8NxYwMA/nY4sgMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEzNoWFn/fr16tSpk4KDg2WxWLR8+XLruqysLL344ouqV6+evLy8FBwcrCeeeEInT5602ccff/yhvn37ytvbW76+vho4cKAyMjKK+JkAAABn5dCwc/HiRdWvX1/R0dE51l26dEk7duzQSy+9pB07dmjp0qXau3evHn30UZt+ffv21S+//KKEhAStXLlS69ev1+DBg4vqKQAAACdnMQzDcHQRkmSxWLRs2TJ16dIlzz5bt25V06ZNdeTIEVWqVEnJycmqXbu2tm7dqsaNG0uSVq9erfbt2+v48eMKDg7O19jnz5+Xj4+P0tPT5e3tbY+n4/ziLI4bu49T/MgBAIq5/H5+F6s5O+np6bJYLPL19ZUkJSUlydfX1xp0JCk8PFwuLi7avHmzg6oEAADOxM3RBeTX5cuX9eKLL6p3797W9Jaamip/f3+bfm5ubvLz81Nqamqe+8rMzFRmZqb18fnz5wunaAAA4HDF4shOVlaWevbsKcMwNGvWrDve36RJk+Tj42NdQkJC7FAlAABwRk4fdm4EnSNHjighIcHmnFxgYKBOnz5t0//q1av6448/FBgYmOc+x44dq/T0dOty7NixQqsfAAA4llOfxroRdPbv36/vvvtO5cqVs1kfFhamc+fOafv27WrUqJEkac2aNcrOzlazZs3y3K+7u7vc3d0LtXYAAOAcHBp2MjIydODAAevjlJQU7dq1S35+fgoKClL37t21Y8cOrVy5UteuXbPOw/Hz81PJkiVVq1YttW3bVoMGDdLs2bOVlZWl4cOHq1evXvm+EgsAAJibQy89X7t2rVq3bp2jPTIyUq+88opCQ0Nz3e67775Tq1atJF2/qeDw4cO1YsUKubi4qFu3bpoxY4ZKly6d7zq49LyIcek5AMAO8vv57dAjO61atdLNslZ+cpifn5/i4uLsWRYAADARp5+gDAAAcCcIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNTcHF0AkEOcxTHj9jEcMy4AoFBxZAcAAJgaYQcAAJgaYQcAAJgac3YAADfHPDoUcxzZAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApubQsLN+/Xp16tRJwcHBslgsWr58uc16wzA0fvx4BQUFydPTU+Hh4dq/f79Nnz/++EN9+/aVt7e3fH19NXDgQGVkZBThswAAAM7MzZGDX7x4UfXr11dUVJQee+yxHOunTJmiGTNm6KOPPlJoaKheeuklRUREaM+ePfLw8JAk9e3bV6dOnVJCQoKysrI0YMAADR48WHFxcUX9dAAARSnO4rix+xiOGxsF5tCw065dO7Vr1y7XdYZhaNq0aRo3bpw6d+4sSZo/f74CAgK0fPly9erVS8nJyVq9erW2bt2qxo0bS5Jmzpyp9u3b66233lJwcHCRPRcAAOCcnHbOTkpKilJTUxUeHm5t8/HxUbNmzZSUlCRJSkpKkq+vrzXoSFJ4eLhcXFy0efPmPPedmZmp8+fP2ywAAMCcnDbspKamSpICAgJs2gMCAqzrUlNT5e/vb7Pezc1Nfn5+1j65mTRpknx8fKxLSEiInasHAADOwmnDTmEaO3as0tPTrcuxY8ccXRIAACgkTht2AgMDJUlpaWk27WlpadZ1gYGBOn36tM36q1ev6o8//rD2yY27u7u8vb1tFgAAYE5OG3ZCQ0MVGBioxMREa9v58+e1efNmhYWFSZLCwsJ07tw5bd++3dpnzZo1ys7OVrNmzYq8ZgAA4HwcejVWRkaGDhw4YH2ckpKiXbt2yc/PT5UqVdLIkSM1ceJEVatWzXrpeXBwsLp06SJJqlWrltq2batBgwZp9uzZysrK0vDhw9WrVy+uxAIAAJIcHHa2bdum1q1bWx+PGjVKkhQZGanY2FiNHj1aFy9e1ODBg3Xu3Dk9+OCDWr16tfUeO5K0YMECDR8+XA899JBcXFzUrVs3zZgxo8ifCwAAcE4WwzD+9ndGOn/+vHx8fJSenv73mb/jzDfjclRt3CQMyJ2z/p905t9jKBL5/fx22jk7AAAA9kDYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApubUYefatWt66aWXFBoaKk9PT91zzz167bXXZBiGtY9hGBo/fryCgoLk6emp8PBw7d+/34FVAwAAZ3LHYefatWvatWuXzp49a496bEyePFmzZs3Su+++q+TkZE2ePFlTpkzRzJkzrX2mTJmiGTNmaPbs2dq8ebO8vLwUERGhy5cv270eAABQ/BQ47IwcOVIxMTGSrgedli1b6r777lNISIjWrl1r1+J++OEHde7cWR06dFCVKlXUvXt3PfLII9qyZYuk60d1pk2bpnHjxqlz58669957NX/+fJ08eVLLly+3ay0AAKB4KnDY+fTTT1W/fn1J0ooVK5SSkqJff/1Vzz33nP7zn//YtbgHHnhAiYmJ2rdvnyTpxx9/1MaNG9WuXTtJUkpKilJTUxUeHm7dxsfHR82aNVNSUlKe+83MzNT58+dtFgAAYE4FDju///67AgMDJUlfffWVevTooerVqysqKkq7d++2a3FjxoxRr169VLNmTZUoUUINGzbUyJEj1bdvX0lSamqqJCkgIMBmu4CAAOu63EyaNEk+Pj7WJSQkxK51AwAA51HgsBMQEKA9e/bo2rVrWr16tR5++GFJ0qVLl+Tq6mrX4hYvXqwFCxYoLi5OO3bs0EcffaS33npLH3300R3td+zYsUpPT7cux44ds1PFAADA2bgVdIMBAwaoZ8+eCgoKksVisZ5C2rx5s2rWrGnX4l544QXr0R1Jqlevno4cOaJJkyYpMjLSeoQpLS1NQUFB1u3S0tLUoEGDPPfr7u4ud3d3u9YKAACcU4HDziuvvKK6devq2LFj6tGjhzU0uLq6asyYMXYt7tKlS3JxsT345OrqquzsbElSaGioAgMDlZiYaA0358+f1+bNm/X000/btRYAAFA8FTjsSFL37t0lyeby7sjISPtU9BedOnXSf//7X1WqVEl16tTRzp07NXXqVEVFRUmSLBaLRo4cqYkTJ6patWoKDQ3VSy+9pODgYHXp0sXu9QAAgOKnwHN2rl27ptdee0133XWXSpcurUOHDkmSXnrpJesl6fYyc+ZMde/eXUOHDlWtWrX0/PPPa8iQIXrttdesfUaPHq1nnnlGgwcPVpMmTZSRkaHVq1fLw8PDrrUAAIDiqcBh57///a9iY2M1ZcoUlSxZ0tpet25dffjhh3YtrkyZMpo2bZqOHDmiP//8UwcPHtTEiRNtxrVYLHr11VeVmpqqy5cv69tvv1X16tXtWgcAACi+Chx25s+frzlz5qhv3742V1/Vr19fv/76q12LAwAAuFMFDjsnTpxQ1apVc7RnZ2crKyvLLkUBAADYS4HDTu3atbVhw4Yc7Z9++qkaNmxol6IAAADspcBXY40fP16RkZE6ceKEsrOztXTpUu3du1fz58/XypUrC6NGAACA21bgIzudO3fWihUr9O2338rLy0vjx49XcnKyVqxYYb2bMgAAgLO4rfvstGjRQgkJCfauBQAAwO4KfGQHAACgOCnwkR0XFxdZLJY811+7du2OCgIAALCnAoedZcuW2TzOysrSzp079dFHH2nChAl2KwwAAMAeChx2OnfunKOte/fuqlOnjhYtWqSBAwfapTAAAAB7sNucnfvvv1+JiYn22h0AAIBd2CXs/Pnnn5oxY4buuusue+wOAADAbgp8Gqts2bI2E5QNw9CFCxdUqlQpffLJJ3YtDgAA4E4VOOy88847NmHHxcVFFSpUULNmzVS2bFm7FgcAAHCnChx2+vfvXwhlAAAAFI58hZ2ffvop3zu89957b7sYAAAAe8tX2GnQoIEsFosMw7hpP4vFwk0FAQCAU8lX2ElJSSnsOgAAAApFvsJO5cqVC7sOAACAQnFb33ouSXv27NHRo0d15coVm/ZHH330josCAACwlwKHnUOHDqlr167avXu3zTyeG5ejM2cHAAA4kwLfQfnZZ59VaGioTp8+rVKlSumXX37R+vXr1bhxY61du7YQSgQAALh9BT6yk5SUpDVr1qh8+fJycXGRi4uLHnzwQU2aNEkjRozQzp07C6NOAACA21LgIzvXrl1TmTJlJEnly5fXyZMnJV2fxLx37177VgcAAHCHCnxkp27duvrxxx8VGhqqZs2aacqUKSpZsqTmzJmju+++uzBqBAAAuG0FDjvjxo3TxYsXJUmvvvqqOnbsqBYtWqhcuXJatGiR3QsEAAC4E/kOO40bN9aTTz6pPn36yNvbW5JUtWpV/frrr/rjjz9yfBs6AACAM8j3nJ369etr9OjRCgoK0hNPPGFz5ZWfnx9BBwAAOKV8h52YmBilpqYqOjpaR48e1UMPPaSqVavq9ddf14kTJwqzRgAAgNtWoKuxSpUqpf79+2vt2rXat2+fevXqpffff19VqlRRhw4dtHTp0sKqEwAA4LYU+NLzG+655x5NnDhRhw8fVnx8vDZt2qQePXrYszYAAIA7dtvfjSVJa9eu1bx58/TZZ5/Jzc1NgwYNslddAAAAdlHgsHP8+HHFxsYqNjZWhw4dUosWLfTee++pR48e8vT0LIwaAQAAblu+w87ixYs1d+5cJSYmyt/fX5GRkYqKilLVqlULsz4AAIA7ku+w069fP3Xo0EHLli1T+/bt5eJy29N9AAAAiky+w87x48fl7+9fmLUAAADYXb4PzxB0AABAccS5KAAAYGqEHQAAYGqEHQAAYGr5DjtbtmzRtWvX8lyfmZmpxYsX26UoAAAAe8l32AkLC9OZM2esj729vXXo0CHr43Pnzql37972rQ4AAOAO5TvsGIZx08d5tQEAADiSXefsWCwWe+4OAADgjjn9BOUTJ06oX79+KleunDw9PVWvXj1t27bNut4wDI0fP15BQUHy9PRUeHi49u/f78CKAQCAMynQF4Hu2bNHqampkq6HjF9//VUZGRmSpN9//93uxZ09e1bNmzdX69attWrVKlWoUEH79+9X2bJlrX2mTJmiGTNm6KOPPlJoaKheeuklRUREaM+ePfLw8LB7TQAAoHgpUNh56KGHbObldOzYUdL101eGYdj9NNbkyZMVEhKiefPmWdtCQ0Ot/zYMQ9OmTdO4cePUuXNnSdL8+fMVEBCg5cuXq1evXnatBwAAFD/5DjspKSmFWUeuvvjiC0VERKhHjx5at26d7rrrLg0dOlSDBg2y1pSamqrw8HDrNj4+PmrWrJmSkpLyDDuZmZnKzMy0Pj5//nzhPhEAAOAw+Q47lStXvmWfn3/++Y6K+V+HDh3SrFmzNGrUKP373//W1q1bNWLECJUsWVKRkZHWU2oBAQE22wUEBFjX5WbSpEmaMGGCXWsFAADO6Y4nKF+4cEFz5sxR06ZNVb9+fXvUZJWdna377rtPr7/+uho2bKjBgwdr0KBBmj179h3td+zYsUpPT7cux44ds1PFAADA2dx22Fm/fr0iIyMVFBSkt956S23atNGmTZvsWZuCgoJUu3Ztm7ZatWrp6NGjkqTAwEBJUlpamk2ftLQ067rcuLu7y9vb22YBAADmVKCwk5qaqjfeeEPVqlVTjx495O3trczMTC1fvlxvvPGGmjRpYtfimjdvrr1799q07du3z3pKLTQ0VIGBgUpMTLSuP3/+vDZv3qywsDC71gIAAIqnfIedTp06qUaNGvrpp580bdo0nTx5UjNnzizM2vTcc89p06ZNev3113XgwAHFxcVpzpw5GjZsmKTrV4GNHDlSEydO1BdffKHdu3friSeeUHBwsLp06VKotQEAgOIh3xOUV61apREjRujpp59WtWrVCrMmqyZNmmjZsmUaO3asXn31VYWGhmratGnq27evtc/o0aN18eJFDR48WOfOndODDz6o1atXc48dAAAgqQBhZ+PGjYqJiVGjRo1Uq1Yt/fOf/yyS+9h07NjRej+f3FgsFr366qt69dVXC70WAABQ/OT7NNb999+vDz74QKdOndKQIUO0cOFCBQcHKzs7WwkJCbpw4UJh1gkAAHBbCnw1lpeXl6KiorRx40bt3r1b//rXv/TGG2/I399fjz76aGHUCAAAcNvu6D47NWrU0JQpU3T8+HHFx8fbqyYAAAC7scu3nru6uqpLly764osv7LE7AAAAu8n3BOWoqKhb9rFYLIqJibmjggAAAOwp32EnNjZWlStXVsOGDW2++RwAAMCZ5TvsPP3004qPj1dKSooGDBigfv36yc/PrzBrAwAAuGP5nrMTHR2tU6dOafTo0VqxYoVCQkLUs2dPff311xzpAQAATqtAE5Td3d3Vu3dvJSQkaM+ePapTp46GDh2qKlWqKCMjo7BqBAAAuG23fTWWi4uLLBaLDMPQtWvX7FkTAACA3RQo7GRmZio+Pl4PP/ywqlevrt27d+vdd9/V0aNHVbp06cKqEQAA4Lble4Ly0KFDtXDhQoWEhCgqKkrx8fEqX758YdYGAABwx/IddmbPnq1KlSrp7rvv1rp167Ru3bpc+y1dutRuxQEAANypfIedJ554QhaLpTBrAQAAsLsC3VQQAACguLHLd2MBAAA4K8IOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwtWIVdt544w1ZLBaNHDnS2nb58mUNGzZM5cqVU+nSpdWtWzelpaU5rkgAAOBUik3Y2bp1q95//33de++9Nu3PPfecVqxYoSVLlmjdunU6efKkHnvsMQdVCQAAnE2xCDsZGRnq27evPvjgA5UtW9banp6erpiYGE2dOlVt2rRRo0aNNG/ePP3www/atGmTAysGAADOoliEnWHDhqlDhw4KDw+3ad++fbuysrJs2mvWrKlKlSopKSkpz/1lZmbq/PnzNgsAADAnN0cXcCsLFy7Ujh07tHXr1hzrUlNTVbJkSfn6+tq0BwQEKDU1Nc99Tpo0SRMmTLB3qQAAwAk59ZGdY8eO6dlnn9WCBQvk4eFht/2OHTtW6enp1uXYsWN22zcAAHAuTh12tm/frtOnT+u+++6Tm5ub3NzctG7dOs2YMUNubm4KCAjQlStXdO7cOZvt0tLSFBgYmOd+3d3d5e3tbbMAAABzcurTWA899JB2795t0zZgwADVrFlTL774okJCQlSiRAklJiaqW7dukqS9e/fq6NGjCgsLc0TJAADAyTh12ClTpozq1q1r0+bl5aVy5cpZ2wcOHKhRo0bJz89P3t7eeuaZZxQWFqb777/fESUDAAAn49RhJz/eeecdubi4qFu3bsrMzFRERITee+89R5cFAACcRLELO2vXrrV57OHhoejoaEVHRzumIAAA4NSceoIyAADAnSLsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAU3PqsDNp0iQ1adJEZcqUkb+/v7p06aK9e/fa9Ll8+bKGDRumcuXKqXTp0urWrZvS0tIcVDEAAHA2Th121q1bp2HDhmnTpk1KSEhQVlaWHnnkEV28eNHa57nnntOKFSu0ZMkSrVu3TidPntRjjz3mwKoBAIAzcXN0ATezevVqm8exsbHy9/fX9u3b9Y9//EPp6emKiYlRXFyc2rRpI0maN2+eatWqpU2bNun+++93RNkAAMCJOPWRnf+Vnp4uSfLz85Mkbd++XVlZWQoPD7f2qVmzpipVqqSkpCSH1AgAAJyLUx/Z+avs7GyNHDlSzZs3V926dSVJqampKlmypHx9fW36BgQEKDU1Nc99ZWZmKjMz0/r4/PnzhVIzAABwvGJzZGfYsGH6+eeftXDhwjve16RJk+Tj42NdQkJC7FAhAABwRsUi7AwfPlwrV67Ud999p4oVK1rbAwMDdeXKFZ07d86mf1pamgIDA/Pc39ixY5Wenm5djh07VlilAwAAB3PqsGMYhoYPH65ly5ZpzZo1Cg0NtVnfqFEjlShRQomJida2vXv36ujRowoLC8tzv+7u7vL29rZZAACAOTn1nJ1hw4YpLi5On3/+ucqUKWOdh+Pj4yNPT0/5+Pho4MCBGjVqlPz8/OTt7a1nnnlGYWFhXIkFAAAkOXnYmTVrliSpVatWNu3z5s1T//79JUnvvPOOXFxc1K1bN2VmZioiIkLvvfdeEVcKAACclVOHHcMwbtnHw8ND0dHRio6OLoKKAABAcePUc3YAAADuFGEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYmpujCwAAAEUkzuKYcfsYjhn3/3BkBwAAmBpHdgD8vTjqL1vJ4X/dAn9XHNkBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACm5uboAuwlOjpab775plJTU1W/fn3NnDlTTZs2dXRZAJB/cRbHjNvHcMy4ZuWo91HivcyDKcLOokWLNGrUKM2ePVvNmjXTtGnTFBERob1798rf39/R5cEsnPWDyFl/sTprXQD+dkwRdqZOnapBgwZpwIABkqTZs2fryy+/1Ny5czVmzBjHFscvfAAAHKrYz9m5cuWKtm/frvDwcGubi4uLwsPDlZSU5MDKAACAMyj2R3Z+//13Xbt2TQEBATbtAQEB+vXXX3PdJjMzU5mZmdbH6enpkqTz58/bv8BL9t9lvt3s+ThrXZLjaqOugiuOP2POWpfEz9j/cta6JH7GCqowPl/1/z+3DeMWZzKMYu7EiROGJOOHH36waX/hhReMpk2b5rrNyy+/bEhiYWFhYWFhMcFy7Nixm2aFYn9kp3z58nJ1dVVaWppNe1pamgIDA3PdZuzYsRo1apT1cXZ2tv744w+VK1dOFosD59j8xfnz5xUSEqJjx47J29vb0eXYcNbaqKtgnLUuyXlro66Coa6Cc9banLUuwzB04cIFBQcH37RfsQ87JUuWVKNGjZSYmKguXbpIuh5eEhMTNXz48Fy3cXd3l7u7u02br69vIVd6e7y9vZ3qB+uvnLU26ioYZ61Lct7aqKtgqKvgnLU2Z6zLx8fnln2KfdiRpFGjRikyMlKNGzdW06ZNNW3aNF28eNF6dRYAAPj7MkXYefzxx/Xbb79p/PjxSk1NVYMGDbR69eock5YBAMDfjynCjiQNHz48z9NWxZG7u7tefvnlHKfbnIGz1kZdBeOsdUnOWxt1FQx1FZyz1uasdeWXxTBudb0WAABA8VXsbyoIAABwM4QdAABgaoQdAABgaoQdAABgaoSdQtC/f39ZLBY99dRTOdYNGzZMFotF/fv3t2lPSkqSq6urOnTokGObw4cPy2Kx5Lps2rRJknTq1Cn16dNH1atXl4uLi0aOHOk0tS1dulTBwcGyWCwqWbKkwsLC9PXXXxfJuA8//LAqVKggb2/vHOPeyvr16xUSEmLd7/Lly4vk9dq4caOaN2+ucuXKydPTUzVr1tQ777xjsx9HvI9/9f3338vNzU0NGjRweF1r167NdX1qaqrDa5Oufxfff/7zH1WuXFnu7u6qUqWK5s6d69C6boz5v0udOnUc/nr94x//kMVikZubm4KCghQVFaUzZ84U+rgLFixQ/fr1VapUqRzj3sovv/yiypUrW/c7bdq0Inu9oqOjVatWLXl6eqpGjRpq0aKF037+LFmyRDVr1pSHh4fq1aunr776Ktd+hYGwU0hCQkK0cOFC/fnnn9a2y5cvKy4uTpUqVcrRPyYmRs8884zWr1+vkydP5rrPb7/9VqdOnbJZGjVqJOn6L9QKFSpo3Lhxql+/vlPVtn79egUHBysgIEAeHh568MEH1alTJ+3cubPQx3344Yf11Vdfafv27WrdurV13Py4ePGi/Pz8VL58eUmy+fLYwqzby8tLw4cP1/r165WcnKxx48Zp3LhxmjNnjs0+ivp9vOHcuXN64okn9NBDD+W6D0fVtXfvXpv1/v7+TlFbz549lZiYqJiYGO3du1fx8fGqUaOGQ+uaPn26TfuxY8fk5+enHj16OLSu77//Xhs2bJCvr69KlSqlTz75RFu2bNGgQYMKfdwnnnhCAwcO1C+//KIlS5ZYx82PS5cuqUyZMtavHLpy5UqRvF6zZs3S2LFj9corr+iXX37RhAkTtGnTJpUvX97pPn9++OEH9e7dWwMHDtTOnTvVpUsXdenSRT///HMer6p9meY+O87mvvvu08GDB7V06VL17dtX0vUjDZUqVVJoaKhN34yMDC1atEjbtm1TamqqYmNj9e9//zvHPsuVK5fn931VqVJF06dPlySbvxqdobZp06apf//+qlixog4ePKgGDRqoWrVqWrFihZKTkwt13L96/fXX9fnnn2vFihVq2LBhnq/PDe3atdOiRYsUGhqqzz//XJs2bdLjjz8uqXBfr4YNG9rUV6VKFS1dulQbNmzQ4MGDre1F/T7e8NRTT6lPnz5ydXXNcbTLkXX5+/vf8mtfirq21atXa926dTp06JD8/PwkXX8/HV2Xj4+PzS32ly9frrNnz+a463xR15WUlKTSpUurZcuWOnjwoFJTUzVkyBBNnjy50MetUqWKRowYIUkKDQ21jpsfTZo0UePGjXXu3Dl99dVX2r17t3VdYdb98ccfa8iQIdbfS3fffbdee+01paamKiQkxKk+f6ZPn662bdvqhRdekCS99tprSkhI0LvvvqvZs2fnuo09cWSnEEVFRWnevHnWx3Pnzs31KywWL16smjVrqkaNGurXr5/mzp1766+rL6a13Rj3woUL8vPzK9LXJDs72zru7VizZo3130VZ986dO/XDDz+oZcuWOdYV9fs4b948HTp0SC+//PJN+zni56tBgwYKCgrSww8/rO+//94pavviiy/UuHFjTZkyRXfddZeqV6+u559/3uYvbkfU9b9iYmIUHh6uypUrO7SusLAwXbx4UWlpaRowYIDef/99ffrpp2rfvn2hj3vs2DF99dVXMgxDaWlp1nELqnTp0tq8ebP1cWHWnZmZKQ8PD5s2Nzc3nT17VpGRkU71+ZOUlKTw8HCbtoiICCUlJdl9rNwQdgpRv379tHHjRh05ckRHjhzR999/r379+uXoFxMTY21v27at0tPTtW7duhz9HnjgAZUuXdpmKW619evXT+vWrVN6errCwsKK9DV56623lJGRoZ49e+bZ52aSk5OL9PWqWLGi3N3d1bhxYw0bNkxPPvlkjj5F+T7u379fY8aM0SeffCI3t5sfFC7KuoKCgjR79mx99tln+uyzzxQSEqJWrVppx44dDq/t0KFD2rhxo37++WctW7ZM06ZN06effqqhQ4c6tK6/OnnypFatWpXrz1dR19W8eXP94x//0NatWzV69Ght2LBBJUqU0OjRowt93AULFujxxx9XyZIlFRgYKB8fH0VHR+f6mtyMl5eXUlJSiuT1ioiI0Icffqjt27fLMAxt27ZN+/btk2EYatu2rVN9/qSmpub4CqeAgIAcc+sKC6exClGFChXUoUMHxcbGyjAMdejQwTr/44a9e/dqy5YtWrZsmaTrqfzxxx9XTEyMWrVqZdN30aJFqlWrVrGuLSEhQYZhqEuXLlqxYkWRjRsXF6cJEybo888/z3UuR340atSoSF+vDRs2KCMjQ5s2bdKYMWNUtWpV9e7d26ZPUb2P165dU58+fTRhwgRVr179pnUXZV2SVKNGDZs5MA888IAOHjyod955Rx9//LFDa8vOzpbFYtGCBQusp42mTp2q7t2767333pOnp6dD6vqrjz76SL6+vurSpUuu64uyrj179mjLli2qWbOm4uLiNHToUO3evVs9evQo9HGfffZZjR8/XhERETp16pReeOEFPfXUU4qJicl1m7y4urqqdu3aRfJ6vfTSS0pNTdX9998vwzAUEBCgqlWr6ueff3bqzx9HIOwUsqioKOt3duX2V0JMTIyuXr2q4OBga5thGHJ3d9e7775rc149JCREVatWLba1nThxQk8++aTGjRunjz76SOvXry+ScRcuXKgnn3xSS5YsyXEYtSAeeughxcbGSiqa1+vGufV69eopLS1Nr7zySo6wIxXN+3jhwgVt27ZNO3futI6VnZ0twzDk5uamb775Rm3atCnyuvLStGlTbdy4Mc/1RVVbUFCQ7rrrLpv+tWrVkmEYOn78uKpVq+aQuv667dy5c/XPf/5TJUuWzLNfUdU1adIk+fv7q2rVqrr33ns1duxYDRo0SLt27dK//vWvQh23efPm1vkk9957r7y8vNSiRQtNnDhRQUFBeb42uWnatGmR/K7w9PTU3Llz9f777ystLU1BQUF68MEH5ebmpgoVKjjV509gYKDS0tJs2tLS0m45F89eOI1VyNq2basrV64oKytLERERNuuuXr2q+fPn6+2339auXbusy48//qjg4GDFx8ebpraUlBTt2LFD8fHxeumll4ps3Pj4eA0YMEDx8fG5XlZZEA0bNnTYe5mdnW1zNdhfFcX76O3trd27d9vs46mnnlKNGjW0a9cuNWvWzCF15WXXrl03/YAqqtqaN2+ukydPKiMjw9q2b98+ubi4qGLFig6r64Z169bpwIEDGjhw4E37FVVdly5dksVisRk3KytLknLMWbP3uC4uth+Hrq6uknRb81dq1apVpO9jiRIlVLFiRbm6uiolJUUBAQFycXFxqs+fsLAwJSYm2rQlJCQoLCzMruPkhSM7hczV1VXJycnWf//VypUrdfbsWQ0cONAmQUtSt27dFBMTY3OvhDNnzuQ4v+nr62udoLZr1y5J12fX//bbb9q1a5dKliyp2rVrO7S2uLg4bdiwQfXq1VOzZs3022+/ae3atfLw8Cj0cSMjIzV9+nQ1a9bM2s/T0zPHvnOTkZGhP/74QxcuXJAkHT16VIsWLVLZsmULte7o6GhVqlRJNWvWlHT9Evq33nrLeqXI/yqq97Fu3bo27f7+/rm2F3Vd06ZNU2hoqOrUqaPLly/rww8/1Jo1a/TNN9/kWldR1tanTx+99tprGjBggCZMmKDff/9dL7zwgqKiomxOYRV1XTfExMSoWbNmeb6HRV1Xp06dtGzZMnl7e+vQoUM6deqUQkJCVLlyZYWEhBTquIMGDdKsWbOsp7FGjhyppk2b2hz1yMuVK1esvyuuXLmiU6dOadGiRfLy8irU12vfvn3asmWLmjVrprNnz2rq1Kk6e/asNRg60+fPs88+q5YtW+rtt99Whw4dtHDhQm3bti3HLTUKjQG7i4yMNDp37pzn+s6dOxuRkZFGx44djfbt2+faZ/PmzYYk48cffzRSUlIMSbku8fHx1m1yW1+5cmWH19ayZctc10dGRjp83Jv57rvvHFL3jBkzjDp16hilSpUyvL29jYYNGxrvvfeece3aNes+HfUz9lcvv/yyUb9+fZs2R9Q1efJk45577jE8PDwMPz8/o1WrVsaaNWty7NdRr1lycrIRHh5ueHp6GhUrVjRGjRplXLp0yeF1nTt3zvD09DTmzJmT6z4dVVfTpk2NMmXKGJ6enkZQUJDRt29f4/jx44U+7owZM4zatWvnOe7N5DVGy5YtC7XuPXv2GA0aNDA8PT0Nb29vo3PnzkaXLl2c9vNn8eLFRvXq1Y2SJUsaderUMb788st8vb72YPm/IgEAAEyJOTsAAMDUCDv4Wzp69GiOe0b8dTl69KijSwTgJG72u2LDhg2OLg/5wGks/C1dvXpVhw8fznN9lSpVbnnjPAB/DwcOHMhz3V133ZXrZHM4F8IOAAAwNU5jAQAAUyPsAAAAUyPsAAAAUyPsAICk2NhY+fr6FmibKlWqaNq0aTftY7FYtHz58tuuC8CdI+wAuKX+/fvLYrHY3D7+hmHDhslisah///451iUlJcnV1TXX7yU7fPiwLBZLrsumTZty9E9LS1OJEiW0cOHCXGscOHCg7rvvvoI/uf/z+OOPa9++fbe9PQDnRdgBkC8hISFauHCh/vzzT2vb5cuXFRcXp0qVKuW6TUxMjJ555hmtX79eJ0+ezLXPt99+q1OnTtksjRo1ytEvICBAHTp00Ny5c3Osu3jxohYvXnzLL7TMS1ZWljw9PeXv739b2wNwboQdAPly3333KSQkREuXLrW2LV26VJUqVVLDhg1z9M/IyNCiRYv09NNPq0OHDoqNjc11v+XKlVNgYKDNUqJEiVz7Dhw4UImJiTlu+rhkyRJdvXpVffv21erVq/Xggw/K19dX5cqVU8eOHXXw4EFr3xtHlBYtWqSWLVvKw8NDCxYsyHEa6+DBg+rcubMCAgJUunRpNWnSRN9++22Omi5cuKDevXvLy8tLd911l6Kjo2/2MurYsWPq2bOnfH195efnp86dO9vc82nt2rVq2rSpvLy85Ovrq+bNm+vIkSM33SeAmyPsAMi3qKgozZs3z/p47ty5GjBgQK59Fy9erJo1a6pGjRrq16+f5s6dqzu9rVf79u0VEBCQIzjNmzdPjz32mHx9fXXx4kWNGjVK27ZtU2JiolxcXNS1a1dlZ2fbbDNmzBg9++yzSk5OVkRERI6xMjIy1L59eyUmJmrnzp1q27atOnXqlCNovfnmm6pfv7527txp3WdCQkKu9WdlZSkiIkJlypTRhg0b9P3336t06dJq27atrly5oqtXr6pLly5q2bKlfvrpJyUlJWnw4MGyWCx39LoBf3tF9pWjAIqtG9+Affr0acPd3d04fPiwcfjwYcPDw8P47bffrN+k/FcPPPCAMW3aNMMwDCMrK8soX7688d1331nX3/g2ZU9PT8PLy8tmuZkxY8YYoaGhRnZ2tmEYhnHgwAHDYrEY3377ba79f/vtN0OSsXv3bptxb9R2w7x58wwfH5+bjl2nTh1j5syZ1seVK1c22rZta9Pn8ccfN9q1a2d9LMlYtmyZYRiG8fHHHxs1atSw1m4YhpGZmWl4enoaX3/9tXHmzBlDkrF27dqb1gGgYDiyAyDfKlSoYD0lNW/ePHXo0EHly5fP0W/v3r3asmWLevfuLUlyc3PT448/rpiYmBx9Fy1apF27dtksNxMVFaWUlBR99913kq4f1alSpYratGkjSdq/f7969+6tu+++W97e3qpSpYok5Tgi07hx45uOk5GRoeeff161atWSr6+vSpcureTk5Bz7CQsLy/E4OTk5133++OOPOnDggMqUKWP9biU/Pz9dvnxZBw8elJ+fn/r376+IiAh16tRJ06dP16lTp25aJ4Bb48t/ABRIVFSUhg8fLkl5zk+JiYnR1atXFRwcbG0zDEPu7u5699135ePjY20PCQlR1apV8z1+tWrV1KJFC82bN0+tWrXS/PnzNWjQIOupnk6dOqly5cr64IMPFBwcrOzsbNWtW1dXrlyx2Y+Xl9dNx3n++eeVkJCgt956S1WrVpWnp6e6d++eYz8FkZGRoUaNGmnBggU51lWoUEHS9fA2YsQIrV69WosWLdK4ceOUkJCg+++//7bHBf7uCDsACuTG/BKLxZLrXJerV69q/vz5evvtt/XII4/YrOvSpYvi4+NzvYS9IAYOHKinn35ajz76qE6cOGG97P3MmTPau3evPvjgA7Vo0UKStHHjxtsa4/vvv1f//v3VtWtXSdeDSm5fHvu/l8lv2rRJtWrVynWf9913nxYtWiR/f395e3vnOXbDhg3VsGFDjR07VmFhYYqLiyPsAHeA01gACsTV1VXJycnas2ePXF1dc6xfuXKlzp49q4EDB6pu3bo2S7du3XKcyjpz5oxSU1NtlsuXL9+0hh49eqhEiRIaMmSIHnnkEYWEhEiSypYtq3LlymnOnDk6cOCA1qxZo1GjRt3W86xWrZqWLl2qXbt26ccff1SfPn1yTHKWroeiKVOmaN++fYqOjtaSJUv07LPP5rrPvn37qnz58urcubM2bNiglJQUrV27ViNGjNDx48eVkpKisWPHKikpSUeOHNE333yj/fv35xmeAOQPYQdAgXl7e+d5ZCImJkbh4eE2p6pu6Natm7Zt26affvrJ2hYeHq6goCCb5VZ3HC5VqpR69eqls2fPKioqytru4uKihQsXavv27apbt66ee+45vfnmm7f1HKdOnaqyZcvqgQceUKdOnRQREZHrTQv/9a9/adu2bWrYsKEmTpyoqVOn5nrE60bd69evV6VKlfTYY4+pVq1aGjhwoC5fvixvb2+VKlVKv/76q7p166bq1atr8ODBGjZsmIYMGXJbzwHAdRbDuMNrQQEAAJwYR3YAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICp/T+WRF7HOqAsCAAAAABJRU5ErkJggg==", "text/plain": [ "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABB/klEQVR4nO3de1xUdeL/8fcAMpAKiMbNQEnNe0qSrmV5o7xlWl5WJReRdCut1O1meSnblbSLlpm6rYm6mq6mZn2V8msataIppptmZnkjE7QUEA3k8vn90c/5OoEGOshw9vV8PM5jdz7nM+e8B8l5e+acOTZjjBEAAIBFeVR2AAAAgIpE2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QFgOc8//7xsNpt++umnCt9XcnKyWrduLR8fH9lsNmVlZVX4PgGUD2UHqEKSkpJks9mclqCgIHXu3Fnr16+/5nk++OAD9e7dW8HBwfL29lZgYKDuvPNOvfrqq8rJybnmea61n3/+WQMHDpSvr69mz56txYsXq3r16qXO/e2fnZeXl+rWrathw4bp2LFjJeZ36tRJNptNjRo1KnV7GzZscGxr5cqVTuu++uor9e/fX/Xq1ZOPj4/q1q2ru+66S7NmzXKaV79+/RK/TxeW7t27X+FPBXA/XpUdAED5TZkyRZGRkTLGKDMzU0lJSerZs6c++OAD3XPPPRW+/+LiYiUkJCgpKUktW7bUI488ovDwcJ05c0apqamaMGGC1q1bp40bN1Z4lsq0fft2nTlzRi+++KJiYmLK9JwLf3Z5eXnaunWrkpKS9Pnnn2vPnj3y8fFxmuvj46PvvvtOX3zxhdq2beu0bsmSJfLx8VFeXp7T+JYtW9S5c2dFRERoxIgRCgkJUXp6urZu3arXX39djz76qNP81q1b6y9/+UuJnGFhYWV6PUBVQNkBqqAePXooOjra8TghIUHBwcF69913XVJ2iouLdf78+RJvvhdMnz5dSUlJGjt2rF599VXZbDbHuscff1zHjx/XokWLrmofVcGJEyckSQEBAWV+zsV/dg8++KDq1KmjadOmae3atRo4cKDT3AYNGqiwsFDvvvuuU9nJy8vT6tWr1atXL7333ntOz/nb3/4mf39/bd++vUSuC3kvVrduXT3wwANlzg9URXyMBVhAQECAfH195eXl/O+XV155Rbfddptq164tX19ftWnTpsRHHpJks9k0evRoLVmyRM2bN5fdbldycnKp+zp37pymTZum5s2b6+WXX3YqOheEhobq6aefLvM+riRn48aN5ePjozZt2iglJaXUrFlZWRo2bJgCAgLk7++v+Ph4nTt3rvQf4m+sWLFCbdq0ka+vr+rUqaMHHnjA6eOmTp06KS4uTpJ06623ymazadiwYWXa9sXuuOMOSdL3339f6vrBgwdr+fLlKi4udox98MEHOnfuXIlydGE7zZs3L7WABQUFlTsfYAWUHaAKys7O1k8//aSTJ09q7969evjhh5Wbm1viX+ivv/66oqKiNGXKFE2dOlVeXl4aMGCA/ud//qfENj/55BONHTtWf/zjH/X666+rfv36pe77888/V1ZWlgYPHixPT89y5b7UPsqT89NPP9WYMWP0wAMPaMqUKfr555/VvXt37dmzp8TcgQMH6syZM0pMTNTAgQOVlJSkF1544XdzJiUlaeDAgfL09FRiYqJGjBihVatWqUOHDo4TkJ977jmNHDlS0q8fTS1evFh//vOfy/XzkKTDhw9LkmrVqlXq+iFDhuj48ePavHmzY2zp0qXq2rVrqeWlXr16SktLK/XnUZqCggL99NNPJZZffvml3K8FcFsGQJWxYMECI6nEYrfbTVJSUon5586dc3p8/vx506JFC9OlSxencUnGw8PD7N2793czvP7660aSWbNmjdN4YWGhOXnypNNSXFxcpn2UJ6cks2PHDsfYkSNHjI+Pj7nvvvscY5MnTzaSzPDhw52ef99995natWtf9vWdP3/eBAUFmRYtWphffvnFMf7hhx8aSWbSpEmOsQt/Htu3b7/sNi+e+7//+7/m5MmTJj093axcudJcf/31xm63m/T0dKf5HTt2NM2bNzfGGBMdHW0SEhKMMcacPn3aeHt7m4ULF5pNmzYZSWbFihWO53388cfG09PTeHp6mvbt25unnnrKfPTRR+b8+fMlMtWrV6/U3ydJJjEx8XdfE1BVcGQHqIJmz56tDRs2aMOGDfrnP/+pzp0768EHH9SqVauc5vn6+jr+/+nTp5Wdna077rhDO3fuLLHNjh07qlmzZr+77wtXWdWoUcNp/KuvvtL111/vtPz8889l2kd5crZv315t2rRxPI6IiFCfPn300UcfqaioyGnuQw895PT4jjvu0M8//3zZK8V27NihEydO6JFHHnE6n6hXr15q0qRJqUebyiMmJkbXX3+9wsPD1b9/f1WvXl1r167VDTfccMnnDBkyRKtWrdL58+e1cuVKeXp66r777it17l133aXU1FTde++92r17t6ZPn65u3bqpbt26Wrt2bYn57dq1c/wuXbwMHjz4ql4n4E44QRmogtq2bet0gvLgwYMVFRWl0aNH65577pG3t7ck6cMPP9Rf//pX7dq1S/n5+Y75pZ1nExkZWaZ916xZU5KUm5vrNN6wYUNt2LBBkrRo0SItXry4zPsoT87SLsW+6aabdO7cOZ08eVIhISGO8YiICKd5Fz4qOn36tPz8/ErNcuTIEUlS48aNS6xr0qSJPv/881KfV1azZ8/WTTfdpOzsbL3zzjtKSUmR3W6/7HMGDRqkJ554QuvXr9eSJUt0zz33OP4cSnPrrbc6ytHu3bu1evVqzZgxQ/3799euXbucCmedOnXKfCUZUFVxZAewAA8PD3Xu3FnHjx/XgQMHJEmfffaZ7r33Xvn4+Oitt97SunXrtGHDBg0ZMkTGmBLbuPjoyuU0adJEkkqcE1KjRg3FxMQoJiZGN954Y6nPLW0f5c1ZHpc6p+hqt3s12rZtq5iYGPXr109r165VixYtNGTIkBLl8WKhoaHq1KmTXn31VaWkpGjIkCFl2pe3t7duvfVWTZ06VXPmzFFBQYFWrFjhqpcCVBmUHcAiCgsLJf3fEZf33ntPPj4++uijjzR8+HD16NHDJf+Cv+OOO+Tv769ly5Y5XSF0pcqb80KZu9i3336r6667Ttdff/1V56lXr54kaf/+/SXW7d+/37HeFS6cAP3jjz/qzTffvOzcIUOG6LPPPpOfn5969uxZ7n1dOBJ4/PjxK8oKVGWUHcACCgoK9PHHH8vb21tNmzaV9Osbqc1mczqP5fDhw1qzZs1V7eu6667TU089pT179uiZZ54p9ShJeY6clDdnamqq07k86enpev/993X33XeX++qw0kRHRysoKEhz5851+kht/fr12rdvn3r16nXV+7hYp06d1LZtW82cObPEFwRerH///po8ebLeeustx8eUpdm0aVOpP/9169ZJKv3jOcDqOGcHqILWr1+vb775RtKvXxS3dOlSHThwQM8884zjXJRevXrptddeU/fu3TVkyBCdOHFCs2fPVsOGDfWf//znqvb/zDPPaN++fXr55Zf18ccfq1+/frrhhht0+vRp7dy5UytWrFBQUFCZvjCwvDlbtGihbt266bHHHpPdbtdbb70lSWW6pLwsqlWrpmnTpik+Pl4dO3bU4MGDlZmZ6bhUfuzYsS7Zz8WefPJJDRgwQElJSSVOqr7A399fzz///O9u69FHH9W5c+d03333qUmTJjp//ry2bNmi5cuXq379+oqPj3eaf+zYMf3zn/8ssZ0aNWqob9++V/JyAPdTmZeCASif0i499/HxMa1btzZz5sxxutTbGGPmz59vGjVqZOx2u2nSpIlZsGCB47Lsi0kyo0aNKnee1atXm549e5rrr7/eeHl5mYCAANOhQwfz8ssvm6ysrDLvo7w5//nPfzrmR0VFmU2bNjnNu/DckydPOo1f+PkdOnTod1/b8uXLTVRUlLHb7SYwMNDExsaaH374odTtlefS89LmFhUVmQYNGpgGDRqYwsJCY4zzpeeXUtql5+vXrzfDhw83TZo0MTVq1DDe3t6mYcOG5tFHHzWZmZlOz7/cpef16tX73dcEVBU2YyrxTD0AKAebzaZRo0b97vktAHAxztkBAACWRtkBAACWRtkBAACWxtVYAKoMTjEEcCU4sgMAACyNsgMAACyNj7EkFRcX68cff1TNmjVLvfEgAABwP8YYnTlzRmFhYfLwuPTxG8qOpB9//FHh4eGVHQMAAFyB9PR03XDDDZdcT9mRVLNmTUm//rAufNU+AABwbzk5OQoPD3e8j18KZUdyfHTl5+dH2QEAoIr5vVNQOEEZAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYmldlBwAAWJvtBVtlRyjBTDaVHQHXEEd2AACApXFkB6XiX2IAAKvgyA4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALC0Si07KSkp6t27t8LCwmSz2bRmzZpLzn3ooYdks9k0c+ZMp/FTp04pNjZWfn5+CggIUEJCgnJzcys2OAAAqDIqteycPXtWrVq10uzZsy87b/Xq1dq6davCwsJKrIuNjdXevXu1YcMGffjhh0pJSdHIkSMrKjIAAKhivCpz5z169FCPHj0uO+fYsWN69NFH9dFHH6lXr15O6/bt26fk5GRt375d0dHRkqRZs2apZ8+eeuWVV0otRwAA4L+LW5+zU1xcrKFDh+rJJ59U8+bNS6xPTU1VQECAo+hIUkxMjDw8PLRt27ZLbjc/P185OTlOCwAAsCa3LjvTpk2Tl5eXHnvssVLXZ2RkKCgoyGnMy8tLgYGBysjIuOR2ExMT5e/v71jCw8NdmhsAALgPty07aWlpev3115WUlCSbzebSbY8fP17Z2dmOJT093aXbBwAA7sNty85nn32mEydOKCIiQl5eXvLy8tKRI0f0l7/8RfXr15ckhYSE6MSJE07PKyws1KlTpxQSEnLJbdvtdvn5+TktAADAmir1BOXLGTp0qGJiYpzGunXrpqFDhyo+Pl6S1L59e2VlZSktLU1t2rSRJH3yyScqLi5Wu3btrnlmAADgfiq17OTm5uq7775zPD506JB27dqlwMBARUREqHbt2k7zq1WrppCQEDVu3FiS1LRpU3Xv3l0jRozQ3LlzVVBQoNGjR2vQoEFciQUAACRV8sdYO3bsUFRUlKKioiRJ48aNU1RUlCZNmlTmbSxZskRNmjRR165d1bNnT3Xo0EF///vfKyoyAACoYir1yE6nTp1kjCnz/MOHD5cYCwwM1NKlS12YCgAAWInbnqAMAADgCpQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZVadlJSUtS7d2+FhYXJZrNpzZo1jnUFBQV6+umn1bJlS1WvXl1hYWH605/+pB9//NFpG6dOnVJsbKz8/PwUEBCghIQE5ebmXuNXAgAA3FWllp2zZ8+qVatWmj17dol1586d086dOzVx4kTt3LlTq1at0v79+3Xvvfc6zYuNjdXevXu1YcMGffjhh0pJSdHIkSOv1UsAAABuzqsyd96jRw/16NGj1HX+/v7asGGD09ibb76ptm3b6ujRo4qIiNC+ffuUnJys7du3Kzo6WpI0a9Ys9ezZU6+88orCwsIq/DUAAAD3VqXO2cnOzpbNZlNAQIAkKTU1VQEBAY6iI0kxMTHy8PDQtm3bKiklAABwJ5V6ZKc88vLy9PTTT2vw4MHy8/OTJGVkZCgoKMhpnpeXlwIDA5WRkXHJbeXn5ys/P9/xOCcnp2JCAwCASlcljuwUFBRo4MCBMsZozpw5V729xMRE+fv7O5bw8HAXpAQAAO7I7cvOhaJz5MgRbdiwwXFUR5JCQkJ04sQJp/mFhYU6deqUQkJCLrnN8ePHKzs727Gkp6dXWH4AAFC53PpjrAtF58CBA9q0aZNq167ttL59+/bKyspSWlqa2rRpI0n65JNPVFxcrHbt2l1yu3a7XXa7vUKzAwAA91CpZSc3N1ffffed4/GhQ4e0a9cuBQYGKjQ0VP3799fOnTv14YcfqqioyHEeTmBgoLy9vdW0aVN1795dI0aM0Ny5c1VQUKDRo0dr0KBBXIkFAAAkVXLZ2bFjhzp37ux4PG7cOElSXFycnn/+ea1du1aS1Lp1a6fnbdq0SZ06dZIkLVmyRKNHj1bXrl3l4eGhfv366Y033rgm+QEAgPur1LLTqVMnGWMuuf5y6y4IDAzU0qVLXRkLAABYiNufoAwAAHA1KDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKrXspKSkqHfv3goLC5PNZtOaNWuc1htjNGnSJIWGhsrX11cxMTE6cOCA05xTp04pNjZWfn5+CggIUEJCgnJzc6/hqwAAAO6sUsvO2bNn1apVK82ePbvU9dOnT9cbb7yhuXPnatu2bapevbq6deumvLw8x5zY2Fjt3btXGzZs0IcffqiUlBSNHDnyWr0EAADg5rwqc+c9evRQjx49Sl1njNHMmTM1YcIE9enTR5K0aNEiBQcHa82aNRo0aJD27dun5ORkbd++XdHR0ZKkWbNmqWfPnnrllVcUFhZ2zV4LAABwT257zs6hQ4eUkZGhmJgYx5i/v7/atWun1NRUSVJqaqoCAgIcRUeSYmJi5OHhoW3btl1y2/n5+crJyXFaAACANblt2cnIyJAkBQcHO40HBwc71mVkZCgoKMhpvZeXlwIDAx1zSpOYmCh/f3/HEh4e7uL0AADAXbht2alI48ePV3Z2tmNJT0+v7EgAAKCCuG3ZCQkJkSRlZmY6jWdmZjrWhYSE6MSJE07rCwsLderUKcec0tjtdvn5+TktAADAmty27ERGRiokJEQbN250jOXk5Gjbtm1q3769JKl9+/bKyspSWlqaY84nn3yi4uJitWvX7ppnBgAA7qdSr8bKzc3Vd99953h86NAh7dq1S4GBgYqIiNCYMWP017/+VY0aNVJkZKQmTpyosLAw9e3bV5LUtGlTde/eXSNGjNDcuXNVUFCg0aNHa9CgQVyJBQAAJFVy2dmxY4c6d+7seDxu3DhJUlxcnJKSkvTUU0/p7NmzGjlypLKystShQwclJyfLx8fH8ZwlS5Zo9OjR6tq1qzw8PNSvXz+98cYb1/y1AAAA92QzxpjKDlHZcnJy5O/vr+zsbM7f+f9sL9gqO0IJZvJ//a8qUCXx9wkqSlnfv932nB0AAABXoOwAAABLc0nZycrKcsVmAAAAXK7cZWfatGlavny54/HAgQNVu3Zt1a1bV7t373ZpOAAAgKtV7rIzd+5cx+0VNmzYoA0bNmj9+vXq0aOHnnzySZcHBAAAuBrlvvQ8IyPDUXY+/PBDDRw4UHfffbfq16/PF/kBAAC3U+4jO7Vq1XLcSyo5OdlxV3JjjIqKilybDgAA4CqV+8jO/fffryFDhqhRo0b6+eef1aNHD0nSl19+qYYNG7o8IAAAwNUod9mZMWOG6tevr/T0dE2fPl01atSQJB0/flyPPPKIywMCAABcjXKXnWrVqumJJ54oMT527FiXBAIAAHClK/qencWLF6tDhw4KCwvTkSNHJEkzZ87U+++/79JwAAAAV6vcZWfOnDkaN26cevTooaysLMdJyQEBAZo5c6ar8wEAAFyVcpedWbNm6e2339Zzzz0nT09Px3h0dLS++uorl4YDAAC4WuUuO4cOHVJUVFSJcbvdrrNnz7okFAAAgKuUu+xERkZq165dJcaTk5PVtGlTV2QCAABwmXJfjTVu3DiNGjVKeXl5Msboiy++0LvvvqvExET94x//qIiMAAAAV6zcZefBBx+Ur6+vJkyYoHPnzmnIkCEKCwvT66+/rkGDBlVERgAAgCtW7rIjSbGxsYqNjdW5c+eUm5uroKAgV+cCAABwiSsqOxdcd911uu6661yVBQAAwOXKXXYiIyNls9kuuf7gwYNXFQgAAMCVyl12xowZ4/S4oKBAX375pZKTk/Xkk0+6KhcAAIBLlLvsPP7446WOz549Wzt27LjqQAAAAK50RffGKk2PHj303nvvuWpzAAAALuGysrNy5UoFBga6anMAAAAuUe6PsaKiopxOUDbGKCMjQydPntRbb73l0nAAAABXq9xlp2/fvk6PPTw8dP3116tTp05q0qSJq3IBAAC4RLnLzuTJkysiBwAAQIUoU9nJyckp8wb9/PyuOAwAAICrlansBAQEXPaLBKVfz92x2WwqKipySTAAAABXKFPZ2bRpU0XnAAAAqBBlKjsdO3as6BwAAAAV4opvBHru3DkdPXpU58+fdxq/+eabrzoUAACAq5S77Jw8eVLx8fFav359qes5ZwcAALiTcn+D8pgxY5SVlaVt27bJ19dXycnJWrhwoRo1aqS1a9dWREYAAIArVu4jO5988onef/99RUdHy8PDQ/Xq1dNdd90lPz8/JSYmqlevXhWREwAA4IqU+8jO2bNnFRQUJEmqVauWTp48KUlq2bKldu7c6dp0AAAAV6ncZadx48bav3+/JKlVq1aaN2+ejh07prlz5yo0NNSl4YqKijRx4kRFRkbK19dXDRo00IsvvihjjGOOMUaTJk1SaGiofH19FRMTowMHDrg0BwAAqLrK/THW448/ruPHj0v69dYR3bt315IlS+Tt7a2kpCSXhps2bZrmzJmjhQsXqnnz5tqxY4fi4+Pl7++vxx57TJI0ffp0vfHGG1q4cKEiIyM1ceJEdevWTV9//bV8fHxcmgcAAFQ9ZS47/fv314MPPqjY2FjHtym3adNGR44c0TfffKOIiAjVqVPHpeG2bNmiPn36OM4Dql+/vt5991198cUXkn49qjNz5kxNmDBBffr0kSQtWrRIwcHBWrNmjQYNGuTSPAAAoOop88dYp0+fVq9evRQREaFJkybp4MGDkqTrrrtOt9xyi8uLjiTddttt2rhxo7799ltJ0u7du/X555+rR48ekqRDhw4pIyNDMTExjuf4+/urXbt2Sk1NveR28/PzlZOT47QAAABrKnPZ2bhxow4ePKiEhAT985//VKNGjdSlSxctXbpU+fn5FRLumWee0aBBg9SkSRNVq1ZNUVFRGjNmjGJjYyVJGRkZkqTg4GCn5wUHBzvWlSYxMVH+/v6OJTw8vELyAwCAyleuE5Tr1aun559/XgcPHtSGDRsUFhamESNGKDQ0VKNGjVJaWppLw/3rX//SkiVLtHTpUu3cuVMLFy7UK6+8ooULF17VdsePH6/s7GzHkp6e7qLEAADA3Vzx7SK6dOmiLl266MyZM1q6dKmeffZZzZs3T4WFhS4L9+STTzqO7ki/Xt5+5MgRJSYmKi4uTiEhIZKkzMxMpyvBMjMz1bp160tu1263y263uywnAABwX+W+9Pxihw4d0iuvvKKpU6cqOzvb6dwZVzh37pw8PJwjenp6qri4WJIUGRmpkJAQbdy40bE+JydH27ZtU/v27V2aBQAAVE3lPrKTl5enlStX6p133lFKSorCw8OVkJCg+Ph4l5/70rt3b/3tb39TRESEmjdvri+//FKvvfaahg8fLkmy2WwaM2aM/vrXv6pRo0aOS8/DwsLUt29fl2YBAABVU5nLzhdffKF33nlHy5cvV15enu677z4lJyera9eujkvRXW3WrFmaOHGiHnnkEZ04cUJhYWH685//rEmTJjnmPPXUUzp79qxGjhyprKwsdejQQcnJyXzHDgAAkCTZzMVfR3wZHh4eatWqlRISEhQbG6tatWpVdLZrJicnR/7+/srOzpafn19lx3ELthcqpsBeDTO5TL+qANwMf5+gopT1/bvMR3Z27NihW265xSXhAAAArpUyn6BM0QEAAFXRVV2NBQAA4O4oOwAAwNIoOwAAwNLKXHZOnDhx2fWFhYWOu5EDAAC4izKXndDQUKfC07JlS6d7Sv388898azEAAHA7ZS47v/06nsOHD6ugoOCycwAAACqbS8/ZqahvUgYAALhSnKAMAAAsrczfoGyz2XTmzBn5+PjIGCObzabc3Fzl5ORIkuN/AQAA3EmZy44xRjfddJPT46ioKKfHfIwFAADcTZnLzqZNmyoyBwAAQIUoc9np2LFjReYAAACoEGUuO4WFhSoqKpLdbneMZWZmau7cuTp79qzuvfdedejQoUJCAgAAXKkyl50RI0bI29tb8+bNkySdOXNGt956q/Ly8hQaGqoZM2bo/fffV8+ePSssLAAAQHmV+dLzf//73+rXr5/j8aJFi1RUVKQDBw5o9+7dGjdunF5++eUKCQkAAHClylx2jh07pkaNGjkeb9y4Uf369ZO/v78kKS4uTnv37nV9QgAAgKtQ5rLj4+OjX375xfF469atateundP63Nxc16YDAAC4SmUuO61bt9bixYslSZ999pkyMzPVpUsXx/rvv/9eYWFhrk8IAABwFcp8gvKkSZPUo0cP/etf/9Lx48c1bNgwhYaGOtavXr1at99+e4WEBAAAuFLl+p6dtLQ0ffzxxwoJCdGAAQOc1rdu3Vpt27Z1eUAAAICrUeayI0lNmzZV06ZNS103cuRIlwQCAABwpTKXnZSUlDLNu/POO684DAAAgKuVuex06tTJcaNPY0ypc2w2m4qKilyTDAAAwAXKXHZq1aqlmjVratiwYRo6dKjq1KlTkbkAAABcosyXnh8/flzTpk1TamqqWrZsqYSEBG3ZskV+fn7y9/d3LAAAAO6kzGXH29tbf/zjH/XRRx/pm2++0c0336zRo0crPDxczz33nAoLCysyJwAAwBUpc9m5WEREhCZNmqT//d//1U033aSXXnpJOTk5rs4GAABw1cpddvLz87V06VLFxMSoRYsWqlOnjv7nf/5HgYGBFZEPAADgqpT5BOUvvvhCCxYs0LJly1S/fn3Fx8frX//6FyUHAAC4tTKXnT/84Q+KiIjQY489pjZt2kiSPv/88xLz7r33XtelAwAAuErl+gblo0eP6sUXX7zker5nBwAAuJsyl53i4uKKzAEAAFAhruhqrEv55ZdfXLk5AACAq+aSspOfn69XX31VkZGRrtgcAACAy5S57OTn52v8+PGKjo7WbbfdpjVr1kiSFixYoMjISM2cOVNjx451ecBjx47pgQceUO3ateXr66uWLVtqx44djvXGGE2aNEmhoaHy9fVVTEyMDhw44PIcAACgaipz2Zk0aZLmzJmj+vXr6/DhwxowYIBGjhypGTNm6LXXXtPhw4f19NNPuzTc6dOndfvtt6tatWpav369vv76a7366quqVauWY8706dP1xhtvaO7cudq2bZuqV6+ubt26KS8vz6VZAABA1VTmE5RXrFihRYsW6d5779WePXt08803q7CwULt373bcDd3Vpk2bpvDwcC1YsMAxdvFHZcYYzZw5UxMmTFCfPn0kSYsWLVJwcLDWrFmjQYMGVUguAABQdZT5yM4PP/zg+H6dFi1ayG63a+zYsRVWdCRp7dq1io6O1oABAxQUFKSoqCi9/fbbjvWHDh1SRkaGYmJiHGP+/v5q166dUlNTKywXAACoOspcdoqKiuTt7e147OXlpRo1alRIqAsOHjyoOXPmqFGjRvroo4/08MMP67HHHtPChQslSRkZGZKk4OBgp+cFBwc71pUmPz9fOTk5TgsAALCmMn+MZYzRsGHDZLfbJUl5eXl66KGHVL16dad5q1atclm44uJiRUdHa+rUqZKkqKgo7dmzR3PnzlVcXNwVbzcxMVEvvPCCq2ICAAA3VuYjO3FxcQoKCpK/v7/8/f31wAMPKCwszPH4wuJKoaGhatasmdNY06ZNdfToUUlSSEiIJCkzM9NpTmZmpmNdacaPH6/s7GzHkp6e7tLcAADAfZT5yM7FJwlfK7fffrv279/vNPbtt9+qXr16kn49WTkkJEQbN25U69atJUk5OTnatm2bHn744Utu1263O45QAQAAayvXvbGutbFjx+q2227T1KlTNXDgQH3xxRf6+9//rr///e+Sfr0X15gxY/TXv/5VjRo1UmRkpCZOnKiwsDD17du3csMDAAC34NZl59Zbb9Xq1as1fvx4TZkyxfHlhbGxsY45Tz31lM6ePauRI0cqKytLHTp0UHJysnx8fCoxOQAAcBc2Y4yp7BCVLScnR/7+/srOzpafn19lx3ELthcq7isFrpSZ/F//qwpUSfx9gopS1vdvl94IFAAAwN1QdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVVqbLz0ksvyWazacyYMY6xvLw8jRo1SrVr11aNGjXUr18/ZWZmVl5IAADgVqpM2dm+fbvmzZunm2++2Wl87Nix+uCDD7RixQp9+umn+vHHH3X//fdXUkoAAOBuqkTZyc3NVWxsrN5++23VqlXLMZ6dna358+frtddeU5cuXdSmTRstWLBAW7Zs0datWysxMQAAcBdVouyMGjVKvXr1UkxMjNN4WlqaCgoKnMabNGmiiIgIpaamXnJ7+fn5ysnJcVoAAIA1eVV2gN+zbNky7dy5U9u3by+xLiMjQ97e3goICHAaDw4OVkZGxiW3mZiYqBdeeMHVUQEAgBty6yM76enpevzxx7VkyRL5+Pi4bLvjx49Xdna2Y0lPT3fZtgEAgHtx67KTlpamEydO6JZbbpGXl5e8vLz06aef6o033pCXl5eCg4N1/vx5ZWVlOT0vMzNTISEhl9yu3W6Xn5+f0wIAAKzJrT/G6tq1q7766iunsfj4eDVp0kRPP/20wsPDVa1aNW3cuFH9+vWTJO3fv19Hjx5V+/btKyMyAABwM25ddmrWrKkWLVo4jVWvXl21a9d2jCckJGjcuHEKDAyUn5+fHn30UbVv315/+MMfKiMyAABwM25ddspixowZ8vDwUL9+/ZSfn69u3brprbfequxYAADATVS5srN582anxz4+Ppo9e7Zmz55dOYEAAIBbc+sTlAEAAK4WZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFiaW5edxMRE3XrrrapZs6aCgoLUt29f7d+/32lOXl6eRo0apdq1a6tGjRrq16+fMjMzKykxAABwN25ddj799FONGjVKW7du1YYNG1RQUKC7775bZ8+edcwZO3asPvjgA61YsUKffvqpfvzxR91///2VmBoAALgTr8oOcDnJyclOj5OSkhQUFKS0tDTdeeedys7O1vz587V06VJ16dJFkrRgwQI1bdpUW7du1R/+8IfKiA0AANyIWx/Z+a3s7GxJUmBgoCQpLS1NBQUFiomJccxp0qSJIiIilJqaesnt5OfnKycnx2kBAADWVGXKTnFxscaMGaPbb79dLVq0kCRlZGTI29tbAQEBTnODg4OVkZFxyW0lJibK39/fsYSHh1dkdAAAUImqTNkZNWqU9uzZo2XLll31tsaPH6/s7GzHkp6e7oKEAADAHbn1OTsXjB49Wh9++KFSUlJ0ww03OMZDQkJ0/vx5ZWVlOR3dyczMVEhIyCW3Z7fbZbfbKzIyAABwE259ZMcYo9GjR2v16tX65JNPFBkZ6bS+TZs2qlatmjZu3OgY279/v44ePar27dtf67gAAMANufWRnVGjRmnp0qV6//33VbNmTcd5OP7+/vL19ZW/v78SEhI0btw4BQYGys/PT48++qjat2/PlVgAAECSm5edOXPmSJI6derkNL5gwQINGzZMkjRjxgx5eHioX79+ys/PV7du3fTWW29d46QAAMBduXXZMcb87hwfHx/Nnj1bs2fPvgaJAABAVePW5+wAAABcLcoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNK/KDgAAAFzH9oKtsiOUYCabSt0/R3YAAIClcWQHwH8d/uUL/HfhyA4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA07noOAFUEd2sHrgxlB3ADVfVNrKrmBsqC32/r4GMsAABgaZY5sjN79my9/PLLysjIUKtWrTRr1iy1bdu2smPhGuNfYgCA37JE2Vm+fLnGjRunuXPnql27dpo5c6a6deum/fv3KygoqFKz8eYLAEDlssTHWK+99ppGjBih+Ph4NWvWTHPnztV1112nd955p7KjAQCASlbly8758+eVlpammJgYx5iHh4diYmKUmppaickAAIA7qPIfY/30008qKipScHCw03hwcLC++eabUp+Tn5+v/Px8x+Ps7GxJUk5OjusD5rl+k1erTK+T3C5D7muL3NcWua8tS+e+iu0a8zunZ5gq7tixY0aS2bJli9P4k08+adq2bVvqcyZPnmwksbCwsLCwsFhgSU9Pv2xXqPJHdurUqSNPT09lZmY6jWdmZiokJKTU54wfP17jxo1zPC4uLtapU6dUu3Zt2Wzud0Kx9Gt7DQ8PV3p6uvz8/Co7TpmR+9oi97VF7muL3NdWVchtjNGZM2cUFhZ22XlVvux4e3urTZs22rhxo/r27Svp1/KyceNGjR49utTn2O122e12p7GAgIAKTuoafn5+bvtLdznkvrbIfW2R+9oi97Xl7rn9/f1/d06VLzuSNG7cOMXFxSk6Olpt27bVzJkzdfbsWcXHx1d2NAAAUMksUXb++Mc/6uTJk5o0aZIyMjLUunVrJScnlzhpGQAA/PexRNmRpNGjR1/yYysrsNvtmjx5comP39wdua8tcl9b5L62yH1tVdXcpbEZ83vXawEAAFRdVf5LBQEAAC6HsgMAACyNsgMAACyNsgMAACyNsuNiw4YNk81mk81mU7Vq1RQZGamnnnpKeXn/d7OSC+u3bt3q9Nz8/HzHtzhv3rzZMf7pp5+qS5cuCgwM1HXXXadGjRopLi5O58+flyRt3rzZsc3fLhkZGZKkvXv3ql+/fqpfv75sNptmzpxZJXK//fbbuuOOO1SrVi3VqlVLMTEx+uKLL9w+96pVqxQdHa2AgABVr15drVu31uLFi90+98WWLVsmm83m+LJOd86dlJRUYp2Pj4/b55akrKwsjRo1SqGhobLb7brpppu0bt06t87dqVOnUtf36tXLrXNL0syZM9W4cWP5+voqPDxcY8eOdeRy19wFBQWaMmWKGjRoIB8fHwUGBrplzt97n7lg9uzZql+/vnx8fNSuXTunv9MrCmWnAnTv3l3Hjx/XwYMHNWPGDM2bN0+TJ092mhMeHq4FCxY4ja1evVo1atRwGvv666/VvXt3RUdHKyUlRV999ZVmzZolb29vFRUVOc3dv3+/jh8/7rQEBQVJks6dO6cbb7xRL7300iVvo+GOuTdv3qzBgwdr06ZNSk1NVXh4uO6++24dO3bMrXMHBgbqueeeU2pqqv7zn/8oPj5e8fHx+uijj9w69wWHDx/WE088oTvuuEO/5a65/fz8nNYdOXLE7XOfP39ed911lw4fPqyVK1dq//79evvtt1W3bl23zr1q1Sqn8T179sjT01MDBgxw69xLly7VM888o8mTJ2vfvn2aP3++li9frmeffdatc0+YMEHz5s3TrFmz9PXXX6tx48by8PDQxx9/7FY5y/I+s3z5co0bN06TJ0/Wzp071apVK3Xr1k0nTpwodb7LuOZ2nLggLi7O9OnTx2ns/vvvN1FRUY7HksyECROMn5+fOXfunGP8rrvuMhMnTjSSzKZNm4wxxsyYMcPUr1//svvctGmTkWROnz5dpoz16tUzM2bMqHK5jTGmsLDQ1KxZ0yxcuLBK5TbGmKioKDNhwgS3z11YWGhuu+02849//KNETnfNvWDBAuPv73/J9e6ae86cOebGG28058+fr1K5f2vGjBmmZs2aJjc3161zjxo1ynTp0sVpbNy4ceb2229369yhoaHmzTffdDyOi4szoaGhJjY21q1yXqy09xljjGnbtq0ZNWqU43FRUZEJCwsziYmJZdruleLITgXbs2ePtmzZIm9vb6fxNm3aqH79+nrvvfckSUePHlVKSoqGDh3qNC8kJETHjx9XSkrKNcssuW/uc+fOqaCgQIGBgVUmtzFGGzdu1P79+3XnnXe6fe4pU6YoKChICQkJvzvXnXLn5uaqXr16Cg8PV58+fbR37163z7127Vq1b99eo0aNUnBwsFq0aKGpU6eW+Ne0u+X+rfnz52vQoEGqXr26W+e+7bbblJaW5vjY5ODBg1q3bp169uzp1rnz8/OdPpaVJE9PT33++edulfP3nD9/XmlpaYqJiXGMeXh4KCYmRqmpqRW6b47suFhcXJzx9PQ01atXN3a73UgyHh4eZuXKlY45kszq1avNzJkzTefOnY0xxrzwwgvmvvvuM6dPn3Zq3IWFhWbYsGFGkgkJCTF9+/Y1s2bNMtnZ2Y7tXWjc1atXd1qaNWtWasZLHdlx99zGGPPwww+bG2+80fzyyy9unzsrK8tUr17deHl5GbvdbubPn+/2P+/PPvvM1K1b15w8edKR87dHdtwx95YtW8zChQvNl19+aTZv3mzuuece4+fnZ9LT0906d+PGjY3dbjfDhw83O3bsMMuWLTOBgYHm+eefd+vcF9u2bZuRZLZt2+b2vyfGGPP666+batWqGS8vLyPJPPTQQ26fe/DgwaZZs2bm22+/NUVFReauu+4ykowkt8p5sdLeZ44dO2YkmS1btjiNP/nkk6Zt27albsdVKDsuFhcXZ2JiYsyBAwfMrl27TFxcnElISHCac+GX8KeffjI+Pj7m+++/N5GRkeaDDz4o8Ut4wQ8//GAWLVpkRo0aZUJDQ80NN9xgfvzxR2PM//0S7ty50xw4cMCxHD58uNSMlyo77p47MTHR1KpVy+zevbtK5C4qKjIHDhwwX375pXnllVeMv7+/Yz/umDsnJ8fUr1/frFu3zunn+9uy4265S3P+/HnToEEDp48N3TF3o0aNTHh4uCksLHSMvfrqqyYkJMStc19s5MiRpmXLlk5j7pp706ZNJjg42Lz99tvmP//5j1m1apUJDw83U6ZMcevcJ06cMH369DEeHh7G09PT+Pn5mRtuuMF4e3u7Vc6LUXYs7rdvDkVFRaZFixbmH//4h2Pswi+hMcb079/fdOrUyYSGhprCwsJL/hJe7NSpU6ZOnTpm0qRJxpiKOWfH3XK//PLLxt/f32zfvr1K5b5YQkKCufvuu90295dffmkkGU9PT8dis9mMzWYznp6e5rvvvnPL3JfSv39/M2jQIGOMe/68jTHmzjvvNF27dnUaW7dunZFk8vPz3Tb3Bbm5ucbPz8/MnDnTadxdc3fo0ME88cQTTmOLFy82vr6+pqioyG1zX/DLL7+YH374wcTFxZmGDRs6jqq4W05jSn+fyc/PN56eno5cF/zpT38y9957b5m2e6U4Z6eCeXh46Nlnn9WECRP0yy+/lFg/fPhwbd68WX/605/k6elZpm3WqlVLoaGhOnv2rKvjOrhT7unTp+vFF19UcnKyoqOjq0zu3youLlZ+fr7b5m7SpIm++uor7dq1y7Hce++96ty5s3bt2qXw8HC3zF2aoqIiffXVVwoNDS11vbvkvv322/Xdd9+puLjYMfbtt98qNDS0xPkX7pT7ghUrVig/P18PPPDAZee5S+5z587Jw8P5be/C/kwpt4l0l9wX+Pj4qG7duiouLtaPP/6oPn36uGXOS/H29labNm20ceNGx1hxcbE2btyo9u3bu2w/pbHMXc/d2YABA/Tkk09q9uzZeuKJJ5zWde/eXSdPnpSfn1+pz503b5527dql++67Tw0aNFBeXp4WLVqkvXv3atasWU5zT5w44fQ9C5JUu3ZtVatWTefPn9fXX38t6deTxI4dO6Zdu3apRo0aatiwodvmnjZtmiZNmqSlS5eqfv36ju9zqFGjRonLJ90pd2JioqKjo9WgQQPl5+dr3bp1Wrx4sebMmVPqft0ht4+Pj1q0aOE0HhAQIEklxt0pd7Vq1TRlyhT94Q9/UMOGDZWVlaWXX35ZR44c0YMPPujWuR9++GG9+eabevzxx/Xoo4/qwIEDmjp1qh577DG3zn3B/Pnz1bdvX9WuXfuSed0pd+/evfXaa68pKipK7dq103fffaeJEyeqd+/elywB7pB727ZtOnbsmFq3bq1jx45pw4YNkqSnnnrKrXKW5X1m3LhxiouLU3R0tNq2bauZM2fq7Nmzio+PLzWby1TocaP/QqVdumjMr+ebXH/99SY3N9fp8OJv/fbw4s6dO80DDzxgIiMjjd1uN7Vr1zZ33nmnWbt2reM5Fw4vlrakpqYaY4w5dOhQqes7duzo1rnr1atX6vrJkye7de7nnnvONGzY0Pj4+JhatWqZ9u3bm2XLljm24a65f6ssl567Q+4xY8aYiIgI4+3tbYKDg03Pnj3Nzp073T63Mb+eXN2uXTtjt9vNjTfeaP72t785zuFx59zffPONkWQ+/vjjEvt119wFBQXm+eefNw0aNDA+Pj4mPDzcPPLII46PZtw19+bNm03Tpk0d27jxxhtNt27d3C7n773PXDBr1izHf69t27Y1W7duLTWnK9mMKeXYHQAAgEVwzg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AlOL5559X69aty/Ucm82mNWvWXHL94cOHZbPZtGvXrqvKBqB8KDsAnAwbNkw2m002m03VqlVTZGSknnrqqRJfEX9hztatW53G8/PzVbt2bdlsNm3evNkx/umnn6pLly4KDAzUddddp0aNGikuLk7nz5+XJG3evNmxzd8uF24TcrG0tLRS939B165ddf/991/xz+GJJ55wuocPgKqLsgOghO7du+v48eM6ePCgZsyYoXnz5mny5Mkl5oWHh2vBggVOY6tXry5x37Kvv/5a3bt3V3R0tFJSUvTVV19p1qxZ8vb2VlFRkdPc/fv36/jx405LUFBQiX23adNGrVq10jvvvFNi3eHDh7Vp0yYlJCSU+7UbY1RYWKgaNWqU6Z5PANwfZQdACXa7XSEhIQoPD1ffvn0VExPjuPngxeLi4rRs2TKnOy2/8847iouLc5r38ccfKyQkRNOnT1eLFi3UoEEDde/eXW+//bZ8fX2d5gYFBSkkJMRp+e2dqi9ISEjQ8uXLde7cOafxpKQkhYaGqnv37lq8eLGio6NVs2ZNhYSEaMiQITpx4oRj7oUjSuvXr1ebNm1kt9v1+eefl/gYa/v27brrrrtUp04d+fv7q2PHjtq5c2eJTMePH1ePHj3k6+urG2+8UStXrrz0D1rSnj171KNHD9WoUUPBwcEaOnSofvrpJ8f6lStXqmXLlvL19VXt2rUVExPj0jtRA/8NKDsALmvPnj3asmWLvL29S6xr06aN6tevr/fee0+SdPToUaWkpGjo0KFO80JCQnT8+HGlpKS4NFtsbKzy8/OdCoUxRgsXLtSwYcPk6empgoICvfjii9q9e7fWrFmjw4cPa9iwYSW29cwzz+ill17Svn37dPPNN5dYf+bMGcXFxenzzz/X1q1b1ahRI/Xs2VNnzpxxmjdx4kT169dPu3fvVmxsrAYNGqR9+/aVmj8rK0tdunRRVFSUduzYoeTkZGVmZmrgwIGSfi1OgwcP1vDhw7Vv3z5t3rxZ999/v7ilIVBOFX6rUQBVSlxcnPH09DTVq1c3drvdSDIeHh5m5cqVTvP0/++qPHPmTNO5c2djjDEvvPCCue+++0rcVbmwsNAMGzbMSDIhISGmb9++ZtasWSY7O9uxvQt3Va5evbrT0qxZs8vmHTRokNNdlTdu3GgkmQMHDpQ6f/v27UaSOXPmjNN+16xZ4zRv8uTJplWrVpfcb1FRkalZs6b54IMPnH4mDz30kNO8du3amYcfftgY8393hf7yyy+NMca8+OKL5u6773aan56ebiSZ/fv3m7S0NCPJHD58+LI/AwCXx5EdACV07txZu3bt0rZt2xQXF6f4+Hj169ev1LkPPPCAUlNTdfDgQSUlJWn48OEl5nh6emrBggX64YcfNH36dNWtW1dTp05V8+bNdfz4cae5n332mXbt2uVY1q1bd9msw4cPV0pKir7//ntJv36M1rFjRzVs2FDSrycy9+7dWxEREapZs6Y6duwo6dejUBeLjo6+7H4yMzM1YsQINWrUSP7+/vLz81Nubm6J7bRv377E40sd2dm9e7c2bdqkGjVqOJYmTZpIkr7//nu1atVKXbt2VcuWLTVgwAC9/fbbOn369GVzAiiJsgOghOrVq6thw4aOE4C3bdum+fPnlzq3du3auueee5SQkKC8vDz16NHjktutW7euhg4dqjfffFN79+5VXl6e5s6d6zQnMjJSDRs2dCz16tW7bNauXbsqIiJCSUlJysnJ0apVqxwnJp89e1bdunWTn5+flixZou3bt2v16tWS5LgK7OLXfDlxcXHatWuXXn/9dW3ZskW7du1S7dq1S2ynPHJzc9W7d2+ncrdr1y4dOHBAd955pzw9PbVhwwatX79ezZo106xZs9S4cWMdOnToivcJ/Dei7AC4LA8PDz377LOaMGGC04nIFxs+fLg2b96sP/3pT/L09CzTdmvVqqXQ0NCrPtnWw8ND8fHxWrhwoZYuXSpvb2/1799fkvTNN9/o559/1ksvvaQ77rhDTZo0cTo5uTz+/e9/67HHHlPPnj3VvHlz2e12pxOJL/jtpfBbt25V06ZNS93mLbfcor1796p+/fpOBa9hw4aO8mWz2XT77bfrhRde0Jdffilvb29HYQNQNpQdAL9rwIAB8vT01OzZs0td3717d508eVJTpkwpdf28efP08MMP6+OPP9b333+vvXv36umnn9bevXvVu3dvp7knTpxQRkaG01JQUHDZfPHx8Tp27JieffZZDR482HGFV0REhLy9vTVr1iwdPHhQa9eu1YsvvngFPwGpUaNGWrx4sfbt26dt27YpNja2xJVkkrRixQq98847+vbbbzV58mR98cUXGj16dKnbHDVqlE6dOqXBgwdr+/bt+v777/XRRx8pPj5eRUVF2rZtm6ZOnaodO3bo6NGjWrVqlU6ePHnJ8gSgdJQdAL/Ly8tLo0eP1vTp00s9EmOz2VSnTp1Sr9iSpLZt2yo3N1cPPfSQmjdvro4dO2rr1q1as2aN4xyaCxo3bqzQ0FCnJS0t7bL5IiIiFBMTo9OnTzudM3T99dcrKSlJK1asULNmzfTSSy/plVdeuYKfgDR//nydPn1at9xyi4YOHarHHnus1O//eeGFF7Rs2TLdfPPNWrRokd599101a9as1G2GhYXp3//+t4qKinT33XerZcuWGjNmjAICAuTh4SE/Pz+lpKSoZ8+euummmzRhwgS9+uqrl/2oEEBJNmO4hhEAAFgXR3YAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAICl/T/eW9kFikhhAwAAAABJRU5ErkJggg==\n" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } - ] - }, - { - "cell_type": "code", + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "# Assuming you have a list of MAE values from mae1 to mae10\n", - "mae_values = [mae1, mae2, mae3, mae4, mae5, mae6, mae7, mae8, mae9, mae10]\n", + "mae_values = [mae1, mae2, mae2_1, mae3, mae4, mae5, mae6, mae7, mae8, mae8_1, mae9, mae10]\n", "\n", "# List of corresponding labels for each MAE value\n", - "labels = ['MAE1', 'MAE2', 'MAE3', 'MAE4', 'MAE5', 'MAE6', 'MAE7', 'MAE8', 'MAE9', 'MAE10']\n", + "labels = ['MAE1', 'MAE2', 'MAE2_1', 'MAE3', 'MAE4', 'MAE5', 'MAE6', 'MAE7', 'MAE8', 'MAE8_1', 'MAE9', 'MAE10']\n", "\n", "# Plotting the bar graph\n", "plt.bar(labels, mae_values, color='orange')\n", @@ -2528,79 +6957,104 @@ "plt.ylabel('MAE Values')\n", "plt.title('Bar Graph of MAE')\n", "plt.show()\n" - ], + ] + }, + { + "cell_type": "code", + "execution_count": 100, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 472 }, - "id": "nrZu-K-KDCJ2", - "outputId": "69165581-da05-4554-a464-a606eb87a734" + "id": "_c4Pe76fDNM-", + "outputId": "c1784b34-6746-42fd-9f66-b7c1cfd50a21" }, - "execution_count": 119, "outputs": [ { - "output_type": "display_data", "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA930lEQVR4nO3deVwV9f7H8fcB9QAKuCDigopLmrtiFtxSLBMRt25XDTM3sjK9pXazbNGWX6GVqaVplso1U9zSyjXSXErKXFMzywpxAbVUEE1AmN8fPjzXIwflKHgO0+v5eMzj4XznOzOfMwfl7cx3ZiyGYRgCAAAwCQ9XFwAAAFCUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcASryXXnpJFotFf/zxR7Hva/Xq1WrRooW8vLxksVh0+vTpYt8nAOcQbgA3Fh8fL4vFYjcFBgaqffv2WrVq1U2v5/PPP1fXrl1VpUoVlSlTRhUrVlTbtm01YcIEZWRk3PR6brY///xTvXr1kre3t6ZOnaqPPvpIZcuWddj38u/u66+/zrfcMAwFBwfLYrGoS5cuDrdx+vRpW4jat2+fwz4DBgyw+/nw8/NT8+bNNWHCBGVlZdn6XQqABU1paWnXcUQA91TK1QUAuLZXXnlFISEhMgxDx44dU3x8vDp37qzPP/+8wF+MRSkvL0+xsbGKj49X06ZN9fjjjys4OFhnzpxRUlKSXnjhBa1cuVJr164t9lpc6fvvv9eZM2f06quvqkOHDoVax8vLS/PmzdOdd95p175hwwYdPnxYVqu1wHUXLVoki8WioKAgffzxx/q///s/h/2sVqs+/PBDSRcD0ZIlS/Sf//xH33//vRISEuz6Tps2TeXKlcu3jfLlyxfq8wAlAeEGKAGioqLUunVr23xsbKyqVKmi+fPnF0m4ycvLU3Z2try8vBwuf+ONNxQfH68RI0ZowoQJslgstmVPPvmkUlNTNWfOnBvaR0lw/PhxSc4Fgc6dO2vRokV65513VKrU//7JnTdvnkJDQ696KW3u3Lnq3LmzatWqpXnz5hUYbkqVKqW+ffva5h9//HHdfvvtWrBggd5++21Vq1bNtuxf//qXAgICCl0/UBJxWQoogcqXLy9vb2+7X5aS9NZbbyk8PFyVKlWSt7e3QkNDtXjx4nzrWywWDRs2TB9//LEaN24sq9Wq1atXO9zXuXPnNH78eDVu3FhvvvmmXbC5pGrVqnrmmWcKvY/rqbNBgwby8vJSaGioNm7c6LDW06dPa8CAASpfvrz8/f01cOBAnTt3zvFBvMKiRYsUGhoqb29vBQQEqG/fvjpy5IhteUREhPr37y9Juu2222SxWDRgwIBrbjcmJkZ//vmnEhMTbW3Z2dlavHix+vTpU+B6KSkp2rRpkx544AE98MAD+v3337V58+ZCfRYPDw9FRERIkpKTkwu1DmAmnLkBSoD09HT98ccfMgxDx48f17vvvqvMzEy7/61L0uTJk9WtWzc9+OCDys7OVkJCgnr27Knly5crOjraru+6deu0cOFCDRs2TAEBAapdu7bDfX/99dc6ffq0/vOf/8jT09OpugvahzN1btiwQQsWLNATTzwhq9Wq9957T506ddKWLVvUpEkTu769evVSSEiI4uLitH37dn344YcKDAzU+PHjr1pnfHy8Bg4cqNtuu01xcXE6duyYJk+erG+++UY7duxQ+fLl9fzzz6tBgwaaMWOG7TJh3bp1r3kMateurbCwMM2fP19RUVGSpFWrVik9PV0PPPCA3nnnHYfrzZ8/X2XLllWXLl3k7e2tunXr6uOPP1Z4ePg19ylJv/76qySpUqVKdu0nT57M17dUqVJcloK5GADc1uzZsw1J+Sar1WrEx8fn63/u3Dm7+ezsbKNJkybG3XffbdcuyfDw8DD27t17zRomT55sSDKWLVtm137hwgXjxIkTdlNeXl6h9uFMnZKMrVu32toOHjxoeHl5Gffdd5+tbezYsYYkY9CgQXbr33fffUalSpWu+vmys7ONwMBAo0mTJsZff/1la1++fLkhyRgzZoyt7dL38f333191m1f2nTJliuHr62v73D179jTat29vGIZh1KpVy4iOjs63ftOmTY0HH3zQNv/cc88ZAQEBRk5Ojl2//v37G2XLlrV9BwcOHDBef/11w2KxGM2aNbP1u3SMHE0NGjS45ucBShIuSwElwNSpU5WYmKjExETNnTtX7du318MPP6xPPvnErp+3t7ftz6dOnVJ6erruuusubd++Pd8227Vrp0aNGl1z35fugrpyEOru3btVuXJlu+nPP/8s1D6cqTMsLEyhoaG2+Zo1a6p79+5as2aNcnNz7fo+9thjdvN33XWX/vzzz6veybV161YdP35cjz/+uN14oOjoaDVs2FArVqwocN3C6tWrl/766y8tX75cZ86c0fLly696SeqHH37Q7t27FRMTY2uLiYnRH3/8oTVr1uTrf/bsWdt3UK9ePT333HMKCwvT0qVL8/VdsmSJ7Wfp0jR79uwb/oyAO+GyFFACtGnTxm5AcUxMjFq2bKlhw4apS5cuKlOmjCRp+fLl+r//+z/t3LnT7jZgR+NkQkJCCrVvX19fSVJmZqZde7169WzjSObMmaOPPvqo0Ptwps769evna7vlllt07tw5nThxQkFBQbb2mjVr2vWrUKGCpIsBys/Pz2EtBw8elCQ1aNAg37KGDRs6vI3bWZUrV1aHDh00b948nTt3Trm5ufrXv/5VYP+5c+eqbNmyqlOnjg4cOCDp4l1XtWvX1scff5zv0p2Xl5c+//xzSRfvnAoJCVGNGjUcbrtt27YMKIbpEW6AEsjDw0Pt27fX5MmT9csvv6hx48batGmTunXrprZt2+q9995T1apVVbp0ac2ePVvz5s3Lt43Lz55cTcOGDSVJe/bsUffu3W3t5cqVs90OXVAAcLQPZ+t0RkFjggzDuKHtFoU+ffpo8ODBSktLU1RUVIFjXAzD0Pz583X27FmHZ72OHz+uzMxMuzNpnp6ehb41Hfg7INwAJdSFCxck/e+MypIlS+Tl5aU1a9bYPTvlRi853HXXXfL391dCQoJGjx4tD48bu5rtbJ2//PJLvraff/5ZPj4+qly58g3VIkm1atWSJO3fv19333233bL9+/fblt+o++67T48++qi+/fZbLViwoMB+l55/88orr+jWW2+1W3bq1Ck98sgjWrZsWb7B5AD+hzE3QAmUk5OjL774QmXKlLH9AvT09JTFYrEbh5KcnKxly5bd0L58fHw0atQo7dmzR88++6zDsyDOnBlxts6kpCS7sTiHDh3Sp59+qo4dOzp995YjrVu3VmBgoKZPn253iWzVqlXat29fvktA16tcuXKaNm2aXnrpJXXt2rXAfpcuST399NP617/+ZTcNHjxY9evX18cff1wkNQFmxZkboARYtWqVfvrpJ0kXL0vMmzdPv/zyi5599lnbWJLo6Gi9/fbb6tSpk/r06aPjx49r6tSpqlevnn744Ycb2v+zzz6rffv26c0339QXX3yh+++/XzVq1NCpU6e0fft2LVq0SIGBgYV6QJ+zdTZp0kSRkZF2t4JL0ssvv3xDn+mS0qVLa/z48Ro4cKDatWunmJgY263gtWvX1ogRI4pkP5Jsz8kpSFZWlpYsWaJ77723wGPZrVs3TZ48WcePH1dgYKDTNSxevNjhE4rvvfdeValSxentAe6IcAOUAGPGjLH92cvLSw0bNtS0adP06KOP2trvvvtuzZw5U+PGjdPw4cMVEhKi8ePHKzk5+YbDjYeHhz766CPdf//9+uCDD/Tuu+/q1KlTKleunJo0aaLXXntNgwcPdvhL80rO1tmuXTuFhYXp5ZdfVkpKiho1aqT4+Hg1a9bshj7T5QYMGCAfHx+NGzdOzzzzjMqWLav77rtP48ePv6nPf1mxYoVOnz591TM7Xbt21YQJE5SQkKAnnnjC6X0MGTLEYftXX31FuIFpWAx3GGkHAA5YLBYNHTpUU6ZMcXUpAEoQxtwAAABTIdwAAABTIdwAAABTYUAxALfFkEAA14MzNwAAwFQINwAAwFT+dpel8vLydPToUfn6+jp8SR8AAHA/hmHozJkzqlat2jVfA/O3CzdHjx5VcHCwq8sAAADX4dChQwW+9f6Sv1248fX1lXTx4Fx6bD0AAHBvGRkZCg4Otv0ev5q/Xbi5dCnKz8+PcAMAQAlTmCElDCgGAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmUsrVBcA1aj+7wtUlKHlctKtLAACYEGduAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqbg03MTFxem2226Tr6+vAgMD1aNHD+3fv/+q68THx8tisdhNXl5eN6liAADg7lwabjZs2KChQ4fq22+/VWJionJyctSxY0edPXv2quv5+fkpNTXVNh08ePAmVQwAANxdKVfufPXq1Xbz8fHxCgwM1LZt29S2bdsC17NYLAoKCiru8gAAQAnkVmNu0tPTJUkVK1a8ar/MzEzVqlVLwcHB6t69u/bu3Vtg36ysLGVkZNhNAADAvNwm3OTl5Wn48OH6xz/+oSZNmhTYr0GDBpo1a5Y+/fRTzZ07V3l5eQoPD9fhw4cd9o+Li5O/v79tCg4OLq6PAAAA3IDFMAzD1UVI0pAhQ7Rq1Sp9/fXXqlGjRqHXy8nJ0a233qqYmBi9+uqr+ZZnZWUpKyvLNp+RkaHg4GClp6fLz8+vSGoviWo/u8LVJSh5XLSrSwAAlBAZGRny9/cv1O9vl465uWTYsGFavny5Nm7c6FSwkaTSpUurZcuWOnDggMPlVqtVVqu1KMoEAAAlgEsvSxmGoWHDhmnp0qVat26dQkJCnN5Gbm6udu/erapVqxZDhQAAoKRx6ZmboUOHat68efr000/l6+urtLQ0SZK/v7+8vb0lSf369VP16tUVFxcnSXrllVd0xx13qF69ejp9+rTefPNNHTx4UA8//LDLPgcAAHAfLg0306ZNkyRFRETYtc+ePVsDBgyQJKWkpMjD438nmE6dOqXBgwcrLS1NFSpUUGhoqDZv3qxGjRrdrLIBAIAbc5sBxTeLMwOSzIwBxQCAksSZ399ucys4AABAUSDcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAU3FpuImLi9Ntt90mX19fBQYGqkePHtq/f/8111u0aJEaNmwoLy8vNW3aVCtXrrwJ1QIAgJLApeFmw4YNGjp0qL799lslJiYqJydHHTt21NmzZwtcZ/PmzYqJiVFsbKx27NihHj16qEePHtqzZ89NrBwAALgri2EYhquLuOTEiRMKDAzUhg0b1LZtW4d9evfurbNnz2r58uW2tjvuuEMtWrTQ9OnTr7mPjIwM+fv7Kz09XX5+fkVWe0lT+9kVri5ByeOiXV0CAKCEcOb3t1uNuUlPT5ckVaxYscA+SUlJ6tChg11bZGSkkpKSHPbPyspSRkaG3QQAAMzLbcJNXl6ehg8frn/84x9q0qRJgf3S0tJUpUoVu7YqVaooLS3NYf+4uDj5+/vbpuDg4CKtGwAAuBe3CTdDhw7Vnj17lJCQUKTbHT16tNLT023ToUOHinT7AADAvZRydQGSNGzYMC1fvlwbN25UjRo1rto3KChIx44ds2s7duyYgoKCHPa3Wq2yWq1FVisAAHBvLj1zYxiGhg0bpqVLl2rdunUKCQm55jphYWFau3atXVtiYqLCwsKKq0wAAFCCuPTMzdChQzVv3jx9+umn8vX1tY2b8ff3l7e3tySpX79+ql69uuLi4iRJTz75pNq1a6cJEyYoOjpaCQkJ2rp1q2bMmOGyz4Hi4Q53dEnc1QUAJY1Lz9xMmzZN6enpioiIUNWqVW3TggULbH1SUlKUmppqmw8PD9e8efM0Y8YMNW/eXIsXL9ayZcuuOggZAAD8fbj0zE1hHrGzfv36fG09e/ZUz549i6EiAABQ0rnN3VIAAABFgXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMpZSrCwAA/L3VfnaFq0tQ8rhoV5eAIsSZGwAAYCqEGwAAYCpOh5tDhw7p8OHDtvktW7Zo+PDhmjFjRpEWBgAAcD2cDjd9+vTRV199JUlKS0vTvffeqy1btuj555/XK6+8UuQFAgAAOMPpcLNnzx61adNGkrRw4UI1adJEmzdv1scff6z4+Piirg8AAMApToebnJwcWa1WSdKXX36pbt26SZIaNmyo1NTUoq0OAADASU6Hm8aNG2v69OnatGmTEhMT1alTJ0nS0aNHValSpSIvEAAAwBlOh5vx48fr/fffV0REhGJiYtS8eXNJ0meffWa7XAUAAOAqTj/ELyIiQn/88YcyMjJUoUIFW/sjjzwiHx+fIi0OAADAWdf1nBvDMLRt2za9//77OnPmjCSpTJkyhBsAAOByTp+5OXjwoDp16qSUlBRlZWXp3nvvla+vr8aPH6+srCxNnz69OOoEAAAoFKfP3Dz55JNq3bq1Tp06JW9vb1v7fffdp7Vr1xZpcQAAAM5y+szNpk2btHnzZpUpU8auvXbt2jpy5EiRFQYAAHA9nD5zk5eXp9zc3Hzthw8flq+vb5EUBQAAcL2cDjcdO3bUpEmTbPMWi0WZmZkaO3asOnfuXJS1AQAAOM3py1ITJkxQZGSkGjVqpPPnz6tPnz765ZdfFBAQoPnz5xdHjQAAAIXmdLipUaOGdu3apYSEBP3www/KzMxUbGysHnzwQbsBxgAAAK7gdLiRpFKlSqlv375FXQsAAMANczrczJkz56rL+/Xrd93FAAAA3Cinw82TTz5pN5+Tk6Nz587ZnlBMuAEAAK7k9N1Sp06dspsyMzO1f/9+3XnnnQwoBgAALndd75a6Uv369TVu3Lh8Z3UAAAButiIJN9LFQcZHjx4tqs0BAABcF6fH3Hz22Wd284ZhKDU1VVOmTNE//vGPIisMAADgejgdbnr06GE3b7FYVLlyZd19992aMGFCUdUFAABwXZwON3l5ecVRBwAAQJEosjE3AAAA7qBQZ25GjhxZ6A2+/fbb110MAADAjSpUuNmxY0ehNmaxWJza+caNG/Xmm29q27ZtSk1N1dKlS/ON6bnc+vXr1b59+3ztqampCgoKcmrfAADAnAoVbr766qti2fnZs2fVvHlzDRo0SP/85z8Lvd7+/fvl5+dnmw8MDCyO8gAAQAl0XS/OLCpRUVGKiopyer3AwECVL1++6AsCAAAl3nWFm61bt2rhwoVKSUlRdna23bJPPvmkSAq7mhYtWigrK0tNmjTRSy+9dNXn62RlZSkrK8s2n5GRUez1AQAA13H6bqmEhASFh4dr3759Wrp0qXJycrR3716tW7dO/v7+xVGjTdWqVTV9+nQtWbJES5YsUXBwsCIiIrR9+/YC14mLi5O/v79tCg4OLtYaAQCAazl95ub111/XxIkTNXToUPn6+mry5MkKCQnRo48+qqpVqxZHjTYNGjRQgwYNbPPh4eH69ddfNXHiRH300UcO1xk9erTd3V4ZGRkEHAAATMzpMze//vqroqOjJUllypTR2bNnZbFYNGLECM2YMaPIC7yWNm3a6MCBAwUut1qt8vPzs5sAAIB5OR1uKlSooDNnzkiSqlevrj179kiSTp8+rXPnzhVtdYWwc+fOYj9jBAAASg6nL0u1bdtWiYmJatq0qXr27Kknn3xS69atU2Jiou655x6ntpWZmWl31uX333/Xzp07VbFiRdWsWVOjR4/WkSNHNGfOHEnSpEmTFBISosaNG+v8+fP68MMPtW7dOn3xxRfOfgwAAGBShQ43e/bsUZMmTTRlyhSdP39ekvT888+rdOnS2rx5s+6//3698MILTu1869atdg/luzQ2pn///oqPj1dqaqpSUlJsy7Ozs/XUU0/pyJEj8vHxUbNmzfTll186fLAfAAD4eyp0uGnWrJluu+02Pfzww3rggQckSR4eHnr22Weve+cREREyDKPA5fHx8Xbzo0aN0qhRo657fwAAwPwKPeZmw4YNaty4sZ566ilVrVpV/fv316ZNm4qzNgAAAKcVOtzcddddmjVrllJTU/Xuu+8qOTlZ7dq10y233KLx48crLS2tOOsEAAAoFKfvlipbtqwGDhyoDRs26Oeff1bPnj01depU1axZU926dSuOGgEAAArN6XBzuXr16um5557TCy+8IF9fX61YsaKo6gIAALgu1/3izI0bN2rWrFlasmSJPDw81KtXL8XGxhZlbQAAAE5zKtwcPXpU8fHxio+P14EDBxQeHq533nlHvXr1UtmyZYurRgAAgEIrdLiJiorSl19+qYCAAPXr10+DBg2ye88TAACAOyh0uCldurQWL16sLl26yNPTszhrAgAAuG6FDjefffZZcdYBAABQJG7obikAAAB3Q7gBAACmQrgBAACmQrgBAACmUuhw8/jjjyszM9M2P3/+fJ09e9Y2f/r0aXXu3LloqwMAAHBSocPN+++/r3PnztnmH330UR07dsw2n5WVpTVr1hRtdQAAAE4qdLgxDOOq8wAAAO6AMTcAAMBUCDcAAMBUnHpx5pgxY+Tj4yNJys7O1muvvSZ/f39JshuPAwAA4CqFDjdt27bV/v37bfPh4eH67bff8vUBAABwpUKHm/Xr1xdjGQAAAEXDqctSGRkZ+u6775Sdna02bdqocuXKxVUXAADAdSl0uNm5c6c6d+6stLQ0SZKvr68WLlyoyMjIYisOAADAWYW+W+qZZ55RSEiIvvnmG23btk333HOPhg0bVpy1AQAAOK3QZ262bdumL774Qq1atZIkzZo1SxUrVlRGRob8/PyKrUAAAABnFPrMzcmTJ1WjRg3bfPny5VW2bFn9+eefxVIYAADA9XBqQPGPP/5oG3MjXXwFw759+3TmzBlbW7NmzYquOgAAACc5FW7uueeefO+U6tKliywWiwzDkMViUW5ubpEWCAAA4IxCh5vff/+9OOsAAAAoEoUON7Vq1bpmnz179txQMQAAADfqhl+ceebMGc2YMUNt2rRR8+bNi6ImAACA63bd4Wbjxo3q37+/qlatqrfeekt33323vv3226KsDQAAwGlODShOS0tTfHy8Zs6cqYyMDPXq1UtZWVlatmyZGjVqVFw1AgAAFFqhz9x07dpVDRo00A8//KBJkybp6NGjevfdd4uzNgAAAKcV+szNqlWr9MQTT2jIkCGqX79+cdYEAABw3Qp95ubrr7/WmTNnFBoaqttvv11TpkzRH3/8UZy1AQAAOK3Q4eaOO+7QBx98oNTUVD366KNKSEhQtWrVlJeXp8TERLunFAMAALiK03dLlS1bVoMGDdLXX3+t3bt366mnntK4ceMUGBiobt26FUeNAAAAhXZDz7lp0KCB3njjDR0+fFjz588vqpoAAACu2w0/xE+SPD091aNHD3322WdFsTkAAIDrVui7pQYNGnTNPhaLRTNnzryhggAAAG5EocNNfHy8atWqpZYtW+Z7MzgAAIC7KHS4GTJkiObPn6/ff/9dAwcOVN++fVWxYsXirA0AAMBphR5zM3XqVKWmpmrUqFH6/PPPFRwcrF69emnNmjWcyQEAAG7DqQHFVqtVMTExSkxM1I8//qjGjRvr8ccfV+3atZWZmVlcNQIAABTadd8t5eHhIYvFIsMwlJubW5Q1AQAAXDenwk1WVpbmz5+ve++9V7fccot2796tKVOmKCUlReXKlSuuGgEAAAqt0AOKH3/8cSUkJCg4OFiDBg3S/PnzFRAQUJy1AQAAOK3Q4Wb69OmqWbOm6tSpow0bNmjDhg0O+33yySdFVhwAAICzCh1u+vXrJ4vFUpy1AAAA3DCnHuIHAADg7ork3VIAAADugnADAABMhXADAABMhXADAABMxaXhZuPGjeratauqVasmi8WiZcuWXXOd9evXq1WrVrJarapXrx4DnQEAgB2XhpuzZ8+qefPmmjp1aqH6//7774qOjlb79u21c+dODR8+XA8//LDWrFlTzJUCAICSotC3gheHqKgoRUVFFbr/9OnTFRISogkTJkiSbr31Vn399deaOHGiIiMji6tMAABQgpSoMTdJSUnq0KGDXVtkZKSSkpIKXCcrK0sZGRl2EwAAMK8SFW7S0tJUpUoVu7YqVaooIyNDf/31l8N14uLi5O/vb5uCg4NvRqkAAMBFSlS4uR6jR49Wenq6bTp06JCrSwIAAMXIpWNunBUUFKRjx47ZtR07dkx+fn7y9vZ2uI7VapXVar0Z5QEAADdQos7chIWFae3atXZtiYmJCgsLc1FFAADA3bg03GRmZmrnzp3auXOnpIu3eu/cuVMpKSmSLl5S6tevn63/Y489pt9++02jRo3STz/9pPfee08LFy7UiBEjXFE+AABwQy4NN1u3blXLli3VsmVLSdLIkSPVsmVLjRkzRpKUmppqCzqSFBISohUrVigxMVHNmzfXhAkT9OGHH3IbOAAAsHHpmJuIiAgZhlHgckdPH46IiNCOHTuKsSoAAFCSlagxNwAAANdCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKbiFuFm6tSpql27try8vHT77bdry5YtBfaNj4+XxWKxm7y8vG5itQAAwJ25PNwsWLBAI0eO1NixY7V9+3Y1b95ckZGROn78eIHr+Pn5KTU11TYdPHjwJlYMAADcmcvDzdtvv63Bgwdr4MCBatSokaZPny4fHx/NmjWrwHUsFouCgoJsU5UqVW5ixQAAwJ25NNxkZ2dr27Zt6tChg63Nw8NDHTp0UFJSUoHrZWZmqlatWgoODlb37t21d+/eAvtmZWUpIyPDbgIAAObl0nDzxx9/KDc3N9+ZlypVqigtLc3hOg0aNNCsWbP06aefau7cucrLy1N4eLgOHz7ssH9cXJz8/f1tU3BwcJF/DgAA4D5cflnKWWFhYerXr59atGihdu3a6ZNPPlHlypX1/vvvO+w/evRopaen26ZDhw7d5IoBAMDNVMqVOw8ICJCnp6eOHTtm137s2DEFBQUVahulS5dWy5YtdeDAAYfLrVarrFbrDdcKAABKBpeeuSlTpoxCQ0O1du1aW1teXp7Wrl2rsLCwQm0jNzdXu3fvVtWqVYurTAAAUIK49MyNJI0cOVL9+/dX69at1aZNG02aNElnz57VwIEDJUn9+vVT9erVFRcXJ0l65ZVXdMcdd6hevXo6ffq03nzzTR08eFAPP/ywKz8GAABwEy4PN71799aJEyc0ZswYpaWlqUWLFlq9erVtkHFKSoo8PP53gunUqVMaPHiw0tLSVKFCBYWGhmrz5s1q1KiRqz4CAABwIy4PN5I0bNgwDRs2zOGy9evX281PnDhREydOvAlVAQCAkqjE3S0FAABwNYQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKqVcXQAAlDS1n13h6hIkScnjol1dAuCWOHMDAABMhXADAABMhXADAABMhTE3AACYBOPBLuLMDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBW3CDdTp05V7dq15eXlpdtvv11btmy5av9FixapYcOG8vLyUtOmTbVy5cqbVCkAAHB3Lg83CxYs0MiRIzV27Fht375dzZs3V2RkpI4fP+6w/+bNmxUTE6PY2Fjt2LFDPXr0UI8ePbRnz56bXDkAAHBHLg83b7/9tgYPHqyBAweqUaNGmj59unx8fDRr1iyH/SdPnqxOnTrp6aef1q233qpXX31VrVq10pQpU25y5QAAwB2VcuXOs7OztW3bNo0ePdrW5uHhoQ4dOigpKcnhOklJSRo5cqRdW2RkpJYtW1acpQIlXu1nV7i6BCWPi75mn5JSZ0nAsSxaHM+Sw6Xh5o8//lBubq6qVKli116lShX99NNPDtdJS0tz2D8tLc1h/6ysLGVlZdnm09PTJUkZGRk3UnqBmoxdUyzbdcaelyOv2Scv69xNqOTqrvUduEON0rXr5DsvvML8vSsJdbpDjVLJqNMs37lUMup0hxql4vkde2mbhmFcs69Lw83NEBcXp5dffjlfe3BwsAuquTn8J7m6gsKhzqJTEmqUqLOolYQ6S0KNEnUWteKs88yZM/L3979qH5eGm4CAAHl6eurYsWN27ceOHVNQUJDDdYKCgpzqP3r0aLvLWHl5eTp58qQqVaoki8Vyg5+g6GVkZCg4OFiHDh2Sn5+fq8txqCTUKFFnUSsJdZaEGiXqLGoloc6SUKPk3nUahqEzZ86oWrVq1+zr0nBTpkwZhYaGau3aterRo4eki+Fj7dq1GjZsmMN1wsLCtHbtWg0fPtzWlpiYqLCwMIf9rVarrFarXVv58uWLovxi5efn53Y/WFcqCTVK1FnUSkKdJaFGiTqLWkmosyTUKLlvndc6Y3OJyy9LjRw5Uv3791fr1q3Vpk0bTZo0SWfPntXAgQMlSf369VP16tUVFxcnSXryySfVrl07TZgwQdHR0UpISNDWrVs1Y8YMV34MAADgJlwebnr37q0TJ05ozJgxSktLU4sWLbR69WrboOGUlBR5ePzvjvXw8HDNmzdPL7zwgp577jnVr19fy5YtU5MmTVz1EQAAgBtxebiRpGHDhhV4GWr9+vX52nr27KmePXsWc1WuYbVaNXbs2HyX0txJSahRos6iVhLqLAk1StRZ1EpCnSWhRqnk1HktFqMw91QBAACUEC5/QjEAAEBRItwAAABTIdwAAABTIdwAAABTIdxcpwEDBshiseixxx7Lt2zo0KGyWCwaMGCAXXtSUpI8PT0VHZ3/xWfJycmyWCy2qVKlSurYsaN27Nhh6xMREWHX59J0eQ2vvfaawsPD5ePjo/Lly7tVnZfqSE5OVmxsrEJCQuTt7S1/f39ZLBb169fvph6vK+uoW7euxo4dq+zs7Hz7k/J/5+fPn9eAAQPUtGlTeXh4uOw779atm2rWrCkvLy9VrVpVdevWdZvv3FENWVlZatGixVX7uLLO2rVrF/qzuPp4rlixQrfffrs8PT1lsVgUEhLiNjWuX7++wH8H/vnPf7pNnZL0888/q3v37goICJCfn5+qVKnidt/5pX9/atSoofLly6tSpUp65JFHlJmZ6Va/cxxJSUlRdHS0fHx8FBgYqKeffloXLlxw2LeoEG5uQHBwsBISEvTXX3/Z2s6fP6958+apZs2a+frPnDlT//73v7Vx40YdPXrU4Ta//PJLpaamas2aNcrMzFRUVJROnz5tWz548GClpqbaTW+88YZteXZ2tnr27KkhQ4a4VZ29evVSjRo1lJCQoF27dikvL0/vv/++tm/frtzcXHl4eGj79u039Xj99NNPtjr27t2riRMnavr06Xruuecc7uvKY5mbmytvb28NGTJEnp6e8vb2vinH8srvvH379lq4cKH279+vJUuW6MyZMypTpozLv/Mr67xk1KhRtsenBwUFuWWdr7zyisOfXXeqc8mSJXrooYc0cOBAde/eXUFBQTp+/Ljb1BgeHp5vWf369eXp6al169a5TZ2S1KVLF124cEHr1q3Ttm3bVKFCBVksFs2fP99t6jx37pwsFotOnDihDRs2aPXq1dq7d68eeught/udc7nc3FxFR0crOztbmzdv1n//+1/Fx8drzJgxDvsXGQPXpX///kb37t2NJk2aGHPnzrW1f/zxx0azZs2M7t27G/3797e1nzlzxihXrpzx008/Gb179zZee+01u+39/vvvhiRjx44dtrZvvvnGkGSsXr3aMAzDaNeunfHkk08Wqr7Zs2cb/v7+blPntepo3LixUa5cOZcdr0veeOMNIyQkxOGyq32GChUqGEFBQS79zi+5++67DUlG48aN3e5nc+XKlUbDhg2NvXv3GpKMiIgIl/9sXqlWrVrGxIkTbfPu8nfocjk5OUb16tWNDz/80G1rvFJ2drZhtVqNhg0bulWdJ06cMCQZGzdutLX16dPHkGTUrl3bbeoMCwszypQpY3fsfvjhB0OS0bBhQ5d/x5d+51xp5cqVhoeHh5GWlmZrmzZtmuHn52dkZWUVatvXgzM3N2jQoEGaPXu2bX7WrFm2V0dcbuHChWrYsKEaNGigvn37atasWdd8bfulMwEFXSYpiXUWVEdOTo7dQ6NcdbzS09NVsWJFpz9DvXr18vVzxWc4efKkfvvtN1WsWFGxsbFu8Z1fcuzYMQ0ePFgfffSRfHx8bO3u8rN5uXHjxqlSpUpq2bKl9uzZI8Mw3KrO7du368iRI/Lw8FDLli21YMECJSUlKSoqym1qvNJnn32mrKws1axZ062OZaVKldSgQQPNmTNHZ8+e1YULF7R//36VKVNGDz/8sNvUeekM9+XH7tI2WrZs6ZKaCiMpKUlNmza1vXVAkiIjI5WRkaG9e/cW2X7yKbbYZHKX/qd0/Phxw2q1GsnJyUZycrLh5eVlnDhxIl+KDg8PNyZNmmQYxsX/dQUEBBhfffWVbfmVKfrUqVPGfffdZ5QrV86WeNu1a2eULl3aKFu2rN10+f8sLrnyzI2r6yxVqpQRGhrqsI7vvvvOKFWqlBEWFuay42UYhvHLL78Yfn5+xowZMxwuv9qx7N27d74zNzfzM4waNcrw8fExJBkBAQFGVFSUy7/zy+vMy8szOnXqZLz66qt224yIiHCrOg3DMCZMmGB89dVXxq5du4xp06YZpUuXNurWretWdc6fP9+QZNSsWdNYvHix0aVLF6N69epGhQoV3KbGK0VFRRnVq1d3i3+Prqzz0KFDRmhoqGGxWAxPT0/D29vb7X42u3fvblgsFmPMmDGG1Wo1du3aZXTq1MmQZDz//PMu/44LOnMzePBgo2PHjnZtZ8+eNSQZK1euzNe/qLjF6xdKssqVKys6Olrx8fEyDEPR0dEKCAiw67N//35t2bJFS5culSSVKlVKvXv31syZMxUREWHXNzw8XB4eHjp79qzq1KmjBQsW2CXeBx98UM8//7zdOpcvd9c6R40apezs7Hx13H333erTp4+qVaumW265xWXH68iRI+rUqZN69uypwYMHO30svby8btqxdPQZnn76acXGxurgwYPq27evtm/froCAALf52Xz33Xd15swZjR49ulDH05V/h0aOHGn7c7NmzfTRRx8pKSlJfn5+blNnXl6eJOn555/X/fffr88//1ytWrVSUlKSGjVq5BY1Xu7w4cNas2aN2rZtK8m9vnPDMDR06FAFBgZq06ZN8vb2Vp8+ffTtt9/qwoULblNn+fLl1apVK73//vvKyspSq1at1KZNG1mtVvn6+rqkJndGuCkCgwYNsr0ba+rUqfmWz5w5UxcuXLANopQu/oWyWq2aMmWK3SvcFyxYoEaNGqlSpUoOR577+/s7vATi7nX6+fnZBqldqiM3N1e5ubm65557lJ6eflPqcOTo0aNq3769wsPDC/12+SuP5cKFC+2W3+zPEBAQoICAAN1yyy1q27atFi9erG+//dZtfjbXrVunpKSkfO+rWb9+vfr37+82dTpSuXJlGYah5ORkt6mzatWqkqRGjRrZ2jw8PFSnTh3Vrl1b8fHxLq/xcrNnz1alSpUUHBysjIwMSe7z7+a6deu0fPlynTp1Sn5+fpKkO+64Q4cPH9Z///tft6lTkmrUqKGtW7dq7ty5euGFF3T06FFlZ2erTp06SkpKcklN1xIUFKQtW7bYtR07dsy2rLgw5qYIdOrUSdnZ2crJyVFkZKTdsgsXLmjOnDmaMGGCdu7caZt27dqlatWqaf78+Xb9g4ODVbdu3QJvqTNDnZ06ddJff/2l1NRU3XnnnZo9e7YsFstNr0O6eMYmIiJCoaGhmj17tt0b6K/1GdzhWF5NVlaW29T5zjvvaNeuXbZ9rFy5UpJ022236bXXXnObOh05efKkJCkwMNBt6gwNDZXVatX+/fttbXl5eUpOTlb79u3dosZLDMPQ7Nmz1a9fP7u/X+5yLM+dOydJDv/u5+XluU2dl4uJiVFOTo4yMjLk5eWle++91+U1FSQsLEy7d+/W8ePHbW2JiYny8/OzC+dFjTM3RcDT01P79u2z/flyl/5HEBsba5eWJen+++/XzJkzHT5LoSDnzp1TWlqaXZvValWFChUkXXyewMmTJ5WSkqLc3FydPHlSZ86cUWZmpsqVK+eyOv/66y/l5ORIktLS0lS2bFk1bNhQb7/9tk6cOKHz58/rr7/+uqnH61KwqVWrlt566y2dOHHC1uda/6O49J3/9NNP2r17t06ePKmcnBydPHlS77777k37DN99952+//573XnnnapQoYJ+/fVXbdiwQT4+PgoLC3Obn80rb1MtV66cJKls2bKqUaOGJLlFnUlJSfruu+/Uvn17+fr6KikpSVu2bFFwcLDt75g71Onn56fHHntMY8eOVXBwsNLT07Vr1y5JUu/evdWnTx+X13jJunXr9Pvvv+vhhx/WuHHjbO3u8rMZFhamChUqqH///hozZoy8vb21detWnTt3TtHR0W5TpyT99ttv2r59u8qVK6cRI0boxRdf1Pjx4+2Ciat/5+zcuVOSVK9ePZUrV04dO3ZUo0aN9NBDD+mNN95QWlqaXnjhBQ0dOrR43zxebKN5TO7S4NKCXBrc1aVLF6Nz584O+3z33XeGJGPXrl0Ob8u7Urt27QxJ+abIyEi7uhz1uXwgmavqDAwMNAzj4sAzR8sl3dTjdbU6HHH0ndeqVcvh+jfrM/zwww9G+/btjYoVKxpWq9WoXbu2ccstt9j9TFzJVT+bl7t8QLE71blt2zbj9ttvN/z9/Q0vLy/j1ltvNVq1amV07drVreo0jIu3Vj/11FNGYGCgUapUKaNy5crGnj173KpGwzCMmJgYIzw83DAM9/138/vvvzc6duxoVKxY0fD19TUCAgKMO+64w63q7N+/v1GjRg2jYsWKRpkyZYxmzZoZc+bMcfmxK8zvnOTkZCMqKsrw9vY2AgICjKeeesrIyckpcL9FwWIY17g3DAAAoARhzA0AADAVwg1QgKioKJUrV87h9Prrr7u6PABAAbgsBRTgyJEjdu+VuVzFihWv+SRjAIBrEG4AAICpcFkKAACYCuEGAACYCuEGAACYCuEGACRZLBYtW7as0P1feukltWjR4qp9BgwYoB49etxQXQCcR7gB/uYGDBggi8Xi8JHsQ4cOlcVi0YABA/ItS0pKkqenp6Kjo/MtS05OlsVisU2VKlVSx44dtWPHDlufiIgIuz6XpoIeDd+1a1d16tTJ4bJNmzbJYrHohx9+KOSnzi81NVVRUVHXvT4A90G4AaDg4GAlJCTY3fp+/vx5zZs3L997oS6ZOXOm/v3vf2vjxo06evSowz5ffvmlUlNTtWbNGmVmZioqKsr2dnhJGjx4sFJTU+2mN954w+G2YmNjlZiYqMOHD+dbNnv2bLVu3VrNmjVz4lNflJ2dLeni+8SK9V03AG4awg0AtWrVSsHBwfrkk09sbZ988olq1qypli1b5uufmZmpBQsWaMiQIYqOjlZ8fLzD7VaqVElBQUFq3bq13nrrLR07dkzfffedbbmPj4+CgoLsJj8/P4fb6tKliypXrpxvX5mZmVq0aJFiY2P1559/KiYmRtWrV5ePj4+aNm2a7y3IERERGjZsmIYPH66AgADbm56vvCz1zDPP6JZbbpGPj4/q1KmjF1980fby18u9//77Cg4Olo+Pj3r16qX09HSH9UsX3zIdFxenkJAQeXt7q3nz5lq8eLFt+alTp/Tggw+qcuXK8vb2Vv369TV79uwCtwfAMcINAEnSoEGD7H6Rzpo1SwMHDnTYd+HChWrYsKEaNGigvn37atasWbrWI7O8vb0l/e9MibNKlSqlfv36KT4+3m5fixYtUm5urmJiYnT+/HmFhoZqxYoV2rNnjx555BE99NBD2rJli922/vvf/6pMmTL65ptvNH36dIf78/X1VXx8vH788UdNnjxZH3zwgSZOnGjX58CBA1q4cKE+//xzrV69Wjt27NDjjz9e4GeIi4vTnDlzNH36dO3du1cjRoxQ3759tWHDBknSiy++qB9//FGrVq3Svn37NG3aNAUEBFzX8QL+1or1tZwA3N6lNzUfP37csFqtRnJyspGcnGx4eXkZJ06csL1t+HLh4eHGpEmTDMMwjJycHCMgIMDuLcBXvnH41KlTxn333WeUK1fOSEtLMwzj4huHS5cubZQtW9Zumjt3boG17tu3L98bh++66y6jb9++Ba4THR1tPPXUU7b5du3aGS1btszXT5KxdOnSArfz5ptvGqGhobb5sWPHGp6ensbhw4dtbatWrTI8PDyM1NRUwzDs34J9/vx5w8fHx9i8ebPddmNjY42YmBjDMAyja9euxsCBAwusAUDhlHJxtgLgJipXrmy7xGQYhqKjox2eNdi/f7+2bNmipUuXSrp4RqV3796aOXOmIiIi7PqGh4fLw8NDZ8+eVZ06dbRgwQJVqVLFtvzBBx/U888/b7fO5cuv1LBhQ4WHh2vWrFmKiIjQgQMHtGnTJr3yyiuSpNzcXL3++utauHChjhw5ouzsbGVlZcnHx8duO6Ghodc8HgsWLNA777yjX3/9VZmZmbpw4UK+S2Y1a9ZU9erVbfNhYWHKy8vT/v37FRQUZNf3wIEDOnfunO6991679uzsbNulvyFDhuj+++/X9u3b1bFjR/Xo0UPh4eHXrBWAPcINAJtBgwZp2LBhkqSpU6c67DNz5kxduHBB1apVs7UZhiGr1aopU6bI39/f1r5gwQI1atRIlSpVUvny5fNty9/fX/Xq1XOqxtjYWP373//W1KlTNXv2bNWtW1ft2rWTJL355puaPHmyJk2apKZNm6ps2bIaPnx4vkthZcuWveo+kpKS9OCDD+rll19WZGSk/P39lZCQoAkTJjhV6+UyMzMlSStWrLALRJJsA5mjoqJ08OBBrVy5UomJibrnnns0dOhQvfXWW9e9X+DviDE3AGw6deqk7Oxs5eTk2AbaXu7ChQuaM2eOJkyYoJ07d9qmXbt2qVq1avkG7wYHB6tu3boOg8316tWrlzw8PDRv3jzNmTNHgwYNksVikSR988036t69u/r27avmzZurTp06+vnnn53ex+bNm1WrVi09//zzat26terXr6+DBw/m65eSkmJ3p9i3334rDw8PNWjQIF/fRo0ayWq1KiUlRfXq1bObgoODbf0qV66s/v37a+7cuZo0aZJmzJjhdP3A3x1nbgDYeHp6at++fbY/X2n58uU6deqUYmNj7c7QSNL999+vmTNnFvicGkfOnTuntLQ0uzar1aoKFSoUuE65cuXUu3dvjR49WhkZGXbP4Klfv74WL16szZs3q0KFCnr77bd17NgxNWrUqNA1XdpOSkqKEhISdNttt2nFihW2y3CX8/LyUv/+/fXWW28pIyNDTzzxhHr16pXvkpR0cYDyf/7zH40YMUJ5eXm68847lZ6erm+++UZ+fn7q37+/xowZo9DQUDVu3FhZWVlavny5br31VqdqB8CZGwBX8PPzK/B27JkzZ6pDhw75go10Mdxs3brVqQfpffDBB6patardFBMTc831YmNjderUKUVGRtpdHnvhhRfUqlUrRUZGKiIiQkFBQdf1hOBu3bppxIgRGjZsmFq0aKHNmzfrxRdfzNevXr16+uc//6nOnTurY8eOatasmd57770Ct/vqq6/qxRdfVFxcnG699VZ16tRJK1asUEhIiCSpTJkyGj16tJo1a6a2bdvK09NTCQkJTtcP/N1ZDOMa928CAACUIJy5AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApvL/s2EKz3IU2acAAAAASUVORK5CYII=", "text/plain": [ "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6NklEQVR4nO3deVRV9eL+8ecACogCOTCYqJSzlJqmoXlNozCH1JyHGwqpleZ0q6v3qmVZppU567VQ1ASHUktzyOg6hpqmpTknzoJDCqKJCvv3h1/Pr3MBZTjAYfd+rbXX6uzxOcTiPH72cCyGYRgCAAAwKafCDgAAAJCfKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsA/hLefvttWSwWXbx4Md+PtXbtWtWtW1dubm6yWCy6cuVKvh8TQNYoO0ARFxUVJYvFYjP5+PioefPmWrNmTYHnWblypdq2bStfX18VL15cpUuX1t/+9jd9/PHHSk5OLvA8Be3SpUvq0qWL3N3dNX36dC1YsEAeHh6Zrvvn/3dbtmzJsNwwDAUEBMhisahNmzaZ7uPKlSvWUnXgwIFM1+ndu3eG35G7k5ubW+7fLFBEuBR2AAD28c477ygwMFCGYSgxMVFRUVFq1aqVVq5cmeUHpT2lp6crIiJCUVFReuSRR/Tqq68qICBAV69eVVxcnEaOHKnVq1crNjY237MUph9//FFXr17Vu+++q5CQkGxt4+bmpujoaD355JM28zdu3KjTp0/L1dU1y22XLl0qi8UiPz8/LVy4UGPHjs10PVdXV3322WcZ5js7O2crI1CUUXYAk3juuefUoEED6+uIiAj5+voqJibGLmUnPT1dN2/ezHIkYMKECYqKitLQoUP18ccfy2KxWJcNHjxY586d0/z58/N0jKLg/PnzkiRvb+9sb9OqVSstXbpUU6ZMkYvL//+zHB0drfr169/z1Nvnn3+uVq1aqVKlSoqOjs6y7Li4uKhXr17ZzgSYCaexAJPy9vaWu7u7zYenJH300Udq3LixypQpI3d3d9WvX19ffPFFhu0tFosGDhyohQsXqnbt2nJ1ddXatWszPdb169c1fvx41a5dWx9++KFN0bnL399f//znP7N9jNzkrF69utzc3FS/fn1t2rQp06xXrlxR79695e3tLS8vL/Xp00fXr1/P/If4P5YuXar69evL3d1dZcuWVa9evXTmzBnr8qeeekphYWGSpMcff1wWi0W9e/e+7367d++uS5cuaf369dZ5N2/e1BdffKEePXpkud3Jkye1efNmdevWTd26dVN8fLx++OGHbL0X4K+EkR3AJJKSknTx4kUZhqHz589r6tSpSklJyfCv+cmTJ+v5559Xz549dfPmTS1atEidO3fWqlWr1Lp1a5t1v//+ey1ZskQDBw5U2bJlVbly5UyPvWXLFl25ckWvv/56jk+LZHWMnOTcuHGjFi9erEGDBsnV1VUzZsxQy5YttWPHDgUFBdms26VLFwUGBmrcuHH66aef9Nlnn8nHx0fjx4+/Z86oqCj16dNHjz/+uMaNG6fExERNnjxZW7du1e7du+Xt7a1///vfql69umbPnm09rfjwww/f92dQuXJlBQcHKyYmRs8995wkac2aNUpKSlK3bt00ZcqUTLeLiYmRh4eH2rRpI3d3dz388MNauHChGjdunOn6mY0QFS9eXJ6envfNCBRpBoAibe7cuYakDJOrq6sRFRWVYf3r16/bvL5586YRFBRktGjRwma+JMPJycn49ddf75th8uTJhiRjxYoVNvNv375tXLhwwWZKT0/P1jFyklOSsXPnTuu8EydOGG5ubkaHDh2s89566y1DkhEeHm6zfYcOHYwyZcrc8/3dvHnT8PHxMYKCgow//vjDOn/VqlWGJGP06NHWeXf/f/z444/33Of/rjtt2jSjVKlS1vfduXNno3nz5oZhGEalSpWM1q1bZ9j+kUceMXr27Gl9/a9//csoW7ascevWLZv1wsLCMv0dkWSEhobeNydQ1HEaCzCJ6dOna/369Vq/fr0+//xzNW/eXC+99JKWLVtms567u7v1vy9fvqykpCQ1bdpUP/30U4Z9NmvWTLVq1brvse/eZVWyZEmb+Xv37lW5cuVspkuXLmXrGDnJGRwcrPr161tfV6xYUe3atdO6deuUlpZms+7LL79s87pp06a6dOnSPe8U27lzp86fP69XX33V5nqi1q1bq0aNGvrmm2+y3Da7unTpoj/++EOrVq3S1atXtWrVqnuewvrll1+0d+9ede/e3Tqve/fuunjxotatW5dhfTc3N+vvx5+nDz74IM/ZAUfHaSzAJBo2bGhzgXL37t1Vr149DRw4UG3atFHx4sUlSatWrdLYsWO1Z88epaamWtfP7DqbwMDAbB27VKlSkqSUlBSb+VWqVLFehzJ//nwtWLAg28fISc6qVatmmFetWjVdv35dFy5ckJ+fn3V+xYoVbdZ74IEHJN0pVFmdzjlx4oQkqXr16hmW1ahRI9PbxnOqXLlyCgkJUXR0tK5fv660tDR16tQpy/U///xzeXh46KGHHtLRo0cl3Sk0lStX1sKFCzOc6nN2ds723WGA2TCyA5iUk5OTmjdvrnPnzunIkSOSpM2bN+v555+Xm5ubZsyYodWrV2v9+vXq0aOHDMPIsI8/j67cS40aNSRJ+/bts5lfsmRJhYSEKCQkRA899FCm22Z2jJzmzImsrinK637toUePHlqzZo1mzZql5557Lss7ugzDUExMjK5du6ZatWqpatWq1un48eP66quvMhRP4K+MkR3AxG7fvi3p/4+4fPnll3Jzc9O6detsnt0yd+7cPB2nadOm8vLy0qJFizRixAg5OeXt31E5zXm3zP3Z4cOHVaJECZUrVy5PWSSpUqVKkqRDhw6pRYsWNssOHTpkXZ5XHTp0UP/+/bVt2zYtXrw4y/XuPn/nnXfeUc2aNW2WXb58Wf369dOKFSu41Rz4P4zsACZ169YtffvttypevLj1A9HZ2VkWi8XmOpbjx49rxYoVeTpWiRIl9Oabb2rfvn0aPnx4pqMkORk5yWnOuLg4m2t5Tp06pa+++krPPvusXR6a16BBA/n4+GjWrFk2p9TWrFmjAwcOZDhllFslS5bUzJkz9fbbb6tt27ZZrnf3FNYbb7yhTp062Ux9+/ZV1apVtXDhQrtkAsyAkR3AJNasWaODBw9KuvNgu+joaB05ckTDhw+3XovSunVrTZw4US1btlSPHj10/vx5TZ8+XVWqVNEvv/ySp+MPHz5cBw4c0Icffqhvv/1WHTt2VIUKFXT58mX99NNPWrp0qXx8fLL1wMCc5gwKClJoaKjNreeSNGbMmDy9p7uKFSum8ePHq0+fPmrWrJm6d+9uvfW8cuXKGjp0qF2OI8n6nJ6spKam6ssvv9QzzzyT5c/y+eef1+TJk3X+/Hn5+PhIujPK9/nnn2e6focOHbL8SgvADCg7gEmMHj3a+t9ubm6qUaOGZs6cqf79+1vnt2jRQpGRkfrggw80ZMgQBQYGavz48Tp+/Hiey46Tk5MWLFigjh076tNPP9XUqVN1+fJllSxZUkFBQXrvvffUt2/fDHdsZSanOZs1a6bg4GCNGTNGJ0+eVK1atRQVFaVHH300T+/pz3r37q0SJUrogw8+0D//+U95eHioQ4cOGj9+fI6elpxX33zzja5cuXLPkZ+2bdvq448/1qJFizRo0CBJd0rS3//+90zXj4+Pp+zA1CyGI1yVBwC5ZLFYNGDAAE2bNq2wowBwUFyzAwAATI2yAwAATI2yAwAATI0LlAEUaVx2COB+GNkBAACmRtkBAACmxmksSenp6Tp79qxKlSqV6ZcMAgAAx2MYhq5evary5cvf82tqKDuSzp49q4CAgMKOAQAAcuHUqVOqUKFClsspO5JKlSol6c4P6+5j9QEAgGNLTk5WQECA9XM8K5QdyXrqytPTk7IDAEARc79LULhAGQAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmJpLYQeAg4q2FHaCjHoYhZ0AAFAEMbIDAABMjbIDAABMjbIDAABMjbIDAABMjQuUAQD5ixseUMgY2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZWqGVn06ZNatu2rcqXLy+LxaIVK1bYLDcMQ6NHj5a/v7/c3d0VEhKiI0eO2Kzz+++/q2fPnvL09JS3t7ciIiKUkpJSgO8CAAA4skItO9euXVOdOnU0ffr0TJdPmDBBU6ZM0axZs7R9+3Z5eHgoNDRUN27csK7Ts2dP/frrr1q/fr1WrVqlTZs2qV+/fgX1FgAAgIOzGIZhFHYISbJYLFq+fLnat28v6c6oTvny5fWPf/xDr7/+uiQpKSlJvr6+ioqKUrdu3XTgwAHVqlVLP/74oxo0aCBJWrt2rVq1aqXTp0+rfPny2Tp2cnKyvLy8lJSUJE9Pz3x5f0VOtKWwE2TUwyF+VQHkFH9PkE+y+/ntsNfsxMfHKyEhQSEhIdZ5Xl5eatSokeLi4iRJcXFx8vb2thYdSQoJCZGTk5O2b99e4JkBAIDjcSnsAFlJSEiQJPn6+trM9/X1tS5LSEiQj4+PzXIXFxeVLl3auk5mUlNTlZqaan2dnJxsr9gAAMDBOOzITn4aN26cvLy8rFNAQEBhRwIAAPnEYcuOn5+fJCkxMdFmfmJionWZn5+fzp8/b7P89u3b+v33363rZGbEiBFKSkqyTqdOnbJzegAA4CgctuwEBgbKz89PsbGx1nnJycnavn27goODJUnBwcG6cuWKdu3aZV3n+++/V3p6uho1apTlvl1dXeXp6WkzAQAAcyrUa3ZSUlJ09OhR6+v4+Hjt2bNHpUuXVsWKFTVkyBCNHTtWVatWVWBgoEaNGqXy5ctb79iqWbOmWrZsqb59+2rWrFm6deuWBg4cqG7dumX7TiwAAGBuhVp2du7cqebNm1tfDxs2TJIUFhamqKgovfnmm7p27Zr69eunK1eu6Mknn9TatWvl5uZm3WbhwoUaOHCgnn76aTk5Oaljx46aMmVKgb8XAADgmBzmOTuFiefsZILnYgCwF/6eIJ8U+efsAAAA2ANlBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmJpDl520tDSNGjVKgYGBcnd318MPP6x3331XhmFY1zEMQ6NHj5a/v7/c3d0VEhKiI0eOFGJqAADgSBy67IwfP14zZ87UtGnTdODAAY0fP14TJkzQ1KlTretMmDBBU6ZM0axZs7R9+3Z5eHgoNDRUN27cKMTkAADAUbgUdoB7+eGHH9SuXTu1bt1aklS5cmXFxMRox44dku6M6kyaNEkjR45Uu3btJEnz58+Xr6+vVqxYoW7duhVadgAA4BgcemSncePGio2N1eHDhyVJP//8s7Zs2aLnnntOkhQfH6+EhASFhIRYt/Hy8lKjRo0UFxeX5X5TU1OVnJxsMwEAAHNy6JGd4cOHKzk5WTVq1JCzs7PS0tL03nvvqWfPnpKkhIQESZKvr6/Ndr6+vtZlmRk3bpzGjBmTf8EBAIDDcOiRnSVLlmjhwoWKjo7WTz/9pHnz5umjjz7SvHnz8rTfESNGKCkpyTqdOnXKTokBAICjceiRnTfeeEPDhw+3XnvzyCOP6MSJExo3bpzCwsLk5+cnSUpMTJS/v791u8TERNWtWzfL/bq6usrV1TVfswMAAMfg0CM7169fl5OTbURnZ2elp6dLkgIDA+Xn56fY2Fjr8uTkZG3fvl3BwcEFmhUAADgmhx7Zadu2rd577z1VrFhRtWvX1u7duzVx4kSFh4dLkiwWi4YMGaKxY8eqatWqCgwM1KhRo1S+fHm1b9++cMMDAACH4NBlZ+rUqRo1apReffVVnT9/XuXLl1f//v01evRo6zpvvvmmrl27pn79+unKlSt68skntXbtWrm5uRVicgAA4Cgsxp8fR/wXlZycLC8vLyUlJcnT07Ow4ziGaEthJ8iox1/+VxUomvh7gnyS3c9vh75mBwAAIK8oOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNTyXHbS0tK0Z88eXb582R55AAAA7CrHZWfIkCGKjIyUdKfoNGvWTI899pgCAgK0YcMGe+cDAADIkxyXnS+++EJ16tSRJK1cuVLx8fE6ePCghg4dqn//+992DwgAAJAXOS47Fy9elJ+fnyRp9erV6ty5s6pVq6bw8HDt3bvX7gEBAADyIsdlx9fXV/v371daWprWrl2rZ555RpJ0/fp1OTs72z0gAABAXrjkdIM+ffqoS5cu8vf3l8ViUUhIiCRp+/btqlGjht0DAgAA5EWOy87bb7+toKAgnTp1Sp07d5arq6skydnZWcOHD7d7QAAAgLzIcdmRpE6dOkmSbty4YZ0XFhZmn0QAAAB2lONrdtLS0vTuu+/qwQcfVMmSJXXs2DFJ0qhRo6y3pAMAADiKHJed9957T1FRUZowYYKKFy9unR8UFKTPPvvMruEAAADyKsdlZ/78+Zo9e7Z69uxpc/dVnTp1dPDgQbuGAwAAyKscl50zZ86oSpUqGeanp6fr1q1bdgkFAABgLzkuO7Vq1dLmzZszzP/iiy9Ur149u4QCAACwlxzfjTV69GiFhYXpzJkzSk9P17Jly3To0CHNnz9fq1atyo+MAAAAuZbjkZ127dpp5cqV+u677+Th4aHRo0frwIEDWrlypfVpygAAAI4iV8/Zadq0qdavX2/vLAAAAHaX45EdAACAoiTHIztOTk6yWCxZLk9LS8tTIAAAAHvKcdlZvny5zetbt25p9+7dmjdvnsaMGWO3YAAAAPaQ47LTrl27DPM6deqk2rVra/HixYqIiLBLMAAAAHuw2zU7TzzxhGJjY+21OwAAALuwS9n5448/NGXKFD344IP22B0AAIDd5Pg01gMPPGBzgbJhGLp69apKlCihzz//3K7hAAAA8irHZeeTTz6xKTtOTk4qV66cGjVqpAceeMCu4QAAAPIqx2Wnd+/e+RADAAAgf2Sr7Pzyyy/Z3uGjjz6a6zAAAAD2lq2yU7duXVksFhmGcc/1LBYLDxUEAAAOJVtlJz4+Pr9zAAAA5ItslZ1KlSrldw4AAIB8kevn7Ozfv19r167V119/bTPZ25kzZ9SrVy+VKVNG7u7ueuSRR7Rz507rcsMwNHr0aPn7+8vd3V0hISE6cuSI3XMAAICiKcd3Yx07dkwdOnTQ3r17ba7juXs7uj2v2bl8+bKaNGmi5s2ba82aNSpXrpyOHDlic4v7hAkTNGXKFM2bN0+BgYEaNWqUQkNDtX//frm5udktCwAAKJpyPLIzePBgBQYG6vz58ypRooR+/fVXbdq0SQ0aNNCGDRvsGm78+PEKCAjQ3Llz1bBhQwUGBurZZ5/Vww8/LOnOqM6kSZM0cuRItWvXTo8++qjmz5+vs2fPasWKFXbNAgAAiqYcl524uDi98847Klu2rJycnOTk5KQnn3xS48aN06BBg+wa7uuvv1aDBg3UuXNn+fj4qF69evr000+ty+Pj45WQkKCQkBDrPC8vLzVq1EhxcXFZ7jc1NVXJyck2EwAAMKccl520tDSVKlVKklS2bFmdPXtW0p2LmA8dOmTXcMeOHdPMmTNVtWpVrVu3Tq+88ooGDRqkefPmSZISEhIkSb6+vjbb+fr6WpdlZty4cfLy8rJOAQEBds0NAAAcR46v2QkKCtLPP/+swMBANWrUSBMmTFDx4sU1e/ZsPfTQQ3YNl56ergYNGuj999+XJNWrV0/79u3TrFmzFBYWluv9jhgxQsOGDbO+Tk5OpvAAAGBSOR7ZGTlypNLT0yVJ77zzjuLj49W0aVOtXr1aU6ZMsWs4f39/1apVy2ZezZo1dfLkSUmSn5+fJCkxMdFmncTEROuyzLi6usrT09NmAgAA5pTtkZ0GDRropZdeUo8ePazloEqVKjp48KB+//33DN+Gbg9NmjTJcGrs8OHD1uf+BAYGys/PT7Gxsapbt66kO6M027dv1yuvvGLXLAAAoGjK9shOnTp19Oabb8rf318vvviizZ1XpUuXtnvRkaShQ4dq27Ztev/993X06FFFR0dr9uzZGjBggKQ7t7sPGTJEY8eO1ddff629e/fqxRdfVPny5dW+fXu75wEAAEVPtstOZGSkEhISNH36dJ08eVJPP/20qlSpovfff19nzpzJl3CPP/64li9frpiYGAUFBendd9/VpEmT1LNnT+s6b775pl577TX169dPjz/+uFJSUrR27VqesQMAACRJFuN+3+6Zhd9++01z587VggULdPbsWT377LOKiIjQCy+8YO+M+S45OVleXl5KSkri+p27ou0/UpdnPXL1qwqgsPH3BPkku5/fuf66iIcfflhjx47V8ePHFRMTo23btqlz58653R0AAEC+yPGt53+2YcMGzZ07V19++aVcXFzUt29fe+UCAACwixyXndOnTysqKkpRUVE6duyYmjZtqhkzZqhz585yd3fPj4wAAAC5lu2ys2TJEs2ZM0exsbHy8fFRWFiYwsPDVaVKlfzMBwAAkCfZLju9evVS69attXz5crVq1UpOTrm+3AcAAKDAZLvsnD59Wj4+PvmZBQAAwO6yPTxD0QEAAEUR56IAAICpUXYAAICpUXYAAICpZbvs7NixQ2lpaVkuT01N1ZIlS+wSCgAAwF6yXXaCg4N16dIl62tPT08dO3bM+vrKlSvq3r27fdMBAADkUbbLzv9+X2hm3x+ay+8UBQAAyDd2vWbHYnHAb7YFAAB/aVygDAAATC1HXwS6f/9+JSQkSLpzyurgwYNKSUmRJF28eNH+6QAAAPIoR2Xn6aeftrkup02bNpLunL4yDIPTWAAAwOFku+zEx8fnZw4AAIB8ke2yU6lSpfuus2/fvjyFAQAAsLc8X6B89epVzZ49Ww0bNlSdOnXskQkAAMBucl12Nm3apLCwMPn7++ujjz5SixYttG3bNntmAwAAyLMcXaCckJCgqKgoRUZGKjk5WV26dFFqaqpWrFihWrVq5VdGAACAXMv2yE7btm1VvXp1/fLLL5o0aZLOnj2rqVOn5mc2AACAPMv2yM6aNWs0aNAgvfLKK6patWp+ZgIAALCbbI/sbNmyRVevXlX9+vXVqFEjTZs2jQcJAgAAh5ftsvPEE0/o008/1blz59S/f38tWrRI5cuXV3p6utavX6+rV6/mZ04AAIBcyfHdWB4eHgoPD9eWLVu0d+9e/eMf/9AHH3wgHx8fPf/88/mREQAAINfy9Jyd6tWra8KECTp9+rRiYmLslQkAAMBu7PKt587Ozmrfvr2+/vpre+wOAADAbrJ9N1Z4ePh917FYLIqMjMxTIAAAAHvKdtmJiopSpUqVVK9ePZtvPgcAAHBk2S47r7zyimJiYhQfH68+ffqoV69eKl26dH5mAwAAyLNsX7Mzffp0nTt3Tm+++aZWrlypgIAAdenSRevWrWOkBwAAOKwcXaDs6uqq7t27a/369dq/f79q166tV199VZUrV1ZKSkp+ZQQAAMi1XN+N5eTkJIvFIsMwlJaWZs9MAAAAdpOjspOamqqYmBg988wzqlatmvbu3atp06bp5MmTKlmyZH5lBAAAyLVsX6D86quvatGiRQoICFB4eLhiYmJUtmzZ/MwGAACQZ9kuO7NmzVLFihX10EMPaePGjdq4cWOm6y1btsxu4QAAAPIq22XnxRdflMViyc8sAAAAdpejhwoCAAAUNXb5biwAAABHRdkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmVqTKzgcffCCLxaIhQ4ZY5924cUMDBgxQmTJlVLJkSXXs2FGJiYmFFxIAADiUIlN2fvzxR/3nP//Ro48+ajN/6NChWrlypZYuXaqNGzfq7NmzeuGFFwopJQAAcDRFouykpKSoZ8+e+vTTT/XAAw9Y5yclJSkyMlITJ05UixYtVL9+fc2dO1c//PCDtm3bVoiJAQCAoygSZWfAgAFq3bq1QkJCbObv2rVLt27dsplfo0YNVaxYUXFxcVnuLzU1VcnJyTYTAAAwJ5fCDnA/ixYt0k8//aQff/wxw7KEhAQVL15c3t7eNvN9fX2VkJCQ5T7HjRunMWPG2DsqAABwQA49snPq1CkNHjxYCxculJubm932O2LECCUlJVmnU6dO2W3fAADAsTh02dm1a5fOnz+vxx57TC4uLnJxcdHGjRs1ZcoUubi4yNfXVzdv3tSVK1dstktMTJSfn1+W+3V1dZWnp6fNBAAAzMmhT2M9/fTT2rt3r828Pn36qEaNGvrnP/+pgIAAFStWTLGxserYsaMk6dChQzp58qSCg4MLIzIAAHAwDl12SpUqpaCgIJt5Hh4eKlOmjHV+RESEhg0bptKlS8vT01OvvfaagoOD9cQTTxRGZAAA4GAcuuxkxyeffCInJyd17NhRqampCg0N1YwZMwo7FgAAcBAWwzCMwg5R2JKTk+Xl5aWkpCSu37kr2lLYCTLq8Zf/VQWKJv6eIJ9k9/PboS9QBgAAyCvKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDWHLjvjxo3T448/rlKlSsnHx0ft27fXoUOHbNa5ceOGBgwYoDJlyqhkyZLq2LGjEhMTCykxAABwNA5ddjZu3KgBAwZo27ZtWr9+vW7duqVnn31W165ds64zdOhQrVy5UkuXLtXGjRt19uxZvfDCC4WYGgAAOBKLYRhGYYfIrgsXLsjHx0cbN27U3/72NyUlJalcuXKKjo5Wp06dJEkHDx5UzZo1FRcXpyeeeCJb+01OTpaXl5eSkpLk6emZn2+h6Ii2FHaCjHoUmV9VAH/G3xPkk+x+fjv0yM7/SkpKkiSVLl1akrRr1y7dunVLISEh1nVq1KihihUrKi4uLsv9pKamKjk52WYCAADmVGTKTnp6uoYMGaImTZooKChIkpSQkKDixYvL29vbZl1fX18lJCRkua9x48bJy8vLOgUEBORndAAAUIiKTNkZMGCA9u3bp0WLFuV5XyNGjFBSUpJ1OnXqlB0SAgAAR+RS2AGyY+DAgVq1apU2bdqkChUqWOf7+fnp5s2bunLlis3oTmJiovz8/LLcn6urq1xdXfMzMgAAcBAOPbJjGIYGDhyo5cuX6/vvv1dgYKDN8vr166tYsWKKjY21zjt06JBOnjyp4ODggo4LAAAckEOP7AwYMEDR0dH66quvVKpUKet1OF5eXnJ3d5eXl5ciIiI0bNgwlS5dWp6ennrttdcUHByc7TuxAACAuTl02Zk5c6Yk6amnnrKZP3fuXPXu3VuS9Mknn8jJyUkdO3ZUamqqQkNDNWPGjAJOCgAAHJVDl53sPALIzc1N06dP1/Tp0wsgEQAAKGoc+podAACAvKLsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU3Mp7AAAAMCOoi2FnSCjHkahHp6RHQAAYGqM7AD46+FfvsBfCiM7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1FwKOwAAAA4p2lLYCTLqYRR2giLJNGVn+vTp+vDDD5WQkKA6depo6tSpatiwYWHHArKnqP5RLaq5iyp+3kCumKLsLF68WMOGDdOsWbPUqFEjTZo0SaGhoTp06JB8fHwKOx4KEh8GAID/YYqyM3HiRPXt21d9+vSRJM2aNUvffPON5syZo+HDhxduOD58AQAoVEX+AuWbN29q165dCgkJsc5zcnJSSEiI4uLiCjEZAABwBEV+ZOfixYtKS0uTr6+vzXxfX18dPHgw021SU1OVmppqfZ2UlCRJSk5Otn/A6/bfZZ5l532S237IXbDIXbDIXbDMnDtXu72zX8O4zxkLo4g7c+aMIcn44YcfbOa/8cYbRsOGDTPd5q233jIkMTExMTExMZlgOnXq1D27QpEf2SlbtqycnZ2VmJhoMz8xMVF+fn6ZbjNixAgNGzbM+jo9PV2///67ypQpI4vFAa+x0Z32GhAQoFOnTsnT07Ow42QbuQsWuQsWuQsWuQtWUchtGIauXr2q8uXL33O9Il92ihcvrvr16ys2Nlbt27eXdKe8xMbGauDAgZlu4+rqKldXV5t53t7e+ZzUPjw9PR32l+5eyF2wyF2wyF2wyF2wHD23l5fXfdcp8mVHkoYNG6awsDA1aNBADRs21KRJk3Tt2jXr3VkAAOCvyxRlp2vXrrpw4YJGjx6thIQE1a1bV2vXrs1w0TIAAPjrMUXZkaSBAwdmedrKDFxdXfXWW29lOP3m6MhdsMhdsMhdsMhdsIpq7sxYDON+92sBAAAUXUX+oYIAAAD3QtkBAACmRtkBAACmRtkBAACmRtnJZ71795bFYtHLL7+cYdmAAQNksVjUu3dvm/lxcXFydnZW69atM2xz/PhxWSyWTKdt27ZJks6dO6cePXqoWrVqcnJy0pAhQ4pE7mXLlumZZ55RuXLl5OnpqeDgYK1bt87hc2/ZskVNmjRRmTJl5O7urho1auiTTz7JUe7Cyv5nW7dulYuLi+rWrevwuTds2JDp8oSEBIfNLN35Xr5///vfqlSpklxdXVW5cmXNmTMnW5kLM/vdY/7vVLt2bYfNLEkLFy5UnTp1VKJECfn7+ys8PFyXLl3KVubCzj59+nTVrFlT7u7uql69uubPn+9QGbP7ObN06VLVqFFDbm5ueuSRR7R69eos30d+ouwUgICAAC1atEh//PGHdd6NGzcUHR2tihUrZlg/MjJSr732mjZt2qSzZ89mus/vvvtO586ds5nq168v6c4f1HLlymnkyJGqU6dOkcm9adMmPfPMM1q9erV27dql5s2bq23bttq9e7dD5/bw8NDAgQO1adMmHThwQCNHjtTIkSM1e/bsHOUujOx3XblyRS+++KKefvrpHGcuzNyHDh2yWe7j4+PQmbt06aLY2FhFRkbq0KFDiomJUfXq1bOdubCyT5482Wb+qVOnVLp0aXXu3NlhM2/dulUvvviiIiIi9Ouvv2rp0qXasWOH+vbtm+3MhZV95syZGjFihN5++239+uuvGjNmjAYMGKCVK1c6TMbsfM788MMP6t69uyIiIrR79261b99e7du31759+7J8H/nFNM/ZcWSPPfaYfvvtNy1btkw9e/aUdGcUo2LFigoMDLRZNyUlRYsXL9bOnTuVkJCgqKgo/etf/8qwzzJlymT53V+VK1fW5MmTJSnH/2oszNyTJk2yef3+++/rq6++0sqVK1WvXj2HzV2vXj2bfJUrV9ayZcu0efNm9evXL9u5CyP7XS+//LJ69OghZ2dnrVixIkeZCzO3j49Prr/qpaAzr127Vhs3btSxY8dUunRpSXd+V4pCdi8vL5tH8q9YsUKXL1/O0VPqCzpzXFycKleurEGDBkmSAgMD1b9/f40fPz7bmQsr+4IFC9S/f3917dpVkvTQQw/pxx9/1Pjx49W2bVuHyJidz5nJkyerZcuWeuONNyRJ7777rtavX69p06Zp1qxZmW6TXxjZKSDh4eGaO3eu9fWcOXMy/UOxZMkS1ahRQ9WrV1evXr00Z86c+391fT4qzNzp6em6evWq9YOhqOTevXu3fvjhBzVr1ixX2xd09rlz5+rYsWN66623cpW3sHJLUt26deXv769nnnlGW7dudejMX3/9tRo0aKAJEybowQcfVLVq1fT666/b/EvcUbP/r8jISIWEhKhSpUoOmzk4OFinTp3S6tWrZRiGEhMT9cUXX6hVq1Y52k9hZE9NTZWbm5vNPHd3d+3YsUO3bt1yiIzZERcXp5CQEJt5oaGhiouLs/ux7oeyU0B69eqlLVu26MSJEzpx4oS2bt2qXr16ZVgvMjLSOr9ly5ZKSkrSxo0bM6zXuHFjlSxZ0mYyW+6PPvpIKSkp6tKlS5HIXaFCBbm6uqpBgwYaMGCAXnrppRznLujsR44c0fDhw/X555/LxSVvA70Fmdvf31+zZs3Sl19+qS+//FIBAQF66qmn9NNPPzls5mPHjmnLli3at2+fli9frkmTJumLL77Qq6++mqPMhZH9z86ePas1a9bk6ve7IDM3adJECxcuVNeuXVW8eHH5+fnJy8tL06dPz3Hugs4eGhqqzz77TLt27ZJhGNq5c6c+++wz3bp1SxcvXnSIjNmRkJCQ4WubfH19s31tnT1xGquAlCtXTq1bt1ZUVJQMw1Dr1q1VtmxZm3UOHTqkHTt2aPny5ZIkFxcXde3aVZGRkXrqqads1l28eLFq1qxp2tzR0dEaM2aMvvrqqxxdh1GYuTdv3qyUlBRt27ZNw4cPV5UqVdS9e3eHzZ6WlqYePXpozJgxqlatWo5zFlZuSapevbrNtS6NGzfWb7/9pk8++UQLFixwyMzp6emyWCxauHCh9ZTQxIkT1alTJ82YMUPu7u7Zzl3Q2f9s3rx58vb2Vvv27XOUt6Az79+/X4MHD9bo0aMVGhqqc+fO6Y033tDLL7+syMhIh84+atQoJSQk6IknnpBhGPL19VVYWJgmTJggJ6esxyiK6udMQaDsFKDw8HDr93dl9q+LyMhI3b59W+XLl7fOMwxDrq6umjZtms0584CAAFWpUiX/Q6vgcy9atEgvvfSSli5dmmEI1JFz3z0v/sgjjygxMVFvv/12rspOQWW/evWqdu7cqd27d1uPlZ6eLsMw5OLiom+//VYtWrRwuNxZadiwobZs2ZKjvAWZ2d/fXw8++KDN+jVr1pRhGDp9+rSqVq3qsNn/vO2cOXP097//XcWLF89x3oLMPG7cODVp0sR6vcijjz4qDw8PNW3aVGPHjpW/v7/DZnd3d9ecOXP0n//8R4mJifL399fs2bNVqlQplStXziEyZoefn58SExNt5iUmJt73Wrz8wGmsAtSyZUvdvHlTt27dUmhoqM2y27dva/78+fr444+1Z88e6/Tzzz+rfPnyiomJKaTUBZs7JiZGffr0UUxMTKa3RDpq7v+Vnp6u1NRUh87u6empvXv32uzj5ZdfVvXq1bVnzx41atTIIXNnZc+ePbn6ACuozE2aNNHZs2eVkpJinXf48GE5OTmpQoUKOc5dkNnv2rhxo44ePaqIiIhc5S3IzNevX88wCuLs7CxJub4+paB/3sWKFVOFChXk7OysRYsWqU2bNvcc2SmMjPcSHBys2NhYm3nr169XcHCwXY+THYzsFCBnZ2cdOHDA+t9/tmrVKl2+fFkRERE2zVqSOnbsqMjISJtnKFy6dCnDeU9vb2/rRW179uyRdOeq+wsXLmjPnj0qXry4atWq5bC5o6OjFRYWpsmTJ6tRo0bW9dzd3TPs25FyT58+XRUrVlSNGjUk3bmF/qOPPrLeBZIbBZU9KCjIZr6Pj0+m8x0t96RJkxQYGKjatWvrxo0b+uyzz/T999/r22+/ddjMPXr00Lvvvqs+ffpozJgxunjxot544w2Fh4fn+BRWQWe/KzIyUo0aNcr170dBZm7btq369u2rmTNnWk9jDRkyRA0bNrQZ1XDE7IcPH9aOHTvUqFEjXb58WRMnTtS+ffs0b948h8ko3f9zZvDgwWrWrJk+/vhjtW7dWosWLdLOnTtz9ViOPDOQr8LCwox27dplubxdu3ZGWFiY0aZNG6NVq1aZrrN9+3ZDkvHzzz8b8fHxhqRMp5iYGOs2mS2vVKmSQ+du1qxZpsvDwsIcOveUKVOM2rVrGyVKlDA8PT2NevXqGTNmzDDS0tKynbuwsv+vt956y6hTp47D5x4/frzx8MMPG25ubkbp0qWNp556yvj+++8dOrNhGMaBAweMkJAQw93d3ahQoYIxbNgw4/r169nOXZjZr1y5Yri7uxuzZ8/OUd7CzDxlyhSjVq1ahru7u+Hv72/07NnTOH36tMNn379/v1G3bl3D3d3d8PT0NNq1a2ccPHjQoTIaRvY+Z5YsWWJUq1bNKF68uFG7dm3jm2++yTJnfrIYRiHe1wwAAJDPuGYHAACYGmUHAACYGmUHAACYGmUHAACYGmUHAACYGmUHAACYGmUHAACYGmUHACRFRUXJ29s7R9tUrlxZkyZNuuc6FotFK1asyHUuAHlH2QFwX71795bFYrF5lPxdAwYMkMViUe/evTMsi4uLk7Ozc6bfc3b8+HFZLJZMp23btmVYPzExUcWKFdOiRYsyzRgREaHHHnss52/u/3Tt2lWHDx/O9fYAHBdlB0C2BAQEaNGiRfrjjz+s827cuKHo6GhVrFgx020iIyP12muvadOmTTp79mym63z33Xc6d+6czVS/fv0M6/n6+qp169aaM2dOhmXXrl3TkiVLcv0Flbdu3ZK7u7t8fHxytT0Ax0bZAZAtjz32mAICArRs2TLrvGXLlqlixYqqV69ehvVTUlK0ePFivfLKK2rdurWioqIy3W+ZMmXk5+dnMxUrVizTdSMiIhQbG6uTJ0/azF+6dKlu376tnj17au3atXryySfl7e2tMmXKqE2bNvrtt9+s694dUVq8eLGaNWsmNzc3LVy4MMNprN9++03t2rWTr6+vSpYsqccff1zfffddhkxXr15V9+7d5eHhoQcffFDTp0+/149Rp06dUpcuXeTt7a3SpUurXbt2On78uHX5hg0b1LBhQ3l4eMjb21tNmjTRiRMn7rlPAPdG2QGQbeHh4Zo7d6719Zw5c9SnT59M112yZIlq1Kih6tWrq1evXpozZ47y+lV8rVq1kq+vb4biNHfuXL3wwgvy9vbWtWvXNGzYMO3cuVOxsbFycnJShw4dlJ6ebrPN8OHDNXjwYB04cEChoaEZjpWSkqJWrVopNjZWu3fvVsuWLdW2bdsMRevDDz9UnTp1tHv3bus+169fn2n+W7duKTQ0VKVKldLmzZu1detWlSxZUi1bttTNmzd1+/ZttW/fXs2aNdMvv/yiuLg49evXTxaLJU8/N+Avr1C+fhRAkXL3W5XPnz9vuLq6GsePHzeOHz9uuLm5GRcuXLB+q/KfNW7c2Jg0aZJhGIZx69Yto2zZssZ///tf6/K736zs7u5ueHh42Ez3Mnz4cCMwMNBIT083DMMwjh49algsFuO7777LdP0LFy4Ykoy9e/faHPdutrvmzp1reHl53fPYtWvXNqZOnWp9XalSJaNly5Y263Tt2tV47rnnrK8lGcuXLzcMwzAWLFhgVK9e3ZrdMAwjNTXVcHd3N9atW2dcunTJkGRs2LDhnjkA5AwjOwCyrVy5ctZTUnPnzlXr1q1VtmzZDOsdOnRIO3bsUPfu3SVJLi4u6tq1qyIjIzOsu3jxYu3Zs8dmupfw8HDFx8frv//9r6Q7ozqVK1dWixYtJElHjhxR9+7d9dBDD8nT01OVK1eWpAwjMg0aNLjncVJSUvT666+rZs2a8vb2VsmSJXXgwIEM+wkODs7w+sCBA5nu8+eff9bRo0dVqlQplSxZUiVLllTp0qV148YN/fbbbypdurR69+6t0NBQtW3bVpMnT9a5c+fumRPA/bkUdgAARUt4eLgGDhwoSVlenxIZGanbt2+rfPny1nmGYcjV1VXTpk2Tl5eXdX5AQICqVKmS7eNXrVpVTZs21dy5c/XUU09p/vz56tu3r/VUT9u2bVWpUiV9+umnKl++vNLT0xUUFKSbN2/a7MfDw+Oex3n99de1fv16ffTRR6pSpYrc3d3VqVOnDPvJiZSUFNWvX18LFy7MsKxcuXKS7pS3QYMGae3atVq8eLFGjhyp9evX64knnsj1cYG/OsoOgBy5e32JxWLJ9FqX27dva/78+fr444/17LPP2ixr3769YmJiMr2FPSciIiL0yiuv6Pnnn9eZM2est71funRJhw4d0qeffqqmTZtKkrZs2ZKrY2zdulW9e/dWhw4dJN0pKn++kPiu/71Nftu2bapZs2am+3zssce0ePFi+fj4yNPTM8tj16tXT/Xq1dOIESMUHBys6Ohoyg6QB5zGApAjzs7OOnDggPbv3y9nZ+cMy1etWqXLly8rIiJCQUFBNlPHjh0znMq6dOmSEhISbKYbN27cM0Pnzp1VrFgx9e/fX88++6wCAgIkSQ888IDKlCmj2bNn6+jRo/r+++81bNiwXL3PqlWratmyZdqzZ49+/vln9ejRI8NFztKdUjRhwgQdPnxY06dP19KlSzV48OBM99mzZ0+VLVtW7dq10+bNmxUfH68NGzZo0KBBOn36tOLj4zVixAjFxcXpxIkT+vbbb3XkyJEsyxOA7KHsAMgxT0/PLEcmIiMjFRISYnOq6q6OHTtq586d+uWXX6zzQkJC5O/vbzPd74nDJUqUULdu3XT58mWFh4db5zs5OWnRokXatWuXgoKCNHToUH344Ye5eo8TJ07UAw88oMaNG6tt27YKDQ3N9KGF//jHP7Rz507Vq1dPY8eO1cSJEzMd8bqbe9OmTapYsaJeeOEF1axZUxEREbpx44Y8PT1VokQJHTx4UB07dlS1atXUr18/DRgwQP3798/VewBwh8Uw8ngvKAAAgANjZAcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJja/wPwsxxbql1RiQAAAABJRU5ErkJggg==\n" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } - ] - }, - { - "cell_type": "code", + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "# Assuming you have a list of MAPE values from mape1 to mape10\n", - "mape_values = [mape1, mape2, mape3, mape4, mape5, mape6, mape7, mape8, mape9, mape10]\n", + "mape_values = [mape1, mape2, mape2_1, mape3, mape4, mape5, mape6, mape7, mape8, mape8_1, mape9, mape10]\n", "\n", "# List of corresponding labels for each MAPE value\n", - "labels = ['MAPE1', 'MAPE2', 'MAPE3', 'MAPE4', 'MAPE5', 'MAPE6', 'MAPE7', 'MAPE8', 'MAPE9', 'MAPE10']\n", + "labels = ['MAPE1', 'MAPE2', 'MAPE2_1', 'MAPE3', 'MAPE4', 'MAPE5', 'MAPE6', 'MAPE7', 'MAPE8', 'MAPE2_1', 'MAPE9', 'MAPE10']\n", "\n", "# Plotting the bar graph\n", - "plt.bar(labels, mape_values, color='purple')\n", + "plt.bar(labels, mape_values)\n", "plt.xlabel('MAPE Variables')\n", "plt.ylabel('MAPE Values')\n", "plt.title('Bar Graph of MAPE')\n", "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "bCF5ZehcARcw", + "outputId": "ed3103b5-2636-48c5-82ba-60f8b3dfd729" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Length of labels: 12\n", + "Length of mape_values: 10\n" + ] + } ], + "source": [ + "print(\"Length of labels:\", len(labels))\n", + "print(\"Length of mape_values:\", len(mape_values))" + ] + }, + { + "cell_type": "code", + "execution_count": 97, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 472 }, - "id": "_c4Pe76fDNM-", - "outputId": "0e3d2f74-9042-4e2d-92c6-5ce61e967bd4" + "id": "ZDPV0M5rDTi6", + "outputId": "2b5b43fb-f025-41ff-dc55-6193541132e0" }, - "execution_count": 120, "outputs": [ { - "output_type": "display_data", "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAHHCAYAAABdm0mZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQuUlEQVR4nO3deXhMZ/8G8Hsmy0wiO9mQCKJ2QWyhKEJQKdqSl5BQpWqpSjdqSdBKVW2trRRRr1YssdcSabRoWkopbUWoilYSQSUiss7z+8Mv583IhJmYmMlxf65rrsucOct3nvPkzO2sCiGEABEREZHMKE1dABEREVFlYMghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEisxEVFQWFQoEbN25U+rL279+Pli1bQq1WQ6FQ4Pbt25W+TGMYMWIEfHx8DJrm8OHDUCgUOHz4cKXURGSuGHKInoCYmBgoFAqtl5ubG7p164Z9+/Y98Xp2796N4OBguLu7w9raGi4uLujSpQsWLFiA7OzsJ17Pk3bz5k0MHjwYNjY2WLZsGTZs2IBq1arpHPfBdadWq/HMM89gwoQJyMjIeMKVE5EhLE1dANHTZPbs2ahbty6EEMjIyEBMTAz69u2L3bt3o1+/fpW+fI1Gg1GjRiEmJgbNmzfHuHHj4OXlhTt37iApKQnTp0/HN998g4SEhEqvxZROnDiBO3fuYM6cOQgMDNRrmpJ1l5eXh6NHj2LFihX45ptvcO7cOdja2lZyxf+zevVqaDQag6bp0qUL7t27B2tr60qqisg8MeQQPUF9+vRBmzZtpPejRo2Cu7s7vv76a6OEHI1Gg4KCAqjVap2ff/zxx4iJicHkyZOxYMECKBQK6bNJkyYhLS0NX3755WMtoyq4fv06AMDJyUnvaUqvu1dffRXVq1fHwoULsXPnTgwZMkTnNHfv3i13D1FFWVlZGTyNUqms0uuLqKJ4uIrIhJycnGBjYwNLS+3/b3zyySfo2LEjqlevDhsbG/j7+2Pr1q1lplcoFJgwYQI2btyIpk2bQqVSYf/+/TqXlZubi3nz5qFp06aYP3++VsAp4enpiffee0/vZVSkzoYNG0KtVsPf3x/ff/+9zlpv376NESNGwMnJCY6Ojhg5ciRyc3N1N+IDtmzZAn9/f9jY2KBGjRoYNmwY/vnnH+nz5557DuHh4QCAtm3bQqFQYMSIEXrNu7Tu3bsDAC5fvgzg/rkydnZ2uHTpEvr27Qt7e3uEhoYCuB8MFy9ejKZNm0KtVsPd3R2vvfYa/v333zLz3bdvH7p27Qp7e3s4ODigbdu2+Oqrr6TPdZ2Ts2nTJvj7+0vTNG/eHEuWLJE+L++cnEe1Venv9c8//2DAgAGws7ODq6sr3n77bRQXFxvcbkRPEkMO0ROUlZWFGzduIDMzE7/99htef/115OTkYNiwYVrjLVmyBK1atcLs2bMxd+5cWFpaYtCgQdi7d2+ZeX777beYPHkyQkJCsGTJknJPSj169Chu376NIUOGwMLCwqC6y1uGIXV+9913ePPNNzFs2DDMnj0bN2/eRO/evXHu3Lky4w4ePBh37txBdHQ0Bg8ejJiYGMyaNeuRdcbExGDw4MGwsLBAdHQ0Ro8ejbi4ODz77LPSicXTpk3DmDFjANw/BLVhwwa89tprBrUHAFy6dAkAUL16dWlYUVERgoKC4Obmhk8++QQvvfQSAOC1117DO++8g06dOmHJkiUYOXIkNm7ciKCgIBQWFmrV//zzz+PWrVuYOnUqPvroI7Rs2bLc4AoA8fHxGDJkCJydnTFv3jx89NFHeO6553Ds2LHHbqsSxcXFCAoKQvXq1fHJJ5+ga9euWLBgAVatWmVosxE9WYKIKt26desEgDIvlUolYmJiyoyfm5ur9b6goEA0a9ZMdO/eXWs4AKFUKsVvv/32yBqWLFkiAIgdO3ZoDS8qKhKZmZlaL41Go9cyDKkTgPj555+lYVeuXBFqtVoMHDhQGhYZGSkAiFdeeUVr+oEDB4rq1as/9PsVFBQINzc30axZM3Hv3j1p+J49ewQAMXPmTGlYyfo4ceLEQ+dZetxDhw6JzMxMcfXqVbFp0yZRvXp1YWNjI/7++28hhBDh4eECgJgyZYrW9EeOHBEAxMaNG7WG79+/X2v47du3hb29vWjfvr1W/UIIrfURHh4u6tSpI72fNGmScHBwEEVFReV+h8TERAFAJCYmGtxWJd9r9uzZWvNs1aqV8Pf3L3eZROaAe3KInqBly5YhPj4e8fHx+O9//4tu3brh1VdfRVxcnNZ4NjY20r///fdfZGVloXPnzjh16lSZeXbt2hVNmjR55LJLrpqys7PTGn727Fm4urpqvW7evKnXMgypMyAgAP7+/tJ7b29v9O/fHwcOHChz2GPs2LFa7zt37oybN28+9Mqvn3/+GdevX8e4ceO0zj95/vnn0ahRI517lwwRGBgIV1dXeHl54T//+Q/s7Oywfft21KpVS2u8119/Xev9li1b4OjoiJ49e+LGjRvSy9/fH3Z2dkhMTARwf4/MnTt3MGXKlDLnz+g6tFjCyckJd+/eRXx8vN7fpSJtpWud/Pnnn3ovk8gUeOIx0RPUrl07rROPhwwZglatWmHChAno16+fdPXLnj178MEHH+D06dPIz8+Xxtf1Y1e3bl29lm1vbw8AyMnJ0Rru6+sr/UB++eWX2LBhg97LMKTOBg0alBn2zDPPIDc3F5mZmfDw8JCGe3t7a43n7OwM4H6QcnBw0FnLlStXAAANGzYs81mjRo1w9OhRndPpa9myZXjmmWdgaWkJd3d3NGzYEEql9v8TLS0tUbt2ba1hKSkpyMrKgpubm875lpwEXXL4q1mzZgbVNW7cOGzevBl9+vRBrVq10KtXLwwePBi9e/cudxpD20qtVsPV1VVrmLOzs85ziojMCUMOkQkplUp069YNS5YsQUpKCpo2bYojR47ghRdeQJcuXbB8+XJ4enrCysoK69at0zoBtUTpvSkP06hRIwDAuXPn0L9/f2m4nZ2ddBl1eUFA1zIMrdMQ5Z0zJIR4rPk+jgcDqi4qlapM8NFoNHBzc8PGjRt1TvNgeDCUm5sbTp8+jQMHDmDfvn3Yt28f1q1bh7CwMKxfv/6x5l3C0HO4iMwFQw6RiRUVFQH43x6Wbdu2Qa1W48CBA1CpVNJ469ate6zldO7cGY6Ojti0aROmTp1a5sfYUIbWmZKSUmbYhQsXYGtr+9g/9ABQp04dAEBycrJ05VOJ5ORk6fMnrX79+jh06BA6der00EBav359APdDqK+vr0HLsLa2RnBwMIKDg6HRaDBu3Dh8/vnnmDFjhs55mWtbERkbz8khMqHCwkIcPHgQ1tbWaNy4MYD7/2tWKBRa56n89ddf2LFjx2Mty9bWFu+++y7OnTuHKVOm6NwrYsieEkPrTEpK0jpX5+rVq9i5cyd69epllD0Fbdq0gZubG1auXKl16Gzfvn34448/8Pzzzz/2Mipi8ODBKC4uxpw5c8p8VlRUJF3J1KtXL9jb2yM6Ohp5eXla4z1svTx4/pRSqUSLFi0AQKsdSjPXtiIyNu7JIXqC9u3bh/PnzwO4fy7GV199hZSUFEyZMkU61+T555/HwoUL0bt3bwwdOhTXr1/HsmXL4Ovri19//fWxlj9lyhT88ccfmD9/Pg4ePIiXXnoJtWvXxr///otTp05hy5YtcHNz0+vGcYbW2axZMwQFBeGNN96ASqXC8uXLAUCvS8P1YWVlhXnz5mHkyJHo2rUrhgwZgoyMDOmS98mTJxtlOYbq2rUrXnvtNURHR+P06dPo1asXrKyskJKSgi1btmDJkiV4+eWX4eDggEWLFuHVV19F27ZtMXToUDg7O+PMmTPIzc0t99DTq6++ilu3bqF79+6oXbs2rly5gs8++wwtW7aUgvODzLWtiIzOtBd3ET0ddF1CrlarRcuWLcWKFSu0LhEWQog1a9aIBg0aCJVKJRo1aiTWrVsnXV5dGgAxfvx4g+vZvn276Nu3r3B1dRWWlpbCyclJPPvss2L+/Pni9u3bei/D0Dr/+9//SuO3atVKuqS5RMm0mZmZWsNL2u/y5cuP/G6xsbGiVatWQqVSCRcXFxEaGipd5v3g/Ay5hPxR44aHh4tq1aqV+/mqVauEv7+/sLGxEfb29qJ58+bi3XffFdeuXdMab9euXaJjx47CxsZGODg4iHbt2omvv/5aazmlLyHfunWr6NWrl3BzcxPW1tbC29tbvPbaayItLU0a58FLyEvo01blfS9d65nI3CiEMOGZfET0VFAoFBg/fjyWLl1q6lKI6CnCc3KIiIhIlhhyiIiISJYYcoiIiEiWeHUVEVU6nvpHRKbAPTlEREQkSww5REREJEtP3eEqjUaDa9euwd7e/qFP9iUiIiLzIYTAnTt3ULNmTb0fS/PUhZxr167By8vL1GUQERFRBVy9ehW1a9fWa9ynLuTY29sDuN9IJbfRJyIiIvOWnZ0NLy8v6XdcH09dyCk5ROXg4MCQQ0REVMUYcqoJTzwmIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWTJpyPn+++8RHByMmjVrQqFQYMeOHY+c5vDhw2jdujVUKhV8fX0RExNT6XUSERFR1WPSkHP37l34+flh2bJleo1/+fJlPP/88+jWrRtOnz6NN998E6+++ioOHDhQyZUSERFRVWPSB3T26dMHffr00Xv8lStXom7duliwYAEAoHHjxjh69CgWLVqEoKCgyiqTiIiIqqAqdU5OUlISAgMDtYYFBQUhKSnJRBURERGRuTLpnhxDpaenw93dXWuYu7s7srOzce/ePdjY2JSZJj8/H/n5+dL77OzsSq+TiIiITK9K7cmpiOjoaDg6OkovLy8vU5dEpSkUpnsRUdXCbQUZqEqFHA8PD2RkZGgNy8jIgIODg869OAAwdepUZGVlSa+rV68+iVLND8MEEdHThdv9qnW4KiAgAN98843WsPj4eAQEBJQ7jUqlgkqlquzSiMhcmXKDK4Tplk1Ept2Tk5OTg9OnT+P06dMA7l8ifvr0aaSmpgK4vxcmLCxMGn/s2LH4888/8e677+L8+fNYvnw5Nm/ejMmTJ5uifCIiIjJjJt2T8/PPP6Nbt27S+4iICABAeHg4YmJikJaWJgUeAKhbty727t2LyZMnY8mSJahduza++OILXj5ORGRMptr7xT1fZGQKIZ6uXpWdnQ1HR0dkZWXBwcHB1OU8Oea6y95c6yL5YB8znLmGHHOty1zJrO9X5Pe7Sp14TERERKQvhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlS1MXQEREVKXJ7GnfcsI9OURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkS5amLoCIDKRQmGa5Qjz8c3Oti4ieWtyTQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJsBEhGZgqlungjwBor01OCeHCIiIpIl7skxNt7anoiIyCxwTw4RERHJEvfkEOnC8yWIiKo87skhIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZMnnIWbZsGXx8fKBWq9G+fXscP378oeMvXrwYDRs2hI2NDby8vDB58mTk5eU9oWqJiIioqjBpyImNjUVERAQiIyNx6tQp+Pn5ISgoCNevX9c5/ldffYUpU6YgMjISf/zxB9asWYPY2Fi8//77T7hyIiIiMncmDTkLFy7E6NGjMXLkSDRp0gQrV66Era0t1q5dq3P8H374AZ06dcLQoUPh4+ODXr16YciQIY/c+0NERERPH5OFnIKCApw8eRKBgYH/K0apRGBgIJKSknRO07FjR5w8eVIKNX/++Se++eYb9O3bt9zl5OfnIzs7W+tFRERE8mdpqgXfuHEDxcXFcHd31xru7u6O8+fP65xm6NChuHHjBp599lkIIVBUVISxY8c+9HBVdHQ0Zs2aZdTaiYiIyPyZ/MRjQxw+fBhz587F8uXLcerUKcTFxWHv3r2YM2dOudNMnToVWVlZ0uvq1atPsGIiIiIyFZPtyalRowYsLCyQkZGhNTwjIwMeHh46p5kxYwaGDx+OV199FQDQvHlz3L17F2PGjMG0adOgVJbNbCqVCiqVyvhfgIiIiMyayfbkWFtbw9/fHwkJCdIwjUaDhIQEBAQE6JwmNze3TJCxsLAAAAghKq9YIiIiqnJMticHACIiIhAeHo42bdqgXbt2WLx4Me7evYuRI0cCAMLCwlCrVi1ER0cDAIKDg7Fw4UK0atUK7du3x8WLFzFjxgwEBwdLYYeIiIgIMHHICQkJQWZmJmbOnIn09HS0bNkS+/fvl05GTk1N1dpzM336dCgUCkyfPh3//PMPXF1dERwcjA8//NBUX4GIiIjMlEI8Zcd5srOz4ejoiKysLDg4OBh/AQqF8eepj0etRlPVBTy8NtZVlrmuS9ZlOPYxw7Auw1XVPlYBFfn9rlJXVxERERHpiyGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGTJ4JCzf/9+HD16VHq/bNkytGzZEkOHDsW///5r1OKIiIiIKsrgkPPOO+8gOzsbAHD27Fm89dZb6Nu3Ly5fvoyIiAijF0hERERUEZaGTnD58mU0adIEALBt2zb069cPc+fOxalTp9C3b1+jF0hERERUEQbvybG2tkZubi4A4NChQ+jVqxcAwMXFRdrDQ0RERGRqBu/JefbZZxEREYFOnTrh+PHjiI2NBQBcuHABtWvXNnqBRERERBVh8J6cpUuXwtLSElu3bsWKFStQq1YtAMC+ffvQu3dvoxdIREREVBEKIYQwdRFPUnZ2NhwdHZGVlQUHBwfjL0ChMP489fGo1WiquoCH18a6yjLXdcm6DMc+ZhjWZbiq2scqoCK/3xW6T86lS5cwffp0DBkyBNevXwdwf0/Ob7/9VpHZERERERmdwSHnu+++Q/PmzfHTTz8hLi4OOTk5AIAzZ84gMjLS6AUSERERVYTBIWfKlCn44IMPEB8fD2tra2l49+7d8eOPPxq1OCIiIqKKMjjknD17FgMHDiwz3M3NDTdu3DBKUURERESPy+CQ4+TkhLS0tDLDf/nlF+lKKyIiIiJTMzjk/Oc//8F7772H9PR0KBQKaDQaHDt2DG+//TbCwsIqo0YiIiIigxkccubOnYtGjRrBy8sLOTk5aNKkCbp06YKOHTti+vTplVEjERERkcEqfJ+c1NRUnDt3Djk5OWjVqhUaNGhg7NoqBe+TYwJV8T4O5loXwD72IHOtC2AfMxTrMlxV7WMVUJHfb4Mf61DC29sb3t7eFZ2ciIiIqFIZHHJeeeWVh36+du3aChdDREREZCwGh5x///1X631hYSHOnTuH27dvo3v37kYrjIiIiOhxGBxytm/fXmaYRqPB66+/jvr16xulKCIiIqLHVaFnV5WZiVKJiIgILFq0yBizIyIiInpsRgk5wP2HdhYVFRlrdkRERESPxeDDVREREVrvhRBIS0vD3r17ER4ebrTCiIiIiB6HwSHnl19+0XqvVCrh6uqKBQsWPPLKKyIiIqInxeCQk5iYaNQCli1bhvnz5yM9PR1+fn747LPP0K5du3LHv337NqZNm4a4uDjcunULderUweLFi9G3b1+j1kVERERVW4VvBmgMsbGxiIiIwMqVK9G+fXssXrwYQUFBSE5OhpubW5nxCwoK0LNnT7i5uWHr1q2oVasWrly5AicnpydfPBEREZk1vR7r0KpVKyj0vD30qVOn9F54+/bt0bZtWyxduhTA/UvRvby8MHHiREyZMqXM+CtXrsT8+fNx/vx5WFlZ6b2c0vhYBxOoircdN9e6APaxB5lrXQD7mKFYl+Gqah+rgEp7rMOAAQMepy6dCgoKcPLkSUydOlUaplQqERgYiKSkJJ3T7Nq1CwEBARg/fjx27twJV1dXDB06FO+99x4sLCx0TpOfn4/8/HzpfXZ2tnG/CBEREZklvUJOZGSk0Rd848YNFBcXw93dXWu4u7s7zp8/r3OaP//8E99++y1CQ0PxzTff4OLFixg3bhwKCwvLrTE6OhqzZs0yev1ERERk3ox2n5wnQaPRwM3NDatWrYK/vz9CQkIwbdo0rFy5stxppk6diqysLOl19erVJ1gxERERmYrBJx4XFxdj0aJF2Lx5M1JTU1FQUKD1+a1bt/SaT40aNWBhYYGMjAyt4RkZGfDw8NA5jaenJ6ysrLQOTTVu3Bjp6ekoKCiAtbV1mWlUKhVUKpVeNREREZF8GLwnZ9asWVi4cCFCQkKQlZWFiIgIvPjii1AqlYiKitJ7PtbW1vD390dCQoI0TKPRICEhAQEBATqn6dSpEy5evAiNRiMNu3DhAjw9PXUGHCIiInqKCQPVq1dP7NmzRwghhJ2dnbh48aIQQoglS5aIIUOGGDSvTZs2CZVKJWJiYsTvv/8uxowZI5ycnER6eroQQojhw4eLKVOmSOOnpqYKe3t7MWHCBJGcnCz27Nkj3NzcxAcffKD3MrOysgQAkZWVZVCtert/TvmTf5lrXY+qjXVVnXXJutjHWJd51VWV+1gFVOT32+DDVenp6WjevDkAwM7ODllZWQCAfv36YcaMGQbNKyQkBJmZmZg5cybS09PRsmVL7N+/XzoZOTU1FUrl/3Y2eXl54cCBA5g8eTJatGiBWrVqYdKkSXjvvfcM/RpEREQkcwaHnNq1ayMtLQ3e3t6oX78+Dh48iNatW+PEiRMVOvdlwoQJmDBhgs7PDh8+XGZYQEAAfvzxR4OXQ0RERE8Xg8/JGThwoHQezcSJEzFjxgw0aNAAYWFhfHYVERERmQ297ngMAEuXLsWwYcPKPEIhKSkJSUlJaNCgAYKDgyujRqPiHY9N4GG1sa6yzHVdsi7DsY8ZhnUZrqr2sQqoyO+33iHH0dERhYWFGDhwIEaNGoXu3bs/VrGmwpBjAlXxj9Bc6wLYxx5krnUB7GOGYl2Gq6p9rAIq8vut9+Gq9PR0rFy5EteuXUPPnj1Rt25dzJkzhzfXIyIiIrOkd8ixsbFBWFgYEhMTkZKSguHDh2PNmjWoW7cuevfujS1btqCwsLAyayUiIiLSW4Ue61CvXj3Mnj0bly9fxr59+1C9enWMGDECtWrVMnZ9RERERBXyWM+uUigUsLS0hEKhgBCCe3KIiIjIbFQo5Fy9ehWzZ89GvXr10LNnT1y7dg2rV69GWlqasesjIiIiqhC9bwZYUFCAuLg4rF27Ft9++y08PT0RHh6OV155BfXq1avMGomIiIgMpnfI8fDwQG5uLvr164fdu3cjKChI65ELREREROZE75Azffp0DB8+HK6urpVZDxEREZFR6B1yIiIiKrMOIiIiIqPi8SYiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJb1PPC5RXFyMmJgYJCQk4Pr169BoNFqff/vtt0YrjoiIiKiiDA45kyZNQkxMDJ5//nk0a9YMClM+yp2IiIioHAaHnE2bNmHz5s3o27dvZdRDREREZBQGn5NjbW0NX1/fyqiFiIiIyGgMDjlvvfUWlixZAiFEZdRDREREZBQGH646evQoEhMTsW/fPjRt2hRWVlZan8fFxRmtOCIiIqKKMjjkODk5YeDAgZVRCxEREZHRGBxy1q1bVxl1EBERERmVwSGnRGZmJpKTkwEADRs25NPJiYiIyKwYfOLx3bt38corr8DT0xNdunRBly5dULNmTYwaNQq5ubmVUSMRERGRwQwOOREREfjuu++we/du3L59G7dv38bOnTvx3Xff4a233qqMGomIiIgMphAGXgteo0YNbN26Fc8995zW8MTERAwePBiZmZnGrM/osrOz4ejoiKysLDg4OBh/Aaa6A/SjVqMp70z9sNpYV1nmui5Zl+HYxwzDugxXVftYBVTk99vgPTm5ublwd3cvM9zNzY2Hq4iIiMhsGBxyAgICEBkZiby8PGnYvXv3MGvWLAQEBBi1OCIiIqKKMvjqqiVLliAoKAi1a9eGn58fAODMmTNQq9U4cOCA0QskIiIiqgiDQ06zZs2QkpKCjRs34vz58wCAIUOGIDQ0FDY2NkYvkIiIiKgiKnSfHFtbW4wePdrYtRAREREZjV4hZ9euXejTpw+srKywa9euh477wgsvGKUwIiIioseh1yXkSqUS6enpcHNzg1JZ/rnKCoUCxcXFRi3Q2HgJuQlUxUsczbUugH3sQeZaF8A+ZijWZbiq2scqoCK/33rtydFoNDr/TURERGSuDL6EXJfbt28bYzZERERERmNwyJk3bx5iY2Ol94MGDYKLiwtq1aqFM2fOGLU4IiIioooyOOSsXLkSXl5eAID4+HgcOnQI+/fvR58+ffDOO+8YvUAiIiKiijD4EvL09HQp5OzZsweDBw9Gr1694OPjg/bt2xu9QCIiIqKKMHhPjrOzM65evQoA2L9/PwIDAwEAQgizv7KKiIiInh4G78l58cUXMXToUDRo0AA3b95Enz59AAC//PILfH19jV4gERERUUUYHHIWLVoEHx8fXL16FR9//DHs7OwAAGlpaRg3bpzRCyQiIiKqCL1uBignvBmgCVTFm1WZa10A+9iDzLUugH3MUKzLcFW1j1VApd0MkI91ICIioqqGj3UwNv5Po6yq+D8Nc60LYB97kLnWBbCPGYp1Ga6q9rEK4GMdiIiIiP6fUR7rQERERGRuDA45b7zxBj799NMyw5cuXYo333zTGDURERERPTaDQ862bdvQqVOnMsM7duyIrVu3GqUoIiIiosdlcMi5efMmHB0dywx3cHDAjRs3jFIUERER0eMyOOT4+vpi//79ZYbv27cP9erVM0pRRERERI/L4DseR0REYMKECcjMzET37t0BAAkJCViwYAEWL15s7PqIiIiIKsTgkPPKK68gPz8fH374IebMmQMA8PHxwYoVKxAWFmb0AomIiIgq4rEe65CZmQkbGxvp+VVVAW8GaAJV8WZV5loXwD72IHOtC2AfMxTrMlxV7WMVUJHf7wrdJ6eoqAiHDh1CXFwcSjLStWvXkJOTU5HZERERERmdwYerrly5gt69eyM1NRX5+fno2bMn7O3tMW/ePOTn52PlypWVUScRERGRQQzekzNp0iS0adMG//77L2xsbKThAwcOREJCglGLIyIiIqoog/fkHDlyBD/88AOsra21hvv4+OCff/4xWmFEREREj8PgPTkajUbnk8b//vtv2NvbG6UoIiIiosdlcMjp1auX1v1wFAoFcnJyEBkZib59+1aoiGXLlsHHxwdqtRrt27fH8ePH9Zpu06ZNUCgUGDBgQIWWS0RERPJlcMj55JNPcOzYMTRp0gR5eXkYOnSodKhq3rx5BhcQGxuLiIgIREZG4tSpU/Dz80NQUBCuX7/+0On++usvvP322+jcubPByyQiIiL5q9B9coqKihAbG4szZ84gJycHrVu3RmhoqNaJyPpq37492rZti6VLlwK4fzjMy8sLEydOxJQpU3ROU1xcjC5duuCVV17BkSNHcPv2bezYsUOv5fE+OSZQFe/jYK51AexjDzLXugD2MUOxLsNV1T5WARX5/TboxOPCwkI0atQIe/bsQWhoKEJDQytUaImCggKcPHkSU6dOlYYplUoEBgYiKSmp3Olmz54NNzc3jBo1CkeOHHnoMvLz85Gfny+9z87OfqyaiYiIqGow6HCVlZUV8vLyjLbwGzduoLi4GO7u7lrD3d3dkZ6ernOao0ePYs2aNVi9erVey4iOjoajo6P08vLyeuy6iYiIyPwZfE7O+PHjMW/ePBQVFVVGPQ91584dDB8+HKtXr0aNGjX0mmbq1KnIysqSXlevXq3kKomIiMgcGHyfnBMnTiAhIQEHDx5E8+bNUa1aNa3P4+Li9J5XjRo1YGFhgYyMDK3hGRkZ8PDwKDP+pUuX8NdffyE4OFgaptFoAACWlpZITk5G/fr1taZRqVRQqVR610RERETyYHDIcXJywksvvWSUhVtbW8Pf3x8JCQnSZeAajQYJCQmYMGFCmfEbNWqEs2fPag2bPn067ty5gyVLlvBQFBEREUkMDjnr1q0zagEREREIDw9HmzZt0K5dOyxevBh3797FyJEjAQBhYWGoVasWoqOjoVar0axZM63pnZycAKDMcCIiInq66R1yNBoN5s+fj127dqGgoAA9evRAZGRkhS4bLy0kJASZmZmYOXMm0tPT0bJlS+zfv186GTk1NRVKZYUelk5ERERPMb3vkzNnzhxERUUhMDAQNjY2OHDgAIYMGYK1a9dWdo1GxfvkmEBVvI+DudYFsI89yFzrAtjHDMW6DFdV+1gFVOT3W+9dJF9++SWWL1+OAwcOYMeOHdi9ezc2btwonfhLREREZE70Djmpqalaz6YKDAyEQqHAtWvXKqUwIiIiosehd8gpKiqCWq3WGmZlZYXCwkKjF0VERET0uPQ+8VgIgREjRmjdcyYvLw9jx47VuleOIffJISIiIqoseoec8PDwMsOGDRtm1GKIiIiIjEXvkGPs++MQERERVSbegIaIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZMksQs6yZcvg4+MDtVqN9u3b4/jx4+WOu3r1anTu3BnOzs5wdnZGYGDgQ8cnIiKip5PJQ05sbCwiIiIQGRmJU6dOwc/PD0FBQbh+/brO8Q8fPowhQ4YgMTERSUlJ8PLyQq9evfDPP/884cqJiIjInCmEEMKUBbRv3x5t27bF0qVLAQAajQZeXl6YOHEipkyZ8sjpi4uL4ezsjKVLlyIsLOyR42dnZ8PR0RFZWVlwcHB47PrLUCiMP099PGo1mqou4OG1sa6yzHVdsi7DsY8ZhnUZrqr2sQqoyO+3SffkFBQU4OTJkwgMDJSGKZVKBAYGIikpSa955ObmorCwEC4uLjo/z8/PR3Z2ttaLiIiI5M+kIefGjRsoLi6Gu7u71nB3d3ekp6frNY/33nsPNWvW1ApKpUVHR8PR0VF6eXl5PXbdREREZP5Mfk7O4/joo4+wadMmbN++HWq1Wuc4U6dORVZWlvS6evXqE66SiIiITMHSlAuvUaMGLCwskJGRoTU8IyMDHh4eD532k08+wUcffYRDhw6hRYsW5Y6nUqmgUqmMUi8RERFVHSbdk2NtbQ1/f38kJCRIwzQaDRISEhAQEFDudB9//DHmzJmD/fv3o02bNk+iVCIiIqpiTLonBwAiIiIQHh6ONm3aoF27dli8eDHu3r2LkSNHAgDCwsJQq1YtREdHAwDmzZuHmTNn4quvvoKPj4907o6dnR3s7OxM9j2IiIjIvJg85ISEhCAzMxMzZ85Eeno6WrZsif3790snI6empkKp/N8OpxUrVqCgoAAvv/yy1nwiIyMRFRX1JEsnIiIiM2by++Q8abxPjglUxfs4mGtdAPvYg8y1LoB9zFCsy3BVtY9VQJW7Tw4RERFRZWHIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlkyi5CzbNky+Pj4QK1Wo3379jh+/PhDx9+yZQsaNWoEtVqN5s2b45tvvnlClRIREVFVYfKQExsbi4iICERGRuLUqVPw8/NDUFAQrl+/rnP8H374AUOGDMGoUaPwyy+/YMCAARgwYADOnTv3hCsnIiIic6YQQghTFtC+fXu0bdsWS5cuBQBoNBp4eXlh4sSJmDJlSpnxQ0JCcPfuXezZs0ca1qFDB7Rs2RIrV6585PKys7Ph6OiIrKwsODg4GO+LlFAojD9PfTxqNZqqLuDhtbGussx1XbIuw7GPGYZ1Ga6q9rEKqMjvt0n35BQUFODkyZMIDAyUhimVSgQGBiIpKUnnNElJSVrjA0BQUFC54xMREdHTydKUC79x4waKi4vh7u6uNdzd3R3nz5/XOU16errO8dPT03WOn5+fj/z8fOl9VlYWgPuJUFbM+fuYa22syzCsy3DmWhvrMoy51gWYb22VUFfJ77YhB6BMGnKehOjoaMyaNavMcC8vLxNUU4kcHU1dQfnMtTbWZRjWZThzrY11GcZc6wLMt7ZKrOvOnTtw1HP+Jg05NWrUgIWFBTIyMrSGZ2RkwMPDQ+c0Hh4eBo0/depURERESO81Gg1u3bqF6tWrQ2HK45UPyM7OhpeXF65evVo55wpVkLnWBZhvbazLMKzLcOZaG+syDOsyjBACd+7cQc2aNfWexqQhx9raGv7+/khISMCAAQMA3A8hCQkJmDBhgs5pAgICkJCQgDfffFMaFh8fj4CAAJ3jq1QqqFQqrWFOTk7GKL9SODg4mFWnKmGudQHmWxvrMgzrMpy51sa6DMO69KfvHpwSJj9cFRERgfDwcLRp0wbt2rXD4sWLcffuXYwcORIAEBYWhlq1aiE6OhoAMGnSJHTt2hULFizA888/j02bNuHnn3/GqlWrTPk1iIiIyMyYPOSEhIQgMzMTM2fORHp6Olq2bIn9+/dLJxenpqZCqfzfRWAdO3bEV199henTp+P9999HgwYNsGPHDjRr1sxUX4GIiIjMkMlDDgBMmDCh3MNThw8fLjNs0KBBGDRoUCVX9WSpVCpERkaWObRmauZaF2C+tbEuw7Auw5lrbazLMKyr8pn8ZoBERERElcHkj3UgIiIiqgwMOURERCRLDDlEREQkSww5JqJQKLBjxw6jj/u4TFmXubbJo5hr3azLMOZal6HLexrazFzb41HMpW5zqeOJECTCw8MFAAFAWFlZifr164tZs2aJwsLCSltmWlqayMvLM1ld27ZtEz179hQuLi4CgPjll1+06tJn2fp8B0OkpqaKiIgI0axZM2Frays8PT3F8OHDxT///FNm3PKWXdE2KygoEO+++65eyy6vlg8++EAEBAQIGxsb4ejoaJS69BEZGSkaNmwobG1thZOTk+jRo4f48ccfTd7HSnvttdcEALFo0SKT11V63iWvoKAgvftzZdb2+++/i+DgYOHg4CBsbW1FmzZtxJUrV0zeZg+2V8lrxowZYtiwYXot15jbi5J53blzR4wfP17UqlVLqNVq0bhxY7FixQq9lvs47aXPch9W9+effy66du0q7O3ttdqzdB1Xr1416vZVCCHS09NFeHi4cHNzE2q1WgQFBYkLFy7oVbMxlff7U9q9e/fEuHHjhIuLi6hWrZp48cUXRXp6usHLYsgR9zt77969RVpamvjrr7/E8uXLhUKhEHPnzi0zbn5+vizq+vLLL8WsWbPE6tWrdXYyU7TJ7du3RWBgoIiNjRXnz58XSUlJol27dsLf31/veVS0bmMse+bMmWLhwoUiIiJCZ8iprPbcuHGjiI+PF5cuXRLnzp0To0aNEg4ODuL69euPnPZJrOe4uDjh5+cnatasKRYtWqTXNJVZV+l5l7xu3bpVoemNWdvFixeFi4uLeOedd8SpU6fExYsXxc6dO0VGRoZJ6xJCaLVVWlqaWLt2rVAoFOLSpUsm3X6OHj1a1K9fXyQmJorLly+Lzz//XFhYWIidO3c+ctrHqftxliuEEIsWLRLR0dEiOjpaABA9evSo9PbTaDSiQ4cOonPnzuL48ePi/PnzYsyYMcLb21vk5ORUeL4V8ajfHyGEGDt2rPDy8hIJCQni559/Fh06dBAdO3Y0eFkMOeJ+Z+/fv7/WsJ49e4oOHTpIn33wwQfC09NT+Pj4CCHu73UYNGiQcHR0FM7OzuKFF14Qly9f1prHmjVrRJMmTYS1tbXw8PAQ48ePlz4DILZv3y6EuN9xx48fLzw8PIRKpRLe3t5i7ty50rJLj9uzZ0/RokUL4eHhIZRKpbCxsRG2traiTp06Ul116tQRlpaWwsbGRqhUKuHo6CjGjRsnCgoKytTl6uqq1clKlhUeHi6Cg4O16lKr1cLLy0urLmdnZ6lNDh48KM1PoVCIOnXqiHPnzmm1c8uWLYW7u7s0TrNmzaS6dLVJ9erVBQBRq1YtrT/60uMKIcSvv/4qunXrJpRKpbCyshKjR48Wd+7ckdrM1dVVeHl5iaZNmwo7OzuhUCiEvb29KCgoKHddHj9+XAAQV65cMWhddu/eXSgUiie+LkvqysrKkv5naA59TKlUiiFDhog6deqIRYsWmbwuR0dHoVQqK/Q3WdKPH+x/AQEBwsHBQep/bdq0ER4eHtLfxssvvyxq1qwp1Gq1UCgUwsrKSgwbNkyqSwgh2rZtKxwdHc16e1FSV//+/UX37t0FANGtWzfRv39/rboUCoWwtrYWrVu3lrafAISbm5u03F69eglLS0tpD8Z//vMf6W9WCCE6duwo7O3thYWFhVAqlUKlUkl1lXzHpk2bipkzZ2q1h7W1tXjuued0tp0QxtlWlLRl6e1+69atxbRp0wzaVgwYMEAAEEqlUquP9ezZU6ttP/jgA+Hq6irUarVQq9XC0dFR1K1bV2ub9dJLL4n+/fuL+fPnCw8PD1GtWjXh7Ows1REaGioAiHPnzkl1FBcXixo1aohu3brp7OsPaz+1Wi1cXFy02q/k76N0HS4uLlr9qbTLly/rDDm3b98WVlZWYsuWLdKwP/74QwAQSUlJZebzMDwnpxw2NjYoKCgAACQkJCA5ORnx8fHYs2cPCgsLERQUBHt7exw5cgTHjh2DnZ0devfuLU2zYsUKjB8/HmPGjMHZs2exa9cu+Pr66lzWp59+il27dmHz5s1ITk7Gxo0b4ePjo3Nca2tr/P7777C2toZarcazzz4LZ2dn+Pn5SXVZWVlBpVLhhRdeQM+ePWFnZ4d169YhJiamTF2rV68utw3+/PNPrbratGkDCwsLqU0AICoqCnv27MHt27fRt29f2NraYtu2bVizZg1u3LiBjh07Sm1y/vx5nD59GvXr18c333yDTz75BMnJyYiJiSm3TaZNmwYAWLNmTbltcvfuXQQFBcHZ2Rn9+vVD27ZtcejQIekGkzY2NiguLkZ6ejouXLiA7t2747PPPkNhYSG++OKLctfljRs3oFAosHXrVoPW5enTp2Fra/vE1+WuXbvg4+ODVatWlXm+iyn62OjRo9GqVSu8+eabaNeuXbnt9aTreuaZZ2Bra4u8vDxs3rwZr7/+Om7evFnhuu7evYtTp05BqVSiX79+sLS0xPnz59GuXTtpexEfH4/MzEwEBwdj9+7d6NixIzZu3IgvvvgCALBs2TKcOHECHTt2RNu2bZGXl4fdu3frPBfClNuLXbt2wd3dHXv37sWoUaPKratHjx7w8fGBnZ2dtP0EgGnTpqGwsBA9e/bEkSNH0LVrV+zcuRNdunTBtm3b8PrrrwO4v/386aefUFBQgEGDBmHTpk0YPnw4YmJitLYXHTt2xNq1a7F9+3bExsZi3bp1sLCwQOfOnctdV8bYVgwcOBD16tWDUqlE7969cfDgQVy4cAG5ubkGbSt++OEHAEDXrl211qONjY00XkJCAn777TcIIfDss8/ihx9+gKOjIzIzM9G1a1dpmxUfH49vv/0Wly5dwpgxY1BYWIicnBzMmDEDu3btkh5qqVarpXkrlUoUFhbi+PHjevf1kvY7ceIEtmzZotV+JRITE3Hp0iUkJiZi/fr1Zdbbo5w8eRKFhYUIDAyUhjVq1Aje3t5ISkrSez4AeE6OENp7cjQajYiPjxcqlUq8/fbbIjw8XLi7u2vtJtywYYNo2LCh0Gg00rD8/HxhY2MjDhw4IIQQombNmmLatGnlLhOl0vHEiRNF9+7dteZXui4AIi4uTsTHxwtLS0uhUqlEaGioVNfevXuFUqkUS5cuFQ0bNhRhYWGiTp06oqioSKqrc+fOIiQkpExdDybpkrrCw8NF3bp1Rffu3UVxcbHONin9HV555RWhVCq1Ev2OHTsEALFp0yYhhBA2NjbCwcFBFBUVSeMMGjRIhISE6GyT5557TrRq1UoMHTr0oe23atUq4ezsLHJycqQ227t3r1AoFGLz5s1CpVKJpk2bimrVqmmty0GDBon27duXuy59fX3F0KFDDV6XjRs3Fg4ODk90Xe7evVtUq1ZNKBQKUbNmTWkvlCn72Ny5c0XPnj2lZerak2OKur7++muxc+dO8euvv4rt27eLxo0bi7Zt2+pVV0ltJeNqNBrx5ptvCgBi0qRJ0t/Gjh07hFKpFOnp6WLDhg3CwcFBeHt7S30/Pz9fWFhYiK5duwohhPDw8BAAhK2trVi4cKH45ZdfRHR0tFAoFOLw4cMmb7PS5s2bJ5ydncW9e/e09jZMnDhRdOvWTRw8eFDn9rPkO2zYsEG4u7sLJycn6TBJfn6+UKlUQqFQiPT0dFGzZk3RvHlzqa4SJduLknnl5eWJRo0aCQDCwsJCWFtbi/Xr15f792msbUVeXp4ICwuT9phaWlqK9evXG7ytaNWqlQAg+vbtK4TQ/v0paVt3d3exfPlyqe6S3589e/ZIfaykP7m5uYmioiKpjtLb14KCAuHt7S0GDRokAIjNmzeLjz76SAAQLi4uOvv6w9qvREl/KjlfJjw8vNz19qDy9uRs3LhRWFtblxm/bdu24t133y23fXUxi8c6mIM9e/bAzs4OhYWF0Gg0GDp0KKKiojB+/Hg0b94c1tbW0rhnzpzBxYsXYW9vrzWPvLw8XLp0CdevX8e1a9fQo0cPvZY9YsQI9OzZEw0bNkTv3r3Rr18/9OrVS6oLAAYPHgwAaNCgAWrUqAFLS0uprk6dOkGj0eDo0aO4ePEiLl26BCGE9L/5vLw8WFhY4O+//zaortTUVFy+fBmWlpZQKBTo3r27VptkZGRotYlGo4GHh0eZ+fz000/o1q0b7t27hxYtWkh7gwDA09MTZ8+eLTPNsGHD8Oyzz0KpVKJdu3Y4ePCg1CYP+uOPP+Dn54dq1apJbXbo0CEIITBkyBCEhoaiqKgIt2/fRuPGjaV16enpiR9//BHXrl0rsy7v3buHvLw8zJ49G76+vgaty7Vr1+LevXt44403nti67NatG06fPo0bN25g9erV0jJK1/Uk+5iXlxciIyNx6tQpKBSKh7bXk+773bp1k5bfvHlztGjRAvXr19e7rhJDhgyBRqNBUVER3N3d8eGHH0p/G8899xw0Gg2Sk5Nx5swZ3LlzB3fv3tXaw1ZcXIy0tDRcv34d6enpAID+/ftj8uTJAICWLVvihx9+wMqVK03eZqWtXbsWoaGhWnsE9uzZA2tra9y7dw+JiYlo1KgROnfujLi4OJ3bz+vXr0OhUEjPKASAgoICCCGkv8lmzZrBy8vroduLzz77DLm5ubC3t4ezszPq1q2L1157DTVr1tTaC1DCWNuKwsJCFBYWQq1WIz8/Hy+++CJef/115ObmGrStWL9+PQBg3759sLGxgUajkX5/vvzySwD3+2hKSopUd8nvT0hICDQaDerWrQulUoni4mK4urri5s2b0nq7c+eO1F5WVlaIi4uT9sD95z//Qc+ePdGxY0ecOHHioX29vPYDIPWn5ORkaX02bdpUr+38k8DDVf+v5EciJSUF9+7dw/r166UVWXqFAkBOTg78/f1x+vRprdeFCxcwdOhQrV2N+mjdujUuX76MOXPm4N69exg8eDBefvllqS4AWL58Oe7du4fevXtLnefBunJzc+Hv74/g4GA899xzWnU1atSoQm1y6tQpfPbZZxgxYgROnDiB8PBwncsuLCyEvb29VnscOXIEABAYGCi1SemOD9y/PFGj0ZSZV3R0NJ555hksXboUxcXFWm2iT90lyz548CDWr18PKysrKJVKrboVCgWKioq01uWJEycQEBCAhg0b4vvvv4ebm5sBLXZ/Xc6fPx8qleqJrstq1arB19cXHTp0wJo1a2Bpqf3/lyfdx3799Vdcv34d3t7esLS0hKWlJa5cuYK33nrLpHXpUq9ePdSoUUPvukosXLgQKSkpmDhxIho3bvzQ7UX16tW16jp9+jTCw8Ph6uoq/W0olUo0adJEa9rGjRsjNTXVbNrsyJEjSE5Oxquvvqo1vFu3bvj1119x7tw5bNy4Ec8++yzCwsJw+PBhne3h7u6ONm3aaLXHyZMnAUDreUlWVlZa05beXuTn5+P999/H8uXL8ffff+Pjjz9GgwYNoNFoMGzYMJ31P6gi24off/wRGo0Gn3/+Oc6ePYsLFy5g1apVeOmll/RaZonWrVvjq6++AgB4eHjA0tISPXr0kH5/SpT3+1NS9xdffIHTp09j4MCBqFOnjtbvz4Pb15JtHXA/rO7fvx9FRUUIDw9/aF831MPWmz48PDxQUFCA27dvaw3PyMjQ+R/ph2HI+X8lPxIlG+WHad26NVJSUuDm5gZfX1+tl6OjI+zt7eHj4yOdt6IPBwcHhISEYPXq1YiNjcW2bduQn58vdXBXV1dYWlqicePGOHPmDIqKiqRpjx07BqVSiS5duiAlJQVqtRp2dnZadalUKlhaWhpUV7Vq1dCqVSuMHz8ea9as0arrQX5+fsjJyZHa0dfXF2lpaVAqlfD394e9vT3s7Oxw48aNhy6zqKgIgwcPRkpKChITE/Hqq69qtcmtW7fKTFPSJnfv3pXqLll206ZNH7o8e3t7aV3WqVMH77//PtLS0nDkyBHUrVu3QuvSxsYG1tbWJl2XujYoT7KPqdVq/Prrr1o/YjVr1sQ777xj0rp0tdfff/9d5pyc8uoq3f88PT3h7e2Npk2bavW/0nU1bNgQrVu3RnZ2NlQqlVZdTk5OsLS0lPqYp6endO5KiQsXLqBOnTpm02Zr1qyBv78//Pz8tOop+btv2rQphg4dKtV15coV6Zy8EiXtceHCBXh6epbZXrRq1Qo+Pj5IS0sr871LKy4uRmFhIZRKpVZ79OjRAxkZGZW2rXByckJRURFq166ttd23sbGBWq02aFtRsr5atWqFrVu3Yt++fcjOzn5o3SW/P5cuXYJSqUSPHj3g6+sLBwcHWFlZ6b3NcnR0REpKCn7++WcMGjTooX1dVx0lSvd1Y/H394eVlZXWd0hOTkZqaioCAgIMmhcPV1VAaGgo5s+fj/79+2P27NmoXbs2rly5gri4OLz77ruoXbs2oqKiMHbsWLi5uaFPnz64c+cOjh07hokTJ5aZ38KFC+Hp6YlWrVpBqVRiy5Yt8PDwkHb/PrjsyMhIHD16FPXq1UNiYiImTpyI4cOH4/XXX8fnn3+OxMRE+Pr64vLly1JdJZ2ypK5q1aqhSZMmuHLlCgCU2bgCwMWLF/H111/rVdfChQvx1Vdfwc/PD/Pnz4eVlRXefvttPPPMMygsLARwPwglJSXh008/ldqk5H8VJT7++GOkpaUhJCQEW7duRbNmzaBUKhEbGwsPDw84OTnpXB+RkZEIDw9HYWEhbt68KbVJ6d3huri5uUEIgRdeeAFFRUW4dOkS5syZg6lTp2LcuHGoWbMmpk+fjgkTJjxyXaampmLJkiVITU1FYWEhdu7ciZiYGLi7u1fquvzpp58wZswY2Nra4vDhw7h58yb++eefMuvnSfexOnXqaLWXlZVVmf+FmaKupKQkjB07FjY2Nti/fz+SkpLg6+uLlJSUR9ZVkf4XGhqKt99+G8ePH8eRI0ek7cXhw4el/3VHRUVhzJgx+Oqrr9CwYUM0b94c//3vf7F7924cPnwYX3/9tUnbzM3NDZ07d0ZsbCxeeOGFMm1QXl1qtbrM/+pDQ0Px8ccfIzU1Fc8//zymTJmCP/74A1FRUXjxxRfh7u6OqKgojBo1CkIIpKSkSH2oNFtbW3Tt2hUjR47E6NGj0bVrV/z88884ePAgHBwcKm1bMXz4cPj5+WHSpElITk7G6dOn0aJFC3z55ZcYPHgwFixY8MhtRXp6OubPny8FmoyMDKxcuRLu7u6PrPu9995DtWrVMHz4cPTq1Qu5ubk4fPgwfvrpJ3h7e2utt/bt2yM3NxenTp3CsWPH4OHhAVdXVwD3TyN488030bRpU9y8eRPnz583qK9HRUUhMzNT7/Yr7datW0hNTcW1a9cA/O/3x8PDAx4eHnB0dMSoUaMQEREBFxcXODg4YOLEiQgICECHDh30Xg4AnngshO5LyB/1WVpamggLCxM1atQQKpVK1KtXT4wePVpkZWVJ46xcuVI0bNhQWFlZCU9PTzFx4kTpMzxwMlfLli1FtWrVhIODg+jRo4c4deqUzktChbh/CV/JJaEPXsKXlpYm6tevL6ytrbXqGjt2rHSS48qVK6UTHXW9Sk489vPzM6iub7/9Vmu+9vb2YsSIEVKblMyzdJv4+flJdZVXDwDRunVrcerUKZ3tV9Im5V0WWrJsLy8vrXU5adIk0bVrV5GWliZefPHFcpedmJio17rUdZM5AGLVqlWVti4/++wzYWdnJy3L1tZWvPDCC2VOPDZFH3uwvXSdePyk6/r000+Fra2tVh8dPXq0SE9P16uukr5kaP8bPHiw8PLy0tpeNGvWTHTq1Eka58G/yxo1aogdO3aU6e+mWpcWFhYCgBgzZoxW3y858VhXXcHBwdLfXOm60tLSRHBwsLCyspIuoW7UqJHWzTc7dOgg7OzstPpQyd9sybzS0tJEx44dpUvRlUqlaNCggTh58qRWjcbcVoSFhQkXFxehVCqFhYWFsLCwEL6+vmLBggVCo9Hota2IjIzUua2IiorS2bal61ar1cLJyUk0aNBAVK9eXVpvDRo0kE5gLllvzs7OQqFQSHUsWbJE1K5dW+pf06dPF8uXLy+3rz+s/R51CXlpJe1XYt26dTq/f2RkpDROyc0AnZ2dha2trRg4cKBIS0sThlL8/5cgIiIikhWek0NERESyxJBDpIe5c+fCzs5O56tPnz6mLo+IzMTGjRvL3VY86uRmMj4eriLSw61bt3RebQDcv5qqVq1aT7giIjJHd+7c0bqHWGlWVlY6r5ajysOQQ0RERLLEw1VEREQkSww5REREJEsMOURERCRLDDlEZBQKhQI7duww+rjm6LnnnsObb76p9/iHDx+GQqEo8yye0mJiYnTeZZaIKo4hh0hmRowYAYVCAYVCAWtra/j6+mL27Nlazy+qDGlpaXpfTm/IuBWxYMECODs7Iy8vr8xnubm5cHBwwKefflrh+cfFxWHOnDmPUyIRPQEMOUQy1Lt3b6SlpSElJQVvvfUWoqKiMH/+fJ3jPvgAxYry8PDQeoK0scatiOHDh+Pu3buIi4sr89nWrVtRUFCg95OqSytpKxcXF9jb2z92nURUuRhyiGRIpVLBw8MDderUweuvv47AwEDs2rULwP09PQMGDMCHH36ImjVrSk8Pvnr1KgYPHgwnJye4uLigf//++Ouvv7Tmu3btWjRt2hQqlQqenp6YMGGC9FnpQ1AFBQWYMGECPD09oVarUadOHURHR+scFwDOnj2L7t27w8bGBtWrV8eYMWOQk5MjfV5S8yeffAJPT09Ur14d48ePlx7++iA3NzcEBwdj7dq1ZT5bu3YtBgwYABcXF7z33nt45plnYGtri3r16mHGjBla84yKikLLli3xxRdfoG7dulCr1QDKHq7asGED2rRpA3t7e3h4eGDo0KG4fv16mWUfO3YMLVq0gFqtRocOHXDu3Dmd9ZfYuXMnWrduDbVajXr16mHWrFnSHjkhBKKiouDt7Q2VSoWaNWvijTfeeOj8iJ42DDlETwEbGxutPTYJCQlITk5GfHw89uzZg8LCQgQFBcHe3h5HjhzBsWPHYGdnh969e0vTrVixAuPHj8eYMWNw9uxZ7Nq1C76+vjqX9+mnn2LXrl3YvHkzkpOTsXHjRvj4+Ogc9+7duwgKCoKzszNOnDiBLVu24NChQ1oBCgASExNx6dIlJCYmYv369YiJiUFMTEy533nUqFH49ttvceXKFWnYn3/+ie+//x6jRo0CANjb2yMmJga///47lixZgtWrV2PRokVa87l48SK2bduGuLg4nD59WueyCgsLMWfOHJw5cwY7duzAX3/9hREjRpQZ75133sGCBQtw4sQJuLq6Ijg4uNygduTIEYSFhWHSpEn4/fff8fnnnyMmJgYffvghAGDbtm1YtGgRPv/8c6SkpGDHjh1o3rx5ue1B9FQy+JGeRGTWSj8FWKPRiPj4eKFSqcTbb78tfe7u7i7y8/OlaTZs2CAaNmwoNBqNNCw/P1/Y2NiIAwcOCCGEqFmzppg2bVq5y0WppxVPnDhRdO/eXWt+5Y27atUq4ezsLHJycqTP9+7dK5RKpUhPT5dqrlOnjigqKpLGGTRokAgJCSm3nqKiIlGrVi2tJxvPmDFDeHt7i+LiYp3TzJ8/X/j7+0vvIyMjhZWVlbh+/brWeF27dhWTJk0qd9knTpwQAKSnMycmJgoAYtOmTdI4N2/eFDY2NiI2NlYIcf/JzI6OjtLnPXr0EHPnztWa74YNG4Snp6cQQogFCxaIZ555RhQUFJRbB9HTjntyiGRoz549sLOzg1qtRp8+fRASEoKoqCjp8+bNm8Pa2lp6f+bMGVy8eBH29vbSc3ZcXFyQl5eHS5cu4fr167h27Rp69Oih1/JHjBiB06dPo2HDhnjjjTdw8ODBcsf9448/4Ofnh2rVqknDOnXqBI1Gg+TkZGlY06ZNYWFhIb339PTUeUiohIWFBcLDwxETEwMhBDQaDdavX4+RI0dCqby/6YuNjUWnTp3g4eEBOzs7TJ8+HampqVrzqVOnDlxdXR/6fU+ePIng4GB4e3vD3t4eXbt2BYAy8woICJD+7eLigoYNG+KPP/7QOc8zZ85g9uzZWs8+Gj16NNLS0pCbm4tBgwbh3r17qFevHkaPHo3t27dX+snlRFWNpakLICLj69atG1asWAFra2vUrFkTlpbaf+qlAwUA5OTkwN/fHxs3biwzL1dXVykU6Kt169a4fPky9u3bh0OHDmHw4MEIDAzE1q1bDf8y/8/KykrrvUKhgEajeeg0r7zyCqKjo/Htt99Co9Hg6tWrGDlyJAAgKSkJoaGhmDVrFoKCguDo6IhNmzZhwYIFWvN4sK0eVHK4LSgoCBs3boSrqytSU1MRFBT0WCd15+TkYNasWXjxxRfLfKZWq+Hl5YXk5GQcOnQI8fHxGDduHObPn4/vvvuuTFsRPa0YcohkqFq1auWeL6NL69atERsbCzc3Nzg4OOgcx8fHBwkJCejWrZte83RwcEBISAhCQkLw8ssvo3fv3rh16xZcXFy0xmvcuDFiYmJw9+5dKVAcO3YMSqVSOim6ourXr4+uXbti7dq1EEIgMDBQekDiDz/8gDp16mDatGnS+KXP39HX+fPncfPmTXz00Ufw8vICAPz88886x/3xxx/h7e0NAPj3339x4cIFNG7cWOe4rVu3RnJy8kPXo42NDYKDgxEcHIzx48ejUaNGOHv2LFq3bm3w9yCSI4YcIkJoaCjmz5+P/v37Y/bs2ahduzauXLmCuLg4vPvuu6hduzaioqIwduxYuLm5oU+fPrhz5w6OHTuGiRMnlpnfwoUL4enpiVatWkGpVGLLli3w8PDQebO70NBQREZGIjw8HFFRUcjMzMTEiRMxfPhwuLu7P/Z3GzVqFEaPHg0AWicqN2jQAKmpqdi0aRPatm2LvXv3Yvv27QbP39vbG9bW1vjss88wduxYnDt3rtx76MyePRvVq1eHu7s7pk2bhho1amDAgAE6x505cyb69esHb29vvPzyy1AqlThz5gzOnTuHDz74ADExMSguLkb79u1ha2uL//73v7CxseFTrolK4Tk5RARbW1t8//338Pb2xosvvojGjRtj1KhRyMvLk/bshIeHY/HixVi+fDmaNm2Kfv36ISUlRef87O3t8fHHH6NNmzZo27Yt/vrrL3zzzTc6D3vZ2triwIEDuHXrFtq2bYuXX34ZPXr0wNKlS43y3V566SWoVCrY2tpqBYoXXngBkydPxoQJE9CyZUv88MMPmDFjhsHzd3V1RUxMDLZs2YImTZrgo48+wieffKJz3I8++giTJk2Cv78/0tPTsXv3bq1zo0oLCgrCnj17cPDgQbRt2xYdOnTAokWLpBDj5OSE1atXo1OnTmjRogUOHTqE3bt3o3r16gZ/ByK5UgghhKmLICIiIjI27skhIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZ+j+kAJmILEPk8AAAAABJRU5ErkJggg==", "text/plain": [ "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABH10lEQVR4nO3de3zP9f//8ft7YydsDrNTDXNoctZkn+2rTI1Zjv3KYRFGKvEpreNKRIdFiLJahFEYUipEWiEscqr0kdIHc9jmEJtNNuz1+8PF+9O7bWzs8J7X7Xq5vC4fr+fr+Xq+Hq/l0+69Xs/X62UxDMMQAACAiThUdAEAAADljQAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAE4Ib38ssvy2Kx6MSJE2V+rNWrV6tNmzZycXGRxWLR6dOny/yYAEqOAARUYomJibJYLDaLl5eXOnXqpC+//LLc6/niiy/Uo0cPeXt7y8nJSbVr19add96pKVOmKCsrq9zrKW8nT55U37595erqqvj4eH344YeqVq1aoX3//s9u48aNBbYbhiF/f39ZLBZ179690DFOnz5tDVp79uwptM+QIUNs/n64u7urdevWmjJlinJzc639LofEopb09PRr+IkA9qtKRRcA4PpNmDBBAQEBMgxDGRkZSkxM1D333KMvvviiyF+epSk/P1/Dhg1TYmKiWrZsqccee0z+/v46c+aMUlJSNGbMGK1atUrJycllXktF+uGHH3TmzBm98sorCg8PL9Y+Li4uWrhwoTp06GDTvn79eh0+fFjOzs5F7rt06VJZLBb5+PhowYIFevXVVwvt5+zsrA8++EDSpdC0bNkyPf300/rhhx+UlJRk0/e9995T9erVC4xRs2bNYp0PUFkQgIAbQGRkpNq1a2ddHzZsmLy9vbVo0aJSCUD5+fnKy8uTi4tLodsnTZqkxMREPfnkk5oyZYosFot12xNPPKG0tDTNnz//uo5RGRw7dkxSycLCPffco6VLl+rtt99WlSr/+1fywoULFRQUdMXbdh999JHuuece1a9fXwsXLiwyAFWpUkUDBw60rj/22GMKDg7W4sWLNXXqVPn5+Vm33X///fL09Cx2/UBlxS0w4AZUs2ZNubq62vxClaTJkycrNDRUderUkaurq4KCgvTxxx8X2N9isWjUqFFasGCBmjdvLmdnZ61evbrQY509e1YTJ05U8+bN9eabb9qEn8t8fX313HPPFfsY11JnYGCgXFxcFBQUpA0bNhRa6+nTpzVkyBDVrFlTHh4eio6O1tmzZwv/If7D0qVLFRQUJFdXV3l6emrgwIE6cuSIdXtYWJgGDx4sSbr99ttlsVg0ZMiQq44bFRWlkydPau3atda2vLw8ffzxx3rggQeK3C81NVXfffed+vfvr/79+2v//v3avHlzsc7FwcFBYWFhkqQDBw4Uax/gRsMVIOAGkJmZqRMnTsgwDB07dkzvvPOOsrOzbf6rX5KmT5+unj17asCAAcrLy1NSUpL69OmjFStWqFu3bjZ9v/nmGy1ZskSjRo2Sp6enGjRoUOixN27cqNOnT+vpp5+Wo6Njieou6hglqXP9+vVavHixHn/8cTk7O+vdd99V165dtXXrVrVo0cKmb9++fRUQEKC4uDjt2LFDH3zwgby8vDRx4sQr1pmYmKjo6GjdfvvtiouLU0ZGhqZPn65NmzZp586dqlmzpl588UUFBgZq5syZ1luSjRo1uurPoEGDBgoJCdGiRYsUGRkpSfryyy+VmZmp/v376+233y50v0WLFqlatWrq3r27XF1d1ahRIy1YsEChoaFXPaYk/fHHH5KkOnXq2LT/+eefBfpWqVKFW2C48RgAKq25c+cakgoszs7ORmJiYoH+Z8+etVnPy8szWrRoYdx111027ZIMBwcH45dffrlqDdOnTzckGcuXL7dpv3DhgnH8+HGbJT8/v1jHKEmdkoxt27ZZ2w4ePGi4uLgY9957r7Vt3LhxhiRj6NChNvvfe++9Rp06da54fnl5eYaXl5fRokUL46+//rK2r1ixwpBkjB071tp2+Z/HDz/8cMUx/9l3xowZRo0aNazn3adPH6NTp06GYRhG/fr1jW7duhXYv2XLlsaAAQOs6y+88ILh6elpnD9/3qbf4MGDjWrVqln/Gezbt894/fXXDYvFYrRq1cra7/LPqLAlMDDwqucDVDbcAgNuAPHx8Vq7dq3Wrl2rjz76SJ06ddJDDz2kTz75xKafq6ur9c+nTp1SZmam7rjjDu3YsaPAmB07dlSzZs2ueuzLT3f9c+Lszz//rLp169osJ0+eLNYxSlJnSEiIgoKCrOv16tVTr169tGbNGl28eNGm76OPPmqzfscdd+jkyZNXfEJt27ZtOnbsmB577DGb+UndunVT06ZNtXLlyiL3La6+ffvqr7/+0ooVK3TmzBmtWLHiire/fvrpJ/3888+KioqytkVFRenEiRNas2ZNgf45OTnWfwaNGzfWCy+8oJCQEH366acF+i5btsz6d+nyMnfu3Os+R8DecAsMuAG0b9/eZhJ0VFSU2rZtq1GjRql79+5ycnKSJK1YsUKvvvqqdu3aZfMIdGHzdgICAop17Bo1akiSsrOzbdobN25sndcyf/58ffjhh8U+RknqbNKkSYG2W265RWfPntXx48fl4+Njba9Xr55Nv1q1akm6FLLc3d0LreXgwYOSpMDAwALbmjZtWugj7CVVt25dhYeHa+HChTp79qwuXryo+++/v8j+H330kapVq6aGDRtq3759ki49TdagQQMtWLCgwG1CFxcXffHFF5IuPREWEBCgm2++udCx77zzTiZBwxQIQMANyMHBQZ06ddL06dP1+++/q3nz5vruu+/Us2dP3XnnnXr33Xfl6+urqlWrau7cuVq4cGGBMf5+FeZKmjZtKknavXu3evXqZW2vXr269VHwokJCYccoaZ0lUdQcJcMwrmvc0vDAAw9o+PDhSk9PV2RkZJFzbgzD0KJFi5STk1Po1bNjx44pOzvb5oqco6NjsR/LB8yCAATcoC5cuCDpf1dmli1bJhcXF61Zs8bm3TLXe3vjjjvukIeHh5KSkhQbGysHh+u7s17SOn///fcCbb/99pvc3NxUt27d66pFkurXry9J2rt3r+666y6bbXv37rVuv1733nuvHnnkEX3//fdavHhxkf0uvx9owoQJuvXWW222nTp1Sg8//LCWL19eYAI8AFvMAQJuQOfPn9dXX30lJycn6y9JR0dHWSwWm3kxBw4c0PLly6/rWG5ubnr22We1e/duPf/884VeTSnJFZaS1pmSkmIzN+jQoUP67LPP1KVLlxI/lVaYdu3aycvLSwkJCTa347788kvt2bOnwO2ma1W9enW99957evnll9WjR48i+12+/fXMM8/o/vvvt1mGDx+uJk2aaMGCBaVSE3Aj4woQcAP48ssv9euvv0q6dAtk4cKF+v333/X8889b57Z069ZNU6dOVdeuXfXAAw/o2LFjio+PV+PGjfXTTz9d1/Gff/557dmzR2+++aa++uor3Xfffbr55pt16tQp7dixQ0uXLpWXl1exXnJY0jpbtGihiIgIm8fgJWn8+PHXdU6XVa1aVRMnTlR0dLQ6duyoqKgo62PwDRo00JNPPlkqx5FkfY9QUXJzc7Vs2TJ17ty5yJ9lz549NX36dB07dkxeXl4lruHjjz8u9E3QnTt3lre3d4nHA+wVAQi4AYwdO9b6ZxcXFzVt2lTvvfeeHnnkEWv7XXfdpdmzZ+uNN97Q6NGjFRAQoIkTJ+rAgQPXHYAcHBz04Ycf6r777tOsWbP0zjvv6NSpU6pevbpatGih1157TcOHDy/0F+s/lbTOjh07KiQkROPHj1dqaqqaNWumxMREtWrV6rrO6e+GDBkiNzc3vfHGG3ruuedUrVo13XvvvZo4cWK5vh9n5cqVOn369BWvEPXo0UNTpkxRUlKSHn/88RIfY8SIEYW2f/vttwQg3FAshj3M/gOAa2CxWDRy5EjNmDGjoksBUMkwBwgAAJgOAQgAAJgOAQgAAJgOk6ABVFpMYQRwrbgCBAAATIcABAAATIdbYIXIz8/X0aNHVaNGjUI/vggAAOyPYRg6c+aM/Pz8rvpZHgJQIY4ePSp/f/+KLgMAAFyDQ4cO6eabb75iHwJQIWrUqCHp0g/w8mcEAACAfcvKypK/v7/19/iVEIAKcfm2l7u7OwEIAIBKpjjTV5gEDQAATIcABAAATIcABAAATIcABAAATIcABAAATKdCA1BcXJxuv/121ahRQ15eXurdu7f27t171f2WLl2qpk2bysXFRS1bttSqVatsthuGobFjx8rX11eurq4KDw/X77//XlanAQAAKpkKDUDr16/XyJEj9f3332vt2rU6f/68unTpopycnCL32bx5s6KiojRs2DDt3LlTvXv3Vu/evbV7925rn0mTJuntt99WQkKCtmzZomrVqikiIkLnzp0rj9MCAAB2zmLY0eeUjx8/Li8vL61fv1533nlnoX369eunnJwcrVixwtr2r3/9S23atFFCQoIMw5Cfn5+eeuopPf3005KkzMxMeXt7KzExUf37979qHVlZWfLw8FBmZibvAQIAoJIoye9vu5oDlJmZKUmqXbt2kX1SUlIUHh5u0xYREaGUlBRJ0v79+5Wenm7Tx8PDQ8HBwdY+AADA3OzmTdD5+fkaPXq0/u///k8tWrQosl96erq8vb1t2ry9vZWenm7dfrmtqD7/lJubq9zcXOt6VlbWNZ0DAACoHOzmCtDIkSO1e/duJSUllfux4+Li5OHhYV34ECoAADc2uwhAo0aN0ooVK/Ttt99e9eutPj4+ysjIsGnLyMiQj4+PdfvltqL6/FNsbKwyMzOty6FDh671VAAAQCVQoQHIMAyNGjVKn376qb755hsFBARcdZ+QkBAlJyfbtK1du1YhISGSpICAAPn4+Nj0ycrK0pYtW6x9/snZ2dn64VM+gAoAwI2vQucAjRw5UgsXLtRnn32mGjVqWOfoeHh4yNXVVZI0aNAg3XTTTYqLi5MkPfHEE+rYsaOmTJmibt26KSkpSdu2bdPMmTMlXfoC7OjRo/Xqq6+qSZMmCggI0EsvvSQ/Pz/17t27Qs4TAADYlwoNQO+9954kKSwszKZ97ty5GjJkiCQpNTVVDg7/u1AVGhqqhQsXasyYMXrhhRfUpEkTLV++3Gbi9LPPPqucnBw9/PDDOn36tDp06KDVq1fLxcWlzM8JAADYP7t6D5C94D1AhRtvGV/RJdgYZ4yr6BIAAHak0r4HCAAAoDwQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOlUaADasGGDevToIT8/P1ksFi1fvvyK/YcMGSKLxVJgad68ubXPyy+/XGB706ZNy/hMAABAZVKhASgnJ0etW7dWfHx8sfpPnz5daWlp1uXQoUOqXbu2+vTpY9OvefPmNv02btxYFuUDAIBKqkpFHjwyMlKRkZHF7u/h4SEPDw/r+vLly3Xq1ClFR0fb9KtSpYp8fHxKrU4AAHBjqdRzgGbPnq3w8HDVr1/fpv3333+Xn5+fGjZsqAEDBig1NfWK4+Tm5iorK8tmAQAAN64KvQJ0PY4ePaovv/xSCxcutGkPDg5WYmKiAgMDlZaWpvHjx+uOO+7Q7t27VaNGjULHiouL0/jx48ujbACApPEW+/p37jhjXEWXgHJWaa8AzZs3TzVr1lTv3r1t2iMjI9WnTx+1atVKERERWrVqlU6fPq0lS5YUOVZsbKwyMzOty6FDh8q4egAAUJEq5RUgwzA0Z84cPfjgg3Jycrpi35o1a+qWW27Rvn37iuzj7OwsZ2fn0i4TAADYqUp5BWj9+vXat2+fhg0bdtW+2dnZ+uOPP+Tr61sOlQEAgMqgQgNQdna2du3apV27dkmS9u/fr127dlknLcfGxmrQoEEF9ps9e7aCg4PVokWLAtuefvpprV+/XgcOHNDmzZt17733ytHRUVFRUWV6LgAAoPKo0Ftg27ZtU6dOnazrMTExkqTBgwcrMTFRaWlpBZ7gyszM1LJlyzR9+vRCxzx8+LCioqJ08uRJ1a1bVx06dND333+vunXrlt2JAACASqVCA1BYWJgMwyhye2JiYoE2Dw8PnT17tsh9kpKSSqM0AABwA6uUc4AAAACuBwEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYToUGoA0bNqhHjx7y8/OTxWLR8uXLr9h/3bp1slgsBZb09HSbfvHx8WrQoIFcXFwUHBysrVu3luFZAACAyqZCA1BOTo5at26t+Pj4Eu23d+9epaWlWRcvLy/rtsWLFysmJkbjxo3Tjh071Lp1a0VEROjYsWOlXT4AAKikqlTkwSMjIxUZGVni/by8vFSzZs1Ct02dOlXDhw9XdHS0JCkhIUErV67UnDlz9Pzzz19PuQAA4AZRKecAtWnTRr6+vurcubM2bdpkbc/Ly9P27dsVHh5ubXNwcFB4eLhSUlKKHC83N1dZWVk2CwAAuHFVqgDk6+urhIQELVu2TMuWLZO/v7/CwsK0Y8cOSdKJEyd08eJFeXt72+zn7e1dYJ7Q38XFxcnDw8O6+Pv7l+l5AACAilWht8BKKjAwUIGBgdb10NBQ/fHHH3rrrbf04YcfXvO4sbGxiomJsa5nZWURggAAuIFVqgBUmPbt22vjxo2SJE9PTzk6OiojI8OmT0ZGhnx8fIocw9nZWc7OzmVaJwAAsB+V6hZYYXbt2iVfX19JkpOTk4KCgpScnGzdnp+fr+TkZIWEhFRUiQAAwM5U6BWg7Oxs7du3z7q+f/9+7dq1S7Vr11a9evUUGxurI0eOaP78+ZKkadOmKSAgQM2bN9e5c+f0wQcf6JtvvtFXX31lHSMmJkaDBw9Wu3bt1L59e02bNk05OTnWp8IAAAAqNABt27ZNnTp1sq5fnoczePBgJSYmKi0tTampqdbteXl5euqpp3TkyBG5ubmpVatW+vrrr23G6Nevn44fP66xY8cqPT1dbdq00erVqwtMjAYAAOZlMQzDqOgi7E1WVpY8PDyUmZkpd3f3ii7Hboy3jK/oEmyMM8ZVdAkArhH/PkFZKMnv70o/BwgAAKCkCEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0ShyADh06pMOHD1vXt27dqtGjR2vmzJklPviGDRvUo0cP+fn5yWKxaPny5Vfs/8knn6hz586qW7eu3N3dFRISojVr1tj0efnll2WxWGyWpk2blrg2AABw4ypxAHrggQf07bffSpLS09PVuXNnbd26VS+++KImTJhQorFycnLUunVrxcfHF6v/hg0b1LlzZ61atUrbt29Xp06d1KNHD+3cudOmX/PmzZWWlmZdNm7cWKK6AADAja1KSXfYvXu32rdvL0lasmSJWrRooU2bNumrr77So48+qrFjxxZ7rMjISEVGRha7/7Rp02zWX3/9dX322Wf64osv1LZtW2t7lSpV5OPjU+xxAQCAuZT4CtD58+fl7OwsSfr666/Vs2dPSVLTpk2VlpZWutVdRX5+vs6cOaPatWvbtP/+++/y8/NTw4YNNWDAAKWmppZrXQAAwL6VOAA1b95cCQkJ+u6777R27Vp17dpVknT06FHVqVOn1Au8ksmTJys7O1t9+/a1tgUHBysxMVGrV6/We++9p/379+uOO+7QmTNnihwnNzdXWVlZNgsAALhxlTgATZw4Ue+//77CwsIUFRWl1q1bS5I+//xz662x8rBw4UKNHz9eS5YskZeXl7U9MjJSffr0UatWrRQREaFVq1bp9OnTWrJkSZFjxcXFycPDw7r4+/uXxykAAIAKUuI5QGFhYTpx4oSysrJUq1Yta/vDDz8sNze3Ui2uKElJSXrooYe0dOlShYeHX7FvzZo1dcstt2jfvn1F9omNjVVMTIx1PSsrixAEAMAN7JreA2QYhrZv367333/femvJycmpXALQokWLFB0drUWLFqlbt25X7Z+dna0//vhDvr6+RfZxdnaWu7u7zQIAAG5cJb4CdPDgQXXt2lWpqanKzc1V586dVaNGDU2cOFG5ublKSEgo9ljZ2dk2V2b279+vXbt2qXbt2qpXr55iY2N15MgRzZ8/X9Kl216DBw/W9OnTFRwcrPT0dEmSq6urPDw8JElPP/20evToofr16+vo0aMaN26cHB0dFRUVVdJTBQAAN6gSXwF64okn1K5dO506dUqurq7W9nvvvVfJycklGmvbtm1q27at9RH2mJgYtW3b1voofVpams0TXDNnztSFCxc0cuRI+fr6WpcnnnjC2ufw4cOKiopSYGCg+vbtqzp16uj7779X3bp1S3qqAADgBlXiK0DfffedNm/eLCcnJ5v2Bg0a6MiRIyUaKywsTIZhFLk9MTHRZn3dunVXHTMpKalENQAAAPMp8RWg/Px8Xbx4sUD74cOHVaNGjVIpCgAAoCyVOAB16dLF5o3MFotF2dnZGjdunO65557SrA0AAKBMlPgW2JQpUxQREaFmzZrp3LlzeuCBB/T777/L09NTixYtKosaAQAASlWJA9DNN9+sH3/8UUlJSfrpp5+UnZ2tYcOGacCAATaTogEAAOxViQOQdOljowMHDiztWgAAAMpFiQPQ5XfyFGXQoEHXXAwAAEB5KHEA+vs7d6RLX4c/e/as9U3QBCAAAGDvSvwU2KlTp2yW7Oxs7d27Vx06dGASNAAAqBSu6Vtg/9SkSRO98cYbBa4OAQAA2KNSCUDSpYnRR48eLa3hAAAAykyJ5wB9/vnnNuuGYSgtLU0zZszQ//3f/5VaYQAAAGWlxAGod+/eNusWi0V169bVXXfdpSlTppRWXQAAAGWmxAEoPz+/LOoAAAAoN6U2BwgAAKCyKNYVoJiYmGIPOHXq1GsuBgAAoDwUKwDt3LmzWINZLJbrKgYAAKA8FCsAffvtt2VdBwAAQLlhDhAAADCda/oa/LZt27RkyRKlpqYqLy/PZtsnn3xSKoUBAACUlRJfAUpKSlJoaKj27NmjTz/9VOfPn9cvv/yib775Rh4eHmVRIwAAQKkqcQB6/fXX9dZbb+mLL76Qk5OTpk+frl9//VV9+/ZVvXr1yqJGAACAUlXiAPTHH3+oW7dukiQnJyfl5OTIYrHoySef1MyZM0u9QAAAgNJW4gBUq1YtnTlzRpJ00003affu3ZKk06dP6+zZs6VbHQAAQBko8SToO++8U2vXrlXLli3Vp08fPfHEE/rmm2+0du1a3X333WVRIwAAQKkqdgDavXu3WrRooRkzZujcuXOSpBdffFFVq1bV5s2bdd9992nMmDFlVigAAEBpKXYAatWqlW6//XY99NBD6t+/vyTJwcFBzz//fJkVBwAAUBaKPQdo/fr1at68uZ566in5+vpq8ODB+u6778qyNgAAgDJR7AB0xx13aM6cOUpLS9M777yjAwcOqGPHjrrllls0ceJEpaenl2WdAAAApabET4FVq1ZN0dHRWr9+vX777Tf16dNH8fHxqlevnnr27FkWNQIAAJSq6/oWWOPGjfXCCy9ozJgxqlGjhlauXFladQEAAJSZa/oWmCRt2LBBc+bM0bJly+Tg4KC+fftq2LBhpVkbAABAmShRADp69KgSExOVmJioffv2KTQ0VG+//bb69u2ratWqlVWNAAAAparYASgyMlJff/21PD09NWjQIA0dOlSBgYFlWRsAAECZKHYAqlq1qj7++GN1795djo6OZVkTAABAmSr2JOjPP/9cvXr1KtXws2HDBvXo0UN+fn6yWCxavnz5VfdZt26dbrvtNjk7O6tx48ZKTEws0Cc+Pl4NGjSQi4uLgoODtXXr1lKrGQAAVH7X9RTY9crJyVHr1q0VHx9frP779+9Xt27d1KlTJ+3atUujR4/WQw89pDVr1lj7LF68WDExMRo3bpx27Nih1q1bKyIiQseOHSur0wAAAJXMNT8FVhoiIyMVGRlZ7P4JCQkKCAjQlClTJEm33nqrNm7cqLfeeksRERGSpKlTp2r48OGKjo627rNy5UrNmTOHz3YAAABJFXwFqKRSUlIUHh5u0xYREaGUlBRJUl5enrZv327Tx8HBQeHh4dY+hcnNzVVWVpbNAgAAblyVKgClp6fL29vbps3b21tZWVn666+/dOLECV28eLHQPlf6VEdcXJw8PDysi7+/f5nUDwAA7EOxA9Bjjz2m7Oxs6/qiRYuUk5NjXT99+rTuueee0q2unMTGxiozM9O6HDp0qKJLAgAAZajYAej999/X2bNnreuPPPKIMjIyrOu5ubk2k5HLgo+Pj80xJSkjI0Pu7u5ydXWVp6enHB0dC+3j4+NT5LjOzs5yd3e3WQAAwI2r2AHIMIwrrpeHkJAQJScn27StXbtWISEhkiQnJycFBQXZ9MnPz1dycrK1DwAAQIXOAcrOztauXbu0a9cuSZcec9+1a5dSU1MlXbo1NWjQIGv/Rx99VP/973/17LPP6tdff9W7776rJUuW6Mknn7T2iYmJ0axZszRv3jzt2bNHI0aMUE5OjvWpMAAAgAp9DH7btm3q1KmTdT0mJkaSNHjwYCUmJiotLc0ahiQpICBAK1eu1JNPPqnp06fr5ptv1gcffGB9BF6S+vXrp+PHj2vs2LFKT09XmzZttHr16gITowEAgHmVKACNHTtWbm5uki49cv7aa6/Jw8NDkmzmBxVXWFjYFW+lFfaW57CwMO3cufOK444aNUqjRo0qcT0AAMAcih2A7rzzTu3du9e6Hhoaqv/+978F+gAAANi7YgegdevWlWEZAAAA5adEt8CysrK0ZcsW5eXlqX379qpbt25Z1QUAAFBmih2Adu3apXvuucf6RuUaNWpoyZIlNhOQAQAAKoNiPwb/3HPPKSAgQJs2bdL27dt19913M9EYAABUSsW+ArR9+3Z99dVXuu222yRJc+bMUe3atZWVlcWbkwEAQKVS7CtAf/75p26++Wbres2aNVWtWjWdPHmyTAoDAAAoKyWaBP2f//zH5qvqhmFoz549OnPmjLWtVatWpVcdAABAGShRALr77rsLvLiwe/fuslgsMgxDFotFFy9eLNUCAQAASluxA9D+/fvLsg4AAIByU+wAVL9+/av22b1793UVAwAAUB6u+2vwZ86c0cyZM9W+fXu1bt26NGoCAAAoU9ccgDZs2KDBgwfL19dXkydP1l133aXvv/++NGsDAAAoEyWaBJ2enq7ExETNnj1bWVlZ6tu3r3Jzc7V8+XI1a9asrGoEAAAoVcW+AtSjRw8FBgbqp59+0rRp03T06FG98847ZVkbAABAmSj2FaAvv/xSjz/+uEaMGKEmTZqUZU0AAABlqthXgDZu3KgzZ84oKChIwcHBmjFjhk6cOFGWtQEAAJSJYgegf/3rX5o1a5bS0tL0yCOPKCkpSX5+fsrPz9fatWtt3gYNAABgz0r8FFi1atU0dOhQbdy4UT///LOeeuopvfHGG/Ly8lLPnj3LokYAAIBSdV3vAQoMDNSkSZN0+PBhLVq0qLRqAgAAKFPX/SJESXJ0dFTv3r31+eefl8ZwAAAAZarYT4ENHTr0qn0sFotmz559XQUBAACUtWIHoMTERNWvX19t27Yt8EV4AACAyqTYAWjEiBFatGiR9u/fr+joaA0cOFC1a9cuy9oAAADKRLHnAMXHxystLU3PPvusvvjiC/n7+6tv375as2YNV4QAAEClUqJJ0M7OzoqKitLatWv1n//8R82bN9djjz2mBg0aKDs7u6xqBAAAKFXX/BSYg4ODLBaLDMPQxYsXS7MmAACAMlWiAJSbm6tFixapc+fOuuWWW/Tzzz9rxowZSk1NVfXq1cuqRgAAgFJV7EnQjz32mJKSkuTv76+hQ4dq0aJF8vT0LMvaAAAAykSxA1BCQoLq1aunhg0bav369Vq/fn2h/T755JNSKw4AAKAsFDsADRo0SBaLpSxrAQAAKBclehEiAADAjaBUvgUGAABQmRCAAACA6dhFAIqPj1eDBg3k4uKi4OBgbd26tci+YWFhslgsBZZu3bpZ+wwZMqTA9q5du5bHqQAAgEqg2HOAysrixYsVExOjhIQEBQcHa9q0aYqIiNDevXvl5eVVoP8nn3yivLw86/rJkyfVunVr9enTx6Zf165dNXfuXOu6s7Nz2Z0EAACoVCr8CtDUqVM1fPhwRUdHq1mzZkpISJCbm5vmzJlTaP/atWvLx8fHuqxdu1Zubm4FApCzs7NNv1q1apXH6QAAgEqgQgNQXl6etm/frvDwcGubg4ODwsPDlZKSUqwxZs+erf79+6tatWo27evWrZOXl5cCAwM1YsQInTx5ssgxcnNzlZWVZbMAAIAbV4UGoBMnTujixYvy9va2aff29lZ6evpV99+6dat2796thx56yKa9a9eumj9/vpKTkzVx4kStX79ekZGRRX6zLC4uTh4eHtbF39//2k8KAADYvQqfA3Q9Zs+erZYtW6p9+/Y27f3797f+uWXLlmrVqpUaNWqkdevW6e677y4wTmxsrGJiYqzrWVlZhCAAAG5gFXoFyNPTU46OjsrIyLBpz8jIkI+PzxX3zcnJUVJSkoYNG3bV4zRs2FCenp7at29fodudnZ3l7u5uswAAgBtXhQYgJycnBQUFKTk52dqWn5+v5ORkhYSEXHHfpUuXKjc3VwMHDrzqcQ4fPqyTJ0/K19f3umsGAACVX4U/BRYTE6NZs2Zp3rx52rNnj0aMGKGcnBxFR0dLuvQNstjY2AL7zZ49W71791adOnVs2rOzs/XMM8/o+++/14EDB5ScnKxevXqpcePGioiIKJdzAgAA9q3C5wD169dPx48f19ixY5Wenq42bdpo9erV1onRqampcnCwzWl79+7Vxo0b9dVXXxUYz9HRUT/99JPmzZun06dPy8/PT126dNErr7zCu4AAAIAkOwhAkjRq1CiNGjWq0G3r1q0r0BYYGCjDMArt7+rqqjVr1pRmeQAA4AZT4bfAAAAAyhsBCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmI5dBKD4+Hg1aNBALi4uCg4O1tatW4vsm5iYKIvFYrO4uLjY9DEMQ2PHjpWvr69cXV0VHh6u33//vaxPAwAAVBIVHoAWL16smJgYjRs3Tjt27FDr1q0VERGhY8eOFbmPu7u70tLSrMvBgwdttk+aNElvv/22EhIStGXLFlWrVk0RERE6d+5cWZ8OAACoBCo8AE2dOlXDhw9XdHS0mjVrpoSEBLm5uWnOnDlF7mOxWOTj42NdvL29rdsMw9C0adM0ZswY9erVS61atdL8+fN19OhRLV++vBzOCAAA2LsKDUB5eXnavn27wsPDrW0ODg4KDw9XSkpKkftlZ2erfv368vf3V69evfTLL79Yt+3fv1/p6ek2Y3p4eCg4OLjIMXNzc5WVlWWzAACAG1eFBqATJ07o4sWLNldwJMnb21vp6emF7hMYGKg5c+bos88+00cffaT8/HyFhobq8OHDkmTdryRjxsXFycPDw7r4+/tf76kBAAA7VuG3wEoqJCREgwYNUps2bdSxY0d98sknqlu3rt5///1rHjM2NlaZmZnW5dChQ6VYMQAAsDcVGoA8PT3l6OiojIwMm/aMjAz5+PgUa4yqVauqbdu22rdvnyRZ9yvJmM7OznJ3d7dZAADAjatCA5CTk5OCgoKUnJxsbcvPz1dycrJCQkKKNcbFixf1888/y9fXV5IUEBAgHx8fmzGzsrK0ZcuWYo8JAABubFUquoCYmBgNHjxY7dq1U/v27TVt2jTl5OQoOjpakjRo0CDddNNNiouLkyRNmDBB//rXv9S4cWOdPn1ab775pg4ePKiHHnpI0qUnxEaPHq1XX31VTZo0UUBAgF566SX5+fmpd+/eFXWaAADAjlR4AOrXr5+OHz+usWPHKj09XW3atNHq1autk5hTU1Pl4PC/C1WnTp3S8OHDlZ6erlq1aikoKEibN29Ws2bNrH2effZZ5eTk6OGHH9bp06fVoUMHrV69usALEwEAgDlZDMMwKroIe5OVlSUPDw9lZmYyH+hvxlvGV3QJNsYZ4yq6BADXiH+foCyU5Pd3pXsKDAAA4HoRgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOnYRQCKj49XgwYN5OLiouDgYG3durXIvrNmzdIdd9yhWrVqqVatWgoPDy/Qf8iQIbJYLDZL165dy/o0AABAJVHhAWjx4sWKiYnRuHHjtGPHDrVu3VoRERE6duxYof3XrVunqKgoffvtt0pJSZG/v7+6dOmiI0eO2PTr2rWr0tLSrMuiRYvK43QAAEAlUOEBaOrUqRo+fLiio6PVrFkzJSQkyM3NTXPmzCm0/4IFC/TYY4+pTZs2atq0qT744APl5+crOTnZpp+zs7N8fHysS61atcrjdAAAQCVQoQEoLy9P27dvV3h4uLXNwcFB4eHhSklJKdYYZ8+e1fnz51W7dm2b9nXr1snLy0uBgYEaMWKETp48WeQYubm5ysrKslkAAMCNq0ID0IkTJ3Tx4kV5e3vbtHt7eys9Pb1YYzz33HPy8/OzCVFdu3bV/PnzlZycrIkTJ2r9+vWKjIzUxYsXCx0jLi5OHh4e1sXf3//aTwoAANi9KhVdwPV44403lJSUpHXr1snFxcXa3r9/f+ufW7ZsqVatWqlRo0Zat26d7r777gLjxMbGKiYmxrqelZVFCAIA4AZWoVeAPD095ejoqIyMDJv2jIwM+fj4XHHfyZMn64033tBXX32lVq1aXbFvw4YN5enpqX379hW63dnZWe7u7jYLAAC4cVVoAHJyclJQUJDNBObLE5pDQkKK3G/SpEl65ZVXtHr1arVr1+6qxzl8+LBOnjwpX1/fUqkbAABUbhX+FFhMTIxmzZqlefPmac+ePRoxYoRycnIUHR0tSRo0aJBiY2Ot/SdOnKiXXnpJc+bMUYMGDZSenq709HRlZ2dLkrKzs/XMM8/o+++/14EDB5ScnKxevXqpcePGioiIqJBzBAAA9qXC5wD169dPx48f19ixY5Wenq42bdpo9erV1onRqampcnD4X0577733lJeXp/vvv99mnHHjxunll1+Wo6OjfvrpJ82bN0+nT5+Wn5+funTpoldeeUXOzs7lem4AAMA+VXgAkqRRo0Zp1KhRhW5bt26dzfqBAweuOJarq6vWrFlTSpUBAIAbUYXfAgMAAChvBCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6dvEiRACoaOMt4yu6BBvjjHEVXQJwQ+MKEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0egwcA4AbHax4K4goQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHbsIQPHx8WrQoIFcXFwUHBysrVu3XrH/0qVL1bRpU7m4uKhly5ZatWqVzXbDMDR27Fj5+vrK1dVV4eHh+v3338vyFAAAQCVS4QFo8eLFiomJ0bhx47Rjxw61bt1aEREROnbsWKH9N2/erKioKA0bNkw7d+5U79691bt3b+3evdvaZ9KkSXr77beVkJCgLVu2qFq1aoqIiNC5c+fK67QAAIAdq/AANHXqVA0fPlzR0dFq1qyZEhIS5Obmpjlz5hTaf/r06erataueeeYZ3XrrrXrllVd02223acaMGZIuXf2ZNm2axowZo169eqlVq1aaP3++jh49quXLl5fjmQEAAHtVpSIPnpeXp+3btys2Ntba5uDgoPDwcKWkpBS6T0pKimJiYmzaIiIirOFm//79Sk9PV3h4uHW7h4eHgoODlZKSov79+5f+icCujbeMr+gSbIwzxhWrH3WXjuLWXVnx8y5f/LxvHBUagE6cOKGLFy/K29vbpt3b21u//vprofukp6cX2j89Pd26/XJbUX3+KTc3V7m5udb1zMxMSVJWVlYJzqb44jziymTcaxWbGXv1TpLOyb5uIRb3nw91lw7qLl/UXb6ou3yV1e/Xy+MahnH1zkYFOnLkiCHJ2Lx5s037M888Y7Rv377QfapWrWosXLjQpi0+Pt7w8vIyDMMwNm3aZEgyjh49atOnT58+Rt++fQsdc9y4cYYkFhYWFhYWlhtgOXTo0FUzSIVeAfL09JSjo6MyMjJs2jMyMuTj41PoPj4+Plfsf/l/MzIy5Ovra9OnTZs2hY4ZGxtrc1stPz9ff/75p+rUqSOLxVLi8yoPWVlZ8vf316FDh+Tu7l7R5RQbdZcv6i5f1F2+qLt8VYa6DcPQmTNn5Ofnd9W+FRqAnJycFBQUpOTkZPXu3VvSpfCRnJysUaNGFbpPSEiIkpOTNXr0aGvb2rVrFRISIkkKCAiQj4+PkpOTrYEnKytLW7Zs0YgRIwod09nZWc7OzjZtNWvWvK5zKy/u7u52+xfxSqi7fFF3+aLu8kXd5cve6/bw8ChWvwoNQJIUExOjwYMHq127dmrfvr2mTZumnJwcRUdHS5IGDRqkm266SXFxl+bNPPHEE+rYsaOmTJmibt26KSkpSdu2bdPMmTMlSRaLRaNHj9arr76qJk2aKCAgQC+99JL8/PysIQsAAJhbhQegfv366fjx4xo7dqzS09PVpk0brV692jqJOTU1VQ4O/3taPzQ0VAsXLtSYMWP0wgsvqEmTJlq+fLlatGhh7fPss88qJydHDz/8sE6fPq0OHTpo9erVcnFxKffzAwAA9qfCA5AkjRo1qshbXuvWrSvQ1qdPH/Xp06fI8SwWiyZMmKAJEyaUVol2x9nZWePGjStw687eUXf5ou7yRd3li7rLV2WtuygWwyjOs2IAAAA3jgp/EzQAAEB5IwABAADTIQABAADTIQABAADTIQCVgyFDhshisejRRx8tsG3kyJGyWCwaMmSITXtKSoocHR3VrVu3AvscOHBAFovFutSpU0ddunTRzp07rX3CwsJs+lxe/l7Da6+9ptDQULm5uRX64kd7rPvAgQMaNmyYAgIC5OrqqkaNGmncuHHKy8uz67olqWfPnqpXr55cXFzk6+urBx98UEePHrX7ui/Lzc1VmzZtZLFYtGvXLruvu0GDBgW2v/HGG3ZftyStXLlSwcHBcnV1Va1atWzeYWaPda9bt67Q7RaLRT/88IPd1i1Jv/32m3r16iVPT0+5u7urQ4cO+vbbb+365y1JO3bsUOfOnVWzZk05OzvLYrFo2LBhdlXj1X7HSJdeddOtWze5ubnJy8tLzzzzjC5cuFBo39JGACon/v7+SkpK0l9//WVtO3funBYuXKh69eoV6D979mz9+9//1oYNG2x+Sf7d119/rbS0NK1Zs0bZ2dmKjIzU6dOnrduHDx+utLQ0m2XSpEnW7Xl5eerTp0+Rb8i2x7p//fVX5efn6/3339cvv/yit956SwkJCXrhhRfsum5J6tSpk5YsWaK9e/dq2bJl+uOPP3T//ffbfd2XPfvss0W+Xt5e654wYYLN9n//+992X/eyZcv04IMPKjo6Wj/++KM2bdqkBx54wK7rDg0NLbDtoYceUkBAgNq1a2e3dUtS9+7ddeHCBX3zzTfavn27Wrdure7du9t8PNve6j569KjCw8PVuHFjbdmyRZ07d5aTk5M+/PBDu6lRuvrvmIsXL6pbt27Ky8vT5s2bNW/ePCUmJmrs2LGF9i91V/1aGK7b4MGDjV69ehktWrQwPvroI2v7ggULjFatWhm9evUyBg8ebG0/c+aMUb16dePXX381+vXrZ7z22ms24+3fv9+QZOzcudPadvkjsKtXrzYMwzA6duxoPPHEE8Wqb+7cuYaHh0elq/uySZMmGQEBAZWu7s8++8ywWCxGXl6e3de9atUqo2nTpsYvv/xSYEx7rbt+/frGW2+9VeR2e6z7/Pnzxk033WR88MEHlaruf8rLyzPq1q1rTJgwwa7rPn78uCHJ2LBhg7UtKyvLkGSsXbvWbut+//33DS8vL+PixYvWGjt16mRIMiZPnmwXNf5dUb9jVq1aZTg4OBjp6enWtvfee89wd3c3cnNzizX29eAKUDkaOnSo5s6da12fM2eO9ZMff7dkyRI1bdpUgYGBGjhwoObMmSPjKq9rcnV1lSSbW0Glxd7rzszMVO3atStV3X/++acWLFig0NBQVa1a1a7rzsjI0PDhw/Xhhx/Kzc2tyH72VrckvfHGG6pTp47atm2rN998s9BL6/ZU944dO3TkyBE5ODiobdu28vX1VWRkpHbv3m3Xdf/T559/rpMnTxZajz3VXadOHQUGBmr+/PnKycnRhQsX9P7778vLy0tBQUF2W3dubq6cnJxsvpLg6OhorcseaiyOlJQUtWzZ0vrlB0mKiIhQVlaWfvnll1I7TlEIQOVo4MCB2rhxow4ePKiDBw9q06ZNGjhwYIF+s2fPtrZ37dpVmZmZWr9+fZHjnj59Wq+88oqqV6+u9u3bW9vfffddVa9e3WZZsGDBDVX3vn379M477+iRRx6pFHU/99xzqlatmurUqaPU1FR99tlndl23YRgaMmSIHn30UZtbGYWxp7ol6fHHH1dSUpK+/fZbPfLII3r99df17LPP2nXd//3vfyVJL7/8ssaMGaMVK1aoVq1aCgsL059//mm3dRd2zIiICN18880FttlT3RaLRV9//bV27typGjVqyMXFRVOnTtXq1atVq1Ytu637rrvuUnp6ut58803l5eUpLy/PGhh+++03u6ixONLT023CjyTr+t9vQZYVu/gUhlnUrVtX3bp1U2JiogzDULdu3eTp6WnTZ+/evdq6das+/fRTSVKVKlXUr18/zZ49W2FhYTZ9Q0ND5eDgoJycHDVs2FCLFy+2+cs0YMAAvfjiizb7/PMvW2Wu+8iRI+ratav69Omj4cOHV4q6n3nmGQ0bNkwHDx7U+PHjNWjQIK1YsUIWi8Uu637nnXd05swZxcbGFvj5/pM91S1d+tDyZa1atZKTk5MeeeQRxcXF2bzK357qzs/PlyS9+OKLuu+++yRJc+fO1c0336ylS5faBH17qvvvDh8+rDVr1mjJkiUFttlb3YZhaOTIkfLy8tJ3330nV1dXffDBB+rRo4d++OEH+fr62mXdzZs317x58xQTE6PY2FgZhqGGDRvK29tbnp6edlFjZUAAKmdDhw61fvcsPj6+wPbZs2frwoULNpNNDcOQs7OzZsyYIQ8PD2v74sWL1axZM9WpU6fQGfYeHh5q3LjxDVn30aNH1alTJ4WGhmrmzJmVpm5PT095enrqlltu0a233ip/f399//33CgkJscu6v/nmG6WkpBT49k+7du00YMAAzZs3zy7rLkxwcLAuXLigAwcOKDAw0C7rvvwLt1mzZtY2Z2dnNWzYUKmpqQX620vdfzd37lzVqVNHPXv2LLKPvdT9zTffaMWKFTp16pTc3d0lXbqqsXbtWs2bN0/PP/+8XdYtSQ888IAeeOABZWRkKCYmRllZWVq1apWio6OVmJhoFzVejY+Pj7Zu3WrTlpGRYd1W1rgFVs66du2qvLw8nT9/XhERETbbLly4oPnz52vKlCnatWuXdfnxxx/l5+enRYsW2fT39/dXo0aNiny88Eat+8iRIwoLC1NQUJDmzp1rcx/cnuv+p8v/tZ+bm2u3db/99tv68ccfrcdYtWqVpEv/Ynzttdfstu7C7Nq1Sw4ODvLy8rLbuoOCguTs7Ky9e/da286fP68DBw6ofv36dlv3ZYZhaO7cuRo0aFCBuW32WPfZs2clqcC/QxwcHKz//7THuv/O29tbVatW1eHDh+Xi4qKnn37a7mosSkhIiH7++WcdO3bM2rZ27Vq5u7vb/EdAWeEKUDlzdHTUnj17rH/+u8v/JTJs2DCbFC5J9913n2bPnl3ouyiKcvbs2QL3UZ2dna33tlNTU/Xnn38qNTVVFy9etL7bpXHjxqpevbpd1n05/NSvX1+TJ0/W8ePHrX0K+y8Ge6l7y5Yt+uGHH9ShQwfVqlVLf/zxh1566SU1atSowNUfe6r7n4/PXv570ahRo0Lnd9hL3SkpKdqyZYs6deqkGjVqKCUlRU8++aQGDhxYYG6HPdXt7u6uRx99VOPGjZO/v7/q16+vN998U5LUp08fu637sm+++Ub79+/XQw89dMWx7KXukJAQ1apVS4MHD9bYsWPl6uqqWbNmaf/+/YW+H8de6pakGTNmKDQ0VNWrV9evv/6qn376SW+99Zbq1KljNzVe7XdMly5d1KxZMz344IOaNGmS0tPTNWbMGI0cObJ8vjhf1o+Z4X+PURbl8iOK3bt3N+65555C+2zZssWQZPz444+FPqL4Tx07djQkFVgiIiJs6iqsz7fffmu3dc+dO7fQ7X//q2yPdf/0009Gp06djNq1axvOzs5GgwYNjEcffdQ4fPiwXdf9T4WNaY91b9++3QgODjY8PDwMFxcX49ZbbzVef/1149y5c3Zdt2FceoT8qaeeMry8vIwaNWoY4eHhxu7du+2+bsMwjKioKCM0NLTQMey17h9++MHo0qWLUbt2baNGjRrGv/71L2PVqlV2X/eDDz5o1K5d23BycjJq1apl3HbbbXZX49V+xxiGYRw4cMCIjIw0XF1dDU9PT+Opp54yzp8/X+RxS5PFMK7y7BsAAMANhjlAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAFBMFotFy5cvL3b/l19+WW3atLlinyFDhqh3797XVReAkiMAAbiqIUOGyGKxFPqa/JEjR8pisWjIkCEFtqWkpMjR0bHQzwocOHBAFovFutSpU0ddunTRzp07rX3CwsJs+lxeinpdf48ePdS1a9dCt3333XeyWCz66aefinnWBaWlpSkyMvKa9wdgPwhAAIrF399fSUlJ+uuvv6xt586d08KFCwt8M+yy2bNn69///rc2bNigo0ePFtrn66+/VlpamtasWaPs7GxFRkbq9OnT1u3Dhw9XWlqazTJp0qRCxxo2bJjWrl2rw4cPF9g2d+5ctWvXTq1atSrBWV+Sl5cn6dL35srlG0UAyhwBCECx3HbbbfL399cnn3xibfvkk09Ur149tW3btkD/7OxsLV68WCNGjFC3bt2UmJhY6Lh16tSRj4+P2rVrp8mTJysjI0Nbtmyxbndzc5OPj4/N4u7uXuhY3bt3V926dQscKzs7W0uXLtWwYcN08uRJRUVF6aabbpKbm5tatmxZ4CvYYWFhGjVqlEaPHi1PT0/rV7X/eQvsueee0y233CI3Nzc1bNhQL730ks6fP1+grvfff1/+/v5yc3NT3759lZmZWWj9kpSfn6+4uDgFBATI1dVVrVu31scff2zdfurUKQ0YMEB169aVq6urmjRporlz5xY5HoDCEYAAFNvQoUNtftnOmTNH0dHRhfZdsmSJmjZtqsDAQA0cOFBz5szR1T496OrqKul/V1xKqkqVKho0aJASExNtjrV06VJdvHhRUVFROnfunIKCgrRy5Urt3r1bDz/8sB588EFt3brVZqx58+bJyclJmzZtUkJCQqHHq1GjhhITE/Wf//xH06dP16xZs/TWW2/Z9Nm3b5+WLFmiL774QqtXr9bOnTv12GOPFXkOcXFxmj9/vhISEvTLL79Yv2K/fv16SdJLL72k//znP/ryyy+1Z88evffee/L09LymnxdgauXyyVUAldrlL2IfO3bMcHZ2Ng4cOGAcOHDAcHFxMY4fP2792vTfhYaGGtOmTTMMwzDOnz9veHp62nwF+p9fnD516pRx7733GtWrVzfS09MNw7j0xemqVasa1apVs1k++uijImvds2dPgS9O33HHHcbAgQOL3Kdbt27GU089ZV3v2LGj0bZt2wL9JBmffvppkeO8+eabRlBQkHV93LhxhqOjo3H48GFr25dffmk4ODgYaWlphmHYfm383Llzhpubm7F582abcYcNG2ZERUUZhmEYPXr0MKKjo4usAUDxVKng/AWgEqlbt671dpZhGOrWrVuhVx/27t2rrVu36tNPP5V06cpMv379NHv2bIWFhdn0DQ0NlYODg3JyctSwYUMtXrxY3t7e1u0DBgzQiy++aLPP37f/U9OmTRUaGqo5c+YoLCxM+/bt03fffacJEyZIki5evKjXX39dS5Ys0ZEjR5SXl6fc3Fy5ubnZjBMUFHTVn8fixYv19ttv648//lB2drYuXLhQ4PZcvXr1dNNNN1nXQ0JClJ+fr71798rHx8em7759+3T27Fl17tzZpj0vL896m3HEiBG67777tGPHDnXp0kW9e/dWaGjoVWsFYIsABKBEhg4dqlGjRkmS4uPjC+0ze/ZsXbhwQX5+ftY2wzDk7OysGTNmyMPDw9q+ePFiNWvWTHXq1FHNmjULjOXh4aHGjRuXqMZhw4bp3//+t+Lj4zV37lw1atRIHTt2lCS9+eabmj59uqZNm6aWLVuqWrVqGj16dIHbbtWqVbviMVJSUjRgwACNHz9eERER8vDwUFJSkqZMmVKiWv8uOztbkrRy5Uqb0CTJOvk6MjJSBw8e1KpVq7R27VrdfffdGjlypCZPnnzNxwXMiDlAAEqka9euysvL0/nz562Tg//uwoULmj9/vqZMmaJdu3ZZlx9//FF+fn4FJhz7+/urUaNGhYafa9W3b185ODho4cKFmj9/voYOHSqLxSJJ2rRpk3r16qWBAweqdevWatiwoX777bcSH2Pz5s2qX7++XnzxRbVr105NmjTRwYMHC/RLTU21eQLu+++/l4ODgwIDAwv0bdasmZydnZWamqrGjRvbLP7+/tZ+devW1eDBg/XRRx9p2rRpmjlzZonrB8yOK0AASsTR0VF79uyx/vmfVqxYoVOnTmnYsGE2V3ok6b777tPs2bOLfI9PYc6ePav09HSbNmdnZ9WqVavIfapXr65+/fopNjZWWVlZNu8oatKkiT7++GNt3rxZtWrV0tSpU5WRkaFmzZoVu6bL46SmpiopKUm33367Vq5cab3l93cuLi4aPHiwJk+erKysLD3++OPq27dvgdtf0qVJ1U8//bSefPJJ5efnq0OHDsrMzNSmTZvk7u6uwYMHa+zYsQoKClLz5s2Vm5urFStW6NZbby1R7QC4AgTgGri7uxf5KPrs2bMVHh5eIPxIlwLQtm3bSvQywlmzZsnX19dmiYqKuup+w4YN06lTpxQREWFzK27MmDG67bbbFBERobCwMPn4+FzTm5h79uypJ598UqNGjVKbNm20efNmvfTSSwX6NW7cWP/v//0/3XPPPerSpYtatWqld999t8hxX3nlFb300kuKi4vTrbfeqq5du2rlypUKCAiQJDk5OSk2NlatWrXSnXfeKUdHRyUlJZW4fsDsLIZxledSAQAAbjBcAQIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKbz/wGv+ZTScaIQRQAAAABJRU5ErkJggg==\n" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } - ] - }, - { - "cell_type": "code", + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "# Assuming you have a list of precision values from precision1 to precision10\n", - "precision_values = [precision1, precision2, precision3, precision4, precision5, precision6, precision7, precision8, precision9, precision10]\n", + "precision_values = [precision1, precision2, precision2_1, precision3, precision4, precision5, precision6, precision7, precision8, precision8_1, precision9, precision10]\n", "\n", "# List of corresponding labels for each precision value\n", - "labels = ['Precision1', 'Precision2', 'Precision3', 'Precision4', 'Precision5', 'Precision6', 'Precision7', 'Precision8', 'Precision9', 'Precision10']\n", + "labels = ['Precision1', 'Precision2', 'Precision2_1', 'Precision3', 'Precision4', 'Precision5', 'Precision6', 'Precision7', 'Precision8', 'Precision8_1', 'Precision9', 'Precision10']\n", "\n", "# Plotting the bar graph\n", "plt.bar(labels, precision_values, color='red')\n", @@ -2608,39 +7062,39 @@ "plt.ylabel('Precision Values')\n", "plt.title('Bar Graph of Precision')\n", "plt.show()\n" - ], + ] + }, + { + "cell_type": "code", + "execution_count": 98, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 472 }, - "id": "ZDPV0M5rDTi6", - "outputId": "9db63164-3f42-47be-d302-d80d381d9b91" + "id": "39LBleNeDeuw", + "outputId": "66c1cd08-96bb-46bb-afd3-7792e2b71345" }, - "execution_count": 121, "outputs": [ { - "output_type": "display_data", "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFVUlEQVR4nO3df3zO9eL/8ee1za7NMD83msUwSjKaH01Gq62hRDkSObZZOYo4dnxEYeQci/Krg/TD73OKQh3FEc1RiSizQsjv0WHzc2Njy/b+/uG767hs2DWba3t73G+363Zr773f1+u59/V2Xc/evy6LYRiGAAAATMLF2QEAAABKEuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGQLk1btw4WSwWnTp1qtTHWrNmjVq0aCEPDw9ZLBadO3eu1McsLRaLRePGjbP9vGDBAlksFh0+fNhpmYCSRLkByqD8D5urHz4+PgoLC9O///3v257n888/V9euXeXr6yt3d3dVr15dHTp00JQpU5SRkXHb89xup0+f1jPPPCNPT0/NmjVLixcvlpeXV6HzXvvaubm5yc/PT9HR0frtt99uc3LgzuTm7AAAru/1119XQECADMNQamqqFixYoC5duujzzz/XE088Uerj5+XlKTY2VgsWLND999+vl156Sf7+/jp//rw2b96s0aNHa/Xq1UpMTCz1LM70ww8/6Pz585owYYLCw8OLtEz+a3fp0iV9//33WrBggTZu3KidO3fKw8OjlBMDdzbKDVCGde7cWa1atbL9HBsbK19fX3300UclUm7y8vKUk5Nz3Q/byZMna8GCBRo2bJimTJkii8Vi+93QoUN1/PhxLVq06JbGKA/S0tIkSVWrVi3yMle/ds8//7xq1qypSZMmaeXKlXrmmWdKIyaA/4/DUkA5UrVqVXl6esrNzf7/S9566y21a9dONWrUkKenp4KDg7Vs2bICy1ssFg0ePFj//Oc/dd9998lqtWrNmjWFjpWVlaVJkybpvvvu05tvvmlXbPLVqVNHr7zySpHHKE7OJk2ayMPDQ8HBwfrmm28KzXru3DlFR0eratWq8vb2VkxMjLKysgpfidf45JNPFBwcLE9PT9WsWVN9+/a1O3z08MMPKyoqSpLUunVrWSwWRUdHF+m5rxYaGipJOnDggN30PXv26A9/+IOqV68uDw8PtWrVSitXriz0bxw2bJjq168vq9WqunXrql+/frbzjXJycjR27FgFBwfL29tbXl5eCg0N1X/+8x+HswLlHXtugDIsPT1dp06dkmEYSktL09///ndduHBBffv2tZtvxowZevLJJ/Xcc88pJydHS5YsUc+ePfXFF1/o8ccft5t3/fr1+vjjjzV48GDVrFlT9evXL3TsjRs36ty5cxo+fLhcXV0dyn29MRzJ+fXXX2vp0qUaMmSIrFarZs+erU6dOmnr1q1q1qyZ3bzPPPOMAgIClJCQoKSkJH3wwQfy8fHRpEmTbphzwYIFiomJUevWrZWQkKDU1FTNmDFD3333nbZv366qVavqtddeU5MmTfTee+/ZDjU1bNjQofUhyXaybrVq1WzTdu3apYceekh+fn4aOXKkvLy89PHHH6t79+5avny5nnrqKUnShQsXFBoaqt27d6t///564IEHdOrUKa1cuVLHjh1TzZo1lZGRoQ8++EC9e/fWCy+8oPPnz2vu3LmKjIzU1q1b1aJFC4czA+WWAaDMmT9/viGpwMNqtRoLFiwoMH9WVpbdzzk5OUazZs2MRx55xG66JMPFxcXYtWvXTTPMmDHDkGR89tlndtMvX75snDx50u6Rl5dXpDEcySnJ+PHHH23Tjhw5Ynh4eBhPPfWUbVp8fLwhyejfv7/d8k899ZRRo0aNG/59OTk5ho+Pj9GsWTPj4sWLtulffPGFIckYO3asbVr+6/HDDz/c8Dmvnverr74yTp48aRw9etRYtmyZUatWLcNqtRpHjx61zfvoo48a999/v3Hp0iXbtLy8PKNdu3ZGYGCgbdrYsWMNScaKFSsKjJe/7i9fvmxkZ2fb/e7s2bOGr69vgfUjyYiPjy+Q+dChQzf9+4DygMNSQBk2a9YsrVu3TuvWrdM//vEPhYWF6fnnn9eKFSvs5vP09LT999mzZ5Wenq7Q0FAlJSUVeM6OHTuqadOmNx07/yqoSpUq2U3fsWOHatWqZfc4ffp0kcZwJGdISIiCg4NtP999993q1q2bvvzyS+Xm5trNO3DgQLufQ0NDdfr06RteyfXjjz8qLS1NL730kt35QI8//rjuuecerVq16rrLFkV4eLhq1aolf39//eEPf5CXl5dWrlypunXrSpLOnDmj9evX65lnntH58+d16tQpnTp1SqdPn1ZkZKT27dtnOzy2fPlyBQUF2fbkXC3/cKGrq6vc3d0lXTnP6cyZM7p8+bJatWpV6PoFzIzDUkAZ1qZNG7sTinv37q2WLVtq8ODBeuKJJ2wfZl988YX++te/Kjk5WdnZ2bb5CztPJiAgoEhjV65cWdKVQyJXa9SokdatWydJWrRokRYvXlzkMRzJGRgYWGBa48aNlZWVpZMnT6p27dq26XfffbfdfPmHfs6ePasqVaoUmuXIkSOSpCZNmhT43T333KONGzcWulxRzZo1S40bN1Z6errmzZunb775Rlar1fb7/fv3yzAMjRkzRmPGjCn0OdLS0uTn56cDBw6oR48eNx1z4cKFmjJlivbs2aPff//dNr2orzlgFpQboBxxcXFRWFiYZsyYoX379um+++7Tt99+qyeffFIdOnTQ7NmzVadOHVWoUEHz58/Xhx9+WOA5rt57ciP33HOPJGnnzp3q1q2bbXqlSpVsl0NfrwAUNoajOR1xvXOCDMO4pee9FVcX0+7du6t9+/bq06eP9u7dq0qVKikvL0+SNHz4cEVGRhb6HI0aNSryeP/4xz8UHR2t7t276//+7//k4+MjV1dXJSQkFDiJGTA7yg1Qzly+fFnS//aoLF++XB4eHvryyy/t9gzMnz//lsYJDQ2Vt7e3lixZolGjRsnF5daOYjuac9++fQWm/frrr6pYsaJq1ap1S1kkqV69epKkvXv36pFHHrH73d69e22/Lwn5JSMsLEwzZ87UyJEj1aBBA0lShQoVbnrvnIYNG2rnzp03nGfZsmVq0KCBVqxYYbcnLD4+/tb/AKCc4ZwboBz5/ffftXbtWrm7u+vee++VdOWD02Kx2J2HcvjwYX322We3NFbFihU1YsQI7dy5UyNHjix0L4gje0Yczbl582a7c0WOHj2qf/3rX3rsscccvnqrMK1atZKPj4/mzJljd4js3//+t3bv3l3g6q1b9fDDD6tNmzaaPn26Ll26JB8fHz388MN69913dfz48QLznzx50vbfPXr00E8//aRPP/20wHz5r0H+Orn6NdmyZYs2b95con8HUB6w5wYow/79739rz549kq6cf/Hhhx9q3759GjlypO1ckscff1xTp05Vp06d1KdPH6WlpWnWrFlq1KiRfv7551saf+TIkdq9e7fefPNNrV27Vj169FDdunV19uxZJSUl6ZNPPpGPj0+RbtDnaM5mzZopMjLS7lJwSRo/fvwt/U35KlSooEmTJikmJkYdO3ZU7969bZeC169fX8OGDSuRca72f//3f+rZs6cWLFiggQMHatasWWrfvr3uv/9+vfDCC2rQoIFSU1O1efNmHTt2TD/99JNtuWXLlqlnz57q37+/goODdebMGa1cuVJz5sxRUFCQnnjiCa1YsUJPPfWUHn/8cR06dEhz5sxR06ZNC5w3BZieMy/VAlC4wi4F9/DwMFq0aGG88847dpdeG4ZhzJ071wgMDDSsVqtxzz33GPPnz7ddJn01ScagQYMczvPpp58aXbp0MWrVqmW4ubkZVatWNdq3b2+8+eabxrlz54o8hqM5//GPf9jmb9mypfGf//zHbr78ZU+ePGk33ZFLm5cuXWq0bNnSsFqtRvXq1Y3nnnvOOHbsWKHP58il4IXNm5ubazRs2NBo2LChcfnyZcMwDOPAgQNGv379jNq1axsVKlQw/Pz8jCeeeMJYtmyZ3bKnT582Bg8ebPj5+Rnu7u5G3bp1jaioKOPUqVOGYVy5JHzixIlGvXr1bOvriy++MKKioox69erZPZe4FBwmZzEMJ55xBwCFsFgsGjRokGbOnOnsKADKIc65AQAApkK5AQAApkK5AQAApsLVUgDKHE4FBHAr2HMDAABMhXIDAABM5Y47LJWXl6f//ve/qly5cqFf1gcAAMoewzB0/vx53XXXXTf9Opg7rtz897//lb+/v7NjAACAYjh69Kjq1q17w3nuuHJTuXJlSVdWTv7t6wEAQNmWkZEhf39/2+f4jdxx5Sb/UFSVKlUoNwAAlDNFOaWEE4oBAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpOLXcfPPNN+ratavuuusuWSwWffbZZzddZsOGDXrggQdktVrVqFEjLViwoNRzAgCA8sOp5SYzM1NBQUGaNWtWkeY/dOiQHn/8cYWFhSk5OVl//vOf9fzzz+vLL78s5aQAAKC8cOoXZ3bu3FmdO3cu8vxz5sxRQECApkyZIkm69957tXHjRk2bNk2RkZGlFRMAAJQj5eqcm82bNys8PNxuWmRkpDZv3uykRAAAoKxx6p4bR504cUK+vr5203x9fZWRkaGLFy/K09OzwDLZ2dnKzs62/ZyRkVHqOQEAgPOUqz03xZGQkCBvb2/bw9/f39mRnMLixEd5zAUAKL/KVbmpXbu2UlNT7aalpqaqSpUqhe61kaRRo0YpPT3d9jh69OjtiAoAKGH8jxCKqlwdlgoJCdHq1avtpq1bt04hISHXXcZqtcpqtZZ2NAAAyhRnFjPDiWNLTt5zc+HCBSUnJys5OVnSlUu9k5OTlZKSIunKXpd+/frZ5h84cKAOHjyoESNGaM+ePZo9e7Y+/vhjDRs2zBnxAZQDHPp0HOsL5Z1Ty82PP/6oli1bqmXLlpKkuLg4tWzZUmPHjpUkHT9+3FZ0JCkgIECrVq3SunXrFBQUpClTpuiDDz7gMnAAAGBjMQzD2XuPbquMjAx5e3srPT1dVapUcXac26as7p4sq7lgHmxjjnPWOrvZ+iqrucoqs237jnx+l6sTigEAAG6GcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEzFzdkBAAAozyxOHNtw4thlGeUGKGec9UZ6szfRspoLwJ2Hw1IAAMBUKDcAAMBUKDcAAMBUKDcAAMBUKDcAAMBUuFoKAJyAy4eB0sOeGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCpcLQUUgitZAKD8Ys8NAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFaeXm1mzZql+/fry8PBQ27ZttXXr1hvOP336dDVp0kSenp7y9/fXsGHDdOnSpduU9uYsTnoAAIArnFpuli5dqri4OMXHxyspKUlBQUGKjIxUWlpaofN/+OGHGjlypOLj47V7927NnTtXS5cu1auvvnqbkwMAgLLKqeVm6tSpeuGFFxQTE6OmTZtqzpw5qlixoubNm1fo/Js2bdJDDz2kPn36qH79+nrsscfUu3fvm+7tAQAAdw6nlZucnBxt27ZN4eHh/wvj4qLw8HBt3ry50GXatWunbdu22crMwYMHtXr1anXp0uW642RnZysjI8PuAQAAzMvNWQOfOnVKubm58vX1tZvu6+urPXv2FLpMnz59dOrUKbVv316GYejy5csaOHDgDQ9LJSQkaPz48SWaHQAAlF1OP6HYERs2bNDEiRM1e/ZsJSUlacWKFVq1apUmTJhw3WVGjRql9PR02+Po0aO3MTEAALjdnLbnpmbNmnJ1dVVqaqrd9NTUVNWuXbvQZcaMGaM//vGPev755yVJ999/vzIzMzVgwAC99tprcnEp2NWsVqusVmvJ/wEAAKBMctqeG3d3dwUHBysxMdE2LS8vT4mJiQoJCSl0maysrAIFxtXVVZJkGEbphQUAAOWG0/bcSFJcXJyioqLUqlUrtWnTRtOnT1dmZqZiYmIkSf369ZOfn58SEhIkSV27dtXUqVPVsmVLtW3bVvv379eYMWPUtWtXW8kBAAB3NqeWm169eunkyZMaO3asTpw4oRYtWmjNmjW2k4xTUlLs9tSMHj1aFotFo0eP1m+//aZatWqpa9eu+tvf/uasPwEAAJQxFuMOO56TkZEhb29vpaenq0qVKiX+/M66W/DNXkRn3sX4RtnIVVBZfS3J5Ti2MceQy3HldRsrDkc+v8vV1VIAAAA3Q7kBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACm4nC5uXjxorKysmw/HzlyRNOnT9fatWtLNBgAAEBxOFxuunXrpkWLFkmSzp07p7Zt22rKlCnq1q2b3nnnnRIPCAAA4AiHy01SUpJCQ0MlScuWLZOvr6+OHDmiRYsW6e233y7xgAAAAI5wuNxkZWWpcuXKkqS1a9fq6aeflouLix588EEdOXKkxAMCAAA4wuFy06hRI3322Wc6evSovvzySz322GOSpLS0NFWpUqXEAwIAADjC4XIzduxYDR8+XPXr11ebNm0UEhIi6cpenJYtW5Z4QAAAAEdYDMMwHF3oxIkTOn78uIKCguTicqUfbd26VVWqVNE999xT4iFLUkZGhry9vZWenl4qe5osJf6MRXOzF9FZuaQbZyNXQWX1tSSX49jGHEMux5XXbaw4HPn8LtZ9bmrXrq3KlStr3bp1unjxoiSpdevWZb7YAAAA83O43Jw+fVqPPvqoGjdurC5duuj48eOSpNjYWP3lL38p8YAAAACOcLjcDBs2TBUqVFBKSooqVqxom96rVy+tWbOmRMMBAAA4ys3RBdauXasvv/xSdevWtZseGBjIpeAAAMDpHN5zk5mZabfHJt+ZM2dktVpLJBQAAEBxOVxuQkNDbV+/IEkWi0V5eXmaPHmywsLCSjQcAACAoxwuN5MnT9Z7772nzp07KycnRyNGjFCzZs30zTffaNKkSQ4HmDVrlurXry8PDw+1bdtWW7duveH8586d06BBg1SnTh1ZrVY1btxYq1evdnhcAABgTg6Xm2bNmunXX39V+/bt1a1bN2VmZurpp5/W9u3b1bBhQ4eea+nSpYqLi1N8fLySkpIUFBSkyMhIpaWlFTp/Tk6OIiIidPjwYS1btkx79+7V+++/Lz8/P0f/DAAAYFLFuolfSWnbtq1at26tmTNnSpLy8vLk7++vl19+WSNHjiww/5w5c/Tmm29qz549qlChQrHG5CZ+t195vMlUWc0lsY1dq6zmktjGHEUux5XXbaw4HPn8dvhqqW+++eaGv+/QoUORnicnJ0fbtm3TqFGjbNNcXFwUHh6uzZs3F7rMypUrFRISokGDBulf//qXatWqpT59+uiVV16Rq6troctkZ2crOzvb9nNGRkaR8gEAgPLJ4XLz8MMPF5hmsfyvH+bm5hbpeU6dOqXc3Fz5+vraTff19dWePXsKXebgwYNav369nnvuOa1evVr79+/XSy+9pN9//13x8fGFLpOQkKDx48cXKRMAACj/HD7n5uzZs3aPtLQ0rVmzRq1bt9batWtLI6NNXl6efHx89N577yk4OFi9evXSa6+9pjlz5lx3mVGjRik9Pd32OHr0aKlmBAAAzuXwnhtvb+8C0yIiIuTu7q64uDht27atSM9Ts2ZNubq6KjU11W56amqqateuXegyderUUYUKFewOQd177706ceKEcnJy5O7uXmAZq9XK/XcAALiDFOuLMwvj6+urvXv3Fnl+d3d3BQcHKzEx0TYtLy9PiYmJCgkJKXSZhx56SPv371deXp5t2q+//qo6deoUWmwAAMCdx+E9Nz///LPdz4Zh6Pjx43rjjTfUokULh54rLi5OUVFRatWqldq0aaPp06crMzNTMTExkqR+/frJz89PCQkJkqQXX3xRM2fO1NChQ/Xyyy9r3759mjhxooYMGeLonwEAAEzK4XLTokULWSwWXXsF+YMPPqh58+Y59Fy9evXSyZMnNXbsWJ04cUItWrTQmjVrbCcZp6SkyMXlfzuX/P399eWXX2rYsGFq3ry5/Pz8NHToUL3yyiuO/hkAAMCkHL7PzbVfjuni4qJatWrJw8OjRIOVFu5zc/uVx/swlNVcEtvYtcpqLoltzFHkclx53caKo1Tvc1OvXr1iBwMAAChtRSo3b7/9dpGfkPNfAACAMxXpsFRAQEDRnsxi0cGDB285VGnisNTtVx53m5bVXBLb2LXKai6JbcxR5HJced3GiqPED0sdOnSoRIIBAACUthK7zw0AAEBZ4PAJxZJ07NgxrVy5UikpKcrJybH73dSpU0skGAAAQHE4XG4SExP15JNPqkGDBtqzZ4+aNWumw4cPyzAMPfDAA6WREQAAoMgcPiw1atQoDR8+XDt27JCHh4eWL1+uo0ePqmPHjurZs2dpZAQAACgyh8vN7t271a9fP0mSm5ubLl68qEqVKun111/XpEmTSjwgAACAIxwuN15eXrbzbOrUqaMDBw7Yfnfq1KmSSwYAAFAMDp9z8+CDD2rjxo2699571aVLF/3lL3/Rjh07tGLFCj344IOlkREAAKDIilxuzpw5o+rVq2vq1Km6cOGCJGn8+PG6cOGCli5dqsDAQK6UAgAATlfkL8708PBQ9+7dFRsbq4iIiNLOVWq4Q/HtVx7voFlWc0lsY9cqq7kktjFHkctx5XUbKw5HPr+LfM7N+++/r5MnT6pTp06qX7++xo0bp8OHD99qVgAAgBJV5HLzxz/+UYmJidq/f7+ioqK0cOFCNWrUSBEREVq6dGmBm/kBAAA4g8NXSwUEBGj8+PE6dOiQ1qxZIx8fH/Xv31916tThG8EBAIDTFfmcmxtZvny5BgwYoHPnzik3N7ckcpUazrm5/crjMeGymktiG7tWWc0lsY05ilyOK6/bWHGU+LeCF+bIkSOaP3++Fi5cqKNHjyosLEyxsbHFfToAAIAS4VC5yc7O1vLlyzVv3jxt2LBBfn5+io6OVkxMjOrXr19KEQEAAIquyOXmpZde0pIlS5SVlaVu3bpp9erVioiIkMXizB1fAAAA9opcbjZu3Kj4+Hj17dtXNWrUKM1MAAAAxVbkcvPzzz+XZg4AAIAS4fCl4AAAAGUZ5QYAAJgK5QYAAJgK5QYAAJhKkU4oduRk4ubNmxc7DAAAwK0qUrlp0aKFLBaLrvdNDfm/s1gsZf7rFwAAgLkVqdwcOnSotHMAAACUiCKVm3r16pV2DgAAgBJRpHKzcuXKIj/hk08+WewwAAAAt6pI5aZ79+5FejLOuQEAAM5WpHKTl5dX2jkAAABKBPe5AQAAplLkL868WmZmpr7++mulpKQoJyfH7ndDhgwpkWAAAADF4XC52b59u7p06aKsrCxlZmaqevXqOnXqlCpWrCgfHx/KDQAAcCqHD0sNGzZMXbt21dmzZ+Xp6anvv/9eR44cUXBwsN56663SyAgAAFBkDpeb5ORk/eUvf5GLi4tcXV2VnZ0tf39/TZ48Wa+++mppZAQAACgyh8tNhQoV5OJyZTEfHx+lpKRIkry9vXX06NGSTQcAAOAgh8+5admypX744QcFBgaqY8eOGjt2rE6dOqXFixerWbNmpZERAACgyBzeczNx4kTVqVNHkvS3v/1N1apV04svvqiTJ0/q3XffLfGAAAAAjrAY1/uqb5PKyMiQt7e30tPTVaVKlRJ/fkuJP2PR3OxFdFYu6cbZyFVQWX0tyeU4tjHHkMtx5XUbKw5HPr8d3nNz6NAh7du3r8D0ffv26fDhw44+HQAAQIlyuNxER0dr06ZNBaZv2bJF0dHRJZEJAACg2BwuN9u3b9dDDz1UYPqDDz6o5OTkksgEAABQbA6XG4vFovPnzxeYnp6ezjeCAwAAp3O43HTo0EEJCQl2RSY3N1cJCQlq3759iYYDAABwlMP3uZk0aZI6dOigJk2aKDQ0VJL07bffKiMjQ+vXry/xgAAAAI5weM9N06ZN9fPPP+uZZ55RWlqazp8/r379+mnPnj3cxA8AADgd97kpYdyHoaDyeB+GsppLYhu7VlnNJbGNOYpcjiuv21hxlOp9bqQrh6H69u2rdu3a6bfffpMkLV68WBs3bizO0wEAAJQYh8vN8uXLFRkZKU9PTyUlJSk7O1vSlaulJk6cWOIBAQAAHOFwufnrX/+qOXPm6P3331eFChVs0x966CElJSWVaDgAAABHOVxu9u7dqw4dOhSY7u3trXPnzpVEJgAAgGJzuNzUrl1b+/fvLzB948aNatCgQYmEAgAAKC6Hy80LL7ygoUOHasuWLbJYLPrvf/+rf/7znxo+fLhefPHF0sgIAABQZA7fxG/kyJHKy8vTo48+qqysLHXo0EFWq1XDhw/Xyy+/XBoZAQAAiqzY97nJycnR/v37deHCBTVt2lSVKlXSxYsX5enpWdIZSxT3ubn9yuN9GMpqLolt7FplNZfENuYocjmuvG5jxVHq97mRJHd3dzVt2lRt2rRRhQoVNHXqVAUEBBT36QAAAEpEkctNdna2Ro0apVatWqldu3b67LPPJEnz589XQECApk2bpmHDhpVWTgAAgCIpcrkZO3as3nnnHdWvX1+HDx9Wz549NWDAAE2bNk1Tp07V4cOH9corrxQrxKxZs1S/fn15eHiobdu22rp1a5GWW7JkiSwWi7p3716scQEAgPkUudx88sknWrRokZYtW6a1a9cqNzdXly9f1k8//aRnn31Wrq6uxQqwdOlSxcXFKT4+XklJSQoKClJkZKTS0tJuuNzhw4c1fPhw2zeTAwAASA6Um2PHjik4OFiS1KxZM1mtVg0bNkwWy62dsjR16lS98MILiomJUdOmTTVnzhxVrFhR8+bNu+4yubm5eu655zR+/HjurQMAAOwUudzk5ubK3d3d9rObm5sqVap0S4Pn5ORo27ZtCg8P/18gFxeFh4dr8+bN113u9ddfl4+Pj2JjY286RnZ2tjIyMuweAADAvIp8nxvDMBQdHS2r1SpJunTpkgYOHCgvLy+7+VasWFHkwU+dOqXc3Fz5+vraTff19dWePXsKXWbjxo2aO3eukpOTizRGQkKCxo8fX+RMAACgfCtyuYmKirL7uW/fviUe5mbOnz+vP/7xj3r//fdVs2bNIi0zatQoxcXF2X7OyMiQv79/aUUEAABOVuRyM3/+/BIfvGbNmnJ1dVVqaqrd9NTUVNWuXbvA/AcOHNDhw4fVtWtX27S8vDxJVw6T7d27Vw0bNrRbxmq12vY2AQAA8yv2TfxKgru7u4KDg5WYmGiblpeXp8TERIWEhBSY/5577tGOHTuUnJxsezz55JMKCwtTcnIye2QAAIDj3y1V0uLi4hQVFaVWrVqpTZs2mj59ujIzMxUTEyNJ6tevn/z8/JSQkCAPDw81a9bMbvmqVatKUoHpAADgzuT0ctOrVy+dPHlSY8eO1YkTJ9SiRQutWbPGdpJxSkqKXFycuoMJAACUI8X+4szyii/OvP3K4xe7ldVcEtvYtcpqLoltzFHkclx53caK47Z8cSYAAEBZRLkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmUibKzaxZs1S/fn15eHiobdu22rp163Xnff/99xUaGqpq1aqpWrVqCg8Pv+H8AADgzuL0crN06VLFxcUpPj5eSUlJCgoKUmRkpNLS0gqdf8OGDerdu7f+85//aPPmzfL399djjz2m33777TYnBwAAZZHFMAzDmQHatm2r1q1ba+bMmZKkvLw8+fv76+WXX9bIkSNvunxubq6qVaummTNnql+/fjedPyMjQ97e3kpPT1eVKlVuOf+1LCX+jEVzsxfRWbmkG2cjV0Fl9bUkl+PYxhxDLseV122sOBz5/HbqnpucnBxt27ZN4eHhtmkuLi4KDw/X5s2bi/QcWVlZ+v3331W9evVCf5+dna2MjAy7BwAAMC+nlptTp04pNzdXvr6+dtN9fX114sSJIj3HK6+8orvuusuuIF0tISFB3t7etoe/v/8t5wYAAGWX08+5uRVvvPGGlixZok8//VQeHh6FzjNq1Cilp6fbHkePHr3NKQEAwO3k5szBa9asKVdXV6WmptpNT01NVe3atW+47FtvvaU33nhDX331lZo3b37d+axWq6xWa4nkBQAAZZ9T99y4u7srODhYiYmJtml5eXlKTExUSEjIdZebPHmyJkyYoDVr1qhVq1a3IyoAACgnnLrnRpLi4uIUFRWlVq1aqU2bNpo+fboyMzMVExMjSerXr5/8/PyUkJAgSZo0aZLGjh2rDz/8UPXr17edm1OpUiVVqlTJaX8HAAAoG5xebnr16qWTJ09q7NixOnHihFq0aKE1a9bYTjJOSUmRi8v/djC98847ysnJ0R/+8Ae754mPj9e4ceNuZ3QAAFAGOf0+N7cb97m5/crjfRjKai6JbexaZTWXxDbmKHI5rrxuY8VRbu5zAwAAUNIoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFTKRLmZNWuW6tevLw8PD7Vt21Zbt2694fyffPKJ7rnnHnl4eOj+++/X6tWrb1NSAABQ1jm93CxdulRxcXGKj49XUlKSgoKCFBkZqbS0tELn37Rpk3r37q3Y2Fht375d3bt3V/fu3bVz587bnBwAAJRFFsMwDGcGaNu2rVq3bq2ZM2dKkvLy8uTv76+XX35ZI0eOLDB/r169lJmZqS+++MI27cEHH1SLFi00Z86cm46XkZEhb29vpaenq0qVKiX3h/x/lhJ/xqK52YvorFzSjbORq6Cy+lqSy3FsY44hl+PK6zZWHI58fjt1z01OTo62bdum8PBw2zQXFxeFh4dr8+bNhS6zefNmu/klKTIy8rrzAwCAO4ubMwc/deqUcnNz5evrazfd19dXe/bsKXSZEydOFDr/iRMnCp0/Oztb2dnZtp/T09MlXWmAZlKW/5qymo1cjiGX48pqNnI5pqzmksputtLIlf+5XZQDTk4tN7dDQkKCxo8fX2C6v7+/E9KUHm9nB7iBspqNXI4hl+PKajZyOaas5pLKbrbSzHX+/Hl5e994BKeWm5o1a8rV1VWpqal201NTU1W7du1Cl6ldu7ZD848aNUpxcXG2n/Py8nTmzBnVqFFDFoszj0jay8jIkL+/v44ePVoq5wIVV1nNJZXdbORyDLkcV1azkcsx5HKMYRg6f/687rrrrpvO69Ry4+7uruDgYCUmJqp79+6SrpSPxMREDR48uNBlQkJClJiYqD//+c+2aevWrVNISEih81utVlmtVrtpVatWLYn4paJKlSplamPKV1ZzSWU3G7kcQy7HldVs5HIMuYruZnts8jn9sFRcXJyioqLUqlUrtWnTRtOnT1dmZqZiYmIkSf369ZOfn58SEhIkSUOHDlXHjh01ZcoUPf7441qyZIl+/PFHvffee878MwAAQBnh9HLTq1cvnTx5UmPHjtWJEyfUokULrVmzxnbScEpKilxc/ndRV7t27fThhx9q9OjRevXVVxUYGKjPPvtMzZo1c9afAAAAyhCnlxtJGjx48HUPQ23YsKHAtJ49e6pnz56lnOr2slqtio+PL3AIzdnKai6p7GYjl2PI5biymo1cjiFX6XH6TfwAAABKktO/fgEAAKAkUW4AAICpUG4AAICpUG7KGYvFos8++0ySdPjwYVksFiUnJzs1Uz5nZSvL6+RGympucjmurGYjV9kY91aVldxlJUdRUG4cEB0dLYvFIovFogoVKiggIEAjRozQpUuXnB3NLlv+w8fHp9SzXT2uJP3pT3/SiBEj7L7PS5J++ukn9e7dW/7+/vL09NS9996rGTNmlGq2G41b1Nfy+PHj6tOnjxo3biwXFxe7m0eWhrFjx9pyubi4yM3NTa6urqpbt64GDx7stO9EuzpX/vp6+eWX5efnJ4vFonPnzjkll1T4tp//WLJkidNyXbvOatWqpVq1aslqtcrHx0eDBg1yeq7rPdLS0kp83KK+V0jSDz/8oEcffVRVq1ZVtWrVFBkZqZ9++qnEMxVl3CeffLJI7xWXLl1SdHS07r//frm5udluTFtS3n77bVksFgUEBEiSHn/8cVuOxMREtWvXTpUrV1bt2rX1yiuv6PLlyyU6flEMGTJEwcHBslqtatGiRaHz/PzzzwoNDZWHh4f8/f01efLkUslCuXFQp06ddPz4cR08eFDTpk3Tu+++q/j4eGfHknQlW//+/TVhwgR17NhRp0+fvi3Z8teJJPXv31/vvvuupk2bZjfPtm3b5OPjo3/84x/atWuXXnvtNY0aNUozZ84s1WzXG3f37t1Fei2zs7NVq1YtjR49WkFBQaWaNV+nTp20e/duTZgwQW+88Ya8vLzUvn17ffXVVxo4cOBtyXC9XFevrzlz5pSZS0U7deokSXrrrbc0b948Va5cWYMGDSrxD5ji5Dp+/LhGjhyp3NxcZWZmKjo6Wl999ZUiIyOdmuvgwYP68ccf7dZXZGSkOnbsKB8fn1Ib92bvFRcuXFCnTp109913a8uWLdq4caMqV66syMhI/f7776WS60bjrlu3TpGRkTd9r8jNzZWnp6eGDBmi8PDwUsnYqVMnbd26VZI0fPhwvfvuu3rxxRfVpUsXderUSdu3b9fSpUu1cuVKjRw5slQy3Ez//v3Vq1evQn+XkZGhxx57TPXq1dO2bdv05ptvaty4caVyE17KjYOsVqtq164tf39/de/eXeHh4Vq3bp2kK18dkZCQoICAAHl6eiooKEjLli2zW37Xrl164oknVKVKFVWuXFmhoaE6cOCApCv/1xAREaGaNWvK29tbHTt2VFJSkkPZ5s6dq9GjR+vhhx+2/cMs7Wz560SS2rZtq/DwcG3cuNFu3AkTJui9997TkCFDlJSUpL59+yomJkYrVqwo1XXSv39/zZgxQx07dlSDBg1s46akpBTptQwLC9N7772nKVOmKCcn57a8llarVffcc49ee+01DR8+XBEREfr111/10ksv6ZtvvnHaNnb1+jp+/LiqVq0qV1dXu/XlzG1fkho2bKiYmBhFRERo06ZN8vDwcGq2/K9/mTJlij755BN17txZP/zwg5o3b64nnnjCqbkCAgIUHBxsW1/ffPON1q9fr5iYGKe+VzRp0kRnzpzRli1btGPHDt13332Kj49Xamqqvvrqq1Lbhvbs2aMzZ87o9ddfV5MmTWzjXrp0Sbm5uTd9r2jWrJkWLFigmTNnFtirU1Kvo9VqVa1atSRJYWFhCg8P17///W81b95co0eP1ieffKLo6GgdPHhQU6dO1eLFi0slx/W8/fbbGjRokBo0aFDo7//5z38qJydH8+bN03333adnn31WQ4YM0dSpUx0apygoN7dg586d2rRpk9zd3SVd+QbyRYsWac6cOdq1a5eGDRumvn376uuvv5Yk/fbbb+rQoYOsVqvWr1+vbdu2qX///rbdh+fPn1dUVJQ2btyo77//XoGBgerSpYvOnz/vcLa0tDRlZmaWerZr/0/qyJEj2rRpkypUqCBJmjdv3nXHTU9Pl6en521bJ/nS09ML7HEoymu5e/duHTt27JbWl6O583NJ0ooVK1SzZk2nb2O//PKLxowZY9tNL0lTp051ei5JGjRokKpWrarPP/9c6enpMgzD6f8u161bp7y8PG3ZskX/+te/tHPnTj3zzDMaOXJkmVhn+dtYenq6KlasqEOHDjn1vWLmzJmqWrWqGjdurL59+2rt2rWaO3euGjVqpL59+5ba+mjSpIlq1KihuXPnKicnRxcvXtTcuXPl7e2tihUrFlhfN3qv+Pbbb3Xq1KlSfR3379+vTZs2yWKxyMPDwy7HBx98IMMwFBsb65TPn+vZvHmzOnToYFt3khQZGam9e/fq7NmzJTaOJMlAkUVFRRmurq6Gl5eXYbVaDUmGi4uLsWzZMuPSpUtGxYoVjU2bNtktExsba/Tu3dswDMMYNWqUERAQYOTk5BRpvNzcXKNy5crG559/bpsmyfj0008NwzCMQ4cOGZKM7du3F5pNUqlne+SRR2zj5o/p4uJizJ4925BkeHh4FDpuRESE4ebmZvTq1avU1klhvvvuO8PNzc2IiIhw+LWsXbu20bhx41taXzfL3bVr10JfR0lGly5dnLaNXZ3LYrHY1te4ceMMSWVi23d3dzfc3d0NSYbFYjHc3NyMKVOmOH2d5WfKX2cTJ040wsLCDIvFYnz99ddOy3Xttu/n52cMGDCgTLxX7Nixw2jYsKFtviZNmhgvvfRSqb9X5I/r4uJiuLi4GE2aNDF69Ojh8HtFYGCg4efnd0vr69rcYWFhhqurq1GxYkW79Td69GjDYrEYVqvV+Pbbb41jx44ZoaGhhiTj4Ycfvi3/Bq8VHx9vBAUFFZgeERFhDBgwwG7arl27DEnGL7/8UqRcRVUmvn6hPAkLC9M777yjzMxMTZs2TW5uburRo4d27dqlrKwsRURE2M2fk5Ojli1bSpKSk5MVGhpq+z+Va6Wmpmr06NHasGGD0tLSlJubq6ysLKWkpDicLSoqSkePHi31bJmZmbZxAwMDFRYWpgYNGqhz586Srpxkd+24+ScQxsfHa9OmTaW6Tq62c+dOdevWTfHx8dq/f7/Dr2VWVpaM/39D79J8La/ONXHiROXm5qpfv34aNmyYU7exsLAw+fv767ffflOdOnXk5uamjh072tZNWdn281/Lu+66S5MnT3b6OmvevLmmTp2qiIgI3X333Ro1apTat2+vDh06KDIy0nZo73bnunp9nTlzRp9//rkeffRRvffee05/r7h48aLthPrGjRvr3nvv1aJFi9StW7dS24YuXryo2NhYPfTQQ/roo4+Um5urt956S4mJierYsaPefffdIr9XXLx40fZt2iX5OoaFhem1115TWFiYunbtKh8fH02YMEHZ2dl68803FRoaKkm2PSPffvutgoODSzxHeUC5cZCXl5caNWok6cpu1KCgIM2dO9f2xZ2rVq2Sn5+f3TL5h0A8PT1v+NxRUVE6ffq0ZsyYoXr16slqtSokJKTAuR5FydatWzdNnjy51LPl5eXZjTt48GDFx8dr6dKltmWvHnffvn3q27ev+vTpo9GjR6tHjx6luk7y/fLLL3r00Uc1YMAAjR49WtHR0Q6/ls8995ztd6X5Wl6d66OPPlJQUJBOnjypESNGaODAgVq0aJGaN29ut8zt2Ma8vLyUlJSkHTt2SLpyrsG8efNsv+/Ro4fGjBlz23PlZ7v2tXzkkUeUmpoqyXn/Lr28vGzbzAcffKDHH3/cbhsbNGhQgZPEb1euq9dXzZo15e/vr3r16kly7nvFd999pylTpmjz5s1ycXGR1WqVr6+vKlaseMMP2lvdhj788EMdPnzYNm7+tIoVKyojI8Oh94oRI0YoMzPzltZXYbm9vLxUv359SdK4ceMUFRWluXPnqkePHnrzzTe1bNkyNWnSRMeOHVPnzp318ccfq3Xr1iWeo7hq165t+zeZL//n/HOxSgrl5ha4uLjo1VdfVVxcnH799VdZrValpKTY/m/2Ws2bN9fChQv1+++/F9qev/vuO82ePVtdunSRJB09etR23NZR+ZeCjx49ulSz5V+WmC9/nQwdOlTSlf+DyB93165dio6OVmxsrO3yv9uxTnbt2qVHHnlEUVFR+tvf/lboPEV5LT09PVW5cuXblvvaXPPnz5d05f4STz/9dKHzl3au5cuX6+LFi5Kk1atXa+LEiUpPT5e7u7vatGlj+wC43bmulr/OBgwYoKpVq+rixYtO/Xf50EMPSbpS7PNfy++//96W1dnrLCsrS1lZWcrNzVXTpk2d/l5RuXJlubu7KzAw0HbZ+OXLl+Xi4qI9e/aU2vrIysqSi4uLbcz8jBaLxbbH9urcN3qvqFKlivLy8m5pfd1MYTmysrLUrFkzffzxx/L391e3bt1sewZv57/B6wkJCdFrr71ml2HdunVq0qSJqlWrVqJjcULxLerZs6dcXV317rvvavjw4Ro2bJgWLlyoAwcOKCkpSX//+9+1cOFCSbLdp+TZZ5/Vjz/+qH379mnx4sXau3evJCkwMFCLFy/W7t27tWXLFj333HM3bdvX2r9/v5KTk3XixAlZrVbl5eUpPj5ew4YNu23Z8teJJNvhlL/97W/q0KGDgoOD5e3trbffflsnTpzQs88+W6rrZOfOnQoLC9Njjz2muLg4nThxQidOnCj0/j/Xey0///xzffTRRzp48KC2bNmi5ORkRURElGru1atXa/78+dq5c6dat26t33//XVFRUapbt64mTpzotG2sYcOGatasmZo1a6a4uDjbG9TLL7+s+Ph4p+U6ceKEPvjgA+3cuVP79+/X6dOnlZmZqVatWjn932Xjxo3VrVs3DR06VH5+fsrLy1Pnzp1Vs2ZNzZs3z6nvF5Jse04qVap029/HCnuvyMzM1JkzZ/TMM8/otdde08SJExUTEyMPDw9dvny51NZHRESEzp49q0GDBmn37t3atWuXYmJiZLFYVLNmzUJzX7u+1qxZo48++kjbtm3T3r17lZycrI4dO5ba65ifo3fv3urXr5+GDBmip59+WgkJCRo6dKhmz57ttM+fixcvKjk5WcnJyba9P3369JG7u7tiY2O1a9cuLV26VDNmzFBcXJxD4xRJiZ7BY3JRUVFGt27dCkxPSEgwatWqZVy4cMGYPn260aRJE6NChQpGrVq1jMjISLuTBn/66SfjscceMypWrGhUrlzZCA0NNQ4cOGAYhmEkJSUZrVq1Mjw8PIzAwEDjk08+MerVq2dMmzbNtrxucFJlt27djI4dO9qdhJr/2LVrV6lka926tW2dXJ1txIgRhiRj06ZNxvTp040aNWoUmqtevXqltk4M48qJbYWN6+XlVeTX8nbm7tq1q9GtWzdj/fr1RkhIiOHt7W14eHgYNWrUMCpWrGgcO3bMKdtYfq5rvfDCC4Ykp+XK3/ZDQkKMFi1aGJUqVTK8vLyMoKAgo3v37k79d3n1OktPTzf69+9vVK1a1fD09DTc3d2NPXv2OD2XYRhGSEiI0adPn1J/Hyvqe0WTJk0MNzc3o0KFCoabm5tRqVIl45FHHjE2b95cqu8VhmEYa9euNR566CHD29vbqFatmvHII48YXbp0uaX3CkklkjssLMzo1q1bgdwJCQlGhQoVjCpVqhhubm6Gh4eH4ebmdlv/Dea73ufPoUOH7DK0b9/esFqthp+fn/HGG28UWLclwfL/AwMAAJgCh6UAAICpUG5wR7vvvvtUqVKlQh///Oc/nR0PQBnRuXPn675XTJw40dnxcA0OS+GOduTIket+X42vr6/t6igAd7bffvvNdqXgtapXr67q1avf5kS4EcoNAAAwFQ5LAQAAU6HcAAAAU6HcAAAAU6HcAHA6i8Wizz77TNKVr5ewWCxKTk6+7TmKM3Z0dLS6d+9+w3kefvhh/fnPf76lbACKjnID3MGio6NlsVhksVhUoUIFBQQEaMSIEYV+PUVZcf/99xf4ssl8ixcvltVqLfZ34vj7++v48eO2L0QEUD5RboA7XKdOnXT8+HEdPHhQ06ZN07vvvqv4+Hhnx7qu2NhYLVmypNDLcufPn68nn3yywHcBFUVOTo5cXV1Vu3ZtubnxncJAeUa5Ae5wVqtVtWvXlr+/v7p3767w8HCtW7fO9vu8vDwlJCQoICBAnp6eCgoK0rJly+yeY9euXXriiSdUpUoVVa5cWaGhoTpw4IAk6YcfflBERIRq1qwpb29vdezYUUlJScXO27dvX128eFHLly+3m37o0CFt2LBBsbGxOnDggLp16yZfX19VqlRJrVu31ldffWU3f/369TVhwgT169dPVapU0YABAwoclsrNzVVsbKztb2/SpIlmzJhRaK7x48erVq1aqlKligYOHGj7ssDCZGdna/jw4fLz85OXl5fatm2rDRs22H5/5MgRde3aVdWqVZOXl5fuu+8+rV69ungrDLgDUW4A2OzcuVObNm2Su7u7bVpCQoIWLVqkOXPmaNeuXRo2bJj69u2rr7/+WtKVm5t16NBBVqtV69ev17Zt29S/f39dvnxZknT+/HlFRUVp48aN+v777xUYGKguXbro/PnzxcpYs2ZNdevWTfPmzbObvmDBAtWtW1ePPfaYLly4oC5duigxMVHbt29Xp06d1LVrV6WkpNgt89ZbbykoKEjbt2/XmDFjCoyVl5enunXr6pNPPtEvv/yisWPH6tVXX9XHH39sN19iYqJ2796tDRs26KOPPtKKFSs0fvz46/4NgwcP1ubNm7VkyRL9/PPP6tmzpzp16qR9+/ZJkgYNGqTs7Gx988032rFjhyZNmqRKlSoVa30Bd6RS+TpOAOVCVFSU4erqanh5eRlWq9WQZLi4uBjLli0zDMMwLl26ZFSsWNHYtGmT3XKxsbFG7969DcMwjFGjRhkBAQFGTk5OkcbMzc01KleubHz++ee2abrJtw1fa82aNYbFYjEOHjxoGIZh5OXlGfXq1TNGjx593WXuu+8+4+9//7vt53r16hndu3e3m6coYw8aNMjo0aOH7eeoqCijevXqRmZmpm3aO++8Y1SqVMnIzc01DOPKtyUPHTrUMAzDOHLkiOHq6mr89ttvds/76KOPGqNGjTIMwzDuv/9+Y9y4cdfNAODGOLAM3OHCwsL0zjvvKDMzU9OmTZObm5t69OghSdq/f7+ysrIUERFht0xOTo5atmwpSUpOTlZoaKgqVKhQ6POnpqZq9OjR2rBhg9LS0pSbm6usrKwCe1EcERERobp162r+/Pl6/fXXlZiYqJSUFMXExEiSLly4oHHjxmnVqlU6fvy4Ll++rIsXLxYYs1WrVjcda9asWZo3b55SUlJ08eJF5eTkqEWLFnbzBAUFqWLFirafQ0JCdOHCBR09elT16tWzm3fHjh3Kzc1V48aN7aZnZ2erRo0akqQhQ4boxRdf1Nq1axUeHq4ePXqoefPmRV4/wJ2OcgPc4by8vNSoUSNJ0rx58xQUFKS5c+cqNjZWFy5ckCStWrVKfn5+dstZrVZJkqen5w2fPyoqSqdPn9aMGTNUr149Wa1WhYSE3PCclJtxcXFRdHS0Fi5cqHHjxmn+/PkKCwtTgwYNJEnDhw/XunXr9NZbb6lRo0by9PTUH/7whwJjenl53XCcJUuWaPjw4ZoyZYpCQkJUuXJlvfnmm9qyZUuxs1+4cEGurq7atm2bXF1d7X6Xf+jp+eefV2RkpFatWqW1a9cqISFBU6ZM0csvv1zscYE7CeUGgI2Li4teffVVxcXFqU+fPmratKmsVqtSUlLUsWPHQpdp3ry5Fi5cqN9//73QvTffffedZs+erS5dukiSjh49WuxLta8WExOjv/71r1qxYoU+/fRTffDBB3ZjRkdH66mnnpJ0pVAcPnzY4TG+++47tWvXTi+99JJtWv6J0lf76aefdPHiRVvR+/7771WpUiX5+/sXmLdly5bKzc1VWlqaQkNDrzu2v7+/Bg4cqIEDB2rUqFF6//33KTdAEXFCMQA7PXv2lKurq2bNmqXKlStr+PDhGjZsmBYuXKgDBw4oKSlJf//737Vw4UJJV06OzcjI0LPPPqsff/xR+/bt0+LFi7V3715JUmBgoBYvXqzdu3dry5Yteu655266t6coAgIC9Mgjj2jAgAGyWq16+umnbb8LDAzUihUrlJycrJ9++kl9+vRRXl6ew2MEBgbqxx9/1Jdffqlff/1VY8aM0Q8//FBgvpycHMXGxuqXX37R6tWrFR8fr8GDB8vFpeBbbOPGjfXcc8+pX79+WrFihQ4dOqStW7cqISFBq1atkiT9+c9/1pdffqlDhw4pKSlJ//nPf3Tvvfc6nB+4U1FuANhxc3PT4MGDNXnyZGVmZmrChAkaM2aMEhISdO+996pTp05atWqVAgICJEk1atTQ+vXrdeHCBXXs2FHBwcF6//33bXtx5s6dq7Nnz+qBBx7QH//4Rw0ZMkQ+Pj4lkjU2NlZnz55Vnz595OHhYZs+depUVatWTe3atVPXrl0VGRmpBx54wOHn/9Of/qSnn35avXr1Utu2bXX69Gm7vTj5Hn30UQUGBqpDhw7q1auXnnzySY0bN+66zzt//nz169dPf/nLX9SkSRN1795dP/zwg+6++25JVy5BHzRokG19N27cWLNnz3Y4P3CnshiGYTg7BAAAQElhzw0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADCV/wcuiWwhrgYr0QAAAABJRU5ErkJggg==", "text/plain": [ "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHHklEQVR4nO3deZyNdeP/8fcZZmM2g1kwQ5YQsowlqUTDWLMUbsSQtFiSuVu4yVgqlYQ7W7nTVLdusiRL1omS9CXi5r6z3sKNsWaMZTbn8/ujn3M7zdAczswcl9fz8TiPh3Odz3Vd73PNcN6u6zrXZTPGGAEAAFiEV2EHAAAAcCfKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQCPMXr0aNlsNp0+fTrf17Vy5UrVqVNHfn5+stlsOnfuXL6v0x369OmjChUquDTP+vXrZbPZtH79+nzJBHgayg1QAJKSkmSz2ZweYWFhatasmVasWFHgeZYuXar27dsrPDxcPj4+Cg0N1UMPPaSJEyfq/PnzBZ6noJ05c0Zdu3aVv7+/pk2bpk8//VTFixfPdezvf3Z+fn66++67NWjQIJ04caKAkwPIi6KFHQC4k4wdO1Z33XWXjDE6ceKEkpKS1KZNGy1dulTt2rXL9/Xb7Xb169dPSUlJqlWrlgYMGKCoqCilpaVp06ZNGjlypL766islJyfne5bCtGXLFqWlpWncuHGKjY3N0zxXf3bp6en67rvvNGPGDH311VfatWuXihUrls+J/2fWrFmy2+0uzfPQQw/p8uXL8vHxyadUgGeh3AAFqHXr1qpfv77jeb9+/RQeHq5//OMfbik3drtdmZmZ8vPzy/X1t99+W0lJSRo6dKgmTpwom83meG3IkCE6fvy4Pvnkk1tax+3g5MmTkqSQkJA8z3Ptz+6pp55SyZIl9e677+rLL79U9+7dc53n4sWL190jdLO8vb1dnsfLy+u2/nkBruKwFFCIQkJC5O/vr6JFnf+f8c477+j+++9XyZIl5e/vr5iYGC1YsCDH/DabTYMGDdKcOXNUo0YN+fr6auXKlbmu69KlS3rrrbdUo0YNTZgwwanYXBUZGalXXnklz+u4mZxVq1aVn5+fYmJi9O233+aa9dy5c+rTp49CQkIUHBysvn376tKlS7lvxN+ZP3++YmJi5O/vr1KlSumJJ57Q0aNHHa8//PDDio+PlyQ1aNBANptNffr0ydOyr9W8eXNJ0sGDByX9di5MQECADhw4oDZt2igwMFA9e/aU9FshnDx5smrUqCE/Pz+Fh4frmWee0a+//ppjuStWrFDTpk0VGBiooKAgNWjQQJ999pnj9dzOuZk7d65iYmIc89SqVUtTpkxxvH69c27+aFtd+76OHj2qjh07KiAgQKVLl9aLL76oK1euuLzdgIJAuQEKUGpqqk6fPq1Tp07pX//6l5577jlduHBBTzzxhNO4KVOmqG7duho7dqzeeOMNFS1aVF26dNHy5ctzLPPrr7/W0KFD1a1bN02ZMuW6J5t+9913OnfunLp3764iRYq4lPt663Al5zfffKMXXnhBTzzxhMaOHaszZ86oVatW2rVrV46xXbt2VVpamsaPH6+uXbsqKSlJY8aM+cOcSUlJ6tq1q4oUKaLx48erf//+WrRokR544AHHCcMjRozQ008/Lem3Q02ffvqpnnnmGZe2hyQdOHBAklSyZEnHtOzsbMXFxSksLEzvvPOOHnvsMUnSM888o5deeklNmjTRlClT1LdvX82ZM0dxcXHKyspyyt+2bVudPXtWw4cP15tvvqk6depct7BK0po1a9S9e3eVKFFCb731lt588009/PDD2rhx4y1vq6uuXLmiuLg4lSxZUu+8846aNm2qiRMn6oMPPnB1swEFwwDIdx999JGRlOPh6+trkpKScoy/dOmS0/PMzExTs2ZN07x5c6fpkoyXl5f517/+9YcZpkyZYiSZxYsXO03Pzs42p06dcnrY7fY8rcOVnJLMjz/+6Jh26NAh4+fnZzp16uSYlpiYaCSZJ5980mn+Tp06mZIlS97w/WVmZpqwsDBTs2ZNc/nyZcf0ZcuWGUlm1KhRjmlXfx5btmy54TKvHbt27Vpz6tQpc+TIETN37lxTsmRJ4+/vb/773/8aY4yJj483ksywYcOc5t+wYYORZObMmeM0feXKlU7Tz507ZwIDA02jRo2c8htjnH4e8fHxpnz58o7nQ4YMMUFBQSY7O/u672HdunVGklm3bp3L2+rq+xo7dqzTMuvWrWtiYmKuu06gMLHnBihA06ZN05o1a7RmzRr9/e9/V7NmzfTUU09p0aJFTuP8/f0df/7111+VmpqqBx98UNu2bcuxzKZNm+qee+75w3Vf/RZUQECA0/SdO3eqdOnSTo8zZ87kaR2u5GzcuLFiYmIcz6Ojo9WhQwetWrUqx+GNZ5991un5gw8+qDNnztzwm1w//vijTp48qQEDBjidX9K2bVtVq1Yt171JroiNjVXp0qUVFRWlP/3pTwoICNAXX3yhsmXLOo177rnnnJ7Pnz9fwcHBatGihU6fPu14xMTEKCAgQOvWrZP02x6YtLQ0DRs2LMf5MbkdQrwqJCREFy9e1Jo1a/L8Xm5mW+X2M/nPf/6T53UCBYkTioEC1LBhQ6cTirt37666detq0KBBateunePbLMuWLdNrr72m7du3KyMjwzE+tw+5u+66K0/rDgwMlCRduHDBaXrlypUdH4yffPKJPv300zyvw5WcVapUyTHt7rvv1qVLl3Tq1ClFREQ4pkdHRzuNK1GihKTfClRQUFCuWQ4dOiRJqlq1ao7XqlWrpu+++y7X+fJq2rRpuvvuu1W0aFGFh4eratWq8vJy/v9h0aJFVa5cOadp+/btU2pqqsLCwnJd7tWTm68e5qpZs6ZLuQYMGKDPP/9crVu3VtmyZdWyZUt17dpVrVq1uu48rm4rPz8/lS5d2mlaiRIlcj1nCPAElBugEHl5ealZs2aaMmWK9u3bpxo1amjDhg169NFH9dBDD2n69OmKjIyUt7e3PvroI6cTS6+6du/JjVSrVk2StGvXLnXo0MExPSAgwPF16OsVgNzW4WpOV1zvnCBjzC0t91b8vpjmxtfXN0fhsdvtCgsL05w5c3Kd5/elwVVhYWHavn27Vq1apRUrVmjFihX66KOP1Lt3b3388ce3tOyrXD1HCyhslBugkGVnZ0v63x6VhQsXys/PT6tWrZKvr69j3EcffXRL63nwwQcVHBysuXPnavjw4Tk+hF3las59+/blmLZ3714VK1bslj/gJal8+fKSpD179ji+yXTVnj17HK8XtEqVKmnt2rVq0qTJDYtopUqVJP1WPitXruzSOnx8fNS+fXu1b99edrtdAwYM0Pvvv69XX30112V56rYC3IVzboBClJWVpdWrV8vHx0fVq1eX9Nv/km02m9N5KL/88osWL158S+sqVqyYXn75Ze3atUvDhg3LdS+IK3tGXM25adMmp3Nxjhw5oi+//FItW7Z0y56B+vXrKywsTDNnznQ6RLZixQr9/PPPatu27S2v42Z07dpVV65c0bhx43K8lp2d7fhmUsuWLRUYGKjx48crPT3dadyNfi6/Pz/Ky8tL9957ryQ5bYdreeq2AtyFPTdAAVqxYoV2794t6bdzLT777DPt27dPw4YNc5xL0rZtW7377rtq1aqVevTooZMnT2ratGmqXLmy/vnPf97S+ocNG6aff/5ZEyZM0OrVq/XYY4+pXLly+vXXX7Vt2zbNnz9fYWFhebrgm6s5a9asqbi4OD3//PPy9fXV9OnTJSlPX/HOC29vb7311lvq27evmjZtqu7du+vEiROOr64PHTrULetxVdOmTfXMM89o/Pjx2r59u1q2bClvb2/t27dP8+fP15QpU/T4448rKChIkyZN0lNPPaUGDRqoR48eKlGihHbs2KFLly5d9xDTU089pbNnz6p58+YqV66cDh06pPfee0916tRxFObf89RtBbhN4X5ZC7gz5PZVcD8/P1OnTh0zY8YMp6/6GmPMhx9+aKpUqWJ8fX1NtWrVzEcffeT4mvS1JJmBAwe6nOeLL74wbdq0MaVLlzZFixY1ISEh5oEHHjATJkww586dy/M6XM3597//3TG+bt26jq8mX3V13lOnTjlNv7r9Dh48+Ifvbd68eaZu3brG19fXhIaGmp49ezq+rv375bnyVfA/GhsfH2+KFy9+3dc/+OADExMTY/z9/U1gYKCpVauWefnll82xY8ecxi1ZssTcf//9xt/f3wQFBZmGDRuaf/zjH07rufar4AsWLDAtW7Y0YWFhxsfHx0RHR5tnnnnGHD9+3DHm918Fvyov2+p67yu3nzPgKWzGFOIZegDuCDabTQMHDtTUqVMLOwqAOwDn3AAAAEuh3AAAAEuh3AAAAEvh21IA8h2n9gEoSOy5AQAAlkK5AQAAlnLHHZay2+06duyYAgMDb3inXQAA4DmMMUpLS1OZMmX+8PYxd1y5OXbsmKKiogo7BgAAuAlHjhxRuXLlbjjmjis3gYGBkn7bOFcvdw8AADzb+fPnFRUV5fgcv5E7rtxcPRQVFBREuQEA4DaTl1NKOKEYAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYSqGWm2+//Vbt27dXmTJlZLPZtHjx4j+cZ/369apXr558fX1VuXJlJSUl5XtOAABw+yjUcnPx4kXVrl1b06ZNy9P4gwcPqm3btmrWrJm2b9+uF154QU899ZRWrVqVz0kBAMDtolBvnNm6dWu1bt06z+Nnzpypu+66SxMnTpQkVa9eXd99950mTZqkuLi4/IoJAABuI7fVOTebNm1SbGys07S4uDht2rSpkBIBAABPU6h7blyVkpKi8PBwp2nh4eE6f/68Ll++LH9//xzzZGRkKCMjw/H8/Pnz+Z4TAAAUnttqz83NGD9+vIKDgx2PqKiowo7kmWw2z3sAAHATbqtyExERoRMnTjhNO3HihIKCgnLdayNJw4cPV2pqquNx5MiRgogKAAAKyW11WKpx48b66quvnKatWbNGjRs3vu48vr6+8vX1ze9oAADAQxRqublw4YL279/veH7w4EFt375doaGhio6O1vDhw3X06FF98sknkqRnn31WU6dO1csvv6wnn3xSX3/9tT7//HMtX768sN4CgNuBJx7mNKawE8Aq+P3OoVDLzY8//qhmzZo5nickJEiS4uPjlZSUpOPHj+vw4cOO1++66y4tX75cQ4cO1ZQpU1SuXDn97W9/42vgAOBJ+LBFIbMZc2f9xM+fP6/g4GClpqYqKCiosON4Dv4xgpXx+12w2N4F6w7Z3q58ft9WJxQDAAD8EcoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwlKKFHQC4I9lshZ0gJ2P+eMztmhvAHYU9NwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFK4zg0AeCquKwTcFPbcAAAAS6HcAAAAS+GwlLuxGxkAgELFnhsAAGAp7LnB7Y09ZQCA32HPDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTuLQUAgMS96iyEPTcAAMBSKDcAAMBSKDcAAMBSCr3cTJs2TRUqVJCfn58aNWqkzZs333D85MmTVbVqVfn7+ysqKkpDhw5Venp6AaUFAACerlDLzbx585SQkKDExERt27ZNtWvXVlxcnE6ePJnr+M8++0zDhg1TYmKifv75Z3344YeaN2+e/vKXvxRwcgAA4KkKtdy8++676t+/v/r27at77rlHM2fOVLFixTR79uxcx3///fdq0qSJevTooQoVKqhly5bq3r37H+7tAQAAd45CKzeZmZnaunWrYmNj/xfGy0uxsbHatGlTrvPcf//92rp1q6PM/Oc//9FXX32lNm3aXHc9GRkZOn/+vNMDAABYV6Fd5+b06dO6cuWKwsPDnaaHh4dr9+7duc7To0cPnT59Wg888ICMMcrOztazzz57w8NS48eP15gxY9yaHQAAeK5CP6HYFevXr9cbb7yh6dOna9u2bVq0aJGWL1+ucePGXXee4cOHKzU11fE4cuRIASYGAAAFrdD23JQqVUpFihTRiRMnnKafOHFCERERuc7z6quvqlevXnrqqackSbVq1dLFixf19NNPa8SIEfLyytnVfH195evr6/43AAAAPFKh7bnx8fFRTEyMkpOTHdPsdruSk5PVuHHjXOe5dOlSjgJTpEgRSZLhEtUAAECFfG+phIQExcfHq379+mrYsKEmT56sixcvqm/fvpKk3r17q2zZsho/frwkqX379nr33XdVt25dNWrUSPv379err76q9u3bO0oOAAC4sxVquenWrZtOnTqlUaNGKSUlRXXq1NHKlSsdJxkfPnzYaU/NyJEjZbPZNHLkSB09elSlS5dW+/bt9frrrxfWWwAAAB7GZu6w4znnz59XcHCwUlNTFRQU5P4V3K53lSW3+5C7YJG7YJG7YFk5t4tc+fy+rb4tBQAA8EcoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFJcLjcrV67Ud99953g+bdo01alTRz169NCvv/7q1nAAAACucrncvPTSSzp//rwkaefOnfrzn/+sNm3a6ODBg0pISHB7QAAAAFcUdXWGgwcP6p577pEkLVy4UO3atdMbb7yhbdu2qU2bNm4PCAAA4AqX99z4+Pjo0qVLkqS1a9eqZcuWkqTQ0FDHHh0AAIDC4vKemwceeEAJCQlq0qSJNm/erHnz5kmS9u7dq3Llyrk9IAAAgCtc3nMzdepUFS1aVAsWLNCMGTNUtmxZSdKKFSvUqlUrtwcEAABwhc0YYwo7REE6f/68goODlZqaqqCgIPevwGZz/zJvVV5+xOR2H3IXLHIXLHIXLCvndpErn983dZ2bAwcOaOTIkerevbtOnjwp6bc9N//6179uZnEAAABu43K5+eabb1SrVi393//9nxYtWqQLFy5Iknbs2KHExES3BwQAAHCFy+Vm2LBheu2117RmzRr5+Pg4pjdv3lw//PCDW8MBAAC4yuVys3PnTnXq1CnH9LCwMJ0+fdotoQAAAG6Wy+UmJCREx48fzzH9p59+cnxzCgAAoLC4XG7+9Kc/6ZVXXlFKSopsNpvsdrs2btyoF198Ub17986PjAAAAHnmcrl54403VK1aNUVFRenChQu655579NBDD+n+++/XyJEj8yMjAABAnt30dW4OHz6sXbt26cKFC6pbt66qVKni7mz5guvcXAe53YfcBYvcBYvcBcvKuV3kyue3y7dfuCo6OlrR0dE3OzsAAEC+cLncPPnkkzd8ffbs2TcdBgAA4Fa5XG5+/fVXp+dZWVnatWuXzp07p+bNm7stGAAAwM1wudx88cUXOabZ7XY999xzqlSpkltCAQAA3KyburdUjoV4eSkhIUGTJk1yx+IAAABumlvKjfTbzTSzs7PdtTgAAICb4vJhqYSEBKfnxhgdP35cy5cvV3x8vNuCAQAA3AyXy81PP/3k9NzLy0ulS5fWxIkT//CbVAAAAPnN5XKzbt06twaYNm2aJkyYoJSUFNWuXVvvvfeeGjZseN3x586d04gRI7Ro0SKdPXtW5cuX1+TJk9WmTRu35gIAALenm76InzvMmzdPCQkJmjlzpho1aqTJkycrLi5Oe/bsUVhYWI7xmZmZatGihcLCwrRgwQKVLVtWhw4dUkhISMGHBwAAHilPt1+oW7eubHm8vPO2bdvyvPJGjRqpQYMGmjp1qqTfvlIeFRWlwYMHa9iwYTnGz5w5UxMmTNDu3bvl7e2d5/Vci9svXAe53YfcBYvcBYvcBcvKuV3k9tsvdOzY0R25nGRmZmrr1q0aPny4Y5qXl5diY2O1adOmXOdZsmSJGjdurIEDB+rLL79U6dKl1aNHD73yyisqUqSI2zMCAIDbT57KTWJiottXfPr0aV25ckXh4eFO08PDw7V79+5c5/nPf/6jr7/+Wj179tRXX32l/fv3a8CAAcrKyrpuxoyMDGVkZDienz9/3n1vAgAAeBy3XeemINjtdoWFhemDDz5QTEyMunXrphEjRmjmzJnXnWf8+PEKDg52PKKiogowMQAAKGgul5srV67onXfeUcOGDRUREaHQ0FCnR16VKlVKRYoU0YkTJ5ymnzhxQhEREbnOExkZqbvvvtvpEFT16tWVkpKizMzMXOcZPny4UlNTHY8jR47kOSMAALj9uFxuxowZo3fffVfdunVTamqqEhIS1LlzZ3l5eWn06NF5Xo6Pj49iYmKUnJzsmGa325WcnKzGjRvnOk+TJk20f/9+2e12x7S9e/cqMjJSPj4+uc7j6+uroKAgpwcAALAw46KKFSuaZcuWGWOMCQgIMPv37zfGGDNlyhTTvXt3l5Y1d+5c4+vra5KSksy///1v8/TTT5uQkBCTkpJijDGmV69eZtiwYY7xhw8fNoGBgWbQoEFmz549ZtmyZSYsLMy89tpreV5namqqkWRSU1Ndyppnv50j7lkPcpOb3J73IDe57/TcLnLl89vl69ykpKSoVq1akqSAgAClpqZKktq1a6dXX33VpWV169ZNp06d0qhRo5SSkqI6depo5cqVjpOMDx8+LC+v/+1cioqK0qpVqzR06FDde++9Klu2rIYMGaJXXnnF1bcBAAAsyuVyU65cOR0/flzR0dGqVKmSVq9erXr16mnLli3y9fV1OcCgQYM0aNCgXF9bv359jmmNGzfWDz/84PJ6AADAncHlc246derkOE9m8ODBevXVV1WlShX17t2be0sBAIBCl6crFEvS1KlT9cQTT+S41cGmTZu0adMmValSRe3bt8+PjG7FFYqvg9zuQ+6CRe6CRe6CZeXcLnLl8zvP5SY4OFhZWVnq1KmT+vXrp+bNm7slbEGj3FwHud2H3AWL3AWL3AXLyrld5Mrnd54PS6WkpGjmzJk6duyYWrRoobvuukvjxo3jujEAAMCj5Lnc+Pv7q3fv3lq3bp327dunXr166cMPP9Rdd92lVq1aaf78+crKysrPrAAAAH/opm6/ULFiRY0dO1YHDx7UihUrVLJkSfXp00dly5Z1dz4AAACX3NK9pWw2m4oWLSqbzSZjDHtuAABAobupcnPkyBGNHTtWFStWVIsWLXTs2DHNmjVLx48fd3c+AAAAl+T5In6ZmZlatGiRZs+era+//lqRkZGKj4/Xk08+qYoVK+ZnRgAAgDzLc7mJiIjQpUuX1K5dOy1dulRxcXFOt0YAAADwBHkuNyNHjlSvXr1UunTp/MwDAABwS/JcbhISEvIzBwAAgFtwXAkAAFgK5QYAAFgK5QYAAFgK5QYAAFhKnk8ovurKlStKSkpScnKyTp48Kbvd7vT6119/7bZwAAAArnK53AwZMkRJSUlq27atatasKZsn3modAADcsVwuN3PnztXnn3+uNm3a5EceAACAW+LyOTc+Pj6qXLlyfmQBAAC4ZS6Xmz//+c+aMmWKjDH5kQcAAOCWuHxY6rvvvtO6deu0YsUK1ahRQ97e3k6vL1q0yG3hAAAAXOVyuQkJCVGnTp3yIwsAAMAtc7ncfPTRR/mRAwAAwC1cLjdXnTp1Snv27JEkVa1albuFAwAAj+DyCcUXL17Uk08+qcjISD300EN66KGHVKZMGfXr10+XLl3Kj4wAAAB55nK5SUhI0DfffKOlS5fq3LlzOnfunL788kt98803+vOf/5wfGQEAAPLMZlz8TnepUqW0YMECPfzww07T161bp65du+rUqVPuzOd258+fV3BwsFJTUxUUFOT+FXjiFZvz8iMmt/uQu2CRu2CRu2BZObeLXPn8dnnPzaVLlxQeHp5jelhYGIelAABAoXO53DRu3FiJiYlKT093TLt8+bLGjBmjxo0buzUcAACAq1z+ttSUKVMUFxencuXKqXbt2pKkHTt2yM/PT6tWrXJ7QAAAAFe4XG5q1qypffv2ac6cOdq9e7ckqXv37urZs6f8/f3dHhAAAMAVN3Wdm2LFiql///7uzgIAAHDL8lRulixZotatW8vb21tLliy54dhHH33ULcEAAABuRp6+Cu7l5aWUlBSFhYXJy+v65yDbbDZduXLFrQHdja+CXwe53YfcBYvcBYvcBcvKuV3kyud3nvbc2O32XP8MAADgaVz+Knhuzp07547FAAAA3DKXy81bb72lefPmOZ536dJFoaGhKlu2rHbs2OHWcAAAAK5yudzMnDlTUVFRkqQ1a9Zo7dq1WrlypVq3bq2XXnrJ7QEBAABc4fJXwVNSUhzlZtmyZeratatatmypChUqqFGjRm4PCAAA4AqX99yUKFFCR44ckSStXLlSsbGxkiRjjMd/UwoAAFify3tuOnfurB49eqhKlSo6c+aMWrduLUn66aefVLlyZbcHBAAAcIXL5WbSpEmqUKGCjhw5orffflsBAQGSpOPHj2vAgAFuDwgAAOCKPF3Ez0q4iN91kNt9yF2wyF2wyF2wrJzbRW6/iB+3XwAAALcLbr/gbrdrgya3+5C7YJG7YJG7YFk5t4u4/QIAALhjueX2CwAAAJ7C5XLz/PPP669//WuO6VOnTtULL7zgjkwAAAA3zeVys3DhQjVp0iTH9Pvvv18LFixwSygAAICb5XK5OXPmjIKDg3NMDwoK0unTp90SCgAA4Ga5XG4qV66slStX5pi+YsUKVaxY0S2hAAAAbpbLVyhOSEjQoEGDdOrUKTVv3lySlJycrIkTJ2ry5MnuzgcAAOASl8vNk08+qYyMDL3++usaN26cJKlChQqaMWOGevfu7faAAAAArril2y+cOnVK/v7+jvtL3Q64iN91kNt9yF2wyF2wyF2wrJzbRa58ft/UdW6ys7O1du1aLVq0SFe70bFjx3ThwoWbWRwAAIDbuHxY6tChQ2rVqpUOHz6sjIwMtWjRQoGBgXrrrbeUkZGhmTNn5kdOAACAPHF5z82QIUNUv359/frrr/L393dM79Spk5KTk90aDgAAwFUu77nZsGGDvv/+e/n4+DhNr1Chgo4ePeq2YAAAADfD5T03drs91zt///e//1VgYKBbQgEAANwsl8tNy5Ytna5nY7PZdOHCBSUmJqpNmzY3FWLatGmqUKGC/Pz81KhRI23evDlP882dO1c2m00dO3a8qfUCAADrcbncvPPOO9q4caPuuecepaenq0ePHo5DUm+99ZbLAebNm6eEhAQlJiZq27Ztql27tuLi4nTy5MkbzvfLL7/oxRdf1IMPPujyOgEAgHXd1HVusrOzNW/ePO3YsUMXLlxQvXr11LNnT6cTjPOqUaNGatCggaZOnSrpt8NeUVFRGjx4sIYNG5brPFeuXNFDDz2kJ598Uhs2bNC5c+e0ePHiPK2P69xcB7ndh9wFi9wFi9wFy8q5XeTK57dLJxRnZWWpWrVqWrZsmXr27KmePXveUtDMzExt3bpVw4cPd0zz8vJSbGysNm3adN35xo4dq7CwMPXr108bNmy44ToyMjKUkZHheH7+/PlbygwAADybS4elvL29lZ6e7raVnz59WleuXFF4eLjT9PDwcKWkpOQ6z3fffacPP/xQs2bNytM6xo8fr+DgYMcjKirqlnMDAADP5fI5NwMHDtRbb72l7Ozs/MhzQ2lpaerVq5dmzZqlUqVK5Wme4cOHKzU11fE4cuRIPqcEAACFyeXr3GzZskXJyclavXq1atWqpeLFizu9vmjRojwvq1SpUipSpIhOnDjhNP3EiROKiIjIMf7AgQP65Zdf1L59e8c0u90uSSpatKj27NmjSpUqOc3j6+srX1/fPGcCAAC3N5fLTUhIiB577DG3rNzHx0cxMTFKTk52fJ3bbrcrOTlZgwYNyjG+WrVq2rlzp9O0kSNHKi0tTVOmTOGQEwAAcL3cfPTRR24NkJCQoPj4eNWvX18NGzbU5MmTdfHiRfXt21eS1Lt3b5UtW1bjx4+Xn5+fatas6TR/SEiIJOWYDgAA7kx5Ljd2u10TJkzQkiVLlJmZqUceeUSJiYk39fXva3Xr1k2nTp3SqFGjlJKSojp16mjlypWOk4wPHz4sL6+bunk5AAC4A+X5Ojfjxo3T6NGjFRsbK39/f61atUrdu3fX7Nmz8zujW3Gdm+sgt/uQu2CRu2CRu2BZObeLXPn8zvMukU8++UTTp0/XqlWrtHjxYi1dulRz5sxxnNALAADgCfJcbg4fPux076jY2FjZbDYdO3YsX4IBAADcjDyXm+zsbPn5+TlN8/b2VlZWlttDAQAA3Kw8n1BsjFGfPn2crhmTnp6uZ5991ulaN65c5wYAAMDd8lxu4uPjc0x74okn3BoGAADgVuW53Lj7+jYAAAD5gQvIAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS/GIcjNt2jRVqFBBfn5+atSokTZv3nzdsbNmzdKDDz6oEiVKqESJEoqNjb3heAAAcGcp9HIzb948JSQkKDExUdu2bVPt2rUVFxenkydP5jp+/fr16t69u9atW6dNmzYpKipKLVu21NGjRws4OQAA8EQ2Y4wpzACNGjVSgwYNNHXqVEmS3W5XVFSUBg8erGHDhv3h/FeuXFGJEiU0depU9e7d+w/Hnz9/XsHBwUpNTVVQUNAt58/BZnP/Mm9VXn7E5HYfchcschcschcsK+d2kSuf34W65yYzM1Nbt25VbGysY5qXl5diY2O1adOmPC3j0qVLysrKUmhoaK6vZ2Rk6Pz5804PAABgXYVabk6fPq0rV64oPDzcaXp4eLhSUlLytIxXXnlFZcqUcSpI1xo/fryCg4Mdj6ioqFvODQAAPFehn3NzK958803NnTtXX3zxhfz8/HIdM3z4cKWmpjoeR44cKeCUAACgIBUtzJWXKlVKRYoU0YkTJ5ymnzhxQhERETec95133tGbb76ptWvX6t57773uOF9fX/n6+rolLwAA8HyFuufGx8dHMTExSk5Odkyz2+1KTk5W48aNrzvf22+/rXHjxmnlypWqX79+QUQFAAC3iULdcyNJCQkJio+PV/369dWwYUNNnjxZFy9eVN++fSVJvXv3VtmyZTV+/HhJ0ltvvaVRo0bps88+U4UKFRzn5gQEBCggIKDQ3gcAAPAMhV5uunXrplOnTmnUqFFKSUlRnTp1tHLlSsdJxocPH5aX1/92MM2YMUOZmZl6/PHHnZaTmJio0aNHF2R0AADggQr9OjcFjevcXAe53YfcBYvcBYvcBcvKuV1021znBgAAwN0oNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFI8otxMmzZNFSpUkJ+fnxo1aqTNmzffcPz8+fNVrVo1+fn5qVatWvrqq68KKCkAAPB0hV5u5s2bp4SEBCUmJmrbtm2qXbu24uLidPLkyVzHf//99+revbv69eunn376SR07dlTHjh21a9euAk4OAAA8kc0YYwozQKNGjdSgQQNNnTpVkmS32xUVFaXBgwdr2LBhOcZ369ZNFy9e1LJlyxzT7rvvPtWpU0czZ878w/WdP39ewcHBSk1NVVBQkPveyFU2m/uXeavy8iMmt/uQu2CRu2CRu2BZObeLXPn8LtQ9N5mZmdq6datiY2Md07y8vBQbG6tNmzblOs+mTZucxktSXFzcdccDAIA7S9HCXPnp06d15coVhYeHO00PDw/X7t27c50nJSUl1/EpKSm5js/IyFBGRobjeWpqqqTfGuAd43Z9r+QuWOQuWOQuWOQuWPmQ++rndl4OOBVquSkI48eP15gxY3JMj4qKKoQ0hSQ4uLAT3BxyFyxyFyxyFyxyF6x8zJ2WlqbgP1h+oZabUqVKqUiRIjpx4oTT9BMnTigiIiLXeSIiIlwaP3z4cCUkJDie2+12nT17ViVLlpTNE49T6rd2GhUVpSNHjuTPeUH5hNwFi9wFi9wFi9wF63bIbYxRWlqaypQp84djC7Xc+Pj4KCYmRsnJyerYsaOk38pHcnKyBg0alOs8jRs3VnJysl544QXHtDVr1qhx48a5jvf19ZWvr6/TtJCQEHfEz3dBQUEe+0t2I+QuWOQuWOQuWOQuWJ6e+4/22FxV6IelEhISFB8fr/r166thw4aaPHmyLl68qL59+0qSevfurbJly2r8+PGSpCFDhqhp06aaOHGi2rZtq7lz5+rHH3/UBx98UJhvAwAAeIhCLzfdunXTqVOnNGrUKKWkpKhOnTpauXKl46Thw4cPy8vrf1/quv/++/XZZ59p5MiR+stf/qIqVapo8eLFqlmzZmG9BQAA4EEKvdxI0qBBg657GGr9+vU5pnXp0kVdunTJ51SFx9fXV4mJiTkOp3k6chcschcschcsches2zX39RT6RfwAAADcqdBvvwAAAOBOlBsAAGAplBsAAGAplBsPYLPZtHjxYrePzW/kLljkLljkLljkzl+3S063MXASHx9vJBlJxtvb21SqVMmMGTPGZGVl5ds6jx8/btLT029p7K3kXrhwoWnRooUJDQ01ksxPP/3k8bkzMzPNyy+/bGrWrGmKFStmIiMjTa9evczRo0c9OrcxxiQmJpqqVauaYsWKmZCQEPPII4+YH374weNzX+uZZ54xksykSZM8Pve18159xMXFeXxuY4z597//bdq3b2+CgoJMsWLFTP369c2hQ4c8Ovfvt/XVx9tvv+3RudPS0szAgQNN2bJljZ+fn6levbqZMWPGTWe50Vh3fs6kpKSY+Ph4ExkZafz9/U1cXJzZu3evW3K6U14+Zy5fvmwGDBhgQkNDTfHixU3nzp1NSkrKTa2PcvM78fHxplWrVub48ePml19+MdOnTzc2m8288cYbOcZmZGQUQsLc3UruTz75xIwZM8bMmjXLpXLjDjeb+9y5cyY2NtbMmzfP7N6922zatMk0bNjQxMTEeHRuY4yZM2eOWbNmjTlw4IDZtWuX6devnwkKCjInT5706NxXLVq0yNSuXduUKVMmT+XGHW4l97XzXn2cPXvW43Pv37/fhIaGmpdeesls27bN7N+/33z55ZfmxIkTHp372u18/PhxM3v2bGOz2cyBAwc8Onf//v1NpUqVzLp168zBgwfN+++/b4oUKWK+/PJLj8p5Lbvdbu677z7z4IMPms2bN5vdu3ebp59+2kRHR5sLFy64PfetyMvnzLPPPmuioqJMcnKy+fHHH819991n7r///ptaH+Xmd+Lj402HDh2cprVo0cLcd999jtdee+01ExkZaSpUqGCMMebw4cOmS5cuJjg42JQoUcI8+uij5uDBg07L+PDDD80999xjfHx8TEREhBk4cKDjNUnmiy++MMb89os8cOBAExERYXx9fU10dLTTL/y1Y40x5p///Kdp1qyZ8fLyMt7e3qZ///4mLS3Nkbt06dImKirK1KhRwwQEBBibzWYCAwNNZmZmjtyxsbE5fuluh9xXt/fmzZuNJHPo0KHbKndqaqqRZNauXevxuYODg42fn59ZtWqVKV++vKPceHJub29v4+3tfdv9vfT29jY+Pj63Xe7f/3536NDBNG/e3ONze3l5GX9/f6ftXa9ePTNixAi35776WXI1t5+fnylatKgJCwszPXr0cHzO+Pv7m2LFipkJEyaY0qVLGx8fH+Pj4+PYvsnJyUaS2bVrl9P2lWSCg4Pdvn39/PxMaGio0/Y15n+fmxMmTDAREREmNDTUDBgwwGRmZprfO3jwYK7l5ty5c8bb29vMnz/fMe3nn382ksymTZtyLOePcM5NHvj7+yszM1OSlJycrD179mjNmjVatmyZsrKyFBcXp8DAQG3YsEEbN25UQECAWrVq5ZhnxowZGjhwoJ5++mnt3LlTS5YsUeXKlXNd11//+lctWbJEn3/+ufbs2aM5c+aoQoUKuY69ePGi4uLiVKJECbVr104NGjTQ2rVrHRdE9Pf315UrV5SSkqK9e/eqefPmeu+995SVlaW//e1vOXIXL15ckpSVlXVb5b66vU+fPi2bzaYFCxbcNrnj4uI0ffp0BQcHa9u2bR6d+5tvvlHVqlVVo0YNPf/88zL//xJZnv570rp1a/n6+mrVqlW6++679fTTT+vMmTMenTsgIEBFixbVM888o82bN6ty5cpq0KCBFi9e7NG5f//73aJFCy1btkz9+vXz+NydOnVSxYoV5eXlpVatWmn16tXau3evLl26lC+5r1y54si9ZcsWNWzYUOfOndP//d//OT5nWrRoIZvNpr179yooKEhNmzaVl5eXXnjhBQUEBKhfv36SJD8/P6ftGx4ergceeMDt23fLli2aP3++0/a9at26dTpw4IDWrVunjz/+WElJSUpKSsp1mbnZunWrsrKyFBsb65hWrVo1RUdHa9OmTXlejoPLdcjirt1zY7fbzZo1a4yvr6958cUXTXx8vAkPD3faTfjpp5+aqlWrGrvd7piWkZFh/P39zapVq4wxxpQpU8aMGDHiuuvUNS158ODBpnnz5k7Lu97YDz74wJQoUcJcuHDBkXv58uXGZrOZzz//3Pj6+poaNWqY4sWLO+Xu0qWLadSoUY7ce/bsMZLM9OnTb6vcV7d35cqVTY8ePW6L3EuXLjXFihUzkkxoaKjZvHmzx+d+4403TIsWLUx6errx9/c3YWFhZtKkSR6f+x//+If58ssvzdatW42Pj4+JiooyDRo08Ojcx44dM5JMsWLFzNtvv238/PxM3759jc1mM6VKlfLY3L//e+nt7W0CAgLM5cuXPXp72+12k56ebnr37u04F6Zo0aLm448/zpfc8fHxpnbt2qZEiRImLS3N8TnTuXNnI8mULl3aZGRkmPj4eFO+fHnz8ccfO3J26dLFdOvWzfHvXunSpU2XLl1MZGSkGTZsmHnzzTeNJNOyZUu3b9+rli9fbry8vBznw1zNmZ2d7RhzNefvXW/PzZw5c4yPj0+O8Q0aNDAvv/xyrjlvxCNuv+Bpli1bpoCAAGVlZclut6tHjx4aPXq0Bg4cqFq1asnHx8cxdseOHdq/f78CAwOdlpGenq4DBw7o5MmTOnbsmB555JE8rbtPnz5q0aKFqlatqlatWqldu3Zq2bJlrmN//vln1a5d27HHZdmyZVq7dq2MMerevbt69uyp7OxsnTt3TtWrV3fkjoyM1A8//KBjx4455Tb//3/iR44cua1yS9Lly5eVnp6usWPHqnLlyrdNbpvNpqpVq+qxxx7z6O1dvHhxpaeny9/fXyVLlnT8OS0tzaNz/357Z2VlqX///ho1apQkeWzuq//jzszM1JgxY5SRkaEGDRro6NGjWr16tcfmzm1733///Tp//rzH/55kZWUpKytLfn5+ysjIUOfOnfXcc8/p0qVL+ZL7n//8p2w2m0qWLOn4nBk/frwWLVqk6OhoR84aNWpo586djs+ZzMxM2e12LVu2TOnp6RoyZIiWLFmi48eP6+2331aLFi3UunVrx7/n7t6+ktSkSRPZ7Xbt2bPHcR/IGjVqqEiRIo4xkZGR2rlzZ562W37gsFQumjVrpu3bt2vfvn26fPmyPv74Y8cP9tofsCRduHBBMTEx2r59u9Nj79696tGjh/z9/V1ad7169XTw4EGNGzdOly9fVteuXfX444/nOfeGDRskSatXr9bHH38sb29veXl5OeW22WzKzs7OkXv58uWSpNatW982ubds2aLGjRuratWq+vbbbxUWFnZb5N6+fbt27NihvXv3asWKFfL29vbo3EOHDpUxRunp6bp8+bJsNpvOnj2rxMREj86d29/L559/XqGhoR6de8uWLSpSpIgGDRrk9O9J9erVPTr3tdt61qxZkqTXXnvN4/89+eGHH2S32/X+++9r586d2rt3rz744AM99thj+ZY7KipK9evXz/Vz5trt5e3t7fQ506NHD8ef9+7dq2HDhumHH36QJC1YsEArV67UmTNnVLFiRbfkzKvf/xtms9lkt9vzPH9ERIQyMzN17tw5p+knTpxQRESEy3koN7koXry4KleurOjoaBUteuOdW/Xq1dO+ffsUFhamypUrOz2Cg4MVGBioChUqKDk5Oc/rDwoKUrdu3TRr1izNmzdPCxcu1NmzZ3OMq169unbs2KGLFy86ch8/flxeXl6qUaPGDdcRGBiYI/fVY66BgYG3Re7y5cvrL3/5i44fP64NGzborrvuui1y5/Z7IkkhISEem7t///7auXOnduzY4XiUKVNGL7/8ssqWLeuxuXPb3mlpafr1118VFhbmsbnLlSunhg0b6vTp006/J4cOHVLx4sU9Nve123vVqlWKiYnRAw884PF/L0NCQpSdna1y5co5bW9/f3/5+fnlS+4SJUpo3759KlmypONzZuPGjZKkgIAAp7HXfs6EhITI398/18+ZrVu3at++ffrxxx/VoUMHt+T8/fa9mtPLy0tVq1bN83b5IzExMfL29nba1nv27NHhw4fVuHFjl5fHYalb1LNnT02YMEEdOnTQ2LFjVa5cOR06dEiLFi3Syy+/rHLlymn06NF69tlnFRYWptatWystLU0bN27U4MGDcyzv3XffVWRkpOrWrSsvLy/Nnz9fERERCgkJyXXdiYmJio+PV1ZWls6cOaPBgwerV69ejl2F1xMWFiZjjDp06KAXX3xRkhy7EL///ntJ0tChQ/XKK694ZO5HH31U2dnZOnDggMaNG6fhw4drwIABKlOmjEaOHKlBgwZ5ZO527dqpfPny6tSpkzIzM7V48WIZY3T06FGNGjVK48aN88jcffv2zfH7bbPZFBERoddff91jf7/btWunsmXLqkuXLsrMzNS8efO0f/9+Va5cWS+//LIGDx7skbk7dOigtm3bavTo0QoPD9fJkydVpUoVLV26VK+88oomTpzosbnHjh2r4OBgzZ07V40bN9Z///tfj/93sFevXqpdu7aGDBmiPXv2aPv27br33nv1ySefqGvXrvmyvaOionTy5EnFx8dr9OjROnXqlAYPHqxKlSrluDP3tZ8zpUqV0uXLl7V+/XotWrRI99xzj6pVq6YBAwZo5MiRmj59umJjY1WqVCm99957bt2+1+bMy/a91tmzZ3X48GEdO3ZM0m/FRfptj01ERISCg4PVr18/JSQkKDQ0VEFBQRo8eLAaN26s++67L8/ruYo9N7eoWLFi+vbbbxUdHa3OnTurevXq6tevn9LT0xUUFCRJio+P1+TJkzV9+nTVqFFD7dq10759+3JdXmBgoN5++23Vr19fDRo00C+//KKvvvpKXl45f1TFihXTqlWrdPbsWS1btkybN2/WI488oqlTp/5h7iJFijhy/+lPf1K7du00fPhwSdLAgQNVt25dnT171mNzlyxZUhs3blRKSor69++vDz/8UDExMYqMjFSlSpU8Nnd0dLQ+//xzPfbYY+revbuWLFmitLQ0bdiwQX/5y188Ovfvf7+vrsvTf78XLlzo2N5r165VTEyMNmzYoKeeesqjc0+ePFmSNGXKFH322Wf6/PPPtXDhQr3++usenbtz586KiYlRZmamypcvf9v8O3jkyBEdOHBAL774ov7+979rxowZev3115WUlJQvuYsUKeLI3aBBAz3++ON65JFH1KhRo1zf49Wcy5cv15YtWxx/D8+fP69evXppxIgRKl68uLy8vLRu3bp82b7X5szL9r3WkiVLVLduXbVt21aS9Kc//Ul169bVzJkzHWMmTZqkdu3a6bHHHtNDDz2kiIgILVq0yKX1XGUzNzrrCAAA4DbDnhsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAbmGz2bR48WK3j/VEDz/8sF544YU8j1+/fr1sNluO++ZcKykpKdcrxAJwHeUGsJg+ffrIZrPJZrPJx8dHlStX1tixY5WdnZ2v6z1+/Lhat27t9rE3Y+LEiSpRooTS09NzvHbp0iUFBQXpr3/9600vf9GiRRo3btytRASQjyg3gAW1atVKx48f1759+/TnP/9Zo0eP1oQJE3Idm5mZ6ZZ1RkRE5LgnjjvG3oxevXrp4sWLuV66fcGCBcrMzNQTTzzh8nKvbqvQ0FAFBgbeck4A+YNyA1iQr6+vIiIiVL58eT333HOKjY3VkiVLJP22Z6djx456/fXXVaZMGcedfY8cOaKuXbsqJCREoaGh6tChg3755Ren5c6ePVs1atSQr6+vIiMjNWjQIMdr1x5qyszM1KBBgxQZGSk/Pz+VL19e48ePz3Ws9NtNW5s3by5/f3+VLFlSTz/9tC5cuOB4/Wrmd955R5GRkSpZsqQGDhyorKysXN9/WFiY2rdvr9mzZ+d4bfbs2erYsaNCQ0P1yiuv6O6771axYsVUsWJFvfrqq07LHD16tOrUqaO//e1vuuuuu+Tn5ycp52GpTz/9VPXr11dgYKAiIiLUo0cPnTx5Mse6N27cqHvvvVd+fn667777tGvXrlzzX/Xll1+qXr168vPzU8WKFTVmzBjHHjhjjEaPHq3o6Gj5+vqqTJkyev7552+4POBOQbkB7gD+/v5Oe2iSk5O1Z88erVmzRsuWLVNWVpbi4uIUGBioDRs2aOPGjQoICFCrVq0c882YMUMDBw7U008/rZ07d2rJkiWqXLlyruv761//qiVLlujzzz/Xnj17NGfOHFWoUCHXsRcvXlRcXJxKlCihLVu2aP78+Vq7dq1TcZKkdevW6cCBA1q3bp0+/vhjJSUlKSkp6brvuV+/fvr666916NAhx7T//Oc/+vbbb9WvXz9Jv91AMCkpSf/+9781ZcoUzZo1S5MmTXJazv79+7Vw4UItWrRI27dvz3VdWVlZGjdunHbs2KHFixfrl19+UZ8+fXKMe+mllzRx4kRt2bJFpUuXVvv27a9b0DZs2KDevXtryJAh+ve//633339fSUlJev311yVJCxcu1KRJk/T+++9r3759Wrx4sWrVqnXd7QHcUQwAS4mPjzcdOnQwxhhjt9vNmjVrjK+vr3nxxRcdr4eHh5uMjAzHPJ9++qmpWrWqsdvtjmkZGRnG39/frFq1yhhjTJkyZcyIESOuu15J5osvvjDGGDN48GDTvHlzp+Vdb+wHH3xgSpQoYS5cuOB4ffny5cbLy8ukpKQ4MpcvX95kZ2c7xnTp0sV069btunmys7NN2bJlTWJiomPaq6++aqKjo82VK1dynWfChAkmJibG8TwxMdF4e3ubkydPOo1r2rSpGTJkyHXXvWXLFiPJpKWlGWOMWbdunZFk5s6d6xhz5swZ4+/vb+bNm2eMMeajjz4ywcHBjtcfeeQR88Ybbzgt99NPPzWRkZHGGGMmTpxo7r77bpOZmXndHMCdij03gAUtW7ZMAQEB8vPzU+vWrdWtWzeNHj3a8XqtWrXk4+PjeL5jxw7t379fgYGBCggIUEBAgEJDQ5Wenq4DBw7o5MmTOnbsmB555JE8rb9Pnz7avn27qlatqueff16rV6++7tiff/5ZtWvXVvHixR3TmjRpIrvdrj179jim1ahRQ0WKFHE8j4yMzPXQz1VFihRRfHy8kpKSZIyR3W7Xxx9/rL59+8rL67d/+ubNm6cmTZooIiJCAQEBGjlypA4fPuy0nPLly6t06dI3fL9bt25V+/btFR0drcDAQDVt2lSSciyrcePGjj+HhoaqatWq+vnnn3Nd5o4dOzR27FjHzyMgIED9+/fX8ePHdenSJXXp0kWXL19WxYoV1b9/f33xxRf5ftI4cLsoWtgBALhfs2bNNGPGDPn4+KhMmTIqWtT5r/q1RUKSLly4oJiYGM2ZMyfHskqXLu0oA3lVr149HTx4UCtWrNDatWvVtWtXxcbGasGCBa6/mf/P29vb6bnNZpPdbr/hPE8++aTGjx+vr7/+Wna7XUeOHFHfvn0lSZs2bVLPnj01ZswYxcXFKTg4WHPnztXEiROdlvH7bfV7Vw+rxcXFac6cOSpdurQOHz6suLi4WzpZ+8KFCxozZow6d+6c4zU/Pz9FRUVpz549Wrt2rdasWaMBAwZowoQJ+uabb3JsK+BOQ7kBLKh48eLXPR8mN/Xq1dO8efMUFhamoKCgXMdUqFBBycnJatasWZ6WGRQUpG7duqlbt256/PHH1apVK509e1ahoaFO46pXr66kpCRdvHjRUSQ2btwoLy8vx8nON6tSpUpq2rSpZs+eLWOMYmNjVb58eUnS999/r/Lly2vEiBGO8deen5NXu3fv1pkzZ/Tmm28qKipKkvTjjz/mOvaHH35QdHS0JOnXX3/V3r17Vb169VzH1qtXT3v27Lnhz9Hf31/t27dX+/btNXDgQFWrVk07d+5UvXr1XH4fgJVQbgCoZ8+emjBhgjp06KCxY8eqXLlyOnTokBYtWqSXX35Z5cqV0+jRo/Xss88qLCxMrVu3VlpamjZu3KjBgwfnWN67776ryMhI1a1bV15eXpo/f74iIiJyvUhdz549lZiYqPj4eI0ePVqnTp3S4MGD1atXL4WHh9/ye+vXr5/69+8vSU4nIFepUkWHDx/W3Llz1aBBAy1fvlxffPGFy8uPjo6Wj4+P3nvvPT377LPatWvXda+BM3bsWJUsWVLh4eEaMWKESpUqpY4dO+Y6dtSoUWrXrp2io6P1+OOPy8vLSzt27NCuXbv02muvKSkpSVeuXFGjRo1UrFgx/f3vf5e/v7+jvAF3Ms65AaBixYrp22+/VXR0tDp37qzq1aurX79+Sk9Pd+zJiY+P1+TJkzV9+nTVqFFD7dq10759+3JdXmBgoN5++23Vr19fDRo00C+//KKvvvoq18NbxYoV06pVq3T27Fk1aNBAjz/+uB555BFNnTrVLe/tsccek6+vr4oVK+ZUJB599FENHTpUgwYNUp06dfT999/r1VdfdXn5pUuXVlJSkubPn6977rlHb775pt55551cx7755psaMmSIYmJilJKSoqVLlzqd+3StuLg4LVu2TKtXr1aDBg103333adKkSY7yEhISolmzZqlJkya69957tXbtWi1dulQlS5Z0+T0AVmMzxpjCDgEAAOAu7LkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACW8v8A1rYhCY9bpSkAAAAASUVORK5CYII=\n" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } - ] - }, - { - "cell_type": "code", + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "# Assuming you have a list of recall values from recall1 to recall10\n", - "recall_values = [recall1, recall2, recall3, recall4, recall5, recall6, recall7, recall8, recall9, recall10]\n", + "recall_values = [recall1, recall2, recall2_1, recall3, recall4, recall5, recall6, recall7, recall8, recall8_1, recall9, recall10]\n", "\n", "# List of corresponding labels for each recall value\n", - "labels = ['Recall1', 'Recall2', 'Recall3', 'Recall4', 'Recall5', 'Recall6', 'Recall7', 'Recall8', 'Recall9', 'Recall10']\n", + "labels = ['Recall1', 'Recall2', 'Recall2_1', 'Recall3', 'Recall4', 'Recall5', 'Recall6', 'Recall7', 'Recall8', 'Recall8_1', 'Recall9', 'Recall10']\n", "\n", "# Plotting the bar graph\n", "plt.bar(labels, recall_values, color='cyan')\n", @@ -2648,42 +7102,22 @@ "plt.ylabel('Recall Values')\n", "plt.title('Bar Graph of Recall')\n", "plt.show()\n" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 472 - }, - "id": "39LBleNeDeuw", - "outputId": "3c6c40bc-f1da-44fb-da14-25ec6d6cf278" - }, - "execution_count": 122, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/z0lEQVR4nO3deVxU9eL/8feAMOACroAhV3HfEg03MjQTxSyXFjPNRKX8WdoieUu7JlrdyMqtcmlx75qWmtfSXMKsa1KmiFtqaiJkCuKGIELC+f3h17nOBY1RluH4ej4e83jEZ87ynoM5b89qMQzDEAAAgEm4lHYAAACAokS5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AVBmTZgwQRaLRWlpacW+rrVr16ply5by8PCQxWLR2bNni32dxcVisWjChAm2n+fPny+LxaLExMRSywQUJcoN4ISufNlc/fLx8VHnzp319ddfl3ieL7/8Uj179pSvr6/c3d1VtWpVdezYUZMnT1Z6enqJ5ylpp06d0iOPPCJPT0/NmDFDixYtUoUKFQqc9n9/d+XKlZO/v78GDx6sY8eOlXBy4NZUrrQDALi2V199VYGBgTIMQykpKZo/f7569OihL7/8Uvfff3+xrz8vL0+RkZGaP3++br/9dj399NMKCAjQ+fPnFRcXp3HjxmnNmjWKjY0t9iyl6eeff9b58+f12muvKSwsrFDzXPndXbx4UT/++KPmz5+vzZs3a8+ePfLw8CjmxMCtjXIDOLF7771XrVu3tv0cGRkpX19fffrpp0VSbvLy8pSTk3PNL9u33npL8+fP16hRozR58mRZLBbbe88995yOHz+uhQsX3tQ6yoLU1FRJUuXKlQs9z9W/uyeeeELVq1fXpEmTtGrVKj3yyCPFERPA/+GwFFCGVK5cWZ6enipXzv7fJe+8847uvPNOVatWTZ6engoODtayZcvyzW+xWDRy5Ej961//UrNmzWS1WrV27doC13XhwgVNmjRJzZo109tvv21XbK6oWbOmXnrppUKv40ZyNmrUSB4eHgoODtb3339fYNazZ89q8ODBqly5sry9vTVkyBBduHCh4I34Pz7//HMFBwfL09NT1atX18CBA+0OH919992KiIiQJLVp00YWi0WDBw8u1LKvFhoaKkk6fPiw3fj+/fv18MMPq2rVqvLw8FDr1q21atWqAj/jqFGjVKdOHVmtVtWqVUuDBg2ynW+Uk5Oj8ePHKzg4WN7e3qpQoYJCQ0P17bffOpwVKOvYcwM4sXPnziktLU2GYSg1NVXvvfeeMjIyNHDgQLvppk+frl69eumxxx5TTk6OlixZor59++qrr77SfffdZzftxo0b9dlnn2nkyJGqXr266tSpU+C6N2/erLNnz2r06NFydXV1KPe11uFIzu+++05Lly7Vs88+K6vVqpkzZ6p79+7aunWrmjdvbjftI488osDAQMXExCg+Pl4ff/yxfHx8NGnSpOvmnD9/voYMGaI2bdooJiZGKSkpmj59un744Qft2LFDlStX1j/+8Q81atRIH374oe1QU7169RzaHpJsJ+tWqVLFNrZ371516NBB/v7+GjNmjCpUqKDPPvtMffr00fLly/XAAw9IkjIyMhQaGqp9+/Zp6NChuuOOO5SWlqZVq1bp999/V/Xq1ZWenq6PP/5Y/fv315NPPqnz589rzpw5Cg8P19atW9WyZUuHMwNllgHA6cybN8+QlO9ltVqN+fPn55v+woULdj/n5OQYzZs3N+655x67cUmGi4uLsXfv3r/MMH36dEOSsXLlSrvxS5cuGSdPnrR75eXlFWodjuSUZGzbts02dvToUcPDw8N44IEHbGPR0dGGJGPo0KF28z/wwANGtWrVrvv5cnJyDB8fH6N58+ZGVlaWbfyrr74yJBnjx4+3jV35ffz888/XXebV037zzTfGyZMnjeTkZGPZsmVGjRo1DKvVaiQnJ9um7dKli3H77bcbFy9etI3l5eUZd955p9GgQQPb2Pjx4w1JxooVK/Kt78q2v3TpkpGdnW333pkzZwxfX99820eSER0dnS/zkSNH/vLzAWUBh6UAJzZjxgxt2LBBGzZs0CeffKLOnTvriSee0IoVK+ym8/T0tP33mTNndO7cOYWGhio+Pj7fMjt16qSmTZv+5bqvXAVVsWJFu/Hdu3erRo0adq9Tp04Vah2O5AwJCVFwcLDt57/97W/q3bu31q1bp9zcXLtphw8fbvdzaGioTp06dd0rubZt26bU1FQ9/fTTducD3XfffWrcuLFWr159zXkLIywsTDVq1FBAQIAefvhhVahQQatWrVKtWrUkSadPn9bGjRv1yCOP6Pz580pLS1NaWppOnTql8PBwHTx40HZ4bPny5QoKCrLtybnalcOFrq6ucnd3l3T5PKfTp0/r0qVLat26dYHbFzAzDksBTqxt27Z2JxT3799frVq10siRI3X//ffbvsy++uorvf7660pISFB2drZt+oLOkwkMDCzUuitVqiTp8iGRq9WvX18bNmyQJC1cuFCLFi0q9DocydmgQYN8Yw0bNtSFCxd08uRJ+fn52cb/9re/2U135dDPmTNn5OXlVWCWo0ePSpIaNWqU773GjRtr8+bNBc5XWDNmzFDDhg117tw5zZ07V99//72sVqvt/UOHDskwDL3yyit65ZVXClxGamqq/P39dfjwYT300EN/uc4FCxZo8uTJ2r9/v/7880/beGF/54BZUG6AMsTFxUWdO3fW9OnTdfDgQTVr1kz/+c9/1KtXL3Xs2FEzZ85UzZo15ebmpnnz5mnx4sX5lnH13pPrady4sSRpz5496t27t228YsWKtsuhr1UAClqHozkdca1zggzDuKnl3oyri2mfPn101113acCAATpw4IAqVqyovLw8SdLo0aMVHh5e4DLq169f6PV98sknGjx4sPr06aO///3v8vHxkaurq2JiYvKdxAyYHeUGKGMuXbok6b97VJYvXy4PDw+tW7fObs/AvHnzbmo9oaGh8vb21pIlSzR27Fi5uNzcUWxHcx48eDDf2K+//qry5curRo0aN5VFkmrXri1JOnDggO655x679w4cOGB7vyhcKRmdO3fW+++/rzFjxqhu3bqSJDc3t7+8d069evW0Z8+e606zbNky1a1bVytWrLDbExYdHX3zHwAoYzjnBihD/vzzT61fv17u7u5q0qSJpMtfnBaLxe48lMTERK1cufKm1lW+fHm9+OKL2rNnj8aMGVPgXhBH9ow4mjMuLs7uXJHk5GT9+9//Vrdu3Ry+eqsgrVu3lo+Pj2bPnm13iOzrr7/Wvn378l29dbPuvvtutW3bVtOmTdPFixfl4+Oju+++Wx988IGOHz+eb/qTJ0/a/vuhhx7Szp079cUXX+Sb7srv4Mo2ufp38tNPPykuLq5IPwdQFrDnBnBiX3/9tfbv3y/p8vkXixcv1sGDBzVmzBjbuST33XefpkyZou7du2vAgAFKTU3VjBkzVL9+fe3ateum1j9mzBjt27dPb7/9ttavX6+HHnpItWrV0pkzZxQfH6/PP/9cPj4+hbpBn6M5mzdvrvDwcLtLwSVp4sSJN/WZrnBzc9OkSZM0ZMgQderUSf3797ddCl6nTh2NGjWqSNZztb///e/q27ev5s+fr+HDh2vGjBm66667dPvtt+vJJ59U3bp1lZKSori4OP3+++/auXOnbb5ly5apb9++Gjp0qIKDg3X69GmtWrVKs2fPVlBQkO6//36tWLFCDzzwgO677z4dOXJEs2fPVtOmTfOdNwWYXmleqgWgYAVdCu7h4WG0bNnSmDVrlt2l14ZhGHPmzDEaNGhgWK1Wo3Hjxsa8efNsl0lfTZIxYsQIh/N88cUXRo8ePYwaNWoY5cqVMypXrmzcddddxttvv22cPXu20OtwNOcnn3xim75Vq1bGt99+azfdlXlPnjxpN+7Ipc1Lly41WrVqZVitVqNq1arGY489Zvz+++8FLs+RS8ELmjY3N9eoV6+eUa9ePePSpUuGYRjG4cOHjUGDBhl+fn6Gm5ub4e/vb9x///3GsmXL7OY9deqUMXLkSMPf399wd3c3atWqZURERBhpaWmGYVy+JPyNN94wateubdteX331lREREWHUrl3bblniUnCYnMUwSvGMOwAogMVi0YgRI/T++++XdhQAZRDn3AAAAFOh3AAAAFOh3AAAAFPhaikATodTAQHcDPbcAAAAU6HcAAAAU7nlDkvl5eXpjz/+UKVKlQp8WB8AAHA+hmHo/Pnzuu222/7ycTC3XLn5448/FBAQUNoxAADADUhOTlatWrWuO80tV24qVaok6fLGuXL7egAA4NzS09MVEBBg+x6/nluu3Fw5FOXl5UW5AQCgjCnMKSWcUAwAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEylVMvN999/r549e+q2226TxWLRypUr/3KeTZs26Y477pDValX9+vU1f/78Ys8JAADKjlItN5mZmQoKCtKMGTMKNf2RI0d03333qXPnzkpISNDzzz+vJ554QuvWrSvmpAAAoKwo1Qdn3nvvvbr33nsLPf3s2bMVGBioyZMnS5KaNGmizZs3a+rUqQoPDy+umAAAoAwpU+fcxMXFKSwszG4sPDxccXFx15wnOztb6enpdi8AAGBeZarcnDhxQr6+vnZjvr6+Sk9PV1ZWVoHzxMTEyNvb2/YKCAgoiagAAKCUlKlycyPGjh2rc+fO2V7JycmlHckpWZzwBQDAjSjVc24c5efnp5SUFLuxlJQUeXl5ydPTs8B5rFarrFZrScQDAABOoEztuQkJCVFsbKzd2IYNGxQSElJKiQAAgLMp1XKTkZGhhIQEJSQkSLp8qXdCQoKSkpIkXT6kNGjQINv0w4cP12+//aYXX3xR+/fv18yZM/XZZ59p1KhRpREfAFCA0j6kzWFulGq52bZtm1q1aqVWrVpJkqKiotSqVSuNHz9eknT8+HFb0ZGkwMBArV69Whs2bFBQUJAmT56sjz/+mMvAAQCAjcUwDKO0Q5Sk9PR0eXt769y5c/Ly8irtOE7DGf9lc0v9wUSx4s93yWJ7l6xbZXs78v1dps65AQAA+CuUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCrlSjsAAADOwFLaAQpglHaAMoo9NwAAwFQoNwAAwFQ4LAWUgrK6+7us5gZwa2HPDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXucwMATor7CgE3hj03AADAVCg3AADAVCg3AADAVDjnBmUa5yQAAP4Xe24AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICplHq5mTFjhurUqSMPDw+1a9dOW7duve7006ZNU6NGjeTp6amAgACNGjVKFy9eLKG0AADA2ZVquVm6dKmioqIUHR2t+Ph4BQUFKTw8XKmpqQVOv3jxYo0ZM0bR0dHat2+f5syZo6VLl+rll18u4eTXZnHCFwAAt5JSLTdTpkzRk08+qSFDhqhp06aaPXu2ypcvr7lz5xY4/ZYtW9ShQwcNGDBAderUUbdu3dS/f/+/3NsDAABuHaVWbnJycrR9+3aFhYX9N4yLi8LCwhQXF1fgPHfeeae2b99uKzO//fab1qxZox49epRIZgAA4PzKldaK09LSlJubK19fX7txX19f7d+/v8B5BgwYoLS0NN11110yDEOXLl3S8OHDr3tYKjs7W9nZ2baf09PTi+YDAAAAp1TqJxQ7YtOmTXrjjTc0c+ZMxcfHa8WKFVq9erVee+21a84TExMjb29v2ysgIKAEEwMAgJJmMQzDKI0V5+TkqHz58lq2bJn69OljG4+IiNDZs2f173//O988oaGhat++vd5++23b2CeffKJhw4YpIyNDLi75u1pBe24CAgJ07tw5eXl5Fe2HknOewFuYXzC5iw65Sxa5Sxa5S5aZczsqPT1d3t7ehfr+LrU9N+7u7goODlZsbKxtLC8vT7GxsQoJCSlwngsXLuQrMK6urpKka3U0q9UqLy8vuxcAADCvUjvnRpKioqIUERGh1q1bq23btpo2bZoyMzM1ZMgQSdKgQYPk7++vmJgYSVLPnj01ZcoUtWrVSu3atdOhQ4f0yiuvqGfPnraSAwAAbm2lWm769eunkydPavz48Tpx4oRatmyptWvX2k4yTkpKsttTM27cOFksFo0bN07Hjh1TjRo11LNnT/3zn/8srY8AAACcTKmdc1NaHDlmdyPK6rFPchcdcpcscpcscpcsM+d2VJk45wYAAKA4UG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpOFxusrKydOHCBdvPR48e1bRp07R+/foiDQYAAHAjHC43vXv31sKFCyVJZ8+eVbt27TR58mT17t1bs2bNKvKAAAAAjnC43MTHxys0NFSStGzZMvn6+uro0aNauHCh3n333SIPCAAA4AiHy82FCxdUqVIlSdL69ev14IMPysXFRe3bt9fRo0eLPCAAAIAjHC439evX18qVK5WcnKx169apW7dukqTU1FR5eXkVeUAAAABHOFxuxo8fr9GjR6tOnTpq27atQkJCJF3ei9OqVasiDwgAAOAIi2EYhqMznThxQsePH1dQUJBcXC73o61bt8rLy0uNGzcu8pBFKT09Xd7e3jp37lyx7GmyFPkSb15hfsHkLjrkLlnkLlnkLllmzu0oR76/b+g+N35+fqpUqZI2bNigrKwsSVKbNm2cvtgAAADzc7jcnDp1Sl26dFHDhg3Vo0cPHT9+XJIUGRmpF154ocgDAgAAOMLhcjNq1Ci5ubkpKSlJ5cuXt43369dPa9euLdJwAAAAjirn6Azr16/XunXrVKtWLbvxBg0acCk4AAAodQ7vucnMzLTbY3PF6dOnZbVaiyQUAADAjXK43ISGhtoevyBJFotFeXl5euutt9S5c+ciDQcAAOAoh8vNW2+9pQ8//FD33nuvcnJy9OKLL6p58+b6/vvvNWnSJIcDzJgxQ3Xq1JGHh4fatWunrVu3Xnf6s2fPasSIEapZs6asVqsaNmyoNWvWOLxeAABgTg6Xm+bNm+vXX3/VXXfdpd69eyszM1MPPvigduzYoXr16jm0rKVLlyoqKkrR0dGKj49XUFCQwsPDlZqaWuD0OTk56tq1qxITE7Vs2TIdOHBAH330kfz9/R39GAAAwKRu6CZ+RaVdu3Zq06aN3n//fUlSXl6eAgIC9Mwzz2jMmDH5pp89e7befvtt7d+/X25ubje0Tm7iVzByFx1ylyxylyxylywz53aUI9/fDl8t9f3331/3/Y4dOxZqOTk5Odq+fbvGjh1rG3NxcVFYWJji4uIKnGfVqlUKCQnRiBEj9O9//1s1atTQgAED9NJLL8nV1bXAebKzs5WdnW37OT09vVD5AABA2eRwubn77rvzjVks/+2Nubm5hVpOWlqacnNz5evrazfu6+ur/fv3FzjPb7/9po0bN+qxxx7TmjVrdOjQIT399NP6888/FR0dXeA8MTExmjhxYqEyAQCAss/hc27OnDlj90pNTdXatWvVpk0brV+/vjgy2uTl5cnHx0cffvihgoOD1a9fP/3jH//Q7NmzrznP2LFjde7cOdsrOTm5WDMCAIDS5fCeG29v73xjXbt2lbu7u6KiorR9+/ZCLad69epydXVVSkqK3XhKSor8/PwKnKdmzZpyc3OzOwTVpEkTnThxQjk5OXJ3d883j9Vq5f47AADcQm7owZkF8fX11YEDBwo9vbu7u4KDgxUbG2sby8vLU2xsrEJCQgqcp0OHDjp06JDy8vJsY7/++qtq1qxZYLEBAAC3Hof33OzatcvuZ8MwdPz4cb355ptq2bKlQ8uKiopSRESEWrdurbZt22ratGnKzMzUkCFDJEmDBg2Sv7+/YmJiJElPPfWU3n//fT333HN65plndPDgQb3xxht69tlnHf0YAADApBwuNy1btpTFYtH/XkHevn17zZ0716Fl9evXTydPntT48eN14sQJtWzZUmvXrrWdZJyUlCQXl//uXAoICNC6des0atQotWjRQv7+/nruuef00ksvOfoxAACASTl8n5v/fTimi4uLatSoIQ8PjyINVly4z03ByF10yF2yyF2yyF2yzJzbUcV6n5vatWvfcDAAAIDiVqhy8+677xZ6gZz/AgAASlOhDksFBgYWbmEWi3777bebDlWcOCxVMHIXHXKXLHKXLHKXLDPndlSRH5Y6cuRIkQQDAAAobkV2nxsAAABn4PAJxZL0+++/a9WqVUpKSlJOTo7de1OmTCmSYAAAADfC4XITGxurXr16qW7dutq/f7+aN2+uxMREGYahO+64ozgyAgAAFJrDh6XGjh2r0aNHa/fu3fLw8NDy5cuVnJysTp06qW/fvsWREQAAoNAcLjf79u3ToEGDJEnlypVTVlaWKlasqFdffVWTJk0q8oAAAACOcLjcVKhQwXaeTc2aNXX48GHbe2lpaUWXDAAA4AY4fM5N+/bttXnzZjVp0kQ9evTQCy+8oN27d2vFihVq3759cWQEAAAotEKXm9OnT6tq1aqaMmWKMjIyJEkTJ05URkaGli5dqgYNGnClFAAAKHWFfnCmh4eH+vTpo8jISHXt2rW4cxUb7lBcMHIXHXKXLHKXLHKXLDPndpQj39+FPufmo48+0smTJ9W9e3fVqVNHEyZMUGJi4s1mBQAAKFKFLjePP/64YmNjdejQIUVERGjBggWqX7++unbtqqVLl+a7mR8AAEBpcPhqqcDAQE2cOFFHjhzR2rVr5ePjo6FDh6pmzZo8ERwAAJS6Qp9zcz3Lly/XsGHDdPbsWeXm5hZFrmLDOTcFI3fRIXfJInfJInfJMnNuRxX5U8ELcvToUc2bN08LFixQcnKyOnfurMjIyBtdHAAAQJFwqNxkZ2dr+fLlmjt3rjZt2iR/f38NHjxYQ4YMUZ06dYopIgAAQOEVutw8/fTTWrJkiS5cuKDevXtrzZo16tq1qywWZ9whBgAAblWFLjebN29WdHS0Bg4cqGrVqhVnJgAAgBtW6HKza9eu4swBAABQJBy+FBwAAMCZUW4AAICpUG4AAICpUG4AAICpFOqEYkdOJm7RosUNhwEAALhZhSo3LVu2lMVi0bWe1HDlPYvF4vSPXwAAAOZWqHJz5MiR4s4BAABQJApVbmrXrl3cOQAAAIpEocrNqlWrCr3AXr163XAYAACAm1WoctOnT59CLYxzbgAAQGkrVLnJy8sr7hwAAABFgvvcAAAAUyn0gzOvlpmZqe+++05JSUnKycmxe+/ZZ58tkmAAAAA3wuFys2PHDvXo0UMXLlxQZmamqlatqrS0NJUvX14+Pj6UGwAAUKocPiw1atQo9ezZU2fOnJGnp6d+/PFHHT16VMHBwXrnnXeKIyMAAEChOVxuEhIS9MILL8jFxUWurq7Kzs5WQECA3nrrLb388svFkREAAKDQHC43bm5ucnG5PJuPj4+SkpIkSd7e3kpOTi7adAAAAA5y+JybVq1a6eeff1aDBg3UqVMnjR8/XmlpaVq0aJGaN29eHBkBAAAKzeE9N2+88YZq1qwpSfrnP/+pKlWq6KmnntLJkyf1wQcfFHlAAAAAR1iMaz3q26TS09Pl7e2tc+fOycvLq8iXbynyJd68wvyCyV10yF2yyF2yyF2yzJzbUY58fzu85+bIkSM6ePBgvvGDBw8qMTHR0cUBAAAUKYfLzeDBg7Vly5Z84z/99JMGDx5cFJkAAABumMPlZseOHerQoUO+8fbt2yshIaEoMgEAANwwh8uNxWLR+fPn842fO3eOJ4IDAIBS53C56dixo2JiYuyKTG5urmJiYnTXXXcVaTgAAABHOXyfm0mTJqljx45q1KiRQkNDJUn/+c9/lJ6ero0bNxZ5QAAAAEc4vOemadOm2rVrlx555BGlpqbq/PnzGjRokPbv389N/AAAQKnjPjdFrKzeb4DcRYfcJYvcJYvcJcvMuR1VrPe5kS4fhho4cKDuvPNOHTt2TJK0aNEibd68+UYWBwAAUGQcLjfLly9XeHi4PD09FR8fr+zsbEmXr5Z64403ijwgAACAIxwuN6+//rpmz56tjz76SG5ubrbxDh06KD4+vkjDAQAAOMrhcnPgwAF17Ngx37i3t7fOnj1bFJkAAABumMPlxs/PT4cOHco3vnnzZtWtW7dIQgEAANwoh8vNk08+qeeee04//fSTLBaL/vjjD/3rX//S6NGj9dRTTxVHRgAAgEJz+CZ+Y8aMUV5enrp06aILFy6oY8eOslqtGj16tJ555pniyAgAAFBoN3yfm5ycHB06dEgZGRlq2rSpKlasqKysLHl6ehZ1xiLFfW4KRu6iQ+6SRe6SRe6SZebcjir2+9xIkru7u5o2baq2bdvKzc1NU6ZMUWBg4I0uDgAAoEgUutxkZ2dr7Nixat26te68806tXLlSkjRv3jwFBgZq6tSpGjVq1A2FmDFjhurUqSMPDw+1a9dOW7duLdR8S5YskcViUZ8+fW5ovQAAwHwKXW7Gjx+vWbNmqU6dOkpMTFTfvn01bNgwTZ06VVOmTFFiYqJeeuklhwMsXbpUUVFRio6OVnx8vIKCghQeHq7U1NTrzpeYmKjRo0fbHt4JAAAgOVBuPv/8cy1cuFDLli3T+vXrlZubq0uXLmnnzp169NFH5erqekMBpkyZoieffFJDhgxR06ZNNXv2bJUvX15z58695jy5ubl67LHHNHHiRC4/BwAAdgpdbn7//XcFBwdLkpo3by6r1apRo0bJYrnxU5lycnK0fft2hYWF/TeQi4vCwsIUFxd3zfleffVV+fj4KDIy8obXDQAAzKnQl4Ln5ubK3d39vzOWK6eKFSve1MrT0tKUm5srX19fu3FfX1/t37+/wHk2b96sOXPmKCEhoVDryM7Otj3/Srp8tjUAADCvQpcbwzA0ePBgWa1WSdLFixc1fPhwVahQwW66FStWFG3Cq5w/f16PP/64PvroI1WvXr1Q88TExGjixInFlgkAADiXQpebiIgIu58HDhx40yuvXr26XF1dlZKSYjeekpIiPz+/fNMfPnxYiYmJ6tmzp20sLy9P0uU9SQcOHFC9evXs5hk7dqyioqJsP6enpysgIOCmswMAAOdU6HIzb968Il+5u7u7goODFRsba7ucOy8vT7GxsRo5cmS+6Rs3bqzdu3fbjY0bN07nz5/X9OnTCywtVqvVtrcJAACYn8OPXyhqUVFRioiIUOvWrdW2bVtNmzZNmZmZGjJkiCRp0KBB8vf3V0xMjDw8PNS8eXO7+StXrixJ+cYBAMCtqdTLTb9+/XTy5EmNHz9eJ06cUMuWLbV27VrbScZJSUlycbnhGykDAIBbzA0/W6qs4tlSBSN30SF3ySJ3ySJ3yTJzbkeVyLOlAAAAnBHlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmIpTlJsZM2aoTp068vDwULt27bR169ZrTvvRRx8pNDRUVapUUZUqVRQWFnbd6QEAwK2l1MvN0qVLFRUVpejoaMXHxysoKEjh4eFKTU0tcPpNmzapf//++vbbbxUXF6eAgAB169ZNx44dK+HkAADAGVkMwzBKM0C7du3Upk0bvf/++5KkvLw8BQQE6JlnntGYMWP+cv7c3FxVqVJF77//vgYNGvSX06enp8vb21vnzp2Tl5fXTef/X5YiX+LNK8wvmNxFh9wli9wli9wly8y5HeXI93ep7rnJycnR9u3bFRYWZhtzcXFRWFiY4uLiCrWMCxcu6M8//1TVqlULfD87O1vp6el2LwAAYF6lWm7S0tKUm5srX19fu3FfX1+dOHGiUMt46aWXdNttt9kVpKvFxMTI29vb9goICLjp3AAAwHmV+jk3N+PNN9/UkiVL9MUXX8jDw6PAacaOHatz587ZXsnJySWcEgAAlKRypbny6tWry9XVVSkpKXbjKSkp8vPzu+6877zzjt5880198803atGixTWns1qtslqtRZIXAAA4v1Ldc+Pu7q7g4GDFxsbaxvLy8hQbG6uQkJBrzvfWW2/ptdde09q1a9W6deuSiAoAAMqIUt1zI0lRUVGKiIhQ69at1bZtW02bNk2ZmZkaMmSIJGnQoEHy9/dXTEyMJGnSpEkaP368Fi9erDp16tjOzalYsaIqVqxYap8DAAA4h1IvN/369dPJkyc1fvx4nThxQi1bttTatWttJxknJSXJxeW/O5hmzZqlnJwcPfzww3bLiY6O1oQJE0oyOgAAcEKlfp+bksZ9bgpG7qJD7pJF7pJF7pJl5tyOKjP3uQEAAChqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqTlFuZsyYoTp16sjDw0Pt2rXT1q1brzv9559/rsaNG8vDw0O333671qxZU0JJAQCAsyv1crN06VJFRUUpOjpa8fHxCgoKUnh4uFJTUwucfsuWLerfv78iIyO1Y8cO9enTR3369NGePXtKODkAAHBGFsMwjNIM0K5dO7Vp00bvv/++JCkvL08BAQF65plnNGbMmHzT9+vXT5mZmfrqq69sY+3bt1fLli01e/bsv1xfenq6vL29de7cOXl5eRXdB/k/liJf4s0rzC+Y3EWH3CWL3CWL3CXLzLkd5cj3d6nuucnJydH27dsVFhZmG3NxcVFYWJji4uIKnCcuLs5uekkKDw+/5vQAAODWUq40V56Wlqbc3Fz5+vrajfv6+mr//v0FznPixIkCpz9x4kSB02dnZys7O9v287lz5yRdboC3irL6Scldsshdsshdsshdsooj95Xv7cIccCrVclMSYmJiNHHixHzjAQEBpZCmdHiXdoAbRO6SRe6SRe6SRe6SVZy5z58/L2/v66+hVMtN9erV5erqqpSUFLvxlJQU+fn5FTiPn5+fQ9OPHTtWUVFRtp/z8vJ0+vRpVatWTRaLMx6pvNxOAwIClJycXCznBRUXcpcscpcscpcscpesspDbMAydP39et912219OW6rlxt3dXcHBwYqNjVWfPn0kXS4fsbGxGjlyZIHzhISEKDY2Vs8//7xtbMOGDQoJCSlweqvVKqvVajdWuXLloohf7Ly8vJz2D9n1kLtkkbtkkbtkkbtkOXvuv9pjc0WpH5aKiopSRESEWrdurbZt22ratGnKzMzUkCFDJEmDBg2Sv7+/YmJiJEnPPfecOnXqpMmTJ+u+++7TkiVLtG3bNn344Yel+TEAAICTKPVy069fP508eVLjx4/XiRMn1LJlS61du9Z20nBSUpJcXP57Udedd96pxYsXa9y4cXr55ZfVoEEDrVy5Us2bNy+tjwAAAJxIqZcbSRo5cuQ1D0Nt2rQp31jfvn3Vt2/fYk5VeqxWq6Kjo/MdTnN25C5Z5C5Z5C5Z5C5ZZTX3tZT6TfwAAACKUqk/fgEAAKAoUW4AAICpUG4AAICpUG7KMIvFopUrV0qSEhMTZbFYlJCQUKqZCoPcJa+sZi+Lucti5ivKYvaymPmKspC9LGQsCOXmBg0ePFgWi0UWi0Vubm4KDAzUiy++qIsXL5Z2NJtnn31WwcHBslqtatmypSTnz71z5071799fAQEB8vT0VJMmTTR9+nSnz33q1Cl1795dt912m6xWqwICAjRy5Eilp6c7ffarnTp1SrVq1ZLFYtGAAQOcPveVfAW9nDWzJM2fP18tWrSQh4eHfHx8NGLECKf/czJ//vwyub1//vlndenSRZUrV1aVKlUUHh6unTt3Ov32li4/FPrqbVy5cmWNHj3aqTIW9D3zv3bt2qXQ0FB5eHgoICBAb731VrHncopLwcuq7t27a968efrzzz+1fft2RUREyGKxaNKkSaUdzWbo0KH66aeftGvXLtuYM+fevn27fHx89MknnyggIEBbtmzRsGHDdPvttzt1bhcXF/Xu3Vuvv/66atSooUOHDmnEiBE6ffq03N3dnTr71SIjI9WiRQsdO3ZMknP/Wbli3rx56t69u6TLN/k8e/asFixY4LSZp0yZosmTJ+vtt99Wu3btlJmZqcTERK1YscKpt3e/fv1s2/mK4OBgZWVl6ZdffnHKzBkZGerevbt69eqlmTNn6tKlS4qOjlZ4eLi6devm1Nt7586d+uabb1S/fn0tXLhQv//+u0aNGqX33ntPrq6uTpHxioK+Z65IT09Xt27dFBYWptmzZ2v37t0aOnSoKleurGHDhhVbJvbc3ASr1So/Pz8FBASoT58+CgsL04YNGyRdfoxETEyMAgMD5enpqaCgIC1btsxu/r179+r++++Xl5eXKlWqpNDQUB0+fFjS5X9tdO3aVdWrV5e3t7c6deqk+Ph4h/K9++67GjFihOrWrVtmcg8dOlTTp09Xp06dVLduXQ0cOFBDhgxRUlKSU+euUqWKnnrqKbVu3Vq1a9dWly5d9PTTT+s///mP02/zK2bNmqWzZ89q9OjRtrGykLty5cry8/OTn5+fPD095enp6bSZz5w5o3HjxmnhwoUaMGCA6tWrpxYtWqhXr15Ov72vbNcrL1dXVx0/flyBgYFOm3n//v06ffq0Xn31VTVq1EjNmjVTdHS0UlJSlJGR4dTbe+nSpapSpYqaNWumkJAQ9e3bV7NmzdKlS5e0bt06p8goXft75op//etfysnJ0dy5c9WsWTM9+uijevbZZzVlyhSH1uMoyk0R2bNnj7Zs2SJ3d3dJl59GvnDhQs2ePVt79+7VqFGjNHDgQH333XeSpGPHjqljx46yWq3auHGjtm/frqFDh+rSpUuSLj/1NCIiQps3b9aPP/6oBg0aqEePHjp//vwtl/vcuXP5bizl7Ln/+OMPrVixQp06dcr3njNm/+WXX/Tqq69q4cKFdncEd/bckjRixAhVr15dbdu21cGDB50684YNG5SXl6djx46pSZMmqlWrlh555BElJyeXme19xcKFC1WuXDm7hxg6W+ZGjRqpWrVqmjNnjnJycpSVlaU5c+aoSZMmqlixolNv7+zsbLm6utqNnThxQnl5ecrJyXGKjIURFxenjh072rardPlw24EDB3TmzJkiW08+Bm5IRESE4erqalSoUMGwWq2GJMPFxcVYtmyZcfHiRaN8+fLGli1b7OaJjIw0+vfvbxiGYYwdO9YIDAw0cnJyCrW+3Nxco1KlSsaXX35pG5NkfPHFF4ZhGMaRI0cMScaOHTvyzRsdHW0EBQWVudyGYRg//PCDUa5cOaNr165lIvejjz5qeHp6GpKMnj17GllZWU6/zS9evGi0aNHCWLRokWEYhvHtt98akoz+/fs7dW7DMIxXX33V2Lx5sxEfH2+8+eabhouLi+Hi4uK0mWNiYgw3NzejUaNGxtq1a424uDijS5cuRqNGjYzHH3/c6bf31Zo0aWI0atTI6TPv3r3bqFevnu3PRqNGjYzExESn//9y3bp1tkxXZ5RkPP/8806R8WpXf89crWvXrsawYcPsxvbu3WtIMn755ZdC5boRnHNzEzp37qxZs2YpMzNTU6dOVbly5fTQQw9p7969unDhgrp27Wo3fU5Ojlq1aiVJSkhIUGhoqNzc3ApcdkpKisaNG6dNmzYpNTVVubm5unDhgpKSkm6Z3Hv27FHv3r0VHR2tQ4cOlYncU6dOVXR0tH799VeNHTtWUVFRkpx7m48dO1ZNmjTRwIED873nzLkl6ZVXXrH9d6tWrbR48WIdOHBACQkJTpk5Ly9Pf/75p959911169ZNkvTpp5/aDo04+/a+Ii4uTvv27dP999+vgIAAp82clZWlyMhIdejQQZ9++qlyc3P1zjvv6L777lOrVq2cent369ZNrVu31o4dO5SVlSV3d3fdcccdio+PV/v27XXo0KFSz+jMKDc3oUKFCqpfv74kae7cuQoKCtKcOXNsD/FcvXq1/P397ea5cnjF09PzusuOiIjQqVOnNH36dNWuXVtWq1UhISG23ZFmz/3LL7+oS5cuGjZsmMaNG6fBgweXidxXzkdo3LixqlatqtDQUD3yyCNOnX3jxo3avXu37Vi98X9PZFmyZIkaNmzotLkLUqNGDe3atUsBAQGyWq1Ol7lmzZqSpKZNm9plrl69ujIzM+Xj41MmtvfHH3+sli1bqlq1ajp79qzTZl68eLESExMVFxdnO9y6ePFiValSRdWqVVOVKlWcNrskNWvWTP7+/po5c6aqVKmi3377Tc2bN9fu3btVp04dp8j4V/z8/JSSkmI3duVnPz+/IlvP/6LcFBEXFxe9/PLLioqK0q+//iqr1aqkpKQCz7mQpBYtWtiu6CioVf/www+aOXOmevToIUlKTk5WWlraLZF77969uueeexQREaF//vOfZSb3/8rLy5Mk5ebmOnX25cuXKysry/bzzz//rKFDh+ree++1fQZnzF2Q06dPy83NzfaXu7Nl7tChgyTpwIEDqlWrli1zWlqagoKC7KZ1tuxXZGRk6LPPPlNMTIy2bdvm1JkvXLggFxcXWSwWu4wWi8VW4p01+9WunNe0dOlSVa1aVXPmzNFLL73kVBmvJSQkRP/4xz/sMmzYsEGNGjVSlSpVinRdV+OE4iLUt29fubq66oMPPtDo0aM1atQoLViwQIcPH1Z8fLzee+89LViwQJJs90B59NFHtW3bNh08eFCLFi3SgQMHJEkNGjTQokWLtG/fPv3000967LHH/rKF/69Dhw4pISFBJ06cUFZWlhISEnT69Gm7Lyxny71nzx517txZ3bp1U1RUlE6cOKETJ04UeF8HZ8q9Zs0azZs3T3v27FFiYqJWr16t4cOHq0OHDvlOXHS27PXq1VPz5s1tr8DAQEmSt7d3vhO5nSn3l19+qY8//lh79uzRoUOHNGvWLO3atSvfVRvOlLlhw4bq3bu3nnvuOW3ZskV79uxRRESEGjduXOC/Yp0p+xVLly7VpUuXCjyM6WyZu3btqjNnzmjEiBHat2+f9u7dqyFDhqhcuXK2vWjOml26/Pdhenq69u7dq9dee01vvvmmPvzwQ6fKWND3TEJCgm3vz4ABA+Tu7q7IyEjt3btXS5cu1fTp022H7ItNsZ3NY3IRERFG7969843HxMQYNWrUMDIyMoxp06YZjRo1Mtzc3IwaNWoY4eHhxnfffWebdufOnUa3bt2M8uXLG5UqVTJCQ0ONw4cPG4ZhGPHx8Ubr1q0NDw8Po0GDBsbnn39u1K5d25g6daptfv3FiV6dOnWynYB29atr165Omzs6OrrAzBUqVHDq7b1x40YjJCTE8Pb2ti3jpZdeMs6cOVMm/qxc7eoTip0599dff220bNnSqFixolGhQgUjKCjIaN++vdGrVy+nzWwYhnHu3Dlj6NChRuXKlY2qVasaDzzwgJGUlFRm/pyEhIQYAwYMMAyjbPw9uH79eqNDhw6Gt7e3UaVKFeOee+4x4uLiykR2Pz8/o1y5coaHh4fRrl07Y82aNU6X8VrfM0eOHLHLcNdddxlWq9Xw9/c33nzzzXzbvahZ/i88AACAKXBYCgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBkCps1gsWrlypSQpMTFRFotFCQkJJZ7jRtY9ePBg9enT57rT3H333Xr++edvKhuAwqPcALewwYMHy2KxyGKxyM3NTYGBgXrxxRcLfNyFs7j99ts1fPjwAt9btGiRrFbrDT8fJyAgQMePH7c9OBFA2US5AW5x3bt31/Hjx/Xbb79p6tSp+uCDDxQdHV3asa4pMjJSS5YssXvY5xXz5s1Tr169VL16dYeXm5OTI1dXV/n5+alcOZ4pDJRllBvgFme1WuXn56eAgAD16dNHYWFh2rBhg+39vLw8xcTEKDAwUJ6engoKCtKyZcvslrF3717df//98vLyUqVKlRQaGqrDhw9LuvyU8a5du6p69ery9vZWp06dFB8ff8N5Bw4cqKysLC1fvtxu/MiRI9q0aZMiIyN1+PBh9e7dW76+vqpYsaLatGmjb775xm76OnXq6LXXXtOgQYPk5eWlYcOG5TsslZubq8jISNtnb9SokaZPn15grokTJ6pGjRry8vLS8OHDbQ8OLEh2drZGjx4tf39/VahQQe3atdOmTZts7x89elQ9e/ZUlSpVVKFCBTVr1kxr1qy5sQ0G3IIoNwBs9uzZoy1btsjd3d02FhMTo4ULF2r27Nnau3evRo0apYEDB+q7776TJB07dkwdO3aU1WrVxo0btX37dg0dOlSXLl2SJJ0/f14RERHavHmzfvzxRzVo0EA9evTQ+fPnbyhj9erV1bt3b82dO9dufP78+apVq5a6deumjIwM9ejRQ7GxsdqxY4e6d++unj17KikpyW6ed955R0FBQdqxY4deeeWVfOvKy8tTrVq19Pnnn+uXX37R+PHj9fLLL+uzzz6zmy42Nlb79u3Tpk2b9Omnn2rFihWaOHHiNT/DyJEjFRcXpyVLlmjXrl3q27evunfvroMHD0qSRowYoezsbH3//ffavXu3Jk2aVODT5QFcQ7E/mhOA04qIiDBcXV2NChUqGFar1ZBkuLi4GMuWLTMMwzAuXrxolC9f3tiyZYvdfJGRkUb//v0NwzCMsWPHGoGBgUZOTk6h1pmbm2tUqlTJ+PLLL21jcuCp5YZhGGvXrjUsFovx22+/GYZhGHl5eUbt2rWNcePGXXOeZs2aGe+9957t59q1axt9+vSxm6Yw6x4xYoTx0EMP2X6OiIgwqlatamRmZtrGZs2aZVSsWNHIzc01DOPyk5Ofe+45wzAM4+jRo4arq6tx7Ngxu+V26dLFGDt2rGEYhnH77bcbEyZMuGYGANfHgWXgFte5c2fNmjVLmZmZmjp1qsqVK6eHHnpIknTo0CFduHBBXbt2tZsnJydHrVq1kiQlJCQoNDRUbm5uBS4/JSVF48aN06ZNm5Samqrc3FxduHAh314UR3Tt2lW1atXSvHnz9Oqrryo2NlZJSUkaMmSIJCkjI0MTJkzQ6tWrdfz4cV26dElZWVn51tm6deu/XNeMGTM0d+5cJSUlKSsrSzk5OWrZsqXdNEFBQSpfvrzt55CQEGVkZCg5OVm1a9e2m3b37t3Kzc1Vw4YN7cazs7NVrVo1SdKzzz6rp556SuvXr1dYWJgeeughtWjRotDbB7jVUW6AW1yFChVUv359SdLcuXMVFBSkOXPmKDIyUhkZGZKk1atXy9/f324+q9UqSfL09Lzu8iMiInTq1ClNnz5dtWvXltVqVUhIyHXPSfkrLi4uGjx4sBYsWKAJEyZo3rx56ty5s+rWrStJGj16tDZs2KB33nlH9evXl6enpx5++OF866xQocJ117NkyRKNHj1akydPVkhIiCpVqqS3335bP/300w1nz8jIkKurq7Zv3y5XV1e7964cenriiScUHh6u1atXa/369YqJidHkyZP1zDPP3PB6gVsJ5QaAjYuLi15++WVFRUVpwIABatq0qaxWq5KSktSpU6cC52nRooUWLFigP//8s8C9Nz/88INmzpypHj16SJKSk5Nv+FLtqw0ZMkSvv/66VqxYoS+++EIff/yx3ToHDx6sBx54QNLlQpGYmOjwOn744Qfdeeedevrpp21jV06UvtrOnTuVlZVlK3o//vijKlasqICAgHzTtmrVSrm5uUpNTVVoaOg11x0QEKDhw4dr+PDhGjt2rD766CPKDVBInFAMwE7fvn3l6uqqGTNmqFKlSho9erRGjRqlBQsW6PDhw4qPj9d7772nBQsWSLp8cmx6eroeffRRbdu2TQcPHtSiRYt04MABSVKDBg20aNEi7du3Tz/99JMee+yxv9zbUxiBgYG65557NGzYMFmtVj344IO29xo0aKAVK1YoISFBO3fu1IABA5SXl+fwOho0aKBt27Zp3bp1+vXXX/XKK6/o559/zjddTk6OIiMj9csvv2jNmjWKjo7WyJEj5eKS/6/Yhg0b6rHHHtOgQYO0YsUKHTlyRFu3blVMTIxWr14tSXr++ee1bt06HTlyRPHx8fr222/VpEkTh/MDtyrKDQA75cqV08iRI/XWW28pMzNTr732ml555RXFxMSoSZMm6t69u1avXq3AwEBJUrVq1bRx40ZlZGSoU6dOCg4O1kcffWTbizNnzhydOXNGd9xxhx5//HE9++yz8vHxKZKskZGROnPmjAYMGCAPDw/b+JQpU1SlShXdeeed6tmzp8LDw3XHHXc4vPz/9//+nx588EH169dP7dq106lTp+z24lzRpUsXNWjQQB07dlS/fv3Uq1cvTZgw4ZrLnTdvngYNGqQXXnhBjRo1Up8+ffTzzz/rb3/7m6TLl6CPGDHCtr0bNmyomTNnOpwfuFVZDMMwSjsEAABAUWHPDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMJX/D3PqyuT3IxkKAAAAAElFTkSuQmCC\n" - }, - "metadata": {} - } ] }, { "cell_type": "code", - "source": [], + "execution_count": 98, "metadata": { "id": "13cZXvb0DsvK" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [] } ], "metadata": { "colab": { - "provenance": [] + "provenance": [], + "toc_visible": true }, "kernelspec": { "display_name": "Python 3 (ipykernel)", @@ -2700,9 +7134,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.16" + "version": "3.12.2" } }, "nbformat": 4, "nbformat_minor": 0 -} \ No newline at end of file +} From eb5c8ac5b6e820b8a885f1c854628480f3662fe0 Mon Sep 17 00:00:00 2001 From: lkksharma Date: Sun, 6 Oct 2024 14:20:49 +0530 Subject: [PATCH 2/2] Conflict resolution --- Python File/.Stock_Price_Prediction.ipynb.swo | Bin 0 -> 16384 bytes Python File/.Stock_Price_Prediction.ipynb.swp | Bin 0 -> 720896 bytes ...tock_Price_Prediction_BASE_19716.ipynb.swp | Bin 0 -> 319488 bytes ...tock_Price_Prediction_BASE_20502.ipynb.swp | Bin 0 -> 36864 bytes ...ock_Price_Prediction_LOCAL_19716.ipynb.swp | Bin 0 -> 552960 bytes ...ock_Price_Prediction_LOCAL_20502.ipynb.swp | Bin 0 -> 16384 bytes ...ck_Price_Prediction_REMOTE_19716.ipynb.swp | Bin 0 -> 16384 bytes ...ck_Price_Prediction_REMOTE_20502.ipynb.swp | Bin 0 -> 16384 bytes .../Stock_Price_Prediction_BACKUP_19716.ipynb | 7974 +++++++++++++++++ .../Stock_Price_Prediction_BACKUP_20502.ipynb | 7141 +++++++++++++++ .../Stock_Price_Prediction_BASE_19716.ipynb | 2708 ++++++ .../Stock_Price_Prediction_BASE_20502.ipynb | 2708 ++++++ .../Stock_Price_Prediction_LOCAL_19716.ipynb | 7142 +++++++++++++++ .../Stock_Price_Prediction_LOCAL_20502.ipynb | 7142 +++++++++++++++ .../Stock_Price_Prediction_REMOTE_19716.ipynb | 2034 +++++ .../Stock_Price_Prediction_REMOTE_20502.ipynb | 2034 +++++ 16 files changed, 38883 insertions(+) create mode 100644 Python File/.Stock_Price_Prediction.ipynb.swo create mode 100644 Python File/.Stock_Price_Prediction.ipynb.swp create mode 100644 Python File/.Stock_Price_Prediction_BASE_19716.ipynb.swp create mode 100644 Python File/.Stock_Price_Prediction_BASE_20502.ipynb.swp create mode 100644 Python File/.Stock_Price_Prediction_LOCAL_19716.ipynb.swp create mode 100644 Python File/.Stock_Price_Prediction_LOCAL_20502.ipynb.swp create mode 100644 Python File/.Stock_Price_Prediction_REMOTE_19716.ipynb.swp create mode 100644 Python File/.Stock_Price_Prediction_REMOTE_20502.ipynb.swp create mode 100644 Python File/Stock_Price_Prediction_BACKUP_19716.ipynb create mode 100644 Python File/Stock_Price_Prediction_BACKUP_20502.ipynb create mode 100644 Python File/Stock_Price_Prediction_BASE_19716.ipynb create mode 100644 Python File/Stock_Price_Prediction_BASE_20502.ipynb create mode 100644 Python File/Stock_Price_Prediction_LOCAL_19716.ipynb create mode 100644 Python File/Stock_Price_Prediction_LOCAL_20502.ipynb create mode 100644 Python File/Stock_Price_Prediction_REMOTE_19716.ipynb create mode 100644 Python File/Stock_Price_Prediction_REMOTE_20502.ipynb diff --git a/Python File/.Stock_Price_Prediction.ipynb.swo b/Python File/.Stock_Price_Prediction.ipynb.swo new file mode 100644 index 0000000000000000000000000000000000000000..b8097e0cf343aff28d857ec1e215324ce59c6588 GIT binary patch literal 16384 zcmeI3ZIB#A8OPTc6#`LAMC3)Q9jdqs-oD)4?qx4llFB7OQg=Cy9L7{gvd+%-?M`lX zW|*11+y)Rz^n+CtV3lZL1uIo31`~+#o)GZ`Ap`}3q97v1_y!UQAR06p{m<;vvomd~ za`MTtX6pWTbN%an`sru7XXojft>jj(Sjh%5xfG7mQmF$YGiqBmzcl0MXewp6e&LCa z;Uz;uW6Rz2N>v-Qtcmmz-N_i1rW#VyPa1A^8Fwc<%g&B@mNt{+)P+_{|dkn`D2l#NQ+?{5zWhBJ3X_ zK1}vCiT{=OwZwNy{4c~mLp=ZX_KC3n2JtcC_e=cG#8(lYH8bA+b>bHjUnlX`h_58R zUE;42$F@&!yeaX+Qv2oaXx9_|zd~GW8QmoDKM`L>_D_0ey!|1m|6z&0Ok9kAi^Ts( zT+EMGB>s|QfAPEG{l7^3L*(BL68{777V$eI{(ItLeCM4MxBolh!oQ6Y|1EJbz6T}# z8>#*5ljHUe5*OERgT#L=@jE4cfVfKIJ0|g85f}5nJS*P+3&h3x-!AcA5+5S_sZ-+Z zpC>NjGbHg}5Et>?BJt;li~Gj`iT|AVTI#=WYP|nvrS{iL{2AiHzk?G08F8_``ew)N z|CG46KG#V6Y2xC(x?kcyA-;(GpY`sz{T~xIi7%J+hVoar@sRzM9(CCH`Hh z{X-J}4sqfCtoOz3f1CIq*yw?*RLA};3Fs}kQMwZGu>c>fO)AEW+nmiTVs zB0h&CzKgiH{-yWF?LR<#3EBUw#P27*k@({hzmK?BUxhQ`_U|Pw#@~|oJ;aB|{*w~F zo4A;tXMP}V|1RPq)P6$Z-y|-s?=FddgE-x`QzxGpx4)BkmF&+YP9IaLJBc@mZ<5;I zL3|VOLlWO1+1JjB_rIMuE$h@?;`A|}`Z{qMR_Yn4{q4lNssF>o>0>;#P2y*q-L5F? ze~q}9AB!b^8*$;^HN=JeuM!vj-AG(KKYc}NzfH1#EAb5Z|A5qbPu!@x)$0DacB(6Lvx`0cwYP*^emoR{b$#G z(8JI+=sIW$;!qJfA37C!3eV7wLH9!2p&K9rS_3_T=l5OEPUtr1^H3dH2tAJvsi&bQ zpuNxz=tk&DNQX)ggHDHzU|f5kyP>Vn7obl;{&*Kc$&o}Li9iy8BmzkUk_aRb`0paX zB8Q^dwxMfk@E+r&S%mL zSec-T)%5J9=K@|v4X)}5TM}JS1y<&l^11n3&8Lf%QZ8MXk2AHm(woi|3#Iw}#Y%sn zSX4Sq^`Oz1R?w^ctEYxbgJVj^aHJ2$lseaIbq{^ybN!(Klvh-jmz$36_g?or+g*^& z2CskCE!SI6%9V22h)pGk2kM4nYj97MMy~KFt~LEgmNlzs`knR*w-k*VM%ioG-0x7c zs+_F14Te6i4}Das<7^?bs~Lx@)w1SJc6U`BeUfKaw%D@ZWT}6R*ofuv3SMA!+pnIo z;MG(77O$SNRU;$WvB4E18QAEW7l~qEF4OQ`?e5BImg#ZR%Lb)g^VXTs;g363gGHwX z(;K$scr2(LsjIkF)6x7vic7v;gn+TD!oe}t87RY{1S4Xq;SaXO0-t!5sUC~_^-<GrZx*Nb((x$27`#Wr+9qI zzkp&Cfs^g|99~7&gSU-Hm@p1gZ3I`?^{S{HVd2D?{-P)rIq&CMDLv3z=ua1TWjw9r z$9cL^sO0)9TAy0f3LT#nS`-&wQdu*m52kCyiz3~J6D%0WbS8fojJG=X3*y4Rg}EQh zH+RC|s$*ub)bPf&E2dn7t7h4~ys2V}m$~CuP7e#p)QW2vO^+YH(B_zzrl;0Iu4-D- zQMFdt)hvhiFx%mp?)uA@3a})`n?XTCg$q+Xm}dU`5`4V3eHOV0F~<$v!~n_-tad|q zKOB^;;x&i6zUj!?!SsnW589PoZt&nWb78@ARNX9l-1W*X?%iJ80ja?7nWyWrWmZLdNXCQr@v{w$A!? zx)$3NkTX516HbKArjXe7nPytq+o!EvGg-+kb0>$w$uqsQa-cM=yb`-oqMq;#^W8SQ zj9a%hb^H5ZolEW)d%9=v?yf=AVHY{7U1!!fTNP{z$eU(S1)6kDQhx<$ayd zGv8Cy^}hAiTkrln@B2Pgrt^n!O4_G)@O$je&ZlD!sl8|T(TDtXd}pUUAQ#X7#eC6d zCNkKI%N4(-wf1}seZQ?$)=x>Hl5 zu63zUqpezAZkS&1uj6IE(VKS5DA42|lZ_t85X%a~RDw%u={9`{wb zGjF+YyhwqI6u3x%ixjv>fr}KlNP&wKxJZGE6!_vw0i&nxJOi)v5c{ zal-!!`?`}pzq#TL)r|Qo+s8-S8FHKbH)kIw_EEFlo$#G>`BB^b!z=E*ef_!i@!58U zI`<3q^^kr1QaeK(chSD?q)%eS-D|t2?c*y}+@+QKKe6I|hwYxSkAAzrIM08IecdTP z-@oF1)pmFC=R+&**PL+e_e8tG zIN>|>#(BTyin~*;o%eh5iu<7*zEeLRZC5xa{3F}_hJ7rrxJT{lP+OY6x30Ly?CVbW zkFhJP6TWkwbF8emJME&=?)}1wyK~(s2mij}?xb7Ej>mPoL2#b$q|2SQ`wy?UJL&2i zKegiSd(pl= zwvTUIaX+!IJLS;*mDU9(d?($U_cvDDopf{Z;kQ=Y@3O;p(&=lyYB~J7ZFeW1>MQQw zYP&z#KE83q-6@yfZoB`l75Asx*PU{7=i{sk&il!>yOaK}U2!kl?oRyvdBweAyF2fH z^wrDZD=Xo@bj4k@-JSCBH!JQ{+ug}O;cJ$|ui5TS{{7sFd);-FA2CpX=+E!ynl0PCe+XxEr>6+&=#Hiu=&M z?xg?MJkh$~#D8SFJLOYZad*mv6aP1?xKCE@fB1i14u5L9JN;OG#eHVGbN2D2EAIE$ z*PU|yPTSq?hIhWhc7KL_q`%%eao+Da_I2kyU$^4^owmD^PEWQ6!p{BAwcYK|@n-cjEst`?}9Q)>rO-m3`f=Ry(h?-JR#Z)^@j}wezbh;s1>7Za0fNf3_0-Lv44- zK7M@Ve*5yp;UWbtQs5S*fQ$z7y$|2nxlAhZV|R9(@yWk^#m>$rz{kM5!Rx^*!FPZe zP(cQ;;H$v9AG5RbBJkcv;~cyLybZht{3v(^7=t@O5HR2yz{kIQXXk_9H^KA4vw#6) zPykN>PXG@CeaH+dxD%wo)4*4Qk3v@YF7Qmy0w=%){tYtH4}(5vfHJrXTmzTD*MN_r zgZKmRyWls#TfnQqi@^+3K?dxCM}dDwI{gLsDez<9`QVwL4M-YZ0vErF6u3x%ixjv> zfiIpEpca0+aXV?H{Vq!YGp`L@cBh+ka9;Q zG(#<8`Q^Y`I7yicC-JYdaFR+V67JJS+~vfO#D_eE1hwBGd2soXyP|aswQIP|tCy~< zdamkPhgvN4RHM_=bi)c|!S|XpTqxjo-@bFr`t8`MLaj-bTk*CF33?x1^Z~pkUd?%> zd*^2qb@#$KlKp@rIwiMB8JJRL;;RZJ8`N?JJcTkeTs72A&mgB&O|LY{?J1?J<~_Gl zSZv!~%EG&LmxH)#_jdC(^@e@VwX8l=uk0hQ7NWFks1s5JodQo@!ESTrRnMwa3-ugc zx^l;?mIFgU_Aa>1tNuc+udChj$~1qT)yDC>stRhwyC*RoVb7zMt9uo;s_vCNWm+g# zIGL|_PG4ZxZsU^2dQAg}5v{15eqeEt{vzIZfGFEzX(-j$JMGYy5Z~U?WI! zj{J7bGCXLtRax)uqy55)>w!~SJF48hG3XCvG!i#dUDx#6Df60K9%${Mp{~E!Q_(DT z4Y@XVmn)T_E?1^E1{FM^?T4@YOqi$b7dr}>m7dkScFu5H?my}t@y~p^eEO$vOou%n$4KVK6A@cu2AO{m!naKZ+{;dz0z5>1pJPUID0K~!Lz=t8X zzXg0Bn1ViN0tFm`tKb{K*MiSLZvRX0F7V&MYrqeHXM!0R0u|)Jb@0vLN#K#-eUR;c z75p@KCHQX81sQN1@Zj;_Q;_xF2i^c)1fBz$pbR2_1-FAs;PGGwkoWyp^3E5(ixjv> zfr}KlNP&wKxJZGE6!?EC1&C<6+bu($#IXEEr_t4PNPqO=Rs0QEgre+$>b+;GS9V9L zPKM&RX_wn)*nMVqMZ&+y2fMpY9^CCsYaPfKgBxuqh)AS%vG0@Y4dvz%9U=~~0#7t< zs1u@nu>4ux7JS*V>FV`P1JaPKP9kEjd$PCcrHXB+2pgIZ=cV?0(|O2?L-*77=8#s_ zZ!Q(vF`wUPYOgvCB5#=z4c^X@lXu&4w>BhlRij(g=9lLWnuq8lh5fAgeI%V$UqWd> zwvned92q@jZL#I3%ZOJ?)w^o@iXF9G>(4daiL7rxec(L4r)wj% zD|anr+1-{DvLrLF3NW@GM>Vn_EIAsIMMbFXdtL}h`r6VG!&OSfQJFp%jH2tMrTZwH zcZcov7V^2|y;TBwuWjrP>e~1+(X!boiq|8TjfT-yFJJP@Iu+LCUY*jaRN9oAS5U)EEg6TQ=Z1Lo50lzqxBoZeWt&YfQOoSyQh zr^4x}czWtxI9&`*I=#-&m+oGU-)&T^F)&CLK*s@u zWb^^>YVceT2mb{;6#N+;`v&LvJM-dCYB)-Wb+~HOugA3URX2`HX=phw_=;fOVheA{ zp4#2Q8|DerExeuS<*K1m17q4&uia%TSNAZ@Q0v}7>12lGDR=E|cp0`tX-7yhjUDUPl zfLs)5(PLk#Hq^FaUc8g|p-5I(!QMqiGs8~T3WYQbb~wcOu3Zd(pcFS6s(JJLF5;w+ z7+bet<^&za!i{F!hMgP3Zlga`Z&+QyQkLoMPjgETqA12I z?$b^>ejYM~bfODsduuX9*ylVvEqXbL<9X4$oM@-H0#`51E~RM4&K1^+AS6i?mR#57 z3h$x0C10Cz#Upb2^ny={@<{wXB1$uhk)S9M4`&%c;69J}f+5f?&lYxH^3psb(2Q4L zgr$Ob*Y0Vyu#AVMrGzW_f6R%(EF^!iwn=AD3;w9 zM3H9~GZuA4zzcAkD109CCD7Ie_oq8JuN4zGtmKhsUSPe4fyfvSv(KOe(2ErlIYW#4UQ%JD&tum3lqU7yWDhD1X}BfE z%kv(=yI3mc6-V0VImW{*6ytfd5!vlBN8q>29O&B6z_Q-ON=hmXhfEOImDUWk2K|EtlPBY;TU~8X8(7i9Nu;Yq^~qK=#rPRY;CO}UYC4r zsx_=6@e;!=Ka(_E9%rL0b!NZTXaF2iA+wn-cI0rAJNf zL83T2^_^6$Vy0rdC|V-)`ba{C->jn9^afYm<)L9{-A$sudoZePaKrO@GBhGYF%V~1 zNQ^8!+7ns24n`n?3#E=g?_p3}7ic(Qv>0K$^a#gNhh=H>GISk(SS}bSS}q%|$8qZ( zJe}S#56k1BsfFtTB0!#D-T_bB-+{%C8(#M+Qi7Uv+Fhb8BTJaEf_Xe1?~l2CO|QAh zNR}iPbRSmTgD=+8gIGw78tT}uO>lvx_9TI(Y_`>e%xkMv#~q!ZQ+li_xk(-9vfWR|gLaqbTi4!&)N>m|t+>I}bk{dJ!r4%+i-LgR0mdve0^6+Gvph4*J_c@HR@}y~ zxX+8CC~@2Q_3)CHXSee!dU;L|w)D$E(XvgrG*5I=3`TC}23)`HfuGH@0noZ{Om*D2 z+0ja6uRx2O*Nb7;xiL|$BTEF{!+5rNMMi`WD|m%1vjoF;N!&7AFULZIyG?viENGTv zw((1Q?n9Q4mwM2$MDVg0(KFtyvqbWs@NbtK$m{J&D9Jt#2OZWn;d=LZ!RzsE>6c?g z?{>9>yAN4H^7ui^5*`{Ok=?eIu=_OQkvL|%q+_8~pwDjyQ2WIF?X%CjF9{w|*s54~ z_q`H^Df|}krP=$CB_shJv@G#(BFFL2(`?mnvHKoc+B!?TEc6{)g^QB!fkKfq(dYJO z$P!ZUw`q(}`2~q#JlkX+I+E@C67o{_CrhrL)%TMyH%;N1-f5aA0{|Iva>%fb_v%xWV68JgD`QHiJpa`yj&qBuk zAo!o)C4kt@dJ5PD#Lm{cA?LpgqygE-|7Vc%-v)jXyaaUg+DL#}@= zI063xIsP?Z2xRbB@NCHMB6t{h3uN~icoO&v$nCEIF92R1nXUU@O&2p+) zX%=KviQ*!BWe>_{3X`1FzJ!0+5#y=Q6t3+{6#k^xIxd)AD0Yur+hg;51yb%lgFpB1 z=N>zYOB5qUM2Nk0b|lU^9!R0^NB&}H=g-le2Y-8Jn`KMX#WP|*ZYV~5E>5l;o!)QZ zbWt{i*zLjp>qV_iLZDM%AE;EC8P;mpO+}f-39{Du=WP@@PmAJ`)OmW@lr1tOA)EjN(vZ7V6HLi8#jCO^hY){yxj@2BIY&?b)X!f-T zR%@JjFSG#2W81fNA5{5>MFsm<4K--R33=7PR^~H9lE-qxSlURuZ*3ICuIMh7Hzm!@ z@Rx~xBTJ<4+npCaJJ`AZJ1<$mnM)Wh-Ho^+Qr2=<;^)$tk#o{^F^MjneG5gos7pi% zV{W&^hF%@Jd&`K!%_^C}{&_)Nx++6^qt{de&Bl!~)&{pwE$X^jz2ZnluB!1G-}I8YpJ1O*W5;W`O-Rl*dU+-mxwC#th!-o@`CMsv$xu}EA-hZiN?xmqV8wP zQPx9GM@@F}oY}rvdF@1Za|ExR(Fd$g*9WkU)1E8}nZGlN1N=e7dk2gPXuZ8bU4~7I z%XDu-F#r=HlwK>#m+9Ln`~Q9J%30N_tWE4du)V|%g|m;VAu;@!A>BMZ_*_p+2Kawv+dO4RWE)QKGOU{-#+j&W{yq{QZ25TlNB2 zI$3LU_sUqluXV8Z=Zu-h)3mge>l9gIde6EdyY3ok4$n_XESwAagpH|!lw4D^<^@zh z@f5IFUcjn&8f6s!t}A`Z-tKb&44y5=ou-rBYTV*7XNnf*&Jy=zh3r>A{j>hFl9b5* z5QTTzM4pBGpS6YB-+`?EgW&1l5b)r$koDgMUJjbT1O65A{oBDWfR}+D5WrW04?)&{ z3;1DB2LV8V&qCJ!Yw#ZM3UC8_8uI=d!H^pn@uc=Dp3gQ%MO zC_Xo@>V06Z`Z3Lx9`9Nd(z|yI$R*eUc%=e*=at|z-{-eAm z`@mlF0p^D_VEWu-=;jxF8YDDx1K5BX^cvmuP4oJ;{EWuh42nUJhT0okX0AY+QEhY^ z#^yz2a<_pU<=7W;$NGmo;J(W4>h41=u1aGpWiHFtOVjrMQjS<^u*z z8+Z)(Ec5}t1AYnoJosrq>?AxF)W9*g3jPcDH|PgG1l|w+7`zAk5_kz9dkET~1X%ER z@EGt2@Fn0w&?CGZkUa&&rowlFXM=A8WNktaxWU(fhXIm*pCEa7?$6RdELdFGv9DND zWu{?B7+g8iY|45&$TypEHZ2E{;LkKjxv&>}AzEh|f?2XBbFXD^22Z&;29`M&`wh1? zA#M3bfJ$}0F(6@FzOs*f<(HQ&GY9HwrA2Ij5aS=jmu2;1u+Zr)ywHvvi{*5-FK(Nn z5Bz zVvdwZEvBKXWm~ZiP7W>GwVszy6e-I_u^5w2!o@)~vFDvSMh=z=wNqMdF4E$yvOI*s zO_r#wBp&RBcadlf9drCVMXV%{GC`(gk(e7w_L+^vEhz8HsfpIfsx@dh=4VJ*>p^ov z)mF+8gV%#$+i((@+_{v{3wZ;Vo0A*n=*d0SZ^`qjId9zV!B+A4dVc)9(tyBV4hn03CvS#8v;(9-3xg1x}cFdrz_5_JI$5q=Bc&7-8{9{#ha(ra(bLPtME4j zjZ~%QE2rU|?B^#7Pt8+np|%yCxxU*xwbm8m6hWJ-$u|Uz+&EnUY=&p895zp_1;@+b zdH1d5&A95Uirx@3a`AK}s~MiP0@e!JTsUivw=9JN79t z$6=omBM|l}1;Yc@skwHPqUOs@k&AcTl#iCl7nq!D5HosGEF~kj|K8Cn4T@n>bU;%ak7YGKN#B!f$TgyLAg1wprI^ zFK9S({Q|T+)XlNnypG}W+5ACl7JgEH`JQP?3??+h{?5mOk9$sHZZhC_IRGg zXs(Jn^DR#O&(rxdX!0?H5lrmOL$@`2XNGvjdsqv6G<*!kG^c<0Qjl1Aq!fHK1;a#Q z@t&*>8(7OE17y+d;0_p_Gd-VG`tHTO28_#HwtQ|*W0KC~cWLPvc*K^gpR6@2*7{AX zINEwC)J@F*s;CtcL!X`%-7~XiIp?>@n>E2XN)WsbF5IfP4~TP5WWJ%*J&@Snfta_inELvy_i#79lH{Z;tHd%C)jQ>-5&kn-^uF z)jOlnGvAZQ{}5|;{*K6vkpDfl{P+&Y`_Bht?f*Ss2udIh7(n&{JPP~?bOCP#zXZrP ztM3L`-~%GK4SWE)f#=~N3V0e|z~jL~z>h*s{&sK|_(t%zkbTKs`(Fhw1UEnk5E=R5 z;Ey5ez6HDrRKX#5EciRfzP|;?ock0UgUjH{0C~5+CGTbBq4TfV_k8X)X{>C#aAIK{ z?Yi>$vUGU5A7o9mE=(9+m@r%@rRz;9e$Gu8GNOttg7_W~M+^8ekf$Q=d0Dx#C(tnA z#R)u9;b2{6?Y8#&wyXS$(}dxL<-H5bdoU4sYDnzD@*di_dmOV%%VsJsEbm=d-ZOi^ z#R_v_dC$}pZKyIA=H0#^%)2cP=f6NcTkBy}1%^~Bd$LMb_dJ{;?#W_V*<-xrGAAlk zwJI!_eYU4ddi`?NuXO#%=uu@sI$u)9f1W>Ed&@oufoU1C>E`mCmxyYXe3D?UaJ_{6 zYx1NqxP~tRG`i5SR#fXdo~IKH_>}7b?zZ;enE{wzxLpWiX;zQO|Cb>e{~+XKBL6$~ z|2_!W{_Wt^U<{(*8^Na_&;J&9EqDQFfNS6@!Cynp|7Gw!Km!@z1`h>)jI{v&4Lk!7 zI{-ZRI`C<%3wQ_kF+l791i=%)zhFJU2f&*Eu>n{CBKR`!eyk68D|j_{9_Robd=vO6 z)(TX>qrmTDO#s;okO2zj{3GBJcpUf#=pNnyUIo4#sNfiU3-~1T5Wfpv4h#?j-wgg0 z`iI{KKMQ^UJOhxu08a!z104jJpKpL1_!dC+0sJ|5Cm`wj17MrqVx_g!Xd70h*!xM= z>(@5vvCdFmUTpr^KWph8mI>axZR({@43?jnj<9{3@ zhxO~X!fv6n{=Y>x-HUV82nw&Rg_F}lXu{_J3<)Zz& z3qz9^h9)lzO|CVX;M5{(g)!N-Wm-<%ys((uV0qro(ByVnw+&-7^01Ya%xl$qo7Xh2 zA4ijLZ}|=lYaRD3+?TP%lEn){lNW|2&9ZEEf@eq}_Wawq)(_UqST5Q?Ao4%N=bbW< zX(9g~+k)*MLe~EgK-T>qfn7lC|Gg9ZGSzyWZ9$ACY@3;qZox`F`s7Vt^v2!0W~6nq|>lkgGf2>vU$3Z4YsfpmNUAn7TSG~F?CbN-J#wz=5PgZZ0_{XD1UmQS@5 z4{Sfryr7vU7d9qug*nUzYA5hM7%983F{$Zi?SpizHeq-2=g4^Cg^fwz47R3u&4n8epP?2>4IQf^bxTW2)XZeNJ}53zaYOCh@w z`F}=4R{UNAdH)6ADd5i`+rJ$Uxqk@00{j8w`)30cguw0K3E-b0=YIf@Z~hV4zXqNN zeh)JKGXV!a3Yq?W;9cP7!4HBacseM6B%r|)!NbAdL*D;ifP4#pto#2J@Oto4@I9ah z>L3OLunQgzK8qLoF!&?z3t$Gww*ts_0zLu$2K*Hub_L%IUIAVLCZG)B;3?p7;2)tg z_x&;lpmap2v^&))`b1#bec1kV9o za00@BA zR95j_re#m$LruErZ(*;|!kZ$=4-IS{X!l@fPk~*PMs*6w0pSj)@)Y*u$mfKJ5gb@) zqXuJhx=LFckg%-SY6Ge#!&+SzR_dmM zE0mk+F5kTT*P$^mcSp%1M5YR(=J@cG6A~8kQ!-4atCdC-CIpQ}N2Pj*x27zFu_ja3 zn{QmQH;KJ9Efh6p0DO;GwC5Yx7E11Ix7|jP-bv;M`)M%eMZOC|9a_af(+3aclNa8` zd1c#fpJRB`uJP+r^k(yX58NQ;7ovgBWrK%ntP(Qxt+N7&iq%v0u~$$I>2gQC-01X% zsGR%NhH=A`{fXJk%SshrPqGbyUPCWopI&iF3#zPrBf`tzw5=Xm0bL#-6ho~|uU#T- zES5|-m4M{+ZdKPh)SzX4GI8Gug2DkU#Bwmpcil!sHfyugEWvT>IT0)HrYQlNDC6ke78^^u5jPkedoSUK2t;^39tDcML z@WpJX6B}?zd9r>Bxk@fLZH?_}8tS|+mMc$$~md=^FEsr^ZLu1?D8)mIfz@ zciW)AV#`4;Us#*m?xUHf^GkCph_~qTncFOGyRbHC8nXNXv^GiPe+Kd&nYSkL|I=|G zzt2GK{{;9LcsF=GcsU^Z0iFdqAPvaAfUgCAYU>BS7snYm0#5{A0{#wqfnNjUTLDvW zH~1#-Fz~z34ZH?C3zUEdd^z|a^aQ^GUIYw~2NHM^_zZLc?*y*|WW7KH{AWP)1aAXB z1)dL7K-LR98vF(1{x^W{0(Su#JP!OLWP4&KfP7bA1`=Qwd>XR*JHU^DX98kB;HiMv z4)`$S^EZJPf-(@mqrl%mK7SARS@2Ad1((5RA&>u0@MCjKHw)z)1{^ z@2PY9)@6y6OwVi0G<&Q71&_osUNdYFA71Bp^OO|@o)yhgf#YcbS2;<*18I*LHn-2v zEH5I6wPDX+;XZc_=AA^~XYdLS*e>=h*5yG^*TRxWaaaDGA{OCHn>k;oFkOEcar3zEo-EWcI3N0vw; zEo_@5w3lP(^Ghho1sYwiBzU)}swhK@SAcE$Ewe;odC&Q^4_We{?zALXLUS~|WtLbS z%ocBW+A(e6nIxUrp>5;W=?Ay*%kEp<=XQRrUiVzT$ddcJg>&1!gy%$TVmUV^D4{(KA1_o+o>_pRZ>cHvs1j_v$fgOzjr!gv5_-Rc{AX&6J^;CA(_zMq5%E5aLY z-6A*Z*U8Z4obp135SB;g?1E)^v_$GNU)S<@VY=EGmhN6P$A9*hwy`gcS+FroHd~k< zU)`{m>+BDHpSgaBq6~Fn?8)s$t$PP$E=b%sF}`S^nG`xqcHEc6B2Jrnr12J#~JQDm1 zWcZJRcY)V~=Ywa0F(7LLj=>@DgR9_4fY=B4G?DSa`@kQ9cY)V|mxAY!zai)U8h9Ca z1|WL{dY}oCfUF}Rx_~bQ{{Y$l_rR}$7Xk7;!7O+Z_z-0O_kte-#Kyo4um_$Dz5zS| z{1e{&gWx^jC&0_V4}li~0~CM{?1OIxB(2Cd2`_#ZDR7Yj7b$R&0v9Rp#gYQnh=ct5 z;0#e1#+jwvevIP8X%{PFur?;G;>%3~vcd?fR??Y6Dy+-BIvJC;Pd}wO(1vo0$>$nFp3|*ugB7s*0wlw$1X*i@r!XzDjZQ9aIt$ z)M+Ky#yh}};s(>) z8Q`*B1nb>#DSB#6O2g)p%ZsD=;enk#l_5(p`^xv+%n=Fl7kSD3rPo-KA?ufcEv4^$T3CmqbQ1PKej3_{<*)1B z{JguJ0t1=bE;^(D*&^Vr{*dilIwa4Si;?7yHS1$|GE?ZxMIlN%rnmV&yF6B^%qK>c zGSTs~%VYh?Tv5Nl3z=84bUqhkUAAXV z*N08g6=9otfAiFuF2JcX%V2phCns<^pVTlfTazJ9yovn(br`(-GMR6tAF@-n2QoJx z`v<^d!9&2OA?v>n{15P2@Jc}D`iVZk58exz{&&FZKm$A#JQ3`GPePvm6Y!%T0lozM zCgk>4f$st{Pyzu!>;ZVdK6o4;vi+X}BHzCaybh540{4Iu@b%!Mkm27A-VDfofV)5d zxWPlfA3|1t6LVlV?aa0QU>2D}ISB$$90Aano!2Xp=8dxm6v{)<5qTnAqT zK7{-rdGf|h>j3ORZy)C045%|P(LWx)oJzvKzCG2NM^bT{`=u0Dm_PBO<% z`HZRd*ywZqHnwtV{yyg4ly%?yy~^0wwEDc;Z2io+?^SKoZl^9IdgRM->=m-tixksg znZ#jmnZ2EY3p@=PGxZv@khfD_?DMMW4TbE2ywMt8yXTU%)&2%HaW%BTCFoQ++;#W8 zD}~SAv(=Fe5_G#!-tSGx84Ny>XD%oAZB#&4$>vihCJWB@TT!Ak2KXl4^oBXPKCghN z7i+ahq@JIr2Dut))QFOdqz+Mb(GxE;UgHLqRIrq9q7JT~R&)~HS=&*tJx;Ev?q0VB zwe)Ty?@y-3bTnMkeE20Yxq2{H!9NSdxh;zDdH8H;{n9cfycdh6L* zszkyL6#a*VVjO2u9si_Gj>B3?P$N99Uo17^MSI?Cyv9Kqj`h($q;4qM> zC4%|TAmBfo7LG!Ge=ydl)1go$92m(7?@7p*D0!tAN(}oa0ryEMpZBFhnW(SUkJWsQ z!&>W5JJh;4Bh_`O2Q*(|%gJo`q(i%tqCOoJg+f)$WaMLB92;X-YNGm%NpyX_=;1If z1w+;!zFILI7A&X0VK8^d+1Dq>!&=xp5BS4@1W8x?;>U+tdSIT`{I$B`BkzsZ3?zeP zlK%LeXxZZf^HF|Z(;qyAdF%5g4U zJ9fL>(^YLJ8i~%l?&7dp)DvO1nu;>&DBsufeYT&9DfO}E1Onl7mI!wloE|hJC`UHdvq&TEOzU4z9^51I`$8AI$fdC>UO1UHal}0>VQo~vZI_9 z3?49YFP{;ybpsMEusnDYZ#qEo7M+f;4r%$G-OuTtKGgvX< zi^asrFy>C?b zBIlNjoJSBc*)~6v`_&OABuC|wlUZJrhSTwMJU}s?r0Fs3JN8c*SxJN|u4na8uML!EsX3}ti+!dPZS`7gSsk)&q2Je;=%f_) z(4{ziA}Yi2p_*b_nNorl7!%MNu16FBM~`WE{jZlz?KuO#<3(N{0FWPUcy~WCS7i=d5}ta zW4c<-HHvt7PT= z1OG(w=2Dy>DRHFDw0S_PU|iRy-cc-3;N*mlt|Vi=X(ec68j}-4i3dX=S3}oDK2s@% zCr8PyVMy+R=cG~<>jh7&EF84!xqL`&BWJO71J|Wgx7+npD#Jj&Cng#btiKy{snGdxS2R8m3Wsii%;T- zf>H}%?9p=EKWpHTMnX|lrpT-4Hz)pn zJvd&+rNAjTH5>S3?y^}-9H9n~%wUHm=q(nX> zV7zqbYgJSgJ#zmz5uTNDVmDbf#9nE@%Kf6~a^?Gz6Hl=^s81wUE?k0%0(7s9;?Y5D z#=6lA*4|pTanbX(me`f zx&z-haGXhHd;XfQ*6fs%-DFE>B-*HJbSsk=6O;OYmZRts#1h}lqp&qNMpO(GD7SlL zROrHFfW|U|GA;Bqk4MNfTYM62-SJ60oX?i3k}F@RH$n&XPSfj3g#@AB=_(1sFzDh` z>i3N@X{L;f)~X=FLKXR~h>>zC%Ej_1*rff&#=IGdw~EKON6Lvi)tME8y(oqfnjGkm zyi3OPPNy@ZD=w6gVk8_^^<(WM5zVwTy5#j#Mpay6^|H~YheM3arrji(9k!1?Sjzjn zZgYrKpOrjbwVFEcPlv{6 zsOAczYOzq5p;wC~7_$xUAp4EJpvVK4E9pB(RT0ii_j==tus-n&1^D`wl>=fNe)Fq)eD5N5Sf%zXP zhw;p`#-sBPJjdu40;v6-^5Ag7aglI@)ZeI<;-*Kz=83yyc(aKCd*EZr5??XvV^WYL zhHsY&h2F8Jl5FRbY4n#E8?xPDF@-*v$0pKZ6T_q->3ht9<_vL89H6dyRmOdY#=sx1 zLn^MOTjsdh7p<|b?(u>72Zq-5u*bR{js|I;H9kK+9Anr{MzlU(!ygJHP(H~oo{MRy zTjW&5iblp`%LfM`J%r|SG#X-9;q!RX!^{aSCrU@HQ5*Fz+d7KXtoR)!TKUk#y1!j) zO@qNGmrrzBsX(P$mwX8`hQ2yP9X1!v)vUh{eJ6*-_3xcB=sM{ea>4ddMvlg6Sq%IK zy$lBFOt4K`!b!N}qy224)jP!X&MZy(wv*N{FpQ$XONFNccd8`utoiIjJ|IMez{HhG z*K2e+A2kZGG6KuMs#j7utfqxjdS-B8z1;)9AQmJ@2mSw%}QbFnVnS!2g>I@T#Gbdg-p7yH--A0{| z3-P9J0vRr&kv2*;hOAy7KF$}C~sIW z5UWp4W@x{Hag=xeK|bG;`+f9#tlpX)Ma=O=u+0TCBps9}?i2b0{cwuLPAc%|Gy82; zG^Q9cOD=Zku8@3X=&yS!_JE>Ous7*qvM z_+TOo$e8W;DB26CZZZ~DtJPA;D4^V6+{pBbEl!+xXS_#31!Gw$)6Zv&c8OJWG^(sR z6nK8xPnpkm>D7_wl@pz*Hj0hC#bP#{R{GOY&N$&1t2zYy6^1KBrfM{!BqymE8M;FX zjzb#2K%s;IQLF2MB!lr-_#mx&A_c@L7SWX~y5CU1T^%vGTqsa;Ra0GAN_MhkeJ~gp zG#P`-QWSMU)1y+#S38a~)l_{vs+MJ_ZhKKBh=MW6CY2c1hFs9kIQ?-@a19$x1FtG; z^hrDy%_Jh_0ef^%Er}>F`E(}Nj`AZE%c#zw?=kSg4CfmNrBoq%7>u(D1hMAC<1Ui1 zs@{Z5*v^E74*KeTo5+cRh%QWu*P2bXS=8ICAePHzCGO#QR|CUUPi&aC8p>dR4=8+{ z6^YE#n#E;|Y+`!5B_Ftm+@G1a5@|B99qYQgkF4#JF}`aQ3Nfz1L2?K=Q}AS)kn2)h zGvbzx^KH36`U)kk^?Gd6?XIfDBR_+_FPvvkS|o`T+|_b9QOu$Z>t?E>k-O|%G$eW|(GZ%Dd|oQxS?*{Rsc}@)F}^}M3$#3`fmILqb8FxlpH~M}m>;HoZvK31s9%DA3Z= z=*(k@Zj&jae2Uz3IEq0qVO;3-#5~$a5t-$#O2tAk7V0!eo7;!vQVif7)7tpt(1&_8 zn@ooZ)Scs_aIDsrm2e{sJw>0Flc{RygmEQfp{cttJ3?A02W`26CQKe2kuinO=Wo;v zpVAxYO!kDCX>E@f@*zDAebadJs1a{B<;h_ytEeo)xcbnCi0Lrv@@h)BnPx|16w`-V zt!s4LRdYDjHXsOfIvkfT6xlHcH3Ho_5Ir7WDzCShax6b&^F$6PPm{x0A*~2Klxp!9 zH5WPw*Fdi-7~qh2p@9n3YRX}ycQ{SbM}~03MAJt>H@wr{EMDcMiOc+@tyLLWncawmiF!%GM4Ia;RA-v|g88WUjib$#+0|CR*t>ya|_@JNZq2cK6H4-H4sw17G0pm_ZB7%TE$T+OmC(}j{ z8jxHTuaO9la@SK^oa7qi7)9;n$_hFSpePB*m~1-;Sy(F{xs@v9{Av+-CFQcMAbT=6 zK5VAPe6FWdt9q-|&%4~!o;EF=^f5lMWXOI24RsfexoVE+emXIC^@xYgpaUI3NgfV| zT3=C{$H$dqX$u$vi1!X2h*l>C)pI@{?^MN;7KYx#tMJPgr&wViB<6>~h~3)UhKZoH`=r#j=? zNSf%J$sMcu?8Z<_H(R5E+#5v1tm!A7&JVTXkcCd`7<~j8JEmK5IMH#ddKlw^MhgSV zR63nIjH}tPN@Ni^1=+8n$7dn*pWR%hm>~}f)Y6R*&CCKA5Ee6N!H0bY?Q1@VLG)y% zX~TnLw2i)*M}0<}jb!=kG4xs0kZ~35>G)raWkb z&3O)AP&+t|h^gFG72K^{sZgq)ntg4O2UN@5@%@~^Z#uS3Oq?VxNFAa+f z(W8Z%{#p&U1)J*xwH}F(;r_B3;pQQY{X-yn$hAIZxX6M4_6D#8H}QS0;h+ zcOroD-5R59m`;=3>QGOK&;X27)#c9DeXVRhbd+fg8k|+80*AGO{3LWxRC0MDj7A|V z@})Mz3;pcjG_I$|o?JBF#xNGjdskakXd&VE>qt(ao7%h0_H^*k4wK)vkg z#~NaR?&o73w?{Q!)_0I^L6bh^6P?3Y5&gfBg1*C`y^y)56SS%0f!Vhx8Be8<9C_Wy z&vyEx5UTUdW@23Ms>X>YLh5Wpb(aTyWju^Egygts&DZ!s=^`oXy-2G(n<02pPInbz z`BB&%E26_2b~)77X&)UuMi%Y^OXl!}a!n;(^^x+XwVC#4}!Obd{c(qd|GXgvX4G6sntl>B#)T#gs+S- z{)_sjMG5*cqWqO}(5pfh)gDexG{~!MR4r#^y_&8PSvQYPQu6 zry|W-2-?YkSeQZn%=1nhjg0g>2Dm`h4{1J+~wQM$pF|ExLo?iK!DJ=M!H8x>0f#@Pz}R(`PYdZ8oSMmJcv)RGhGDG7~w~ z6+|?t6x8R>n#!l=_xrg=rFbV(Nrp3M$4bqSf&yiv{Z@JQh5R!p$c_rtvJvGOu{`RB z#Acdz;-8O|Fb&qq%yl%e!*aQK5G$5P@pvQNtP~1IM=g5}HsI@#nF}b9N(#nWcAuuz zd$c$zqrb;06`hH9M;%NaJM*>yUmc^u31?ubYFA=wC=$)mzhr!Mojyp%a;318 zb>?@YKDio9akAhp3A5vo-%9IRxH~zJT;+t+?Llar#e$8YJ;&?!9giB}a%)&kwZ74niail|*0Cfu@4 z+W9d@qcL9(8)KYVszLUG9F1* z#vaV-jz-XQrViVfoF{bxWxu0$vqLfmm`!U!f}63b8mKarz95UmCfD<5Bg37SyumWm zl72lgHS2AlR@e1ma@Z}E+#FYyYBi%!PrIvzmF551Le zgb^7jFZlReyDLilkz1ag#OyZ1$K+!N$D<;HQGry=*UMg4f)_ik9J-}OkuPVnYy7(y zw1xSq+m%=HH2OMGsm7C>+Rcq-!vtro1MwaDXa4b!Jq#)ZcU3$%F6PlJrwb*iTrx%{ z-jF(J9Lx1Xb=Y-_Vip2cG8~ejknck!2`#xP0|h20gZ{y6=q=Xh(qN1Uq-GkC?KAl# z2GT5D84@*wfeD8mCRr<~Ji3@>9lGWI1ge2jPn~7uV>^Gtnh|Q2k7jsrT{%(UKrVsF7OsaAli8t}wXHZ& zxdoHTI6L!pW3y7GWwdj>XwT?Z)7?fY;GN}!UX_zje4A4*Lo=OlnooIZX!YFC z7m~U04ixZep{Nfk653jG{sMFQm_~=(6N|U{azo2Ru+*W1{;d?lT%Fe&%e!1fKaJ^| ztk+ddF#J&nldgv@mwF6!7j*JfD54m5e$Xk#q5~sc3{3}IVp1WpX%tiUM_g}Y4M+o- z0)$DZG@G7ed^AEYpo9<$X~;}x0}NCG2SzvbOFqx*J-! zSrKz6!?4t(j}H^MO2>$n#oE~Gq7kP^zhjPRXQcthOz?L!;&vx1?lvaU^$>c>!BId` z$rQs;m5d$KQC8E+ZRj-m86NW@eW>BWOa<*^w@(XdD&CCGq;ig-#eOPP9I+Sxdf4Q^ zs%zoC-0$>-`gnW`E{rL}M9d8~GQB~}f86RpmUbyjF^>`WurMLxk`c%cYYS*bj$3>E#zZ`3iL8*%&5 zl9KusN^2Qj84jD6FM;YQSE*>}U=xD7$D6d~-A+b*0i_|4Ya>V1qPf22WYoi?C4NVN zc)zD-qRiCg<)X!Qt5=4^KN|4;Oo286%GlB?MWBn652M6F-=>VRw7aF$b4?J-s=WJ{InDslZo>L z%|-QGIXoLg(ntQJP*sm)KHDBbO`Of;VpvH5t$sNTMM{5E&AMH#Xi7H1ttL8#BKn-E z*KO&}r^8feQYk{eIUMEl{^P^o|0V29x)sI3X8nU0&`CE`Q4tXk>10N$A|O4=ufM@L zdFuPt9o$=^T9uiV9t8G&Bc6!;YOwvf^ouqLBxdUBd10E)w2Pbjfk&77r2qC3FSUu^ zQEy}FpYOT5$;kbl&uqJn&&F9A=Ae3I+Lxl&{EO3EX(;l`n6J)J)IK&M)@=&!d#D94 zFJRocNk-ccuuq0{r0_*!sy$aW-Xqy!G7i)P4&k&et{nV#b^Z8xkS{kw+2$&J{AP)+ z!n=lkqd|Llj6ZtbB4GA0N)?6g#d@xk15231bA#f*LKN84wxtnGl6d}{(3_%V@QcPjDsN`^^$>iBR$BQi5N^H^E`%h0R{;A zLECK)_zf=_ex>J_WA)le9=xjTTkYWyICutFhPLzku{pTdV8e^u?Z8NJ;;~;{f4}qV z8K%R_x((Zk)>Ex_jMoNl4uYk92<|4$g{L=_3K2VU9N7~TzFA=s-{BtY2{cYPdU5xz z*EgwJxHfDR;C14fZ_KIM26{QJB}udHGS^uDwj}STfbN z8>W1u^6$EF#LgoVI-nci;##HTMCp!w$`!&(*UqOzu>CX~=YO8xcH`N;k7TV^HK(5k1_o>Q7`p0^4sf21^?g6owu*xx-QWWv4thHG1< z;$b_PNyq4GgE_bbRj;I=XTth`+b{IolSF5y4^?EQ_5Jy7cCtuj(D4q?4Ko=1H6Mg2 z?uROmL!pL{%}!Yi{fum9TQCP%r}P8Y7DCUa9G?jMDTF7#{GT?>dpp2+PNYzH&*$M& zvJCcWj-hN?Zp0eSJhx(xub$OyHh@g~^XElYZGQLY+xup0`H&rxp1%o4(R40q>Tfvl zJ0Gbz*-LXCvDvm~h{kvw{@qvlvY*Ea9Ht!U_R{!ljhCSx+}rUiT!i2nAq-3Wag?u3 z1YN^yXf7Luvo4UURl@c?yu!!B(7&NDd^%|sGJ=@%3{;{1l}u5Hf1bCsws!VvUJQzo z5VP?8ey-#m0E`>0@MMdo5+ zbbUV9$oD((;##XITq_n7YRtuq98Xgxu|o3aJzw-UC%&F@q}xZ*zrV517ldn8aDFv* z(@AWno6cgkAVz-!(y{sDNS!sj`oqD?=lKce=4NN0zqqP+Q6vuoK60U(W8+C;S5}$= zAO@D`hvr-7e>0@)U36b!z!(f4j-px2V)disXm1w5(w(~|KaxV*MF!SzX&&)6g?N?! z&tAHDzCPPYUe+!0D7SSWGbf0#V4mmd zMhXpn4R42z6|kn?^xSm9a<|s^uUhZFj^IfR zhge#gGQ^yikto|v|E?H%L2(me?%VFJ0= zCOq_*AEtM+meVyO1*_8dIh~I|b9dXORUbi%t`!Z>sm|pI)%JteH9CTb{hEvWxIJym4y` zZ4I{_UfU%56*NlE%WnLC&z~H|cD(LecZ`nQR(ZE`Z2Fc~mn4Iw`7n~g^NBSf-mlo= zkCi^H52x)ov!7%T*Q_(jAE&&nfOUTkrb_+u~IQE~OULw;jSo!QinM(#iL z^?d=(hJW;+kMKT+zCVcUapJXCp%tqjdlbB6A6Ry}q)Nsx&EM>NSyPuhz>rmG^*oEY zM(IZ0mW0}S*PZaIbsTq$TR5<)z7pzGR|gx|&A|(m6*NP>j%!A>p8V}j{CZ^D3ug+f zIhzxsu9OpH$G>JTY-p*e zo_X%^p9ZvhJV$aBLShv$agpQev6WUk1y3~et)3{o_x4Z!QME&stpt&Q#n^0I`E|$r zmXp)x&EzQ|QC9lPqu;ldhXt3oQq2}Sa!C?pWvDU`WyxI6w3*<0eg$c(LXZFVyj{Oy zb0YP+_^ytbkBVYZKCo#-w=@@dt*o?6Qd$Mym4BScWplde4hTN|LE_qH&j3s|j5H2j z?eR;P43z^y$Rb{{sK+Yc{^>dQ2|~Avcaov$ps^0+M$m6_^y&l8cN>xd2h{65t?MNt z3eKNyw%cxDG!-pHBz(nol#@z5-<>9De}%oZGf0)Q9slpy+Qm~8V@9OR9Lv?1FvgkH z*h?U9IoB0G-0{nW7AyR(p9SFPg@m38q%AuPFeIi~GP^WWT{*XIHAwb@#W>D{DdsZz4NHSQUP<#F1S^Zs_!O+E&<%BS{L_%O ze#CKE$P46r!*i74@?FS;W+?!6NQDT~ggy8-(7QfCxWIoMfmBn^>z8NV5MO@R<@?rt z9)wy7`JtyY`u$1(MbfWP3*2VlufqO1iV_V!HvtEjT>Fx~jy`UScHgnx&^JfSXFnR; zcB>M{Xeb%s3)O|0uV2&X+EgO*{Eg}8OrKG&{jEXwAHUB8Kxk?C^l1NSB*)`xbs;mO zx*gy;JRZwa0rG9GbmQX2=~eY2z61K!Wr;<7D88)YA8-D$Q9n>>2w>A}JWr{>Fsu<7 z+7tVHA?ioMa5!!w&$?fJ#~XQ3?E2pxW_^DqFdPMn$l6%|)yY7K5Tt}n`;O{h;$p<7 zrDU*+_zg>AG{4m5UnXR`g;B%A5|}ul&sO?_&AQGftJCq>iL+iL5X3+4m9u%z>YzR$ zNMd&vy(AuP$bJPkYx$>oAy1Kv{^-)&)k{l4(61gV4gTwTJRi!CY#7Z1J(Tq9TR>!{ z#dZMyd@-enX4_EkC2L;+`;fK)W=S63Eg#^|Y#)Gh!}>@?I@>0%nw4Fc(Px1-u;w~@`j3}YIxNvypwpJm-r^k%yi%5U`%{>O8#DSqU;o6T(v@0MDm)zz)-QMObW-u_$RJ=e& zm)CYL7pmuC(=d)RIS7;UbA_hCiH0UQcS#EO=0K{oeTf3fZlM$c?T3S$yeuP4bw}A= z*z6xigx$J8{O5c56}Xch-)jIrqdcu&&IIf}K%)_UkcS_qtODpN;I4EN!2`cW*2MVd zdqok%fEEnjtEVfOm45H_wF<|o9V5ERKhb#rOZ2CGp;jX7NXx3PE~*wsbt~x421sXd{UU=MY}1b>Sf)>3%l& zU}0FTn3MGRcq}LrPkt)}9$izehW!H>2woRH-H(TGU*{s(j->hQCSyw6c!n-^mVM#? zS+r2ykO~ipfuauRv6hh#y5nv!LkN=bd|aXB^CA439zKu-h6&vtJn_tPDZ(H}jEhF{ z!aNM9bEWg%@n_h`hV-u;1*V@PS^gUI#DEaY5*6UTb?!A2{7Z(Wl zeqejUTWZ~u!YpEyx9dR|@iXBiudv9Pq^h|6@c%$u_;Z-Kv#G7gm?u(bZzk}_0-XQ>lb%y&;^_&9epdOln z57mp^=fP&4ND~USuIMepGud$Poo2s-Ro67+zG0(+rr7CcC|y4e`BlYlc89xB^I(?v zwLR3j?7&l87}jw4ydHjrH}W3fnp?~Yb8!E>Np1CfI4v#|q-XeOyXSTBvHF9p?n*qf zrwS-E?#*up;5beU_I4)Zc5%>7V30q=ebFqp>p)TJIyngft=ZLOb!FOF4m3E z2!|yL)x6)}mfvUSYWa40op9gM;gL!WSGjd+bN*$eWN2DDbLKAd8Dge}FKa(`Hx@dt zTVB0~A?&V)wg&U%`jwCM3CS`EDV>Gc`r)~koD#=}x`(8jzwjBU1EHc`nDsCwQZt2? z#NpWmR|UQsa9mTIT%+XA$idJS{LdW(#^?QwS(dNC6Td3Qn|`lVqaC)18V^(pSfK#{ z-vo}6?j?j6=${W(=5P3n=ubN1l|8WS6A!{^t?s_Joq1Z=nuzBS!Fdr}zHYA?|x-Bh*x z{QS3msFsILWCn z!08W)QHb=H6Uf`yYzpaM9fd!yLG57^dnqsVEcDq-P+D6E#zqk;yyfYJDQN8S`qE&y zxaP*ETjM4GH|1FWv$s(lclQ($Zlqzr;EIr}`AwjQB<_V-1!plx6Dgn+_HhS(u73Yp zJ2#sQ>|OHdYZE$%oZp(k)~OU5t>VI3m%sh&+WP2sbEL2RiZ^e`ZcE>IEokO1rpPae zt*gTS&CRdvrUSDrqk>aQN{hQIRn@z=^kP8#$ zl1n1uelhj9b4~IZB&X}IA^eq4EQ12LB8CH{z>JT*zUs!t?d4Xd5C z{_p#}9`{kxuMNr@8V08Xk)D2`kW-VgKCV+F%_;6=edCcJ;hOJ;9eSpD|0% z7fekzt)=)(sBb;sd5}lhpSS;^;GIZj6j6A`5`9AT%;T}_MXt&?MxMw<3_m^qNe(nY zVzzFcn?IdI-eF;K$x>O>^&le0=ynq1Y66ZTHz)4RUs#J=`(hFP`+V!dbB7SV$NtfB zsmBbXao^K!MSw#NRa-AE=KstQ-z!x1PZ+yv{qH$=%4YR6tU-V@shve(W(TsvdKuZxRKM6>a=PIee!3@E<6rL? zSvJIzQt@&OGwf`Ty&TP0DXSFxN<7avV7QW6Vg06?e0()22m`iQl2Am;O2 z!!D@3NQdT!eMiI`-uK~8Cp?~O!_;>jBFP0jIyU+QSnR@4BE*aUBPi9bVIZ!@>X6Np zkiq;|*+kA->GYRTxLe4ho~bdbd%-A&71C>1q_JFI;fNmehMUW+`8n-5<7W>g@16%K zi{9Owti@bb;5g`{+qvc zAwedgL}X8JR8jEWDU{Ee#TCMo!h0CvfV5dV;!l_O=%r~wTfW_rJ;q+FZQZD@GyYE} zyXRI{8u#l_|6^A0{#29rHT>`Yw!T>5-k@Q34X&1d@?F2JkL$nt`8_;2jyfVb0fbMz z$=@3W>tDXcl60DV2aI1?Y!pA&+5O zPm4L;pZ!X4%KT~}A8;YYkd{6NKAeI-ZF9%RB3avR%N_~tkz$1}veV2ZzzsDv!ed_w z$H(x;S8g}h_tYvuP!$3rk4&8U#LT)dxVd--f$;8gXTH7m)IXl(2scO~^|*giBy%p* z+X0>>htneHUG+Zj*nXW3y|NpvPFN6?IXp#Gr&yU}o_rpjJ#crB42j={Q<2O2`qW zlC5b5!CyA_?}ceoHlGVw;`Yj?4Z7=^|HrLtkFRr<1DtE1pC+2`cf7)My>6u=sht?r z(Y`mc+0}3h+Q`utV272H_U*qgNtVBSyFMv7 zHh$Q$(8{s3^C#p3ak|5ne6+e^yvCEGv7}ky!9j+f7^Z0wW~L(lf9&N)9M!LEAsW8$ z^-Gq1#bJNB+uQKxubz3xj}`0v`X-kPnR{Z!wutaX6ULW?565bd62nPj)QkSTW{|TPOX+wbQ4S5F7py1AK81UqMv+AxYCY&mVL{xqg{5yI8 zu=aQWfETW^vU}Eryol&6{$EIxFFg7E#n}0;UTSS~Tcupw3rTRtJO4_bwEZ$vkGA$m zua2m%u?@41KR>6!#4F-~RqQdnv7NdKERzsmol!Z^OA!F~Ge~e;NK7UVK%`4J;aizl z_J?W(JwtODUN<(a0I13m{r%^UCETn})fDpCTXU0>SzgmzS((5hp{2ldZI^5e@u3i} z`Z$=f~G^HU^iw`4Ala;R5co z*&_zq8&cF$ybpagL5iht6K9E^z>{T~{UL|-?zm=&AB^D#ZAC0=#9g;(t{yizJ?dY+ zsvotzhV}(sRmG5GseV*LZo~`*wm&IZ(1+kr#ngmy2T$Dt`kh{15By#Mvzn4hcESN zDb+k(EXUiI*eU6|pXa+n@L)yqzwEAl5y3l*!1r~X`(BB@(vB-sC3N!{R~)&t2c8qy zv3S2rXXHtd7i%#r7Y*jF@Ca7pbKP7VutK-~jo}#0gFRrRbM>^~E z^fha~`AE~TJzXoH6>i%j)I;z+v#p5d^F3%qFhmW1dLGA`{be)n%~8|^0s>*Z1v+l9 z;6=;`+KXo9$bPPvT?zgW`5kG=FE32EZ6b?8FB%v_CGaw@$r10kFEaDo>Zl#B|Frd! zsG>o4(X*no=5K**A+xk(HN5t->g=WW#TfZ$Ndzyt2L3GW)}KFn+#tbleX6^P;%_1Q zRC#Fxz@4&fp4*wzF^L)2dFWO)!klI6@`T|H|Gad)aNPBUv|kikZBIbA&?yob(7MQ> zXGtZ0(CN|o-G)_t zMn`J#ofpO(`~2K#nbP_B0q!U3Atf(@@a)mK6F=tt;pXk3LA zQCZfA!NtPs?Aovf?yOXv(xv)ANSxs(e0to5SWmpl zX}Xho4UoKv*me%I6W&h^aWwC5eAk@wfe%h*0lTpD3y0KH;nJ^!{-P_H606VKM<#Q3 zMFGKV+)QNjxr#nIrkGFr>jS*CJ}15j40N6$?IJoT2hZ~lU$I+5kSXxS9KDBbw=E@6 zVXWn{j%bcF3N^6nPJH%eHqw627bKzU)WiJ0LdBA+P$5Q`qJuX9IM;2l+Po6JTEr<^G`p3=JKLvLVrtitYZwU$Q7sd zZSnJ*sdDMGm}|c@_A4}%orf*A$v&n|p;QR@HX$8}G3pN@`+HBE9uFsXDVj$eSbN3S z)^}+j$Cta1ENcV3x?4y33T=?lm02Wstpb~lE``g#ER;q$`?}eD;5CjWR=j6enyNCT z=dT~YOTCKa8QQv}0rxo_>jnoA!Y3{`h z->dTw2ExMXw!?2mVt3?&v%s*|L(Ho zE^|~%k5zX4x%qyj)uVpao^H(I`&>Loy=xm>du0Yg|3H34#6MazCFo@8ZYD*sRO@+Z)ELd%7am zbOT!#!}W1zun`;$LV!okc5!Fv9y0dt2H9_UW?l>L>MWVov_&=y49w7BwdsA0j{e=h z>jMiIv#JgU$-w40NuZ(4*Nha~Bz?a&L5T8ez9{UX($d#`8{&8K?+=!r9BaF@|JhAY@)@;J{_W_BYUo2Q&9DTd)*#o z&;0NP`ZBm1bK^duk5AT6Fk$j-D7~lpK4D0b9|TIz_#lX8^Bn}!HAVV$&G(JS_(T>@ z+wbFpe`WX>GX;zCH&7zmp@O$vMM2jkvC8`E(}{(?X@ks^2xP8Tw;n-WbQy$S_<6B= zuxJgNlkUAeDtL(d9=fdkApG5dMI@-U`ms3FNX!%;>E>Q3ik;*9xtCnnL(2Zyo)>mv z)0~auJ(*SrIN!iG&(IAeS44bf!JhZC#k7h|lF3om#cLO?_W>9yN~3TiHjkgYPjf0! zc-r?`A+E`MN>S9pi^c{S8|#aOG~&U+HLdQY2!SK&D}Ek*?lxaE-!L!kWxqjv{p4NL z%><6mHLtgqn&0vm0_qiBpoWf{@bErgl8T^B1@rlG6X2npabA?TUVP0LA0>uRT6Sm$}Jfb}6-^4myc|%aSsP7^%q} zWkY(5SAiER@vcH8A2It{JcybHaV{h>WSV*P0-QVGa2AhoKfQndzdKbTH3b{Jk*^n6tTR(g6z>@{Pbb_xDdSPoaz3Nv>)wmPCC&yz%uM9rxl8LKgI;>*bs+a* z)ZG4ElO}vwa?1sVNMeIg+m+;nyL~sBp0~YSZ1s8NRsFOGpjlS7-ddzb-*RzV*06P> z8&B@SqqyOf&npo9msHEYn%-4?AY15XxF9Uin(#YSbj>6}H219^i>M7lE;+9W&OgkE z9#BGCU7y!96x`=dXpT=l?(k-ojakJU^oA&F98k}~+_~ZOqkZg}@IEPGw&ZFev2jor za+g9n;RQMY#(#@Zgd&{GUUV+0`!=NhgUk?Y5}Tt!wx#l2_zcM76j1NGC0;7xx@CSe zlGkRtnQ{j_T{WVI=IY-xha30D^%SgxZ#SZ+f=|B3)fc=h-n7`~9TYF%K98}N?yYww z@cI)_c#*{C_J%zWID`~@C%UR&vXGOta59&j+Og=xsJM10;X|C)dBP(-xVFb2tI}AO zHYY5L?8Ae!`vi~M&*M&9p`hw@W}Wpt+b=gWJ}B%4TDex0FpkB8BUv3e1qlg2A-tFC zwgDNORm?}9RfhaZ1GBmCZSM_H5X$Bye`YWLex_d8+iD*T?$c!*xCbLdThtMJ?cCj6 zPiXx@>Vc+95*~5A=cRh@wSu7+!P4{fI-QF4xP?xJ8nx=ynNLr(9u==(=7~4b8^$wC z8j}TEHHwcEL^x#oyRUrU`KyRfL3Y>q{`X6unv0E6!4jsOo&+tEwA}F$=l| zem%P;E_y$jLa%1>on|9aQVZnE(&u=%VJ889;&B|zE!LUqIbq z(%Xc5JWY$lW>Z4oqef}o$Hr2NFF7=yTr6Unsg^t!V|7Z?AM!23maGmIckyhvO4xk3c5at)1}-EFECtnwRNvvW^q zto4nr2b<=$X;Il>)19hEEkNlqWAWn{LMiJ3t~5EC`d=p@@SC%U_3olt|N z8%K@T6uOmiB)Sz2qBA;oES5KUzbCcYXkj3`n^-VMwFCz_`UKBoz$qgQ8&8wDAxbJt*_vbbg z=w-v$CVg(?tlfuuWG?>p6?Hp$wHXAQSzwJ#muWeF2HGY>V>WM3T0r(0k1FT18iK0C|gv_73frRydtW8^L(my zgKlh(1tuHv8XXUUv6^d3!1U=i{ct`lO>P!4-xvD6!|1qo>Bi7WGDte#fA z%pV@~`O@W}gSfQNe*%;Xq1X=+YSZEOhwq0;)F@m%dO6LPhPR4uirK`4p7**Mm4eHC zKeyYNeE9l#WulMOqzPG1J`_;!iaM}247_L@`KUg?tQGW+l7JY0@GX07q^Nq%V z(*FjBP`}eK<;LuuNW^&(9Tq+jvRw~Itzq=M<_|@3e)QPIqxilBgGS?ta@a4G$`C!F zeIE9Yo7XrzQj#N9umSgISWT_)lDGFx8!sm|NhW^ZJr{n)@%M8lUGV-gG)414)$=54 zpm#{xZ(NG8H1p7*J^(pX;B50iY$Eo7MBxf;A9jCVo1#Q{`NlciSrKe7q?WNS1QvW+ z0BAjX^`$w`_jTfM5u1EEC^B0%eZ{*Y`zn;J`F%qRzFziEuudoFTt)qpmw((>NrN0= z(fO1fr%SgZ;_&kcFir2_ze(6i+~t&AW?WgVE|n$3moc?03UMA7K;82S<7 zzRDzTvxAkLt0!WYqEH5PyFJ<`kVS!)`&o%my>u?oJaoyX{jX!8L}N!~A$E#tC!aS4 zggRi2(`8h$s535u0Nko`UEt{!{Z7e%^i{U#ZQFCpAEgzCmf2CH_uGVRC;28S%621x zC4J8~-=>o1hZ?Ku%A=C3WiujxnR_j{kV_>6zl2aN`;PF`jgn-~Y>_oE1P-Y5iM;vf z6?J2k#aN&N4qdHexNIzF*L?)39YHIMcPC-ocV`C}aPz#vMz}ie;qjA!JfM86LtkEh zIv?zFlk@bgb5wX_oV%IsU%Zi8O78RZ~Mbn1uz8C)JI&@Zj+(ZR4CUm(SNyU@$b z!H+9HKc6f>?i@Mgbno8IhMgWA)c3Nl0^Sq_BPO%9fqwTWkq=*ppA zud@s;m75LkYHmM_7Xb5Gt`T@$h?BPC)=e9@B3zT zIzwkRmJvKk&5|d3-oeMASyeIgpB@O*YS~nAWd%;6qkV3HU8WoefyhMS;@{xbEFD%$ zr`~DqID-R+h<(e(!-CH!r2odViC1QE{SvNH)kk9}UzopiDl;{WjQCPkuGp7fO;W1+ zyRjDvn77wMhcI*v@KBf28x*4}#v6rVpt~=NOZ*Ve_66a{411epX8Nv@gvM~>o2@)- zM8z9U-AIa`nWiM7s}{|j!kPfQ!E0mcTWli~vSHG5Y1j6Xvc?*G>nWjX4iN?AsCk2# z#C@Qb)$z4e!tQX8(c6!5{m0|Mp!e(a;zg9wnQsvb^8LGXQ6ohMa_5jdatxX{bKDqeTLfJ%XU2|?Px~5d76y627Ghg7gAcY z@x58oyUN2h(aAD#@ZJH9mj&$RnhRt;;fB0mhZ?H(PI^fo-!C+j z1&BrJ%_L^HqjXe9Tn+sZb7Otn@5_0#)4I7~8^7ermd{b4&bK_DiMhWX2EO=WZu11- zoljRzluCaPLXZg}uW?|_b`ct^bVSRUbj>3RQ_P2kyR$rcaOX(FJRpHic%{c=$iGNk zL#FVJ)|)f>mSmlz(kA#(T^ATCmA9(%!#-`+KK4&ks>$qFZXQSdp7r}AQQ@`kIT~IW z9@ipdDV?E0-%3|pQN1f8OTqk{1$(Yv)akE945Hkjm8Vi#?b6C;dUG0U`Hgss`992#*W6Uu8174ft_Dha$)_&`A2SuMAJpKj zQ11$JvgBf6Od}Z(-MF8ohLzG@pcj4r9;PSZL*R=qMJZYbjbeNxeku1M?3tvsBEDzY z04`hKTp}Ck;@N9gppw1^>4)#xq5aHc9~EcjFrssK9Q;5?r;4RYw9pmVhn-iD0dMfR zszapA&$7)HCUMH_5=RmMRt4AcKjyaSNJgnfG`B9bb+D1%qj`Nl%fBR*O zr2`$QO2&CF9R%ao+}s;v5()W3$l`lQ zS3KS)SO7LU1Qd4*&swniCcADo;MjWiMKeb|67tlKnOLwSJdv%YKP9?8YUI~Pf^fZh zs<$1TYPyAdGxW~c$)SPWE<<7NA6AO?NklK6413*B{6h(|lWTTKLYj_!+C@VmZ&0WW zTi|3LY07#B^{M3`cNduh%1Ofc8>vf`nk zr{1~dmcw#G3ed%I4?Q*~ zzE0K$b!v+GPFfN&Q$gFXj$Dv=IeNqfSCk-+<&g1N&OK417@W$)7KSuK=D3VDXhsfP zmqjB9hClbUT9IrI!w@P?_mLXFy^lvHE7bumwn(m_d;6#cWQK=#E9VdcHDbs$5gq83 zt55H&-XkfxMH{EQG68yLIQBs+-@mNesyninK}lncT<>FG*SG1oY8AJ>4S_IV9iz@s zhLxf2!-p~McleHL3_f=ZYc%WdxMVVl(TBF>8zSp>&s3ld1+mht@HI^oodzmNUv})d zx`;?^PN-OeQgb~@;&H*G&u+fVG{=Oisu-<=n(h_rB zuB~@C@b-hQ>1$noEe)f}J7ltQy(YfaD`AIR%K6n=uUYNcAazxuX7NBFit8t+2Bxq* zA8JY46x$x54kEvCNrk}b1Lwr#uijx|kOsP82S8v=C7jzY1Q%wqE6leJx6ewfDNT?2y)wNcE{?Yd__ z?e(}4Cbr-?s$!cXI;=@$mH-*e^)cr6tOEtQ5iL?>u5W}XVxjKP4HdR`8fSm-$ndek zwnSgMhTG!=x|5c$w%&g{7uS9G!%E| z8|G6{=DD|NKT-X;;9j--px)TqwIezS3Upe5qME*y+5&TcIyad#`uGRE8)8K>I@ls) zb=Z=Vh&H~wR{9S_<*|7n%pjPL_2zX)GZ6N=~!>}3&)PoAzZeQ&b;eAWc!+JYd<~f;@`8rngswH~ypkYIe z5!Fp|0?&kiB{EdAWX&QbuYmh!zv#-QiHT+Q)s;if-_7uG2cp8fC~$&!Dsry&hVOfo z6w*Fkc)@yIws_Sp=YV`X!z>ZFn`6afSlllBSQ|_;A0&dy0{!7^sT(x>s(AMPXAJ07 zjul-vNB0kYGUt@)Rwamh*fj zgN?k9-Cl>=k^)q;9v_`Nm&pkXSxw9`NgT{Vf>OswiqVGo%Zg$inAgCTOm!C8Y3>iG zML8cSoO}G4=1;usGaU2;y&@I)!iWmDCcp9wWp?bdGc8BxSsAjJ^0n6X+XMz)jqZ{7 zK;Rl*mejW!WTp$2oWS1s;lST)-;y$rqkGLs?S3GznS!9Ot{)i+!98i(`q|}FT+L|d zc5a!%`rvb9r`t{Z663P)V?p!o8S(1n6~CG@{7V=7cWesQG*pGl8W#Z*PwA8qM;I%|yzW zME+*)i-LKvExBjJIfGVpd?`Pi_BAY^`n0AP((0R%SaJ_c6MMs6T7A(`X|??L1>aD~ z7T4vIanUx|kgK>0xF>pkVebmh2hm95at;z1a&qI8gtR}+run$1=vE&K9LIoqGpA37 zDJ35aJx4esZbN@PzcgISLLpFJ$VqxIU2eW-o85KB3@|=dn<*q<{{QqT%FoFx6j8(3 zE>)nb3K?UaLj2lB$9aq+0$jW_#ZrU6O?bZT>#Q0%mcTLS49EGO89C*ky|txFf4Ufz zM#SA!CD#EC2dN0pPjd!wcw5g@DGQ{ztmWo6C~*#sLoPh{npQ zadjP4=S>`3#Fvlt*2}R>?pR@G9_o&b2hhe2>5s*;&^Y z1KwLsI_%`l8H|rK`wVQ6HXy{9vN=3k(o?wM45XP?4xv>nEfQC#q^N8PSpSQW zY`=fp9+KO!N+b0WRv)xMe=d8jr`-yGWDEe8;^OCh=BAk&^}yG4(NkKT>Vbd1d$i;$IG z#(SPDJPg;Mp4B<)w@rvPpn7=6;%OVN!nPAJoq8QQDf+q!PCg z+`V@gbDq$`Zl38Zz&Z*#8Rj)RUqolr@zYm0zvi|@6a5-_Ic|owl2E3JzeZB`0n5OP z4KQQ(I(|~;H#>Dkr0gnt=pTFdsGdT%%`&fHrvm<|rllu(l4V1pR}h9bIz8JAn2=k& zlD~FgOu-ttL!2L2rR(g8J@q$Qqgt?2z;q->oTYRfwY{f*z*mV0I;1jT{@}T4XX=7| z#Ov*=?R}YpB6etXH|@a88LrB&ZvI_beH7b|UvC>HUnUrjrM6wgQzCk`-FqCj z(5oy{B38lmNT9Lqd6{pcG2Oxtf>;=_5I*kjvpW=$Fe7Sw)~kwc+4pfEd*ljKTYhb0 zTR1-tms4lp6uu&_hcta5EiFmlGT3i|7VK%~v!axi9uVt;<;EtDv*11_^h2T16}yFf z;?N!$G0ECYFPAeqj&!HykLqr>s&FQVXLuYpA@bx~?NBh-a@@1iJ!ppKXUWrtZ~Ppy zCE-M^xAc7BnG?Pt*D<}5oHF=plS1nm))t?|mq;oNy;l*mXY220Z0?7xC7#$?u2M(X zKW6k{Up4~)wP+Z4X9M{t8de1PG9;Bx?7LFH&r=Nep{R)KtyME18g7j^E`R|mZ)0fM z$hT3crWK($+X_B<@S0N*!{~`n>9gZ6r8}$m!|V(u6v|8FO^5o4#d~=+PMOUi&Pc;3 zvId8kK$2|b&?<2+u1|KN72F$-Gho4C<{j|i9ePT-j@mDoeqk@>pwDqQ-4ZP9 z_N(!p;7pd_A$)X+N7i>V;I%NuZKS$Sa&AoarP^k~0Eo2GgwAK$L#E@x_pjL)V@-YP z@EY$Qym!hjoa;@~$Uog7TbrAyG`dz_L`sKKVyr9n8|huDMrQ%e?Hdp^fRFsNj_0U6 zqErGs-WjLo#3#hq=#Z^FR6XWf zs=eckOIHqHcrwXhq`vCbY>Cea#cD5_z1_W^8BAR}0}^K!x_mfS1){q^pO|suB90$Lh0J5$>wng!r9Kd z*oXxbE@BPMTZ|Z$MiTqj&bY5kjML8k4N>@Nnb>< zno!u^&*>&TE=LE*h2Zr#c+$qV}iA7}0P!*krl1=@_RR|B%CSoPy#|TZbzF5#_>_2S^MHLY46%_)EBR9 z=_r1+pLS>n!7kAEiagRl2BAZk=$T8i#{2mk*O=Q11Bkv004~M~RIx5yu zUvlpud@NLZNIupd0a^;=ZbCF+M=3Z4h4ntl@DdA67$NyriCspTIUGQY)1=nzfM7}F4_7e1-Z$=V2hm1lD@ioT5EIqKTEzrZVk_e30;h@1 zM2yly9K4oBm&60-@d%IhfU{?gHozUi3vg*(X2%-1BEzirckaGVJJdf#@OxSxaSfu( zM?N(1!BRr2(eL=R9~w?1fR5Q5UCo%O6OVQm^eYr)f+Lw?HdKuCJAG6~ZqO~W@Pw*X zDpkue&vHI#fKJ4IjzvSXPtP$ff`HejlHRmM*x__I0;{l#@6yG-ZQntU;V=?(yF;t@ zt%h#BHYS)(2xuHTaQuFbLr z(%sZ2sTi`z5xf~uGxpz*=7z>a)3J&sIwa39xbx*2>oV{voJ~T2-@|4d&Lyop$m_av z;H?BeXKl3sPFk$#oDooJ*d>{g+orb1*`mmaHJGs95}J$<8;Oj>#Qza^SJfzT zxj=nI$!FdD^J!jR;uJT}*26}~N7+luTU($a}2VvdlXfPs**?k|bn?a#X^~Ing zBsIyk^a(y#UV1BqRo`}keKHj!mQB2Nz9?G&W4sefcI$Ix-J`l!u#j7_?su6UrShOy z8Tu6ZV5$WTFez3IbB0)MFlmJ&@VEYffCzc4eb2og~Jog#(&u1`+Ueof!Ccqf`HFz%5D#%Z$%yfnp4T)|q zdvVu!Cpr*0EXp_!w|Sv|;C#TW$yj7+2l24NfwSA3tI`Ji<8@$S{#mV=OncJyFs;bf z#XyG|a=TD9aRT%6yM6jQ)f-WNLA;qjt1;cuM993)XGWhsewWgxlsSz5L$3F?p;R>o?-jJf0L zOdR9E5ROnk<}k{*In}W_Wot~nMEfbvG51|BXK|x6^*B6USXgXy|J-|2tAvkPHRg^) zN-aC|^XF*(Xm|2rgkOGBHV#gJhUQ~5`fX|<%U-Ef-dze3Qlqs5) z!5EvC@RaW{gN|VS4)tg4V z$*Tvy%60;~e;vR(+I_6nt5}Os#sD> zDR-1Am4JZC)1S`zBQwuAxmw#9J2F5(3l?=b>%Y*svW#@~ z22v$?w6H`HG$^sa%*HdsB`p8#H&ODiUe5Uf{-~y6t$L{p+@NP!sc`Pk?_&pI)9{_m zi|R_;;dZ@wQMo66Cw@VajW2CLqn3TeRqXBNc}gZj2{1ySJZ5OR$c*$gmwYZ#oO!?0 zqJU}o!B7iaKI3po?IEQXs3g#LUsUWR%nck~#62PFS&vUYW*|(2c zd{AE7Fv8)W=%F#MHs5xm9#*dXqFkFLF2pG?*qUAzO^AeBrsr_-{8AB`9%kegMAD(2%!CDUl3|=j+6jeyK};Cw`2q&@!T*#0}Y_l z(D;dpSW5BGVP?Tp$Q+@O-HdtWXq^0B0u67WQf}t6I?B}juDCHAmVEO{n1fG)T{Igg za^u4llb4lmdfwQNt0{Ow)0p(`!)l2ENaH{Pvs3USU3934)VKINV2d9t<8wrW4}5yV zrSH*~)u~CpB$E3D3)3pbrPR}dC>~0dgA6Q>Bm{r_1}8B z7yQ9J1$PQis~}!$scu9mKlI zGi`~JqR^SVV1DA{;EBu;#C^NJFH??8-LqHAjd2jnLuKC(&ig|*FA!TnJDePNMriG$z%BVtQR=>h;ww0aw! z@iUIR#Z-|P1`|iWXL9bAJiT-Z+P2dEtCvuULVl;lDCDWD+NuH|vOnS_ zuHI&xn+QOE8|M4+Lra@kp3)0Jncke-)%h;XpOZsj92r~Sw{5g94nUa9O)V7jblWen zr@)92lRoR;b01+Nfr2)xLzBmuhxpPw@zK^k>Ha@w$Ccq# zU(%3x$m}nDjnBiEZE>rW3wqB)dgd$hm|r9WL!8{t>OX6DyYUbroX8(?Rj%ET80W;xt zXg8L!{;mRK_ZjTktBd|W&VRjW$Xgb#JSYZs#yS84M538( zQrt{LtSHjrB=L?{1)0KsFH7RvQD0v2EbzNUV>0~0{LL!)9kPH1z4%SSyGp_&n>U^Z zRVS23NNtEKdV|WYT&BwYei$tp{qwXtp3VRjAqb+qwLE2=8rK>#RLHMqvobJJ@V9%g z#1c>#Ad-eWjhXMC^8tzL>VaO+a3ucaLea^!^A>o-|FmW-blvDrr-(&^<@Fyg64FOu zM2c7}@bJp{+j#yt;2bJ`{<;j4uU1?6Lp{l&=Rw#3qqLdAhB`XzTq>B@SF>j!vltyD zJ(q%AO0mZb={01Uq}_bwW#1eMmVi+KUhT~MeWQV)Ff3f&z1?}@4<^mkMxp8Lu7V@y zCqtE$OE(M>5&Lp%MZyddwnVTPkD8&VZ^8IUYe0uhmXq!2V{`CeVmg(<=kYzG4sojk z1bagV@mgP3pi;&oeEQLvQQD~vHA5gN7tq#AL_=`M5ta$_cxn)W@NRGo`w+P%#o+1% zylIgA{INaZ4f^jqb!E5X|8hkTC)c=72u(NpN10TN0%YpL>`(_>)UBLhRfCA02$*{w zKn#r8CI_biVsZCgV+^#v)!3I=%&;@$88{|5s?zimDPh@*#}T#x0`-*6s`NnJuc*pP ztUJ~ybt{DH1e_b}3}s;##PjvX4w7T(s+#Iato>XnN&@ zyXf0zGSe_xr>rBqySD^I7S=tl{k$llhgM4?=RzbhLSA496NGu%$7J+IUmv`Wi7%Y~ zx1RCFh)K|crQI8&v^T4wA!wMdqH0rQp*vM2(zj{NjH050S0ud#8_acn*M*pz1Aswa z)ObPWHn0_>in{=RdCiW;Q5JT#$A9PW^}RG}iwYego;QG?n)8^sf|JQlFmVX=$xZT% zp3zQ?C3Y)N!f04s04DE^Fpl8X&*6v^Yk2}vmqu69KOf8Bc61#1OEjy$NQ8l8Nw>dW zUOpZ`94XgX&q<$iPY-;^A$fU+rX@eKd&cx~=p>E&Rw*d=J7u0v9=7)&g9Cnenx8>H z4(t&bN6K4FNMv~K8svsD{&PGE%T@}%I4jfq+t|IlyrXv9o`h$0zNzT-32rz&?5z~q`C+rLr1r?ND1 zL4qB_O3QK~TL4v^&S)A}xLhGI+9T=s>rcf3wl2W8)E=$?(s5n(1>LFmW|0%0kk$`8 zi}#JMh=N7~l(j`@7Xz|Lxy_hK1*JA`$fXULob2|^FEah?lqe&9G0}GDLM9IKybU0a+dj$W1@Z76KB1e!w~5`Gg4P zg=8dXCSH2{>)w+??u)~czJ7O3f&sya;n#}ShcieVq}@R13M4&x&jhEpd(kFaO%y&c zwaZ>#2*>Zzt=*Vt& zANX3p^T5Xc>mSUgzpb3VRWb%n{%fyoQDnuZw`gob-NY~fP(XJ?^GhI62IRLFa2h2z22psQzt5S{$X(%cmNp0=Khf|#%^1mBR=tMQGE#|L zKc@D9YG`6TK)gu8`Dnhp5F|ybz^+z1d*u@$Z1)T|8uoPpf*`PreF}MCCA=KlXJLTH z3Ra>Cin=cc4E?G4{*eoP(`6c2`ec9o2^WfB)+}%z;qWfhLj-e<(#(woB7W>4v&qE=4`tTFrH_0 zq46<1vaxM}XpHxdm$2o4XU2Un*NBcmN(%#n_hql{KA=Gzo-1C3me&Md%#CiTL2(?# z#uFG#eve4%E!0KN<}tl2z5uWH(;JrSe!mt~AlOgVT0p<6pl!oF9A z%X7t)$ZdxO(e>>%hmP}Ilk`dRem>q0_DS+WxF!a|vr*ANor0H2>cA_3 ztdT}fv`*W0>HIRi=ffRKj&^}IaYG!X>J4@{wCE{4rR+TOb3Nth4;QA7Wx(*6L`3gL zw=a)r(;`GZw9Dh;97B=^mrVtfR@hBQ+<)Eujv}PY zBYTGTlApGp8U(2JYxd|#UJAl)oqkEVDA^%GIRBnsk1cLfjm^7rm5n>3;;5FPLk~&F zTgB#q!F{+UIUOI%amsi7GW$r+3F4_~L=5sRWiH^oI-p5XR06iJ%d)`7duH+8`;LQX zAb~V4&SYl{==3jxd}{)X!GW)r4X-n5gOyi#y|na$eZ3@li`4HYLSbJNMu+d;!@=;7 z`xLi*h*=KiL^_E=<5?0Ltb*1LV@~-hRS*`quUfH!4}!Y(x}faziY&E}wh>gq;u2)} z%X%*c=R`lQ9|Sj7~?TU6Sw4E zfDiFGla1;iAM5=1-u|pmcdP%!6x0AJSOc)RN1tYI%_BUUm{zbu z?cm%A1re-7S7C1&taJLH>2q?J^+`X(II;u{Jh(rcsjLCiIQZN_5-^|b2iPLCWVPXxP1 zxI=ryoCyTNj11#G%6mRyDYEvWm)FO_>&0_hfI+lJ_GORXuN)RPi0(H~zB(&a7ORxG z|01HkKSIZ}`iRgtO5R6}POJW8NeKL_CxO2vcy6qBY6P9fl!kgR`91(x|K_HFVP5#$ zN7xKB5a@Hby|ZQCZIq;&FJNgQ&upD#;ehoW9uk>4-z*-ghZW*Mmk@S!9O+% z3p4r}7`|SM_OQ{57s>+qeAK1U6QVIYMb!i9h4OUxp&qa{JYA8vPNuo$-jMwD^g$D^ zs^=Ma-o&n`>hQY*@jq1Bfg=6io_edB^?u{rIAg(j=*lDk2N~WGdSh%6x9e;%(t>SP zRSz;%?qAWJ^MWBy=uo#FZ}mDqju6|W7_5$o%L_*CX-?h8uGY3YYX7t{5?ptO8P0% z1i{alUm0vS`-yv4m9}wh10`=Jl^{hy{zcWz^dwhi`&jo}{e~ zc_8q_b{z5R%xMz@LTX6{bp$u5nGwni8aB_PpL}4n!?5pM@$w}nj>oJ$Q)D&0F`$#< z==HdNz8lDiM?l#N?6&BTY?~J`2glR#mY0AiC$%ln%9^8hJ|i^_dcg;nVp`F%dx{Mj z^fDKUrgqnJiRAVe3S<@O^e5s=iu}de&=h2r^VXAKbYM(GIRneoWZZU98fF87WS>um zgS6ZfXwtXpUXb?6tY3*u{HHVC*dO(BfcAF>o0-IzTkqw4mIJum>~06`r}}ihdvd9d zzd^ji;2)fgW~^4mZ4JnfIzRb{r)%)im#Usp$Yu8>Y==n%PZxyd=%CKyn|xsaf?n#I z=7YoDy;`be`J3@Sd)WuMrotA(y^R>u@|(Z6!OyfrZspa?@bGp}In_oyxv_kGcIex% z?BW*4&}Ij0ef=~UPZ4dWCTp(=%l@WeC8C+Xv(q0}{*S}5zqJ;Ix>A|+zI0kXl1dWv& z0^GpY$9*OMNs!Q^I@cSJ6{c}iMx{n2y*$8_I(6Rjd=3i8gxjqYZMc6da`i(DAhcsZ zyc59xLsZfAN#_*u;0<4c7dCHw(&`<9{yhyLAepw+s!HLZH+xuf~`EPN1E-p8=F-9Fo* zSGga$;efLkyz1|u`w!z?L4C2ZXw~2FW-5e`K5v~=BCthvzA+!-6uIVK9mx9;bG9dz zFl2#H#oO`>DW3WMjXbJlF7}yelIXn|Zd;YST#*cdO1sZZW`*EP+~uT|jYs*S%?a#y z+vciilb^eltE%re`Sjdg0rY8)I0uM^Iub$pm)(Bfbr*+^F_65Tm|5b_lnGb^nIb(B z{W|{Lm1lti61G+-;0Ffa?;iPAs#Nw$iB6s6LP1BW^L)W;<6=drKL_M*M{?MYV|$X# zDpa)jm*pSePL>4>Oz2_Y{j&o3w@2IgRpiIr)8V$z@CYVF9N1&uT$+YMT?*eBN8}iR zjdJ?cg|(DQ`XynA*M{7u8LVn^^F#gnDs3dgV1QxjKSZ{ZIXv6n#z@%-d0n?^vICcpY!dq_{F`|KH$(hRueg_QRog)aGio`+1DHHxAba=S zYA`4;gpAd+x!G7t4PN+|1qByq;GN!OI#p?260V1*^i}rp2$i9CY8moHPM?K@>j~hX z4kJ1{e7@~o!VGo9y~kDFXnz zB)Q|bT1Hw0F>vJR_Y;r}uDVNn7|G-?$Rj0jHb^#y#4_)Djd07^u#U=Q0gu#)&n`DsL4+>5*)|K|IN-S=i%l-4UR<0C}PAAV|L$tc^+n% zd2WdSNk@a09-64T33|7B<&KK6grH8N=I9FqY=8i&mBfXaQTPsK@$QW4j{DRsGk#TuRJt) z81jnn9X_Xp{>$Rs!4LfR8Jtrb1N=qaJ))t8_3!$5oj`6!j)Vx)XB>dk!@nx4AOQcV zFgkc(w@nmIJPdE!j7$utzi)mMxzUyNN&?a^aw`YR8Eiv zmk|=tlr8DP_LGI$Z}_q9G8)3T-7*7O*~M$k<0+1CgW|nb==%O$&u)hZU@hF%;LXEr zbIF`(XKSJV!Lbkw1)~Yh`MzD~8ssQ=O%U?5`mt=2{7{O0?qO-JE0`#th|+)Eg~Kj` zSWv*Ydeo(vLC#0SeH4Z|(P0vxNrJ?$8PJ`7pVR5TJ}30qe@ZDjZua7~v~H23j!?Kp zfT-+7zmGAqp<$3?9As#*^Ek~i^~QK$AruN;G0aj?@BH(~-c#}cCNL&_VB)*Q%<&*6 zfQ|WPNsN_d%e4?Mz=|9ftoO_^p0tkoU02WWuz_sMkSP+vAJ=9X@TP7U8(|G1nZ|On zOokhDbUHwJ;KhZoAN$4nV5I0XJ?|ZkkxY#qZiRp=piDZo}lamt1Lh&#UAoNpb@HBC!izQDg+BoKk#lOKaDgz8)&L!a#+!$ zvfc>sn)R{n32tqh=%2Ep@CYMa*KG4WkE1Uk6j~FP`Af7Yeo?u3XogMuX%;l3c z1Pt5;{4OAKcxdrkuFBuTl@tL%Q!<&KTXyl#X|yty1qcT3$g#8u8) zm&j`;7=zp-SEK!sTz~+3hHCcO84k{;oRyn!-#F2_j6HrIy?+3KmZq+G?@~cLaEA|`L{hYRV zb}s5T%N3e9H#~C_yuZs83-Fsiyuj|a?&HOiA&rh1TE&%I4#VYiW)YIkC*)|_Uu?wa zL!$*Lu62&R?*z0w7kEqDX|5YA4IhcX_sTL03BnCfV!81yECR+z@vz&&FM|H%?mTcd z1L{BK?lOkNFcdHl2-Ndq`5nvQ=fW!` zZhtF(M1J`1rd-AK8xBFA$U;os6f_Z#;IBM9?$nZ>j}2|o{N=17^gI%?D}nT1`@OP8 zmAT?O!@={Ud@+FcrVvDNV1O{9y1|@gp0)CN|DFL*0k;N?F<^^&2`SEFGtcfqDTa zQ<@j1LsTM|f(V!Scsecf)vtqxk!ecIAln9s_fUQ|r3JmK&q!fF;<$#q3DkD_=-|pd z+SvFKIxa{HY9?gUI?P;p>tNK?80Fi8=FvH!`_BN|mAzPkCHY2XkD<6d#p{~DJ^c}0 zy*K=stc!JIiu^Uci$+C$-KfCN3e^Gh5}XZ;-lpbNH%AoV^fDG?h8or7bEJcSNh=N}P?r0Bz zElK1f4XG<7aOaKkmoY(tUQRMa0N!SQ+au(-cW}hxZWl1)sw%eHAJ?`+uSP*oPnZP@ zB-Ac>*73+?`X#S$%^DaR#x0=i2--SE`co5F0?_?tfd^|^Q$cOS@LB_ary|Aj>04rr zlPA8&ezV`4FCNwj8_?4&H2HX3%#c~RcIv*0Q4+r3)rdQIYG&WV?0vDH+kH76Szup5 zZa5(8_F`DR26}DU0pyMF4*y@~G6zO?eQBcJLr6x`N`!Uz7C&j@8KzhBV~zXr5kj#X zPNH}MLMAsK`KUic0&0Alm5oqBjtdIwU);4Wiw++R`5*4_3a}~Ui%ytjRXb3?J-D|Z zoZ`l*oZ+|&g1Sxz8wZuEqk(&wgr<}O~T80Yt6C9>~y>8>0Zi1cEoT0IT0Xs>-%uk8%OdYyVhmN&|ORn5~h0Qz=uD3q4R{c z#u}h_-fibxNb}|GaNdWno7Yj2+>k+O_KGU7(E|_i^u7V`{LQ4c`(mMb3U

-6gGSNH`d#%>SH z_^2e;)m)#gBT3RRDDv0=zm*@A+T`;BM<$_@cr0xLux#zl z6G;P`+0nT`1~^+ms~wtF*^cHL+ZM7lfz$)BOO(&`)Jv%8Hg@vY=ezHu021oH_jjQD zXQ)@h$H2|t(RT{+IxpU^K#NN7uPq%f+ojh!%#T3+B_Myj7CY=~=L`2YqmGW}=yRSl z7kZ>9MdYBF=IL2sGt`ps61$OlE7ae-usne_?hL~n_QVakvY$#aEsI1ERIzJwtLe?K7p@<1a{FEVKUxSel;f;+uz&#EE9Q=hN#b3~~{(Ej4YxQ>n-2MB-v9)?( zz2^9URuut-3&sR8hElKWd94t2%4P0JfxYpkg#v+7GOTC_?X$p;clh&qUKAp`_OVwq zS5z*8$ZG3_uTUYRpBs97JBh_Plk$)U{OmfZu@{5&F^6+NS1$OF<)SuAas2&uUwc?} zLz4WHQ$eF;YJVcm+(W|zd+Xt-l<6<0e0>mkfVF3Tx5#~^Y?KpP5ujl@d7YxU4Vm+& zi0^DtoWZulY#yU;3GQh0!oev3_XD#0j|1l;uo$s`v*6|No5^vKQ|QD|V^zrXM9p?Y zZiz%o?Hu z)5vts2M*Xrsf%gF4vDjG%)-8+i5$Rux<7Jqf|~YwU;AU5^W9v%8sEd?;sj-zLbwYn5KyifCtemHXCF_eJD@H+q2bxD!dzR_6+3TCX{8d9)W^s6y0;#Uq< zJ%SzmsF9GEFU7#fYmiZ904F^}i4s1`>xg18NH$~iOMeF`T;C75_93?05;^d54W731 z21v~}+h%G$>T`IfACxP*WuTRlmKSFA{lboBAy>@M-^jhGVgWg0!gXeT*g0=$)Ma0z z!&v5SXGggOQx)&HG;qO`Bb8!_pCK5CM)!l>oRL-W(Ks_dvnVq)ea3;l<6l3_V` z{)stT@mN5v8*Se5ZzRHSDLJq0ldWy7K8Q2MvtMp`aW}C;^tyaFAm1Ew4wXbiS*pK| zI35L%^PKa(-hzxU5W!R;EBNpK&2 znGYb8iYu}#!|QXilp^mbhC&9!5YQHhh_fJw$3|V}_V>%m<1jV{YiTXyg7UmLSWX%3 zDR~b>()T8KV?ccoqozEfW=G+;046u%nC(q33>LT&WOa5&`Lf}{7>QG*3 z+pVm1-6tg@!dE@K01erw&K=e&Qx;*1?hvt~6UbAg-pHPlkkgCYG5W>k0+yJ~4)x(l zufT*s%(@T#=SPw8Lk%keL0=?a0JmJT=)) zp@pyeE!0)$nlJP9kz`n0RATg<`P$i_mJ631;7LD?fKJrE0OW{>mHd=_w`(>Vf;!rY z-;6y^Neg|Xkm2w|iWJl=h7(uO(YbZQ8p=99AgGg%&|7brbxqkJM#!BGnz823$8iu- zxA&wTz>FcXx^;8K_$df!xSVcaX5jz=a*B*S2y^3?*cNM6ibe7Wh%N2e*xoZ_c8R zUAWkt!5ScYykbARl+LM#GLQn^OsLV@7D;=6c*DSV7RACY7+moWg~6T)egdF(;6i>P z5g8gXvXq!*Zj6%v?%sysFyMX)vY)_Y41hO&N3;knG_4IHb61X8x%(nnHkpqzzdk_Q zbMpG;?JJT_97%~2l}|fwnHgv$o;QxgREZS*3E&zBF~5BaTd9FF37r?8!3h&uvH%M@RHF%YJ?^WFEZW+0g)IsV02*5wPhM`cA&@ z-0YNi`_CO_!ILA8WO34G-8fLypu_fbum0sYA8ZSZAQdvV2|k%18D5<`b}H$3!rWrd?r@eHbnvQv^5^(&Eld>i!P~_Q zv;o@XLgT>LN0$_&h1J99oM4ZHMS3(GlHK9DR$vlbIifv*0xq85-8U8s%m10gnVkW? z^9Wp(L4=Vet{CU{uO+iAK9GlAeZcTf#oXf%Vw!Q42CZ76d1d89JceW}3Q&B_m1b1f z2RbjotZG~oF%1MEyLpWorza9R88B)LaN}4P=JK_^9nOXllJdb^iURpSk4F%t`f*Q} z$MUoX*fPSI3MD6O_e7WT5rCV!_yRh_eMaPgOd^B%^1fm~9>_=xc+S)D(~rpij(h>2 zQiXtH!kY>c<8-ulQ1S`TY48Y$k+^;8<~WniAo1_}EZjg{dHcWwy2)TqIbSeSLH(Gk z&YB~qC}{tjj7?rH>m05^I?uoaL<1lHXG5-{lXRnqIp!N}*xV7sY49bo)L@RM534=l zZGup7dJ!0lK=yb}&n`SZ&KcbDrvKtnd*t~SXfvuGu4j~ik9&oK>?oed8CK5(GkuFfm}WAdPc(0o zYx%f0Y)|JvJARr^<|7C4mK!BbqBW~A@h{pH#AEH7&_BcP9`~$iXM{O7C64dno;Oj)65GJNlmJIc#P0tk zG2S)N78;-5%WEed-R*{$;5)`xcATPzi_<>eT6Ii7nG_T9W{`the1Pu=`8-~ESTis& zsyzuCUI82xEE&>VFt`jhek817 zTf7w)~-ev00MU8u%TSNx!5B$j6RhuJID7l9K)4-Tb zWXSC355Py;v!$wiP>+;%1}I>0_dNoo$*duu0gbg(2T1-z%rrZ}5MLtD>Pc-dk4Dez z<1fD->+n&Ix>(&7ZHSih-qPVmH9j(r@$9$wY+MKYrKs!yL=K-IKI1Oio(s;MbP#C; zE8;qMeszk$0RUM$3V5P=toJVTMsPT`;p2JTd-{(ozidSl5_v%aAv{tF?#!(PKeGpD zjS8m9i+b5|ML(Ch8{cxyzdpyNgS?hp#GyW!n6wB5VhxHIy0TYHE-<4XY2anV=AI_E zcYF&7Z0d7NK+llqtpOciGTo}267=GzLrXk53_GMK$YKHQ9BbRpy1Y-r2ELW`XlgWWc>LLXAw zA2#P^)eWuZ<-Obm1I}lD!5$YZnm~D~^G#-YCA8@h4B*a*jZK}G09U!-hp6pkel^S? z<;YWU1h~5fAv4|J+4=EN(;SF_mlscuLrf-{p0hKVi(sxEmj`lomiUHb7?y1kKrfT) ziU)vy{wt>X-}_xzRX}MNJA>IKp!46WFHKCh#)f1*o6xsxYWKa=Ok!<^>q}y|qK{+h zw+P^sBJc28A*2f%;mQ1L!5fNpouT_ae~%dz23}+;eKE2^Cn&!hbZtJO=N7X2J*-G% zgGPX;bMQG7da8LO`em@mN5M#(PI!1nS0r#>b{FXT&=M>aq_K2uCW_h#4T_wCEU1-7 zcqHqDXJE=hY5`g$=F=C@3$A7V#H?qy&Aqu|4W@S(>E}X_urYom9{Qn?o@4Mh5yi4! z+>88W17PES68oaX!!xsu7lp*PxBx>K&karFd5q9;9bv4P7aua#^1SSfz390G_O}5I z3gQ-{;~Ofn#>I2%305#X?{Q>RnD`a;dLY|AQ5j}i=#+^ygY@>@oq7T5>IKY&z4+a~ z5r>}rc75~Hn|8OwEH>n6I{=NdfqPfJSdlf?6@(4<_GCPLmTyCnzCh-D&juc_3{`p4 zt?~V!Z;l4YHNTr1VK2^CaP{~hL%bU^rl?7d`Z174xY-N`Z9yWMUmy-UPVDwX#KF#y zeN-fBl8975suNIa=r7&_soG#s>mIdiSx9rIuV?c{##~NWt&(wHXn9_avLbVx4=zZH$K0>jhHd`lZ6% z^}L{Uc{*Y?^Zh>H??S3cQ9xO+49Kvy5L7FXN!C+pcKDa^zEQl}u|hZ@I#I_x@}l{) zroX?Z3xAx7?X2z8b#6(M@ZIs`>xF#C^(!8Bo+5+W<@oV*+C7Nbg+Co42;_SJfQyip zAD`0947hJwa=rEx893M1uibgV~b@H!lL)GFvcs>m%akX_Y$FcYNLWZCbtVhw;t zdphXdghR1}ul@akc9d|2H=N$x;Q{k~grg+mPrP1jh4tXli@mKdS?^0qXz#-|>fWf5A?8AUA0dF;!Viv|ta+Bm>_*ckO= z^@9P2BBOkd-gNZ-0NM-gX^Xu0dCd_frEQH_>iV_YB#vrthCG zN5NDZ8qUAWbUeGiTM(aV6ZsW?B_VqIjrzw}#IN~(?x*cx?G^rg>BvT0*?ai9U;lAc z@vq9>ISe|0Lr9)Q&kU((JBPdceb;W|2Uhd#>xSE93`&<}Su>8-{C9}YI`% zkq*mplcmrwLh=h)hYsJV;|nE;#U0Uwd2+siX;zizpI&Ri(|9EUPzuVZLYH33VT13|RVxEWbE$~|WsCf<&M} zd&(xXKk>*!2(-dy3uEB1e0*LjUcs`jx?fSnIbAZ08y4w~zVW^)`#Zl!Hmt%2(*Z zLB73wQY6e)y}G;G@Gc;iq)tQJOZjn&`H6i+&u^W-67LS4t=`43&hH07{Q`a~TK?|&b3WsK=&24_ocC_$0 z;0P%Z&~mkC&NJ+6BGg0rO$ORn0Wvv15=4R9`@*6eU8?}33eJ|-(*>ZLE;OjckYtz+ zB4iho($vK6fUzus*l-_BHZGInTF4F>*Y_a`GIAFGGQ}y(zE!khkQXPd*GjV7HjZt5TB*VQ~oH+~j zFes=8ze1=cfDZ>6oaG$DcM(etQgdBi=)sI&?iqn>@K%NBAmUoH1D>lX{6NvYH%L3g&c~&#wRTLP#Zl@4 zduawIK#C=401>8n=cQDXL4xc~FLxqRMAsw4W3)iB1Et<(v2YpWwKlabkQKD$4#3Ae zXIn-zpao2MXztj?%%Ar=;NE3}+!o*-t~`vz{TKXh@{k-CY4pW%JsOh9Q)^bpll=KLK^1*A=6am$-bBQ0tjI{$fVMBKXcS9+6oVyFq%SHv-qHZ+pwga5z zT77SK8}~`S=U_VaWi+C+_*(PnX>%-Z@7;cb^&e3Y_gP~LD#=zq&ibK`Cl*FK>0Q5= z!RhKC**~|ZGlV~=%fn%Cuhpr+evzibc09Ze>zb>qjDq(UxQY#W`Sj+5eaOkMB`jUs zlKv<|t+QlMox!`G?H=&xra2G`KsyhIkKzxqm+4HR+epAET!eZb(NNFMd#Fd*Zw(Df z;K@FF_3&*`aBXw6(qu@F%F=!w>}D|aes>eA;kfdQ_GcPG3*FpYP@mqQCI0Z9*Ha#; zEAI=v2W<86*#KXQ@073^7+2K6%9ZYdQ)5TYy;8)(4GU?OeZlH5bzL@>XwNCRIJKRy zUVC6Ww2Wc#(vA*~z)y|@n&tx2KDWE${m{Y%av*3H@zf>An0Yi%M1XTA69Q7h-~5`V zj67##C&?T#=G#!0J(i9Ntjb_@V9!tCj9>-Lka=#i-Uy&GMZ5s5VP^IxVdO{TXIy8j zaJrG1=#9EYyS!aIzl6DFC~VO`kdSA4^$LHxM^FC2U>B)w=oh3L%?sZAHfFAf@;q$q ze$#XC(1>s7_f3Sbjq3B)3#xrS;Yqz?*T*Lj)?D6!gZLa^Enzf*v>L!vnS-fqMT8^b zb0p*jAK{@qL*YJ&=KXc~ZalCox2UN!RmF_{wo!0KVKhV`w&&k_=)aetdu-<0u)iT> zb$nvq1f*$mH-NukEF3O;ye^8>!{p8Ed$e87PYG!9gfKxa<~IOYjOy_2{cEIBHG9D+ zpVR$|Io%H z(e9w(3Hv%|(W{7WgUcHS1s|crkcC2f=;CMk+tYA8*hT;x74Utp0a491p2N;V#I|7< z(28V7K4mhD*)E4AtNRi~bR!t+y=3Mx{yseS+pnGZ3G+>f%v|6vII>`6e~EX_4Cd4y z@mzFA3=)L3UPE*rNh19LZ1;m?;WlF|FwqbitLX6WU-7VsMuQA@`FJ3TQutd_SB*4+5~zfc0Fi>FJROmIvCEI2%lqrK;L-?D);z7 zrsXNb;*;6wK$rVldGzWo?u(v1f)tjf;uc7}{v8f%OiZ}3e)zvd6btk~Cn;oP-hMj* z{RZ6=uH%~zBpNky-2zwnMXwX%tr9mQg=Z)8v-SM5J>Yt{+usE?+i>ic@?tZQm_oj4 z-@pt%W_{&ECbgb#V|1K=?h9s?mmf&ee59E3g9A1~4+19&4wJ02Iijy$IL?Uwsv;wJ z>7cQjnuj(G;Q&VsiM(G1Q*KiDX6d`Cm%}Dp*Fbtb6A1WcxSrvk>~Mtet^q#{V~m0Z zoN{cWa{^?YJB)}-BIyC~vUKoz{@kZLjx&uc+g>OP91g900idQ@o*fKVkkSLvWe*V^ z7&5Ur;)C2FXz_zkjt{q2hUp3s;;<~R$w2QbjDLLvx-;R*T6jIg*_e1I*^l!=^cw)G zO46q$ywDP`{;?D zWEY?L)Fv50g#IMu8UjYG$7eu((0A+~Hir}x-;#rlUE`t1804Nl>k4wl_-sA@X2_jp ze|PY@TBvVuG8Fvlc(~G6>k7c>DiB5&?^%{&pZC}=A4h~CeM*8zWioC6{WDGuC7U$r zc`=5jN9)W2UQcfp|mjZQNm{RjEG>JkrXoE*h~()BlDZO;R2X%kMp*pE*~yT70~!@1>&nr#el5iFX${L(9qW<7;vR2PD?X=#VunU5A=Xsy(?8-js9z2Ck{m&q`m+1&t<3F@*mD(fBVfpa#_kaKA{_Y$wkN$t&?)t+x z3#)3B{C~fF3)0iY+yB`A{f1SDcOTRL|8llBud>}!_P<{Ly}R5SRam)E|L=QnoUQIt z>hFL51-#+Tum9IyIPV{>JH+c>*xHeMnA!5Tx1T4h1t~xv&C!1DB^hVuT}rzEmaXTc zM<$|n3;giI9r0{uPXUQ9wXZR-vx!yIM9&nf65ybO57GKHm}X0Z^}7DM9$b>D|8tG) zJ@nRw{k(hcnRh(ey1pAFH$`-8nZ;hg9fJ4rwcu4U=^_wTIp zcWx9Q0Z4N_1*#pb856#d;<(mCPgrI4b(+5?>($43zP{ei%C-}}Vu^FTs=&E%FtLy7 z&2%ODzx(010SW3n{JS@{_M236NFR__J2UF8>OL8c@ynq@{?0oXZ0r&7h>fa=UZKxn z3!J5B)zBTIgP`HCie&iy8!%h6O<*#e-sq5On)XE`_jAEFkJEY|0F?~XXNk2+!okpf zji^XJgEjfrJvPr}Ls1f0#s}pgT-J7kA4XLFTpJyPxq1P&04qtjNC9@q?b=V8KfBG^ ze<&;wwx)7Hyp0ZI1Y``*nM&w%?P^lt@dW17abJN;_5UoF!Ch+Wt3 zdHKz?;0X8D?fseFa`$DoJ|4yNj)i6(g^GwsI~mB%I1a`K!F-3~`R_$@1R&|7;yHtY9PB3IDf-rXri+AORFH3~Zd?S|o^ zZXQW!BDUvpHpc7u@7W*lEF){&w!FQca(fb5JHH8ftea4JTDP-S<5y{2nY8D+SkX6l>?|nvYKICKA8V6?3)bie>7?h3aVi z2H`!a5EGtuZ5xKa^Hb1NVm$wIW&&P#x`R?oTr5MJ#}GRF7B#J#{%V5L&wC{z=zf_y>ov!uc@tED;`+vtQZ8I<+1{6i@;(KmIOzYHSicB?z zS}nb;zgG&bdh2%-V2(#oFwZ2VHqCPhw?qHs(3gw|GL-}kQAgneUu=l8p;18u1s8{* z*6*f58#{x3a^xxQ6*1Scs^)otAAn5GYr-Oc4hIp^FDwP&Jw-8;D7$h}OneHQjShT# z)l5;-?xo*3<^PPI7zgK{{Xer6{G!bDwqlNjCIz$RYyF$mE?2Z?v5Gm{-+PMD@&537 zCT|%u9E$4a^A(uDbE+|7u$M z_J;myKVknDM{nfd;mpAw4g5B}^=}bmSVnW<6cT^!qBks8+M`InU)1@0qTjD)+<&(V z`c|~{G)SgMfiy3Uy5An(Z+M#+cz9EYc!FA*M??^l)Jx?Kzs}=Z1D!GLc!)5)9eq2= z9F5RW)Te(t2$=1(;@xch#~+v&=Ybwt*)}>?SjX-a zm|&JfLv6dm4?a8<^n*xgah&P?G~ly%K@I_W2z^cH6DIM9!^3{~c0Gnz8F~n_7~%U1 zUnb$7QKcVkJd`c+R7WgLRA_a!hZ<`~h##6tjnOj}Il&tD$v|HgoK%RjfGtcESN`=! zGGf0_EO3A;yHO21-h|1x%KZc5-VB^>XV(*Z+bB_e7BFwngXxJq$rogX$9PbO2 z??Cq1Uj+PIU5kW1B06ZZ?e_?PO$j0&&GHS0oSkZ+cR#%69(sOA91Z8+0(x9sx{d#> z6&u;aGez9cCm!%V&=yqs6o-2Nuo&zJ9CvsGBWL0)X0s(_sVr8z$HT`SsyyQ#Yy}Oj zFbd~Qzn1^ZFp*w!R4+MpLyy?YB6&8n=4|31DP2n<#R0P#?uA_l?#ADYrIE}>K7*Z_ z)N*piyrKCD^thY$zQ+FcB%FHQG4QX4>>+ynAw% zu`kvC?qy`Q(Spk!fhql~SO4lV>aaP#z>LTFR>B@ICw~oyz+%1%H7RN^cyVnV=N9vK zZ{YMEu+#64=1m(O8C$;|UsYM_+3~-*I7f+caXP|t z+1fW~-L2XEVADcFqmCZKrG%kq0m$aERq?OiR=*wX0zWz89d9Z5xC1>WD_=-N zEYyiB1U5eh59sq6?vZKd8(ijv*HyxqUj03rcKvBK^o}v-XKT;j%hX1O%bYex`|imb zE0NDpo4yJ1#~vG!Mg(&5i&6#=4%jm>@qEj_i4>uBFeUs8zcu9epuk6X@4(+ScFb*A zpoc5}-i1L{YC=C2&PGPLG7v6s+47jae@>6>Z*{prwk%4^fBLu3cx(*pBG~xZ=E#ks zFzG_D(2=(OvJdor{%2l*^ZoMQ&Uf6aVgrLQCdMob4?Xzg{BNgXs%{@R>tD_C8=#T- z5nu6f@`IliYLBJHdpkmT{dpGQm86~= z$p9ah;!1)NyRb}eCb8U-+BtvVBTeH3M&>sb!{CNxo1gyWx6pb)Ke@rI@NZ9b{C(GZ zyjO^lvhrE|^#%Fsd4{^~(O*zcLa3YcA@MpcKkkBt$(#Z%$QJo>Uo2Uu7JW=f^!mBu zdqjPLaasMn)I67+!94l*1t$=3zbtEs1H{F1LE{OUK1F&KQFQjI{!UdtiaSm9wn#v!;1n-Ag)u<_|c^v%#O z&r4E5uqGhJ0~tiHoJVYq6j%@U(&OjHyhhWeOIb54fh~K^3 zqtAe@N?|gvzdQyHh`hs2=Pe*_hOn?2KcLCg77I1bhBS6{=bfb&3S>-P`WLhUMEK)X zSQE~n#6jhHt10+!jOTm)%@U4>lFj|oJa35o7j_tV|Ld(T6>&!X1A1-$M6t?mm(~D_ z)Di2iE_pl9Xsjjft`%AV=(*I9dJUL)0KR-WFx;JM{JRR_3iMtqk}I|@u;az!%wFBA z6%CTIN8JOB@3zJ+5)lBuI&kAXRmc2XEcd6)2Ve_*p@TTxe~NP#s#cTuXDFcHR0loz ziWO080Eku+Lx;b}>bN(QT86v!H|N>EaW2uwI5?)}nRpq*FZ4$5j)1VDfllo%f)Rb` z0Yy;Z$0vX9+2zN}e`PqH_7f)YpYIFzky7qC3!$l=@VcFN!~3geDxy0fX!RcGwgir` z+k=6LUEiZjIe`j=`p$PJ#Rm{w|J9tt>2PF&`i(EahVXI^@&YC&A@&75wf{wcLQtRC z2~E6>;i_d8c9@F1sBwMt>~TEXUgcaR_||@ammR_Am|r9A{d>5Akg@hhl=BF1!+++C z`EGaE3tv1O0Tz!wNy|1@j7N6K6)Wuq5_`OBSnb$k#ibuN2{DsVmBu{IiptrSXWPEt zTN-Pj!!iHQTpEh;S1TgR@|vQ5dhB0#X6hU<&20V~V%=Yt(sk{Zk0hY|ukWTIG|$85 zk9`rrpMAZ?zF)tr9}wimtk}pvX0(wP6sw3M=rHuaUQ(|f&mkRt??5-(c#n1S{?pU! zdxY;iqDoBA`Ia#Trd-LX7fd{FC;Bt~O<)_Nk}RD#sdur!5g z|C(jD0_I5A#N=Dl=Zo5-w9>b=jQ75rVus3onxygRe>xK5st}G)FVd;M*}TxZ!u|C6 z&-}jB{NK=G89c ze0{{B|XWkFZmx7=?Bf*ZUK#1jY zIS75oKSJX6?-%pW@9zf6y=olaIxSS@YBcL+2_`&V)e=HB`z_Jr=s;2`}38h%kt(==z_eSxKr@MCj? z*I!fr!re|Cp+l;KWJydH@wx4aZEwUJrFmQMvgi6^noN+C(vc#PV z*OEGf1T)zlck}jA{(e@_{&FVr8lMpTG2cc& z{9pDl)veiNzcr@KI%?!n{}f6< z-OFHuy z!qxlR+v$Dgm?wLd`Mv7Y5BVbAUV(V?r}o(_7UJ@tld1s0=k^KVsoIr0p|<0g_g{bi z_Z<>C$c-^13w(mH%Kmx;P>=t4$P)GkTfw=#6*Z08l#{`^ujBd=$kR9b$|#!fkZ!P6 z=+~KZF!x`Me_9VJh2Fi9FjECb6*H9(a^hE}Z@u4Peo^u0t#)GH)J3~?C6q_agUyxb zaVEA)AyxOl$v?$Vu#g0L_LKg5x82BeE8HtGb3r=y38+1ez1jD3h3KMtz}0^%I81U| zC4y25y&VO(nM16~@o%?z9{7a44W-;bw%_b0;Hmp7y2&*tufjwIlK zi{R~{;L0!an((;qc#JG?694X}Tq4WuYPoW1X!?Hd+4@kto|gK&BG0+{=kGz}Vi{Dc zG07I>{C2cDEBLr&R4xHi^0ZHKTjyJJCJgAa6MrH*4BfxGQn}NW77=M@E9Z<45~|(x(qTC*-u&2{+Wy{81+%42 zUwsU2yXCZg%kzdgCD(cAPyg=0H9;Ve@uVkv-e6u5iNO={5O!Ph-NY5{u^Bq1Q3Kb5 zlB^P%veO9XOpl`MC;1Xi7mbY%#Ujt!hj|1;zm(uM&5+Zc3dkhe^;U{&OZ4Ig(KiKa zH1b>4m{R)FU#u{M?BDa{A_(py7KXlnBLc3~bEs0&$BdLwq+_)WZ=uT_>KVIJPCRBp z#bzAgJ{M2Vacqf8M2U4^U2D^5VP<^B9x**Gi8~a}d%i!{08PS1E7DVIGXPAo3LW)y z?oH$T!Ha+wCih-Mz8|)>ql|zu?j3`o?^*@S1?5y2<`gRO*p1T>XG}w;vamS}9XGUp zM<&HP4S>($={gpodu}oBSUwk~+K|sjdHkpsx^5p4v?lBOvnw691OilNAVDjip?Z)7 zN}uu>D}fO+9cNaM?b3TXCa}}-rM+cQwl;tr^@uf&aQ7jf+C;!8&NpFsklX{of6Ka; z$t5B1yp!^6OGZL@9KgO_vw=&##}J_&gGGF=w}soey=`+@NQ9p(V8+YaMHmg|j=aQe z>*qsUb#XVuY+jG|^ZOt+(RA7RNQsQ)1#y@6_RT$CH61D?G$o{cKWKh}KwpSWImJ(2 zB#4}iVz$MeQ}?W5-TA!MHm}`@P?@5w*m-#1&@>z58Xk_%i-^0WkhJ>SzTV@ezg$m& z)j%Hsn~i*)itett)0)(~=f2~XY35J4IXr`5tLLBxKkpfTEcXMR#lGSUNZqsp%S#oT zBGPfZNrx;J)(D*caEQpqgE(>o1)}$2c&-1Ah{buxn9&E`iIWoMjJe^{qjvJ=jF>8B z|7OS@X*X}X1&)|EGmjb)-A=p%hf%~c;OL#DZP^Iyi07C%j(Ss7zV zUYE{fcu0jmsv6DuIzGJcTnHCuIjN}YjcbR*%gqvF*K%b)MdhtA@PNIrZgDzTgdV!h zw4e{y2l-?fsm<$`UEm}K%T=12^QMqX`>leE_Pver$$eB3Ri7z_%zu>disJ>cFZb$R zK0ZkUj#<@Ws+aXeEsyrz{Yg7cb@;(AIta~2*<>{$YE0l6s;52;!DEg;-M-212-w>; zh&a>@yqeKppMoKwN!5CWpV~?MCL-M`P&py0TN4lLF6?iiS8;YDJBWg&j84M5*zK=8 z_+aT=4IA5^l9x2*s9wxZ4qg-}WcHN4yb z-8u7!`esn>ATTlP#f#jW$vSox+}W6Af3}=qxJeefO3;yFj)3={{AP#3pu|NGeUA6% z@YM)0tg+V>SLP7jB(iNRdYqK1){^P9WiTU(3*${dN99P1=A7B_QbPw|yN6YKhT0`% zHXaFj6ZgCY;*Onh2x@9-1t!S-Exk#wr1iJCIDf86gv?4+KCkXJJ?ks2obJ2RU3lH! zXT@zqX}V$qBHf0AgRm4Iz_;~VA>W?Pa{?ZNDDWQr`FJoO^b{^Dr4-Bn#V%Pu;~S_* zHGQ92CMv~!_;;@CZc}Fq8<|3;23&}gBUY5ns_R8PEY`R#`k+#8bMD-aWPVFWf2t?l z8pfQdUUcJa@)#;k#qr3VdlSt{s=}xmSV=y?b$8XzRA2{cys_Zhs-2fPs~@zPxa-YG z<(`xCT#ILqI0nE9cB~UNjEVa8&<8Ph*z9&I)qn9u<9-VF#X3x+_7oQXT0WOTW?9)l zh#6U%`!@&dJ8xfZD#~^eVBowM%~K6zL~Kcq_eGlS{^h5n6IRRL^5`WSRZIa z&;N9ZpZCYwbm&%S7#$CpoG+aG038Vx=8Xy2etTYukPKB*kqOZ2bkbZmy8dNmdA}}s z7%sqJ%aq{jjrvte=ZdByo8N$Bol3xqj;gk8zK1a86KpU5u0^tY_9!Y=r=GmcxZK_` z50fn)isvxN@5`yIJD! z{%g8yAhm1eJpco|?8eANIQb%cHR0(dK&WvC7szb$(biY|jTuA$mx`MDM#*HXko1In z4?JDHpJ}c1>#^u@j32~ZU3kkgGXae)}8fGb-t+Jzf}ao z?dYN>ye&J(m+#x=W8KviE_Ha>Q(yG7rB0_J@s)#^C4N7e=WV&>kd`C3@`%!oHaQN+t6JPRmLH}H}2eCLIY8k~gb@~i*e zSP!+vhoVw@K$Ql8fYt%w{Jw+{`>lgqzSZp~EX9xb*)kXV>TF_gDDMd0D|d2u-#lSP zi(lf*Z!-52R_AN4Zytkjtqh}gDP$|{QZ_e>;0 z{FX_|yjt#yM2F8#+UOqQD`-G)Gk*%+k4&(S-}{dBoA}cod`x*Va)*qbvnk%|bE^-_ ziM<#n#A47u?W_Dcv3y|j^*VfXeiH;8rOp1p*{o8FcH~zmtqU#sk&aq` zf||%~=<{?5{3E--sF9h4SE7Zy=hm(x2oN!xJG^6OiyE7lpXjL)`zQE1as6cRBFI;{ zTQ3Ip>fn7Li}^G1aA#gD{l3=``aYkvbF*h<q@K>!hEgWMt!Xcw~_C;HraOV(4)=E<}^}p0-9fY!FhWS zomGH4ha)iY2^U9eHug^AUzY!fKD0)}U?6xLQD-^MJ+ltz_K7r=rn@e3ba7YY_;9c^ zfL+a@ilnKO(BeJ|A#(kFmix1DZlW*eeIo2@&?2AtsECn{k#Az|eUhh|NY5&^s=Pkgf za&dMG<-Um(KnWcbElB`h@GVJ_``PfU*H$DdKqpRj+HJR$^2Qx}BgpUxz~>eKF7u9R zW#Wl&AG--{e!7b(IT-?&V~+uTG$BJIcbp3^GJe0(58P=Pds0G6Xg@EpvX|JJ<2AZ=|9{tEf51&I7=dOEdhDy>8pxx6f^p z7PRKnZRn7|Gq$I%pDnhuKq$s}e(Fj_Bb6?CfZFFiH1X|_dHK~{W?u{uZlssS*Wjw* z5rh)%V+2p?BZpN1+zx=-db0!`#?>$0Ka9f*eb*k516n^<=?6Y%qIuQEI8>%H^mId~ z<~s?J$B;r@0=A!+K;k}3BNADPttD^`AF({6CHiTU4r^3DficWdeAw_=sz&9!d{3x-`N)*r_OP|9fi8=W+tYfuxM^3W=u94FJSzz zGuvz>_u#@K%HjBl-uXUaJf{=W^C-Uc$aiVBh)Vf53{+FTG`7Gs4w8%+R}XzJ784SD zzUxwXakMtup#M8(&|~WbLtYg3EM;#!>?Gt#U?w&lcQS0lQiBC|;{^8*@EpT}w}OP8 za2!s9s&Wm#QnVdDcExd@FFQKBxPqvuy4RcVG7;(bdz0`Rr)4d#@`c0q1I<)^o{dD9 z0d>XR#U2gnm~QDU;T~+Hz*ARl3W`JhlsVbmT~4Y^dzW2Q(dnsCHBpuhbR?=%c$B9b zlVc{b51dx6pDNsSyhhAO%_*sXZvtf~aB>U!>)AnH_@E8#&b1OnsAF|H_%zPU@WItxKqcCkM4JT*xFe!uVcXh*_i+qbjNCo0Udk$oJl z)>{Gf3ExA94{y+FDLNT553U)`0ul5kyJ#-M{iFa?gb-Rq05y!*KGkxrzGfOedle_x_exPiDA#>TKKOPIX2)tN%XnPGxvJyRXFYR2{8Xv$S)gHZ)Q z(gaK{rpuFrrg=HCfTx20zKXiH01RK9W`yk!B$niAe|UFanEkzVw%Ku8Y+Gwvr=xK< z!UYnJON&W#BGL!y@o9*bSod5N+=(JAZ6%xh{@jnQ)0`5MjkDk>)Yn)M9aDk<^f{W2 zolb!2C+y54T=~qbMH#H*(;trq3AWMbHyl5tFvZ6gE>FM^?Ja$($mcsXcK4fiVt5I+ zJUvHQxyJWg@UO`tE+2?$Kt_&|^KHDs3*SeAv3+h#C#O`5w$67ZfiqZ@y0mWG0L>jS^niPn0$mgSr{1i+kPJe4889UTa}%9PGDt-vQZS zzIH)AfRrMx=8MWCND7W!dMF&TIpybJb4n`` zzx}HlHINd5dg!(f1|*u(i8`nS7IG}~Z`y0xXp6=KxdWY3(Y#Ltc#KJY^Wk5c%(S!Y z1W{2IwSUc1%r^Jaf)rrR#{}5W=h6Ns#L<16shG#RAE7kf2-j<~z1u+p26>`=$us?Cd0GmH=ysd8 zO!F|?WrwtcqMMJaC4YqwUi6ff<(f%petB*V2ULf)R#7&6d28x(RX%~zH8h#MGSxT+ zI$|7E4~cY#B2dX0+}U~X-}<8dy1A|9$2ogHZV!IV4Z1buj1i@UbG2MDVN-=7KeMm) zcljpl`KJ2qLyF-TVk%GoAqg4sWpyC6S?*=ZOUGFE+GPJO_`7Mrn|ux$QnDBKdy|#3 zcaM(-*8IlRx-R?%qhJ#em#54SiMqLZf+G+317S0At7uz@2wVlLK$`KNV7Hwa70K+~y zlUNb0*pE?ZIgW>$Fm_-C?(FPU@aod*X@6rxl4?&dqw&NSGd%a(J=Nu`!6J-_g z&5GL?Q*5Z+CBwzzd`mM=cewh;i9Bw*C+~1K>niEZTY1!Nj}RK zf=P17?A7mb#JKbzw|?Tg>3?moPPJL7LJoymjWqx~U z13P9AAm%COXMzg&355vvsB`{w-I5)H-GNp~PkGuuhDW@C6z{yhHu z3|;W8+ruZ)r)~1VUMRmIn4QYo2lgDJD zyzApt)mv@|85^kpvL%}W`0dqg+FpApvo>OoTTud1_rBnl=!we}Ylz{hfa7@J9l<}& zy4F(7GF-2t^wKbZ9C;Jm0k(jpe}27@ftG^7h;YF@wZI7kj1|B)KdpC(m@jJyG3r?f zeE2B=S!pA)c4Bh6rKLOTHQLZ7aLCl?-pJVU5o797_qJX0;`Cg%3wXk#wx$hzRiy`K zxnJyMj--Y`S1OoL{+d~(=lfO&hdfBYa=jv!g@dhC4g6s1n&Z9-19QB=P`z>1jYpJs?es@Oq6fwZt7?>bo%G6cgzlZ1&hIPRY_=}&te+T!xF60O&z-}m|F zy?tQ>+ezm|)tkf4Fh%o4OmaZItK?m*7pF0;iFx&QI%fKrX$il(9v^bOY-teXbs2F# zvmrF1pocPhlw0pJihMoA_C}8}xdZoF#ni`R2FZ9*n_V_PpcSCOIoNFZTC0^J=Bw&! zsZQ|Ob*30>&;Dh!xXrTj2Kdi|j)@}fL#CgV+2zMrz8+Cf!rPJI5SnL~hH}bz2R2wR z)y`5J)0Nri5LFxTU^_-r%Uh2WOynP5!2kg}n|#Gi?rv@;%(ij{1^nzQPAAQ`BxYQv z?JzCcrpEED?T)s_A}bpYl7!Bjg(Ke|1*SRVZ?|SY+ zcY}U|R#~(9Zn$-cq>;|=rrm9$4Ba;WD=@nIYi^*EKCz-0Dg;aw6i!x9@$0#2{wKq# z^e}7uF-u@yC$2qcC(uQ*Y5NSCZT!N}oeXp(QeCfPVBto2kUg6EI zXT-{H#jTHET`ksfK0K)iVP!XCvRcKAwBzH4N$R>$&%WOPgWh?k)ee!uf=IB-5I5V& zQNlcHcZWtFvQsz72UpJSf&e>JqFKeq)>&wI5b?~59kF!^y=K>k;ZDT)1=JHOi5-j8 z^E|eWx|GLT`7)0*sQADfJt0_*Dh%3M%0uXpS_(O!cm+20W6OkF^%>GLG}xnx-o__x z^R+_8t@r8>xY$Crz913yooukijepNbvHtLo)D^akyVJ5i#w;!Wc%M-Xa}gUH?aZT$|QIJ-1fnX}4-S8j`A;*KHDmVJGdAowy`@@dwyVJ+2Egk zgY6pF>3<^X)ZDA}n_p4oQfw|7X1C?D(cx)2g7YupJt+sV98UW zHIj(pZFX$JQ- zwwVG+o{rB$!$-oicXLs^fhE*_WkS8GNW{9^>iYCloAS;_%{j#B7IP9)6s;j7Pnl!H zV!JF65)*WR6DH&SV4LYdMclxkPeXLdHabwx22pP?{K3a!U--txWb;#T&cfAJm2I!w z(;C4KDn?Z5$N1zE!#-ikQT=J1Yn%}?5+jwW zQzVyy5#8<&>nMOnbv4}A7scqO5*|S=sYhdCoVT}GNgq5>`?Kw~z-*6O|AN^GTyIfz zy^^3QE$A&^h<@R?Zk_v&0e?b!VK|}#6K5rS3Jg`?!H(>Ol0-oA zRTI`L(=*3&~9X^*y+u(YJ>Q|UiZ3wY>E};SDL5zeInYy*pyGG zsZqpTc2|8Sn(RC+uk#b%x$yQq?5TnzNyUfZmnVe8i2kPKBn^2A$fEIiZ>K$at6xa? zt(gh6(bZY+UqrVdAyCnUVrt2Bc?h+261*l+pr4*-$ko{R7lJF@K+hdEnM zrJ+?~{`vJ=9m3fnN`63uwTn*HsBZIXfzv$q6XRy>`u(mQq}Ucup>#feO$MA-`6{xv z@j^z=>Ym5_dP{(jUr_H>&q+{_<21jD>iZPwyc=A9RnK2)9Q@TW&I$yg zW{+*^X5PNDOB|k8c-)50jymmjmtMuHW8j3|MkY;jB3I3}vojJ8*g(Q4;;z<5$1Z29 zywmm7^p5ruv0dL<33Vs@bmQ59IK$36h3$=vxRP$s@fP$U9#u&QCln%28xPng0RI*t z84hM`DC4x(H>>X%uuNVT~_1k8=(j0gIsO&0PZaGnHjTm7Q<> z(HxLX(3{$xoIhs<_2;7yCcO#sa%^8$=vC&+lR7cat$J(TDZ)&7a#62QI%SEEl*V(Ui>& zp~zv9N17I`22nUNNG$!so|@f&F8M`L4>EW(UTZwqZc4Yst}Rr}kM5XjqnEUFS(*fw zdK;165E=4qkSt3|-gN%>BmHelc_WZZG!)*&CSLi5Pj4Rr*y6ZikUV=Ly~N44)8KOF zZhc+Gx}h8N@J2~!e7UjIh3%-D1ihI7ZbQ)Dg%zONE0p5NM{CF{K6+P4_jILp%X!Q1 zLM*5A>~x0b1%O2^z&MmWUe0+c+KcvJu80kc!M}ac+@teig-pXr8CPgm5)t*IKlw1? zfO(0Lln6%Eb&7zFS-VjN()`E&G6irftmT(6PSKz5cha8E!+Ng#(B>YM|B6sB@Gmpa zj5OKmisETUq9?4;Ax#n&5Su5`ku#>|VS$ zEE;uo;#ei4NLia}5+NyIOo`#Swt^ZGEV6j*LC*poHEupY8>P1I-S^fM(8`v3%a~}5Oo|=i`YUfI^Gd7Q9 z0RuP1O6KEpq+wzaY-?rijjiVbV{Q`y_;dDC+h@}zis*nb4qx`WXB<->je{wRR)2gT zx^rTf82V!l=I!h|HSErg?kS(IBVwdNHigcov7usGHAxOI%CGLHHQ}*WV#_zsKC(%x z^3A@%?$x&o&NE1}aV65&gS+4U)E&wEeE=PNXZT#aeDIla4m)4fXL>$aDk4>N=$aa& z(k@7&cM$-_0r%7{l(8T<`|k*%+L7LB*LE|8}5 z0lmmP37Qu2FiSKXGTFbK%VGn>g^$bf0^x2e?TJ>^++cyimFq#o6u?U7y&*j0I_EVK z>kXMNxy}BZd}g7AFjhaRtHGUWtCu34jGfoi>|JsPIF$Vqkh4SNAVnOr4fpm1;H$>( z=?V|m@zwg%TW5^3%m-p{kq~3{^r_a+KA=TkTxlW}V+pmjepZegM|!=LLu*$(U6`aK zhDnC5OlYY-yPV8lpA7Ab&Wrl6)IQ>v*Or5(j}JiR$|%Ntd)rm7iamk=HW@`X&RU)n zJx)Oxi?|XU_(%q=>KrTRbbt)dksl{`@FABw=_Swk?zO6^^w}zPWgs@2s)!1cK^sv)S%v$x3g=QI+pS zh+!4EIV-y8bB%x>kK83QF!$<X~Rj4 zOldM7`Ygjp@8FW`#n9RAU(k3^4A}d*zq^Be)_pi^Ye&CNl5ZV@l^JADWaXxp7}~<5 z9W5|MoY~5Zj2JZTJQ({(Int=Lch_Q157Kulce>SDeW*xwYRdKauw-~43^IlVA!Cwn zypt~r;GQ2+=LZ`o|74eNJUPmSw2^uAY9-`1RzegWoqntt359CU26?&5LJkyUHwhM7 zEP7UJ)fUUea||$(@lE0Ez9OP_+iyv8<_`UJy1;|}T&3GiIhaLmkdcXq(%X9OXg@g+ z6c_mZ8lR;W3ah++rTCJn;?&pCkZvue%?abo&sm-fQjnonBJST-RZ3QBp9_CgYY#B* z=YA4)-@7j5L31jQm0s%lZV^_IrAu&b>XwMaRvFbc^IxwFK&!(0fj+j&^tIp1-QwDZ z>Wsn)RqG{V4+mL4s9&eu#9e-+)Jmv(pWc4e_j59D65@n%3-Rvh3lPhF*Z^ph_~uJ& z`ML~T5&qKy`@Jfct_ApUv-5@90J06se08-s>k}A4`AOQ)d(%d^6>@MS-`nHtYeoO8 zT_V`0`cA&_qxv<*+u?R*`}yO1qf9-F_1G@@bz2#6WnPbDZ0X%1$KUmse;)roeVazzsGHB!AGcO|s)?ByIDt`fnYfuvA5$i zHITBvYDRYkHimJ0F75ZJR(`L!qihX?8DpRFYDok8n;is@M@}LcU2?YMLHEU%_|^~(tLfpz+UB`hRc82Z!`GgZ2BIY)@9cA)!zoc^IbJFMmo5$-*|lh^Tl385A5uaPR=+x8)?VHX9e-5q z<6^$yJM2SietEg6{`ktuMP3+X)nyfcx{Koph*FZ&~`B!*pYgRG7i}pY8&L!}3!c7nRP{3AY zmk5bSe9YOxRPv76I9DJ$;HJpexR(h)L`trX7NkE4bgV187AT3olz*%$Y7=@(lnvy* zit5eH!ZtRYR*m6|;8w;!l)EwV8VrS*|Ms^BK#DI-+OUPw2uF#I5 zNXnAeooq6w4F^=PX=`P#%MTB)lW%=Ic-i7|#!F3{g)(6Kr z{6S`^FRGE+?(1WrKzqlSc!? zfc}uv;K2n#7C?=gGcz63&g2FKyx+{|d^; znxOtz{2tQU)s;SbY z%O*6Fpe>zOwUU{j2m}^`ewsv)I(Vf}3w`6-{~UVhYj!H5F-y{ec1bUE(;?d}Q(1b; zi`n*zDCKM+1|raWKb~ZWU7O!r@r8M)U0I^%BtF#3_0Fyo;WCyXn@Ln**q z&S&2D{hS=C*)P0riW<};>3PLRIDlLwksJAJ+Tp&SG{FaEu>LMjoIYt=Ev6r)FJsPf z-JW`X6erByQUQF!j@i$9P{B3P39aXE^XB=4X%crpqwFDzLFO0F>YZ}Y0iY=Mq%o(0@dt;St5&O9#lIollf9)QeV7W3i)Y{7*BOxswJ3I>^ekeNsNzn0IQWG%;vqqa8Ln*GI%r249 ziN*clqV{_(dU_P{-S#AJoKVmQLt{N{7{6yBr=!jy@Lv z5dowuc9u9PPxp~nbNO+dxl8*bcv`58zfF0v*7;ANuab(L?n<8wv$#D(3qSdnvY(jT z747hHJr6@`{eBNM#i#qMat8SVQX8*JYe#IeE}NrAUWn_od+fR`U#N!J5_#1l^I|fW z%X?(+ztzvl;4=4hC#|jj=mQ0@8X(IZCD$IyNkbgq{5=iljRg`>41Hz9U)?&|!Qc8v zqOY=MVj(?mgt4zk)6t{~)@_`DV5Ek#sYXx4FB{PZkMW_p_Zqv@iD6&7_*Nsly``Cc z*1+I4a}@yLilxL?5qwMGf;~-OY`$;4JF9UrqWf^l?miuti&if^XD;1Q(dX~|mO&%B zJqyYKPiNcD7EXfGmo{=EVqTjzW^a6BIrc>e$*dy}B`JAL&OOcNQ(17oH$=N(5^}Ha zQx3?_BhLf!P!)GM3=B;K_!PJL;niAr?x=f|DUi)XAh$@Bpuu3`0@z}1rIIGC2o%0? ze#49`uZRRclJ*qxhH#I(Z7vSLJqA*7FtR{UML1H&|Ng=UrBWq#VH-LQGXcMc4&040_) zSu+#h9>GJa_7iP}x9sr%3h`48oceg?3$wium->>Ux-3^U+=!!rUd`vD;Q2tnIq>l= zuYWFpYgB!1t$9o?#{2x3()?yq#dJ9BF8GJB_u7Kp{3%7o4m~A%-oo}`9hZI6i`b_q zr-)U=lc2y}W&GMIYrZRF$X&U* zx)i+i&qE47=R5zEi|*Ri26MX0f}?}snSVdBVo#Rl)%TlLVwCN;<&mm-Jn+(?vU4la zP=NQwAZAnH#Idr06a}kA=FRA0;e6edM}$fnW@^xP_=LnQZiVTNttE00RaGcO=skfg za2(1#c$A(7Ib){3{q;^1Ms$M&Gd#ToHfD{>&D}j_w~>zg(>Aey!OYf)pQp7l+ooBd zI$(Tq)787Mkn8W#ofOz;fd4BEjMmz|^D1WIV%JpT;FYE#ug71A25`Cmr1uWDp&iDk z6R4^lF#}`r8}dYjpFY=6dUT`19gqW8zKG;wZsXH*o>o^a!i}AF_>$k$s3-SwdyZP+ zyzj`@G>v^7`z?KPEz$B~OH`@n##9}>b2L&BG+c0YhDFkR1T5iup58Y=9Phlu2NKKI zeDeG1?mO+tVIZz6vbdFlT(-QYO5ipaoA!aQSJ-Ob^zTo}zz;p02o`i+}9_&ls`GpR!)-`-in2Qj&`1Niv z5X{XQ_nOt-(#!p!J?!dAey>Qq-N-b9CHqJA2Is#5+QhVd^m>;L@Wib~jM+D{X&>Ip zyy%-BJlZeOAk=MqQ+lfJu^wMcF^Dj35;dISQJU@!)=#9LVpq8G4I#}ynYvX1nyKWG%*F?d#``NqWhbR^LLWL)^=5gcjLo2gS_b9$<$`*_?| z1%m~yco3;gMY|h)?!A6YpG&a$ySiJmssuXY)R>4`zozr`;n^>_e@xU&A)nXoF%fbi z7X(yltVH)Y)mZlXnWW*Km(p%$U;Kg3yJy{@E%-|SQylr`_xo%rpM^pU6{P!9Ym>Gs zSfu~fH-&f%i}GrG*8zvwTs^VKF(8UAq{Ma^WQ;6A5_tX>*+JCnE;J%c$JVWB^QCJ5 zvl#W37RUbZ-Tm5{*8IDoeG+J-*5z=x{Oo3Tb2Z?=LvoRpYYBT}#}B%o$KF{KQIB|h zlQ0A;kC0Hacv5CGM~Megy7VEBL<)J<_jpXu50dOf+(U5bJfEnUfPHA(;=>f{cOpQF z&SweJ17y98$a6>5i88W`Qk)5mjQ~xngjc56z&AW?xnl%2n#=D{5wh?zkk)Yy-()B0 z*5IDZ(^5c3F#=_~nv3?q+7$L^@{V$7id=>ygO`5%d>H-Dfm-fud}D>f$zv9u&0q8~ z+2Q)e7Yp&6w-a@3Epr&~vAz5X%nlE}Lsm89Ag)O*Xn3{NOb{Hj!mFiM zm`vo)-2a9MB)5W6N#ksj=b!b(pCxcP3pySj+c)E0-{t1Fv3j_8=}o`l3{HmZR;;<7 z-pSu3x6CmX^%V(BJ9WOgG~UOL=PEsv5A}QhHzLZdMyu{ASm@^JzV9c<2NSSKC;@RX z+^cSPHG0blx2o^!WtU%FT1Y(WTeW-gB%Yq-P|(Cc4b$fQc#}Q9xid!zEr@yjDPT{D zci+3Mx)+lDIZ9qWQ{C3RF&XA=?wU2<>J_As!Ml1f){ED8)P`@dc=S&+Cq!9FkwbzB zwQ;{$CY&XI$V>*jTsZ4H1J%<3Soto$j$wWi7emsX^kT=KwA=RgSzn$%OlV)U;at}h z%p%n|+M0@b)9y?0@%aTxXhe!H^`KPB>#JOB&2x1@?XOQ?=j)fvP2sadZ8M&(yZ70H zGk6f7?v3sbhYt)@aBj}f&|>$UVTgWpb^g@ND{1dHu1m_f<1` zva-4Jf+D)vE0S$1AqC34YCPh%Mb7T|oX1vJT<>_lAdR#VLoo5L_(1V&)CN+%p>G?0 z_<1R5IS_t);?O#-9JX_;xye=wDEuDF3I{F4cM@d+8<0E7!TE$N;aEa=H{96mNUmK< zD1p0@8NeVz(@qcQ#YyA9QQdO|Kl<|Rfg+?mF zUXY}nq~C}M@)>o}mtEs)0>}i;TrR8L^m2dWylZfc4rm#@y&^MBkKlVPd8fxY0r~Ri zxhq@I07K>zang)v&M3R?Ffc48dX|5cKr-n4@{n7R%4;YF#Bq>~pLt|;giwMb2El_g zF8bG&5a%CtZl==XFdE7_FARP_GKL7us5ofTQ8P^J8=C~^UIOq71ck~k!kx59bbZ*9 zh5p^kJzuU?5SgR%dzvT(a4f)B)Wf^pyO&?b$V7?3DnI9DC#6K{i5(U0bfUQ>ugUkD z4Bv6&nZh@&Er+T+TTa-=>EXMN6Uo`VfC|zdsjI(p2#ZeP3jPyi-S5xq1d6gX(T0tF z)AO^|d_;9}g$yq(y{z6|-H#K`iiI^L!8Q2m{2tG$`cVLY#rv_9b^-OqAH%^nnIro> zoSzsO<*HZAha1AD}obR5of$18Km0QRTMl72d0 z@76mNLI{OVz>7GZBaZbJmFBC}1Im(~=)00G|BiuyiLRnpWOA5hrX1Hp{VDc7%p0|V zU_VBl9gj!omtqgqyW1qr0%7~Uu~%ozff@3%_i`?U+Ou$SmE0Xxn{^z;q7~dn+>-PQ z;72r(PUaudBigtU$PTIL`MC(D`WSX=IU&59S*~@>W6%`jq@f=)#+#%t0!U~hmYKL6D zz|=Y0(9)f{ermnI=xF%CO!F`6xoaQNsV5?$iP+ejGvRTsq)#S<){>w0eQLteodZ~T zrL<#7tXJ$8BX(R{Lqvs|RGy1$kHXzHAN+lj#uAsH*RMQ%_6Ov1R_A@Vbx!q^seX~Z zVs{|B`58R@*jNoOzSzH0ZGw&E^!%xdnB7lgg)l)5E+*J@$9N*`P6wC&vgptjy|}06 zL*WI^n|Z(Fiv)XLdwkj5Q%_8NJd;7)+=vQmgY!tSpF?y_qCd;QiqkDFJi9WMf zb|B)>vOYfX7pRaB(z}RfubS+6AluoxnGx3Yu#>Y`z3vQc++U3z>3VG*KI>x_&tKuX zHJ+Yf6QH0}BMzP;>z?A$Fmr0Kvx^#kyl5VY-(^EH+i{}4KvC^wO24+niP09^6vt^9 zkPB_N?;@-nG73;h-V^IAgu6$zw!=X>s^_jh8`o{AX&=H4;aBsgfxH6LU&mlT9N~De zs@h#%_r{*z>ov49GPN4>4Ts#lL8sxbGdQ}u@mVl`{wl}u1jg^Z9nI6A{357*t`Ya9 zO>{pQ40n$*HTX=H*H;j7nc2 zNr~>x(58Yjw!?=z#PDaG5WGxCZ5q~ER6kL5xbn{KUqdxcBWN7QRB0Zxdn zH_gpU_RZs_#FeQ~txT#)8k1s5zxub273`)u@?N;;PKX2&Cl1n<<`{x*(om<-8f$en ztgjWjn1@RMwz46tRqRRmfwJdS^0#&&D9!25do+7gTJF!{Oe$AldK`u0Jq>PVp2U}; z6HY3@5^w1`t|ybUlkT?(6k2YLk~=X8q+nJL3#NwOLp-y~^vlJCxJ;h;udhv@ zZl!-xhpHcpqq$Kuhn3obZIY3*Q;&#~R<|eSpx|6Qzaa1s*AnR#mYKHw;&adsxMI$i z@|WBz$6nBFZ$jF9R)DocJA8=bh2sJ!eB*AeM5P^Nd!G#sYX2szz&2&P%UNs#` z;bP}c&li%Q8u~hDywi{VR{Qh4zKaoA%b%B{R`dhf9Yw6|%i9my*ApzO8&&dHK!0py z`J~==jxhtvq0R*l37R2k>{fI2ittQl{2f`dD0<&+2~sLY51I#8*NfN*y%d38^H)^^ zeXbbtWS&>Lz5kN#^JTi%&vjp6y`x^X8VkkTuCPbNp6!iot%9RYwY^y)Y<2SRrBw9 z;tLtI)2t}FROVK3jPPm9E+%LKBNBzL;wp(WE}z0rpI)ClmKf(0G1roC zRutU8l}uhV^mk#UfZoFVQL3qA%Es z`LMAaO-_O6?@P>Tv@*YF8oN|QScFcD5FfJcRhKhI!<9G}yg5?wXHmU^b8=0vv#kO? zxSaG!`3)h)l;9U7zpMYEQh^dta`hjgFr6DXgb~eL`E6&fn??ItwKW5+4<#Rq?`ra}ZU!=*g2dhlQI z?80e}BCKGn++LY@>XpP0H#Z70fgAD*TBZtQM8@=NM$jx6^vj5J^_|q>DWDI)NKzL% zJzr$ThJ>Qqw=F3A)~vHBU!$}XUlBu>`IJ<*L$85XP@**O6`+k|5g5|zwi8rmt-rdE z9D4cp;PD<8?=tvT6UCi_1NA~IzM-yfQFjl>&8Asg?&QX_@(W;vugjS3_D5P{fB8P_{g@It>-u0Nc5+y~RQPwq{a98Hh@yFp@ z6CTI+&fn-4K%e(9#z;2Z?6Z_}H0t@cU(nq{?2^OS+L0O@@?DwZBD?uvGAdN1Vv3dge) zcKHg;2tdqt$}s$jcKf^w?6dQf^>a8W=GamMR2~`6(Xz@5>x+0}I-jq{cfKE#MznP;bL#t2TaH+Z)|UL%#0Z z=nc{|`MYf(;W|Cfwt<9Sp}nMt&XSI3ip9|DjJRsv)p1FEKL%rc%pEuJ#ei$D!;ywK?NG+&^AL2|mcj2oYiVOK{XW7>6x_D5Gmo~D##w7wS;fNL5 z>J8eZ34?FGS1t6q1WXu;3Z?;{SMBX5uPd*giU8Uc{fS>bvgxmy_A zSx|C-KaZs2XYc?xyWiR(e_s3aD_;T>1GbA2$XEhXyepv_m6-1`Bdw1Q?%#c4?l3jNnp#Q($1R;)HL%QT*Bx|xg4dC`YO(L?M|mp za-Qwjh2G>$@75)MC5rV@_ebr~Tj*Di>VpmAP`#`O}=w z``&%b_<^y-jVZ*}LvzZJVtzd10S$A#6(7Q9Oh4DC(_@{`L63vOl}kl!^JI@ze!dt# z#RGqlL)`NAxTCv(2dtofXIF?Ml95WFn8*XyAAWg`6Rnqf}xQ zx5_{<^rqsmaNK_l8XVad>Wjh#pw$yE;q&F0PYqk`!7`2}{G7AEM%)81wFfa7*Zc6u zv35SrL@PLp(!K&m!u<$B;{NJjL0#~cZ5MerYHv4ZO(C@DXRBiWM+fY;fUW^##u?GJ z%;av15w2Il` z#4#=%2wr{+cj{^^$`@Z~;_tKURcMchJur=md8rD45ejJdrw{eu;*Ahw0|bYi0&+rMNKxgGBk<*t2wju#>aq2*2(T zH~$XgAwmld@?VBHv+-?(%k&dnp3;$(vb%7yzQ_GsrorehPG1k~+s(A?g=a7-kMo=I z(%HNBgGE9!PTnlhSqJs?&U-MT+@l=)Ju=`aj!W&<2xi}R4G+ZN@ptP$=XAbCTS~TK zQ9;(p;Ui9O+cx)5o}SO|v!lF5-!rVE|2r>!{3=mYsmMNh<2Yd%7KO!7WEv0LBU~sz z`0%&m=J^g^Gt^}?t*D1>Fg^mz(eXJ|&hD@YPP*?L-+tt~LkXjb1R09=g@*j`iK3R zIC2&(p6pCS^ae%fs5x&LNaH1o`H=R}xmM`Cd(28)Th|F z?Q^qCZTa@}HZ2D`X zpIdB>njNbqt|^e}HHV@(`!=o*j##?J_bb$VxC93tuC3SWtw?T;_3moEMG>g|q9zOw zQz1yON@hK};5C(G2+TBF)g$qel@jqRP{UCPJ09?~wXI>ZZpbXy%?A=+ZVn`UUN`4j znWuO2`%2Ms)PmP-#kZL(r<1E#Z)fSukcm<}AmFPL0qZe`FuzEq-N+v&xSzKR*tG5T ziZ|kL%A6nasMt=GRC#Ckt}Hf6y@}QD@HEZX4E5l2dYhWz9ws>k$1m8+p^265*&bW( z8?ai>dmhsT$8NL&@rKS3|94h;8#y?a#p}S%7S(iE5?ElJ=1QvbLG#V>GI`<8wE$EV z#s_J*9hgNe#PzXC1)H9)NTR&D!)CB%s`4?Ge?rKEZBgEKsL2&Tc~Qa*?wj^-H?19K z^_5udcEO>U9mRU|fDbyvLD7`GO23Ew1%2`IW`g3X4nI0o`P}xPpb~?K!tiId#gi-Fb*JJ4ake6H>E~uH;>hHP2sjBDS|&F}~P1&{iIqZu#BIC5yKAlfCB{h)ZBMG@np>k<7wd~0vJxHyUZlj_fB<#OXsP-h6fdN zFZel<-#pOyI7O}@Fsm)}3EVfS(~spB$8pM*D(Mfmpofa>cN5}rTLIxkn?y|UikxyizFlZ`ZsaUv-%l-}x|`GK5Wk0sEwquUB+6GSlk| z4DKbw=X@B_pO<(lU|kVqg#a>KMH(?CA^9uUcNUK9+c!a^<6Q zx$CUNjd45KL(xl!rSf5}+LC{>=8N%MTFZXnQI3$ZlU@6)remL$QtC-66 z6)G8LU-bxZHu-cS;>$5Wh|y|&PUw=e`o-^#2jRJFm0#7ob;3lIBJ(R;nN#i|Xex)N z&ANiGB-e~WO}%$I2gD=N@6M;Whey}Gf|+XnU{chMHQeefS{Xrk{^ih&1z z?`jU64U(HBkJzn$T=#TSO$YdsX1~q><*kg=QJr(ypE4;C-=Ff24rTR zH4BGp;pE2m5jwN|3}tn9jxQ^y7l+#DSY^8|FNbX($n1scjbzLC4#zpS*mtnoZZYQ! zxANX(dO|&V#YG2f1U_MO2uF~#!#op_WB;%M_35h0c%GV28UB%#l}~Q9O7#}7Nplxt z<71Z(Tgg+NfU|j1bu$U&6vMI=>6bV)edfk}Fel#IFO;13)GhPM5xaD7j}lkD*5hZE zMEShOTe@Wf%f5Qoom+ljflmf-yq#l4zTXUDIDSy1cVo{mhoxc2mv-1s{pCq>i2QmQ z7Jj;RNnv7k2-I_(PQHF8T*FwD=g{~#qP?FaQht;{MUw?5~;3G87us^mO|TYIa9 zs*wK<=HGuo%{|rB5Z*gvbZP#2$ig$e(fcHwUWj%?bjI3 zbRQod3f#nW&R@OeUG?6x{k%6q=r%)cMECJ2x`%8fpT&No1Bg0B*m4WFLh5NofLFAg zDZaC;MtIYRq3a|~Cdf@jb;0Y3iZCV!zAh%F11c({XV{c9I>Ui%X`{N|@h^Huk@>{p zDh(3zc3hS>32U)LG%Ll1X$u3w`nU(7MMqJ+*9mXxl(V0S5MKALI1}; ziWYfE%pBh{w!t~~lw}2ga_&9Xf)-bKa<-j?cEFdvsc5A|;+uH|AT2(x-RnteLqcVM zR4n?ALH41p4_fCkyKX)LR%?&aIIM^K6Wk;>;zfPjbUa2En#?^xGpOkpzsbHyE*9SG z{&gG*j6B+x8CCG2)rENI@27D+>XqNk6XU1;ok(^U?e{1n(2ekyp(2}Qu=iBjj1VT= zZNwktr0NYO4Qh}8X3N{l#gX0PIn6I+CnP0;7t#kDisMG&C|jDXlCNvHjlyFe1+Wf% zp8xOcCCnUx=zZzHn|(F!aaP{ zM)MXWdDD3TFS5C35TkGT;qB&*Cl?zJ1~QkmUryibc5?gBpPa=f7Oind8;(*x_G6T% zBS(DbE)GfVYU3yeVTl~wsUQ2iMA#dQ`^5wU34Asm{inb49%340k7je76MRjuq z0Qjn~HE}+O(D$(WhnooR3{k?%NBNb{OYo8dX~#wq5-#`UgmH`{0V@kH#Wx`FIkBb7 zdBV+uaa#V(I<~gWrVEba4l6^OSr6V0LYY-+o=%xrSFoAHAAjONLBr`XzNfH=b&;^l zhKB`choh}sQZSEV>~q8s>A43~qB+M)Ac?<#+3PPw6ERo~Jn3+gUGRxmfu^Wb> zR9v?u#I^7>P1m$7+YzzY*x-58fJ;?Ocxe-Lco4QYBbq|E$N77N_gLaPhYE~Zs)KSz z$=B!#oqBx#dJm|??BbjSddq@Oj?V*FTg*H6M%wKcYlpK({`q)2WG8Y>Hv@aY_wORV z;?rpdKF#>VSFJY&V~DW$@qTn@v?rOqULtorw~^Far|+3QXMF^|OTV9g`XU~` zpWpWfR51p4LX-~U@0UL^413;|*nii@Vw*E-%&`N}>lF_knlTLdIGC#noQ zgeeL{pqDF_IOt+Peegj6*KYV|UzR)*uk>-{Hfq~JPZsRePNf+oB3mh&l6S(pyw=&* zbf6%oO_B)R{$BIcbI&xL?k%AS?%HLZWL8x08aG1E%2aJOkDmq6?jtH%p6ntK$(6+6C$-BGUpC~{LG@%w-hYk@yMk+cyXr?72)>RU zU{j+9+;N)d(^Y*Hq&rMUCYfN$*EQ^$Q=7X#{b)j(KwVID86)MPG(YdUe9QVAbX?O*{;a^MBmR^9iDU@Bwr$u@1c$< zehM&$SlpbdO5Ha*Jl?G&#cw#Rbxj^ExMm+GWqXL$*yz}>IySwr>@eUMmcsBDsb3VdAZec-Kk~Et6;WeEX zjFY+LeYrk16f@%P9%m;IA65|u(i=M(9euz$imZai6Q^;K+uzKA=7fFZ{A48*qTG2N z&*aORm~(pG6n6%Hj?x$TgnPv|v7aCAt%DTWp09#TrA-fbi;vR=7v*rXDXARPnu)1O z3%9g#b#0I~E|E6&n{phKH+@DR=^muzaA!NR1%G7Kxk~`vWw2wuH+z1(FJb<|o)k>X z{)yuez_P-|#~{Wq#VYvwKWSA3wLEUMxr+pVNd)UJf6j_ld=5{=5bd7EfO7K!G#md? zP2|i4?h~vINO2AW_-^(qM#kzbJEJi93+s_-{btunq*?Uk7(CkeTMe{%hNI30TqpWU z;bC1?)Pbm5@7$C56Rl`XN&H^|htr8d_OYb&;e!m5~f zjSHivxCwRM=@Y&tPqhf1A>(^S#(gUIcj`HW&#JvE9XLM&fA4-M;F!1fCLN2!jwb4w z7iEpEW}|96p_-M^Qi%6bj7jaBW*{?X>|*GAqKzhpZy+&qn2Y*=_5sB0{mKxZ6ZX0c zhX~v2k9z``^cZsWeLwE?FNv7T>kVut%}xtWBhFYg8qw=d{Kb0bvI9pwP?*wWzCt$RVu;;*N>5HzG$(>wFE?m6rZwRe)C_h+_JRog=8jm$J^md^u}w59@}55XT8 zvg1#`?n7fX*qy4K2{vD3(cku~bllk)-ORWD_T0vw12zUc2h~t*eaden-)Q#LN6CAh zrFs9H&fXpbi4T=LamJBRb?+nPeJ!ooMHlN2^HsWsWy)ksh-xm_CDijW91lj~Wpr=c z_>-zriA-BeGvAJN1H} zKS*9jmpNQ5+#3cej?pU=#0snxShkp^mK2~Qz znY8KQSGH#CcQkilhHzQ+itn0FvZDbGkxCt1=5S-urK+)<1SW>Jr&ns8ohwZnb} z>rzgPd1y(vo*(~VDH3gKAfqiNvHDFXP?kNc~; z833pHK_vTP1YSLO*aFP_1u8 zi?5bx==MbDUU$lGaWKmw4p_XxKI+r(6>{O+L$B<+|eBBD7A=JylTvae4 zM)w!rb2HjstSA1xRY!(4+(@oJHHd(pq3^c6xiuSa_dcLlo_{Q4_lKeGj)_>S11qfa zr97BTfZ606{H9-!cKkGBn;Y%Y@B^v>o*C#lEVREn-6eHDw~tT*&U&~CgnoK^W>1bX z`>`KpqW#c|F3~pAx1-&kX;H;3f#_kgZ7t_$xv7c^p4>qn7(;7npZv1IR6#(Sar^XoFupf>;H!9zhL>Wk=FoP(>u zZy6Bubd=XcL?ftJe!cJpA*uZIn|An zsdn~$R26f2Gs*e%<-YGox%5c39%kTo0O~FmWC}>*bc~<-TQVHk1Eic<{*b5nCqKg7 zJ{J4Nyy?7Xs@kVsj-re@P6PcbHdyb~^Qb+RDBR=zym4^6$aKwu(z46>X1E`? zNSvUmp;F?Ap2IP^_CK4yb@GloCkH)7V(vvr4WL*O>VrUDHP3ZS)knNn*{^N!H-1C2 z5bMXgdg_YP&b$qcUTbHC)`S`|g-2hF%ke;04C>fql+WQ$LwI`%6oV~&3zhj$dSO*A zUu?qiF0i*l#j~B%ymabgd<_o1ci1d@M?EOt7#@A+dUSrne%aSv$(!bXyqlc(m!%(} zdlPSyRt4nxt+*!Hu6DimTjS{*r)!_I$LM zH==Qv^Hd-Bj;_ciCcRn~MJGb2c6j+XyX$!UuuMeXRP_CQ<9CRz%1J%70Pe*1aaL*y zfugrJu##lc(gQg-_;Q@RAv{?ra>d>Pd5u$OR|tz&~*6#~}PJo6X)aph7-_G%5%l zt;WhhZ&)MWN8^a_6X4azy#9RDSDnnX(b6(mY-HH7J(#G=21oEeE9W=H>n47&?#BoT z^ZbzN=(%cUfx){{aMerMw|=6JRhsiM@0Kws8v9H5>V#=Tz>gQnYjcN&SjAqG--Hzj z^T?qt;z8>#>ZTeEm@z~iCe~edMgW7qDtLoENcdh&RJKuB!y$w~ncM;gv;F*`OB*;p z8naGZN@$OnpjNaf>BFjQPPW75aLHA?b0Go(BAWBzLa|WtB~PSrtUiZQXI3iK&~Rjt zr9Y+K8`@jBMbbdNzA(oljR6}h_IG}~cZYpy7A@fzJ-bsrj5}HA>3Qb`PHp+$>Zmucw?v~iqF9NW9)O>p@(9e~csy=|7cDp&Tf+sOx;LNl z&`7s`eghM0&fkbnP~BTGYj$0CsZO8W{zKz;x2^B;)tcNajG zVDlhH%sd~oz5m>|L1$vHm{xZkwEc-i_PC*k5O1&r`Jy~{N04#y)zdmT*jqMv)hP4a zeSuUF?WdA_cw1$fIeFG~yj)GLdI-k3G2^2U&tRljVZS0%_u~d7IOx{wW#+sy9Oc1k z*7>X%nM*Y6J4Vej*y${@J*$NXWLOash1Ix3)xP0C0%b(rZ^v)Gxq`!A%?vzeI?8|@ zvVZRZ&ta4puMIe6AmMi)y?L*HPBEHzEZS~S_vbqJ#vl#z5xUedRpl4NeuU=I>GUEK z$V1Iohx3I^q1AbHDZ4MdPvbtM6 zp2K#F1dh&Y_mCYTIp{Mh-xEQQKKR;L-zM#bAzqgKu1!v+ioyX6!og*+@$A&HtAY^$ z8;Q$taK9Te)d$V{A&oduqGk$WMt>Ux5cx9?u_{azR^-7&1e5u z4DaG3GqR91vzWI-MxEf<_QG)5NsueDAw*Ed|U%<1vsQE6Tah!qSC0%(KSgVYd1W{ zh$I0@2q@(V)v~_fhN}T=A6#d-_I+YAy67b&UdxO!F|NIf{dxa{`<31n+RakAY2Dc_ z5y|QQ7L=EoZ!l7|5S8K(sFOQOG4JUcH=)ZA>W^!@U4DP89rf;BsRcu+J@RiRireJ4 zRQ8w8D-#@@3|s9aCL>@}aMEInFBJ|i>y}>D{)-NG88Vp1^-yv0p;lw9xAEMo zV1Eg@j?r!f3NnzMF5ozK(NI3@_xMEmjv~lkxkz{l+V-Y`WUdY4l2w1 zU`i)+XDJl9@8>~;CVHzR_=~V;-NwVOeji?#VDF~jwO-_}iyu_H#AJR6!GETYhNNVU zU_RbTE1AwmJ?#t1npJ_&G&+6!%~R9HPj@(>Tn#E8P|$zk1CN?$52Mhf#3d)j!02_< zZ?URU=Ztz~wzhA%V~B(d9)fqA{Ti@Z6|1wB5I(Sp~|&Ny(Qqx+Us`~x}Ts21$U5BO?tK z0jzFHrsxB4AUzebER)qAS2PlVKS53p^ecZUzH~93%_VzD`O&+L1{?<^C2(F3e%j@i z+y_Nb$K+eX;&p5dZIOR{&fdm&!k=w5`}Di0fjc-cy+^Hu-~{sUoVU_SARWVCOC*=D zdheINnZmC7e$nSMDh1QWE7!i;GuVD!8DtBXW)rTU$Qz+!SN4#T*Q;~AF30J(M9DWx zRqL|5zWJJd+Ra1ifWTJS^EkvkAJ_BDC;n4KuHVBNH#I<{bnUd8)f25gU!Ll_Y=6I} zsM*Qv(S1A#>NT2#Cr+WTs9zNISOQE=)x1BAtAy^fcK#}vLJF#1iLc2e5bDPq-x+Ie z1Hu_0$-~8uaX)ebDJY&zvX!sbl^a>`2r>uC(ZBu0r7gfS>Hd&dfR$OH40ZZ7zYE-` zDcBIkAY6qG7SXZ-1=~%%>`BOe|2qrnIvJKkuXi*~{QN~w-x zb{`B^wyYh7!0>-l_TY!(NyB5>YCW8C_mTdX+t=^Mn+Xu0J!fQiU zMqvIypNZXYrF!SMos{tQiL1fHkWDXG}+mrcG%)qWqc^L!k_ zc1`|NAfmp1HnzuKuPeG1f)<(L5iMIDsyJ?EjvUq<*n}o^Iz-3W*db7+4*;9k%9aa5%u(1Lw5V)*%d9n552xWP%EB-mw}yx)mra#h0gAw2F!cKAEbOVraa3&q}k2&b)dgJ&wh zA+I$jVZ~XqBajYSFh9TQ1Gn*fAhAM9ru{{oSNYjpe4G&&aqAp|zOkDa)w7xwVNpbNn6Y3KlFJlHx?>KDhjs`b;4y7Lq><$ln_2XRNkdhK;}|;<*<^YlR{^p;^TGrKM$b%q8!cJf0=J!rtK#^H7+e7ic8ySt%`vajH#j zW&VEAEVjHNdHb}iC?!*AQQWHsAoG*NqL#GtDxrOz7pnbbw|z}v`W=9}J>m&$x=mT$ zQ9+%~zvbN*%bH;RMCL{d-pA;rRzZojG%9eafhNn2h^scc$m#CudHXy}D**?=cPcL_ zViZ4qKYu2R@*<8II-ddIJri;|(KjFhQU^2$2ERV!*M%5>2mWE!B1RCd=Ly;4_`HB~ zRJ$q@CK;y@Gc6u$6s#g5`m$z8N?q~5@LK(wLJW64<4?Hn_$|=?@L#SP00kZgrf#n| zm)1~bA-vTBe6!giY3lFMiBBDh)JZ6xqz#ZH%2U|Jz6r@WCze1c{|n(ww?0D2BCq3*0PxM;>=LMCl7Y<<_XB=QxI6I@9Oe$VnDH zq6n~r6~~t71V@&BJgc|L*(0LX@^WBI=Z0)(~IBebr-~7D{)hi$Uj@!P( z=eYnDGx&yR_3q0LTKK*T^q0|-V9svXo%S*urZSgo%-R>mR2+7T8?Eq-G>!EQz>805q7vo@d8&OC{&d<)s*;!VdgK5~uPDn(!dwE^KfTQaj_Yf8ArBu{E@?~wb zvPQ_zTl^!D|2UrZvx})08)h^;_vzx!{^N)7s{;v2rh{1s0!%JT4rDyeP^AO4TPtO~ zi1#l*E}yH841<^S+W;4e1Z=q>eWpNhi|ZMgoRr)UOnIA0p5IxXz9vfG@>KQlAH`IY zaMX^tUez7w$1i%{-BB6|iVpe!^jrvZWNZuqL%|wLKgk?nUlaR7V(;}ywyE3uWyV*8t0c4oqU&FL)#L z@LPCvRsUsxUQ_AVzK5{W&73cUItuugY0WF7fR~D+CKW2w|8d}0rWLBngy0n>4u z?F1eEF}RGl_2!iRy`InI8w@ra5FpulSpV)P9A-GVb~w;fzn&AT1$}I{?oG5Ye)lMR zTL$LTKEfjX`8e8p0}406+{5R&fz!Au_lw{dgRG&L%V=XcSj4oYcVjD z!xTv6Y{sn3#$wScu8%8x#!rUFP}nb{BoZ@(xDnc?gvHEQ`|sVGvBiWj%p9Y+!Cv?G zn?4M1L(p#8c_%a5IHc{wQidxq8I(cIxP`oeUUH_@;^1a>jLn1l9u{Q^1X4vtNg{9dw> z3ygR&16$MS86}=#TNH~)tNJnlXlM3o0aH@~HsKxTJ@;s0(H6RG8%9dvBgTTTMaLdYaU`p@cZeF2C)3olb^F-k+`#t`Mj5Ln`K0xJNff4*=HwZa!x5>X1 zfD6;FG#y8m*p$d>$Y5@ht*YvV6QUxe#r*9VgbS^$MhjqAqx=5k?JxWEx1%q6Lq=9N zd4W#2pbCiCfq;Vf;q=iVhukk6lGgnP7u<{zz0YzLm2qZ`>{<9`b;Bh!sIZWx(-q0< z>x3&_j8#~CKOKR&+TP`(t=FQY zRMG$iQY`#~o3GjXc4dai7y{$6Yn}*o0LHfU?H7y=YaLBwbhc0N!FZcp&CDE8y4lMy zyF(L1x?hdR81HLy|67MckMM4Goxl8K3H@F~g-o;zZJkNF&*C=q>V^P9jJKsXP}CA6 zhd1c*ule3smNRm+_ywZ=VHOW?>>&l`G4u=&yF5RUr5{9Up;)}-W$rp8{`ID*(}nwK z1;MQ@f<}#MLnJ;ElfI8!h-LLX^ya(bx4lW4gt6^`taYkM9hk=Bs`)^3;!9M=cM;lB zUXga4^?_t-K+Z`YSfnjLjr}~B^o!?u{dQir#`s!Za$9ow@@;bxQfuveLXueP@EKM1 znGb+cQ($^x#f&(v8ZnEzlI(XD?N zk>v3oBfrEIcWKXewEWj5ajNH0vK5^QwcePg`wsf37w$$|4ro9yU>JA&=6hJLy3;_u zuo^vWbWfQrmAAct_K$YqkAhqmHdtz3y0`tt3_j*FeDxuW!34W#`-|8FKf$3UQ;iO@ zGUX)dH}IC+4j*@^kGA2UpkZ^|I-f3`4mQz?#|FGWZ(Q;ZOw*fT3H4reMRWYBFKs=_ zUyxe3Z0@yLnWI}gNL5}u<{X_;b}S1))kF{zY3D$+>h;ow@$g$`$^E;?yB7$IlVb>4 znd*%OfPP(peB7+=w^<*Gn79J&#W&1`qapbraTr{!hltNOzI@K~3j2lrNe-Me<;Y;F zLT1VpO&JJ$I%?%!LSB={@oHrzIZPIA{0N9DRF- zS0MEFJT};WcjX6n%wRLZjm6ZwH|kS2BnVwB`plH%E#q>bHSJjeB7Hj9v>u2A!n@e) z&M0gJO`p^oyBGfbH9=iqRruy%(i#oU27ZvjuV+?qcp_~0khX1{?!%~=S8I__gs}K5 zebuk9wbi$C8LtW@UU>A>HuK?^C2HJPY5#MZ&P>``ZQTR=UWU=s`yFj>F-TW0@Ml@9 zoL`NWzokcL*f)flK5Pyj2FzvolQu}b;fB$N)(=7nr&qEk_iB5em9J-Ym!FWlN<|=$ zf{R^LvO5CBH(Z~98>n%<*6Pu|C*$O2X7jpUJvSD%rhBvQOWpu?=P|I2^fo@E7|^uH zN{Yu%@%Rix(+g$)Q^k^W(!9_?Fhr%W*LneuYXQ5-%L@lc$ew$c;}6{hrX;AVJ_Ft1 z6J_H0t}&r#G4{ucHS9mkiFk_p>BsEESs7{!td~WBsdKrkr{f8gC2Dur;blLG(zUS; z?jc8$_i?)q_+w@fUMcTN@A6cADpdQ~G{%@}w%YHT4lIeTuf*rYq-U$@rtTG}rVVpn zEVt3~a)vL25$=q6vUkMf`-O~REj&V33N6blyUMqfa18n<`+YM8M)WBptMTr?p260Q zBHbH7g8v;Z}~?f_-X72-)_-j%c>(r;*2EfAL7p>QzRx z%00;)LyY0dn&C)BQoq#+HdFhA3&2U*hnoi3#4fOrXt~(tB{lV_2|=kBF|ulXQ^i!B zyL@hTxBp^|^D-&*6}*%|y<6e<+ud%FehnM;iB1*bBV6)W+HbRnGtgF#J?2|IYX(Rz zh)%^0yM;v*7awvoPmunXFvF6v@zC&4VbkkLoPXm|Jk| z554CJz2Fz}?7k88gMzRg{{l97d(Jj_?@nN5W2-3hKT5N|=EVRTsAs0wny@zL^M1fk zN!??x*hIHqA#~tUM~a832NVDGWPrlGpZ1=448nbLga&W)HhfGspMCrKC3@0zvF>Wg z00$aZkcsLocpn6&JNd8vw*Af98e`&ZPaRRGxJpkQjbWcU(r5C;iLi~1r@+RXR6P-h_gyTweFt24YU5x{tDBf^&vl-3`yp zG>wDz)^6H;y90ncoD5ofNJIt?s(JTuTG$`b+-rv=J;}{A=6AjlGu_#kj;Z)?F&Ii( zsX|NSYz;?%=ciF1y59|7_LqK*WHoQ)KL1+O^I5hr>JO?l{bs+|(}iiWPm1Asj!5=G zE=b*zVogXt5@mTM>f=e0^MKLW>9}%8s_E&jT|LP;h^1gH?+aScIQ2;B@uKE$l3h;= zWsBGO#*|J)A!Z0a+M5!*dxY5Uf^)fy;zREB+8tk9{^Oj39WMPp9gI_sN#Rg9S+0V! zoZU!L4L6=g6dgR!&3 zyL#FDs|PI_zFyAv;u8nXdwhcTGPeIFxaoe>qME;e?Y8cQ&P$yhW$w&hG$+w`qDRc&Y36_KJ?|pO~Wox3JyicEFEV@cWw&F|G zrb7Snk;vCSL%aQs2e8a67Ob3GHgEXptn%xQQt%qu20GB-aUTL{nPuV3yoMkVU-zFv zLp}C^6QgA?*pYELV$p;8xQNViP^N?FVeQ{}}O&m=i5TG>?Gkhe5|g4aB8At!89ZQ>W&w&^V%mSL zyLPAOMy7xUwduL7sTu^s1WvzFAx5L zRpjKO-Dc6a#bgfN1HWE;ppT=4%o))`>9qp9bOfVMF*6zi?I_|t=jO9Je1mv^`(dCc zYWHo*y7oVwYmJPif|L=B92%Y2s@d70PDh9c^Le@Hk}=Nky(6 zg#w2X8)8UMAtRF+VRp%Tto0@_>x#J>5!M&3%nJLUBCCu7arIlx**%6k<64e5-~CV= zc($mhMPYjb!oAVw=iW|U=+uvg*EMvE197-tIQMXzuI*($e?oC{4pOp5|Il9pUiR1s z>Uuu}Sb0zaSSV%0h)=EC*;`v}ad4ze}5;z4)ZJF{W`#S!;zaXF{%s}z%xX7YIRztjdLQ+u39cf~f%hYR-ZooQ;v;?oU*uEslr z5W|4vgcd6+(hcJTa8KgkUbL7cWadmuaMBx}2+O!eMMWHUeRpm4%)y?+ZwcyMV0|zR_*AqJ zF5;(nO>Au6w!>Z(Zq#!}A5JC4fVzTN%+3AVH%D@oq2K?vFWI3u>aQrbVJ4nG5~Q{o z9hq#OdY_J(@MHq+1-5z5DtI8Uk5?}EN}Hbg>}?ZY*RrdfW;)36nszS-$WXS^8RKf{ zfMw7;+_{H8N-q05e;?4T7sjPJ)yJz&P&xGyZ{cMv2CiBfqVV#^lj^{$mCkpec)!fm zNr?&FK6UHgwxEIG@wTn-L$O6@O|yQceIwKZyld+&y;> z1ol9()^wGlgLm7dF-r!uKkaJXE_ixon@O#=C6&(@@)5PaOOB(CQiBrO@by&9 z1Q$TUw{X_X4hsC>=e#uK2VH%BmWi^&bA)d$ymfV4vocos=oV}(v%oLze)87sg;?FIph69j>m?j+|Nw1pp zcYu2V_##gZiA*z(;t#&amJ{>3`g!h0N*?}jx|SP-%ltWZ^7 zv10MOJ14h2HEx%SQG6SH@}BF+>u;dDaOxSBJ!a_y7?|J*lE8`&C>LM$_8sS;zt77O zxlusHevLYy2J2eyad*s zKOSxI;1IAyH|GQ^j_`~>2a4wvY_*@cFopZ)GC@D?a`|Iz49@W~q12KPcg*WLWBqv- zuJt}hjt9NZJnWlx8DjvM0r{D>L)b}<8Xz0a3s&O!Dsg^<^q~nKby7dx_II)6p_jrA z^*&JmZ54IBi9Zkvb=>4%5gn`T-G(y_PynAPhoz`Mth^&mWL@+r!FM#bkGD4xa>BIb zmqEcg)4Y<#NqY!8VTu5VET}6cj0l5cA7l2&HebF|k$97|U2=OMoU*^FC+t$byr~;M z|GmAMrn6Z#2lI{y8*n;7dZPpm3W?M599vHE?>l&W(~iI>+xHarJZiE~0#tKeqqb+q z7#bJlc7}WSuQYsr5rCVICPJO^GO76(39cobF341u)=V6zX?Wlxiw^!g@n(%03SaKS z)mxA!9Ja)WHgLxdpV6;lY)#YF3d@)U1`!YbbO_1Y60e!-xz z+bhGdlfF&zh%HHD=GHq~fM00hi^x}H<4=`xQxD;lDa%B-5M?k#8v`mgi54!CBh{@sW z?dARt)xY&j<1luCZILRN#i!ctu?C=WI84h&UfKsI<5`+2l}=(W6z-D?6Ja7%>(4X2 zAh985fHGS%0v=cQ#vS-;@M80Xtga%3D9*0Fjm#%xJGuH?GS@!Y2rkkwsWf5gL~L+yK?e}7+iDBOxb?HWKHM(Uiw5*wEpkw+1_Gm@-xYy!<;-F0rLY5a&YNjx z6@5@_0ZV{f)k^PQ(OPE8n78SoOc}i+)q<{3B$AvqYM9wa+qkE)A_)3{B~ z=4-Bh>6`_QpPUmK?lSqj+$E(hUY%Waf4~$JMDPB^cp$$h7OD)Sd%7o+Z!XGDR*I0C zx@iYgbYR6>x#Lo2?3P^cp%Q{{^1qflHTF3j!N^=vpsl%=Z6NFJ$^dm;Skc*glch_3 zBGeC2Dh^FmH(lHe#i1HfSoiN7V2nRF762P8iS)B$!C{+02!V?SbW z7d)2@60jLd`HEqt&|yCFh*pw-LbflqP(e2DD^Ukl+HgETL2Vfwb&c2#>L;--dyS(hbHyJIFH}FZYNJ~$?cuDUL*akD5 zHnz7KHLXnB&i)`v#O3{ITzCKS>}k1`^-h5HP>3{u7lA(_&BT zQ*9tE47yL;xqvz?DL3Y61ba!kPzsXS7yIm67u&1SAFYj<6rPf3x4v#o61 z7Xc?-I>%xC>_QdyEtV&_sn2wLkMMI?6O z%3bPt$L{7W>CZTvVsoh{#5Cpi;@}PwHLBu@I zToMh|wK-9sfnCpghJr$6o4x!xsPPiN{;p7W5e5CvPDF17@z}Gg5G@w>q1pl!MO27%?&MA>`r?%6KSk2*FOvtA} zI6Dm^dsNTj3&9pVaB6Zr_*(zvvYpbG_fA#HhiJZdn(>gnaXMB!rsTLs6O6q><=ks<8Unq zLt42zpWr~TbC6*=o-r%eiH4>lcRN#AT0LuExI9BYQJrgCuqOCi>07Sgh+jS&P~tq$ z!a$pQc3<{&Y;2fzs7`G-AnqVVCt!Mz&euG8TwO;TXENEXUIu$ZQ&KWK0yY@%{vBqQ z;UoPx@oxtyjlsFSLbxctk(bGSy+vOCcC7IG;8aTWsD5$&fxRM_w|$>;b~VV%=oo!O zdF=(JGE&o8}ATMPT5(#CqwD8z0{oohk_^o8twi!E!sed%Dl3W|%DH z9vhqn$Tc;%`0#*w8GKkiQPF>s=kIV3cF8d4l>zeZ*?N9RWp~jKmX;;5rf2|r>fgg( zh{x-R8XEFO>@OoMQW18dR;xaq+f*a9Zqg$Y68wFh<6lKecTX#p!uJuicwfOo4Hmy~ zuVw*0-HF>Dw`Qn$Rq?PqNrP6g+`3-lhTPV#Uhb*NO5Th9(USunq_LFl{j47k zNLd+ zDEI3HDRaYuk64$4-S^1vQ!M_u!u!Ys(p9JDG&FK{fv*?PU~?ltL_B@O7;M?k+p z7%!NsXO|G2^$tP|^bGu8^@8Yy;zdR;70|~rbN`Bdy$<=2_8?QQ)f*LE`!QjFfd1MLYSpGxe2vA#hK$z&^t~P+8`4JBa(Hh;aU@Qv^5z`DmcGfBvNXGE8Emj@PPmddfxlf= z3&E+xfzB@H;E89;N-VS}f(P_0%IjU)U5AbBZPGa2FngMB+0oz$?Id*J3{(|JGf@RF zs3%Q6#~LT+`o51!H1UQ9Sh=TfxC-1j{^%l)kjPv)4Eb=5zrUhW=1g*J>nQ$RK-Afav!lgUcqk{y zp_Mn!Om4F7pSClyO-bIwH@LI@(3zjGK&1NytwFt8@5p5!4?9dT+36Uw`Xeh>K?z2e@I z1t*~%JxC>jtKcmP6s3rJgZ#d``M{mg@&98HuU6j+(HJ`?YI8r6+d1owHl`Vv?JGI(m$TzSrkNV4S$ooV(r`iqjta(16y!$pT2`A)*&5b>U7KlQw_p~7% zV-+P!l~8s1o$*HVJ*OOvYmup6O`53pk8z`iZjaFbP!U@61;zwsS)a1JEd?k#YnF9H z#JWU>De8}%;sA>rGy5a4cp2|4zblt8@}A5lpC0+JCjNL|Vq(6qnSo5X6*3}~LO<}d zhxh{qcorLPJ1su%{X(X)+-y%jDo&f66(vp()yVa~?wlblCvaC1E}4+<#0B3w`iFH=NkVX;OATBc5_taP(w7$#5>}R|J${ag;flCBdk`r7Hvs;M6@cqV-JP9n7VZ3{=$TSTu97 z9v};0+U`J}oD^#1desrOUtcGydX?Mk?u_tfU*q)kN{#yD_$H_O16J{1GjL5c*BKqS zjzc&)(?0R=q?Hbv0vR|&D>-5fW#d^tQ8Yew`C;dFH9!6ENhS7@$L%XhYxL7F?A}jo z$x$VjHOyp)Px0OwREy7eSpMG_mHGfR#8y(OXsP^eieNF05I$WyUaT_=I5+za`nEmDMa!OjKWRys} zM#PU|&fESGR-VOtGFvD4t&g2zm9u51#QKgwFx(vR!g$-SA4vw~-^@B9g;OKZV79Oy z5A8}jg3#B}$J7an3qdxBB;Iv+6+`*4S&B>Jo((Ueo)52mCHj+M)I7=e5?)CRUVGIO z%`H*C>GP5BX)M~w-3(NuT~0G67l1iOTuJoHIsVm)vp(5dv4?I-xTCU&=R*dhBnKt& z91FiaXRA`)iEikjS!7Ay(GtSHYLTL9;d*iu|7JNL*382vk$=>z!oB_Tlry~_ABRB* zoV%()<+I>izM}o)ZxCk&<^aXjL8H_ff1=5}{q zAINe=$f^3MwkGt!j__H-8GYz|-ur#VDG`_?aB|H_zl@aFi;*jb=hp@{%c$VAeE2#@ zl@6#0fY=u*SMDkZHpU&XFh8Lhi$i5q)Vdr$Pn-PQ&t+i|Yexzh|HtUTzId8XsnmZR zGi<5q@Q^XH92Eda>Pm#ei58Rf8h?-He2a&e{A2z>(e;KLc*@qCqMv#)4q2!~r}Kn! z^XKZH_vzh&T@gaI*5VWyck@@Wdgu(i_a6S42{O{gsWwkxni${rkQOIs8JrO2AY5lq zMUgj|R*v|5a~^0tE2A-Xl4FlGY_$g#Ne8hi5gu53c9wH1xZ?pnWW@;6J(as4U;@^N)U)&8>UWWv|c- z7SkW*jNtS6WBjoW_j$8Vt>D|MyzAo9C`@bct-?GLP z=J6OzJOaPvg+tX|_@#YM_+!Z`j}q8rRgSRs=jx~{tW*PP!_MOfzVkB` zK11!_=Y;&NOv21ad<4Kw;Q^ZQ-)?@xa)O4OQgQb-RGjeHZ|Cs)7o? zO!#5~18p8CuI#P386;DTuNLK&HIeA!^yW;c!W}#>fO{sxXVd^oF^&pxUs>7~0DbKs zVq%ILP1jXB(?5VaotN|lNBuL5y$k}Zu37rx+|C*Ul9YE8y(ZEg1=)*`inGU0E^uAY zScdU3vYo0Cv6)$KOG5d5)H>MIiK;#A0o;TwIyD@%dB8pPYbc0*VJWwf%_woKoKo)X zzQ7^`5u51n?_$=0Ie!mTVIv#aop@bElx8rvm z?<8hc{w)o!$vz4n_w3~C#*a?aa5kdbeZif&FXDl}*y+Of4Dn=W68kZ(5`kD$Zf|q9 z;QE3fkkQ7UH4!*LR>4c><_G-QV82{G<*ToT3TF74W{XIMqNJTZ7uVKPhw;d;@T63DUckculNP0jBf)&5%Aw?B3dDEiwqT9mMcnPkNjIwoTnm0Q zGOMKu_?1fM$dB%ZW?F>SmGb?;wbisXQbe(@G<&E7Fn|vZhwE)#01iKbZn_k&HEYab6v4x#?W>e?w1x|4`XBRRk(mUjOu6{p#L$z9%gednYVt zr7`RFi~2AI`g5T6PxXybF^AlJmoR-Xu{9w@$b?NF8ac4T5v-g)<-+{H-Ek)opc4m* zX)(PVUAr8^lEf#wYxbz=O#TW#X}X9#%@+Q#>opR>NeI_YEEaCzGD|xU5c0H;5j0? zC8jv*P%X#kb8$=ga(Ct5_`Tq+VC=N6m~bECyvoW5H+x6Brnk%zhZO|viv}o-RuGD)IPlHY~&)@2@sk$;6S~pN0>d9Qj1pq$OWJ@ zULm7r8V!0!msgXm6*5pTh{>I+*WL>JB9;H<(U(0r0;u;g2zffe_lH6XC{I<)f1^pI?hy1;HZdDFVp_bzC9P6h|-1q?^!|a`n$a`zNL_z)eM!SLip5OJ+x%oPmX){oqZ>9R)z8{zV zUarH4)OgyjuwFt9a zhC$9{9l7Hy50sxs{t=uC`ZfEUdr7tO_CX};b~tzinnvOe-*U@k@Sra4+vC@9Kfyoq zhg+-6-J)4{qcG1gBRq+G+&v2e*^SY<6G^lc`%KFF>Ks)xq(O1TH{#qP1oU9Tz2><- zo8aRxp&a+L$Xm}p;tigd!lL(^Ly_yQkCW3)EfR!hoVs*mh&8l$V9?~F$GfZ3IBjVs zIDoaCJ+(B!?;QB|z;TZcyYI$)=cR2`4gvBK-mj{8mcBd8Aes@iQ}QLSeJ^VFU1i%b)Qs+X-X!C?t_jyjcI9=@*=znjEM@ zEV;PO#g#m5al7=oOVa#)Sfy&gYm!XXNaZ2XgWog8YkIQx+75Kbaz1ZwSEVb za%=pxr7`1YX?cN7AgGyR_DlG`@j>@NC0d;lO6-)@Y)xH}?%JKl!Fl2DvgFTWWf@14 zywg#DDDy?HaeaF))|=bhCgR68u1)4uy0^G;)Z_0~D_8d$zH~JnrTZOR5-+Jv@o+S+ z#|JRSuZz6m|9_Om=P9WU26QWpNS~_j`n;B%y5yI;AJI%XpQ-EXncS=SvIXr;FbBct z`WE!T8zgyeG*`@n&mk*t>|a*CS`F>-B4>xu3*pTM;Kl~Oa2F|zr~e5SPRC61x}Uj; zM|>PS$26wRwBoX}S9UieWGPlcCKjd47=!-f^a`Mdw9 zSYb=LV%yz(EZ>*ksm{MWbzXOF{7n)|{V*4(rLH|fKVkEPh$};LCS%w#q>whg`HFS6 z;Hmgrw9rSZUnzUDTw9c;M7?D2TW?<#R`AFNR=ss|Z#dFClNU&xH*&`le8xq8J;dOE zm=vrx9(+IMD!%3Q*bY4va^L#o&MfH_90jz)A%!j-tlU;2PYeI?S8uCDiEcYgnpincRrZ@H16Th@NrP2o!{ zKBxF`T0!RJx2!*Jy9S@Z-+1TW4^UdJ$`dX96WD5T6m1+XIK8c2l~ukW_1h#y(-P(_ zU4tj|AC-u7>dVn(ssZn!zvnBJP(S(f=HOnuo7PniyeB4fSi(Iv0!aF^nqk!%xD1!q z#<^v6TUUK22jpao)zz&re6p=Q1FdvxuE#JvwIKW1?p3Z zcw5r^PI`p{fkt}3oK^go0f*o!ra5MRd^R3!+iAi}x@$;G0>cG}yg{M~F(DZ*X=MI*i@M1U`NaUZ>6h(L&`9 zWCA79?}Y4M;I|WT9rYB;YN1#fyb&IkgB&3aSTHM`Q3OyO!RfAV=ptUH@s9i0ZkP^+ zD{i(GpP8=rUkZ+&R%{GCdvMfly5bxe!bea#zDBFh^JwL~VZ#Qwfv(a1r0AgB?&0@N zF#Ez6E?!%t2=zZK5*L^YgPrvkv!KV3pU%I^FXg~F@e)z@UtnU?)Xgvdpn$L2QZ9(Os5T7_(p_$y09gvV zk=Y=izdxvE+jCo`%@+~WJgm($4s|+!JcAw%WX})jDL_sw_7U{zU_uQGjx6d!-!E&n7XsP<&yzKm20e1J7 ze1xHszTPryw1|nT+ruK*1I#$9b@JG%Ck~HyO#}?RjP%47k2oxVaC^Yw*JVS&*+A&b z+J}US?;%6p*wb7rA>{U$$pIT?@dj|X9mA~w9@s&=Jn_<$6BULWIgR+Pu#@}4l3iP| zx}Q2`IS`Y2`h+c`{jyCj2J#oL6bDid^OQVeu;szsL7@-m!hM1&DMe&V#y!EuIwED9|CBSQ_Z;o%EH^nFMjROBr z6;S&{+SsmDKhlS>2F&p*o3Q=e4=`ON*iMx4FLB2*ktp%)!wMA*4~tm{aYO%F9P=L} zBU9x~YuS}+>F|Y==Xgx2Xf8Ov2Z@z02-Rf}M zA(tt#L*Y&uUO|58AGgD~d73#S3+|CJpo|6`$@#d_#A*9e|6cQWrXUEU$RGG`=!6+w zqrQ;pqOUgYNLq0sxo!V@zI;T#brXz}b`(Cs*!m(M8tOSH9=5d~xn5BhmIEqKqk6M+VZ140K`yKLG@^g&^Q9L?ZG@fTA zq3*Fo3^z(FkJ%46(1bji%pqGt=!wa@A}{XaM-NGts-24UTQ`qGYyr;kqbQDuK|>an z(h`k&Ey@q9rtiig80ESqb#xXMQCkP42)TI2Ie736C@!bt(Z(ED28Js_n*DiMH^(b} zdEt6InaCJ^&hLOfA*upXO>J<8N$D2Klr-Kn*vn58v&o-a=WlJ|_)MpLvZx+8jVcXq z(!w1r8(##~U#Yr`@zJPSk1b(I-NPq+IF$XDu9*PGquW@ME<3Vg!Tj2-{7~Fj2J`O8 zeNl2PyTcJViZ0gK?gmWzLY{t-JN&3U-WyLX9F$UfJj#Sh=`Xr~Uyu*6iN^3$-76<8 zu^#I4l{q1*x_^PqGkG85^L@vOrR?HV6c>k_O;?HzyX1^Dmmf$DsSWB}AIgdW@ixdP z2qi4?NV>dxXYn4rxi;;mYH`k^N;vu`E#~|#?h;2dkG{88yCtm>MdQCm5(8`bQ0*}d42V+GjuG~Q>C5i_y((aJfQML@o z^XHKjs70|gY>_Vzt1v|ucB#(n35d;sza*j}`TdFFlq*6&LRman>xu;U8 zB$a!mJ%Z9W6C7!y(l}{!Ac!LcQIG~liZqCmb|MXeIFlYp)B3Ho_kQ1fbRW@yvi#Jb9kq@B96H70cXr>$*ly;Dr>Q8kGX)ruxW0u%-i*(gD@5gR~N#OXuP` zz^&DgDeLr7vMEXQ(cLn|IMNi{f?RgxPJG&&x32GvLTKLFs~J&OU{?FKQ3Z8`J(kDk z^nNE-RIQ~$lJ0zYVXr_PfM1a8LZSDvqvo&LcdPNo6PKIsc}rSr-&{D{q3aI|8sU!` zkA5@qf2de6F~1Hs8=YF0GHpjB7c&AjLOigUrvue*&wWr8T&=$im^P)3v|C0aX{K-^r;s` zme_UbO)$}be)i8ZFjR>oJiAQ^ZfJc51@JG05_f3$jT>+E)fiRwtdArSK763m~wyP4|JP7R-#{k(*{rCbsV zb?_y8ewRq30t;|rjpou?$u=zYLK@=0oOOZa%aciD^b*OO`Q`l@1p__ujOA8GRrPT# zy6^WBaXK`Sq#!Ep-_dBi1L|c!obKZ60q(o546Qu8o>xv-9PC>X<8fERJq--y7I6}* z?h!Sehi`h{0K5$-ocGQEEaXDY4h8jfShyL}k^ys8+vYx@f{@6#>A3XGHX#y>ZK#dA z*$CO|Kn|TCi#DPn+v})l2$xki2w-+)Mu0Fv1IN%(Nok%Hzce zOg{zJt7DCViIu7;!j1I=Ymi$)QW>?V99sf$h*59c60g*GHPrzchHmfgHZeWF_=HV> zsiG186c0~|f2??D2GAaL^epV-Ei$LGBdoz1vaf^Bv+vYSd%GrMpL z>h4YVmD+1C2=C;R9|A+q*(nhHyW-7_bPxYXG=Clgk>{Nre!ox}mg=CBrp!I51Y#{F zFJ`@4wF0Qmy@|E^221xIEn*I68$6NO$`e+XN{(KmwWVdH*!U%gjp^}dAKDo`P}6(2 zOvsN|%@E`5dfe2WHj&(_TV-({`Z}0z_sDXolj@l1v)Bmy+}tC3E8nR%oGFMN*yZEw zr`VncGb-lWR%ng!c{M_;w^#a0>MgKA5A%@B$DxidFG$rdxMez2;MUjm-jln6l%qrA-~m7?nr^Rh<4}a!qs(x5M%AVEZ#J0 zbi2N9<};_7(V&kdJA_2$TdgW2hi_5Rc-;=7F^BgMTPZYf8xL(HEza zvn%ZqGmb;7@L)Z=u#@jGw=$V*I0w;`JwQc}VmY6pD~ctzRjU(ewrj>g-wH@sJ7Ebl zB~pDzWa3<;U=qnHnAeNwgnW{9{b6SB5xTZ>YIV0%PMgTq-W;5;zCwIzbKP8DcEzF@ zZhkINHXg1gsBjLoT%+kHx1uzs%^hk1k^shC;#++&uXcI6YSVGm-qZXpW(&$(RLdq` zZ)W|PBxfXjJ|5=dW+i(<3exlYpj*{`wYIL+dwJh2{dRF$?w$(J7?uP7CMaaLqAMFx z&^iaxWh^$d3~vFDmk|NR6f77Jk@UjLC;`lgkE2qbRpCY#1YMs2v|T){9pdj$Y%lEv z-Cm;yfx_Z=BnZ6ephObYgaxj_>9mbvnRf-f=N1xql(z4kbMJSkBaU$l3iGiuWx#Nd z+0aJ>3}okLi6&CcL7@VV`98i<;zHIl$X-?*3M;@aQM=+mUlUaqS#>E=1Ym79w5hNb zVEWAkQLlinJTt@Fy;2vLj@lss2O?He0yhq?GvVR+Ce*jh?F-pcN?77Gb*C!S<*_Oa zj(T~#(eZZ7pMo~(A0jNLUAG#t=+H~VLtvW)XY^DjWKWN__aV{t$#PYN$MZUdV`%a= zliW$qeum?rC&2DOjau_Z*w9Z3$by(9`)P3jwa(9Cq`M&>i5b!X;J{$Bi^NsH)k4{? zj$ZOChd~#Cx^gbF`A~Uji2Yh*Z5vgO zu|bhBaQbb36i#4w>O<9s*YxB_obJ}dWUykmD3q82Ex*e9__;Yz7D1mL9mhuDmgz!C4g97eAw)SKrPcs7K{ zvMg~siIn^Z&T7^wkI*D&l*PuK$Wdp;IQ^lRYA#@At#6P-mA)+?@Y>51-=@Kc9S$*jh z#x;g~*R>Oc6I@ zv*uG{w?FNOzzsP~>I}J&K6cYn-M^^C-z%GrJ z_VK2btUEy;4sY1F=TLzq@YrwtPcF$JyFtd_BkZ>1VU3DH0$?_%7d)M5N=_}R9$x9q zl-w@Ck&(B-h3dMe7~KJArv;;^Pq@Y?kQcDZP)%Jm$yCWRP8J5Ky&zBA$}h$)ti0SK z6%^se@U?I!dP%DXJh=0h`4DAe=OJ^h+HABlnS`ErM^L<`mG#tD%+|cX{%sD=C4V{5 zsdJTA^5WSYDEa`Q&gqz#$(_Lxd%f9+cQY2dg+>M|R6aJsLtlby1)xn(fh$3vYO-ZN|YAlJ>lQ<7xqlU&WN!qCT};NX~D_%M}auNufC>?(C)yCLJc?f&uZ zHAMVGQKP*4MmYHGqM6a6g+O%rvdEV z*CQBjWxT}0^BEB1r;3l~>=1LQqElF#UF44>}QGrWDCewTAP#WZ|0KdE#g+1I( z?iQ??sE(0WdxshEaMx3r7+#W|^VkS$-f8fH?$W*^1fG0yo75W&8t#h^??{bUF=jc} z%sbi^wSP`~h@;8Qn2`<+oGtGXr*q}hROFYz5g0(^-&p!ps6IU$2{_*2vWT9Fyyee` zPkH-bd1L??`SUZR;+{e~w^~kDM{BCt&{aagu4_{HSapKIdCVf)K%VGiwIG0VF9m8$)<9cM^4QE)i-o~}l^3{mMiTB$* z!4}V4QLYjF>1a+{Hq@_p-Z5*R^PVCs#fz)eSIdst?%`R-?7V`WVznLnsiVZ(2M(^KP6P4r&?3wg;YWLnn_W-P9QG}UB6@yujfq{ z$yrh;+vmFjmhhMaw>_a+aSMa+bZ(rE z^Qt!PK&letV~KUHS)RP6-98Cntx1$#pZj0A8=$um3*f!Xj#*0wH1rTvo7{L!t zF~eoJNNIlNPL@|7gmoOMlwt#IUn2UE0vj3r6j|Os?g!3A1-iq=3_zzhT29a>_>eHJ zsJnr!1`lRP5XtxYQoiDov|CE-fhKhWsXzISKN#x9*|QD%Jnw{UHnXcD)QL5Wj%Yi- z2E;P@0gx0IK0pCTL>_8TSfDLh4YkfqAfSy)uvK@qzHDjMe-uvF9=%DtPH+Ie2UztI zfH(Pe5eXtAawlYwA$;rDMC1OFoR5h^y!n(UHhZ0X$Vp1bbJM4L@2oNTD-7%fp)>kT zc}2(;zZ^}q37YvdN#wisu15%F-lw{2GqUGb5?!rN?R%X^;I38{d-V7+U30HHm}S-W z7B@{e?w1FoL1#=#s?-~E`fTqu!404pH|0-POikSo6$nY#+fq8j($?I03QrrNvLxFV zuYzAWzI({Dk0WWrQnTax%e^hUQcx-_W(y=?)@qu$R_*d-CuyB`_t!zmSpqlv-MvtT zpo?z=$J?jHd8#*l%(kM~AnU6dW7DcuN@~NaL674|RoWX_!{}iH(sE13Fpd`r9eFM% z2A=1dM}JV$Ni9W=yJU{RzA7M^QT9F6(vj-LdSn~>7$H#fxbZFGfTyx$mj{X4xq?2B z*I=ru6AX^DXi)yiijN!BzF(m3kGWb3nY&8D*cx!Lamk7Lm@pn{j#9d2o+u%9{0N3n z5gwUmSiEl~u?I)_xj)2}^KSRrvx8<*CX|}Lu7|2$Zp)ig(GfR5{1{pnMeSLpe? zK#dw3KhGA5?k>d0{OD0!dbWdO^FW*lA&96Ip~A-8H0f4|m&Pp3Q6+sHiGZ6L;kMATZds9{k+d9x=JN*y}MU!DrmJ76QW7@v+Z zn0r%7PWtwpE%8^7&@wqErzY;1{T4K4CZKy>b%5|6>0?KvH(l#bK(0`_dKs|O-QBkq zSuln&y;t_&aP(w`uNjgoVUX*B5w2P z=Cx3*_gSx$=;IzYJG+;6&0;v-hS6^>P#UK-vud|(sa%WOaJW|6d@ASgu4^ZDQ-&A3 zXU}lE0Np07V>R0EE_X*vhN0^i^IWeVS3_N-pX`s!ijqXxHc-86Z^$*NYZ%qkRd%XJ zB8eIja91cCJQwf?3xbd2n01a~pYnWD9&dslHy>1!36x^EV9v$sCIzQ^``*eYhhluC zy)O0_gJyF>bv@F%){BQxl9kHypw=<3h}yX170rfQV7+Y}PTE&`0T z2pjZBDi1E)RY4&Q;6)_9<_{x$9_uyH1NWP|<8GeeW;@pIDDs;NJGuKRU-Qex(Ovgg zoPwcT;gTvP{^3M^4~DshAHoWHmV=O^GiPtppCr{G-Se4gRi+j8HsoO_kYSF-Q~{MW z4Pm5jdfu>pk~M!6jDbhVTe|3GWlrsIdd}hX6x>}s~F!L!7)yY;(|4f9r^@FDVcZ*G;Y5sVh4}`Ev17uq(vsU`?eE=;Hz@ zr2A_{&}ZynA4uBWXUazP8_w93@eWiBqgox_U=<%3zD|XlpJ;hARJMKH>g!9|Eh0iy zQ-K0Ll2cE^aZZz`5(}F6T0o3^F1Lxpp@)EfY;v|XeYx~rq7yAToj>1N^c0?pO++gF zdLe|++R_%E`)XEP#tjLy`*Mt&O<5Y+tuCaJtjK#SUwv`evP4TQwozC)hUYI_!sPny!+VNE;yelP7RZv$ptGVPSXGgiR5<=cre5U?cd8qR%v_O07IUh)Md;2%h{t?tLeZ@ zFQJ0b%YGxXEwqMs7MG1c%libRS$?;(%Dm~-XV*%|MQ@arole-dVC0Trh& z1hF=P21Xp_5 zn@6^~`^Oy1rU!o=u{SFprTYR|*kOX>YkRLA8haEwRvfR3Vt;o0Wuza`-dfZK8;-G~ zUaBi12PC3cO1FjfBAAbaW7=7;!M`8KIo|bW7-LLEK(3nI$bRg}i`yOkDqIs!uzQML zv3E0RS4F$KljrErL7#1p3lTQg$Ck2jvok``X2Noxf=__Uc=XY`i;m}gGWrR?J=*FL zn>Xz=LSwZyl;@!?3QF5q*v!1(wn`S;UWU3G(}fnHl3QG5u(qXI%_3x^f~rjKGbSVM z;4OD4WS#8L1Jd@ z{Bzt*%Jx~i+I&dVNryj>F97UVyZWer;`p8(61C_Q=Xy1ZgY(V`cM>=>#Rne@*+*v` zw6rYvC4-i`=*#)-TnsB@?n()m4+{=Xp|HM4t2vUuf!mfDgH@nsoD3mzq+tuEs1?td z>A7?fT)5uz%4(mG`AX%Nx91gMk7eV~a*|_-Sf5O>Z6%n_mVmMtiBTrGBuV5%^!kV5ft><+zwY*K&P#9M~JT_63%A#wvNw>WFlhv?LX`Q zHZ$YsU+Pam>jkB0BI?Gy%#{807(A3c^kV4qOKYijo{&-zJ(PvD;8VhKyzPcNK(?cL zO*c@XTuDso&*j*&I~Jz0P4<|tykk`_Q#mVZyNdd|KlwL)^V-bk>t05EuO1$ch(gh} zsUZsjMb+c9(|vO0U=GK}#rJpCu=JcJ^Az$Wy<`Y<9&XOPw3|o`4k4PGN2P8Z{?;N3 zIFe|th!v5(knU}!j39Lk^`Oy)?H@J~N_z#rGLn}MU&jzzCe>Y`X(H)f)lVYWpil@u z5kGxw9VA?oKF6@uUh4JK7SD&Q{TR1F0ou4Srt%3`{ zuDzQJD@I{mEEyc4*f|&Suqb<0fEeuv3{vH$H0&$))uADl z7kk0SM=gJ)h7D~kf$f&GqF2<0U$FLE^fnMC5{rO>dRkjr$Y_u?PViMMPu0<7N}zUn zvP5FatuW2U!gsQ47!}wlpo#YCyt?w@EAt@tU>AV7HM_uZls50svnF!6nwOzEOpEYd z0-!G_1P^h>WoYU>-AukPU1)oRLP7a*%`77ZgnUq(6^q5lAyCS-%cAFPt&85FP8oG z>~gQ=oy{EoRGcf+FJPOow!JiJYY)6xNt8Efi7fTy5hCz>&d@E%n@$5k)|U=4!G{MK zL~r*Y&k8k&jCKx}ePtmKyMw87plp_ZoE2n9oRNnabWefW;7opPVjK?jiO42Y-G|V50i+(GEGSRS7a7%nQ7Le0aMP%yA#^YBQ*9`=V1LcT*GOcl4IOaD9xW!p5WXm z&$Z>Iii^wT`3&9NIX%We4Q!s^cb%*8lDtV%T}1CrMgyV;>Y@x1(~ilB1jc6yea)*%mP*dq!vZjyye zr-$3XVI{;Bre{iy@gQ8X(PH6vtaCOxp#TG45Yla$)yZM2Rp(|f;m}nmpAmMYcaYgm ztwvb=jbT z3wGdSxfLElzG#!PQ4RJ&2V@W%f1z4^U5~C&Eqvb?zmvM%7$7V4K5(~ev1j9$pa&v4 z&|uPRUgF7ok}S5{Fr`<`;c|gP-xN~TS!y@^wR3`3fIR8 z6nuY_bVm@ix2(e zV6I$Qm_lhTMm(pGYkN^bo|icNz-|f$5V~#F3&#=t-p5vA6?lei^$x||dACn^N$>z=7pk*ghF8X%tUQZ)sJ+oO``W-Tbuq-pBtHoCI(YS2#D`Je7hvlQ~ zcNVm*sEqFO`CiXu3`NL;ei`FPhY00ZY|6TFEHR$NZnc@rUKsQnoyGG zn61R;t-V}MO~i_IIBi!M&>utOv*Lh`h8nVHog?U(QmZ&rPD<=}?`~(rc!-2Moy+HP z$%EC)jqn8Gwuqcqfzr0W6RM(y!w!XO>$$gTQK(Ox&TTJ_uy!dTCRgXvTfZ#V$YN-o zM*x7Sz5m)fXyA*W8a80c$94$eP8D@{OcUZ#%!TTBHrfa|&07#~+^fAhuQ|UD3f16S z67;CO){?*~CFK4dn+U3TEK2m@HhbT2i>jdXI0kSD!IHivJ_z$5;_kC2_tu@O2_~9U z1%+(wHBd5cVm{?mESJzhxBQ(vQRY&3XJY}eoE_Awt+*rE7x`Q{!-h$R%(2fg2T?qDT>MxwX?2rjgb0M8wqgAn}7Po1ku9-1U6hV0t&7 z#~2KLSJaPbE0d%-j`wK>Tv62*gVQRXU}QGQ_i z20O08@|0;tVKM7BQ@XzH`_w{R2Wv3{{j2pg@{3%sfx}@?l@}eA56e#$t)-o* zZg&E3Fq)h7AxPc#Gw)0Ce0@Z(A{D{}u0ggmedL8u&DG0g;9;*N(S|Q1al~ssUfw8< zMv{i>Z|C;`Q5ma{Sxn9QQD*8k1=VF?f$0)E8}t%ZH)vo(S9$ExZF_!RU9Nu?JdBr= z{;p?i<8F<)2t?w*JbM{*bSrt;9Ozs|2NyKg)8k@Aj^TBfecj&J&t+1s(hHc5ID%Uk zsat*a>OqSZhad)=U7jjMO|JCdd3vjdMlDM{R*MI}c=WC@<&QnF zNmgCg=NpBM5dPh_8(le{fh4sARx>BmlWrreF0JjM7i5(4K~-6TPt@J@H}IM7)eHU~ zJs!F0m2M7j44HRA13X&{k837*P_`Wei0EJ?A8W(shKN>iAnNSXER4zMtwKghvaDFj zz?1;RuPfciP9$GQYD-xX5rZHBz13Y0yORhzBBR}qKnRuEHWRp0cwexkk49$67 zZl41620X1N0s@GTe%I-1#4V+^Xr1?<8+FT#$ii;=pw(@+eTC$9O__(c0o#@(*b40s zj#1NVp?SOYBe(9W@)i{VG04}2c$MsPbkE{_ z@~FT2=TL?THipNral*&#w&Z2M*-nuPRn&03gp4=dN$>_!p4^=uw^{G$vw1r`NB@Qj za38FYF^b_WIqz_3InXci^4J%NYe-8#0>10lb#nf4ern*Y=OI zY#zLmXgGbnhEz<+r-xn%^f@u#q4_%EYf9WXNb@`{=eKUX_UTdFr$cff2@PFTu)PX) zjD34**nn23XK<<>^KoJDl(;1_1_%SD-Cb9@;1B{=L$mk$l*CnxZrp=RDk?PXJ>QP;p;`TKu9i+-zJzgTh!>0UxR?TerqojNJY`{@il~z! zSqP$oTYlG(df~!^aN1uF8GJ8~iP&Dsg}ViwXr$#ScOYv9B2`Sn9cr)0 zWx-UjdBD5a(Cn!~wQ=y3tcWb=0G!wAw7H`dp=mYL5XhTCzNM^EPsGEE2-`p&?pUuc z($EVLA;+X?BqU|=ePFvVj&R#`Y^p6dB_gA?7gM#c39i5H)y&0GX05G?yku?xI`>|F zBQFT|CB&yA)CJg(9v#-`oyQVk1;9&-&-M&*kGVcXm^<{CPq@BWQNXD)�n%laUq%k8X|4`YKcG^c?#cF^!+b3!CIfwFvI_zcB(UA6 zcbbnG>9AQsC@p$<-^bx%aYS6$#9kV=SHsxcRsr7I@~GzRdA+psF(y$>-?|%l#-zzq zQFb{;Z!M&(R~!Z@!hu0FgZ2jTn$T0qdrAPW;nStN?GCrhIf}zhD(1$nmau@ffQ+`Q zP3m>rB~+}(%X3gOIcs;+rX#K0A9f5OoKY&-OoHHh*THMq?un>9AhGy<1sLQfv;HwJ zpo~YVz}Gr>LCeJb>}thJnR$ulL`_vGO@{anEA5UQ3#0@HI3LJkUTSN{PPclHDgt|P z2Lzo;iYH1N8P0a5+?`S8pBJ4p$IP?b`n|g_N}5WwXWF zq2l!^yPooEr9)Y?<0heQ*8Wf{hO*O84K8DhA#lL$Cx z?EkaGGf-ZKymv zY%S5oyb0;~dhPvjZNO*+)bZ#@%0*LY>EsLbT)!Ay{`%K*;Ckz-kGc?weqC)^JaI@76%c4+g#e{X|j$A z3AwE2-H`-y_3Yhc^Qtx@onH+&~Q38oG5zIZ8l~#Shc>-UZRO=$9qt%}% zYbh*m2)zjNb0=!7T`Xvyz}g1q5LwbCmF4ZI<}8;u&N|67Yg4pK_(C+nN_!~RU)@uBI(z3OIbCqo^4?PUTF!Nab+&$^=zNk z$J;9AwN*-R$@JDH_EXBu z#K-5ohWGlsx*X37VS(rS(V4+v8+Qv=tfJHg3|rp;YqQ&x{)t*sCu?h2Abms4p;Ney zs#-a%ZnnO#$L-0<@`lM4>k~MxqqA8aAuN5wo^*F}Z>O&_)NVn*x(2!tn4jz5^E!;> zdFgJ}YwO|L+)bFO$MIz&HRQhBE$;ZYdM7NeUytE)9G`K2FS942;C3~R@$}Kh2Na2{ zNtC~y)`26G^%|s?4YfRI*<`ntkN#ysbP43FwfAAd+;~ZPl<1kpdE4yH^DK(m+Sj*= z+W6UKJ-vbcTV=^ggczS@>v1fA}w>=7tCq_Ib@=7yL7oj<~UGN@9_c) z*%kU{A$4$}wVU;0i_jRTp675r8rX#>y-XRM+(u!+F-3~=SdtPqNz-Q@)iwl(^seiA z`RnB;qwwm7>Lv863VH4Y52JeJqiGlAxQ6YINaWofj!+Hn4cjrFE7Rtd%AH$49M#3nR=H%6np9wyf`%X45G*(8)qrbXuqYt673s+Fj{`fiX3Vy;wGaAYp>CCtD zV^|urCL$~d4k7TVUx#cLHSg-R$kG1xmh2n%lY*R-s3dF}OAq_}I{$Dze!bSb)3`3g z>T^DqQ*s9Z*Ct!S+ELNnJ72zDZ=Y*!x4^~c6dZPPAAKo@a$jh$H~kag+g|iayK@(^ z4RR@5<&tyG-Gfed-y1*sOy6 z9jcqQ(AwtIUB~w^zd|#4W?gu>(3gDK%C+*!dOG!Q2s^c4zZ6|)>$UFLOef|I%ke?n zpQ)%}Mx-0x#^0P5oSQ1eBzXGCxyJijpDk*d)^R?e-~eYA zcRsqq8`0m_xZQAzxmdH52qr#s>rk7a>*+bDzZz##`^$PbX1UwYZEomNFj8x%(fsp6 zIeea^_xcrX5xE&Xd`F1QU4a|un&AV{4Ew?NrgyopNP$#}+cT#{`MJ`ctIZB~If{sn z+h?79g*+j;q!*1AbX?6UTt2`?T{amqdjqS%EK@%~BZA`uNU@@M@B|Cfo0ew$s+0uvxBzB zlarU>^g*}V2q4iFmN|@WOY<#(|B5qpNKZOIe6gXTm44jG2UDwQVG5|ZgDb7GFKE}L za768__6%`464iqwm|dRZP8TMSB|@(B1aQy-wP=JB#>N!XuWTQ(Ec>>}Bv(yb=0kGz z7m{)Tavv3_(`>Z=fo}%8dxi4I|@ZVTVv(SSi z2~X0{wAmiu`7(~T#>V;fa5vUvzBHQxnK*(h?p@D=$sT(s>?UA04o-b5=@T-2AKg>i zKrPIQw7|q<)JLu3y5h3;g8u!P^NAxm=`$3aw~O1JC@6Rrk-_@o<9t-x0(E9=Cp*z+ z+H}1_DbjytFUFU{UhWaVA%5n*1NL^CWx~H!%1FHNp;J*S$+EbDcO#xZI@Kb7gdhwt zV)UxKC(?Qc&+`!VNs>dtoZ}?XHC$WGHHGKky&2I_?tzSv^ZZ!R+vrXt_R!ETD%j3e zwbq8FX$EN$if+vxH}}b($bl7G0s9Rk9^ttfN_(P=9yEM-ob(PGG|$Vh_srX8AHcu~ zpvX@lLWW1p%Y^WdSMV&aIV|+B@Moh0!jsduV8m?NF$QF3k7BRd>f(Id=G!IR1s*}l z1FruJ{*wYwrfgbmyUpvcMg%rAZvbY5_C}Q2M@fdChj6noajAne@48b4Z2_AMyrf)B zQlLdr^5MS_5O3Sc<<+HSd9t!x+{Yxj^fauKi_M!4r9;GXyR~{T$apw2#IDuU&-!e8 zS|UN__?+t8$?t-97g<4g4QP9#J+WG^V7Y|teRq9Kw}+@+MO<%#EJQdD04+<+L28nM z#3eS94J+ac{%795%+MSc7jM#($E^RmjERvHjkf0}FRl;T z0OzW+9NNrr|F8_bu^mqDE@H55!K8LhTx3)>bZqr)%iQp+GG4E?0eG}$g7wC*Q(?QZ zhNn#*ZD%w@FpB_|3V2X<;3K;Aos1aN?f|~;y?IGT+^dvV`$Ns_p`ErWBoxG+GOn(@ zrg+@@LJ&BC|Z>N4?EQQAu*q4 zJF0xB>P>I4a5k2cnT-Iwm3z;ZD>$_&rdbk0CVb}Tw?ql$8iM>d*ilvfIgq^ZxAHK_ zG|O_VRUyX(D}DvM3{fn7@o_Wk9o07hc6w29)F}CLJ}~tb#blh$$ZEp8iz{gRndcEv z5KKJgLgAPUtl$Lg(>QdOCOlvcpa*RuNQRMy-G#k7nEtXG_9YO*GmU%wT&pX%U9uIP zFR$g)f+}+i*L-X)(gK+kSs}>r6T+SHf;pBGr32>X(;b#?a8`~B7@&(Qo`Xlb#`g$N z0~inKP~6vGzPX=u+EkF6l`Z+L_z zVIMX%*%hU6JVW$N6v@m+#%-~CW62x^kf~_9Vp-rykyMy3*RNOgDsX*qluQ!Y@r)%| zep%^v59yZ7ylJsbkmN1{ZxXvJ?v{S$^os_cZH)WTGIJ)|TAYdHoD@3;_jm$;#}`1P z0dKR;fgey#F4n&jaHVfUwfimCYxnK(a?p3iP@=`vVlleaF=6m=gbAvf!cX1Otu3`2 zZ^-J_Rgy?FJd?BG+N*2yY%p`?a_nv1I^W-(<*Ej3`i3^^O%Q$mvcIEx^+ra0zegSe z>>8A$t9Iqwr*N>IZn3}dp9kBE9<3+j1<}`j*%A-C?T#xQ4ufymX1w7FomczG*mJML z{grhO?i`lN6h_AlXmrRvBA$`$VJH7+P7N)QOt2-AWDvTMJekYaM8pTgE36EIAkz+= z5@`b60Glf);_>Vlx~W@cClTS10K&CNz@WW%Z5OIbN6yqJMON%y2fV`DNQ2)Vwi#ex zOpqAt6)IYgA2HutaQi0$C1Uf}bXCB}s_R}{Q=+k=VN~F6E(wpT8hgYD54*R{9^qkf zqvd!-)C>ug)7NW0l4W@_IqoLV<`WiHSvVAr#_d3PiazTl4GV(L{c>JiZx>Al+83*z z0fCxE^YV*FJmfZ&W0U-uGd&GkAyo9z8^SJN5+?dI7mtF>kkSpow%3nOgimAx+b6VH zidm`g!?WUZ4lC?tN2`)z)jAsze}n>Z!^iex@q8dS^p5*+tz_5p_G#Db%cKHeW|V8p z?(%xCWNJmIjr-;w{pa~bMjw9)a_mYAy@H%eyU(*BIL5sPA$2L-^w(o~V=gmK$XPP99u;i zdc+jPlI0?Z1nFsEdf4S16Bw%I-p3Sk@Da-ZhLPs!l|_#cu;RJMY0cliQN3kb6mekk z{>*8UDNZ>{jL*9A-9kByJ1#LL?)rIt-n1K92SNx3yC}os#ayxe0-zu0avhtKGqc8C z9h&14X;jnU+%;F4#`?-N6Z91*wG?oJpQt_Btt)7~iFZ>lB6u{x>|k%GZ<(N@eBoVL zDohH&^R!5F9`hO&DC;uQN>QMA0-NUDogX$FvpenAbQXCxs?8bHpKiA(!Dpx;!7^pA zNDsDH3ktWReP!MqBJ+%`D(?51hDLMFMYPzxZ)SpPK;8<|LfF67l+r4g<8fh^tB%bF zcFbn^(Fac+P4x~QhQx%4*95qsXvwl8S{MM0#%hoGITv$%e;c~!HrK&m2a-9itaMD(hop9XX-_00&?I>&{jbmCcktOq z+@TD(-SZ=V+uOl*yX*J&n)+jV)JHb^6h(bsd-+<2TAwzL?`vV-*QLJJrmhOKI=}fl zzJ?siy?U~L`n7C*`C4=P>DT`M@x44L5gGuu9$Uw{-cedyEY`)wMmzcRTrR);7z)Nej`3$O z{ubWIU&r__G5#%#e;wm5Vl)_k9>c{jFm@Qfi}7bMehcG&`TM?n`5PGj1IB-k@tM>` z!T6hh&zCQM4dbt3{5u%`BE|t@iSc_F0>(dq@wfi&FJJyAjK7BQUts(v82>TGzlrh2 z2r&!{2IF@y{w&6CVf?qhg`bV_FJlZC6~-Ooh_S%|N2H zt0=~W_W417;p>0@==;BX^UWWA{p;r+zI}i5``<*#AN=;RfbaXa|M1)2{EPSfzx=^( z8whv(?O%TL+v+{dKEK1Q@%hcIivEfJ~}pR*WdVM z^iAhCAh3P|R5wITMf{Wh<=eLEoA7hMfAGW4{xJ`I$2>{`kYb{eO5K ze{$?Up3h#!A4PE1{N-yt1({KfD5ctY^Swrs!4@L4?l z`WH|dH^0OOQdZsX+f5(;@|)sb#^XKeviA3>@A%*O$p`bp_e<_6KE+?)xAs2AzyAxG z`la+c|EJge@&D_NCwkL;)5d;KHRU&c`wb4^XJ7L4JH(81#Xb10et-V-c`@F^PhR|! zQ~cv6_j8xW|EFj8C&%#P$^JX~F@HYApM1cdzka<}zx({@7eD=Mesbi0$Ijl5rwrHA z62})8APQ7v`{Nt%aWWEJOWxgMVJ|>$ms$%TFif z@BjX-Abj%;Lw_f8lFZ_dy!;)@Nfg83@Vi zoqqFbd>!9d!inNN0WVE1vrC_^k8p=U@GE-{I>?V!xvqN)~ZQ4EvoV($v>KGT-sE zNPo^3zRI(pIegwM>cI?6<4t@$PFWCn25<0ZkM4)FDpL5~II9fvoy?%W_Wim3$yX&x z7HGUfj-p|7W~3j!w}=82g`fWO-}`e|%y&2{=IdMdKiE4HIJc^LkJk;Cr=mPSL3muJ zA_bb6?6c4oOIu2zrKK$hv}Ky*W+rVW8Invp1qBpkaX|z{aY5X01#v}OKtNPBMFF3< zp|~TsptwA@_x;~3H_177l9{x$CE@cendID?d(S=F|9{T;|DwHIUNTCS@o6~5HA+TC zd!vys51qH%h&ZI2b0>ImG3|BRPmC>`(XgD5?7;_~l(&)I0la3`+h{Mgd^|y(L=y2t ze4yXG?!;g;9Ol>6*KI#v-`#r`ONnxGil1?QJQAlQ4Dh>lekbuh#>pz>x%t?B$*9A5 zD+3SrV+J4gTWi2#zqLmq)_W;M5q@U<`lf=?Q#B{6ed7hj05YuUn+4|?YH zu~A?_Qze_%SC#S0f~K=mAq|6X)1~Y-&9~O~W$l-IUCl1=YB=Z0PLbAY7+OqgmGc(T z*6K$KiM@K&N?Nx%wvyJZ#jT~aEB};fM;9cMBpTJ`?7XV}32~tQOXu;qt?rapl3gGb z(Q2$)OKUeJEu^hAK`kVvd9j&Jc=*i3vd>k0tdoF_yQgT@e$kyUx2IOVz>bEum+BVx$sYX1Al~j;O+1x zcr}zjd;q$M_zv6#;;Z;LTn6H+7y}c;UvVIb3*wu&5-x$)LKcn%1NMdIz|-Il z_#VCw-+*i3!|+}ZU&T34fs^2P=!5;>Y49k%hnqqC6qmzka3UN72{;^H0RNzj{S5Ad zZ@`B@%H12lde!$Xn5C?Y zA+*A#muGx_4&QHZLFrV*9G)oW#V;{hWg*2-Utgh=Nfky*mFmzycp%*8J8`B|NTn?g zg?(prdETzq!gd)`NEXe2`yGMEXO{R91>csQF2r3WI(P=6*fNOXHN?ZXlGX;30+%#2?3|cOZcxN8HSWFks`MxEaZX zGK1+zD4ApBS1gIC8xA*>-t<_t+MirKvB=!EbXP9DJgknD-rb|=jkQ&Lt)}erH9# zxFR*VMt-*5Jx-!rxin@}HW$oPx!5~iHpk1Qj9IDViz9|JkKsSM&h68~RF|C7sE(So z*{%ueSPlyDo7OFIF5hv@{%7S}f^U53^yL#Hsqw|zPF}gVT8z16ZAK%<$Y3iojnNK1 zeR)W84f`q2HMZH$)_Oy^;6d5XT6*Z=%6K7PopUl@&Nb{0WcDfC8=Y(L*t4av;Yu}C zHRs2p{^G(Dk>ji!1uH zune9HPlLZ<|NjDh0AGiX!=-RK#NkQsYwZ1d;R8^Gb+8onhljE6?}6*!OgIe=h9|@K zvE{!E?}1lC4vvJq;4y6V`{7gYS{Q}pa4`H0`}_xRBfK3p!|@>N3!V)>!4|&-WIe%! zAh!Aua1i_*d;1=^8qS9lB;XL(AO6n6d;mTRAA|S7JK(iYf(@`3=7HGeeIV-xo(>OD z1|Ec4;A*%W&Vv(S0a#_kT{F-yY1A`n;vSck0|Q~l7!#AMC6lz)3$s|@aj;2gfI8E& zI88~wRNt;*l(PCm9-sa4bprB1Z6?+Jx(8KCbI7n}LgpG-S@$tyHkr!^~WIP^A_WL>|`x{av5n+%&*#6hcjtpL^RBRGvo{dxWGao6*lB!fOYqE{0 zrRZR9JQ*JxRHjNqWnz$XF=44W*K}rX=B3LE=24{0!h(6}1$N%d>q{?i^JiY4{bf@= z;i28WGdy1Y*L=Zp|FstrN%ES9o12G5s_p0Q_MUPJ*CIt@dtOYfFtuZe1mR|6P^*x#kq&DfUex6m~4Hhe9%`#_=tnV>0g;b@&dl^LL2$61T zPCT#Ax)#lk(p9S(M!S9+jB6*W4VUjOXmOL!B+J`g?>b~?n_@lPsBxz1)T+MW=uYIn5}E5}aJ_vmW-Oo07R)xUXQ)&xYzvigA?XvFOnG)+}3jymu?U=^?wQ`G&Sm z!ObL>Y#!LOy09`jyv#e!zp`$YQ%I+`5D*gq%YWzb{EPj65H|lxXZ`=tj{W~2w)}_S z3V1V!-Cu=`umtvno3P#A1gF9C;BM^li(wT!7jDM>ehnNA&j4BL{|T6Y?_*o91({oa zE4&JhhJRr@Zv?TO#a`YQ{)0{Y5XijuHLw-ZAU1OkJP97gHvS%523ue;>PBPKEaSZ^8EI0ns!QIM=nPT6ww!vtid}!=^hA~6 zLaEBK^3-_m7?YuFKoyUYv2oof{gqkVV4P`W^Ek0m+lGu{sc0It-#x;3OHpQ3f|>n7swsrHz)yO8*18v(Bz;4rNNkDy}!P9Li@y5iV>?um4kZ z2dTP5%`hUJ%4{Afvw)WkMkzk3 zdy?hz>bueByM4OQR>}@Tj~QpawR+#WP|eMcmnwN#ay>*Ludr#OsvAu?*-tiU&Lous z|H9TG!!G5TWNvPU$UIFFdjJx2)tN$moKZbHN#<~xx$+=t|EROvVA$?I$a;A406}+z zJ?hupvf?4;i|kF2>SJd?D6}PCnMf51+h+VAr^tTAwJ={X<6jM^uwtL6^G$IrXR6u@ z)n}SEMDwv>G&Uo7TC*WzHfxpnPgA^_kFuY$G!b6oG!n85Fe?M*I<=cFV$7ty%9`=`NujkGS}ETny;FN9;(hN={Xv2q1F=mE~fUOePZ`l?MteC z>weDF(7Ujn#!eodYs@C5TRWFw-F~SU%9^rL zd`V&yBnLHxujy%9j)m=0^wI@7RsAz>x)iSq_C4WR(VA|-o1y|VUd4_qcT;2#rEbl* znaSt!8K<~OIm4qgYE2?)3!1v{HQp$*)KxPZDj>UF2*rl@g>q5)Pm`eP6S`hF@FY=M zzH}^`&ShIHe07%);plAKOy_dbIXcYIxo~bkdo-Cz#I~RcY+sEbQ?Ts)E0rtSdfb=` z6X?q~Waemz1_H~x#d~QugXCl`hww#gddEv%=8|SS8=cQXSO^bd|KA87h0EYH7=k_Fr}zRchjCa3OW|4YOMC;@!w2AEcp2;i zf5uPn0Nequ0NLl?3;V&-;B(yM+u+qugg%h<^1r}Ga1*=*HbD=_9J}n({}RX=__x4Z z_yfKH@fFCP`~Qaj;1{?K-Vd_R{#kG%`M4D%KU0#Yvt;B|d-Z4rn2o)k*D=~_f}8WzNm9nD{J1HVt#6U+mnR^avuMdIYs$P~*cC~JWX@p6J9q6edW~gO zBVV!n6FG!_|$nhcK0;`A6zZNaCZ>ZKHQ$?*qNOCuw!gAzx`nW`gIpK+<~4O**f zns3r}v(ItHn1^a^T6J#q5HDmbsr4RP^M!(!1*TCc(P59L*nH0Dk*u&MiVS;6mi)aD zyUlw(8|_&h)lY|}x~qwbc!@1}`XKt@PWqa=KO3nlTJvvyD|4lVQ%8WlfisE0~j^Y+k$& zmIH<7LLJs5_WXTvlroLJ?o~_zV-(t|cWbOeLSEZoS2XXr(^Z!;o7<>vny2Wvm((sH z{S8qIaf&ePm29@B<1(Z9LUw2oxX`3R!Qp0)Qn3|%`Ixjq}ZY}Bs$gXY(j7{ zpW8;;MT=9UNepay>KZADUsKJDDod|Xn`oFu!{g@ZjI+}!1^CNw4o5WC>G|Mn?|u}| zEdJ=c+Ow{A66i)?t|L6GZ4tkJ7F^_f z2eJ^JNpG3D3fXU!xn&r>LnJ)VkRcD1y*#>B*_R#=VVToq*)QUN(S(bpZ z;Ce&rrg142_c*I!tSgkML9TRjZCs^uT{wej>Gsrh%1L1N_;XeL zk(0u$npPL8OsG0o(_ean6Pb)uK1_Ylw{laqMuc+o>GBBGch<(`)C%Sljjwmz`J$AR zkUgsLO{S`T)Ux{4n3OJeGww*fIy#XiK+;%WC6nKrui}(r$4C7ihzd@amA+_%056(> zlXYfyaBt55F>uG)$}{H1ycFBvV%m<;xT#{}1+-$|LreUhIEN_*q4eK{|#IU>tQLx zK=$$f8a@aT_wO|5hv&h=*#B3+g)jlKH~*RNW$gbCgY3g!0f&OD7x)^y57vULzdsy) zgw20F$bNd+N52>(zTdTQ0m%A+`7j6ehWB9iPeKM(!n5IT*!<_ha`-p){%_zuI0c>q zf5YDYIeZGPfFe9bK7Jd{1A5q^%K}!x)lX=E@91c(C4w8X^u;JyJU06Z`dtQQx&~{Jd?&;U1F!m zDfUu1GvEF~Hq(-*$|4yoX}xA0FKWI);e(gm(E7M=hS?EHm1VG;Hf5e!T}xGYqp2^o zl^LmtYDw9@8^%~_GBoudSyH*nGYA5vUBV&t-||;6ZYqt3BpRQl^-vV7mNKu&FKIV? zj1p&@U(;w`!s=RMxoh2e*?I=(@2%Hqkvg%sqqW;~uij}@W^kjdz|ptX`j!Vf!k!}+ zBVYoj9Q!<3prtLw&SI`!G&GcH6a`M7-^Py1=(_$YD4U%kpzcQ7x;wWtovCU}RG(=Y zm>pk|EUUxvf?y=#LRLO$!}9*Ov?k4K`_!&XyLogQK6RS5a=!I8ik8&p&v*JGBV@I! z0nKU~Pj6baQgOHXai-IqjY>zgSPD`2ANVmg{g+@I z*1=LZ7=DRee=}5J7>)ypefKkL{I`MZ5h%ie@J#p?cK#RPVi<p^6TAsjW_v>}=;$%+{rbSaFSeH7ouO&rgE=kqKEI+A~!TA~hu6sgF>)R@+Fb`aK$h zMfQRxdsF~{s3>23Utc9vVr zXy8{jvekHEtX^`OBU|q|JLB0QYoMWSh*dc_qnm56kAiN`O{#ggif+a+OuQQmx-&`@ zK4$yYTQ5B`y7#&VyB$mx@4k0kL#1&v6EN^;Ybe#w?gtKJ?X=c@8Y9c@DVe`gZNc)E zqU#3FZM6L@6lQe=r5G=1_8iZ+K({!c)nB$XX0xW}t<7@ki*KWKu_mm%{$1;>@J-2)QL}#BZfVeRraf@-0(kM=hzuP+t%CA{|#^nyb|&tcK@%i^Ch;v#MzUW`pe-k z*aLost^Wmh3lyOro(ey~)|c3N%ODO0NId+n!8x!14uyT-$JqJT!w2AEI0oYISM2t({%I!%}UeBG^d~lVYSnt$O6-^$wL&N6LFSe+B@u&|?9(VK8v7^N-f zwhYeDZrb_MaGs!?ag%DwoJ<2V)i9c3(o0s7RxRTEe>O7Snl>q*nbeQw>()Xf!kX7G?}+nP>qCo3Cn%Q{tKKJ|!Dop(WA>1h-U`*dxTh=2nc zi$Y+D3^)&2s2X*6!h_*=xuq7JKFr_6iRg*BqjG8+*QML*}6Kl?aZ9L|n zBig8(0lD8$QKpsuP3LIk3AhKjWy@XvzeVg-?Ekfn&H5$m{dd6e@ErIXw*JrIW;h#U z-T!moZft$A{oe#?cOh&5SqJb-Z2tGd8h8?1gRP&27lX|E?*-3>Kaz((hp&Ug0k{%g z2a>lFPQBjiWSG&nPwD+JlZ#Ac zSo4$0Y?Etr-_PWHW2lA6xyH;?ao7!_H#}~ZW!)6J*oKK2St>hsKi7UR4PrE7Da9G4 zKCC=ev5qT__f}3XSLaw)P&s`f#j{ubYQxVGy*5?IOh}jH5C|o2XJ1edU#AtzpD>w34g4VMxO8gMDh_AkY_SPOTJC33CJ#p==1Koi4^1XzmuiNe^i759A znlF4_pL~wO#ze7-6LBN&$N|=zlczvX_qDh456QBo0Hj=s`}n;du>$_`g~Y+9WLWzJ z@tsJ4u(u96A}O+>%q}@ihx$u~7j<`L+l9GKTv`&|kuoLs#sW^W%BRCbCo68|lTp6qZ+G)=;|AQmNN=K# zR%e2^%6%gyagpgBvwf}#91eH(1`k`!Qg7px_DbY`?&ipO;o ze-DOf5B96r|7SQx>Lb|vUxrV?TR>s}tb#=lhL^&#K(zkufsepBuohkl5)a^BxDMU{ zMOX+4I2?Lle|Q@F9zVg4;FItM$irfgbpsM3Kr{o+gEX89YhVTR!v63t)(*&?0*NR1 zP52r}T*2!>;t0G7#$Xl5I)f+}@K@FrdsgrB~j}q3NFG&!(QfiAuSTz-OsK zUm>6FLrY<_RE+gT!t`mxy<#83W`=qdx38B`fLRzON|+ttt&g{=y9xUYE%;< zus7T7hh^Z#S3ME|DmCU4^r4d~qDy6eN1&0i@4GXdOz|trs_Z+Tq2eT6mX#Cs4d%T~w;2y*!>Lp#7753rF>^3O^y^y2JMm4U(KV?>l@rEtqa&+)*W&vPF4IA%%GG&Z2`nEiGdnsAuHcH`O^+-?}=23eyf3_FX)2yjh7= zk|#!&o#YnwddIQTFq@NRW;hMTs? z%}J~ANG(N&W{uSxEjnqA)leaREJ2~hhDZ2{6tzE?AEylxdv?BYi0kq^WUf&h-c(9g z_%IalyI*Pt^3|D#EIMRpUAPxta%96?;}CPak}s5s)@NZpw7x+xMZVi?mWyVAuMVl? zN5)F|>>(TKCrEqj3+1%j#GGbtq@$%(l&?D{pB0`w!Q7hdKjGzTtEad7tPsj_9%TE^ zs!lz;p)Yau!~KuZy*4UN-Jz8&V{UTt#aHyF?ME#2A2(R;Uvl!xS8qDO{nb`WFM{vW z&XL)(jcBhtT<=F)kp5aaSzU2PVI(xNI=ad`u5;2~<5Z05ob^3NM-XhMryg40!#aAj zGTh(dakyz#TXQ8=3TN7+p$xkT7r7H5xP@izV`%;QqMX;86NzXJT;)!8SU-Z#%bEPp zBwy&vWmu`*nyowciiN9|SP88e3(Xl9^a*tIONQpXgcpwqy+=Ki-HV}~vacj79mr^81I!I2$60tbR z;_?2dB0H>tfz)4eU?37pqUs#uD&hl;r|iIpmhrFeDrY*PO@`Cl6CwHsBAIw7oSt$`h}Kf5F!ADpZ%Sy?T*-L~YH*J;ZiElFn1l9clD$*jBf z|4}kOjs1U=V+?)^+x}Is5S|30^(XWGF?bA{UF`a85C;Q(iLHJd+=@Lu1be`v*x0hi zzX;#Pem)kyjJ8o-Bmm zmzAU5KRr!en5Zjs*F2%2uvK|DP4$A$>PI*BuVIF^ylm2266xRC=NAK1{iyXbJ9+#{ zFXOE@WC^dX;36ePUk<%VqZt>!+LF?s1*5f8x>aUw=zT8|%kCt&=+*zO;G%)lsc2eR z8^n)LH#zm%i8ZZ7>z%Fu)gL56i!Qn&+>IJ7M%aqh!cIQ!f{W3Pgo+DToG2ZYI^PtH zigFT0^=LI+nC9bVH*;5T(cVM;erZ8haM4|#?yQ756>8eOFbYfIU)cW{#}6RF0bj@V{}fyS z8$jaz%bfmC@dexn8(}`ofxY2}_ys->Z-ilZ0sIdC!2NJ5TmV_f z8T=nUgS+74@HRLX;viapvq1J5Tn(2)29AWi;Me#Ju7s^1dk2Q#rLY%#6u&_cB=-M@ z@DsclUI__!G5iXD!38iM9>ZVo6Sx!J2g5K3d&8sTGg6cp7)^R@hziv7!cX*}F=jdYU?3OSg-tFM395?J2bG9pI6;f%3cRi(U1_TFWLL%2Za?H`9H0 z)fcUd32@BqF6xV3V^Sv_wX3NwYVKl}QeV{E!!D@4sJ@fd`zVc@spScjPK^+DCiTUp zJe_fN?xyOCO&Mj&$#&Hj>Cx!peRZR&zGzu#$SB{$J%7sQ-(t zFZzGiz-jOj5ZnI;a4l?uEUbe6!`{CIt^rx=pMjO|Z1^=c|E+KZY=t%OH24E{zxV;Vs8-`@_Og9;3TtiS&>n6L`w!B?>JWxc>K90&Ws(?E3p*24figpGe6+yo2ZAh?J8 zy8%85R$g+6b+3SNpKZii|0)e(W#o#ETeo#iOKsFzY(2;Mq&B)0GenJ%QQQqE+b^hP zUB+t{PxzXxfXT212V_vjxJljE8V#4xLe|t~8Eba9x7o5QvnT<@9Y?U{Iq37)u3k>r z-MxxlK>RVJQOpF!TlV7Z`6L`!lH^z@tH#%*!g|hgC4XHzf zr))!J(Kr1+y^3k?Lhh6z)vhJ8*ka~6rLQr6W%sbs5!}W@Z>^=T>i}mEKT_WYDelef z3|WA^gKpF9rJROz1~3nj*hDvUaA!c#$F?b!dfV(*^= zG58;lz5ZV%VG;V_H`w;FzyB+67RX-ypJCU(4PFgJSOO9F3wHf&@LrgJ< zvH2OaA==bcUQ}<`q2P6u7n>?KxiZbcuD77Z8R7>f^FvkpG$_VPb|U3P@3Jk=XDw)@`r_MY zU1YIsO_X>SQeLdjkszryRc`nn@9wL-Sf5Ar-I9JTFR+y(K@!M^Y$cmx~&U9cG>F5hhUKWzNF;Tm`y zjDW=96CJ=uvGu)nKfvldNm2AHHeDCM|D?z3{E08jMjxRYKK$ zp6a2~4|X*eLryqt$AehctZ0Ki*XH-se#pAB1Wlj@Hc4uUE4Kxb5ZkRkYfTgFHbY$v zMr}xgt_Gvk?8#Q0QYA0(BZnlqJ(1+Mn3}$%tHC%V0d{rS6VO}N8WweYjk>ke0q3b} zfV9mR9l-P(prB!-f1y~-UE&-O*sR%UlnYv?dz@x@=?t$%)uCz{S!?OS&ZE!SFd_^p z9d1&MEuelP9WEGcmxzD^8jC_;83;I!&x4@Jnl_3@tJV1NF_Xmp-y3`MGh&ot|M$rM zc}d*=30MYkFyOn``=5bPSOXu&&VL!m8vjpYi%Tp&S%3ckcJSTs8JGkEeuypnF?csz z3?(=b4u==R3*mY24}SX>a1Y2eeHt2H?l_%r%)6C*lZ5tm@2w%eqe8x^mXdc)*yZ`P zpv%6fvUW;(c+JZTr)>D+DJvW4x--Q<-2+I(%F;I{v+I&w)S6#I*L*XK^htvzj%(j$5o-Rl9piftEbtYM@@tV|JVYX|&1y6gBDRnp&w}!_o4F4$Tej8g3zX|Nqmm(Z&8h(=oR1$KL-o+zwxbkH8yX64t?Lm=A}; zKkx4{dxR#c};XrsY{DSoe--a9Djj#na!wT37 zo(X^9`92Jy|Mz9M2qa#i_1qQ95gH@NN@*T4P`1r%*31gvG+S(1nsb(Jat;X^*6ib% zkZ`j6F*e51Rd)3 zT`rSM#RhYUP&yG$hT`!!qI8L9G&GP-XL6`^q|HdYHoA7C=&H*Knb6inO9qauZ1Ke` z_WcGuktanr5S~@*h+5L~sCkQgf*$rcTGUvIpSQD`k`6ExyNSE9bv60lSouErxr)Q*3q1rH#8sF{Jfh~foe}yw1Ecu!|_D_U^tpUG-)b%BDt%9WTGDl zrh!N@nrQxgTb?M|n2FB5(`gfBlFUxmQ95QV~K1ilNgL;qS^km**{n- z6HXJCOeBv@l+H-x&Nw}(ZQ|0Yia9({&Wom}D~4`~qmGs;)uDm#K)BC$V!Dk~nxvlA zQk?=@pnzAi1Y&WbP?$SwzWtgdWtAt{oGcdZl&EGd5=C?{7eQ7NiMKi1hAm~*1=1j8 z(M_!XySI!|V|LD={uUDjy zn>n}WX%pMk+8jm$d7@BtPiNJ5e-q-%1Z7(g9dPeU4y{Yw*n@JsJ@I9^F>8vYB6r7( zLTz5nlPP_r|FSq-hSh!Jg;c&si??o;{G$Ep$)>6)Un^+T+Cy8Cx#By(cae3Y)=Vyi zf-(cvRC)jb<^BO$^GM7LSo4I~7oib||*)rmWnsa$!Vmr(9Ya!T1_-bXf7+V%MKX~!9?EkL*U#Il{VqN_|xAb~7&U!&BSC69l=se6_2(R^`|QBVqYgN-JQN6(#ki6r9bnv9A7KxfaoE8u{7P|Lf}i)w&9+vv3WG$3y=wW(T8?oksp} zw)O&d<d`UFPu)JntC_oq{-0;0)}BJ^76y-`tN%BF zO_nNVjjsM*t$C46#a;csT7Jm80LR?!qW|YLCUqO2b~XJ!&0XwL`hS{x*ah|f)OXT) zAEj|K)qJE=#5}0={Xxr>YpHZ2gq=zMuPIMwoSnO={$Eo@b@l(ePK`dkR_a4t{XeUZ zcV^nU`hQ*hKewU;jQebB*ZNm!2rIW(syvaJPR>_917>~doR%7SH7kx>ds}V1w$n3- z-3V7ZOkr$B+0x*E49XZcsm6D#m^^dZ2`_7Evy3%6ysQ7GiruDp4*EQ{tCv%Dcdw!s zP^sIR%5_Sk-5l+(Eb@7ec3S;E-}L|VD&`Ye|F6Z&b4p)h{_Y0)e_j`;xHq>m?8K6e z*7|w3mvUy*g2Gq2Ni`kX&Z_?xl;0g$JJVW5*A1wGvU!>Vs({j@oH^i;cd6VX<8sq(b- z|AMAJJ3D0X*Du)!WtNYyN|dbsXG?xp|Bt=)UH!kAdKv;+o`%k1TG1|>&e4i2fP0Xp zUG3`s&2n8-_WyC{cJ=>^9(C~BmMaLod{_UksbG;S(;V!2F0#%B>1k~w?=~UMKv&~? zYDHv2@1OE+&Og9{ml9g7 zkaTHM=E(BJ5rXNI%Is_l@sT|gYpN|yf^sUGpQx}qr#BjOVma9m9pa>sEmf;*m{V!b z)P7SpLET2%-$G$l&nQ!jm+VCPe_mO%44zs*d-cV)Q55S1WOgC_zxo`h6AWu8rK;TU zKi(a?LbJ~0qHU%FMyb>Gm)CboddoSml_TSpKcV&i>dT$e6Y4WlT|vpkm0kTmcayKg zfvnHgy6Pu+*VO-uDFwo&7(cpILo=FDwdb1o^MGcwt{tA1so!vhRt)`iEsKB< zpz4ODjl6M%w^U;=cRcA>6J7m3cYqt9p4Zx-zLu&3qua+_|4&`LTQ8dQgI)c!0pf+ZgNZWM!jaco|eW+@u;?K%I9%_Qf;`hJCs=N<_c`jYT1_ zLo&OO041NSR!w2EbP=(EK5-f(j;Wxz4|0#SQ?uF~&U2p+xhBT~zBj6vz z)V~g10SS13IsNmY7k>EES+m{>Z-n#U95CS+h{KEFkHpFUC42)Uj{a-lbQpo-U=HjJ z4-q&2CU_go(T_=k2k?v-~u=cCcw(y`Z&azu%>}Qx(B2Ewf|z2!dZTQtQVwP z;$#mHsh$|w$tc0H8-q{FzJEe?M~vh^zb<5Vw4YOlH#C*>o<(j{VZvrs%lXNn<|M0# zU7VM|!%Rr1;)Q$B*R6=&gVDiQbRZdx42B0Ha#Qv30*So6YKfd^uwTM+b5pVCVBC&T z-jq@jM&$P6#NG}k6Pz)j20zJLJ(I?JndnE?AAxr9*zXW)V59)5LG+ybalnj7g^gn=@hZG+c+`nfbE)N z-?;auG9q>x=XE1%+oyH^n(0}sSld<(v=eQ6IMNXKTHia2b%tU zJB2N;Nx8_C`#KZ(vwlp$O^FJsPjx`j=wp#{yqnFEP+mP#i;p!)z)n|u%(_-bkGHGc zsMc;&C^dQuYuqJQbupHrOrc9PW2H;)cufxiwaG_idOw6*TT zX(==wwc1=wP(Y2&IJy)Il>#RJ9It`W^Hnzr48Fl#!!0ECzi9sLiR~)!|A!s>|F`J+ z-3Pb8xv(Dk;d$^=HVj+~6L2iN1P*|GU{Cl1`h7nH(fIoud;rdavtTQn4ky7N91PEZ z|DfOZ5PT2b4h2{UgAj$e@O=0)T7Ex)Ti^@uLAVr7g5TqdxDGCXlVCQy2=<2O!k_Rz z{1R@1o8W!$2ABjB;&34B1%Jl(a6O3r-}~WWI1kG3a+m}6;B$B{j6)ARh|l4DkOl+p z#qV$#oDBQJefSt|g7e{F{0KSt0r~zRxD-wXc@EEo$LVDkY4=|y1*}D_t4%AaSzfd; zj8cQLp9D^|g#3cyrgj7Lx_Qd~$<{`B#ae6F4bW?45H8p?ZZJj5gX)ux3@T`<2D&-B z>${b1fL?cq=#4A70eTZ=QnM_Zq8T7`D$SucuQHANYz)xrYd6$Qhm13J8fDhFVtI;f zSdLc53O>myxvds8uIAY<df0Z!K-*K7fbag%}_X=Hbe15)C>*aG7qKt z`(uOYOe~ztc`|4Gem=_;_2iBYhoh&M<0G3B37_k^&V=3}GOgQ5+Ys?6MHWuO8*6K4 z;WJDX*j_LnMIPRid(o6CRw(vkuDDjs1n6-Tr<#tT0TwN)+Hs;w)!>%1PtWhH$QM_n zCf8WMHm4!cY{UB8QtQf@sVZSuD+Zc}_-i;U#BtVT@^@X&;9l5V!@em`63cTa&o?Zs zEK9#}xH4W4FA-nPwKTzoCC=G=He}2-xQT3OY`9WIwQqjBQAv=?lS8e`6Gb-y{8UT! zndK5CV6142$@_{~t@y5S+B#!vQ`zHJ^siWQVt;PbeG)C|jKz|!pJy7S!*Zv^cwDQk z961{K%Sv^%Il})c=q>uZO$e?nD)X!enCm1q?9`SPbitPi)X`kIG-gyb+p_Gj7#0UN}iZ2<-FQb zG940uWqZ;EuX97~b(1zvDXuTdao)U&{?JwKgo*V--h7Gv0B`QGPWf4TY4zIA0m*9W z&)P)w`p-?tT2O#)&Ho(Ok@(~zaqEixkJ&$KJ#*CZW`$#TX0Y>rh%LVo_Jb$GBiQNp z!zbYkFyRCc8~&;Ad+hTcz~!(Fmcm}}2W<1Z;3{}6tcN4urLY&=i*5d97=|e90XJZS ze+1qN>tPT07&iB6_&c`tdtelfgu`H8xEGuIT6ia%52wLAcoBRX`@0{W4)rCBJTltKo8x{96b9mpxW-|7{Kc7*6FUMo?5LU!&%oP~%x^c^zNP=nQhf)l%seRqsqOZJY9R#@V@>#S4U>2VgV z^hG26iG*fBqm@-%MOM4SSWfRv6XV+mlXOVM*jU84B{ta^W^VywW}{`Q85`HxN{}0j zGwH{jhgmEY%_EFgZd7&G`f|uHx2woHrYZ66Ryr%PL8>yUiEJR1NIgK&=X+O?)i8Ed zMb>yNR`TPn$QtiRRLOva;?hyIT)1aCajh{cnrBhEimbc7BCFW{`(U)bN^Do`e|P== z53&D00q=nGAPN5k58(&64{m}oECHGSmwEqx-~;$Lyb&fL3*sAiK8Ro7I(Qvygcri^ zvHiaepMopkbB3!C6XSO~wx7w{Q)54;}M!pq=a_yfd8@Hu!BjKX60 z3;uwg!d-AKh>u_&m<11$uO9@--*Y678(-Fl!}|xz18>|&o`v&xmo;I8^c|XNArCIG z8INjx)=)qzRX3{|6j8}es2Pd2b$5Z`R8)g7P2<+u4Z8DsPn3YSHABf$T(s2)+6v0e zeCb;6cya0OqycZ^c3>3Q_2#cf){?nyz}wCQylo+m(D@B-PNGypzbZ|Yq3=+G!1yio84ODtR4gJ z!n&)97FM18s!ZjPbahv|x~uNIZLMXaRqN`m&Z^~yybG9q+g)^5y~d<&K5yG{<~ot91i=!li@Si`4_`t=z|x*r?KzPhhdO4 z{dFNL3B-+v2Eh1qZ)_Wf7j;}C|QW7~fVz6ck>1T29&vF|?&r@|75 zfY|zPa_szG{=Yxmfn9$w90&i#mj4ah2XBHwcry5H`(@bmzrcpS2GXzs2H|-ibN@HN zTc7|hgBQS);dkWMC*V9d9VGv(H57jPzM%zD_2C+Ow8hb@-d47)md;HqSaVdKuUPAv zFltjF{&_9U2-u1>yw%K)jLHhuQXw0ZE|(h17nm;_D-}!ZX3Ch##8c!*UF^#i9uGsT zC2pkR-8Yo2*IZeprapj<{gKKh4)nc{am%03p=|5()Y(&}&rJ2GpImg~bQh43v^n7Kg~;N7#Dq*5{DOcIBtw#vBrwe{DRuh=VL&0K1tV6BQBGw}!& zSTlcEpQ?GBL3M8FP^Gg+8H`AEb(+SzmNP-?s_ML@+E~@(;WWLa-rfVZp6)P3#~Ecy zgO4>RW89=|mmM!_YIBHwkDv6Kih|WrOYf}bYs}xargl2lz64DdPP?5~+?(4X?YLP{_v$+_X*jKxN2WL|r5QKQ zwqHm_?EjZwvrb~aiv7RRv0ughez)V4?BefNNQ*cF-ZxEq|P&UWN@Zx(3~2=0lGQxKxJ;Xe}wAS zHN&ic+;6BT)5`y*bF?DD;vS?aTki5U217Y~z7bP5{#7=zj+mnMqYAU99V8KkxgyK1X+yj`_bYxGgS?<}Bt*EOy|F0u~!4m%VQtyUL; zYK+^2I0jSD?YT)ct&PGo)`W;xHu`jx?yy_)18p?ct=)UwgAKBYJM>`H(+(ZKE%!Nf z!Uk?!T^FzrudSth4eh?)NNzCJT!Wha>+w`u^=6oAK4x7pR=AQKC$iZ8FT&34!~PZf z|47Gh{T4R=$KZT84dSpD{0@8n4tO8D0#1U1;9>0jZ@@VafdfF|`rVDqe+`U+%>PRa zzkgxxe+}LXZ-7Y%!vXLBHvgC4GAO}O@PF9*cZ2K!csm@lm7781;U}(xrNzt(bhNZH^t5I*ym+a0h%no* z2)U2h8E|$rR^7RuuEwgjCQ_8K<4OtT)~zBcdskz%tFhYESS^)9;M{!!G~K=JDG>Er?Js)!`2y0E?e)p5dDc0r>((*b!D2L* z)N**BGeY@d)|?zN26<^tRv&dn)pM$+9}E$LaN0Pr{|{l1`yrXL#{NIm8Srk!79WM> z@DkV;o(aFk9{(nM0Nw!-x9>uz!fCJ^LLf2xL>KU{@JIMATn`_F3*c1ret|uI4TuKdi{LhF`7Ll5$eRD3!uLU9@Lvxf2iXH4 zdVr&_8WzCe@DKbSe}M16+u$O26%-*0q7is7JRg3={QnJb31lGwd%nK7f)~N>$?Mxe^86~v_o-j5-Qfk-T(QuLHyP6e)vSv)*_bFe)}*g2`9r9- z5m$1iQilWa!FZzfUxF)|h|A+(0xI zZ~lE-`Y_xZ4iAJQk^X^Xa$q3BO-2=GmLh>lVl){+OOf+(B@wQt`J}e^VYD|IjS>(n z8cD{I@kp#+^4JYsYh|%C=#3$}?dYMy)otUZ#Lli%3FJFge^@a!=6shWweLGSuq=7t z3qh(1P3?uA^^z{L0(GY|3DZoaBcVjLKM^9rcPx~SCUc?wa3-EJ6R}t--d`&vPDtE= z@l|J37M&6qiG}siy*sId7+6V~wcLsmg~Hrf_0>foqZki&DvEb5B0-wfii$BW{Ph9} zX_SrW)fD9-u!L}RT4?6+1TT8C&JePCNyUm)sRK(BUmZqIbanY5G=v7{7ugKEyaF4V_6Bm~<6Jt0OQkK%0tio0v z<*6#B7Ffsmv(}r8-%-+x$}606s8gY*5^EIu{{-yM`@{~#{$JcLk5?A1juoW_}3M8)J z)8U`^9exb&hj+jm;S3lD(HvL^q6PS6{0*-Mi9PUaxD$Va#28!-&w?B9Ih+GWf$S@| z5ud`x;B@#dK7&c%dnPtDmNATF3U<} zt%h@d*uJ0)W3`Y33$s^Yx?gftj$e>3i_W#76u)(pmOSXna^OEf!5xV|l4x5jkYc&V_RWxtzu&PG(M_&F3tp@Ve=)(qUKW(6ah9 zD?;X3JMtDZt!+psCW&{T(qS}{r3=pth6clfsZcz|yG$+|4`pzL_J_lfgc*;y{u8WG z+qn`Q8BZ^stc;GDlbd{g**b%_rgRuh#AiA6lK=Iz;v=n@(RlXQLWhgkbNY^%)s#r! zS)TgROrm2IzpaeaN_K9s*eP^6ULux$dwlFL^1XvOMQ)|d)gk&3hkEH z;ne&jwvWSeOVlklt) zLDpt+*-#F;Bi!e#mXuKpp1nwbkGn=4?ESmoO4tIu@HF@lw*EKZ zGjJsgz(29|-vJ3Y2>uIh!Pfr-Ou)Wy2loECP=r$<43A*%e;wWj=fEitho{4jvG;F- z&w}jxKOCM44`TaY2Qo*$8D0)gg4^){d=^~&zms_X-|&0v{yX7=a2A{j;tTjIw*SxI za@Y!o!@eLf0l$dd|2EhRad;lwOrBm1lDBV{{B7su4Ycjy#v^g#+Zz%;eNm|}F;-;1Lb1YH!7(nzjh< z)1j&EYNBGYAA|hQnW<`56|sIVqYR>PS-CD7H~Q$9re$~2Ia|NCe+*E2s!w(rRECVe zhS{2G$>zn?z)m?5Tg6**AKngeIZByEU-xzwRYcE|RX-P6Di*edGNbuIc4#P-t9HPz z*#3NOrAoul=3}Y9iy5mTiv5o{K5MPmr`Z3?9UJvi*!dU1Q4oUtK-T)d7B)aX>;>-H z{wj9<3K#%c%l}hOdKa7wFNS-t?{9#QLNEB|`OnAJufQU>9UK2DkhlPgpbtKQZU07C z2y@|uAa=gQ_*(}5#FqaR+yiffewYOk*YDkMAuNTTVZ(nMHo|ex4-(`5|FGY01liNS z2^PRUFbf{Wj=vgS10|4{|1#JA7xGKu{htGpcWc0XHJI*hxX9KFUDw4Yp1>>$(q`6K zgkPzjakeELh;XUv{jIg{(-h6~>WtSjsrz60+9j?$UQMM)-Ak%EHH`2$qAJFWU*Vx|={lq#1|E9{WZxHj3cE2tl~n0WzHgDnq_JJ$iuVD?pC zvl=@(HeBA?EmLuxQ>baiv2IK0OWNK_Wp97Hw4YKav^#zCy;PJ2@`~~}8*8X1w+aLnZfM4PRxD_sf z5fHz?WB33hKH$6ILU=hG1V6(ca1%^G91ep2g5Tf|crT1Y5Bvdtz@2awEQEbv7CekU z;4(N3o(Xs31Gom#a4^We{h!0#AaVYVhr>YD{fh?Rr{T>Y`B{LvSCeDl2_Js4AxCJP zyE2GY2OFvzAWu6wygC4=(+mVfG56aUwMjDPh!)POv?8W^oO3bWz_tGRr+d~m2Je=i4QF6^Xq8#TLSDTU%$lkVw3)jyh_f1c9oIpxHfr1&)Vh=aWy?KCQ?|M?h|SNS zjrj`0sCUR~m)%?EtmMxyhm6Wts!%Y?%GowF7z?EodX(0DuQJILwMOm03{nkkqd8P2 zRW(l(yhWw4F+}TXGScgN^2C0Vg%Fldfu=xe&gKTDsl`L{`e0judXCvU(#x6aexscg z6`ix8f_!Cx4WizH@@}?%z_DWtM7IfX+MS@=bCYTwZVNZ)bfd~Uqg3rCGKijguJOUD ztFNk3%&5G&nDW$gvgq1xu7gtiq7l0g*v|5)tQP1vtu{~zTTtUtom{|v|)fKiCR zzp?Yb50}6q=mm-I_aL_ZSKthg`TyClCwvcE|I=^|HO2|Mz^uTlBtJwVSgOgw( zhz`I2d=DFc5?%sd#lEk?|Gv&mv}72Qk7pD zW*w;fe7;z1`ShvDVFH>|Q(U(>?w;KGaJ)L|`@3MW^0A$>W>VGR>S)=ljFt*n--)cx zOT%35Xvw*oDKmi^GRrAztyuFt8eCerNM;O6#`}ILoiEydO?m#2)Yw?cIg&7pTZhLn zO)~Byv}4<(iW$?2%hKXG&0;ED;E_mSU>+%xD$GARRj5!T%q^+HFoC4_(D_Ygv7>eR zR`VEht&$oW=O@zJ&@XUrJZo;rXWT!?n8G%mY-xPl${&&Wp3eCT<`%QyT&w?giv+{b zX9odhtJ?~u9f~-goxi@PX{mB!K;P-cgRTo-WX1TZWC*G0T(T9D$Sk`zzz|xdcLOqF zM*U-*sT<_gXm>oP((vo-m~OZA5Ge+as@$An0Qm&vvNvDi^*s}QhaK<6?7NcpvRD7rFb<31sc;v0@H&vZ7?k`7e7Uw}k1Gi! z0YTmODtV}QgSb}Q6W6Ma0F-+r+yFApfn+6x3oIP>X=;+`{?Pf!K z2H9W-zLnwX6G6gnyJKtE=WAd$YPK|nf1&1g>Fw?H zg`Bm|!j?tftLr6mGlRem;vVXH$)3<&vQE0L+S6-u%c1rEHtTqc!c28PA$ym7uWm!& zW=6LmFpRFd+${~(|EE_S(+idrjg)ch#P~MZ3vL#-Hm@nK;uo_ZsukWutEa z4$-Cg>M;}Px!U9Toe66uM1HAE>~FK|T}!pR&0xt&){Y`U%JI~QN$iR0s8LLB$(viv za&M_T(mSs&yiqp)4WJb-*W+t>{`a|BD*#-0L zEhGf@u;)p=c_|V_$JpSr`{;QcYjp-Y)|6h!qyASrS*#BD{n^&~|B<|my z@J;6UzXmtL^&lDmZ-y!qU708-{*TN{Q1zCI0 z3;V&-;dcBV84w+UJwRd)z75_47r?7w1WtwdApVhk!QGP}`UK(^xfosxBQO_cgZMqsFDib{0IzZq3PMz;4li6BE}XRT zq+_-oJ@A3G}i1z zL!#NnsxnL9EE`J}k4@O7nZ1Op;+uEzKl(s%Le!4OC#n@x4A*U#J8QoEa@u!3up4^3 z#NN9`7je(g5o3)ku^J+z|G+>J#pK$HEAk!4vv!`bB<=4{^rQ9|jU)yWiNQhN#oIsH zW2`d<290EFV8aI0m+O*|m|^rM6kj$MkjC(NJ+-1B*D@F%h=h}g!N@=|5laj-|D0D8 ztecF72L}dYgM-n*SacxSoZ2c2qzp&G;b=0>sbho5WP~44rCl;)M0yk9Xgtv$8wkhy zBjieRI;&h5(cb=8Y%mt)Vx#?xM-mMQt&x&EOkcM5*w5ILl4D`0nHuwrQ+O`L)R@U( zJ(X&f)V}XLy-Qy~QH=$B(+JM*Ez8OYBgt5QHWo=SiW*3S;#_hln==!kTz@VV&t;Ep%a=F!_u9o>3V%y%um-{6v45%BbK;qlS$Om=G6l#9r0T`tnzJghHY zY4}*|C?~PswRfVrLPl0P&99u!`(t>_YK!M=8?NH9FcyeDLbla8V$x>v(xS^Ly+5XL zkz)Vvg)z85=DV@~mpF#uSFroff++kMoBne!2{AYbeu4ddEPNGveGr}ovabJgFa~#H ze=h@ByMG>(Kw|hG4gUkb!iN41h^>7IoDS>Z7}x`TiOu{OI2$&=5d1ehitT(Gd>Af; zvq9GL{~KFb_Vd37DsVW6{rqIO4coW^F9eD6mxE`+eb~Vt2U!bnE-Zut;TiB}^5YKp z2wVV?Kl7pfWjDO;zZlA_e#(|pTb&S|61&eVS7imWwPQ^jdF))|EA1&!JWx~3`YTt`aHqVPET4WKr($;TUPnLAW=ByR6T_Gtl z*q+Sk3Q1XI&8{@tUr5R;hcv)lAt_zp@wfkg{0g;kTZag|257U)E3HnkrqZmwGZuZk#n7J z$4r`znZ9q`&o_;S3aM=vS9bF7Tw^xo^Pz{TnzTfa&mX*kg>*4;e zeL)!(0EU=qG}-LNmN55Au1fk9=6?B-f2<=TbJ0Iw2p4p53>a6NTuHu|mw4`?5?~!` zRG8kxYsF6)S)|OxgTbHb(8`AKvN1E8PZ@JC1#)J&V*h@~KF5%Cflog3Q0DQ;5E3bIQ! zu%NY8TI#p)i9|uU$VL>_B%})yYO|ra_|%;w$^>CLmQCk$L2nxKy6$M1p3KJ0bS~Fo z(XBh$nw$*h2DC?$nTvxfuzkL%t-j`5Xqae?k(r|<8VHt+ws`j&uj! z=YusVJkLkEP|9r9B+5*bD-s)byku>=SEf=JNY?r#iNxlQ*l90nI#bo+QUrX`adtxW zz(94hX2jVz4)Z$gdf5qYN2G4N!DS2Lr^CvPy(R2j!NG(fH~p&iToH_H-@bF;Z!*^B4J5zBhJ~9D$i;3 zY6O%8*AZE-5*KiQQ+mYy-y8dMRP0pj|CNrd`eW?=Ps1x<1lGX6u=!;lfan0e8*;E3 z_JrSJ_kRQ43lazLBzOk=3EN-%0dIv090Gg6zp?qR16kiMzJM@D48R+(`#%D2g{3eX z{uf*SX1E4q{lNb4D0cpx@F9@(182cA;X!QtyWo1*0%>>zTmN$~3Txm>Im8RsAC}OC z)tLx&acPU5sG?Nf7{{uayJyjxqLEaWSbb@<+pry0J7rXqA2(%HMYDIJ(Xv%HI&F0* z)YbtWS^~x(& zNNHq*unOY%cf1ish^5n|@oZ^pQ8RjMld*1vk-y@u%u65#9!yL1O-gU_bc&|Fd@<@R6M5{l8!cB_uXrN=Sf3#@rd* zO54l%?udHtUG|~dGApgNYKt0RTH=s|4yFV`3(W}*f#3qBgl2;2kOTt(OdvP}hkqb} z1QOu?eWq;F%xYC^-`OjFzOtm7nVos(op;{f^S8Ge-Hc-$Qt`zxDfso?Jv0o*TD^vU+^Jt8~R`J2}Yq4eo8rB z4>JD$0+4cz!;vF35dfZn`)E?+U95EKHsJLfb@UxgLj~qOXZ7|toW`c6r?D>supP%} z!~)FN$)YJOH5$gCXt6B-jz|Sm>I41v@DvlL%;Thh43NW*v9+Lhj~j6Bv)#u*43GXx2Ji1 zHSIp4*Sb5aZOce2qixYlpeV82M(|FR8&x)8q~u&a0G- zb!JyupSG%T)X{kCkH~#@P~}|h&1f03s2H!0r`3JxO|4X4&YF+Y3Fd1h&1ZjLDtj z0=N#%Uj!T6fyVy?NG`vVa1s13`u+}hB`DAVkAwe0-`@)FfZvA@1mNLtCp!OncrH8* z9tEF7H%k8^mYe1MqfuIa~>qo`1KX@!tbQn1ti-0JsgEFFph@5HEr!!cWln zUxXKd%>8eLN5hxV`0oYeSqFB{6Rk2wpd&xN07vdVXHUrbex-DFc&MsOdqameKyyg<0X%ZKC(mz&1Uo zjF@^IU#6N)ZoMrVde+KMq}4OKhmO%b?m^|VnblD9_nukRq({;8plW(hH9e@#4-cxE zw|&LZK4J=1foXlT3wdd^MU`YsXL6}f(xNj|o*ul*6!>j>oOMYoXbzGBz19wCGToHJTQI zrE{!PSrwS8*QKm07|riMwVE{zgXm$)nvjVu*%~;iX(WBW`_;x!tIvPGM?HV*hM^*K z)n2c57@Jx=ALeCOFGjtOilH5D4>h9B4z*RGZjG!wj_Cj2L#W;8_@i( zfPQep7Fz!)a4R~06&?lR5g5~TzKrY3c>crDhP{|qxSO1tTtW^BYjJtJZFGp>f?8y{G@fuW?GdW4*da5^+%yaJ~ zoA{EJM_e!97%K&fIYmty-DnvThRugk7)&jNw<_!*qsn?bqUgs}Lb>D?cQ%vFQdySN zykq-0eo|RilKL?#KQ~QEGwsj2Rk-HAZzw> z%m&dOP1%SwMyC(6YfIDC4@MGc&x5Im(0H@&R#2Nkq=HUVGKIRN;LKejTF9Q8=IXoU7 z1^>+)f^WlT;r;N(AfA9BcrrW=E`nbWzxYr13cMHI2pcd4m%vYmY1{&mU+`*(gX9;y z2<{I*C)V*J_&)qSdC|;TICVvRLB$jBDt3p* z=dxpQ7P7~Jp^)7hRJ@UpKjH~1F{9m~pQt&X`Ues{_Q{S^d~P&z9y@h;U5Dq?CH|G> zPF>#PwkmflZ<`wYI(AuQ8>=^{97Oxc%mmB&Ko##u?h%4RGfI?mD*a;W)Ya%A%S|zd zEd6qjlPopY9MJgrAjeCEvWi@9N(rTxLSa(T6${EzR^k1M{90C)lw6MfigqV(pvR`H zw(-WEapw_s-%T7FWxsT`Ex(p498=FAzg7(K5vHG7^VX!>6iP;lk_}yr$2R2dxTk(& za?#o0unz~~qg^A$v)pLE(RqOGk6OrbPo)3oZIfT)k-{;}4Y;!QUqVMAp{O^74RDai z%VZFl9iqC*(SNR};rs3d&Zh>Wd2ehXJ~Zv#YcV(uPz?IzBYx%5WlThE5#)#JLYS66 zsh6$pVsXufZR}ZV6sc?~5qWm#;TMwyqoAb1Rn?h_t}6ec?Zlm9;HQ`_&@uJk9<9|< z`Chekt(hqMm$&4nJqGAoj)?w0h2VRk%vVSMkLu#@HE8<~oP;CrS+x5n;6rc|NdCW< zKpqkxo&Y{*0m%pWO|<(b;REn`5RZUG7=aVufZv5*gD;`!p9w=CUICv$)4u?QL2?4h zI)SU;_uzi;adf(9_XIfMmFV(|;1AH>6Cis0e(*kY_V2ccMOr5bvLw$iYtXw zvSMICZe~l(kb$i{cz_dSwpdWdpN^c=zHI$H9oHiZbhS7T<=`y=mtS#uol(2u zbSrjG(B-i!F|WfO@hZ-!(;f3Uea^Cg)PslPj!dU_V|60F-kGa-b5$wC7H#z*pAm5A z=OAa&5)S2+rD85FAHGs3Wb-H5+p)3=C08=}!ij(*;ApQnB#|)IIIwMLkfdthq^^+O zDQMHhWb*itQ`(n)QYO0B>piTXq82A1C>BbR666$Sn*5M!BZ835Q+-kga8#-N*fX@;R7!oYuACIdMpe3;*I7Jeb<2EiLnn^K{kZ{>4k4rl} z(fp!@%lkD|DV9qzy<$?rvC@{2s|HL@D;TCRd6YM8r}X1keq+BAbJ0e zfO!6W68;AM7*?PUeu0jcae6l#fls32-vh6QGcW)TfN!JgKMZH#6dZ$#;h)g=H^B>G z2_6kUMC*SQJ^{~%DEOfTehWTC4B+LEgEKGylJD=c@J@IY$hrg%JQ9w;ooN5-;586| zr^3VGU(x=O_iqEn-~>Dw9u9v&SxR}PcEkeYNi2W0G|jKH!r)bDm}Ke8`kZ%pwzn!@ znL2rMNGXGxj6E8cI08{R>4GJTskFr#thD;CaSxhOR41=GSv4+$Wm(|4Xns|?plYv} z^UVCp;wsK7^DB#MI1kOQ%&(;JXT>5m)bPsRvh1xlov*x=Rj}|}GQZkUrUx$0d#U-= zj)Jn|>Yh5$G{55Y&AYo?>(4Xut8!ONe&R}aqegR~4c#70vI#28AEP_3+H={MrHJTF z>@Jq|<+xHy%%3TJ1MQ7(x&&C?qUsfDx?z=C(5}cTKwj#cSf(a0k;(drsCfXY=2M$r z*&a@(;l{Ug-j#_0cTYl0VN5B6C=9u~951XC!)=5S+VhckB3>X86w0Nme_=^pQOUQv zoPMv@BBY=eGA6en26=7T7!IzrE1~r`i5c|K_k4CGp5A2eiF^?Z-XrbGAJ~@3Et?wJ zst3+zY#U4jP4fS=!k#jgf3}=(`K)b)14>oIC|Av&&ySLXJ{Knj!p3GdKs|7{SRln- zrXY(8vu!L%Y>VXcGQ-w(_6qGP&e)z_Hc^y1Qd!2fXPz}bG!M;cF}qbza!2#Fvs$7J zL}y!)d9G*G8NAjXaJj`%t?OZFO~8SxUq!Q3X9TOfmDMZVkS<{okcyw9qs?QjUNW1~ zMk4Yhi)D_wVJGXMg_bD!erSi}JDE^-IlLTF&xabyuSg4K;v*=LJN;@z|33z)o7MII zI6uqR>(Ts@`|lFC5I%|C{~M4z0FQ;wqxt_3av<~eJ@6y+zQh6E2EPwyAOODs|BUAU zEW8im&<+oR@1gx~2FU@Kfh$0A|9=kc|2}vtq+t;r4Kg?X3veww7oG+(_W!@=|2yE% z;OWo~kA+`{52O8G3mK64_ZP!0X#aP^pTQWk!ne@-x55oD3N7$+wEo}2yWmgZYIqp@ z8#@0VK)e920+~1e6Uy*IAZ3}6@-+EUpTyF)>X&DoT4=;+@1BH|rT&hZ=cGJdU2FPr z5Jxt%wuF}CocF=17{1?Map=Y&Ob*S^jz8V39L)Y^Az;dGFri{0W7&|DykP2hlClu5 zWC!DNI4q}CaF=>igLc)g#a_p-#iSK)$VANOa+Ew`Gy}kUfe%*c$*Qe8T$_=Bk;#4s zt`_CDRz0~|)2bXO9eAC_%X$*XUG9Tbue=Xs?n`3@T{VhZub8zBE&81%kCXM2V$`OC zHZYA{;9=GzRcV~#K3H|@Rl`M2OL|`TVEMIt=8_ewvfa|MpoN$nzM-X*I*)y@N?kJb z2l{2AGia1Gm&}_iTr$;&L5CE8q5H&7$H=y=^`6X=z?(eF>gM&z_>j5`mCsk*fsZ}e zHs~rycgvq{vT2VsVkLc&T`8OGv~iU44n zZJ;2Q;?gbM$i;EwNZU466t>SvRD&1^K?}2DFu4yq-fiZ^Z+5f_A)ziO?ox;BSR|kg z<8w0VtPtBVJ&JRg#YLMP+x&U9m%TmmwvBi)St6-Ni zX#TIj6(IWm=V<=#!F%D2kcIz7^M4us0J3l;{1aOL{g8$Q=z*W2^KXWAxC}0aBk+E7 zeiZEREwufua03)T*5ZE^UH?MZgeY7NN8wJ<^zbT3KquJYx8ZAO`**|ZK;{5k375c6 z(f8NEb6^@|t^EVwMl}AL;YA>t|2W)^zW+4b2-kqDp_g?4-$mogdik572vhJt_%UVo zO_2HjQjVLj>sQSS$Lw}fi>LHQEF?qEn49Fvv1cvG>oKKmxs7bsak68`bSO3N^qtG| z=HDCquS(tK(siG|GNraJQ>WXrr;b#OHNd&=f3@?bn!l*2#y#hd|5fR040N1Vj9AbI?r0{?^l z|9iL^WG#T?=X((R7y94u0DKrf--hPD0aig`0KW!zqW5ouKZIFufz1E^7xezk@ERz> zBuE_K0{8~HU-AOvVGJG!H=+6e99|4_;D!H(-oFlB4ZjZ~a10&+zoHCpgg*xXnSKsYR16cacd^DE()qHwDw*P-4=#8emc~&`jWf1#S#PBuM>f{SicAL>Y-H!pEyr0mQpe1y zGVq(9heNIBYQANCj|PrvDiHR& zpMEl>j-uXx9`J1T(8#Jor%@%6$*BSP6E@3<)G~lfzt;SvQf^$W8mjUZ^>mTZvhLQH zQ#*`J_f$U)xngLC+e3}0vqNoFs9Oi>9EYMY!Uh&avxn+Y=ayIXBb=7Ez0v-R^D;6L z>F;@q*UoNDLg>VLJkJV+Xx*pLTu+2f$U2C+JMQ5&>yNSN9*0xXy+t;Jji?HE~*YNlY7_%Gvp5=Hu~Bgz8&GlqSd>RBnF(0mzXLx)>wga336kIcO89N~GJu7>BQ;$v*>s4KD!6lfMSz;Dd+4 z{orTl^dG@L!7cD!xCYV?1IdxU0H@)J@SE@-==eL}OYpbw5?F>Mn1@O5!(-vs;rnR& z+d*;wz7JjqqWd2OU#8ro?4DcF`g#F2{y#(2wiwA=C11Spvsq$SUn%v&X*Kbuuap+I zsxq`lVploV9um9yYLZrv*mdU-b|!YM-Axj^%6<(dcJ*CW^Rah*V%JRX+|*i^ClvQB zM~yryRY^LJ=zZ&**-X5CBR%In3;`sQt6HL}F~B{Z*tIj}OnHlmvAAn?&-rbA2Pg(L zORG;_{P(5Au9D!!c-nVQ>{{0{LJqSxU&Y-WcKnCsuw!!OC)=s{r%#4Y52S4&+n}~y z(59r<%2o{P8YaA18wv*wUt^G88`@VRgzZfPP4x?#i`|~-)w6TyX%90P8UR7bmmJZ+Rtl)y&|H4*Q!F(yQqC^tJ<)lW)k4p6PNo^RBzJzAZR8rw$ z&Lq25nlDwX+|hTFxu7hAwVXk&$1gBxdU86P&t9&5-%*oJhAKa&d=Ak}#ICN*)`S+P zgOxic%5qdC#tTcy$;A%h{s<22hOi5S=N)RPk2J>8v&6s3}vr}6FBgU3_0JlP&Pt?tv{WuA^}pU|t8 zZ|NZVvDC8PX^mBJcl6L@x%5?wtQ}`}>@xiUZbx{Zww+Y}xAVL4CN&y4tA*%g6;Lm{ zQKgwJBlx@N+y)0*s$)q{uj)x@m$R3F2~)jhDk#pgKv9FGsfS}si}Ai2a%r&e^r~pC zCCw_P)!22NXp#|_C`Ckejb_vdZtXajMNQ|<8=D&X(`YI5N6bdjI(+*Y46z#Fjhtol zq7>h--lR6bQD;jMS1zj#B=uUYa@%$fML3++SFkg@A^N`sttwhp^#6vgTmK5ZZ_ND{ z&3_Ag7~Ti3hnGSDk}v{(xCCTA!0qV&e*p3Ldj{ko22(Hq;_vqm_$l##&%j$?3x?o# z;b+7HByZq{;pLErWjF)VAie;8cp_W~-yvS`A$TpU!vH)M#P9DWcm=!w{s6=`;4BP7 zJBat+#qd++68sSE0LeLc3rLQEYe3c?WMC2c;h}Il^9-(s>)>thMiBpj6_^G;w1KQi zcp%)${DTOz!mq=v#4cV1FNWvCb72`4;S_k`QE&wABxdndcn7=`u7(w`!;|3AaDR|o z1>XZ%yYM;?&%Z~4tXp^`%!1r!@hzzTwd1L*P33Al#zyne%w$_xWXw#Usq2@qy=tSm;Yb{r=IE+fXIz!lR_VsP4TR-1Q3G*?k|YhyUWYU3)4QR|IL z7Nb_1R9TGHZgj3&j0S@)o~6?5muk?W-&R)D2ZIiWGZ^$a9R6Uy<8W6zc3OqOIMinI z;vVKZbH?l+uLwGwZ0R=n$DMV;sGQoNIg#?+SI@;A4ETe7Z_w)uI^2PsA6L5j>ee1N z7MTIIclo>yxyZ^mI0sj6KU=ySUZ+dFMxV%PH)f^^wbv``j@lQW~)0RJHC@XFjw#H`v#? z+7)nAoJ*-qQLm~I2Y@58rF`8p1^|J>>Ne3x@>Vo=6}28dEkAoLv~J83kb`JH9b_Dq z7^~(gDu*lmV(KbteQs6twx!(qa>&vz`#4F_|C0azv_AgdqYJ~oMgLy~lKcO^(DXOJ zCb;1V@Gt21LHIa&JqQngAECu>fE0W|*Wn*PTgx2&3`h>YUU)o+&i)d72wnzja3zSo z{&n~sn)$u(EI0!v;1Td+wDYIn9q@8^7IeTb(aADj;0=%m$>%5fS>_0Q3T-U&`X2)y zMi0l}p&nEOm*TVBb%I6eRe`(K(@m-UB%>=Sk@q#){R7QpZ zhG(G~*lQ+`m9|x_FviNhW&&AaC3k%S*-||$)lQSJ3HPR|ozT5%eQ*KXir&8--UMf17#;-QMgM;kBJg|A z3Xg_w5ev8(UIJlwEJ$oX#`OOV{sd$^{{&nL4}*^oFL)&s;VcZpFNhO-0p10F3KB=~ z!(-qA_RT}31{ow2Xl#vUam+Rt1H7!s}O^gu+x(`~QmY%(Piv?=w zf~x%6PMl{Js1{doURj`8T*G;2fogswjlZKTUi=Na@EukU;asvn-BG3oF3x+Y1?rB1 zYFeO{dNPQ&if03RKRhR0*-a*&So&8~Y#&dtrtpMnFdE9)mvgK(L(w@%)n}N{RjMrN4|^G9+-0QVp3gH| zY8o^ps(m*d7cm(>smw1`Cm_*q>I;jPT*dQNr#!0ym-X`fYa3bwNv*H4B#Dg`UUze{ z&zeeD)oj%%mYT&L^$Nz=bpJ(D9%(G=aLxYjAa0ZB^RD}9p4sZ>^WItY>eSvn4d+%h zM|a!PSrI*Ir-hZ|EqzkE+C=1aR1^mFqnAJr(_r96qutnic&& zr3=^hqxYj=hi{?pWe$L>0gyHSvc~_bX!{q!CPd+KI0|>7?LQ2!f&_Ge9ex|WhQ5C{ zybhiZSHdOmQ#Af{@En+i%isZUBRc=h@FEz6<8V6~|I=_I$lCl_aKU%c`JacIp$JnT z>+WT}z&GKAumz(1WevVu^ykt0e+m)@kQl&G_&K`&J@7}c483q6{Hq=ZSm*z4csx7= zZbSdS5u(ruKcyV62O0l=0Z6&V;mDC1@x?RHOgvj*dx?*{mcglR1KvzLYi}&|ukm8C z5aP|mv$fBojVW;Hf;|>W#gkhnSQVYlkVGq@SfsM4HhHt?mg&dTBErqYv#K|#MTInb zx6?%4H~mjby{y`RVZF3kW+ix-ecQV>>{su~s0W#QhySVNjcvT|e3-ZNK*E3ag ztLxpag=yKk7hHE!B;Wskq3>^ncfjvM2mOr#8qa5wAp%F%>x0Zqee_0461F#fffgrG@7b$rRxI1%a@${8DciI|t(xCy zUM@xpa~LDaO*_=49conz*+P3ZMf-5vR<`q!HjIj*TBD>(;W5ppgmj(hSjHw9BM#oM zonxKK#+tF+`b6eUakZK?753ntd*My+DtJ1GPoS&`_#OB$`u`SqHN>G8E`x`{ z?Ud_#;T`aLxCW%GWp2QZuT$FB5v}z@$OH!yR^0zQw!=?Dgb z+IODhBeIS0Rgp|KKrYlk(C74f0zS7pV3NSqc7@a7w)tE^i)6CiK)_}Tde7`=E?T;b zbeE+B!#nc5Rwa`S_yYcb$Ll7Ktj}+n*tRm6Y(Ns=I(&Yo+aGWQoxz=-ZzPkY5L_;g z&mHu+eLio{y(9N4r8m++Hd$wz&*StteO{N_;|_Q|4$E}1?lw}e`ho!`+xdMiPwl6l zbJ=8rZm-K9_4w>T&fD$@MihHE5cJypA*U;(1pG0-$5pN*dN$dP^y2);LO77fWMBP&LgEqPs<`Jhq2BlTlY}q#(>nkdOle>TH~i%K?p_4{|&)GnHfQ!OYZO<0^`o>CPkUG&8N;P0UPXzXr`r z{dd2aX>edOwy+ppNUW|qjisbAE?eaXyJJWh<}ZFe(MQ|E|Eg9fs-{-U4(ckSs=HF-R>?9z zu@SA!L&~j=M@^hboenYn+@Gtdy6;_KYie4b&M9kCaeZksJeH6K7Ri*JekKZX$fThXKF|FgO%{Q;W)AK+u~D#*bYJOv~VfOrDRd;szP>xbWi zAc#M}#c%|^!<>Mxf#d~v1H1}e0)Gq{n1s{tM0gBb06${RzaP-O>6hj z7pxI;E{%XJ+toLwI!0^cpCB%sQh3Wo6+2GRie{H-{Nt+j{$-LH|HwCWPv>#Q%y8Dc z>@utA20Kor(Y?XbpYYA00wSL5%T3*&W|v}l_o_+`!D`2|mHIO0 zP&(I|=3r-T-kKP>vuWH}S!9g#*1!Fc%pn?g22BS1??&U!aD>2b*cY}(Vs2uCp`g>Q zguO0%Ag1_30iVoTrd0mqSY@wPN#KvmY1 z_lN_P&wp4k!=`cP`C!~RKiD7kPHpC9muIs^U2imU<}>Q*J|bs*vr9vxqXZTEa`EVt z63RtZx@M25fusQ5ilJO6wY1DX9k)f+Pk9;m$NrJQ{ZmKN%JPyL0?n@#LxkU!)cEDm zDo4oD-W>nwN7GAbg`NQYxBSr)SGbScI2=LT;BlLiu9uVFTy%b1{DX_1-TaItsm%{g zuj5ShOrsX<3_0%5sBzE=yV0uNCqArQ_~sQ9TZpYkcl8-n551IEl1fDNOx7(&D+{Rl z__16jMI<0e>80CB*JxOknw((8?)x?>9h~i+BIvo5DD*DuwZeE0P+>4C4YZk-I%QkB z`#UeI!U9ll!H4_po%Z>tFX5f(u6qTC>RIY9og=Rj!-{mW*0Z!W^logpb4c;Zw3v{V z20yHJ9A~t}#Iw|D^U^@09NZYSu-drFv($Q{l4q&aCRLuLwHw{lo~5GyFF{bMIqT5> zL%O*91Ug@G|H;~ane+c?wD~n~6~ti%?C?|c`M2S-@FsXR$h!YIcqIG;ef}|c5hP&% zTHx2rdwYpMXo@VQ?Ed{JC%xK8N0xb^gBt-$iTR3~z&% zfsFslT>nSI1@JYr_f7CB5H0>UXz%C2ILI7-LyKRB4u1{IfD>e{|6ilYUkIBZYy6Lc z==5)(&))@7Zn539dbt-QKUGaA)bwXbGgeKvEX!6aZG0{zQw7dTpw>?qoafZ?bi^vdnbxI*s?@FPN&7Wv*Uyc`6is3e50`2)oJP|K2`(18dRVHR2d;kQm-WG3>4pzPd1bxFas|$w zR@Q4P_F1aWR6!2OcXG~YKU>szV?l|NY}T58r)ipLd5FwAC_7f}mCC(o2YUY6fd!eAAVuHqjKef&}LwQj(T)Cfa*10wNTXkGTZTh6^WAW#mar~wo zXwweV%B68HcA%pFMZT`dH}wCkuK&M+_WvmS6|BJs*x)zdzljID9i9PKKrgsJ#`|vo zi4!~8)EQy zcnExfSil-Q8NNv@;8Sot{0a1fLk>vfiDMk^1LuSgXf=XiS6 zQt!y57T|P^9rxX~lUd2zw?_w^W$(^ueGx5f= zZPlym=1+F@Q>-PUGQa72=wCMWUMX*7^-d{y5|k#voF^`yCM~Ra@tYMYx1{OvSwwDy z(oq`$D`dagA{ntOb$Pm3!8KhzOHGUs-MJ6Ce3qWQdyC6w>4J;_FKry>JahT9xQg@2 z<ihuYk1$Fanps*U|R3z2mcLNptVLSyijcsCu1_wSKD`i=p6#@6%aTtIJeRh+<~8)ti=`&!TCZS?O)cg%SXY2j(Ub=gYa^abx6kTzOBVOR zx{S5QORu~4uBx|7BWWJA+NGrKnwn_#bkd?2QKWO$?XzNpe}50=;l`HFFSpMI3(tCx z?QUx6t6qQy7+bS`vTEy2#Q@@A%-U$|J#W0F4kI_~zFMBU-0ic}Co?JUUEDrJ|0AuB zghanG{y(mZ*pHz1Uk%TL40ORm;2Y@uSHKEf4&nuPCwl+&@JAqC0A6?md=kwsYx!Rf z&wx`PK7gM_^WOk(2Jrwq0Y60Ze-%Cf1vm>&2Jr*9gA=>~B$uH00eIoJ;M>FiUISSe z1v~td7=ZWy{w16N$qV=Z_z`h{55phA5L^b|AP(?4_(RCU1UwjSBNp(-Fb^L19`S%{ z;hC@k)9_2;0Fv`>4Fd2exRo-L+(vfp zQwu3zUO#kEepnTwGOwxez-j+)srUJ&YE!S5C8469>Yk5N5kRmg8nZ5=)^iJ?+QxPyvz(yYOC>Wn_HJh7I7wZ zN}92$#ha{w3#|9Xr&clBO*K@v_<%#d_NupLJq291^V`66*L~X^`ehmS=`a+pwrHqn z^Jy=M?9$U}9;Trh_ZTCVWdkDfCSebEzH<66g{et0z$U;>W8{otR_{BMOEjKZ(Ojp+S1!;4@RJn%#G z{yX7S@H`lXqwsL}C3^n`kemPtbb{palllLD2hWCC5HA7A3Ggpy{*S;_;DFzO2g1kD z{BHuu&37^U3cddW_!L|XvIgK{_zHSod;(qx&xHUy3T~x5q)gr`<8L`+b8dyzy(q02 zv>eAZul_dcdQW?Hclmva{zrBnd9jRFqyMkad-+%K#|%t?9i9N9&wqp#{|a0Oe-3{N zFN0^oGR%MvE`$fd5%@Ve{af%+ki32`h37*aLg0i4flNgB8QT3nL2~`w3~z@&hUY*M z7NHG(h^D_03h*TO5?cOQ;D#Tg-~SE112V?{QMevn4KIN;xB~jX1NVoYq4QY#Kk5jCyxe$?uUtd)ytf16neNF%WF$G#k*g@# ziUhe-q()MdAJJ|HTk{$Yg-LV%bp21&nWIl@U$$a4kDE>?)t(B))5ey{rV=U2{GX*r zrkE~pkaRJbJbtA5QEAz^8Ht&XoYcN-{XHGs#sRCc^@{(7evR6>m9Dbv9@-Lf21w*= z?rKO9>aC>$k#5^*nLri|lw1uf%2jhRl!I7%8d@KysydcE4drljC}PFD6izBs$i+90 zRiBIHxm6#M^VV|z${|a?n0XL3dXh#)U^$@i^FfX$o`!O)J$M?{Hr>+X?>NFvPs7^X z#M4mrYtYj$aQAx}uB7L-M%UfpWPfznsB_iNm-ZN%JR-iJ(Qxh~GrL;br9{QkFmR81 z8m@$6;qYo?D%qX(@3j~L2Pg*p^3i|yDNjS}AGB&E-%E|A_NQ{wsr}w!l4Aa@b~Fq! z$D+!RZoiI(rsv-DGdvIc44nt?Gn9R+s?YK=DQm+?Wobzr9yXS`RkLfKHJ0|Br$T;lc1j#{0hrAB4YvEeOLLh!5Z|8TG4*wQv?bhW0-R??TUSK^P?8 ze-LEN|5wrPABVpNS^FP`5eULh(eM8VZ-ESqz*FD?_-8b`==xW~^B@BbkURi4>-t^F zFC=BS<4b#47~h%5Xk>u7SLXM1It&wlW`f`IH^DD=v9x0J9?$U0$tUUG~{Yn8+s4?Kp0X zY^bME8rrbhyfn&K>1wENEc*X3Xx5}?SM>jwu3v9LkU0S| z7vNj)HW2T>Igs3c-$w7>1b+@Mh6%945s-QQUjdote+8U?OF?o0euOx{D?rx!KMe-q z=ji{+eE)fVUxH(BfA|V90PzM?;3QlOze4~20KNhe4{*a5DMKm8glQaLM=Ah&d7Vh! zwh>PzZIb3>BgdLqW-!t7BdcgB>9@AfjzO{XvYK-DEFrqmLX@*wP|r+**h{%))U|nC znPf4Qp3a5RdAgY?C1)$@vDZlkr1(&z7noN2wInVAa z)B~62z0`VkXGt}^XG`j?I?F`UdsYgjMSrc+D@~a{R8{YN(;O1|7FF+2(+$mfuomI+ z-KSlf#qRYpQRBfmC7ZLyLdm4Gb>^40hx2K;{Vkn%(|opY*0!QBv{T5~!kCIM4?%tu z6_krdRcjHm8=yX};bMV>6PW^2D?`~fRw1-S@_AccDcH_lp^aFbu|1tGX+E0_ZD~2y zDh+;Z&pc~>XhJ)8z4>gp5tgMB%nC(^9duNw{KDSTYhCpJQ;^N#Pbd0+Lf8NQhUWiA zcoA&FQ{i^B|1~fI0eBMp9NjOTe=mUq3_uI~0?q#gcssldt^zyAIR9thFW_0w4{nh4 z1%F2j;HB^kSOF(I4!%kp;Cgr&B%m8?@Fn5^AB1b+X>bz$1N|?)0H1_s!4=RB|AY4b zdytsG8k~XO0$C^UdiWzK!b9P9H2+QTGLZTIk_WIGK8NmqJG>08g3Cd?|K5%E--hGx zXt)5RJpaHV4xkrt#s5lgAoYiqIxUwvO~+WfSsJ6Q&HH$eXz3Z9jFJcA5|jK@_sqMgm9H8|JHXn+ zI_*$xi_^^Pt1j$zw7Kw9w-~Y1QYqoTZt32#w*o(uX)%qp;SJX)Z9|Jm3wygf<1Kgh z^o(lWQU`cy^c276xYcaA4{Gu#H{MS1)|)Q1bLX(vESIZwovf!eYw1Kz9FiSso!*R0 zt+9%#X>EjEA3>;!^Q za+Q$F&T0vHX(76UmFV@G@p48yi^A6z$U7a5OD(o2snbJuo2`2z%pdOR2U+Von@>GE zbb(NQ1z9~6=dInWSu1N^{${0GAt@|IZ?$3JW4ZzBWft#Uvt#S`R`frz|Hz82|HpMz z`d;+@8{ki10eaw(@LDwg23!Ug!x4BEdjAYO4E_&||F7_BxDp->x1#N@hd03$aDVtL zy8c-pF#- zDXbU8tLdvAX3E}jgH^i1UDB-GOLF#_T=@AbK=fW@d4-X6Z$`~N)M)=m??C1BG-h?X zr`onmm&tD0q8XV_YMPO$+$Xbo`R^fNdmVvUs?O%GUmD1sb0}+Xxi+djF*U`~;fxcU zw?48pMN-ds(&7zRy21BeBiWils(v|H3*fpf9goKFecDO3rcm|wp>=6mwlGFU(x#Pc z&K{52Ys$6W6J4iaSMNie;7-GR(Q)^Z-GT<+ek>RnSP zs(4Cfa`A1&R_;d7aoU62Ht%0(^8IcKvzS&<(f_jkKPP&%V*LNpX#IDdH&kqztQ?%f)B#A5P}i75bmT5Z-F;}l;;}k z{Mw;H_t3w!*{Zv5mN828nA!xkL(SAnlWmrXyYa?^=b)LYx0$L}GKM!(^)^%WHdFN; zsd*plp$Ddpft@>Up;i40%goxm0P1#u%>&)lLe_LfK;^8ja=b(rYYiOLR443rKmBA% zy~XPD-|tb+-?~vF1M1ZdV^fRHwRzdqi&5{RVrYlkLyf4jLv2;4TO;cnhX==qA6OL4 z9;!#3*$GvTanngQRLJD)(M-fn&pV+%#-bfwh`KVfs?4oO*9oPBzv*tF{EzYiqUK0rghj)(lQqAF8oIw(?e1_uwuT zZg~t0l1k2E^2n|(E4%nF>yl0MKhpY$U9>9tze^Xavi@J@{!9M90eBqz46T0ytiTjJ z6=eRuoOQBs ztB0zSkGt;Ss-De?oZRX`nN3zNEB77_T+Udb9=P zbT4_jmz*_b4U(zbZ8Tpuhp74ZOKe@CWTco3kzGPr4<(BsHThUd zA;Ee?@=p|2Y|AXWVhvR&7g?#O2`%|dF&9xt4ReK2$+dJbdHK^Bqvk);_@R^&W<4`H zHIwX5s5xPbUHQOJG*k$&Zz*lQNwOA~akPCrP<^vYL!+Z@VS3+7r5^ZFMami~TvWRk z`lj-SctlNg%?>psr*A{QXlE+yy2Vr~8d6E?mv7@sPqwpE*vd+w>dlF=lvDD>WTAYT zY*|@Y73Isnm=swlzm0rI)z&s!L%FNdOQk%yr<`6#MQ$7QwB^m-&T_hVTJHN1`J3@o zai!XyT1b#v*h(s=PtyIh#iOULY+>T9%tuv6v9-~k+GNCsnajHNTAHb?&x6#~t^=gD zmVKM4t(RBm1?MM~Wg3%wCU>t)ZEf*rx6{&`ww+Y}xAS{tvnoy0IcXYeF}hM6JTeV_ zRlJ9cHreV5O$C~T$fy%0*j*l#x7fp6#sfr#%;pG~4OZy^7}IjR?*>^KEj_(5Ha_BK zHGQDz8(Ru#)NzB=R;(BkF6)ftHukiYx6*?eqW_;t0N@fdxafbkE_Lrj?|&7ph1bKg zLDm4Agv;OwZ~;h8fX~32K|BD);EC{S@J(U>AAz^PCP;kXso;g<@L2c;ae*7)rLYQ@ z!$aWn#0K61;zPI&;zbyTQE(n& zwTm;0zj};g>?34tqy(?cFHRi4qAZN9CY1<7gKF|`ZKQ`_c1_UQ*tE+Sv?+NO*X9_v z+;!X{%edtZ=6S{~H?Ov~uCrO$+}d)ZYJ2M)o7FeC-rL|uMXb9rs$U&pFDHsuot*GxCJ)aS1JZ%155wXb&Byq5`R zx0G+W&DrMId5F>-)~?FShxxIh4mf?TTGMDQtK?VhcDda+OZ$QjhXeoaoyQdea~!Mr zOf0iqZl@d1YHz^gkh){F+u!DL_<|mv&mHu696>2krs4mzmspCsM~2*6j#jd3OU>{pEv6A#FTP9(A&A$k#wf86q~Qx&K;&nwdj9_(vMsx zW8BYX4!{0dm_nQT;r{Sb^!WEhlY`{*`!je2JQrr575)z`{!w@hEI>D$1TRS5|BK-N z(Ba>Le}s?2b733ukb+S-0h04i@&VirzDR81Q}9vv0K5r)AF?n7gW!cr;11RV{3UEa z238;peee``6#R_!0Y;9%Px12$Kyn8BJM#|y4qgBYFad+m4VS?~;eRNoe}U`aFW?0* z0sY{GR=5ykUczngapo8#;VjI8cnV6+z{kK(m~-%YSOE`6?!Zgo32=Y7gZuGixB=we zyc3S7^{sMfPp>tL1F@iIZg?cQ?kG8PRE-_#dz!tq4r~$}YzsxB$GVktUOC28g;1mr zUsuPLPaT!T3ZdN5%PQYts%x-%Z|O=E|a~EYwLfO@+%l?pE5>k z+tgpLaGp7iWtiDvnR_v%tQARN77rzl)ojAJIp*yQnupT1j?q!g7rNpoJ4eSGdqLQ2 z`C?Yd9lNY;X-S-9mX?mGMHeq@F%rDYK)tLt%AGR%<8j+lo|4#LK2}~%R=>Gg}2_WIWuS-72hP((X2=gMpEJ!JZ}8ZD?7^wJ zsa!*>%j4i}wz(B0jn#y>SCordE6eN9(A}w_DCcc!K2FM@Wfo@`=~$F>rrQ{dvzk7ER1_9KE9$~&BYz&yFjl&CQ}Pa zw%GgV+RiT(WFkhM8c7O(Q@GsmL#~ayy_yG!Jf4bOOAO0JN97;hWtx;KiR70 zdDRZj=ZwVDBcaVH_0x7f)au{0`lR`u@ipow;_&*`&-F;UACNv_J4fpCW0(aT^yA&7_v{1zMI<9#_pZTwh>}c}rZ+KfI1$Zk z7#(!2^(-B{ESp-UR}>NmlJ`5mlG%{9KBPSXN-~^Tvt=_p1hz~hQq1uJ%4Le_s4acU z?Px2V$&P7ir4Ql0Yc6H(&{*e~*EgVcuaD^MUF9Sz<8S-Bf^4!tXCt$5tW>Ogvivcd z%oL6#mSozU!uu|jSNKM`@P0pX_4U z+~%w8%oxX~?bD``<*zs@Dfd%L6*DG|o@tX7rJ`bUikuHS*-Lw=^Bnb7n_j`uYBAZO zZ^thB)VRpHK6x#_RDEFmkxGRMQUdfx=vv56@-FAPDmLC(|IQe7zy9nwJ&E3u8k*8? zpWN80N35bIR0%fOuv`P>H+DSPtCqG+iW*VsaBTV<4lPFDv~_GM`O`*~(|4#dF|H+^ zqPNwaO)tw#zxZtD*yM&|sBbyb!56b5S9)fa`N=82_WQd!7WjX6*Sy=K{$*@_vUje3 zaysl*yY(CUX2t-rZ$#C{gaMJ|A=pR zD_E%9b~qK>THI<6cP+>J<=$xJFN%l<4PI}T~ z?x^C9&jc6U?d`$X$YA$~cY3w6V`{KtxhLcbEyq{-XWEO&;@VtK-pJ)skCd(-{;HCtxSf-oQkKfbuv@*xt$#Y&Tu|AIF}im?CI+5nd$239qmj^ zt&XI65@X{d?Xi6KVm?06*%g}b4tvvq^k&5A+}H}Xy9d*;Xka4KJ3qdqgcl~`eR3_F zb9%8`@oPVK4fJ+Qs0G~7u{>@3xRIFRSGE}F*yssqTMqPW^bFPhI5OC?%tn+@$4Fj4JKz#bWzP zZo(TG>*|O^@j2d1Zw6xheH#Nk-K(*7&uV*MV=kEuO%$?u_weduaeR1aXv39uxDq4% z+x`eQAU_u__h!$&8??c16Owr29F=|Nx7 zQRtl-j4z}+qpR($frWObcW`vPvk*uRc1`reTHV{Ni&OJSU(6BgpDeh-gT1|zGqbIQ zzVX=F^n$B*IT(yiPAAr;w(_gPNv|@SZC#(vD(myJv;NuE_W4{i8Vm;c$AOtXZ!s62 z&K9Ck#Sz@{M*Oo5-|XOMs=Ko@zPV7CN%8ON;i5alISo&3j3vwsdyo`IG4yyg;Fcot@h~b z{Cse(qhn&kv5=n_7^kd*Czm$|(yPIh?e;)s%IEQP42<@#ZZ3?uV@2oirZ?c9 zB+};(1{Q+t$*xK7_@Hkh&^3{59rdpU7Pnlh(O7PFX0&_R@AvuQ>)zO~XUx^Qy_omK zrc*1C;{4EZZ`Woh;-87A?SNxMiAEQ?hqeR3`Kg)IpgZk$yBE82RH61*d-wc+Lm8Xx zS?pWM`GfwsV2*ffuy55HXdO+?yLfJ6vB}BpMTdX1eYtgHBrqvg)-f`;IlJ7u=FM*{ z&gBZOT-59JZaPN$riT-SK1X_baCvzumdob@0Y_|nWg{C>(rf;>XKZMC)Ds!&ADl^N zeM-8seIryX%(+*ix%_PZW?+3KFtV}|7@u5NT<;j!W)6NXoq(=ZullJSkpX7iFZ676 z_l#^W2K+O=0-rwD-`$y-O)f6FH$(1l-qqDRD9=WsYdYy2o6I-~E3U0=<-3O$vcp|l zGp<(WTr|Dt%8$5xL8Z{0PL3|j4aFnr&dtF@VLa;`T;5!842N3Bovk?@xADTVT8Pp?ob}GI>l*diJKf&y4;JRf z)6;p^;)o+MJ?QYyco(Cw;Y2Dl-k;ja=f<|93iqgWZE?}-o7`;W`aOYQc6~e0KGvOa zj8A7B{#j38ZXnn`-rZd+DvIKtT-n$N1>4tixw%}lI3MnsEAknk!kQyAnej*0w)<8$ zTh}KS@^fopU+a827K_bC-N6ZmT97Mat5c)J1y{=F?)C+WbHmY5+7wrEf}7)8@c8}7 z&cUgL^qQ}=IGb8bWn=CBbS${Iy1MO{%dgBYFHem0kM@oCb@#bLg`N~`T`Dx1a)r`q zzb_P-?@5nrZl|^v3y$oDH{zTO&8=ltCOqLxAQFkudb{0|^INe=+Ss+tblUBl>(2!H zXPujyE3;mYXJLLhInuk4A8=@Qy(=9E_tQglboP!d56q|+FqE3#&h&K2&&$KUo{kRf z&kMYSJ0|#JPuD`1+9Fi`*wwQ(v!0$9>P@$fZ}r9V#kJYl^!(cJbYg74JwBD4?{=^E z%>`utj_wg&VOw)Ey@R}^^Fy<jk(0)P*MS7Px z*5Ir&y?|JBCDcAlW-Kz9>Dih}u58ce6zzToyEnR$J?Xwh-^|*;*6dh%&dKX=eA69U zB*iZ&GRB z?)Qeg+0E^lxsmY>DVL79&5rm?=k#iRblK55?DS1V$GzUb!bDpBabsv;V5T!P+20=x zjEr`N9evrYLG?a$_$EAETk*ch`CQjjHka$~_4a7poan#;*V5P76N>vL3Gc~qI)>;# z^`?5p+Wnrc!Krzz-gGWVIr3HR=$~Mlm3XJx zUmDsP@93ME40jE5%3*4ec(IF`@&)c)5<*A#Vlu16_u32T$@^IILSLs}s(fWT~ z8w1NjGb`bE_kgo=#51ARyL`N(GdU1RM6%0y_Ul~eqiiP1*FDO0uavJl-?^0-js&J6 zuEd;dBxSE3cbXoeTwm{UxFeG7N+eyK(^C@*%M)rpQu~~RP3?IdUF773COqBYRHxb@ z>F!7@uT1n7hsG8+3)>u}V`D_FXJM*upm!~_K9^gI&ZZ-)+H*ghnCr-AI})>w?G2}I zt6RTE{c^6|xqP8d>W>^`pxa63Hov*z?jMUwVe;(C=d6q_bOvVVBlFeQ5$x=W4|gqY z^lr}e`Q%T_<1-VPuC2a}%6l2v9_05$<9b$>JCh?*k#UD>rboSm;f_#8cDi?@Lp$tT zXQXp0HMr2Rq1C6}jsBs9gtxd5@ED)#l+TS!j~L}PN4dq_lyH~S$=+r4_vPhSb|f=1 zF6Wi+uxyw7lg$>W(R3tsL&d_i+ zI^64YIueTu>+?Z>QSonkJefT0|JH)1I2<4C>+kC9oSE-+$C4getgTtMXD&6du#!)! zHL;^Fo}1d}T?@2^N4N6r5b{dj!R3*I%pl7peSY~B^7KNzP|*Xi3X@Oj<5;#$|cxBZ@p z&ctHh>>9nvxfE~lwW;}BE*FkE+GF$cYyPdk{J=%G}w`tUR>UoP{#XKqvLe-^T{bX-t%7G z){7Zu$h$x%VQMlzmUAmPr`k6O&$$ZjKEK;Fzt~;a9vGPjjJ5|>V&3jh+LH|i=jPHw z5!cj=+E&d>wMXQg8}fCog0yLa|5gKiSXQn`u^;kixd_*w~FoVP&<9SaL(sj z%R3kHQv;sy8E>RDoaqa;dsb4uKp?U(wjQ9*yfD=>=ty@4H+|z?|72mk*SFrck_kn} zrU!ar$-w%uKioO!pG+*w4EJtjlDrl?Tlwvg?(sl(aBE=9p+2u&d0%Lwd$yknlgJKD zQFLj|Z#td%aDmuQ>v+=B-MPFqvC-O}$@e(> z9UBYX^Ig7qcc0h2HBua!F8X^WJ-ih7$_-5p^RC+H9&ts+X2)`~zV^A5Wk)zUI5*on zKir;}i71W;^4CARy6N#RPkDzFrPbpdo-Mkj2Zv@7-m%sBaKW{rY|YI&R~CkbW8s{# zo%eG;gS0p++gtwpaOcF>bi$j6Po*8c1iC-eQyA~}x6iJ%$I`Bi>8Z)>h?k`9tD?{K@FlUtGW;KurF@6Z%E2R*H0v+1l~@l32vIEH$=mtDQNKyjLW zzkke`rGL4WOsCVyKIvEff8O3~SygSz0{tK!s08Fu!2(f0Ddi2MP^pnZ`TEFi_z0Cf`g+nE$B}Hya_Fh+Rojsk z>UH!#VNH*2@?9_~-q$D*(`!N_uusu#T$FijLL=ArOM*Y~A4&VOziOUcpC#IVWu}>; zwp!I!^tgc_v{l>gZj1ej?{J^o6BC~74Q|?9u{M*_G0(F|#OAzyVd;Stnc<_kuc`>N zUNk4))9E4rYKjT3;8MUM`{VH#VDae`%bLdfa~VHXo?o0(d%KP)Ca>-rOW(-fXR8;t zsoJU0_PShS5|V?_4NkLMT1F&Z={wPt>`-uwKJU{T+2%QCs1MrMp_kp zs&7)%OY@#{mGYGvc`IZ4+o;y*;f(E(P*QJxpOX~Kb<1}BSqFvkcP}(o^?AEKlcs;B zzFYBC%I2+D4W+}oQ*$Tr9$x%?{rdBL{oyHb_VslV5z`Eq(xs!Q|z)D{214ZNK9{I^z;(F@?U zb0M+)bKUxU-MM{Tu{IU>E|D<1PxQU5t88^Y=Xd*>TFQxc(}^N~Uq$_3?{Y4;cBAQU za+Ao!pYOQ)-h-}BPf7gU<#5I^Uv?3NT1V6u)bqO z#YOL&`(Y$4|9t+Iu&?)mh6dv}$s zKQBd6XqlcY9y|3|IODhWMeXO@Q%_G1dR}eBKll20x>VBmqKmEP>C=1v-v7Br@-)}n z$LCy!zy8$hYih3Hbhfyn5}HTzD%G;N4&OWdTt7&w=z=dN@&4ah@-sgde-!l9Vf({a z<@p0Y{XyUJ78bW(i-{T<=O4}UaCQ5&2l%K@ubSR+`%VZy%e=c9?qe z=YKEqnd;Q{c1f>vT<5o#Tm0>xTSZy<-fpdW9}I-KHpk~|=rE!scxZ*4_pzB)Reg{`BuaWvqSN9=V96~(nJL@2L#OB+a`9hi2p)OYH0frT76 za1`sB#)zPFid19$-TZiYRv92@JZ2Oi9j`{7FgU+y>U?|^Q z&(?8bY`5~|#aR38`{q~U^{T3mMK3JN&10SS{GP;j zU-Jv>W9frXK7X)auV#vVps$Na$F?8>Se>z8Ak?hUNhnStVNUrv68df>R1wP(i)9qQu% zt&JNe!CZ6vpX=Di?f+88%0*YB1T|6pTFWEr@ibtm#z$>B+eSp{hDfbdH&|>Mk@;*fQ&;VY=Kj^Sbew_(-7G5RUnSwy*`er>Aa^ zOPy@gyE5aWvT`lWxj*m$Z;Kx8YA=W8jQd(2{PyOpQ2^V8S=2ptc+_t7iiz4T%76_^ zZCHO!>Q>@hGrJ#_Yq$CI{lCnutv=(kAA)28!|R#01%_5p0DO)ao4tks^?xm$=eo3> zF?PGy-YfsD*B|S!Aa|R)6dlIo7C(s?1j;*Z-&L?Ht?aYj|FGfFj46NnpKDTGco{6p z(7*lnNT-{|n8f4&Ak%G~#tA#26Gft*gynLhb!_|gJ#q+W@;s2FG6co@WvG$VFN`DS zA4B2HahL0Hbq$-_ug8_Hz`rH>^zl!E!w62@vB&%6j5;^)Zsfsqwp&_UzD!>)RS+dU zNmBj-IQfMa-TDg=_vr%g@njmqiZCoz>~`!eY!lRfC;EydTfcmCxqEHO`&RqA-nHuX zzprPb(Az233ws>zhflPh%WSF3x>k@zd&je`2w?cOVE_ydGMnpHcXvnK`8jNIy{5J2 zyBZHcY_P=4!z6WDFwcjaUjMOgpIFp@x>s_{uzlQ}0APHc)w;zc+XZKA7g&YP%BBnk zmLRte?$+#Z0ezW{S0i{8?lBo8dH+dKzY8Ez;s{*GhdY%js%f|MlDN4p2_m}>1IaM^ za(JC$eAaTvZ&_j18IiODE1+q(-`}KLK0zXAhvShb(T|c|Dd$t#dLVFsUJK;%l>@WC zIKY(m`{KEM-ut%YS&wCb6FZ`KeZO+;@VBNpjW)%3JCnPjyuC!XB}FSy?4buJdV=Ro z7HehFhJX@^8FS`ms-siW^A(79eAt9h@wvT^`r(gH`hChZ)D&DS1*C z@I2~HN~;62qqd1sdL?!#OK zvZ$!JChNaxQDh(W%w;U;$NqBuAzI3sn}4UYEB*1(sP7u~eXX+j zTZeKFZFRXmESpUKU~0gu@#Y)l52mK07TCB-wg6s~{_vp!DA?BA>fz(K{#$!(Q9R%G z^8U5>;q6!XDmlt|(VqiV_2%M3TDj-@d1I>n-~FG$ey*hds80(8*t{esVe!MRfB(M{ z%x_(Idhb)EI)_oT+Fkwo53^gZSjt>I?$TOwq%O%$+R@^z=6nB9ILz0yxsQ5pj?Bk= z%Rg1j zwf$Rksc-?}OrLh|<@^Wdf;pa!seD(>M@?zI^A4^1@*nYg+8K;eD}#VXioX@;p;;-WVCt7n%ldGbFuKT_+$A$h#T}C zi@V4agcW5btqPm9voJ_v7s}WFbws2k>3-%Si`o7|QYf#V^m&@^RkS=lQe4aZHp=4s6$+ zP^94l<;p*!KHP&q+@NnC_$IDFxy&V{QN^p=-1I;yfGO0%<{>6~LH_6b!#IchLR?@4 zUIx8ii%H3f^rXK(^H)h_9^b{e@ApCYO0Tza8L%zURDXM@w}?IK z^R>DuaPmKxFXo#fsppenJu7h~1YP#)IpoUvUbh8EShEOaG5$CNnVQG-dez+4o|gqj zt$9A(&|A$MjeL&YQmW+AL#3|1ilw&R)33v~ca*8!JRerg>D<$$GR{khl+xe7zoaUw z{d!78j?pKowse!X(y#Y8@0OUjc7>Mk`x(SI&*NrX_idUl6MHe}|M-0E`+g>`Q;UOD zMFDxe>dt*R_3!T*kXqMvyGb=sTe2>%sj2 zs`bx(WM6IPxhUI9;dFJ4GMOibwDQnXKMDyw$Rsp`KZ7Ii-6Qgz#k(~b?uem+diB(B%s=AbED7~^WZEk*L-ZAc1+9bSVEbebuCaOBl27fs0|lTNKSsbES8h9T zFBbeg>Cp`xI?nyt0C(PI3^X+*E#jotC+Ff)`sJ{lzI9aNtLElGCqq60b8&f5AMY&epHl~fxyr#j+aR+)q_=_1Xyd-;`nMR41H5W% zR0Ftz7aI`A&Evu_@!Y?$)_(8B)zEVB$=bZ*zVABLf*vMrhvWN(LP^UWXW(eHJ@W@P zJp=Zrh4Jr#k7!;D>RLT##NiDs5$$Ne%hg9(WzyxViCHWI4ea9f@o^4GD<(5q4oyj$ z-%$%4b|Vk*#$eZTY1)MWYRw_>qe`zIgD*Bw7qd-uBpy+-y*o}pq-L3(fC&PqhkhfQ zACLM5kq~UV<31GpiV7TcwCoryP@9QfEqnF0CzPyCl(>2FMGZy6=R4y!Yf2|xD=tX{ z%^R2y1-2O3!O1;r?hK>v<>FD2mseQJ#r`?lgOKl@zf!u`v=IFBo%%c6L+C~@fWG68O|Plwx@T!~50l^{i~ zjq&6X8Cbf!h##XBul&8Yn+4D>rLXB)xBX)^B$D01-Ay4I8H0-M))TH z=c0QDC9z%4Fs`8G{NSK?x46*aBQqgMh}Lf2_8v_J!0bz#Gs3wHkLqVcr9E^GT92re zH3G`Bv%vTN7BhF2CZps~qYUrwo+vYoiTY^n;Z!xn>ME>zhyz5Wxgiu1s$hgIi>hfP*mnijh>X{P5~>GK{sL< z#p(L1G1sZ&94?iu-{nI;aWMkeFAMv(6j0gK* z{;35vb1mQ=#?{l_PPP_+8wK#G%~J{lnPP7@4=vi&Nm{&T?V&QYd4k!fB?#;H z-#uT#p06I2<@$s#^3#K+2X2j8{ITU0*EDJktDNhG_3Am-4VPW9{OLS!%T~_idfm&S z-sPe=6x%=7u>W2|cAA{^$qOLmt(VI(4JQ-S34R`OwP~c((D}qm=i4uB&i7S*wi|Uk zhRfk|(_TOQ$U4RQH`xIK*kJmV;a(=9qJ9XVmCiVUM zhosD7g1%)BHI&2p!Bx9GuEyVAzu4w^d!FY@eb~mQdn%r?*O@ZrX{t)XMwK3n?#TAz za@fD=$L{-#HFSvg+vT!uebT`sZYIGoApCVjZITY6uhKm@6Oc`biqM!8pO z_0?{1&jWNVax`-}_)cd7E`Q^lpaUx?;fScr|+?=WFR;v#wFc!SadUP-sliM>d z5-KyT*WaE_m(pD$3njFds9kr?p3fbjJ)vKl$BiNb8Nqukxg(a!Dge$9#5YfiukQD| zY|bg>ZnBx)=bXvsNss;-dOV}Kj{E$)e>2S~w7+$uvR1yow_P-J^CcZddVcMRI4nB? zut%(Qj_R^h{HJGC?oz7P&rLnP`zN^Qi?Zjxn7}%^;QOWjc%E|F?!WZJt>4PPENSbf z0y>)7-fJBA7y2pArdTAzsrzDiw|0nLUH)pCq7IVy#`kr@dJxTc(1^#a*K%Y(BvHJ# zXkLSccY-2S^hjbN#f!K7+)mJqi??x_go`lUyI}wZdlYCJ<<5K7h17=d$pw+(VuNz8 z;A$?#Pe*rbivNukXtcup^Uhkilw0CKPe|3WIPpyo1RD&1f3y)g|s5x(;75j!6&rso3zHSr^Zm zZoYbt_LC(|W}DHjI$onj3&K6i!$eFcpZ>;L>O!5L^-G?)lzT~7)EyFXdcT(t0(T*9Ix)OlV{c+_k1aj z{n2Uvl$m5=mIkWR1-G|&|C|}gQBla&DoH*wQ1_dM17yOsJJ(qO?ooH!mL3cLz#q+i zq?hJ@rww{<%gGLNI2`tJwtLN3M37KAGvhudHEZVYIm**lXYZz(pf*+LT;47kZtT%`xAi7FJSHMgp%1$4G!_MOaZz$%!59`D%>p$giUODJ9M54o z(Xgm1F8&U&Pq!+T2Cavq!RY;V?0ZOFj-4G^X4{U>*FqED%zVA)EouD^y$eRrR<|k+ z&$NN>qh}UJTiZ>cB9Ku#R_6oe<1iSyK12FxL8;Q%(I3uQ+B0q_63Oi`fi^$p zKBP;88xU1PamRZfp6A+1rZk6AZ38MF2N*-;xGk0m=vTAY8sqst%{o(Sty>stp<|9) z8MXzcFfaA2=Vw~*6@1e^spYXJKA+EY$v<~XBu+QdDYx%eA`qe=wzH0=A3WEcpr41e zgi2@a+KDT{B*z3HGA%81G$#m_Et2Fk72rCjIq3&FJ53sr!EPZWoGue7FgKDK z&$r~;d&bEP!kXqk;;ZaFB2HoX_K5m1-|6+r6V*Jty}PawNIs-NEFYu!2Q_v=#_!T? z*Xih%p|g!JSHC?imJ9X;{t(SnUJQvWNfb0^X~VEWKGh_&Or(dkPi#kJwf^E4J@Air z@|k3;UmM*plHf`X@DmZw$Kyk~r{!{45on)2!tE)Z%5K^Ws#>0(YcD*&b?x63NdJa@ zccNWxo=f_D8ebIDVrSh^t@bf)RsGICw#`_}QGQlB|BmdMzUPkPT%4xzqGosR5fq=I z91j3~cXxp?XV1sWEu8(cZw?wZlDC^w&9|;DO*rHH1GVH*a1-r|fyk`&e9T)Ej# zsrA(d@8CI9>~ngfvZ&rd!@rwwn%}G10Gox!@#Yk?T2!Gf(8GVR4qn%*jjCYn(o@m! z#nZQLdPrCN@}igvp@s1QPj(I232yeyLSJ>svAQ3kx?*^j_r5$wUVnSsbPEn|Elbxh zs>zh~v+hzqPPKxTPK;LBaULU&t+G*%=gGItUEYmvx6kS-GN|i-f9(I+;IE zzgy6=OZEHB6s)>~l0$R2&rs@nkwZfhog!z;Je%zmd)0eTJt2>Bhhr8a$nTAuoUd!x z3BZRvAql1K(dlvbu_>TAEk9?$gFGPczCERZv3fW8<7tB{b=c=NFjXqtlKj&>jgBx$ zi|;t)*Y-vQY9@_0sOv=XcFZz9cF8=>hW-Qc<%@C1RSdmWd9>jHIa2NWH007*B;}>h z1thk|>^ELy=D1RvX_?FY;nE~|&|tnY!OK;l^L1I^r(f+JwL2-coR+6EFKh>LGyx6w zB(x2I#&ZVQWyR)-_2Rn*h^tiEo;ZKjD#M>Cc5B=>QdrtyNyNl!{i0sq`4gwG$#(RE zJ+5td{UV6a4*>DQrl!bx+{zQ9zG=4Y(m zUHCGv7!F#Uiv;YpkuI+<`+|7x^Cw+-Z-UNF-(@gHiB74E>B)OuxX{mBUsJqJBuS7b zTVg@?pZN`?ltI5m=~Tb3%~#DViRAU{AMb(X10u)5+JC=@_4vD^s?J&*Ip#r}SrcROL(Y+&&V`u$?k;An&I@N)PMe5M=NUq16NI#{6iC+0Y> zcy!77i{o1==l#LAs_)QNQVdQ&O#g<@)K}+?Y6QUtGM+J#!wxqH{u}7cwDps!kI%lf zzZ~bxOKiBR9RA3zoD1%WnDRymKYsBX32+Jl}Lf7SzJm@M*Mybt{IvZ1k2%+FyT z7eDWmvYyTgE{~h%t#%adk4`*T=fG?089RwXE^Ivx00~X*ndh?vC2#`= zWUs_545-lbd=01#$GZIVS>%n;68A-WXq@N@?t$X0UY`I?O*^iI;Fji*Cv?{@G&6Wl zA=p!8%*lQ|>+aN*Aw6#)#Egoq`pq)Q=vcJ%HtL+}@(`?RN5<-m&7@=h`4Zc(c5aIm z59ZVXN8a}FK-wznJ-64R$IG!hV6SYAN5%gBUP{m7xhf=KcZIQlB=EPEh1Q~6-tXK^ z4EBVmZ@j;At=s6U^kG98d&QuqFMZ*>>fy7~^n~6gO%nP<=w0UZcXh_Hu>G*|HFW9) zMZu9!>?)}Icz(Yms0O-4=Fd7b?@hZ^joL;d*`$#)mVUbMbD}Ud2*FI4rFccFKfh@z zVTYJCz0ZzV>7vLkKk(kNMEzDeg6;i}^TW0F84Tn<(h>bQUtMnyOqz?{x&!Fnu4g*JGt$LlI*QSa+Y)g{=NRfqXxvZM zJHeNmy=zkH%(|u>8xLF5>ySJ4s9NWqn+7cS$MX((qi}@@86JXWu3tgtowToKJOTjRuQS*X= z1P8fyr)kzf2C;DK{R(nFp21`3ZJ5zj&}R+@3MNiWq(?0F6tT1oV7rHFMtb3t3~Ulz zme$upsjb`abmd6BpPHst(XQ7_`<~l|S(651d8OgbpH({U=~;Wk(x^S5QDY(2_v3oz z>l~=7@`&U454vsq!R(=;`8DhpmxIaOdOC!so4z=X>B9Sv!&vRtv&TSvK-TB+!~aDO z`Cs?$SJ^V;#2v|MX)PnD>E6fqCK(9}ckojvcJb6xZ)b}WkLe4cAc<}R36 zy3v{J(4DVl`N6WWXEK7{*;IFY{PDQo2+$%-TTy7azh3xR_vn_{=dfSTdqodl&)l!i zeN_bBkeS7FDfEZYbZcj=Tjf%(Xy}UPrMBC(c9~nu-lAiKJUljU)+^n0*>ZKg8yVhr zA1k3=jtSXxb;;Xm<*i6 zd^zM-@{~fq-f;^_91Yg$lK(aD*_Ptyo`P<%NSX^BMam}Q>3%%ImR*ODdD=!VxDjwu zQ8)N+=Ia-Cz?)XHsGxeeCEgtVBiey)c;`U2i+^BiN?=>ge=1r3MT+knplZ~#>s)<`hA=Xk?Q z7NEg=_agJvOQ$Fvx&3OP7oa*fpgRA0gI4|J+q2!_HTKz9`&=Aa4uDsD5G)EF2(`AO zcV;TXKQ@5|>@4`8dir`h?Pl}JJsOh}6Tq(o)$ojM^%6aJsB3!Ik(SW+8+oj@inLN91|_Y|Xs+1ZBKnJ@P9 zJ>IX1lS9|#VTN92&wZ&-|a}lo7||2-gxHFLsTU=O(%jbnsb0_G%WO<{)-7} z|8v{J&`3M3Sz}rJnTR@Mf)vnRm&MM@miy;l{*&-NgbNUhNsJt*1bXXnT$1e`ejxjX zCVV>cJONV?t~Yhs!h&qJflinYpaX|i!g#*nA*zsZ^ei;J#brcdG*U&13#A3l1qCQBLXzn3#_|~-13fd@WSV7qm1HT7H zh4J&WVfoKt`O(a|$Ks4zNaWt#YnjE(UxHJ zdxPNob1&mTq-o5l;?63A6Z@Q$v~@|f)O#dI?9*M!assHO{BSY@TbgxStH;hU7L=6S z^pdagj-sus=yy9d^00;F!#e`5WtbM+U%5*OR4?}N>9~zqA*(cYzMqs-6ifKjTZ;4- z84J-f$JTd+v&oRVoENJ5mu`D3<=|x z>bOf=xysO<0C~5WAzSyz?|DEE33k&FY3}=eFJuvHjVAlR6?dAF=KP$wOqr6=Q$jIR zf4prOcIGzv;!tV$eb1#|)@JoQATQ-=U-rby+Xp3R&xUlqAddceBGctyP?da&riQJ z{_y=RhVkd#K+9U+y(0)j{pSA9S(Lf$P^Zc9hvwLpK9jo8YNL#stwzy`R0kjcf55!F(mN{x~ zKh#vM8pAeq#iU)m_J=w*wYjx99rwDkzAGC*UI!-HdTv9N>HuDu-jLWM-7T_OsKN@_ zPa?CU^^RIbkvHsP5zhDeiX4zTIM%z*naj-Wey?Nc1yvv3{7q(`6Q3aerC!YWCUtr% z=N@6T*q%3yjPENRO+)Uysz*^-Wi+7t%VE|eB+oVTFw|i{tibeq`SnSO7IW`5Yc3Gl zm7--~+oQPHMtnQ0EE0vH!l{|7L_o5qqhs*&mO!G=gy50g>_?MUC9(^o6ho?Iv0jKa zZ0YDSRAlo6c|CKG4NHi_(vp=?JcjvGlh7gJ72Aaw%F%PT*YDfwBF^D171~ZkJP2v_ zyL}m59`QlS$7sgg1}tlHz5_Iwv+vj1%g#NaXz+iD&QRf*K5WC_1j!luDueHOH(s7I zJ}6U;@6eXJqajywV>~)%2X1%Soe>J9Io8uZ z%v`Vg9NI#xg?@t~+Tju1a(CQbaD2|$JD&c!I0KUeSw{$q6HpxM3hoOfPyhnl_Wa<| zLL1F&L21qxs_jl7(xF*h7U~0<{wXx&5!#pOH?Lb&8_ZaIA#W1Sj~FdTx!d0%KE zv&YrI9|S9WDM~%B9Lk|OSAeb4)j?klFKwT+4GdA#ASx;}@b=jH=7wXtE)U4tMtWT9 zRGK$i<-USG1t7dGpPE#&R@%_7@~1=Ko|&RTF|00ySj z_O_3aqhnHhE3wVZV91M(SekvqFO2AOZ_f0NEq!<%kYO}y>v5TvG_fIsZM|^qtrObW z(hy9XZ{Zd?$YU>e)b=DZzBwh!R#^}Mghhvqf}&+YlW#;wFP zYQJkdpUI$YtZZB(+ac(Z<$T`<%Zrm&+NH0%db8luUP*EQd{x5oC=pGt^J|h>m$!8* z1N~&AXqQ)faaI-}*`k%MotnAmGeCgma7xc;Z}}$9V@$LwnEiE%I62s8<7|FjO0}wP z>pv4v!J6|OcgQ=m^U{lrFQ7n9vn^ zk(HIAOGjiRK}o$DTk2J2#N|u<2HXKUaN}{d zmv^$If;%`RKn&iel~X}0BQETzdNCo#ZfZLL18+Gmb<;s zWQ)%xGfYPpmV$7gI{i)>ob0hv{_Z3MTm>)0eqev9kb9*fjZ%fQV6N4HvL3~Y`s91< z)4m={p@cPj=MP;hNpI+bOR^jueI+EXl@~Hvd(*{?pa9?n{0%V3w(MG(U6wr+UdS`8 zx2?ARFj`!EG#I(yb$Ohq;LzUFyuZBF2+0iWC+7E?`tvrQ>s9>@#B(?AbSaBcHlArF+qW1vB$yw=TtavhHUnCVf@RT1O`Cfi_ zCA`)Yl7^sh>a{Gb?@>Q77~<5OKlj`apUKrH?c!6m z-gW0gj}t^(%j1`fC^ob~cw8+m3}csg+=L{L6C3&bL~=0n^1`^O30yPlBFZP4xl^9$ z%!cTFm$nkl(MUTUCMVgC#~5P?n?Ckm{w-c7L#~qO@UVFx4bAzOs`sO|akyc{xnuY) zRGUY>YAlg!(_G2v=Dtty2qpPUsI(3J$o>NifngSxwcZxHUly2uJ5SaJuYjksOm=Zc zazpG=qh-y_w8+Yx8cj1*auLV+2L#C~W)9WhMj?#etBch^!Vfyd{P zxo6kC`?BZ_PaU`wI^oMpxo@z~n5#gSr`@OO8`{skz%aA^L>Z44T@4s>eMuL~%_z$N zsZudhuABC>KQPxPQVf;627Tvcqb<9kW(;>u_4m8CnBvSE;y(7xang3f5oSK|!S1gy zf6?J$e6I{o*9o$kJ>+x`0`#*S77N5u-!}T zw(v2yhlllA@a*vd+ia-Ak&6_lTYH)`>zfy&^YhPWjL;mU(kfeQUYp}2xfbb0b^WOJ zY)X@khVaF%vSF%dH+y=a>Rb1Ei zk1{L4ZGJUo#o>7+y`o@9Rq#Tfr=SmJe|ck>RE}KT2Qb+l+K@nl$0e+v7JT5FT749_ zcC`oruODDA5ZIaLM5e$DxzE{5G;*@s?|t4tYjWQ|Dn^4V#=ts!P#>?>ra1(2`bNof zxVJPM4Do>U9F`5@({nZDT<TFv&`(1%4JGnlQ+v%YFKTJEF>{p7rS6^-eovin0-6v-z6Y-4)p_3h2Nf(%gl<0QsLw6 z6aeTi*NJD4Cj^`tWjtIll)Do#-t?fz7Cp2g{4fuj-T9ky^I%@Y$yQu^*|8gLg3FLD ztG7dDHIY2Lph_@0da=yc$7B;udi3&j&B(_$#7y;uS_^eO%8)FVvu<*9JEo_pKBs_N z0$vnaNUjQC=otWclL6C_o39gtd&D<$Zt*(RY}?tvYP7iREHyvE$KXsrBsF=qxzp$j zyry|ns*cP$D?olK*>|WrrFYbfR|RoxmwN6Q5HPf3@KA1X18INE8Y;PsIMh2`8*QV0 z^NPWYE&ISq&Cl$soNmdod6q8qpy@Y4@Jn|pHeNM~7?)^{Z(EHi26Na=d7h1O+0f7| zqlGoVMpwx&po6d8CkKEgbf?BZE^oABJDZ1Tta)R89w4r4Oa%wLC>JEQj-X_2f4gNhU{M6 zFI=a)C0K+C3I1!m3en?z7O=j%b7)1lLZ&Nld}Z^zAZ@l*=Y-xK^S_`Y%f2gbX>V~$ zSI2L$w$8+%a$AaXw(oK)z>cv+tX;ogUg%L1XskNy+Gp84K=4wgK1 zfl+^p>YvMEkBisju7A?2^_+(> zkB@<+Y?d9zbHWohkv#VKVpJOK2_zM{zBHnTS(7_5P!G1hY(to?knjA>Df#eYc3TJzrdGU{jPZ%So%5_`M)^iN;w$; z#1ajp9&xB{;V@DR5!*Lu#r`0|#}Q~ulBv;{I()On8(kcFPK ziz_mGpV%YR)2s=t#3)K=0kTY?d447M+UhW4;`JJV=~qK%jn8Rrm1J{=a);($ZP>oY zWBWm*dB}!KdU3rY7l0Bs=dg*3Q{;aRlX=bG$1pO&eMhuAjP+dKTiYYQL%u2#oyw8U zGVi0r-~~?+fe0)e((N#SMYEi9BtW|&I>+|BPWtM-N7%g74@@l+$x~O7g2>SL5ZSV~ z)9H4Q`#mX)cTPeEkzp-yVRN3)HxuLe_3>`rn+q0FU$Y>1kI;rkdV;;!nD=I6ULQ7? zfQ0@h%S+tvb~o#DzF)>&a%=gQqp`@1dKt&#ig+*h9bFx)?6%iGIY^{6QpkrRQ+*)A zQIv1~fTGZK08Q}u9e=3Dfg;E7^>p%!;@8m?P%aSSJ$UC|exJN5koRBRu5Q9d)}|t& z-Rpy5dn$0?LGT)yqD;GN8SeCKv!?5ga=`1mo0`(!)`J&Wx%x+bK>$nNMn>s;+y|N_ z*62%84 zJ1--dp6^Lg>rva}7x7P)>t;2~o`nZ;G+^g(tMm52UJ`|=!M_jR^@a7)Q8W#tJ-x$Z z=|3%6um4$#WOE&|gm4|)$qkU(t@7EH+z%p&loAk~_}K*SPSN{>mRTd*LBA7>Yl#tJ zDlQn2fYN4k3r)PTL}a~|i$uge*Y0p?*k=P#)BFZ2;Mej-2ZwYs0V0$@KzD~aB%@~8 z(F)Er5Ia@DQOSc`0m#&&Go z)h{2d(jt(#|Dxah!*8IV>n5UlTH~C-H~&cDtRX;!)h;{jE`9w|_`>ten~~8Ku&F=y z@qG9j+zmU--+w9q>Hn9x-H-Dx-+#5+;Gftt@py_~sKI~u=UsxC7veF0{Xkv-00oGd zz8XHnprHv{E0RXlpmUoe&ZNk4(=USJ<9~1A>ZPcB|7`MFMK9ZlMJeTvi?#btXIp6W zXVPb1$p^i{m%HyHwhzm!7@_|x76YNZ6EXYF84r!$6i*L`qji^623>w222QzmMK?ea~(ZBus`6a=~uFo&4wb9Rg&yettg5)t3E}3-kZ+ zIcl!vmDBrzV_(Xa{< z%$H$!J|q#r@o%Bph9^m+7TZ zFXM!Kzi0h|YAp!wg*_FOO+s>TN3l3RQW%V$z!9xn-|L&5d_fdH`V`BE zdJY}pNQLg3M~3i-CCPdy+pU@xcj=H+trCST5i)sA&3d5e^5Hh=+}Abpc=&Vn2cnDB zvoFe|59t^}w!-3xT!ms}3Y_JE<6=H#A`Cik>2Ns0Lj*FU`*6i`J_f*t$bv)O#I;5~ zvNwA~F!bHX!tWc{1@>)>~)a(luaqQFLtxL%K z2m_RUN|09qwlAa%GO7ifYtZ1Bkq91eLAWjwdL)LHLB5`cnos!VWE}A*hz1#X!UbO- zVd+-_C>GO=_gu$Tt)$Y)%2%X0cLo8aZ@56TM_`uF42Z zw0UaJtE(gPLR=`_P|n_XoPFdYA9?HhcHqo828%f>WV*s%(`(=JaFziwxnXi$`64UM zzOt@N4BQg}YfVQE+MIC!xU9shyHnFf@$Z7%cboO^aaIX&yvsk z869hHK36BmTfDaFkZAx^56qglmX73|>HEDlB+JU^TH}{{;Ujyog6>>>4~_bdygoH+QJ3+vS}!=4OB}5Brw7K_9MxffMiHTr zpK++Ki-HiC9JYQv(Y)~G8f?0r#IuW-p|-_2GA+AYLNY@zu=yv4g(2<55*Ds1&8$Nw zlWdH3n0)N$2K+RI>^0j&EIP9Eh!SIpbRvNiJiDZzTUBeGI6kV@p6CADLuuW;pqk6! z)d8#SkypSrB3Il!mwvUyk}04=dX`J3JXf2|ogQz{grAYS02XlTB@5#}=Y6Of?0?VY?O8{wkld`6Fu6U>b5AWf z&Ti%xouU-Pp2jnRu}Wl~0z0_mJoH@@w68fs@`h~d+z^e~lGv};Z~hGRrVYH-N=x=e z`QlbI2reef%Y}f3uk`BLPt=7cD;#OmTLC%TF5cer4;4%(wsjW;52^=PAyoAiW-8Hx$?A|T5 zv|bA9j+t;7>HFtcnYRtWy@*FSpurx=`kVC~eDSV}LM6@g zME`ie87{&MupJKKUL2$*9w?X&8HU9LwGaokfN2*o3m~LSaexf?CfNQ`{-AA;TAd9f z+s*WIi~1ipm7E|c5NOp3aOFVqI4xxH8y`FPu6NTTvMLJa?cSH_y{oIMd+yb^ z*6!-Aee14Dgp-g(1_{YBYXFf*3C4+I|KZ4v03$iZEKZb|1W*=&lwb*m!~_JvVX@%% z_V;~fzH?^gdOUZGbIE*~XTH`@YZid!AoI77-uREW`2YbV{Xs*k8fIL%IIc+MzzOH{oT(YikYbP}4?81YXb&Z+Av>BO8Cua$u!* z7tR8lVLbK~&N60b-VzA|&EIb5S$DnL4t+Z4?t$GJQj}wvhU^qGD^;rKg1vjNxJEGe zd5i%El;6mtq*`EXT_2!Mn=*z-eC(XTc#i4P5SgYk7!EH0uP%!)742!T9iuVVR=X1X z=hnd{E=pHGLUgvaNX_>?WY6AE5gUPAm?r~uqhJ9-ugPw=k7mP%RWr1&x4yIO@TD!V z5m>P!$bjTGWpCNlPP$YFVC*9NNi))qs_p}%emtQcRSr9BHkodWAO6<%yKXPf2<6p#m6|vtUlyE1$8$ zW#EoW1uX;s><4#E!vr)MeYVg;f7xK&QbjIDmC<)yfvyASaypAFlH?^nVte)2Z~R?S z!jF-kkia*{52y+s{)iH8@H&8%Z($ZKcdOq1xrH8G^OYiWcB9ef!76Ro&z}7zP|N=g zaLzyb#%IsI2fxVA-}#1T&;Bap&p=Yh31UIM1ZhJA$hShi5%RzMwr9`&I^;it{AtMV zhg6WaA$O494*5-xU;M4lp8W#kuR?wTQa}!nJw%3lJLK>G7F-+hw;+EF^3#wXf&4p= ze;)E#$QzJvgM16*|NPB3C*)@#|2gCbA>R-A9*7V54hRGJX2@T`gZ@RxpN0GgK`yc^i3+X|=1@hN_{L|0(28LjGk)4fzs8g?uOE zIpk{~KlvMQF314#i(iLpLROHkgZ$LjK6~~bLjE-5hauk&`GXJ-VnEuEw;EOxjXs=fW)+b zgrw9I1?V9TEU*vfdbr%m0cp2S4sA-ZghOeDMW1500Z#~HACA3y`%Z4&fkg02uaeY~ ze}3cc?Y9M?d3VRN@AHqHD0IO{ABA_Qa7exD=iYnrMe0}{IplWRJTHno%`qZN3j#-O z`(1|G+vQpo$cYWBx*bh3G-zWbT9g<(>3a{JwiZ2dAONTgNx%|nNa#Xf8{Y3&9Ll_q zaJr_zvgjnuib$}$_rTS3jU(9?lEC5)8Tg*G$g}k8mw$sW)`F1s?Puh^?|&Y6!e7!h zXL*Vye6Kv>8=(<6gvU0^L0FVO`L}ygXN>rhneyyA?tkuvy;k?x{Y9Se@ID+mvdIZK zM&J!FfIJ7KjPaazZ0osf^3HSMHd$A6U5w02?rdD;p3GUO3jm22Cjch>$-O+e1`aii z%y|dIq2wyZ9Gt12Yc%`_^XnL8`RAH+lWx2_``)l3-!O6L%jbE88~O|PKX*lZKRBqA z^TLNGd&9XpR*_?_ykmiznv8B(`2Opw<$VrovTwcLP<<3Gbw&m!v&+1bk)`%#^-k_& z`P~=pKyz-(FDdFDKEJq8Xuo+Qk$!jv3>PLmmL56H{hxltr+RluU@#vR7&+a`5AT2s z8msMBaCc8mi6^;VkmQsvKYS%OX*{f1a>B0DO<8I^^x${o!q-b55 zg9`c`l*2^n!_&WY|7u<%{6_EK_nzUG|5^$bZ}Pn`evu_<{^sotvZOHZ_TTrauU+<2 zcOApG3b67xcMf4HH^^+pgWz>p*^|BIy;R*#m;Fn9@MIl6EZ9!6BIPYC3QTv8i|!Sg z?hjr|P3CbHe1vszoB!mUfLz{}UyzTUmA|Rq)(2j;;XC$cUZ83}M^5b(?)FbXH=Lc@ zTf#Rm9N8U)BnMIbZE0oB2T_=R*{$NqCW+DdDC+c!1x+*N+f2X<4PJQoL%kw>+P6}TB)#D{lgq*$mmu!$VvfPO=OJ43J*iHVSQ!}E&Lwh^Vp+LFk zyveZ7ZP8|*3$$#}rsc9mv-$1=Jj~j;25?|J%L1_5eKo5Y`r}eF56j5)Zc8YI4t!Wc zHx)xZzjf!tk#)>IkFfe%cP4sr9pA~k+W9=kzI9hRsTpO?=jqQp8R}2nspN~drFA?1 z2kbW=_quxB>bckA&O51-6@LEi4Pr7sH3gpRZTOe>s(wj++^+8M^UBe8cdwep`2KgG zM$*V$WU2LnXkXK?&e@Bjm*r7fy+9=&`F&^Pck~rSD+qZRrsNv*7oOhT!(wZon!^iW zd%R-V*+y3DKHE*8mMDJ&VJh|~#%r%?k1kSYV=Zru%pYwp}J$HD6e=Z|tVYsYd zu$J}i-94l4K}valeY!5qY)mW7&QLwe+x#tO#7{zVoIZW!dLH{a&s8>9_8p zIQIgqpY-#eHf$sK^s6hUbAN(gcI}XA@;TOj`czWm>V{0+#DKz;!7M<9O~ z@;wj}GJ`OXHzD5)`5FlE_rDi1hYTR!1^FE0+adoLF8e{^YA-@&!f53nLAK;(=2aq3z{4vPC z1^Hfx1L;8iE`0Pq5BX0ZKLPo1$iEHw9>^IogY+OYNwbtU@7-Cb6| z$$IlMFWz~_3%&fEci#N$XU`~@KV;+W>qd8Bl;6chmXXK% z?kB_d-HnG&wikT&9d4=!Fg|yAbZ6Y%PW|F;dvwA(grma4li|A`9t=8M7S~B1{+*nB zMBdGtw|DcI@4k!7lVjy~Mt0Kyt_K?M`}5)*zN;4S0q@YTUpyIaGPECqnGWytiAsMN zJ$a&P9^SyyHFE#2_W>Xmlhu?ZnBq;#dd_o(^xQFN{yC3gAN1%INCEG=Z}GvRNNEv; zX1f^qEaA!JpIieE_i+Y*$Y|k|@3r@u;^Qp+2&?tM55!yjm_Kim+qcp2fA%Vchnv8 zfv31R6Ss3bd8`k660*_Z1{nJF(?9Nf_jmW+Gc&J-nLltGZZD4Pe@`y(k)tX_tAol_ zcNC;%`*DeUSS2GozO;`%ZSTV;7?Il_(ifOyVTOqrJj7R?+NzIJ@b&M&l_Zn%-S6FI z)sw-&oVq_ft~2$*sc~JyQzHBQs|S4wSqA+5{WkcZrXF@peC;{Dce_pOvaf#c;l|#2 zm~>AZ*@qzN=kM+p4+;Cclf^#qeR0%Vw>Z$fZ%e;`bBl+tqW}{WO78PK``+6lU%lNP zSr1sc&;hqIlZ_wWy`7Kz8KI?*CFZ6cEzl8bJ*}iSztY*ke+9F{O``x06J}BB`qAaZ zy^DLVNAJ8KMit`C0(k50W}-aa8ea7KfAeNrWRKr`*TQ)9J>I?xA}a??)VXhxo9okNXP7_fwz3{`BHDgl|qFVl^Dekb>hT zxSKiwA_gxP-g}?ziH3YorR8ZoUCz*`r@t6~*~hSeKzo@Z3XGIA&v{IQ-Ru3ACx182 z@kX3troZ{cchi7heB&)7D&&{PsOvoJ0KlEd2bRhWr4;hmhRA2I)X# z$Uh7DddN@0*Z)z-zX$mPkTawOksvQ1zZ3G0L;f%L_J14lGY}7AKuF$Sg^=9;Taa&n z{07L+!_WUqkpCF+Cn3KJ5<^yy-wye0kgtJ|SisLgNG#xwL%t94^YHWkTgYF6{1=d) zg!~ZXUxWO9hzj{u$Tvd19`frTKM%kE&q011@`oYc2l?HQ6XXk!{~2)rlIPz;{vQ1O z-v{|N$bSUCehwKxz6$hSkj3G(;h@BaeiFF^hb`At9rNU!5h9}zV03e-X7n=~L{9Lob{cY``S?)mrEeB)uaBd`c` z43%U7a5xE3Rq=hY`|s{sx5Gt&1zh#v=k*jn9^~b|bvs&+I2I2qO2ANYuNuy`$9}{k z0E>wBWldQ^>KzA)Pn6`tEtBbRC%@pDI2$d?Op}pmo_+6e_h1BudBJnM!0@a{14|{p z{#+k}_X$VxiTn4y-sk&7Y+vdr4AoOt)Nlc~GZ^~0L0|~HB-_uMv}HV(0Yad88W0Wk zy}@no9r5{Q(>=x>Z9Tb{C)dDLK2BHk{de<+H}qZy^+RG2WTaW&XQ)1cckogPGc;`W zm!DqE{=fa;$~|Y`%zojndI!4LegrDK??1jjYQY7f2v>Ox`S89c_|Rv6cbz_fB5s$s zw@6+A2z+dpd1;8;uJrQLug=9D?U>uO9zXo*T#8six66DeOvKaSBrl6hiPv-v%%=A_ z-&2Idhd2qbt8QocW$_a4d$QMV=~o{-A)UoevzuPy_B+cjYoWh)@ykg4KI{yynC}+w z5D%Nx2b=EqZvd<7K4?r{#}n|xV=(Ef6+Xc?c>Y}&!z13|{|op8^8`L2e|5ko1cQ?e z-gckUh9ExY1y^`(SiJe%VojQMY2f#4`f+MP-QDLv4n6e$c?Y!N^{)IX){M=MH|_i4 zDSF~@5#4kX34Oh~7r>gZwT?3V8>zfspHd7vz(lPe$OA5%^>TJ{f^eM&OeX_+$h=8G%nm;FA&fWCZ@9 zAAxsW(>FdG&i?)jPyE7Sxy$(cRzdfPmtgEp^#ht1_;S5|3wJNEC2hD-vcQj0mOlP7V^(PehcJ( z2e$m@AU_WIL5K$VeK;36cScV7@bfs|UPAyrJb>pA@ZH-lALp~TBBIBS>}wz2VP5?U z?$wX{s~?3|KZ>t@lwSSVeC^}wmy%!ocZMdP--7^bWmyprL>Kyx-yMw-*ylSRFyp(( zeSBr)iEqfI$A@HY(BOy4)YoB%uOwREcz`vbs5bVa9B^iUlgXb57&!JnhVsNOzg<~K z09$6$Mt0P2pCdKOJ$HFoelGDGa;1i2p<(J9AFjmlVH)C)lAhpw_Ww=9`%8R zSWos;a@X(TkM5u0jqm7t2LRXaNGaMKO8Kuy&fi_U{CLOQwXRO~p)0D$UK;=+-iX5k z_Ru#xtvz2|Xk~C9{HHDSHaqqTicD)nxay&GxJP zvOU}BtBX01X>;Ivqv77S!Wl?9K%{iCis|}tFu*%t4X5IylJlp>P6D~wR}Hgs0LMCh zI(mDw)xkN_lEM4YTI`mCXd&7$nn(8Jv)@~4D?Xfawxff!oSF=qR`a}X_s8iB^gzni zOBVECWfUDhNpdeKb>A=KzNu^GHbC29c9RF3o)3D67YKILpq5V-y659 z^=NcPFQW@PqlU{fI?)bP8eNSXaK;7bqh~ewurfkH=$2tP>FvNG4-%$sD+aCKjT2C5 zMH?OCHR{A)$?y4;O;d?ayyn&;egFE40OWmwl`PR7EIUmqI@@}*7NfITzswq*ITO)K zc)Xi*<0duf)DfuLR{6Q@WnHGvM~%f{)M@2wkj~~ZMX{V+a|@r5sl*a(bY;4rqo^}H z^62;{THDkvQXO4mG;2Rt`P{;4*fLu3lvFt$3)Ci;&}+Or9aBb*HGVS3Yhw zq(CTkXnB+?X!bZmk2YTJuFhcfLXR(IAMBGI8i08RjS+;Ejox-Vz3yG-lf@{jZydHb zBtUoh+_pBj_dP#%(eKbmKtGVMDL4esV0f;yjM+BY>^7<1ME{)zx`#UrXB(q`S0+wd z$Bnsf?b2n$H>t!!Z-3uwoT5b81nooAMt{d*z0Bgd8Hgnz!v#rhmU5J)#^-uPI1y$; z^tGIDl9U$Jwo`BS)~!$F_*}V6wRYV8AVO=cLA(*I^Lnc*=-+#>1VshuEvNwmy#f~i zU85hLve>cx<1FZQjvkhUN}5GR{U9moqg3!{XKHgtmRGH|>0A$!0<3#}m7QQ~W&S!p zQK35oj{_C0c3^V%!E1oUSK3?N+Ro63G7K@LOS~`Io*$Q2%N!(U%muLd$}=>jUzasj z8G6oJwBw=$rQxe9^x$fk`x$MXi+T6BLoY{u2Z9A_Z3%|FO~&hHIjOaR>z~jQtg)DZ zQU<)oXm;csrh%?hvxci*(034=ft{;cHL9Vrn+EIgHnob$pjn!X7HvlTg{yBibxbuT zM~2#Mka@ck2r(UQeVy+-4rGV_m=Sy*?w&j;k^iDKRfN(lnd&yxL4DG=1Cp z>!U^p91^ttQU)i#iaUZ+jt`+MVoZ|=eIT#v{yN|K6X(|aEJ?QDd64!+c?|^Wie6YO zN9M4vUz_e+O+_)EhiV!Ng51dca|q6ie(M5CXGK$d2hB`TQo#?vS!*l(CWn@o(>iPQ zHqk<5?0pjxZ`<3EG4t>Hg@bFgf#z_Illfsu`foDSe6c`-J=ZOhW}%};T`}1-@hq;6 zHt7`Ru05X>MFCzB(B7b8AI;r{Mx^xDNks0GawO?`MdQVO4E_bQ;S4xVrw%}pS@PU= z@~!BiM>)6vC+%aiRB2{f?WYZWG~(rm7WcEn#~5a;sMeAYPbZxVc!+85)}w7U^nPfbp=&y%h=;YywClZPTiwj4BPFx#dILNzvnKlx+N+}VYJQ~?&}%o)gR?1%5{k&QiI!-4TC_J2p5cr>_-dr? zWIgH~_O14%7<=a6JXX**F8 zGTquN8bfY(^#;>zxE@buUbZ?8Psi$dO0mz{=|y(8%)rf0!)(Df1bL4>fYlCt=FiZB z#(o)ZntPrqg3#QH>Ny^J)S{HOO?MHhdAROQ9CS&{7yWZ&i@lo7(T=p>x@b}?I;n=`z@pddRuFPx8ypA;N(t^9 zP%LXqfJVWbu@7rK_1R=Q8Nh^HU>uqy4cdgt4w{ZWWz4+ZQQ;O7Uf;x<3~xMP)+a0< z)l3`3)NM#zp&(PcME_>=O>_)>=X;E4&(n>vL@&xr4O|5*scIB2x@c_;>RWlkx=wx5 z6H2#r-H=ASV{Fx1@aRArC>~$bl_}67CN$WcT*CKWN%NV=HqD98idvhzHY~fE;b=}T zuB5$joQD#ICKRh|GNuKKhE0&Jm%G);C_`4l9bjS14781v+n^MQJD4NKC9l%s&H;=t zbdG+KSIVC2ivbn3Ih(P2tI_&4AB@Xx(Z!ymn;6QbXcu^4U9NTJvR%i^+is&A>A`ir zp&Du&@vsGN9PfQmnhb}+e0UsfK)D0GCNI)7tun$6vS;lOtgSPtxdfkFRW8dA4~j0P zj#&C97CaQnpm%Jo#NPle2(kDJRvuzYvtd^U7n{A-4 zFb5*->YVVJa%!R_ZB-AuK5Vt|hU~A4Y1z3n7Yv#V63(zD+XUIS*0=O=ZR7)V%$~2# zB6q~ItGB+eXb>AD*sSGPITId`RA?)1l1Iot9Dm*K4Lxm2;=H^QP(i&8U$(wVCuZP;Q{Yotw3 z1$Hq7&K3A=j2+>!**B&V8j}arLAdmZU26Db&%O2G&2{wI1|iFaw$M7c(;bH3!!fZY zHE^Lfg^e}rT-Na}OZMJw&_Pf2Zg(*&C7x*%`Ele7*TR^UWHBdmY&*5FAqsiv*5W?e z97>Mc1@hFH)kRo!JJTg}r<&kh(7R9-gbnEl$rlr^=~au^ij*^m8vCQeL_m*yJ}-v33wh+gH5Gl z2^)J*tepjK7xX51Ox|NT;bg`p^MLerHHD_W(o68Gba}PeLyP5tQ4{O}+5{%TX6&C0 zbxHTzpd!Qt8jI2J>=-sDv&ffWW<{Mh-GbWvC`|hsn@5-6pAU%gA4fFu$nQP?Oh{l9eThE6jXOiB# zmFaF*V`+bu;QaW<%f&D)E&%^Z5fIyaN!X+~cht}d*eHQ_fTvpTd6}i4*SFYiz%3~k z^%(3^yQNk&o&FFv#Hl;JDaRgc>CR-aqfX1{Mz^+xZI_+FUy~S9XFl8|i&K-T0scZO zR32SmPf)mXW4c`oR2xh!OI9nSTnf)6-UEC}r<*Yx6}XMc9z@0w`*(vhgYk}=Gzqa4 z$B|@(;SU<`CPQ4yjux&5v=QUh+Vv#FtVu& zi)Ekd)l+HN9*T0FqYH3RmUJT8!CX2nGuV|^Z_kXZ$4rikv$lckBy+)Kji}#`w@p8?D?&wF|m0fycMM&I(`A04ZQH)bst6G z7;a7M=?ukzLp+-g`hp{qO-`&HgClQz1$~Z`6vRG5`+Olgz;;#+w_eyTx|e5~AQI)L z?PzNb5*yQiowiY+(S3MT!(o%*oV0(gH3J*9Ik=*XAE5!4BHT(M8u>36OxhF87_$~y z;Y-#Q_Z{Y2^8RS20n5&iT^(#0GU$0iuJSgR9fmy*RIyNClU~TtkcJgoBaaZ=9so zs#Xl!X}8wKmJ{`mIDa4u9dvg@-U;p>XuM5}c33i7+{xzB+gdalAQ=`T|1 zKzdDIYs1wM&EP55j)TV3oP>ewV{rPb484t)%tEE96O?bY%JGal4lY@iV~}hqpVT#o z+6UkU)X#_w2U^uu+h6)DqL;Q2#%B0aj9P@9LfkjwMa>QWssUskI; zxbAtu55p7sFv}t`KY9oqLs45(A{-QGnm1Z2Gpwxf;JA#mlLB?0r%>1MI070mv|+}j zoGB8whZzKFJM4mBW0Lf@sekGh+~m+)NK@0j;GMz>rHy{K-CVew+_*H$QI+^kX+oDx zr)@Fdd)RMygq4P?Re0nJ>?k~oF5?Yoid7H%NVv9+F|L`V->C-t4jiMc!7hMbztLB; zJrPQ7*==#wPMCw{_%d5Yul`>1gG14}aJ^*IYU`KmGDn>9GP9!l-?lWMQ+?rf{VN}> znqW4c$mP?pd;!{ibOlIh>sPWSF*7khZ?;v2K+u;s@&-SIwV=jq%yqwgw zyS@)DG!j-g8#R@Ql6xWa%V2RljcB<0XoOyZQ@1wrb&fU-9oL8}GL+G@G7qlb~LrBldpM-{r$vu;S7`27Lq@Pgev}=6;G;Mm0K( zBn{LBqG?;A1L89hQ&8%ryx3dGW}~e({#0}qTvIPE8G_4QCG5v6dbwBHM5bK*#t$P* zVoc^;5|BNF*fTdB?oO^vZ9w)`%&n0x)-ilpQ>*JnBOR@KZPF)RvmfkmgcBzYMfi^R z`6xr&c2^(xqwZ$Qv~hy7uY+e?U*}q2pT{lGmZO*UH9{l#FxXhkb-NgCNR? z@SuY^D?-UiIpOvwwYYay*Yv!z$PV;9>|r#)uV_VLh6Hp+II&*Kr|nrCpwSe$8B zXy0v`HP`~QGl-xv8n3#u16$fQ+^;wNp1+3id8qZ{VW+@?-hkeR#DRlq>sQCs60s=X zoEK+7Mr_g?V?DW40w>*6y7YzczPraP*oMjoAwtF^;nD3?>O*5)Y|#+w?YQQwnU=Li zk*+lauB(XtaWd_4z3Xx_ZeiRujAjkn7u&otv(;v{JuN{eH&3vIz$NEo2eCPok(e?C z@6AzkvJ@kY7V^shdf_|NW)cnt`w2hg7Tc!N$ab>q?>Q4XW3=hF!BH|@^+e`4SVf2l z=T$`bK-Yp|%vcJ1nIJf_!J=oTbJ(h>KQ7FK_eS2Na0ZwIMOzH(qOumai#B4y*-*5} zYlxNQnXEmm{lOPx~BbgCC+t!XE3XnxpYTaN0{(iY5)8=`HDt9!ae%sQTIO1uCPXHqM07>x*@ z0iqg<_JIWX5e}UAK1l$;_eS^jnhywnB6u1W8a7R{Fasgkz!xGhQaiRA4EnZ@+Nl+X zlGHt^VWUUQMWM+Z#*LLRiV9b`N@8rut~_>Qm$hWw74~!@m+qc$C|WI50fBmJ+SUL6 z^?R~eW8IVd%pS4%IgI?{e1HT`RP9OrW;aMSU;cM&otB#on)-;s&Pj#C~Q-%`|`i*S#0HV^(?~7fgdP!5Xtu?=VtT8h~*D9|wmFOUinyjHiDuJ*hZ;S0dt9B9g0XaC`{tiSC z3do*a(`UjeUd92q9fQDxBgTTq5)-#+BYGLrw1TjbQ0++KuxKTEnS=+zt*mo;OrN(f z@VD!6e~X~{7M>)B1ORJ}`>e_6AeeAny7I8Ddk9G)-az8as}c5iL}1;Ck3C+>bE5dC zEv8tgQ#H!AlRW|y$`LwdKR$I3u@w84HfXuFmjBF32;EHpsu-ayo*8Q6AAC-s-w#Nc(G?Qvt2? z1@z7VW%Z$m44=|M!dVoYj$jK^o47wK-HOI#<^STjsZX z83}jz*Eu$kX4UxbXm|dj{u@MlHI`_fLn`9{ zpBwpr;j9k>jSUfs1g+~5N%>A|Bp+=%g_m!P7mL#Go#Qp37#n#l4|#D>5|JD9h^{a6 z%Z-s_q#bQJ#0JEg#62D(zDjZw{ncTYbinmhcq;ae72(<%wt2k#&S5&g6!R-W0^<(s z_U0M>UBWo91AYWXViP2-=)Q|%si<@t!6Z1@<)jFWNw3j8BDFgtC<>)@nT+5EBATOM z#je)&BJ@>a!-Js8$R{MV*z*x<;g#-1=A5bL`SD;i(y`9PZ5Y>i)6Qbga!!FXR8mf? zQXy8rHpf`9hes7Wd>--FKsqPs`FuL{CDv}zoy0gGQqS3A%8r!QfpSv>+Z)btJqq!MO^L1NP+Y~ye10ooCRg;x)W zG8OEDoC$NnbyP>(!X|zOf~m2%zh_B31!IoghVXfHhOb8FYO7q8E}~})Vki9pCJk*3 zh+YN@pfu!7<7TtpViIIVc_jIC&vo2gEE-gnfmK*c;E#HVa-)(Rx>G3*5Ovg3gZTQ} zbe|<#1YrXYyoA{;FL}#jx(wo&laU9#J#E>AI5#_SG@D(w&4N!;)o6@-&Au+Cduz6L zdsBUP(weky?dp9cpSixNN~TeR57>3BFa%E`mxB`wwm@fr7@}H zB+V0@2RPrMv#{u;(-u4n_>(rmr2+`i3D&4(T?%m@?rF)EquijRnlktrRR z(Y(_~psr=L*An(s60>9+Z4HCKA9+m)dp=;1{n;YXksb&2v+RTI3RLoYE8B|P>w7QW<*@7ESvOd;wq>lS1V7mvaGu%c`u!Ee?`RRxLfLGFx`5D+p4do8ym6M z)2xrV#-4|q#E;< zd5dzCo~8~c5>@>-RFzb4MW)aQTlv_@Ggj|@2R03sB&cv7YR(63r=kT%_wEaXEwulDy!b)xc zyX3{lLtbg_f|oRGC56}+oD-G2hMB?`8BJyw2VUM_Ywn3%5o)7pFGNm-(Xi3X&@xP+Y0OjY|Ci&r`~64)^VO47mcL^uymh6cX zs>r3~Lf>w|8jrOwB{_{t?qO4RS0q0?sxDbQIfCR@Y0JW#a5IjkIe1mCtijc-DWD{R z2nN&s)VAvEI!I5A;cX79r-6qc$?1fgsT8YiyaZ5x<`d+NhEy)hGYmf2aFlMsDCg5! zjltx4IXQx7%mOx{7Dt}&hH8YwPHJxYM@zov1$ZlkC0f?Q`!J2=5=L(m$}m-@$xtYu8T@w%kXKE zT>Hne%(ycpwclI5`M%$wIgiCi4)efs*6R4y>}~}HxlGd%Xk#il*@R)4=GBb8D)YPoXZf*3!hyE*l(Bfo>t83rnHp- zy&HScJr^ZOvZal(7D#^Jm}Ac0FhXuvm}h*e(^90av^eFU3mq8qAzmRot{j{78j!;_ zbO88P5vw4Ce~v?Zj`?U}YwW_`Q^081`$@?Gq&Sca1GJD%TN!uCn z^y3~}lk1JYIU=!H#GC9WQoJ-#PZoT+_HsPGBy((8tcHA(5(ah5rT`e}Vhns)4sExb zBAL@}X$Fjs-N7Szhnt)`zCgp@*hLdhnD?O;HeGk}MHpX5mM*l>Okf z-+?U$00?c9M!79rDukAv_0LPZ)@kP`b$Dq+8&i6MImiGjbJ`+(WX~+ZPNEna z0PHJ$Kisb^;0?f?958DMdzNfp>$*Dg^Zv1Wyhw;sai-^uVCr;RL$f?t+z$SKawfSa z(OQptSY*2$fEDHObh9a1xRY6zM3NFy|Zm}~B)2~c9qzLoo zqJ0r-g!V#BCHoW%7ZA^P4{8qIfyCF082e)!GtfgK=4pbB8N(BX2u)5GI&eAJu|>wZ zm3F0cT#K{T@whVvTsX3afbU%`wZ{#6H?Z|e8cOXsu%onq4ab-{)(%PADw=2oJMS!U zU1VU0&jJ%M;`EH2^qK%WEQXAYT*a!pJdo6ar*K<6BzWGN`f!!$48*pZ31Zktl|DIU zNWh(h%h$2?$Prd?&(jO47vEw{qo7ahTQUqc&Q*D_Lc-_>3}*~J>9bGfbDi8g3ivE# zk?fDyyZs@7B5A=fO4=Bk&Ji0unFcqkY_^?upZF{R=%fWH9|C@q>4R&K5*-9ks=2+4 zdR@kVU&7U8LFVqfJ+-;@`m_UF0hpL!QAf8usU>h%*4i{06Yy=vqO2SW_)OWfA@R_w zI-sm1ws+!YJ=>q;V5Qp=i+Q|D`#aEPTKEl?c|fj?l}X-E)b3{GF;1yP_ek)`v3WO<|Dju_O#w2C}tXZpist(!SwNYXJ2I(kehyL`(YZHbSrkaPReoVA52i zlD#G3Rr@I>3vA5<3#!$!n@G;@Su1RlhztTx9vl{>1sn8!JUg3%6ojI#9tR9Abe+#Z`#Axo< zb#TKV65mIg2u)|rI3<{IALr=~K;}@1mNfv6iA2_VQdXU~KwPR4=Af-_z^+)p1yy~T zZA#6vT_-cDfIX-p)iBo^yZ5&bkK3j}t;5aGS^>v%aNNlvp(>xYKeGNKih&HX#TI-2LddM3mIWo`)gBiXgF!3lhH_ zuLCUxn?UbM;f&n{V=o_o0{&E=2#l0=;Uit?HKB36^x>AB3j8CpCi&iGbODRB8r3kd z?cRNn$x0eX5{x6qUlICm;d-8Rmz++E{Q))@yqjTbQ#AAWve$uwD_OzTZj!jj4aeS_ zb%=j8AEox5>=`u=yR6!k*t{JIc-zh)9Md-Z+IrQ5K?;u(2;d14U-0#&F4lXR=C13hamRq#xydqBFA*W?u+g9dgn4_YK@`f|QOPMKg8FtcQ4Cqpo+M;Oja> zkyMCv!~Qy9Z`*QC*$=_%E;sB2@B%WH;`JhIe7rMri$K@eBMI;>wrGv`AhM13%g~Gj zY<#P$?_C!$YbXkpV5FB#{uZOa#(SdeUJ(!AD7hLUUPy+oR@cU!Q#Jy@%~_N=rENq} z8aly7gZB@UjPR2K??y2VP%bwbiZCKZ|G}By9V)=)GO&p_bBaAUim-hU67cT9XCmqp z8AHUrdco?v@3A~X07<}iGIn;&uzN8#Tzt+>(0MW^@jGD)^7BDW_W!Y`a$ETns@R5e z8E`h}*!~&ex?V9kOD1dymE`-H)pfGo1S|56NUmU4Pn|*Ai--#tutNP9Baf2#iP&6y zR^{p*U@GwAp+&vLd%sHA#6(Nd5ptpzPL3&w$SC?x{;E&JXV$+-9p3P6UxC4}}>o7~)=oIL?QDu zuKil@4#)+7XC3YtiE-qJE1`*@>k%^#`l4-0=!}K!EP*{C>{%(V;+tPt!3UppfpM5m zrbjHjUgy}?kAVQMwUoD)owcAP;F7sqUtG!F*+F0sjE2BroKDSjTK84Njc5&a!;xU6 zL{e)(Z}(lyqiEJr^r1oWZ~@6kChiZ!kLhY(NiE)2TFdvz_upF!S?DC^hI+hPO;-#AT(b{AUW5p10neFBo3O-z z@!SxM-L2lG0i{%=D>y%-e$dv&9`VTx0F9x8%$$}0-WrNfPgKkU`_pFy>kLefWb2x5 zZ0$X}8qw~3{mXdduccK1Q1uOaMNqOfJ5I>?)?PILj(^_u`%4nX(2#CB0GEb(CG5{x zN^~Tt(_*G5?rG@g4k^Q*Kv!zbz2SFB<;-S+ZEcy*9Le=ALW!y}1Xvl8Uzyiiqh^ON78DV<6y4iw)Cwoa8_i<5FB7}AzZo-&H2o~|nn8a>M zARY;hIr2u;JQw*J29w~%?&GPZ1LGW9BVv#N3Da~t;m)7I`IyzS?WEV~0$bIZqkhgQ z#vMdWH=A1x=teZAwVAXJyFSuIfgqYY#IU0?u{Xq9@H*}fRy59cTxILCMC=E!eQxh1WDv}pA2SBfx1+D3t=w6LcNen{S6^PZi2xW;B4dX%7jCfP2kwY*&AEf`n zNBy_UswvK8wR^?FoSgI9WsEOx<^tgb8}7`64gNcCu&kjcy^Qe7o_4s zj0>QY{-PE#dg69ATWn94nP3%jqSp4K^TI_Qr8Z9_b~HG(4~LE#lle)^8E&>l76W)D z76>!M>w^>YgU`%~{jB%5*CLbW8wZ#j&ekoHUbH7+r9{#&Q0`-UX0g7-;-`9k4X=0? zqn5Xtk=$@6Aa%c={Ql}6hkcw>&1Mh&{Sj_^3P|jDz3Q!dvjD(>`4x)3+iLGUPwHIZ zD|oQ4xb?AhR`UVMa!9a-0gOIWmjrKzI_w$dCm*bl#{lLX_Wcd7#!owK6lqaZy#oHG zBA5!rqTIQy@5ll_?5A5w>Q|K8_hH`&+J3M;BbtsN2aqd!lD8Rjdjfzdz`|~(6U5lk zv>u=9DhtP(En+}Zh9?+Aw*(fGtK2iez&Leg&Ji1hNsGKL2{CvbD(aFNw2uFDJkj>@mJvD(-A4cB5|=W6@6>-NUi2?ek8G_Yl7pPs(d?>T)lp*yH z?znLhopVe;l7ZB#_Exm9?2!cIcqlNVA#O&>Px?392$E^6j(^ z^?q5PTrxSXB6$s1e-mN1anEgp6TP824%Lj6DxZ*AVte>72b5hjmyj;DCor-t#w}5) zZ@{wcp)QMH5`(RC7T^y}JMO6pl@sD#fECekAe;S-Lo(>dW%N5?>YDm!aQ{AVPd>F4 zS-h7aH`&+Bwl20waY#qIT*{peO!%k`_`u21Fu8!&{9qj7>416+xKZ;EwY3QU^!n$l z@8LFcqzGYSAP$Ej!FWSJ)Sbg&w3#`DZX(Vm3tr|l;WuBG-I}A%i@MnutgqWKFd_b) z-nsID#CQwD6)2JB_$~2+0tAXpvyjH6Bh?J!lN$dE>Ry!IhMPAL5=%4xkj)}s(}$gK zpQb3`8=jm3iktzSV+fcKhxQ67O3{(m@ub-)A)a68Q~M*St3acSjf6QcS0iqCx_W1l z_XUtzO!SlmvL1;lJ4b!Qpq8aPV^xJQk<@ffF3RTC=TU}AV1hAU!KaK?oh7}v`GXh_ z!&m^TtlN1*Mz@AiNA#hZ4QtuC0HaGvr8Kzd@xny;SwpwvWRey0&TBaA`6=#=k=NpaUl&!ll zC&d@XnYY^h`nunc_7);TQO-s$UBtyI_@zlzM=auV8O<(4>Q?Kx$xzF_XAPqPpJY#J zP4+=O_KpPCZ7gnocaJw08Uygllt8eEB_=7=7lW>Q+EOa-{H zEIS16I1i;J)#qlGS>hXrDF-J~^N2ib!OjB7Qb?|m(<8b!Kn9BylRC`z8Oi`u*iaOf z-g>?uHTHwOGPPmn_4m09Y$MoDc4uCOl|*mUwABSziAmi>eMMB$Y+PYa1SF?YZf9)( z;1PEla`kf1MF^~4#r9QR3EpEs z%32p=yV`f$0V6kv?Rheg!=5j4yebxx-;Y<|6OE-obly(Fap%I1Py5S?856u5N=Z|V z5&$S{O1Cv3dHj5UxVGUVgk{c8sKddYKi6Q&hb!Rc(ZWONn}AWs`nuI2PoDR@!Z~lv_M}(5-j4 zPPHLw=2&$+=TMV11&G2s4MUFJXp173ItA8f5{@qxpnw9qyP{J{AzkNnV3Xj*CLXWN zp)e!0D=%>mM1L;qFbIoiR7qo)hFS#(z^rwvZ6a8pMi8>@+J-BW_#~EqqzCNU7zQq> zZ6d{m95+`B)VWR&lZEb29IMB*YJxo_c(9OQ4U#Q#406IlUy@=@ABB7z_DG$fLV;j5 z#%{1ETPmM!6v~<;pNXr{|jrl+nj)5U6I(y zGFo&6M?&3SWrY*^dd$lN*y=JdEt4H0-;n_Av=W7mDwotakXq#V zFmw7S%v=X+e-6MI0;DZ~ZS=P0w>e{SiU6I5R~Nb?{a7zJj0F|xS57I zqPl7ju(EPKl2Wb{X1jgE_)mO|6*BA`G-?I4JuyBM5u z1zwa)b+jDVB!eBA%B*9S;*35jK}g|L+HHexb^wIdrS5toYB8&pd%TQ-iLCR5Rjz|M zK4m8AVI4bwRtnHlV~4!Sv}wcx_+ZI)+*@t*{fUGJ?db@4|0|MH&F&E^jpPVcC|Iq4 z=R2xh=#CS?(2=~$l&uFuFU_#?q#6=!smxJAWiM)iF+f|NY&pIVJVx^zhNOhNxbjRr zvutXS)=k(DjfGs8@W*W=)Pj1)EtzoKl=jOVa3l#z#&`?Grh-GTdK>MyW5=?`@!}TI z`c#@3)5qhll{BSg05UY2(fu`@Y_z>1YIB)1RTs4#JL{U)W~5 z$+W*ITRvX$R>6oe$-_|NtMBWMS~>Q z)-ZQU()VVQEW`N@z5oLYpiCn2cM;l;sP{fEHhkE)*eAW9a@)=@6@@Z%I~K{GX%n13 zaqRYK#mie@uWe=@8OjmyKJVCBO@nF%2UUmhHS8PX^Vyi|%6XfTvP;zJ0Xs)xoy1>> zThQ127UFrR_~mA{PmF2Qgb$!_u@@p_aT+YB0C@y=J7B41MEYtZxQ?3MdMd=|O_ZE5 zSJIGniS9NKnC2S^@@?ulSmp(ZlP@Es<0Tb`-aQ22IoKITVp@q-r`-bcH87Vk$?bPn z7e4EqI7fuB3XdB` zmn+(Sg^n8cy*o@_t{GsD*Wte1#Fo}Vv^7phKxNQ|4m+v0HJbKCxj5t6hHdfo1Pw75 zaX@OMb_R|lfC-Kp0Ei>2BV?{l2c}n}k~Q@GTfdaejM)C8`qJc(6-R!?9$G&3zgRnZ zs}pK3-ALmBNgVE8kJC%v{##Qz$*V5mklD+)dVYTF^4HL|Y7 zV7G=ZIrAbdVGX2IfGJ$|+oaId?hl};jkD9>R;exB6uGJcD3^yo{|pACI_zvBFT>bk z?nwi*O6f0pD8oX&aa@gn^+1e*!~yrqbc)=60-b|m%SC}b(ph9qt8HD$903f_tpLKV zP&__7M7y+_9k-)=THoUqs5PH%P4xF+XdK=~qXG0io1#MtO4*QxZ8z5kiTK6L@BlPM zs};0kpX7C4`)%>a_g^IROY1?^cmxA+K1@9yS&Z8T)UPV6$k5 zQ=PDhvb)crYTnG*Njm7+hFNooTDl;Qs5}?SuNVg4MpjkJd7#b-=t10M_BfZAIfBY$ zCTPkXY|YE1>59JP;Jt*f_dWJd6NCRY=pJSGlqGQ`3H0;##HVP%RN#Pnf_F8KBGjNC z=;K5Ul@Ai=L%bma=?x!eX-pncl8o0;L(ujKpw72FPiFEfsyG-{H5n0Ojykj($6DAw zE`!%r4rUH?a=f+cSx9zTH#&opsGOKgBCje~;O&>Pi2>-&Q!q<&Fj#Cj2Q0M(cF@_q z!Ha)a@b%alAcN=FT0ApAH{r-fhMpNU$jeen08PjphCNr(H!E`Y(|bv%12!Pl`WZYV zU<6j%I?dEFMQtzQd+fWL!Yn>-Y8ly(ylKFA^m`0-;LPA2IeLz}L$tnpQH7Zpk`x@r z5LaE*0aS!=o2f0*NEZocd8I6hc&*-@9Ur85HCZdO!BflM(~Pu)D+)ne0*VU-SiinWWSc%R?FJ^ zXR?6D3~*O?8dYC+M*Q+&K$n0ov0MUx*#Br1%t~;%g&47t0&Ba^`2sh@1th&Rf2En>rVk;W>ZP$x{yVz4~^kl;Zm4iEr zwTpbUNc&8ft+@u?1VgYfC`=U^A*RK3MWrDCbF~9#B}H}6{a`)~i^;wOrV8AY`b*5_ z`wQvV--wy{GEI_jvQD*~QyxR|;3AFYTZY#QkB#aDZv4I%-2WFF^W?FyB=>Y&%aBa8vUi0BS-f_dY7G4B>je;eX9SkFQY zJT%l}hYhY7+&kzRfXK??elC>;RJkv@Al5soa)O>^%x$N{x6H)-o52Kp4Jj~Jf179M03H_78@zNm1uUc8s2B+WW(iWOkQpZ$FYN-0KL!~ zhZ+v10N~_Ws1lCww|j~!KU;&H;ewwN>^{&%f`^Rl=b%9vmT7Ny_4q<7*RJhv$aDCw7a|G zdH%i+V0PhbISFoPv_=ego&qcwda?TnYFhTm|SFr{GyvBjUiri}3k{;SlH+jZLj5 z9w4lIxl-1e6ogIXvC67Eco*Yqzp~xUTw0JtTU7RyPh*w%{$@*?~y|<0XCva|2wbYhN-^JQk-}NuB`% z#|++@%ea9vhB8-w&piRK; z1X#lI0-6gvz4+omZLLn1^wNQQkcikY(ll!0$Fv*jX}pMB?2FSDeV_Oy9D(H3W{&-0 zIrzDNwy4A9?*3Wqf(&E<7M67AWlKqQYvMFkv5fa7iBA{yO+1(eS_G}ovHo){y@!d2 zCCVj?6wlmsJRR2ZnFDjt+>D|xB8K|TYp(HrSoxKP1NZPx?o4b+7D{;89^h)Ui~Lq&CXht17EzN+g+85!6I-Lthf^LMwM;LUh`-WF=R?K%@zH9QQKu!Mop z5EducvKi=)a;h~npONO5iZ>Uc7L)&Ifu7hZZ>J3)_yRHzsz)Mr{OuW-rNEqvd>Pmh zJR`R1@62sx8SBG-g_o4?XstFl_(^D}-n$g z<(O!of@^=ga`q;}22|atN9?+VkG4bc1(9^PYR=zhn=TxsVzT5W<8<(Scn$PDvj4fY+6<7d*3j>?} zV+Nl5!2lN3z=W7dvl5jtmCd-$VI+Y-)+Vcg*F~J}mgdWHbVQq(!pR<(p#aT`iN?w^ zyX_)Y$)5v?-!Zd(yvfU`tDviyp#O9Xu!T7F=y;xzq1@-v7O=~1$-@c^ym5XVFxxL0 zb~!I`Eeh7u!$pc`&H{Vy2A(c(!s0>y4(xD+KElNKZC(S6J{%P0P0uT|du7sXo}2ax z)|pz;^AZL>{4BS2s{)?kmIOT=Ck}p39-H;gak@1;lnT)m94~qRA&(%+Ak0UE;zN7P zrh%(QD1a}q!g!(J*6S=;5Pzs7gm;w)Q8hj651^jOxA}R#?s<&VTp#|sPIs7f)2N5u zeYeNg_6!WhYQa_TxY#90xZrIaPM*@f0=I~N+{ZydT4|;Mb}w}j%&1YbLPs%LVh(tS zofr7C)4Q9W|8gH&WzDYoqP835R)ZsjU%Fvxmz_AfZ8m=c@et(y|IZ=-;6I`e0ObGu zbH8}>|Ch-7i*fv`I3yhZC$jwh2OR$ajvB|mhQq*d#6fv~zr*nx9RCQ8{{wk`|09mS zgX2HO@$cfuaF{rDIDUuYH#q)R{LKFm$A5$4KgU7m@E_v%_1CXg;MXhg>lOI*3jBHn ze!T*}UV&e)z^_-}*DLT>{tEo0IMMHaPm=aRi5~}UF#a771mSmMS5khbjza%;9{edo z(HnVV$^E-0?Om3x3kM@<7QNknD3kVt-~aQH2LGBLCdnVhbU}X;{_^7g_1~j6=MPi3 z{wROzuOW%-U#cGO&tIpAyy2_pD~G?XpLG)c_1{k2@;58^Fg++2ZSoU+2DhQ#{^?9T ze4{RLy)gOfzy0N_y5E>?(){^f`u($CT0UJb`SZWpbIZRz{D*1&T>GSy)eseRx){=dcXZ{zqkar_%N0v!Je4j#w9 zh~uBf@xP&u|DSOD*Ep!x|MzfII6@r%G>(5C{rta$!^H95{}aFWd;bNFe+P$)L&ot> z;rL(v@!$Ks{|?80h2uZN@t@%M+c^Ffjta*M#~z1-lOI*3jBHn{(@J4O4OfUe^2@i*bN2X zQYgQZWiR;Mn2W~0^Fgux9VC@9C-A%n7U$o+-^fa*`Q7e!yZLO(|3letjQ>9M8<&H= z_|ug=wJd+oY0$s_1-gu1zU(j9VU%eV{>^r1UH-7exFaSv`_pIgm+Ud{>6UoyOhlcN0Y;givyd;x#*Pk*1YyCvCGB0*Gs7Ycp|03_glr}{Gf==rj!j(9Kh z#=mBF{{xcUz1c1PD7!l{zlIZmpcw_9BQrT}W)ER%grsQYf*{7awiGa>p&@@cMFv{94oj zf;HrIF(tHw5G<#kH<3+k8yq(e>g~K5x#|r`Uc|sMis0Ird-B_n*-3lejn|!OFF!~K zDqz{>mTzfwcW$Ci*1yoOAPC|Jb6WTnzY)?YBJ@WPM8p|Dg#GC9WP3Jhs|QJk&O?Fk z#SveB|C090g-lD2z?m9@-VGMcu3(o5%$ND%LOSl8vbRm*neWrkVD}+qCApM?M!LLU z0U1m8@MLhKNH~K~9Ejso)rTi8ACvELK^mix{6;>ew}H8(O|t7NBt~4pfyOTV_@h!* z*^g!yoNM7qIg&&6B7^saQ4wIvNP*R=HM0WZ>yxOL`R0)W{wm!_ZX(eGWQRi#YIh ziJ~tIK17BsC6MmZC&)>XM0~OADD^Q+Ee!H+fqV^qnR)mwiYPcF+_!s%68K7D$9-7i zvhI#k^8vNU?9PHXPf`K)q_o79&vvljir+(K2xUW&hA#JD2RPHc-o1Tq3Q{s|n`P4! zMZxO=FIsMzlxYp#wzgY>bLk=Bt!YN2duS>nSQHEJNXwVuhr7t<_r+D)NsMC9d;2bq zv1wAOj#ER|1Wypsc3kPaCdfyED0=K~N8tGHtIU2{-&Urg3iri7G0}PnBGCXRRxT!h81iM^b#j3$(0z7~6u=l4oK2-hIDISFpqas;5Z?NpTS4*$jUxFBjJ}YL?&!Wph6&8McG=0Z zh5q}vAr9Hiq0{gn8AWnJW`P=BnT1VW?uM%gZY5JJosH>n&K9B9YgqF z&23`Jcf(3n>i5ZFo@{sen=&P}%}E-4@w}~Iws=Btbea>Vde9yqEEqPPAc4mBbTe0C za$zCZR#IiE*@gslNe!Yozc}tKRMpV1Dnj0GgOjdnAr!w)GG< zyzM;q@I-EQ2k)~sD6im`9#7vIs}0VFQ`pN9Vy5Nnw1s8N_tRt|`RQRbn0~?lxxJv= z#-ul0rGvK|f@~ro97XK)av8aLdPSaOq1EC^xKSoW==(~=Fhlm}{DG(Q1X%?<(!kIU zM$&XT;WdF*z-^2gpUI+%KQ8@%T;Cs$nDoT`;d$ANN8j(`Bl^`9O2;P%n&S8)VYvzN z&EXAhws2EC(CC-G2YK2Nk>7=jwa-h((8kseMX6r!&VXh?G7I7b-<)jy>hvqz&_@qR z*%q@GoS{#~`2eCig*Fr>5hU|k6(wDS=1_Hp++!jyGmxCn+Oa-?*?72LezJ1#oYgaM zk83D&(=TE(p~IJzIXp*w_}Y=@UUn?N^Ucd4gKU+Fl+WIk*6~?i9poX)l$WDD#5MG< zIhWKehrJ@&A*1cNqp%>~AG6o-w{Dun3ipcVg|1@oGOqOp&&n>AWjK|)S8N?%m~wk~ zPW1cJF)x>K+tyx)|8IA|TQHzBl}JpLgQND@)*HTX!*VMjt)^|-fAQjOuIoCXQ=-*nyB0kp&L7%E%aC>gzcKarzS#S#4T5pym}k{)bFxoN{oqOft1u93Z5a*V-veWxRi zfUE{ry_I(+KlJ=bliF6&DYfxt@BI7NS5SjHiM-7^#ObMdM2%!K8A2YhL^JIk854zCkG9kTVLG z%hEI`PgR$sj69O@vV#Vi8LJFPGq%>M@~pfT63Q3GuwjT5vOP%SiZ-7zs0Mn*Ze^|9vsWI&Q3@GFbNxm%u`Omn~F({mX?bXf9l zFMvMAK&%PdeOkC7ta?F`cE==pT6wokug@CM^ts#|w*lNO;1$u#=5ygnxx+T26`!iQ zF26e5nHLv$hokFXEYR(L04{?Wt2hHnBS5zZ~g zdyphw6$uJvs=`T>97Kk?z{IxekLTvW^4G;?1s{HwUf+=iU(GMd7yw*3;np zT}tM_4W}$<4xY5Zhwioedj3W3c(&{IC9=p{VbFRM+6cntC!GIrt_Y`AlN8A@%h?RU zolSeyb-_k9$FinmG}4Wl@H5f(33J%bo`DB@13W(Ppg?XLr5a$n%Hd(0q?R$(yZ6va$d?ebI2S7zSE{ ztR03~w$pyXdU0pKX?|&*EV!35@cv0@-Ev^k${Ug$KI*t%K{sQ;`*H;vp0z8x0i4{O z7cxHOxN1JVe%(Q1&NTiUnz`raOWrU?@}!?n>7}QK`TR`2OdkY5!GANQZbuA6Jj1mj zNxZN=aq%tPABgXtMP$GnA+PbM$+``*7I>!G?3k~iD}*z^;(Ltg9A?n4A704)oiA|X zeET#!n&J`Gxb545cEcg9REpYdCAKqIa>nsVOGGBnvChJn#)nZ2PGUaA-GAc(_)i>Y z%WgcZ?+W7Ruv{vc)@R7DZ(q&HVsDkUfF$3&=jFsf;Dr<3;j&MCA9QLlE6*8yH1TJU z;S%|N0R_~b_}Iqo^FwRMbv{}8vx7Wj0qEW7=Oc40_lpdbt}Rgxu!&nqxNh4MnE@WV z)4}k_OZQ5iW~X_tMUk|sW~Y4cv4<0IzH0}|_a#p`c+eX{httbxSk1J-Z1(k%+j6^$ zc=Gtv#`O_ivgExJBhXbG?QgFOyc*!f#e9$CZ~wkU;(K;~Uy}*))KNcF_Fb)y*LW<2(=d(>ca{&OzqzM{m3%ueCn;xWRjjP$&^A=o{U7D)uK>-NR!B{{ev$(BSYTbU5~p z&!vKWZq(7et(_X^VBu!D79=d#$U28H2n=h{*8>XUdBF^V;aYl?n8x!JJd`&Q8#Zg5 zqQ#M)7hSlTJin4Xo@iA>&o=5Zk>Vb)j$d*Jo_9<1u58;~bFzzrMHSi|9i^U#8k**z>e&JKP7Pn=3k$EDKs!%qw~HkakXFFQz$yImVy? zvq_eNC>`wm7gFcha6P#6al)MqGNWB~8D&9O+mrXmd1S08#lBNd*g2r2haZ$Q9z1?X z!_+i*_40*>glRhj_rYc@q6S!tVeCFX8{{SAaJ`Hoe>*{r$oy`}*`3^YxyBN1JAK?F zPXtRf4dm1~W8CNK zN$X`u+=hMBg>u`DD`ccKK3`(F$jGnfafUwGgESeAUJOqlJUy@e zDnp|yFhODs#B7Al!o`|m4UvR;X=No-b3SBd4!$g=2H0fdVLY4+difUNFzj}E= zEpXl#8r)DSEE`CVc;FV;uJsXO5>*wr3TJPz*54m3rRg}bsy!d;7$w?1I#In400hCR z0Bq!^SIdqLH2n}{!uyfxm=}52J}+DHBp*EDA{!kvW3Fz<;DNv4lWR}NA#3)vhrRs3 zksjZ+ZJ_fRfR&#yhQpsTUyk#3#xyC2^@wz*dx+~Das_aAD5CkS4{ zdtp3&*W}rI=`FY9u=!r|?oEDVU-%W`b?(*|WRdOfr}_i)cmbv1nfli!vK1e+4r~Di z?@y#vWo5pGKLR%Zv(JCV~cH=d%*}8LVxn` zJgxxYY;lVkIq=;6LYXtoWrKZjy7Ak!ZEY*Tqze zexet+2e^sOZ@W?$=hp79JndN7-MO_v zkBrvX@#Z)9mXt;n%CH|hO5%38<`BN5tAJO{in4Klpi1y1sgRHOJo=QYcOE&1*A>MJ z@=YhbLHggs32js1+re9O*4U3+z>EO8S_}>dW7wBATvA`x!K3qw46pf5k0b*sY=5$! zftexg;sO)64H9Ev#gQO4UMi4#2KO#2FVS4I4H{sqNBF6TI`*3b^vRbqd17?Q$EH1# z{*PALs)X*xAb$$-CFR5+Y7M?1@EzceoQt~ed$yNd02w<<%M4KtJ1ntTtpRwxn9oSbO*6RZ`F(_U%FZY4 z?#)0_mIkX^#zv5<;iK81+}2js#UYO#x%c}gcfi6ls!<{!0=Yth9S4661D?5)$7jFA z!i3e3qO*aay9*mLo@;?TO!&Y|(T5^a)n+f_1so{`&3}5rfJTkB=9#XO|1#Q4-d@&v zFc(SJt)flO`b?8v4@lylH-yM3(otut{q#&8K_+S^ex9xCV_R1U@iWa^kJs^8^P=h$ zKGMp2M3kbnXp5XY+Ohz)Iq>KtA9<6q42x4;K~QZ7%kPl0$VGv8CTr#BHHr^1`8YBS zyf(hwiR%8+hi}>hW@GwGIW2n~#{0osXU7P_MN2c8+ z&EWln0yiw+dGT@HV_?<7CRt+5cxl&XwLgj|b6}+2JBl4E%xR?$vxPa#E;N|XlTXbq z0mA5LJ=ef~3MfeUe(7d`(a0JW<7td_Q|^$ha;CfnxR2ycSmZY4$ITggn)5WTfLF{x z3&P0b_$|#2DIcwx@Ap&_E}OkIcy+;YcllRz-LVR5kx~E4c`GE*z`x9DKIt-}`XFq= zAi%va{d{1GJcmU-uv6VeK8aaAe8j(x>MQxME%97#oc5Sw29Q9)e#HDr0S1mNP*{^- za>&5bM>czLBxNT|tJkWFy5{tf8K$M2cbLPAMh1xWVyYH;ozHGltk>knmB!rx7)`K8 zo0MkR8B?|Q|#18?px8736S+?h_vBHY9% zS#Wfm5Bomw*UbX{q4jH2nv!f>zHp4$>!aflb5L~zr>_^)K+kqoN)J5w`$cqP!Y44S z3;d+!L3BFdCe`0BvgG8#2f~(-1&e{ET^NmzkV6q!_dJ|*7RZkTZi6gs%qCTv!n%?t zYA~AJ@FnJ^-0o@!ChfD!sc&ybDLg?Mivo5EjF7_7n8v1NWYhUffzW@`94{XcO2BTE z7ydJB$uQ`3wt)0C6gOMAqxA5v6>!#h7td5UuPml+4U?Gwd7+&-VC%E{=MYTJfqon8 zCgDRv0rZcv>%n_qGjj`NOBoC(Qf|08zBgndj7Anvyzn+YuqV^x*ql7pO8GkYCT|xA z#dDXM4F9C}P2?z!jWXqZ6E0q%mC&(@%@>5mwJt^tmwsD9jHF}dF$#Qvq?q}Zv0+ld#7vNPrU55g~A`)D~MtJ)yJc`^XTV8IKgwfe&EN2OC zQ@$BR7Aa$4*?3P3kg(1_<>D@=@Z$yU&$-L_l%i&|CuUBPz9lbF^MG81=@d>o7Mj+Y zJTb|@qN`VfhbQ^J6d3r!!1_gVBZbWcj&z5@XkqZ1^Eb$nq=F-13nGl z%Omo7`7#$VZ>rF51SiZynYv*xiXi{C5V#_8+zS(sM?*PJ&mJ}tU+*GzZo-iL3}WtZY{a7l50JV* zhF>Vsf!0aDOtp(xeqjb>!8c#R#Zu8(<>UUR+} zas$fa$ymf->AkMw#5J*GhZwhmneBJ!R z&r)$L+_xy{PBhy*Q-5Rb;hi%oiw-|#Gu;{C>T}>RpxYI1%Ef&z3S-CgFNFSC;b_Xj zQfa@x!=H0E>k_@K$j>ut!}WA$!vj3P^U8o@FK9F089V7y(cA-si$D5)a3IH2 zyl4peoxK;2K-s86uH~EdLnKgi2(pnW3pfgvOM36jEj_;+-KRO_Z(1dCDV?muk_S`X zxv$?$_H1XAc`Aji{w7cxv;g)5>)*V=Hm8bb%7CaTbf>`Xf$urqY)uA(yur))4v(?L z6!0?@z0)&!E(O8ycvLd@=BlV!Gi+3~Z3a|(PCsWoR}h?t%J8t8oe_pccE&?UAg^!t zCQPcf@K@?`K|>BC>LcTA&wH9v7BBJ*+Puh$wXop-8DQ9qIF0z2#T7gpyGF&Sfm#B# ziOYQd7&k|k%oS#D>rgj4}>ZHlI+_inZ~8VQ{`%=1_wfw$x3HCxWtdnR2^ zEBNPPeuk-66omoB)0lgdqx!oB`!DCh-G)4CCt%ux0ut4XxXqPY%O!} zZ=T^@S;XL)SY?0wxz_yMj#i@vb41kOSUZ+G3%=Tv^Ek{=P4j|BVlhjK)6B`D9vm;^ zjU+7wI@X?iuHQfToUd*Rh!Ue*BY~f+w8cIK<_{t+c}^1b5<#Y^LWJ z>ms}SDgmAp2`QrElJ48b&9GOFy27nh+*j~ev*L>dM+D!wC@>m7fzu9&ka)TdL0KZnw1nR-Pkf-6+myIXG z3yiYhXK}7B(*Qtm=GNfgc_prWm5`fR&yly{)55g0Ab+{0_yT90-`91I4MKzuJfG1u zlp=J?@Qw8XBwd-RqTEa@8uy13U0Zf_Nt|n@wl8&Z-pujUO$Mjkkq<}=d(&M&gk%0e zjkbIM2|sC+%h}5fgGcY|`)*RjJ?6a!0FJYJ8awqa1x}>c6v{+v3$k?e4e&b3YuA_4 zw=1=}0-xFQSH@fVhc(r5fxsIJ3_z+m)nwjQk4?DNK2}KmpNqj`bd%RDEAXj`8j54` zZzRBTn!OMQp+>uXPEo78%(gwPRv9u|H4i!OsFIJNym($Tcuk&S>mVxhIDVGp?nGJM zv*r$71?6_4*DH-Ms{O&wE{-YLFq^0j=BGSnWf}S|_zym9a?5o{v7l`K>hfDuWSzBXp5K$LXw%1QCGW@u|eMzRU zwS^b+dSjZ76J5R2T1ND{02|%*$77p3j0a3~$oK**c&}Rbpl=pbkHggdrbGq#_YUjI zW$;pkS6O`^EJLa>QRkaI)s-f8Otqbu7UOr3TCh=- zJn|MshJ(sy!~;W+?em!6y;KYK&(`>h(>@C7r5|?Q`$+l@f zb03no3xmZ9d+HoJPhq@gy_%k$<6^ff+1)O83C5*4UxIOQIT3yRBofaaP zC$E!cV^Rr+a$mJnU2Cy43tG=jt*SB}9 zAS;OD@s>H_5WHy)@hsRg)-LR|XZfD(h(BOb4sJy3mM=(j@M+vnQF45nwoG2#Ws8x3 zz?tR-7jO>a%JPhXF^!Rl_+k$CKI&Bg0YELylT!2oDW5DU)qFkq?y_?{THywS6Jo_X zNm+s&T2^JQd^iU^??Q%(LE>F-3Q!bgii*idbXX>!h=pGc?cFC*x}y97&+W14?-P5a>KV9&<5iuuX8AivoW z-E)$Rz8k$Q_@803S}q0nMS9VmIJxK{Q0C3v;2EzoA7cp~3k<#sWrqwLCk~iRU=*0p z7~rRSYdgT49GL7pN?7Dy<2A5B+cDQS>P`!MYVsGJKWDV>`>QsY$Do}VHaLOH@9E@q zNql?28h8z!W@sAqOm6$jdyp^kNSe|7{JyWhj6CZxwqpc@+Gl5=ZaIJn z5f=%yI4XZZQ*Yj_zlchzFTwdn5v88!e&fposTx&DGa0$k>yIL#rVU_VZrekyBbm~x zA)VxKJ?s|iv3(k0*rPTHYEs>X6Z3IBWO{=1Tn84U2NB@AP_EXfVKv-7F_(S677Ux4 zlyJG6O=gZNvfcL?|3&H{GizyvhoOFq4S_=`d;`Z{)JVJ0V2X$=d)S;F(f0}_=J
U#oe;%gy>okjDHKQ~(eS;xdBaB9M2fZ<`}_*2ISH8=BRO>MsA z6ZhF4$A4z7FppcpYE2?@A2ifO=DS>aNX}cFuY{}Q|uGwVaN$Yjp!Di z9j>pjT#Z$Sa$mLS^Dm=gLLd5<(n0-$^#3^!))eK__sZj!_Y$``^*lc~)%4@93PTFD z1t9ih%LlUe{&_E@*Y{>cz*TtYAHoKtC&?`$-bem`L>eLW3Qlc90TeD9?e}}Rtnte? zXXs1T6U4plE1L7W{`0)S#*V!ffEmVzLakljA{dGzu8roi83PdSRzGk20Yjy+Qes)Y zHt4#Ly7a~U`dJFbb3f@ZM|@)dWa=z%ZbPmyb;F>|E|TR@CJoLoK#Tx4t~Jg4Q!~Do z7?v~k9^-`T5!DMa`0A3QBS^Wcnrl3kPLt1KmZ>$?f?xPiJ@KRF=vStiY3ry_*3-F{ zVaWmn5!vPEa}K%NVKF0tkXaXh=9$lLls`K6pB$cf;wnr>O1PZc_F6lF12SlVa`f07 z5-~90(lPn4;k1vT!XEV`MCPD4heVb;qaN1gj2u5mL>v98o8 zM;(){QHCiFCrR~Ko8B*M3u3?l;ga7ml>=RX-Gmk$nH@L{uEeO^!$_!)I5H>e=K6|L zb+^qKy+micwmbN3FXjWMw(A&H)_$_;1o{J>{;BCIz+Dz`QMi_FA0ib|n4q~sH>p%(@G%(~voU0Qt--Ik z1#Y{3ez^kkDvtQ;7B*7Xn@NaJoXnd~)tb|&yKu*gkt;q)Ie{f6m&?mtd1e2-G&a}; zPv9Q%_479NoNMlvqfBoB3Ua%zbC7Urak6b^O}$fo=0KlDILX^jjTDD9xP5>;F59k( zHzOn~FV)Z^Z^ zUQfL$cb%x6;BKk)7Lk4=1j%fmH`aqsVr z;Ep>1H@_oeP&7aq)oyAE3`9vxYQ{iH<`ouB@yoQIg0O{IIcYXV5^@Hc{5=PeXr#c3 zUVxYTa+Otmi$)jM4Yix!b+Uk!Nibz|d#17>x~plx$8+E|yn9ISgWnZ!-Vx~j!BUfW zGy;rW%Pt3`|0ePSR|CHAh%o~RfalCnL-osn7g;BbM$&QV62Jb`B4a~EeW&^~zeim) z1^hP#ry)KQU*u?GmO*oWpRi*pY#Elgl)Xqm%6!5CcOptGbRl%_bZ(A0n&1)H~MGV|PJy|)8IDyKoh>@KMm3poLho6&z(t&wL4i=q8W9wL}8gr za15pUu3S~2%Iv2{0B59$#*DFh6aEJ<*Vaqirh|@y3+?H-eN0d#yH98T*aA1ok~Lv3 zoCrOfsyFtvJtEKRN?A-J$}akz^+mJS`Sw1ap$2rh>d zd?BG9u@N-j;<|qhW)U6lkS6b56pXzD;Z5eDBFFrKxI3fzbhXX9L-+8sw;5OZLWjhe zXv%?vj*fwa49>GKq(cPSnhg-xnXXDh%PZRGDtAv}|2<01&>S&O$MsIEryw0f3%0~7uh~%G#z~Q}oUUJX~ zzg>k)D}n|PxCKwUCW-0Cb$su1$+T(qS`p-ux z0d*?^s%8XIAQY^6}=1;bfFEFnKZY_~MRNNt3 zskO8N5?d9#?tJq?d+u@4OV#G_Ew?Qq<+xawMNC;tQ?Tdrs}BuLgWMgBG8?U~ALqP{ zM5@*_sJ{M!)~@k_9INsk;4skn3=FRR;1+1^mm+$bxHkdT%*H zzP!B@ZR*4HLI5PW?Lw0W%N?A;UBC&o49Xqo2ufXIuiEbfR1C<{vCX}m#Rwfs1yB|J z@(^!z(pwt>;Md$@&HkA6wGO_>7?_E|<_x!s*st?~c2A72hYdrGg;HmUQS2B z-Xx77ZdSN?epQY5hA1Xycfxu*%kA9|JP|$Llm3e`N4Cr1>!Bx>b49*)=>H0I{?HuR z;OeXiGuR(^?=XVm-|x+&d+6B-^267V^(S6=5$QLao?Rb2FkkFbCVnDCeJ(qHRPS{a z6bYLLuXmXdMnst4#ZZwkDtK?=)m~pU@}lmq0x68f1~kH84@xzlSom?!ds?eyA=SX+ zi1S}`=s|*laIz3-pd4#k7O&=Aen#*XN@4^*t-#5qIU-Vbn=%DvY=H!f^1o{X2&x@| zN^59DMi+4Uw3PESSS*AQbo@qwVd3oDV*nonZ5>p@+=pI2xLWNMnli9OkX@8KP{)~e z;xV=;f!MoNYr-ONW7sBb>>hYiU&&sxjV@}?;o4V)^1(XB^nYMl}`@WYK!L1TF|}xE6I#QWRt8d*i9(Vd^R)n?938$H;W5 z55bW_Pr8IwC_Ynfkq@)UfB@8p?veen8yg#}gT)gCRQeq9xS{vCtY6HIbaWEan^>nQ ztJ%;%WAIGK?2w>L?>~4akYqNQwT*AAjXZ9)pt;n`K1==5%M=?u?Ia0;Izd9C>o^Js zGLrMh_P}#)$d{!1Qs}L@8}>lT^Htg^;ueJ{xPHV-+vhDyNmC6OCh$woBf3khY2WSq zn2(;~*|^<*X2_4*Y!wASsFQZCQ8j$=$eZ(}FtAjbG<1$QbE3ysHc=nH+?!)4m173ezN*{sMP*t-z zBrotIa9Z$2FqfqIV2kbV^E@Y8$1H_SdG8lvlhNP@BO`nH3Xaa{KCbKb-$}06 zM35#RASr;>$vFSWWg7^*nvtwacGV?Lm$Pjg#|Ue~FB3BSG2H_YxL?K*?joqc?7?S- z1t}yt`L!8rV)%pPn7iiVrhuOO%M5!v=C*tyRWUS|9)7aU(>!X>JP>Yk8}r258TKgF z0r#OCF{d-;D9@Wa|EMQJz;kLH$%Eqc?kFD^0$xs7+oM;igIAgpzb$lWU0Lzk0Rj>v z$#oE02?x?*W!o)xvsRDQ6&U??`69i>^@x(m=PS%i4?~|Oce=BLH&4oEIpuNU#zOYA zD}myzWZOy^GyLH7^J7ragM!AI?2FNY2HUAv?#s49{4Vf()t2_)`T-kzS;#tGCD$@! z69n*Gol+CoX9L|nZf6V9@x5WUlL@ZmVhq41VZ zmC!Z~^ieDvfHJm~+Wt_Q(Sk|p3-3I5y+`j|(QM0EIu&H)<6aZBH0)R2M;%sd}kxEZ-@5=!*9)VrxY-418-#}IicKKCFrcm3o z?KdZ*kA6H>*tCh?NaRL_7Gr7kV+V3a4-pl4D5R=}u(cRD&&#hQ!83p~u?OE%*zvI@ zj~?)pwCpB=zyXXmxS4qE4e^r=$Y$Wk81UQ|`^W zi+a(7I|yaW`{v66Z-q2w-jD3y8ZqG+eqaCy_d)zZMUaK%lX#v1w zbDTop;4d|RrXy^T&~!)&PnZVGDr~!l-vE;8dQ8b$p8TUuM-Dg&I>1%mhT>kyAeep_ zUDV#lj0GnQs1lYaDySM`46ou1X}VSrq+abc_Ho12mB{1E+KVNl!>xcwxgLvdv3b%A zbH<*a!)Lvb>2#xM9bXYb&Kf+?Ee}NKp*hD%1LLM3jU3~VPBbMf1p6MMG9jZsoiKl| z181Zj7O0Nbp-7y%D{)BUas- zk^fbP>i`D2ioH)g<^A?_bm9Zco@R5Mc|(dK!&oB_vQ5%Ml#BiT8P9-U22xqSk=uF5 z_XqU6y}iu6?kZ!UsCtM!8S#w_!{W*JkM^m zzW{C?UJVu8P4D|A&L{X#7vt@#s_p_=#+sB1UmFcuf|`XgZb85vEJ_Yf?c&t zsg!dom7)K_j&rBJavfp-+<6zn1Ui&q%dFm+#E6pZ?> zsNd3f;QWdZ@->EA5vTl)ep-kQ%1+G#M0v^~-a7Dvwl5|uAr)*^Wv~Ui5g-CIg;Gwq zA2oTV8#k58f!8)_LP)gRHZRx+xrW_X{=$&MbKlSp6>sW6x~e~zD<{oCi&xDX`dZQd zAQRp(rRBKDV*#^7)N3V7b$Cyg)uWJMwo8qCV8f?p&3{n8LfQ0LOd#-&W3OF`l?{UW z!@#`y*))vUbz!vRBNn{g&)7g6h84dhjNO!84I;Dx@6!*xn`Y@ zFNvI$NMpoY-3BKOS+lecht2cx5PQ@R;6TEFZtd(K(*$rqzCY3!o-8K}1+a!$@FF`w zm*l+JNQQq4^j5_C(IP{otnU%LU-X^dj-o3MV1fMN@a=a7*5Q2ckZAGTh2YBEw8OzP zLleDN+hSBKa!e(WHc~>Ee5|l$BGwUHuniQ@&^hcegrN*?kXt}eS|p)#rHo$} zvkCYWK^niH%+gn}qZ^?}_SK^DaS1hRznFoO&|?=*t z-2^O*;MZX3ywc1!I9=byRiO1@&}&Zahq)c)XjesS*A~u2!WawZfWn`Z5oC-RYz|JT zHFyae@NfNdRKtbg_RW(qf4+lTd`nP(q9ueE+KG7%vsB^?_urS^*WYOC z1PcAxQuq1iGzafU$q(_qdqdQa+BWv)w(Tmw{p9JzT!HQLx zH|l5sLobgs^&|c3)m8t^PRFA>YsB^Z{n)tcgGwY5T>?7)%Dd}&t7u=iVx4o-6Jhq? zRN+yqS#^o~47I@Nz_e0Xv@LQ^M?ZBVdcU?X(PO7%&c->Q-(0#e^R3vx?yMs$eyqy6 zLZ!w88Odd?kf{_}252fm!D#IP4t8RTDv`SDM=GNZ#ai;|6b1K7eK62aN$uX%Lu;k? zo42|9_9x(mptGZ8;=$C|EYPb#4`hg^1a_C|75rako#O3ke4$$!i7kWfoWs}&@3|sS z&9KijIbtsk_#5lB=!+3NstEXL@vyIIZ8%>kOmeCRS5W@H7mb!<h9GaSPf1s$Mb>y z@8V~+kSe2;4iDPr3upxr1HDKma}_&DB8;kRR2w!lE>Ud8>g04pxfyuG@@$PKy$47iu_CmJ$* z-AGpNvv+fbC&8l3sn*9sGJX%eMMm1hVQ!Aa*fHRt=&Uf>03sx+I*1UdZj|aCuokE| zIkp~Yc;=|*Y~cjuD!>mR#z#2=mV4fz42i$M#ek4bT+m);ddkTG_+MBYIRlRXD@p}W z8}!)VlLA4qu})74Hb}Jt@%cvIH%aK)R=G4-F|_l4fcS z(W*rrp4oM@zov0b#JI`^h@Cez(_qFheydmb5MbsVK<03i63A15wN4)AFJ=?91!J;g z!>#e$oJlXZodHQzhG!bv9zI6l$l1Zq?dGXrd^ro?LoJuY-yXF4gm-{R1|C)vnbcFj zFhG=|`*<}cPPz>*i0pn<=AXMX!QGsuJTklM5g7FGI9a}NqD@J7<=`8dAEAg3l99Sc zr;2@Q7cew17&L81hz_3xS3j5YM}c|yVUiouN30&;^T)@xY6S<`(-k<2mZ_S4z49gY zJq{X7J*RB%_rU)#T&OUioieb`bur;$5`TgNyi6SYw+bJ@k${m-empA8>5ie#@8T+*Cn_`-Y{Qq@Svd_ zUx@_2|>C94J|)vGaaFm)Tv?$w8X7lSz| zb8*)2!N&yxCZa{0hQo#W;lf?bLOcvK3`h^`z^yhn6ONx+%W|3*g z|K`i?@%}SWt=_;H#Ph9l$AM#v8p4+FY#(DhoXsiTd?4zV0}F3Fc&Dh5;9uH&-thTr zY|`utQ7Bs%jJSXcE&<*Z`j$LqMGek{G-_DxW6El8>uU^OYKQu7+{%!sa3dQ!C)gM7 zUK#k$7D4V&B)f;M;+5E=og*JXuJJ@Nkja0_!|Ct`7N>yw4ln5t~&F#fs?u^UZ7uG>b703sQ4WG zClh#Nqr-ql7R@D6NvYl?g4YH4-iF(Dnq7|fslOaNS%9RoZ27`7A1BAlT)sZ15FF8d zS7T}C1gtOTij!d+Q-fQ%j>i|MsZ?+kN6@K(KEGP=>fnim*Z4KaGg~*exbuY!uU@|T z5U_murdh34sy=eDPIdkZ@*(gYm|{Bpif6)Y04&@Z_TitVTpDXVG*N5YO zDbB~Jxdb5p948$ok1O!;+V45)KRNPoE-LI}-uwGiS(<(G>~*slt8c1%2ag}_6#eKb z{xA04EmW3uP19OhY9lS!H(p5FuvjHl71^sYBO)U*qv$Hg^Z9&=%&KNrMn;|^Gvl0@ zAzGlc7ar~kgubvv8xBUon(nC?6&KK(>IATsZ7 zhud%^esB!WY@=>nokMf%tH3h zo!Fq!%W;r}B}?IyW1&A^qe^%}yD)y9C}t#=={21SqV1heISq#!cZ~bi>L;yk{~G!1 z-DCX3sk37tobjm58TS)Ft+YL7P(Ga9`_!}AuDe9fT~Bx0-M#a!pOS+VH^f^GeuA3z zPCq`C?XX%wkJCmr7m!Fni&J@ouuYH zd;fc2X|$Ql1%W8va|yj1b0z&WCV;ea1_i-_#uHY~UAUH5=(vBk#A1g@p^~#s#aT0d z&~ngLR^FzZqZ;1p^-^?!=ZRFyQa!KwjYidD$6Y*~(4I7p)<#46^2ewR&Cm1Y68LG3 z3Eo&yF;%U;GZ^e`fsmjK9VB>x{q3_%|5;D&u>M9;3|oQ;fg&Pm&wR_-`2h7UN%I+!(*k z_+`eIjQ{bU_~Hwnv19x^l^gwd~*3*|!ovz(!?=$vnDzV{>NlmCC)M_a6o+w60{_VMRSs0&fB-`?`K?fL%c zr+u}5?RRl>e%!yed&GBnDfifQ|NJ*!{$o!R9aP4@XTpzs{mb7!NA%OT{e%fWx2^X> z2|r#Ocak3WNWQ2Bi(jGt`2knj45r;8t&Egr%4e*B}KExws7zL_f;>PMItzw@U_ ziC#B zJ|>QjdE;Z+_?R{Jyz=aOv&rKRK6iY2so$SE_R7c1!83h(s`&Q5e!7X{_q?}$w%quA zrxUUj*t(XLubpi{|GKE_#jm$TgTD-fGIqH{&E&hxulCPI=2s;@So|RKYoBF)QGhw@ zaC}lI4mxfxUgf;edPRZ0-|QJ)yq~Hkwd?yES9f!+c~h4<0TLLKrkh^#R+||&*ITUC zt6VGIEN*dJiC4Y#1lA!h0np@mLI_&+nm+L z`h?Q8(m?UyGz67`wBF8quXM+L`o~8te_D!HaIrcUR+)GBvCb)?Rm-?MRq75wcipd} zcSLP@d0vlpk;td+xi8Y8*Q)ngW!hpA8dfn?>y`f=ArnT6l4T5meXVpC;cD5XWK%L; zX+HNrNqBGtY*Gg6?)Ov=zM46MHEQbnJFT3Hw{4T56Jp;@+WjbJ9$X3s z@OrYEJ?Xu|2SDL)uSZ&X@_o_7?{eBaVc*>*hG+O%kL$&}eJFJ+h!$=J*k*OGr$1=; z!pUf@x2LE-DM*G&=A&}`*ZR8Jw~>*Ghb~ydb$dV5p-VfNTq5?b_2!h`>XGaiaH^=L zgn2SwVp;Zfr~?~B@nCI`N?z@?i?iC5ORh}&oQsn7lcXu?;!kjB)#@$3p^$CE4{Bd_ zfU{F=3|B5*y<5GPw8R$`>hZ%me2rm>AT%!d;XXQFm{Tv)-WG8Lg{*Hp9!T zHyfE<3K`Y+p?afB& z=CwOTOadOl^#kN1xLgIznWdzNucQ{Oh`u%@m+bh~&zOHC!0 z1P#m5FhZhuiclLzI2|&L2t>bar9M6ltDECO8hr`2@IJ*547*uw4lc(s`~i0cISP>n z{prQ5i(lz>BY&W9RaMq$p`8YN^&CYfSdo>D~6qc_kN{b`|xW=-qn z8;5-R3av=kKphRRukV$~)5usmqEA>awS%w=rMNuvdO{#RpUa3tDdj=W%8Or5k#k+A z_}i*N41of6DVb)Ij;%Aer#W?mu-?zOa>71}`Mq=pu2R2%P(80>|F5*m_xA8wo!2@h zqGGOBqf{S^C!!b0`n)ZoqDJ%L7GZ!na$zgNnWYeCDJqm2WKg)ogyR~u`|j*+Jqm-? zt)xGcZAqFmos3yPDacx4CRI@#q;76TE6rZIXg->4@mWNu6=6^zxZk!oCbuk8j>%AfZd6a!7pX_%6nJY?w6 zubPi(4kOkN=oW6XEEQqOa$JK#0WRUd>hFPB<{+i+A%xgruR+b-ROq`Xu&-;?_8m6b zG9_(p+wfcH{FAvY}$o{v&!i%wv4@DA}Elv~oGF1a5FzovD= zgWqp@t_qYNU|Euf;^J7uT^**ArXnx z(y-7;P}S)?y$E|y3D$P0d_bEOC2@$HBI~D>x0{{62r-! zNC$(qG787FCydX+H4da1-a| zDV)54b|D{VYYa#$O!wvj1$~5S4b4+Qbi~`s=-@Z#;QAhVgDslJet+CQ34q>vtxB|4OIwZ|y%(uH2ZYBZLC_vE+0`N7QpdI& zoh(SeF(>8ecxkJ0eV;|QGdztJd-7L;HNFBhz<<;B)qd-O@jC1++>b0Pas_?qU7zW@ zo8#>mg~8BAAaS^E;{v}EtV-$q-11v`=h0R-+Dtqq>kzVc>{7eeIAiF-A7D1==6QEXaWAY@o};Kl7kp{=y(QAN)#7edl;s|<90vqL=GK!o>ByNQeF{@0OjEb((`GWqb{AKgDCtDBemy)Fb!J`dp1?ealPp_->n#@^ zpO-2++)+ZqGxk>Y=mwBf`e*8P296<^*Pi78x>SSL1HRaFqTLI@YkRSpHudxz>xCq5 zPrL&BNxF%%fZHXrC%49T((CsJm6V<`B5Q8nJ}pR~mH;j{PW@EQ1q0^1^wlm`=DGB8 zepmF%TCVvnH=NF!Q|z$a2;(~QsF=wvR;_)~cC}%{kUIHQGE+|zGE!hhgjV;3+&KSu zdRx6%c$x}2hFF<%X1hyL_#le;(@lr#wHVGaUMN2AmJ2wnlxTsrGOayfchFfdDV*W2 zku{1J)^^o>zQqYhh#WQ_IS=UK2>W_y;T@{s@%3QDuiN>j-f*718Ft$~EIzIdnIEI| zc-q89q+G+M7wP?u@PTcNI!Utay%5ZJp6G*f&}`7UaBZG;7rnF42dD029}Q+#|9#s< zspO(!OxJa+aM#5l+(o0ZBLl%!L8n2#j_(%I-iK{77Z&n4s<95gq6Cv0>)YJ-7Rl7^LGqc=2RA+24WE`mtK?@ zjKmd?l)_@T+q@GOyQGg%8rEjrMI!uUe9brmg84}98Nva3#`bInLwL|?*V=RSP9E8! z*UNGovp#(Wl7X;Lx~Zr^Uo3t+qlAvURPT+tkXZKk!9+)xBCVaHY{<83`yjW1du;f! zUNC5t7xH}#xkn*CyBws)b-g8d(cmFUS~ee*4Z`5c^>w6CmMYqd1yeTfZRkh&s6Ixm z)ljIix67@|eeKY0wO$WyFHo?#eyGJ{A?{BgZ>E(-7GiThU8olqm&-xP$;ghv} z1oLe+z)oa#xnS>OZ5-Y8-fR+`tN!vj*yyz9pEd2x-e)@`7n1itvv!U(c~rV(Z2R)@M5Z?LFrCPBR&H3qe4*P00D_)|s#kN*DE6_39}DQ*U^JT`;CEx*}4Rqh@0 z)Ivg7#Gi634wKwvp`5A;o(U2R!3Ugs<18a7%Aw+3jUY!h&-Xa&j&xYtwd=(=_Z1UYH<+0q=sE^tU_A4MstQFM7xW2}4gS@kT3_9mz@B@DOGe&^;@_W6; zsX{md%X{g`D>I91UEJsHa|ZvIHTw-tl^0t9^}Wn z?&$Ce9#dy*BZCq(a5R#&d8k|uXjJiWA4Xf)4<+`%K6$}g@gwho5uQ-NhrP94PWD`& zjtl)ra^FW4)c2k$>uzU+JanI2Tyn=n?>-X`Z{}a_%lcSZmtj#0G6a^qWy2m7ACod> zF|cG+vyQSooMd5U{#OpsX5~r-jxYPCg7jdhXkBN~vEo`)`s^uR53c zs0>}TKGv_OT* zwK3Yg=Ix7lY3v5@tw{`jv5w^!inR9Ik6DgI{m>rQAB!EhNZ}HCS9|?4{TSO5azMz; z^Oz^61RFtmc8{U3vE!X$uy-u{fIWl=lAt`fDp<8jy$Rm+5Z?@j3v6!(Fd{<>j=$70 zs`C@E;%J^rgLKoXTO@5Q05>U$vjD6@z2W_8vtkktacd4wwU_1Cp#41UarC)U!LJX< zWIgnsymKME6n>u~9?~8neD|Gkt}r9wwcx{5Ru`0Y>`d?8 zQe5I$W&r$XO>&^xwdq(`(4!jpVZ;tX#w8zW4s(slr5#+$aaBu%&He z{kUvZ&yUxD_s>jNMDAHn4sQsZo3jlz+OS(FMNi#EE2=r(oyE2SFnF}Ycb~5PGW8ke z_vdbZSt8!wq6236)K+(LSVfD7%Zr;7ds(NSak0chBs}MoY7z7lETLNu~wx_J{x=CL`3Rg%5gyo;C2Z~DH$2tqG{NTH`&Qd2cb5TI)$H`UpEbv&k4sS zou=Ju8dz$^R*-pdJEjH;s$y?*OYJ`wB;NJKEmBTRq!~`YH$*&$6luY9I!q$IY@J|NxwCJmYi2e?x^@N#53#y3oC09 zslvSCe42NP&H5$I>gk{6uS}b|#}fOX&dD<0XTs&Jp-!a1u6ewsT(;)24{CL@cq|qj z@or@qZCSm&;Lcckl5Ios;h=hpxh+&iv7t4{Q*V&5cqy%<_WA1RioDOd(ms;uF=_NF zcy{cE)X1`VVXCudZgweIl5P$9{}x!qOk?__2ZFvE<|^!xu+U(Sv7K>{ynb8L3Iza- zPL4X!f|_@UNt!iisEp|w)+?%g#Q0BG({uX}&7`oFuHo_=ZuFWOkY_3Z24I|vE_KKW z)$*yrJcu8QEz4-z?Oxw&@v+VJj|uPsWeC}g&{>TLss7^8Xw}J!4oYz`b~HzeO%mKH zwcUcnHpMgQFg^C#33bcnCCj}b4H1a3v4u4_u+~v2qKu(+U*TLUf)MiwlnCtx$C9ii zd0$-Y2HQ$OsPn^DZi&Lc`OEOiWQDQxK!EROLDW?)O%!$>ns?))7=~>b~gSH(;jfx3l;O7Cd)5noEB%dIigMpYl7U+~v*lh3K3Z zrf9G&j*%6uB&WJ|&ecvYRfnq{q}0xRnAfGEN_G?rBJ+^sX{stJZXe-14!D-+-vRlP z8se@bJ_4w4@1)z_s$Mi*P!Nsn3B>{5!SNKk^hih;@t<*zrSGCr~%+HAb zu3_xDxU7Q>KH5N4?ih6<6)SVPh||m*YoKGQRglk<{^h zcXYp;U>W)|uEoPP%c-eUOW`nv*2i{`$rc8UstUWXQ+3pug{RR{)1c~V!IbJKOZjXO;2gTAUr2^p^a2#@Um5dz@DNEUcha;JV^GMspxp z=`b5PNnpp(yY#Da9-XL)bgA>7r`jZ>UQ#PI^4HO*Sg?oYHuL$9S%bf+*{<~NB3gM% z79T;752y*7??W}rxbuTD2F@WoG$lqu#O%D}Q~f z;-T@^nQnt^)LvQOhu+TUFD1TsJrv;b-KS659@pDYX4F`k0k|o#OsWaR14|gR2PzAE zjz3T&ebA#!3{KRhMjiJ22A5E=zh2~q{j`-sO!d;?7oPYYvNYMJBv}t*LS|pE4pUCa zPNjs6S}Qo8c( z1#%+Bn)N6&XuhA}v2fec_uaQ@4o!I-=j&UZQ=&dx*iwgEpLw3S(z1)=^d*7V)yi&1 zqA8#K;reo*!~UgLi3No6VcC5jWDh9kiE1n!^8EWUnE{n+zh;hvzY|_c6n!mTPpusk zHCRNxE44H=nBXxURYv+e30s}bt5A0Ih`jMi{XDbwhj3LRJSJC^dFOb!+|BA}0YBBC z_iN^Q5V!92C)xyF#6_XOVGrY|_^fBXbREyGcp#@)D3JJXO66Kl=7+)iK4}))GMWfA6H!aofx}UFmf6sbA zzgn7e*+1GxZ!tXSMz6)r+s3n(t`|;UDJc8a+PQ#;x8)8>sl9j3vJ9Pw{pl#m(-WVV zaMGPo5vIW+#{EdXC36PfOGd8LD6@JQZEDFdXx8(*M{L7qx8`cGXEAg+*CcbWN7VOA z=Nh2?#pMW7(HXfjHi_z6@njhpkaJiMhEiO;u{P`8*#7t5^?Ho65ZdzKUBC@b)I@q3 zi^pYDdFEKoOGa;U<9bCaky{(R+%ktgNXs~(!&b29jnSn*2b2BkP?!&yPOB$g_tipu zkblxpRkjM%=Ec%i_Kf_?j5T4cB*URTGSGmU|=~^L2DM-!2Z_dR{v%Drx$rn%CSglaABBv=N9J03P6ui-C%4_? zyEY$8K`rARQkYtLghJ?9Zbfe%EQ_to2br;Y8N1SeCi;=ufJrjg&ql7jh|7JDly*lk)Je(dmv!lXp)I<}oYxmNy zw34h~if_e5_oN)@p|qv0*5TJ@Eh%T1XO2DOdMvEwoOwIcpH z#p%r+4~*C6qZp&5Mir#hAX`(n#`--N%tbdtdNO?h_;|9ACF*B#?JwBek3V>4sV8;f zxgS*;`dqePh$Ngu_L^B8lvSozgu!r9{STeg;PNPav%XNZ!+eFt4o^P&Akme{y`Izos6vd zY4TV#PPHR@>42hD!?#L$dF`xQ(p!1uI}W+Ak^{#=E$~VKOW=TdvT*)vZAu53Zb`qw3;()d>5;zfJxN zgm5%}Idd3mY~%O4>=YAb9}{1ECt(739;LBnAyzvrBPKA)mVxy>u@j6pvlOu2EFj5gnuaxHmZ)Q5xx zU<11ks9E3W&5;J`&K|<2_tLyVHm>cnCrXFXkE&Ph!@|zm)k1WRrG>DQqc-dO(?^|q zX?IDHxf{92FOZtq=+zg>5N6lhdlY8Eg6>x}pWo?Oxe~(Of@!`V84fw_=88Edk&L-h zlt-gEk5-VjJSDd1w+~e{mHkpBo|9n~$t_DfxH(z58*^zz5@pt+A7HdeB4N{h^a}wCaMfo0Q=7&_rAiQdFkgMtgH_lZQGsGGxz)>nT3^2eJcDU) z;?B;~$`u47NuJ!8uKtWV(!rPep|C@Cg}LO^SKjg>Yt#rIDSQqEaHH+&TN;5oZ=+KF zYol$YMbVWkB8_HD#!rzV?9k_%~eY`O1vl1XKYv!^! z)px8DYP)H_(I2VojUbYgM(xvM4?nO${!AL*WT#&o&UX7p=bgQQxbvS*eFb9Tn} zXv%(5yFGiXF*}uXXAKLL`JQZ;rGG2$U!lz&fvuGE$ILbB{>GS@1ZWMsE#Wu|i=iXg z>MAaLcD=wO*<{?g-b`&eWF0W5bw^|16^GnXxTZ6S*3t)LbdonOo$Lv0ywX9HTx_yU zm%h(rQk%6Ek`XK2cYpE9Z*p5OS*>@r#*!lY(qwVYUQ+fZJ(mEl_KR3Y&8QxKFprQp zm*F4^`GCMv7URoKD)%+~_p~k#!hb;_LJ}tT!RIB}D?h9;ILY@KcNIhH$Y(V>UXK(eI8GlK}+{ zRvFFj%Dt;d-7d@g%9v?Vw^)swlhBUd5*Ut#evHUvP^*f@-W6c@NEl}ywM}8>Se+~L zL*+WM?&}+xQTIF(@ZO4h5BmvaE?LBIq*;HDMik$63OeMWx|H?DxpVC&$-&t-mZ)f$ zW8CGa-A2D*M|X@C!@A^uo*%}j|LE~`_RZ|ivc5W5C(Tyl+uEz!&-T9wjlM|VuhLjt z)3~?Z9m4hH#8KC(SJ_vh%|gFer#x}-`%2O+T6w2(H!blAaBObV2;I%kz$3T9MY*qi9%XZN03Y zoAHi(`N?$Q-nqQ;!IdZP<?YF_fYXlr!aCB)T_=h)3d<;`jJ{b038dxLdc zl1$!K7fCkWvgg*ypH9>LKzea{5Devav>T_hTz@hKJ61|)l5Xm@xxSlM3cEUz1;tq| zA!>NT{WtRquX`i9V>WbbA(S1Nu2E8Ay@}pZaYod9QCDBeFVR=M7PE%mmAsy=$O;QW z$Q;^abwtNIY$vTnGJ<}>crw)|PU7PakA)J)abH^*vjM(x@K=2Wr zlGlk(`o3`jfn}w|a`Ub2EJt%iK~PZbz%Ub5!Ny*8`5Voz!Y$^xRX9oOjiK~+%s%oO z{9YojL){o@pH0Z!y{o;0LncL&{VGMcft&GKRg^@^0{?^KDmp#wMPHLu2wo$ZY)<)wu!?!mH&EFgS%JRY}? z-~BjqCQ%J7oXK8b4RdumA31mi*atKp5x^8;3srYab9LsE8Nh1waczxkgjwUa+I#7J zj}{>MH=v;S!O#Z|+p@=ZIp5Fd``e>yA)2ulbLWyf_og1`uk2pN>CUw4pf6+58~5>x z^o~bc%_r^Ac>hi)*UPza>pP`9+vp<6*bW@h?MUwBv8*}3jL#Qv5S3`cdh>M&UuHY$ zn0YLK^l_3Q?Ltn7>2u$t7j2Y=j-^n*3F=$SQ3q7xcwEx9LJzok=cJ(2;;(voXyCl4 z8TKR9lLEb=`(l^B2WIh=&tC`2^L6vFBtNo*X>J$jk&BC5a70D>ny{KzmRpL|)AXW+ z4{S*9v-F!*`5g=ZztFkIrZ^VmzSXDdfG3QX=OGO0H46ki^qaT$RC)>COc=h%;NrWm z^?Gz?PwUomQ8=-G?`3rj8sF?SwyN~sdhcRPm&;%7g6UZDDMM-5q_l)ZAnc5}mdBD~ zz7*xOO`wuwXCUeBn-kVs-h&JX+U~6H-0?EH1Nb?@4Sa{>Lsf(~Zj{MTR`3>e#ZzUE zCofGh!VZ$}cle|^#0#-hwDG$LuJsJ$xV*%tv|rrbc;42O^KoZJeK}_o;ack}T5B)K zi1p-WYZDC7Ef0ydX zx;4uBdt9F68g56eNiNQOVDm$k!+j;o6lHdF&a&S+0SP&o9L??@nQQxdzWpym z+&SwTohsMtUeooEJeVbKe5Y@T9wPJeJO}N1H0N?kmfj-7MRA`^S;germ`)APyzSSy zQMr_HL<^EPQ9^EuosdR_RY(?~_;|mUUD2)$H4wse;r}--)by3PXbIN0AqXbc!)ekU zhcWty!`-A*=Pz;0z;JZmGdp?t&coiwqTZv|o%0DAdmMQSdq>vw{)3XA4`l3oBGv5r z1kl$v4VK!LDd(P=@CEED|0fgF3c-t zKy4A%Nj4`;G7nCXsW8|p&HTKyFAt~lx#6-R*5Bge+1c~{)v{o#C5Q5jqH5qvxFP8` ztg)p)+O2~Ee)27--j-^nDNc#{MNvn$iaKcy^St(&DmuKp-keqv07P!ibW@*?CTogx zd3{%_oPck=FxW>j2e6o3cNS!bPgLdNg@^g(QCM(dUr2J(>MnES(o(7GMj9#R4hcpR7v{nQ`wdx{Yh@kTLm$>74kdsk6VA>qA?JDVf(&%Nxvo3l-~Qf>MKS_eqtc)?^cXoQO~n6QA&o93;M=Z(WVzo zGF8gSIPIBzt6L9CY8u3)<(Xx?rf5LgO}L7qJh?(??vWh}*!t!nEJ_xqw9sa9&X2pp zTzWt2hG^NuOc2b(R~n4?npyOKmY&b={332QFY^r%;})#c&0civvE(jm@j9`ufU9lv z2DcC9r_6;Ib7SFrS~l8D(fefwyN+L!LhFG#xA=kY>gl2-p;~Wd$9iyl)wg`Fa&Po~ zL6b+KO&Tk^ReN=(tI?C(Nt7s*PPEJ`BN;!7l9Jnu6GnL9+wQk#MYyUx@oN{G?>Y%M!y(IvE-DR;`OX-XyG{C zt+z7BB1o)xj(XE_ND)h7l6pO}z9dIRMXuSJJ~ra_vo|`fF|zLZ=6HqgqIK4W1foe_ z`AN_9N(6P{UN0BDnVXklUcy0qrv-9#4z-RJ>EWSSEA?Vfr^m~*WZqt!KQ6iEQ2iy3 z&F}K_Jx{bdbw3|T4OIa_ zW-jd2jQy+TwlJz$h^GeV5bW0bQb8YcnLOt~zF4Gdn@=Q zSRi_}!DS*)U#GVotcDBei_3hja(yps%<|}d7a};C({4UaxtX)*yJNT|Q%lyT^-ZV` zDm;6qf`9w{5MK5aA15J4^=&yBr5+ypNW6@3=oQiAd8&_OzC=2trg;*|*EcH$-ax%`s^^iz0W_ovYkREGm#x(J0zZ4_zZU%xANLH=H{bmquEb@Z4}?L-&0~P-nrRsDyzOD{>#^F24C}SHP+FrLf!Frl5=8q_O~o~TJeE% zcK^uqX7JtLvxo8QysTkPyYQY+Tjsn&^AkrM0~1vtLLYn8BEM0 z=eF}M4t9BEx?I|lv6b~)y(B07uFb*i52m4+ew@lM#*7Cmbb=-ygrvbN!lMC z7S4h?T8EoJQUY_lgwTuj4lMx7lR6dD8CZsr(*ppxN+u^&lfJQ%T(22pT==O&>a~+7 z(=dpBZf_UW7^pt=@M*qRqJchNfCs>t%OQP-DC-DAUNp0Ho4&Vi-jRCH<+9WZCKqX) z`W!cAYRH9KQE!&b{fKzZ_fVLRAvL5TO82PGnK2#4arV9;4W|%}Hp;{{Y{%gnze?V} zd}1Q+Z7+*Kf{!rKCf0 zRGK@S;L=BRI1FYI77aL-vah(99IH{JP@%k)Q1YzR4PTn!J9p z60`bpi{<#y2#n$fH$$@8TDTKdhZWb_E?K+#W*_U+5sD# z>wRjM6@hwsOK)Ue&eM)ditTwyxI=u#OS(XtHle^svB^j0CigVabs&hy?85{&4}y4n zJ1*}~P zyBThubZO@9)OAgJpoSQY(s4VvV%YkmNYJbOqs z#@;sC@+nq=P9&SwyIb1lnCKP*@o6r^k3~lcoiV+{>fDb%II3hrjY6-)CjLYo1oaN} zlq&B5>ttmgCU4IB{_ULgP8|eN2aI~>V44EBMEQF{v{H1|+Wq;WcbT+GXV&dQVdZ!!{2tb1uNXZ=vnBWN zOXiuwqT31=%=W$6MLVV7w5At=dAoR_ z=!v$`w_d8(^ipS@Kb^7tE>KpgEja(S7`{?@hdN4(jD z-{-J*k~%q7nO<#fq(w?cS>F6`aI<=?E)}lpX0qtkrx7ILVxF=P+w0Qfxfv8w79*Ug z`_fRaFI#f2ua$sPqyKAFXcX2fWeUkd$q0DJdilELzOL>}qHD|heshXmOj)b=r^Bsq zeFu;%%3*|;q@=FLw|wVFzoPN(j^?zI2K7a)o)lLp8FsDnXkW0)&Ky1p$w)I;)7@4{ zjn#hrbW}(EV_tu@u3^5W08a4`sFn}ueQ0u^m-hXB8CR-#DuAQ*;FM}?ku_o*H|;^O z`Av^`0po%`;*acMb!u02ctYzQ7|q++mL7cOBbpzgb%|vHZ2U5q^;)^+baKy1+#?C$ zko4CJ=p8e{kAA~U)ndogc0M#p_ zZsWXSVrti{RwxfgIggS@Cm$cE9*#!iE!)_Gy$2s%zfYZG^;#>RI3jluS50iu zGd1BZc*4(!R|e)JB0_atKix8hu=tVFzBLvfwXd)Zj;^5yK;BU!>C~zf*@tAgo!Tgj zHDrvUW51{H|L235f4j)y2sTxZbuFIvo zUrK5Yz$XlA>{F8hVy&@XKpXl%#f{T?D7ec-lbaj!wG@`~DSrnQ_gk0w3oHK4-}-|Yr5mq@m9 z=!|TENshzglh-n0|`n;-D9z zL)9Y_LfmLFKO0h?VtymtKl!Hz(PR;^7s=|!}4iJUt9SolJ+92owW*5FqnFw7?xf3gKR5uG& zYUQ!KpSO5J-e-BemdrL$yhp4hPxrRu*4EcSV-1<6WN+C7=96ex7|lZZY_=D@Y;&qU zOXyRdWRmDPo9F_T%*sU%-y0<)(L~v)Dop#WIlfC>Vkm0`)iL`6cOBih4NlK3?j4A^ zL&_+#r*bQ(C{gcXwA8v&2UeeBsgZ9LC1U(j{jsxQtfR#WnnT#@Ej65`?|h@k3P zopa@cr-7sx>SbB(lB#dJ#j0H_NBK&1+JU>iAO(qpELTsjnf`t%wW;Rx$!?^O)*EB$ z$~s;qMbr0V5O{?#;tRgVTb5HL+e0WlI7MYjj|KUsHOurVE0{@e7VcNBX`jQpV=3Di zj5Aii2#*Ul-Ie077Jk3fHB2hg8NP_op_KxwQY zqygc?_B7K1m6jCR$mF3W^NPZ4QEcuCE9OL7;*Yatgs{$T`k|e~dAIB)(sz)3*qddw z9OL_oHP?A6y$mEVtQ9Qs29H{np?aCprZ>nJb)5)Oh?8{j|=OsGm-z zZICr*<2-w#2KCvXy>E9;J)ldYT1AnJ6ou(E(pF`Ih~f<;Ay3p;m4osocA7{0FVMX{9Ov`b0KjCCLAH~ZbEQwq@GaV1>)Y>^W z@UwE?;H|iNGc2U-VS|bCeUToI{<`feqse&9ZS-i#8rsn}HEw)Y8}wa6^*9Cw^&qsf zyudBDzo4t02sQPM}lyQ_E3SVW{zma_a1@=bF^ zJ)6@@2c<2V%`M8(UE&`nyFEEMqx*D16jM8xPm;X3HS=3cH1>-7Uavt-HfuP|c9 zknt7cPcwdw@&Aws_zxI=m+@aR{!_-k%Q!NAgYj#OpJV*rWCZ^2jQ@r4Uo-wa#=psM z7{9{!WyZhA__K_Enjsm2zs>l!8GniKTMUQMVrYyn8Im9PKQaCm<3D4Bj00i@G+YM#(SDEgfpZ)l6 zpN~ID=_j7s~P49EK7e)XmEIkKkBReL(O)lI=soA1q}I$T@Rr`<9OcFR3?+8cLw zA9}W0O#7EzJeWO?+xE1uYY&Y6+l)T{-u}&eZ{B&kc03E?uTrzBos}hw3=`jcg+6!d zF*Y1eKA{yp&v1O=g(>+wMACZ#Zg6Q0gUNAogXcKj-J|Ae|rDuB9HpMr# zvW(W!-!45j1Y%^Sv-icCS&g7)H3#YY>AfoUa?xlgmD{jo(H$rK8^~xMBfk6 zOVLX2qjYo_@cGj2rESjd)_QuBmhiJSF|DR}x|=n0i5$B@^$+zp3*MG>_qyWmMAG+~ zmfFcSk3Mo0OdpRG%-rwI8aU(^zOqmg zUErh&uyt3#&-PflGZ!%y5(FglWMV0j#j=5}t&OLK9jwtKzUG2eyat3n7~-+^@xOQ- z@gq6TMJvbo*f4VWG&t-Al_$~{jD$h!A^y91;Jk9l)LRuV84K{477^3EpSk=UW$_Ro zlZ_XbOsy6G2OrdIA5+s;6C%?(`&XXf(J#zq$bnHl{7dM zSj%3pKv2}Z&yieRyY-1-8oiYkYyCSCnVX1weGj3hep;;UD=*1kNnXiTKjD#Sw;c{A zk{{$tj*dljD1Py~`xb_wTFouw7uD_yZpY)eBj+iDxaCTgPGZ+^W7}`Z3V90$ za3=Wylj{)H6guO38m#cwiN|MN6+cb`e?c+y&6Q|HtdW^ou{FLA+okfp4koL4;*GuC zEW4(AEiQt4aJ#K`y=0vae0zvzP6A208H;#$EA5Pa9gnyJzn4pThK?~nM13eIyHU0B zp^I)-lR@v3fAZmrj=72m#c!d`x!^PHoT5GX1gA0Dw71!fW0gPTvec)?XQvw2mmON2 z4R8MKE}nOL#hd52m{iFn;5uI9s)lfogoko{!G5YV%<`a8&m~BJN=qC|o7!QzM%ZXJ zMUjbC2+wD%)NhsBy??FF9_Y5w{EMdW<60>nloE%)PX=k@UCQH`FT~_}2`Vn#Wvu#) zu`hzOJGp;7VVn|3atXG?*rCmjGaqwyyen`IwjOL%yN<&F&mWf!8G88y4qW*%FPI}Q zJ|^2!IwV{WkHZ9w+OPtn^m&r^M|?7KouljYL}$D38rOMDq$R4LndA|O4=REb;M~Qx zydyF-T}YNHMr-u5?=qn`JD;;CE+~jq8-^3V*95xkgBI$y#TwPuYl4s2H4nr+W`4-+ zcCZ??O7rdsQKk}T*TI%-l)$bL!i(@pF{g_qv7Sw4$1^bZWg*jtYS?DmYmmqryjLpn zba%yH+O@P-BgyeHKsSt)4F=q!V!qvOrdN8S*yl2EV$gqjX@CKke|C57qo=nj^_>!< z;C(9H+-w^#e>a3tU}$-Ks<#pfYp&}d3~sxnSz=4w#qR^s)p{Kbtx`&-kK0_=!&zO9 z8_r>^gg=Ulp>v%(?ohyZClf&PebXBVk4KFjc-CHzecRP>kvUv~kxi~{h(BR%){Ya) z#@K|tY#~CeZ|Dma6r)7 zbHoPZf}(p`0S>cq2W!+j1p?)nOr z#D%QhIhG}4>&X9v|J_C z^h10Mymw<1pe2l!m~0S~-?_(>L#0j*<9rbI8*j-yRdXl<(OzRh)zKsp<8vq1_wdM> z(FvmDFyn@c&OSAg{hKsPL*c%m>AMTrDDhA!K1MLJ>dR1VR+yNckKItK8O)k4+-(E# zF&w?!rflpAa!+9Xo$Y;&VQC^h!{$^xuUs(e`&4osACk`)&x1oAzmgMa3-C|lIqy|_ z01*?&Ev)%+e(8j_S+}%0cm?sMlChb8yep$z>)mWtYQkH2-So;%JOIs1evPVr>&d;m z=Z!VO>WP0e|u+qZsrjpI=rH* z07B;_hv+!X3R?b0x5ZsJs`HD+dJx%NuHSLDp9E-4^ZEuWA$)?j zUPjN`x!y9ZcNY_9Lh()0@Fv=*aPtS-jdBlIdL=@xVZ@*L)W+^F&(Fu8nsaqMPuLWE zhRX`9rb6^E%#y2F4v!b{4X^A{Rp*v?N*mgwa$CqWBFwxA-Xyo*HY=R&W_L~ocEdjD zJz-ezifj_KbR_jpe8Mm<9iYnizj8)e58rjxLoQNgLzrQuaDL`o(q`~fbN-_UI@sea zTwi2vUEZpYvp2*S>)IL9HQ|yn=N*!3R6&F;##eav>Nd*=uq@$VR}N$c%;peEhhsy5 zo4c9s$c=fe#gDFtUrc#khm+>*wYdUQnj((&mznROaJBjcaw_p|NWSnH!@lX>?Nzsr z$L|bI&9<}rx_kf{0$@$iB!hM4Ww{P_I6mv0ttL5{fCAYAFq7a7mCWq-N%Z0tFJBqf zJP445!vR~UAR@ge@f-s?31hdeI zxYIs$77ne8GX`by!FVq7BYG)_k+ogFAcsDoZ#QaVhXpANfm*$upT}g?3Z->ceH`9D`I0+p;Z+)s$t#kLXm#FkzWumfR9=<- zp?O6%trUq%;mgnFM5Y2B=Q+pQyKH#`+4EQkR}+uoY+4pZU>={^Lo#S26IHz|50(5# ztEG-`u9sw8J^ixa9qU%nshuXz6|{3>mMALdb4zip`K#D`8Fn4ydApiGe%KIvIf|0P zKGAV!*=M2>;a-<>;~l{YlZrdP)f#TSc7!8ayG?=*-r1kj;{uCybyrcgmt5%?v1@F* zyQmkD$yr-BT23rnFn?P8hx=$B3)*1beC==SF^su*Y9vpE8)UnlW6lK?W0dD4Nk!+- zISnNgeQ3C6-lJp5eQs^=(0~$POdNdiATL+=z$6|rn!VPAy(6AYw!(xAUI7YN%i*cO zSzEa+C!8$9m(yDw;=`DFgk`7VbFCep1EtSB&z!+s2y04dxb9Z~VVr}wOg(8*xnGyJ zVJwUe!hG;RZOhvr&%Q+F(PdxqyeySk9=J2FT1moZuMutSt=E`S`oG`Jj`99UmEb|2(zY$Kz*$2&*fjtded5U%=c(-V9Xo?8Ns z4rE3wu~kKjCAh}>jLH#N%!SuW(flTRw+rFO!5kFAkU0oeOvVVS_s3Z#M&$taUXwZu zhD`RW^L4~RY`hGm4m9cZR#!rY>P4-5zpIoBAez+V1t6^E&F+F{mo$@AkO|V zIK#a;`6LaDBwLAWTAf*Gi2pNgOu@?BwP|N!;f_={CM} zo&({E^wNSUn5@Hfx!M=pdCt5pgR@?J??-2AS*TTdwZ?8_YmpKUv+lsGs5fxK-8x}+ z9HGiWLP(&79f1%?LI@#1H^LPTBmoi#p}Pd`_$~Y-)hl=1aI0RU-k_Q_ChItJpWo@Q z9bv~`7w?Rfd+oEC75vxW>a9OD?0=R~vJ9N96CBEiy9 zw1MCC`Lut>wt7Ip6PVweg&y9nfv4@1{T)zrt+qS!UO9dPy;~uz z>{}ab?%XFBQkBkeK^bWXgo97Hv9Ob9@7=hH_0xSOv6bp(p8nP2O_F77*gsS13ShUYsFZ zMiw0joYB8p>iaX%(upnb@iLDHmtF_l<|7TL&rdLv$_w&Na<(YmJ^l#Y<|foQTr$IX z7Df4l5LuBfSZhrddSa7wxxS8E@~q&Bw+#m(Aq=<$o8a0}Q$5b41s>*ZjOH*~Xq#$qPyEa~*3t z-H*YdT>kuBSc%ZkeOaImP#QE}@XbPi0k**V3RV_NPe#2FDdR}F$4Hzw?p+Sin*{!| z-I228%Qqm(_70)(*JBwHg7kb6H@^Dps`S0ROM;ntei3?VYFo z9JxZ)ygc4VOGGWFHlF)g5Fv|v4KFTz<&A3i`}HaMk*l8mycZ8KPM8BI<_4p(55$|J z>D0=1z=Myh%#j(()dL+kU~r#yLAPT{T0#oygSHV!(;R zVOihW{+fhSAxH?wel?`pDHkWb*GH!U56%vf(v`<4`9$Cr2%wp+K&Revh>mDI5E(FH> zJcc{dOIa9spB~>V6v}J!*9VULJS>wh-kgrZ9T4hzc#!92v4by(*x>)BBK3GHI0(J) zFJVBhL+@4hpYbLw$itF+w~FAflz*}hklQmja6PNPxnd#e6x>sDV|v5)!;AK7V+piV zSot>jm&~`(2dOmZsRXgwpd+thi6{T;Ilo9TBpU-e$Fd|a$A`EDs53p~nQXRm+!@C7 zA#G8m0#2`s`fYwJD6l1l_t7%i{fqAZO&-Tn;Ve2>N2DXbi%l{+@svL$w@s?Ax6)>1 zM(7~q@Z602=W`4bDd?NYpBM2en5kJ?G0dZ%{5OC$ z{0FX6&w?_}qGtuWXM{-1Uv5~T=P#QS_KoD>=yqE6`TBYR+!a2vO&7xt3F$xr6X#g3 z;nn%Je)^V-h2r1ZEDD+zKrUUpFBOkGB3KpyBNu-p!5N=>tEY%{1%`e-ti14~>=BqW z=EL=O_I8+;Q-mEu`+h^%a08F)eU|D zTd?3JsIz|UgBrwdqJ}Nsr>d5+Wkm% z79tjryB6+t(4T9_{E4qyUrPZ>v#bMO*5Lt@5@go66ZAX}GG(7*hc3*|1@}`~kO(S84 zytp1ITw;-3L;iaB{F@JmSs+aNn>g_Lh`Cw;(%LCJ=5P~p48joWipzn_*)#G(N|@hG zjmOuwj&jJpz9=o_(usLfVEyni9{C`^F#(++C(sSyGZuTb=fZ4pGV&gWt+rLKmbT0( zR}0?d`r%dMo@F{14esFcX70Wh3&wcE9^pwhJP;~I8TN$#V!yD`Iv)4gJ2_xZAYC5a z5e9@zg{j5io8iic$Z`=e57alumYdOgjBlf?{n+CIA-bd2H*W~u$*>K`*7bV|6N(YM z0@+dVUN7%6gi1T)3FtSF|L3zG}v z5_UX?Uhp|7k?n$uU_`Ffe4-eC2=mX#JAUNjJ6d7Rjy zmc%%6@n&ZF3YIt+&eUh)C4TciZ!I_C(~k~(ag3~tRR+J5!F z6{g6`n9IC9{o9zC(_+UQeR&ZdQ!>YtZHD}2*boQfE3o7<`R8u3SJ`7J)-Y0zc5t+S zRUG+sHTjcrJ019R#C4Cg%5w{vJtg}l{+^FX8E-(+uq@&*V1pIs<`FIUFI<>hD+Zys z4FPkcT!}ReAGs%@^A0ES1XR(jOQxbx-{eOREz#QcUq?S^#~&({)--F8Z}jpCVqu%0%9 zZPNKwu4R%j(d81FYV^%M!gjYux;@-XMEyy)sK|%$#0xQj=1bVxjtDO#ZJ<^Q-RAa^(z$cq3z5{N+ z!lnJ2CCtf?X@36A3Pe91#}iDueqUp#t|b3c$+VBh@m+r`RAiJ%44xS*3Ubfe1?_tk zG7UWxIyq&#mknhlqhv+yI?Y#|(_gReG?<&ZO6u;6nEW6YUst1)gbe2jK_dq1lj+kLjp#`l7yJu*O2>^ZQ-d!?kdAM;$op%7VChi+0?zqhZM$cA$NHabFDCP`j<_Bh~<2!N@9| z7B;rj{J7mAQ*Dpq`&94bn`5U6OAMX2bl$&wo)c;l<}@`wIC0o{4ec;dQ5mNe)>Jr( zlgA@@t-IuJ<9ZZBnpSh*`KDYXd*Ng9J{S<*vv^icxza?Unvus+ML6LzN4?`kZ}MwV zr%GvSE5b6(;}SUwgURV%uTqo~XeYp3aS;=StABdBS+oVVgHgsgj%UbL)e=4ERyyK{ zvvrHiTl@Rm`N}2l9~>5=@c9uK>{X29POnk)!tx>E?ne!4z*l-tJgY<7{_F>3!_F;( zu5Wbs+9-i1mSPR&LHWu*tNk1vhre8RFGO?m{Cf7%ob5&Pr{^8sMXbfZpyz#vS1=Z& zbN5*!9C#IewFVE*p|t^jcx91mt&S21`1`AR{Pgfjd&}`~|BW7gIQz+|#T*OhZF6pc z*VIqqnGyHS_bmdRzGOhRTAzXM`qeN|a>|C3$9_^^42DvTJZhi!0`nq=YFk9N^j-NH+6ZOU6)hzg1f-MZ*b0~UOtFRgombC(B?R7);FX}6> zNH{kK>KfyL(9~2<&3h^~xZ!2{RvcdDFyacmU0ao)k83!<%bi-dnsDCM6E*nz@ zuxZQ=SgZa6YzhW|%5}tZ*$iX};51aSh63_IC);jc;{G<})ge1f+P#SSOF~FeDTd!B za{-(k_l)W51(Jty*>P6J9&HYq2HLkCXoB-^pvbt@r-*{^-E+mB1iCks*nZX1DA55j zkteHv0?70PISP4e99R;#R6NaHC^PZvf5*dY7k$_ItA3g6$H*jWbK(iS=|h$e)EL zAW(CBe&1t3Dt<7f#ivBR9IglPH`5!O+B7Qee9AMBEEQZ4J;Vk!uQjcBu3Pw|-A)N| zk)ubv(X4uV;!G_6N@x;1@pYR3U9>?_H0D-L?lw4`UVfVsXd}3a02C`G5;0 z0MB?r$v69=YZbH01p~=W+z}im?cT4m0MEG+JtM@qB9yxmdCYF&in77Thy8H|N8&v} zMLeQ)zXDGd8S>w3-`YVKhwBMQV)=OwAgn$>f<*ImYQFfk$ZyGmle|Tp6_${fR?${K zb%b|&SxOf2;6Ndxdvuw1&68$u`g^B@RJ$YVnavfDaHWx91?H_&X?=CoklHMi#NBOTsAjwWu|qlNs*7V#L<;&93G6c^=hPGOPnY|bj@o^CgGpJYkiwpd%a4RJN`OSG0bn zFV+j9<52b_ar%&>uml0hanDJM9Fy3iYX>Vm0H4=Qg%zs8BCN!ejV2p%0XubYw~N<6 zxz+F}=guD2pzxT2KsK&wz~c6ky>F4JjSS(=B~nR%&`CVrj&4jO6NR@9YNtzloS)on z?tI#+EQoB&3}DyPB|mOtwE;hMk7(i%bb-^tX28T;KQ_^}i3xU~*Ovpz=kSx=V?Ml^ zqdtB2804$8o-N;#-FAxlQNrZr9kC!m1|WE6rQ>Z@SxGP3JhT;M`6suS^5ekINcZJug0fZab$V@qnzUO_{oe-|J?)9(8MmVxdCF1l=9x>_ z#-jx2bYQ=j)Hbj~{QS*${r~K5BoFy`<}&5L*%0EgnK+IV(2U1*VO1WDZ{C`A(ydy1G9p;IUu0tU69%wtY2kcap_wd z0piKafu@56twR_xfm=`zzXw|Z!Upi=by*Qn>Yb5z)R=C@q#PE%1{c)N5eJab`vII;P>J`88g zWDdRPC&CLgcqX@DDWZ!_CN`+jz3D%LSi< z@I4;op8R|bvGe|b#(chHZ>t+0A`Cl*EkK>J>YTV;T3eQuPX&B36A?IvdL4&_a(6fD za%+^Pg+Ve3`@UW&D-%5hN_yo zC2w;jrZ}DAQ|@?RBAagGflqxo7Q(EwX?6%ng#FA2QR5c!T3Zj`40eYldotUt2^E2Umr|!%k@~`8!g0s$X<8N2i&@!QK+e3;r&c|#kum`j^@#uS2v{OJuUFT z$Xi8tTcF<1+j}vMD$72X|=pCvI6R@`IP`%lyG_-5^4X0n)rE_%ReB7b~WJMp8zy8`5Y!t?r#Tw7{e;j0R@ z%XFJ0aN^!CJ{m*-y*B^!2O;f z7=oOA?TSR~45oc~(@Q&m>sm6OdWs_GF*C}ZW~CzICdr&E+Y2+;7V z1@u;L>5J{gm(Gh%Kz3HkEijuC6-I;WPmwxrjgft^8o`x(S4B zbCwD6Z|=zVLj+Q<&9qSmUgWgEFkr({zE8>H2E4tfUcybx;8f&k+>C_6huX1Dp2jFy+yikWzJVmeT=nt;sz8CZ5UQYnk}bNc4SwG0wzQR^ouVGGC( zL8vycVfCTH1|A;k#3@8zM+@=N;DBG7G7!^=Q^m>D2{;7&MZnM#c$P!{+2bu`JgbFarut3K zMp6y(BG%hVrCA<8<#v`|U(p?Gc?ZuvBAJ!XXvV5s)vea(zD`NwmRrKI+sun$rXHCK zjKn{2+iZN~h3>S6dUUFc55vpL1nK7UMvW5i*BZjNM27c08_J0-#G^ro8G#!L6e2Ey z;Sn{WdfD?-fhPm@w3Z9w_<^1cM8(d(0X5u??=~JpTv~WX`{-X*PvlX>QP^sWEfwSt863iSupi_qfRS+x~fA0zS-oD8S< ziee-{Yx>OWc>|F?X#T_*>ckx19sv+>{t!n>IRhygP?luKl->5-vh`L_Fhe@verq2*daLHD>HfNt=jW@GIoLl>71MC zETDybcp*P#=-W;zhbgwXcsluPKi7{r=^?JF!17oQYs6zC&q*auf2bKhZ>BTfv-(5% z6Q|9G=KJIE1OymuQCT-$F)5!&m1k1y`a>zi?PLIDA^^Pv>7_09uuJ2SjBzJ1_Gx>- zy|oQUi^-m`K8ahbTZNj~FPAqUDrV6F?{ie=F`x3xu0nby<@fEM;Hj$W08T!(?vX-GvB@nyB)ne@E*aJd3pwa z=#bhCDG2DT>UXVqS$mYW%&4Ar^J6;AeWbhOC%MexGR2z7T`;nGf}9|Lmx-{*Y*$8D z0fBB|<|ay13ob_7m^rjNAp(fPj6I(D?4aPaQAq*g<=*f2Pj<^H1q`D?_7pk=_ zG|F*;ADA0f9`dESE9!G*Hb%F7AU&iSoD&c)9*y{;1Amm1A61>kcaR)c2T1vN)czd! zmfEl>M?*yUTi?(S=Nni|T-d{9`k6B4ufF(-JRrn{a^J?OFdh~oPLO-K(3smF1&1w{j!i z`mJ)p+@hf@sip}@+~E|UP0(zIk6-m^qnJCJ9vO&|uDfYF@)_a1F){Rc$7`h&Bag4*Q4hUv}ZX8&vM;fZoLs(Fdzh@)svtVL`%9{K> zQjRRQqnXlYbj{w`NYIvY9iH(*>kINuNNNU-n|2g7uY*FFK}R5fXaCfJ>gXXa)Il!r z`_iLzTMHf{%z@OdAVJcy1Led&~uB!U)>fQHJ|ZN1J$nLIHE~2iye``-{6! zY==RCTO*q1LZ*>xB4_jfoU5z>7v(*UEm)dxZG0Yy7D6o%qyv0oT;bZVA~KbqQ7-@d z?kW9w@Ka?=5>D{bM#A)ajn9Ss3f4I9uK&&QgY;{6du)IF#NQ&m zHSr~pFX%we(ZwF+@cA5nUz65U+F^HPx+ED!UW;6opW4Mdt&;PTYRFQ<>IM8i z1a^*n@2it-(3^V#qB@SKxEo}(0H>PaT#FI>Bf{6P2T7Eqh0J)7p3!tMAI!KcY%I_h zlkS!U{=}agT6lhPz@Nwp6zuQyC7%tO#Ur<$@E^3|##T5Y1aY!8VDo}V(VsmQ*J^_K zDXsk%b*-Ya%2+F$wNt0UGiVQM<{awpWjaNsFX&hO?RoA>Wsb*S4nLN94jpHm@$vB< zhalH#8k-|f(2cr;xnC=D1TIrAVRZ|eJA`(|P{4@5dm$fl97Q$O_q%jleb(*~TgkMU z*_-8*gF1Em3GZ}1wxf?UvRU-GqdS-3-`M@nPZvW(RMwXld&k_*y+f?N+Ny!NxH-s` zhXRx=6jb8O^G2cepM^=ODQ+rYMMj|3hP%d}wa3%-#OR**7p6jWw?2Y??^B3eQa|A`fpq4{x=+Ki-Ht z7PpMsx*ueTdmVGwBX>)#mMWw+$Xbb3P$~i+UbIVK{(tB1#r_0+BG%$_&BA!*(mt{V zG?z(PNEBH8l99&)Zi#O%qCNOZqc(t$>vl_LemYxgHTD53i` zfMFf-Pdekau8UE(=6A=*Tw-x>XJ{eRIofi>eO}Sic7s6J@J5oRuLI0*eCr8bQgJB!tBibOtS4YLyHDyyp)+849R8rxjH%bH+KFla%un=*9twRRAc*q zbUG`!@?8MI#kjn^Vo+UBeRnofTc=#2>;!|LkAlf}=`J(Mp#Ac*kr7&LzVq=9s;EmG zhS04{7|>`p_4*FV(&P%g@i)#C{qO)J4X+H%Fyfli0Fla+CvIR^zNa@uK-7c*|9yO( zzImN;YJbo00asiEeN73Ug4lJ75BE`aJ8=!qmqNwQkOmhleomUP*YM5F+AlAi^m-Y% zb$1@zz0!xr$w8Bx+UGxd3;`r8YUcLEZ>A*%Q9_2?@y)7X&X|vlAjRmJlDJ>ry6%Sy zjlHU0H2rmMM*4ORz9#xlWvYq$4>W{_-qaLi-^R>;r2h;nPoG+NIW`+zBr^@S0Ov|% z)$yW%y?{sd6(*^T0}Fx*k%U2hWJVf7tzM^+#J*^ha%g4+L0$sKk&*um9}Q_d#*%Oy zi3N7SjVKgYYcyVrbrc^XAJJC>X1d72bYlA96TCF~+W~$|NV^wi;Kp)<PP!v7tk3r~Ekr(Z5g@0*#=JvnpdFMS`5}Enicg+8D>BMKMT&lV zt0F6pBBWOzAB!Wyy(+Fb^>ZFV((T6q!G9XntFqant*i?*%8`nC@gFC`59$rqFxrNA z!7A}#6=d$+foN(A^QN0hyNP7K%e4tlEhnAY z=N*)(mx_%V^h9YELd1^!T)d-1W#seZs3Dzpw*%jG8lutT&noyc3xe< zrf)j6gs?CS1F#ra|0w>z+aWON%b74ay36$1LGM4G@nRLOexPEWYz6G znBcLM?}|Bp-;rwG4mI(U+j{OOpjfPj=C--5Q*d&g@9Ci0(2rrg8pfAxoFXre0oC~l z0YU2@s$#M)U4TvEnbs4qwA1MhZ*W3kz$o$12f9>ehVT!v*C4^+#_m3{Jd7N|M#JgV z!YS&w4X~GqrzK>Zv3eSS18iXP8hLuGD{zz2_E2nrBW{qb*Md!iTN}|^!mEY%4Eb+G zIS`MywU7w=ildo!`+E1F0D?mrN+cKRiDy{!6USf<;{YWksI?g0hF1iidYXZ%;z%6L z)!uea+bd7AW71jV7RBm`c-|-vug$vmN=e%Lwkct2}0!^*Bf3CiWW2I=bJFX0{tB_ zEm6zqXZU_$B-JFu!RjtAhBSB*%tRCh^kq)+NJBCLc{@A7Dg!*6^*wP##(_QqbCLt@ zug!e3U$5)A@VvjuH9NCp8OeBp^TI+ARuFI0D3}tvyZW97My}5&U8-RIs`iwV{Fqup zjUm)yJP*(4XCZWJ&*u1If&3V})+kG)5?)sg<^`xzx`#UL0}@r^OusCQCJFbeGSneE zWeIjZP8vrjej!5Z^?&y&$HEhnf$uoZHvpdR1g( zBmzRMz8U5b?gu(|l(TF=*s^bmSj*8v?5|FlIn~}dLF@u8*#r19+JMB8aUT`Mpx=J> za;Wsq#+P$eQJ(;uilA1=$fMCnM26xK11t0|gxNl0fEiPE(LnT3ildUg|0^h0u|BxS ze@A{N`~YeUgY@)w{h10qZu8BzJ%dl(8NhUpq{%!s(QdTmPKsror7;<`EgXIQ7Kndc zJdDYIlfS#os2(qk53f7pbA&1y8WP8~_J*(sbp4;gqxT&D=})lC|5Hx}*TtXy^bdbG zy8f5{QWc4JSOYf-yLbM zuj;qUIZA#js!NpCaC-QyBlqV&+SmT^Uw`@5-%X*(*7h&|jr*Vf`cmUxKmQlMeue+# zE0bS77k>F%{N?lMFQ3nT{rnHFD*f^mj{RT%_^$u)Z}S>a*>vphSNmIX?k>Nbe?z|Z z_vHNL{r?<({TuMd=UlEX@-Oy}Fa5`VrO)D3HE_~y3it$PY52bssJdUxZ|C|q zSRDWI&A*yq|FfSzzqQ4W^YrKmi`GAVuid!b39{Xe#XU8C~<%Fg#AZ9#?pVs==`7l{Q3RY|K(Ty(V_eQlis%A z>-^Q*Hh!{C=&wN^{Cn}Xm2GJKm$ti~}^cuBRVnW`Y#L z>&f~VJk4ylib924`N)bI$a!~`=@I9&=R9!1VMb z&E=GJ^(5W51Goi*P4qp!vsVwTsu_CzTA(h!y;k$G$$*fnQ)reaC(=DiGrz#=i`$7M z-{9sj?WO9hreK!0P@AGZ-mKC&N#@qv6y%%`wI*wV>KdThAA6fqtsXJH)nyb`RiW*! za(sr^a-^B&OuCWJDrtr;rr|CHFdFE*!4c)O1Fz(qgw0!AE-5^HDVxVRMAGeeL;8;w zhf<+{cdE{*H^O?-C7>eISf8s#INrqavjl#2({x@KHc)bQqydhc-6k-@U6$Q&0@pxE zWmv4WfeGx>h5^uaUp@MgV$BTA~xkQI~j%Y14dhZjApvpVA z^kd-Rn59pkZ;LblR@OlCP(!v2F(i-6AOUK-_0f0=p4q(K2o&#Fh{P1kCG+m=lwHe# z+qL&m!NRQ#vzHng&Lf%u^Kpc)E4u8IgWcq6MLZMr_})6@vu0uBP#Wt=t5>+U-{?c- zd(dw;2ZkSo{D=5RukmJiCw-`rpye6e(S_~6J>aq;i(acWs$g4(`24Mt1|1BqLjXb4 z=veyMsSQ)Y70MMV;d8J<3+2}H0zvFW3ZUcyuExndJU%bzY*?dl>)n+fNH4=kpR7Pt zD{hx?#pum^y$D3>p4@~e-6MB>%WWB5X>elaIT{oRH=2Q{<2_#J*$3dkivLSY=g-$6b6HAE8h_ zt~;DRwmU+QebJU6nXQ-1hGC+7dEwkk-boQ=aAO5HkJ^K`sFY$|@i|KAz3s1tE(#y} z-SS~t?A~%u79YBsQ7vh_1Ro!

U_Yjy0Q=Z?nrC(2i=pX>79x zTVXkv zE*3_Myi$)hniiH|iAMfv0p}>2Bu7_my$0`*a1Uq)ZgWhbyr=uZdMb{^BwTX$j}6ITnwn+Q14S zmMY?)c-;&ieg~uLP%J91k5`d`}y1tBsR((PkK$UQAeBHY+^4gvz zw6C%7avfdc>j@api?s6hgjm0Lmay+8F7W5QAZ*r~swg4T-5oK82T%GrY4IOAkOn&= z_s!e8FyDC8cNkYU>nR{ z!TGk>&s`E|&11p8)CKqr_5B`hl)B5sK6x2Wz`$c{48*N>Pkxo;F?<-eFou#w{-u+s zZkWJRH>K;zY_N`Y2f}?cver zS;;<+cg0zPkk-G$|2)2(Jsd9|^Yo3&WtmCc?1+82ad6qgGnbGD`P;0FTLG5AY${|R zuloLGQgYa=ZlSyNP)DdJALQ&?8vtS8u%-B$zQ;NVLII?3@lYsZ7LR7Vb73M z;Ixsx?&iWVEtm!unS(7=3by1^VZ%yqQM|@s@B%C|y(RnjVy}VJgfhqOKzNF(H$N;R>b|%D|7OFXE(UuwUCcYzHF_tDKNHf`a=e%AVaQtckh z{T3-@I>CUyFlXD9F$D%k08NXmPYm%C9((J{3N`gsSoA86^(cWpp7ijXu=of{%T~Fx!U&K!qqZU)C z9%xebyoWvkGEJer296$jPlzR*XBZ@Q?FVX8G16@$L04H|-U^;E_*-C0yVja`7~<8; zD-tx{6IPVxSbO2;x0KHvFG%xUtds^kdRT2!Z_eXA?h{i7-AmN=X9akUl3)~>=d>p! zwIDpbCS2|xFm%KNQ^M5qp@WEVv$-bpFxH%yfifM98_$sUXF<%ttBS99w(rB(1jZVI z*9H6v#uLDPG}7FP+a9Fl^s;>Hs^hXS*n0u@Gu$mwDn##?_*Ge^uq){E*&FICm4lqp z08f7Dh8Uw?fWqvoe%$;H;SjV?w1R~p%W7P_SWS3o~q;(m7EUFY6;HN z!x1?K?(4$nTZ^)&*~7jEM0*6(HA07mhr;Tr6l>7v>J8alf`12mJD_2HD$;0oL*1aK z;BdUwjvp-KQ)80<3#7^x1OD0(>sZ7#lB66tTdS23z!YUOi@X-kN9}x1oMq3_)y-A%uB!eJSjN1|B^zCk>ir|5& zDU~r)_b;GxTMbL}hD9uN{B1OU3(0QSPbOz<(+z5g(q%?Z;=e6Hy>M8 z#?dOk!yn~G3z6J8M2+O1*Q7mO43Ioq7%8XFZH!+})H}lY{CQ@Zw}wH9SBU_aGal>E zu!EE@T#ThA>~`V#{MI3eV9&yAwRtbQ7Yl;I^&rKfkn8Y?TAG%6y5a=8EBKt(a!FU#`ooE56~`gjU5;%XO=?G#&}mND|!2q<6k)VP7xRO1qWxb$H#cLD|$h%LAusOWuy6A4eK1#qY&K z*jxS$x>6ez_0lz+ASz$*>+8R>vj19G#2+w>N1<+5C9bBvv!OFOBz?R$0yI|EMxT#TSm@5!%+YS077lCC&o zQg^deP(&?b?U=-11n1twfPj6z#fWOcdo>le6e6*g)pV7-jRQ%#2>hg#e=^pn{7g%{^G2Z9#ym9vxef^tdIA?_-a5 zo<34f)#w=D_y6DGYX{Es@z5__!(UI;{2JA|WYI0R*l!f&@2)Sk`S<=c;r!gZ7P?~W z?WcMc?E7aH@m2$4(2Li+kF@UWH=E^Sxy4Z(-XNhX_%F-4K77}t|NO7jGRzxKw=!$< z+r5`x70X$R%fG)C)A})NQP$^Jo8OC}KlT&+8g0Gou8*aaFJ^BKm+>{j_x)GJVgIo9 z{TE`pW}fR_2y7I6)76l{ty7t+Uq@K|X0MBhd0-!qZYR;lTZN*Q6j?x-0*L5qm<>IYl5J`Z?+@{KG5F5K7&jI~#do5_LC`H0311=cA7g7vvfKm~p^%-OddXRv0 zxhav>r^jhRJ4tHh(Nj4-$X{bA!llmiH;;p|FW8%n^+jA(XSU&>2Ppa73{t4coH!N; z+JNC*GGQ!*=9oc5e5p~yuyoz`J58`wxelDOKoH5^fSODj8KB00n^e?Pk9=>jQ}7wU z7P+{(vGpO~I)F)g2|@{Glnu~8!Mf%;sPrDwP=3>L_Kb`2=3iTFsSw5zX-EqlsumPH z>uVY(45*<2USX}55lA6r4_$X=_WYU9Hj?)ZeSqu6duc{i_e4 zHU*@1Qj_hmC;B!-Jrl7286)V=sse<8YUY)#*yO3mZ@B4dj9$uAk2xS1mH|zhcY!yrO&mj2{Xs?}IfLWj} z-=H?Mo~kac3{hKHItS@jcr%CpW8}?Lj(a)-D+O>AdYZ-`!<_yt?L6m92eu zpxaa{5J{-f1w84GB*C7Ps)x1yJ)Q)vJ^%e{|9R&HJkj;yL!PRd!ila{j&RN2jrut) zDI2i%(8viDXHjjP>fm?Y9=jcU!Dcs_o6v=F zmZ!4{QXbYr6!)>doNr{}9Rm-EcH~t#5PwlxfF#BI^=Is`LrmBhZb}$ROy(1;4K@RT z%MgJP?XUK6rF{1*bzjQuXnnbcrxV>5!3qUXl~A5qinUm_<*3!>GWDce0EV;{p-4|= zYcV2TS`Tjhl6pMwj#q~UZ<7TK|?i*D2Pf;-==9JvMQ<#?H8kPOR81aKA9%n!y zg$Oub!GfIlmT3>@t4REOn{Zzf7V>)k* z#{%OzF)+wGCZ*iK%w68;*dEccysnvu_=~yH@CxZYJ=`A&xlkmx>GoC17v>oBYj<{> zSOQSrUYU+{)Q^kt{Av!z3S(h+>Y1*y)~?~iyo#KHUbKcO{q(Yea)#bqxzbOXwg$=E za}!=usSZjCs`IXx_`)rll9BaT~vwKmbf%vhwe5% z*RRy`;euU2NQ3j%UJ%ZlbiiTWCN3jKT&)S_J3H1O+UW+HD|oXI!abqyhOd6q=FWyV zRy|0`sic0NXYPSo2e+a(aXa~WGl4%0^nQAH0~tRx6u=scB%!A!4L|(c;B}V|i~eP> z8^qjAQ)Gsac6$7RFC2ga@SoBsFW&KW_nqB8xNbkKSYYJF`%Xs=lAV=HD`7%f2sT7^ z!5du4~$$jb53UIn+)YD)QD)kZU^GOdXQO(;W%QuB#;N|l~z%_l`i6Z zcOGORt9)CTK8;n7F=}~EnCiAHrj?1#&NeRv##&!5<{fG<2c|q3R1%q8V!9QeEqSch z{1GRNTVU&*?+L#^9z%m06u7@4L*iv&L^n)OgADAkKmj!wp&|Vg*RPgd9W8#2H|w0W zMZ+IR z4Zup^h$U!%?EBK8Zos3(gTR{$eQuw3`<~VS;6+t{tdx(0n?vuz_{EZTt8Rv(c!+U| zk;%rwodurkn!9~>=VwqM^>hM!DZUeNe!Lk3lY<_BTOnIP;g~aUxzXW#gywSV$w`0- z<9+^aCe$_)_P?DAcl7IP_^(tO+d7i3w|obS`9VQD^9DJC@F^x-!oj7#Z0Y_#t!C<` z&rehh(`wnV0a2-eDpT??`{P?{7&0{X!llkge-B@II{V zXPsuT2)^rxRXZM7lkW1B!j$nsg>3$8E^6tBC?)&Su zxoa4z2^^|mhP$m?>&TB8tQ{mX@$MiDJg~Q7h@Ih#VFph;{~&@?&<61zWw8vuiRTG3 z{dWl6`EE}>eWcy-Kd+NTR~8ea5g&|!Neejn@?601_z25sHI)H!mO*Sh4n72ch)^CO zynyhxs6T5tM0;A z!)u4kXb?!g^}urG-)5t=dW1E(W?w$hVZHpRcX6Y^Vho;US1tH1N>6(%P4k;MU!rNK zy*`L`#%`(8Oo(Ld>+^PTn+D;&EuCc9uG-OPsQ>6}OrzCeyRauQ| zyL`RLAv1+I3)L_Mc)+w76me`xFW8fX^$0cv&%TiF^UNRak{pTsCKv|cQRR+2RV_8h z#%d`RQZ?7hS=Yi%Q7vf?rRQylOjqB5Y5$$ugDe!2)-Zt&;&*?jtVcXcN#`$nt6M-> z3uHujYssny+WWf)?~|yd43|6U1xjqen>m`3FTQ#3CeB6V7M*|Rzr29#EnNp_m$RsZk3gOC!0-iv`VPQTOX1*iHhGFcOb4W>g}~ ze%Esj8p|7;QbY-63FW!I)ZZ<#Ocqkup8^Nd_jYreR6yoeH$gZfI8ayYP0^h)SVUpD`My`{w44fah<&KWnlYLoVyx?) z6k4fHtGy_5-|EG{LXH>3roT&P2dYi}6IfEn?RE=c@2`NJLiYyena2cF8&Q&9+ZE!- zM;&Car~wFrHqum?PXrK!ws5@w3rHA^@(1_*!l=3R{GSHHA5o`)sLCZO%C`4`m^ zr+EKUZ^*Wq3)_3>fmZ~3n|GOFT|)z_0{FaVc&;1|wlgP?0+zr2j3!Q?*#i3v_XNs$ zAKE|N{-EZ2 z75(Bjn|V1W{6pC8u(;tp8GUfIHUn|LX2jE-K|4Eak#Do7p?&fahD72(mpg|~1t zgO>H<&0xH{hdCK$wOG4y6++3^-|R)tXK_9{pnx=sDf^M?Z4tO!{%lj>lrb6_QRI={ z2H(9lf$Sb1lGNRHM=(9YtdIGqGbLC!1Y@nFKGaNVI$xwuT*{AAikf4m<^lN=m}=*3 zXoHc{zt-K|9V9d)OQay4%u~z`F1XIK>)cX+#NrG|4h6Z+S-XDFO;X-c^gbeaxL~qu zEbe>AcRIiyJuGdp*Xa1_N(si>N6>wLz__JGezQcb<{!yqI_+=o32aP2+3(ayqYObLN!(o&JZfnswFI0bMm5sRc*H@q$voJsl zN^f%i-1ZQt@Zo^MbZli3$VWNrjSC3p3b}#W=GRkZliR>njrRigndvdtgsX@W1XR(y3r7=;>n2s&oiD2_gE1TXlMl7_p zg;U^^ux^sJ<{MM%)(>7pwmYiIw|U&}j_3ksINQ@tC zCQ5zT1Jg#D@p2K}LApDF*GBm-z~GRi`!ou%}H1@42EgjG&Dj*1*U4?u7Yc7Q!n8y83Mws^YKLl1#Z< zpX<1u#_nCy!w(fZcnosQ3 zxIe&&TW@!f1uvr`Vcqb|^B>^-9bU1KlzcS^auV4vVA)XJk7Z7skZsyX`OH{&9?A=N zu#Fhj!tAq!H{%Xo@(lXda3{aN&(uaJC0U9fXHJuOs7~rHwnCClx>vtGINS63y(^$y znn>ial8RWrdt-7%`YquXkGh>YE9c|RwE0u%w&@=ZvI)GryZ44pmwU zK9R%%b(P#GcfsHj%Fe)~wl|a=Ls;N!i@D2t32*${xj^zb)@Sf8PCB3{74AJ;b3Q@B zy2skJ7dg5Ym&bRYDLUMO-~9vkk#}$q!4rB!R2;xwvvUv(=jXdkrQs7n$*aZl3Jri) zF3I}sd>bQhfECH-<@Uz?)5##k;ANc$>bV@42m3jHcZH>{^pZxrbi!V&H?pINqbp5U zJYUrkEiB^@A zdh4xv>Ur}x_I+RXb)DyN@()}#G&Z^x-$7ut#&jQL@46?tzEq1D_Q#wI*wUIo)ed z))+E~C>S@J6NKG`=q~9XA6r9y^ev+1rf>U^IzZ%dz4hAGb6D!;{iJLR7BxxYRhI`&s|Kb*dGK2^Tbz1-r&4c!k- z!)~kSEfS+8YbkV+U+NgY0Y~Uz zE4I(ct0~$RD-Tge9uA|gFC>W`K@=dT>%OKBvhA1ftp{@c;RMvf1Bo8ARGNObNNcqZ zjzgFK^4n}euFwCo*~I^k=Q-2sWAV_7o%cLeOXyNy4vJo@S{BBPJxAH4x`+q0_MI_G z?S+>Cu1fc~Xn1$2N#mM1S||uJJECbAE{I_m$$I|s%0!?bae)d@-ly}%qH!>z7oK=# z#T<2{Z_zL(1&0QX`Uq;-!mFOlpD)9E=Y}_DylL<8M8Dyu)%Sgxr5s0OjY0|?>RUp+ z&VpZQJT9?VhN|$;E-);^Vn~m#SXOCov1n3O5p-{bBGstY&2+K>)MqNqrpfr@mPC1V z{(s*mSsf1IxZPCe_!nNBVMnXMnEqJ1wPkpCjaP27R>Knzk(k*-3ps&=0@L)^Q2Mmxg zCS)U7$#-ULdcbwg=MzQM(u+FjwkQ9^z{hRpURAFB(%RYKlj9G&PfyoZ^5?Io#wu*( z&kb!dNoc)}h&@_w8bh`iX2(Idrd42KmR=irb=#$A>`zM|H?^&fOW}6pHQk&WyoJ7H ztoHu3GRyW0Vb?Y&Qjz<97H*d;l5bbC&vGf;iY{9LoiNE6i->%hU6B!e&nEGCJ&91h z%DHB^ke-QT%0Zr%p@@}VLe#?ArkBvf| zMD6CM-+2^T+sd|0YcaCxKXfDg<<2(#srdB%-{?dBNqm97{dxcRUdn&`Yj!Qpwa!Oo z+E8_>i!pRc=2p!M>!*3@f<-EJ3ux1J)RQ&3hGVE&%fQ=)op8y~fvR+S7%zGpm(WSk z(2>*bL>QrD%gwsT?iXoDX59Vv`WpH#UAj^m*L)QPZpk;TBBwntf-qj@x))kUlslBU|xd8)`~9Org>Puli4mwCVBUi?Faee@m8JvFn`qt zobPwPobQwA<(VmW4cqOePa}{i8I6r%b2{HFD6T|z4dJog?__6;R`}IgihNhePIx0BxcG^_8R+dlbhvX^R@rO{ET3IF0q zE>e5VDwVDVJG7jyso7nWJVn;@cBGU=$0_^9YTgh-D?5AA7v=~JuyM7vF$?A>r#Nu> z(j&5>TJ05E-+s#O^xV52d@uB4pyLiokD@z&6ohqle3&2$kF(Rk4&KQEWEZ|&5nf*b zaL9c`A3|$2PPCc1FJul1fNMzJ_{L0R>uZvWIcT!i&M(k_X*NU%^QsSWe+S|5xj z&6V62x4wNJ-v+tAFmCpn>w5g8Q=*4uu+g0YvLSQQh+nJGrRj-y>qvjyn{dv4(FaSN zt|05#&FJq)^I(WgV{4y4ak*!iB}OeikkyERedPq__xx#z&h#St6ij5iP+&j751Ch0 zHmPD-Y)wc=9NdnuW7g8kL)ruP6$J5+OqQ}g8Nt1ZlU*k{d=5*yC3(lauXiE9CtQM{ z-E11dc6kiop&=kpAMaoEN7rfC?H=23X*(xvI%6sX66`X2AWCRcu+zD;oTd#xr^7tz z>e}=D^5*9BD=VE64iTOY^heCmetc#{+KBIsUG!~$_dCQR%em{z8C&<~{2iyapZcKuA>VEp4eN{E4v0eKlpl*7db%%IfvRwK! zogk-i2Gy&XNZ>{cZwRu=7=b2?&YqL08v5d8=t+hlupEx(9lV3EdP)j#k$dG3H(*y^ zIULcOJkmVid|2tHZXtYntuH?FH@>rSpNhd8+m7F>j0-G`m@iA*!$qM#!y~?j9v^pW zF%+V-=(*g{ig5=Gmemyo+AG4?0yK!*t;A`&dLYi!JFNY>vBIN~`5xMzex$6%YgM&$ z?QBzKw2se1_SyOS3V%}hTHYajcORqKFjLsV5)Ug($*vaV5sa*| ze)93#Dif-zs^f6(bP&E_4h;-u$n?2;@TBb{NAvAhXGy^F^c@}!^-Yr^yL{-0X7M!S zlIu{scQHTn##uVCohJ48^S2IiUf zN?w*4$sv1(=e*Y&vIs4q`1w5=OtFg`odeG*YMOhx%&W8T6r(%WmLm-P#Ix9*wvS>v z^(Ih3pNNH)n_yD48t#Qy$N^M5-V;Ey#%U;ho3k+f`q<2TEY5R{bnZST?qF2f$q<43 z%!ha{t9TjK@erij>$Ny^gxe!E2KP^1*EX2s&kGM#d!N1Flar95Ru?i?RpZnUuf=l2 zcxSu90z=k^*;>dO4L{ZHaI$-9a1`*2z!wmNA^&-}9LLKE^YPkQ`bA1Qnq0&jtCW|~ zb;CK$I1P7v%^nTu65U*ivk2+bCM4Y^TP&Fx*e}F4O9WEm+=%qfMb1oj(W?~MIz$VU zs9rb@PaAG~T`+|BW5=oLO=t(@>Ey<_4-}rv<;PRij5u%zi~KD2@9m~~62P*xIek5p zH8{tQyVCuMHIgPEHO*3Vb?LgSEBSOh^j4e$IAz?)jf}tVxp{hV&xlnc~!I*O0yXUq(^lJDutO(xYlPeVSD z_!KrOv#av+U7Qnhs)xE1Us=RdgZqQ`CmN;m8^2owpJ1QH_4&heKP9A+DwD%PsU+nq zhBt*M)_fAC&1Ao34JfDGE+B|zgI2@N-afd;{PD{y*Q<+H3)D+E+6DX1wEMcpQ2*&S ziZzI~txyqKJmL~WWzdfHOv$zEEouE5i2L45r;ckD?MfFP7S3#bh)qSB@#9My$<<9X z-3I$?@OGPC4gp`+!;g(D9X}xJ?RPe>(ig4|;Gwb)l0~DF62RIaSsF3dd2QU1dHQjX@Ma!3P2 z8y=s}=dpuE`B7PqG4}U5Qpzr8TwmyU;a6WmP)_^M31|64bodAWe1qA3{b9?wZ_Fo# zVXaQ3IcSSNJ2REu5k6&{z|4?+s=V(>4@Q{~DI}cfrRXBoZDF1?giDM+7e+)w^3o(` z=E&~UzOmC>m92SyeLYv%Wb4TLB5h1{>omxziSb>Y*_TyH!`EUC6VS_ii!nOSII%T| zyED5>anzGq#5>Syw2G?NLO8R(4)!a6gCK5NJuD$%MOBkIj}vx0d6M9n)Ysl{c<4SJ zjq+Jo!pHIaGW-n5RmaJ!`Z2k2T+=4&x?+pI<0ZN0DhGohV$Jr4`n%WV!OyOzT7sc8 zjh$=CTx!!l?awj;;u%!0&n>ZJ!=7+rqRc9dmO~Qx4Ca<(7N2(jMN^eJaUY5AWI3iX z*!(z~qS{bf7ug$!t82OnKGjyhQKUDE>)vJIUbbh*-kvOQWL@s}L-_sNv-Q04%tl%9 z+HPksb2=wwa8#7E%L4E|Z7Wj(k6+cH$oS|4-fk0~!+SV6%|qo$lXN-bqSyT_*f}}+ zbilLu`mtt?DX@0-Dz39EfY$6lyD;x>lIup!_x%Nyijzpgh$CZvj*@e<8Yijf;DtaK z_uhV&eD7;Y(-XtKe4b0rTG|Gf#on0D&iAHaVbfmPC##dFy(c4<^+W1vcpY2#94*#C zy2f6=-N!z&3Z_#wdR(!qo<1nV;9Xy*Y{wfoBI{I%f(oADO(K2XiNS<3SyT|E(w(M0 z8%!jN5;OmJ^xa$FtR%NvRw&$$5e8*Hck-e}(Wdn!AEayP%-9}UU+T$gQ*p$bV)4z@ z-Apv#8!qG8zCO{T*DHb!R{$AYAT*Kte67sKc?x6XmcJ#hxe?HVtjat%n8+G?X8oy@ zV#`v(Y!u9rS(_nmoIN|o_E|}mBPA;jWX(JE$1x57^o$d-g0$~-VDql8G@@ZXm~y#m z&Z1v_MW+*Un+9rt)0l-@^rB;xVoouybJ<3E1JU751ka?e+vImZMrE58Z|#}3hYtm4ch#2SAxhlp zYUHz&-tVYY?2)iTJBx2`wj-XQbD3jF?ND!4Zjb%OB3-IF?7Z@IGd@YWD0KR#GpH9C z4Xh+ww6KovNm*Yn%1(+e2HL4vdXVC+ER^1K!YrA z!cp`HR~5LVUAr|slrJo+lGUvIxtR30NnJWC`vhEj=Purk<(~q zUr%*XTw6+Wx)$c~WNp&7FuIL-At5{RsBzNU@;*98wX-!#IUbEt_g*8i4i@le@9ZO` z(;E)gVirNH9Jyz*%ZFJ7?yO{}yB38fye`oUwb^t-C4Ch2r$)$>{45{NErU9k+oOwB z*GkpWggYpMKcQ%MR19@Aw*!ToAfCBdrFNA1UAcfPEpM)++Sv);*dl)KTO7An<5PX_ zTub%3tW($8p2ku55f?{G1fL{?q^A+jVZi|aQyAk_ZKmNn!N#k^A;RUGz{P@ zs5W4nvcYtt)WN3o<$djMgA|Dmk;LYrebiu+3tNFuh07I*2Z0I2>ebas6{N@@pZ&)D zxmHd?f@s}tK$g=YXY0J5tG6+HqVz0llX6e$UWsh$evJ~7IWyZ4*a0Mv5`D!9$N&7y4fdA@h6ouw_6*@zwRbbas`5mDsy?OWx% zZYp7cD5lXNw^MCMCp{g*=irQHfgE6QN)$D>CD)mgVW%b8aaF3sC-xfHIqiwFD?5^{ z^=^ROOGfEKbctzOC0<*yy9=SBz2VUkHpcG6U^II5}m+meC8e$=mg&#rK zDTi^!4%u);f{JoAYUNeD)=KJZ)qJDh8OjxJUL>DAp%A!$7Wn|zRBNNma9U-O>_DtE z`)E`|Q&UEms;N`czJ013VBa#!Xi?Za-IqoW|FS48%kimV3`Bzgc+HrSq)KV6LHyV~`^zr7Z#oW*IA$O-oQ)boMN|xi6z8!IO?28Muy-(k1JNSOK z?BQoGFb8wPymc|*os(sJc`Nnr;e~MY{7f##!a^Gt%jDhlT{-cy_n(+#*Ts5*;dqr# zjZY(hE%Q)_#9fFi@IeB>&Ttj~;PfkWf23D%!0S>Cn$Pujp8LY2GCLLeNA?en2qsC& zBAZ|L%0`mt%_Q?~nO#4O*L`y}y0a$78snaA)hmkrDOZbiDvvRanFR$Ve`J7Jb{$8Tx4Hg z4H)`a_@H=-ZhyfyO4%1DY<6k>{dXdRoEmJZ6TEnCpOds+r5g+1lX^RX{aFJ9LLH3Y8;pkl~5Wi zd(v~MK4}4|BY(836!Eymnwp$e#2n_vB9n8`1Ru|Q9T{LcC&@Y`Y3^Dx8rEpd^&BuGaW^NLz&)ESYAJ|X zw=JFeJ*Rg$F(6mD$4YPuN&Vc!m1jIol3s1WVCVg-45iusvcOeKQYPN zFGT7zVQ7O0qo;nVHHtm_1ys}d6QzGZ;JTBz6C0+hW!(;?{>>fdfOW5zwvZe6Uo(!= zpAx&tg!_w@8_U_UxwEc^sxu(OBf~d15Fsun?V%D}>z*UNH2huYXExSJvSz=m)Mn?k z-AuoAJE4rvL%q*gg;2XY;~9;7_|2UL9Uj6RnGMhzXit;cWBDlqst3b#9zmmhV{9dmw&c@+g`@Z+6oxxbo7pYG|DDxaMdoKeKhc zyiMyqONRoY!V}Jv*DBAklJlUo-fWF`MDtT>2KTEwZ1*X0Wahh_PkQHt7*aau%rynl zRO@~}K2G!6q-d8_TV_+oqu_z4xfTmKi3n?MEq)Oz7Hc6uKYnhDv@|m4WG(7!n&$e` ze^;;Tc=~z2rXj(RXSFZa;v~$Y?+nnZ(r@2C70AY-%tFNO$Mnki6dWE;yJ*--`nulu@MC z(~ZBI)>;EdQiDy2ko zvywp=0Fjv}t6tMo^*q0(wX173_NH;BL}R2v8*+vhXl-!6^sX?^2Ib=09~U01yU~Nv z&5l9;p0>0&jx@yHwpKK14eR7M0!{TN2V!(|g*_K|myCmpM?92(^Gz}`?9bY(gCqfJ z_jzPyyeRzUqmaDdY}AwNuz2%a(hm#eJbYZUek4o#;_W>vTJ=whE56-8`b+%rc3=95 zy$NT=8xY*1)rp!$l(`j@V4qFSujeRTu``D{MKALr_}2K^X6=?_=Q&pVq@SQ%d$l9A z!xJRTT>2m@W5bMd)Klrj*roU&;Jz=sr6_6Xr}QWk8BHv!eOwpQo+vN_w9FM8<)Q+|f-xhN%F@d!EbVSOtP^S1rv zlFz%3`cUrw#`})nt|qt8>zfe|E5pMBXu~e(-poxgT$&3|dz%HKI~b7qDvTjyP=kK` zg+FQmLA+@f^9itUn__P3E&}ZO56{icLU${f94Kfau|9o++O)m$lwrUh;30fn%dd&^` z0slM0eN#uAi4OaC!q~YWvR8NO+FmL>$pUOK3+va(fxKt1>chKmPtSB*^&12FcIY;$ z1#y`Z)>4f<&p$+%A9J`q>Y_U~5&{MXJ+jo6aZ3)58iJ$&y{qv6zC7Q;-W-@$Pg%W` zBe>{gL~-TNdhg!+=I*e~ohcuPpLh3`d!a?cpGl6^ePvv(r?&LraAlNLA9Uf z%Np+c{L+9m3^F|ItzXnZ?;J;fcp7By#57{O8q#MuHYNy>zH=kqR*m`Er!9NjcHrMn z%p3ycxu(zhZsnA<-|IMgHS_nb&J3d?J*i9LG)uSpy)vP1rIAm4{alH9eUMAOe3G&^ zKYG%0&tFG8hhzFLvu_`O2*Jvi52HqH#(ygqg>M4o$TQsDwvvM4W3a1Rmh&ly8GB*IA_p`L5-G z+6GQlltzPKIau4POQUbYG+_Es4WQd3-kLS0ksSiY^yhj(wr%Ksp#-!=8M4pX$!ykn zl})uQ1HPenE$D+mG`vxCVpbtux=?I_ku38^?_0R$S*f-qLhDyEgf%hab$?u2qPISo zYw%-f$fI;VCgXTA7_6nid>nO{J%UgmUxOUJb0r(SpB#ewUFp}K@$774ZT%UM3Md%{ z%JYd>>~fL`>JRO^9f+>^WFsC|62Ez+rUGsb_;Ffze0EW5o533PhgD(RfBmom1PZr9 z?@%6nhQcGB+@*)`)!<~dTdyM7sIC|ucnp1x^tIgKPDU*!+5)5HzTGs|mwP5_RYbdp zp4}V|tQ^hplrFjNqA|nS3%}#g&@jR5pg>29Gq9-T+6GOx{mRqmY4(c+&3;4XK~>Ro z)lZfBG6oQNKB?sq0JJkS5J0vS*3$dsa#{N?;Q@P(LsK}xRnQ;^4XgxOkJR~X$)$kF zvxDg_XLFGT4ELHwb+!pM=jbF_MnZRA@7}uinu2hrkLbHkr&^-6r-869%KA2kOGi|0 ztU>bawJ94=9pRPdNRn9TNBo-I@a;RxGR9B(iNia6I(ji001cXK|b0b~?Z#IRe%uyohh^b=OM!qCm*Ikv=?eaNM0<+hHGmef2R`0t;#A zL^ywK-dnUvlOkJfRCMs|wPJV3gXc5c65DS7IO|LfFXj~%czk|@%-`{&xdEcI1-X;6=HhMKnHGgciJlSJbbe`ttn;zxl z;#Et`@-qS|C}%nPPP@owu3Zes<;Jlav(G@0K^IyYJER60j%Y@_133f^Gm_1LK@vz& zdNTZ_zd6pl-(`9}%B)2aDtGd`>J3RAu6s7xv>$z+QPH@X4mi9SUhpo|8P6DgkV^%i z^=9&ROEq}7`1-+xEj zclh%2_co{JA8mNYDU87vTD5gPfJt%>flr{ZLwm)%MFb4jL2M1a`?jcI7QudAS0Ipy z|5RqqhO`32hs;jI|Ib|R^pboYv%J#=A1mqixbKfj%RYO_ta4#3K81soW^X$0MPM!oyio&$Xpg$|%}ytJ&^O5`=>c+A zgyF)5{4gZLfa4XW4Elp;qie?xy)vL7AI{y~-g^o`WO9|Pb(L~EpWq$Vo`QG|`s*|b z88yN!ZY_Bu8HaXFYnc1WJ3=QFiM}kmsN>U8^r=^_^=TLw^rp^l>s&gJK~H8bN@I#S zggndOfa_GtxIGPnl|du`mHL(#J+gW=WHf6}?`ltsKj~RAH*-c?{S1vT6^)}+ce0MZ zB%Zda6`Do<`O2nwpKdEzoV2$QT=F9WGv9o}km)r$;D?`$#&jzC4Lo=Qfx4wGH*h(~ zKdNl$OYPEQRK>S*roJ1Gh{K~Femt|+R65c>6i?)X&jVNLCsN2nKc*eYL-0&=6?^K< z_m+;rx)ojRN!;#2zFqY=SUVA+=WB^8kVvO>(i1)go42YTcjb05u5FGmgvK}4I!-Z{ zVdbAS1GRK1U0b8uaMClc4M9=1+B7k1z4SUd9*=+b&-4HOw||*zzJG;azJKGVpZ?t+ z`Fub9oqzqOpZ*rFe~H)s_^u>Y=9j||z*FWUX`3JoIdtQH^*MG(9KjS5T{*%{lfBkj^e!Bv{ zU4h@Oz;9RJw=3}575ME6{B{L?y8{2*U4b9L(en4-G5>T)j{c8-pXU7YFaPxW0OxP4 z^zZ-UUl%H^>z?ZQO5;zP`hNeXRr#BH@U=h1saFXq`?{)CYrp&H@BH}dX9K$7FMrza z6Q;H1q#Xvcpi5d1vFJbl{;xmy19_{b;Cwt~yxD5K^2?X-@Ar@|{|uo3|K)e5EQ=q1 zyIc+<&kaw}Bm3J8rJDP(azx%&_S+nscf7Q?bJ1+>sKg)_ZkoWFIe(?J@`s2O*^5g%#Uw+)* z#bNfh9;fK_$A6Qk@L&Jy?3{(cAOBI?O@AJwZhVqhck|DK+y6+u{x7cV_xlvznD;;a zqhG%0XG_xEAAi-?zW<7^P0#K={Hwow@1}qJBSiiWQrCZ<2>&O9&4*F?cmF62{J;E1 z{f(bZ!q79xVb4y%&wQJokMgtp`py6PcR&6d$(jF)pG5tmKl%ADepmVR@BZx9|5f|d zf35!NceP*rPXE>K>c9G3kyz6uJW_kHvWQqBYe){R(lwbMl zzxx+|`su&m_4jzqd9``{F|VI^{U86rPe1+dy#7~S|1GcohSz`2>&eUKRp<3LdCB+u zpXHnVv;XVo-~aWyzwvYH@yKuTaTZbj^T~Y%Kf6DN=SLgUD+0 zuI?Qw^~Uf1((3TbH~snN|KykF_m}Vc%VOZ4A93gwfA(FN{_yMmaJBk__r-Vni>F&I z|6i;b@;m;3zthKOmIgmR&Y$3Cy{gdPRepY*v(wM&&#iax`1k)}Ir)Bl7QC}E@8Nv^ zUbOEw`TgI1cfPsDpd82d%k=zH5DoiIiir;dK;{Rt&7Ls41?i1zqY%Z`!(So zT62dfgt1)jD;NeVeV8Hb+16RUXu>M{L3kb-yU@GO;(ew1nSc_UVg_~bk$A>bpA^mP z55IPDYZkkryzd;(hJ5diLrjA+<)4}-{$_3$gUHnVm_NU7ZNlEdT2}9K%|B?Lc{7-h z*%hcCw?3P88`|x$d95yE*HCbz>QH^V*VP=E^n4pt{rkJO4Hn+HJWh}0b+@j~$BUEJ z?|JI-ygGjtkIPfB4Jc}}3vZ`X&T$6RPh>;edzaa=HYjPjhP|$?9n?~eBigDs9$C?a zKG`nM19|W3>7-u~2zRSJ?&TZ)U55bffAU`!lPkiDSJhsNUcFKi4{fojkVSC>KOY*^PR_hTlIp9urp)c zUzRsDIlsMU23p$N%q8_Uu7TF@;Y0M|UAxf?W1p91Z4$(9_Mb5Lv^EeiN z{b9`4T*5Z`i_d=CwK_x=GjD;RnC&OTFM$hH#p7jJbD zi^kJsHXk~vWcZGUh1)7u%iYbjRYO>uSb)lcM>_i)>g83FUVl*$w%}a2E!Q!_n5yI+ zS-2vGokD#)`bVIY{YzPLNqnEn*a#EGcfv&PU*M#Mt~I*ixszdj`88_AF9GC z?V~-MpaokuVLMnexF)VT*FK8OAjUUKL$=nn^a_6YbRPwtT?~?I&O+v%Tz>W?d<{DEcLuf#a+toD#j?5!-$6{}^+lUb= z*)DquhXeKAXoUO0Ycyh_)tPDIq87givh%)LjzrU$)iO=In+QDc0$A0?KnA7ZTD)r$ zZT%3>pbpc(dq<_iysC#A78v(Rf=8)4mI3tVGHPip?A1AMP0L znH?@39?bbvcsK|@7Lg2PjW3s>V5UUc0I{9%=_B*la|BB-cryRA7uRtY!RdM?x&sD{ z+IeBQUQXz*lqt%`QF>U~-z+itnS4R4m8=Ry3M z&O`(Rhv$Xivx&@e?|(iB7x4t@a-1`e{!R;E|>tNYvX5rn> z$hWK49(Ta1O0F-%n(xHjo>!2uiFem9D%zUVirN<7br@2fzt_t? z#-e6(w-kHhY*4N>8PnHJBByT-9`+i63QJs;Lsc;c{h=qK5I=l zi=E>h2KvLE&Q_j_GUhS9jDm9g+&nyQ2>2_9eL1MJe#{4{4(R=`x!{#IFGXol@{yQ- z4$V@vTO9e{7i|^=+=nugUgz9X{uEwA&lKIHF8ZCOC~uyR+7kiWWX)S*vRShO>{>wD z@ph~*brR*wOgUj!yUp-^l#3(+jFMC~+Tmf(4Ov%q2d^sm1y^tP8V!8GkHYAfWncPH zQ{x$^?7zOTl5?wN>1?hshn(bxg)-~<x^6bSBnIa6GDP0Jiw|b2R-vpLyd`46aI88+z!?&(Fbw>onnwvZWa#=vUg(;1chRb_(I$GHq57I<`dYZ3<&iZcZ9=k|g{Qm>?gIMwQoL7m}B{bxNfyz?*ulA=lki z_It>08G!^?`g*5}a6;HltVJ<$+~z8}Qm5L5KeAKwNK5ei;pZxA&Valgd(d{dg=SzU zteCxRt;hTvNku1n;IKasK6En<5By5*gS8^s+;WEvZN7>-@JdeWsbBc0Y&fR{n5cXDybsYpRZ?LsY4^clM`liwZz&6f=VF z-pZtUyaY&sK6~;9DlUR$7LrRPIh3{3(bC7m^StLhNvB|$v)z~lxC~P?y!h42gG9#? z%HO9J;yq$-X&$=WuAXtHxUPAx=;DtaktJt*G&B?#Jew+q6AW~V$>;uIk9h76qQ_8r ztSyLF%yLC}aciZDQJSZBede=hLuDZc!Hez=8z=5X z80(NbE-XBA)w@0*!^O_~~i8}U8L&u73BWvvgp&Orwsrk~!0i2j)d7E%#aX?oMkWKZzwvuO5zGt7XLF`O3;0 zt%kxRil`+>J-&^uXgsvtMtBADjmK$5p=c+VFg*8SKI2Gt$@9;L1dlefEi;68kRkShjo5uw-tJ9SO>TA-@5@f)P%~0zp}Kt;F7GttV~rZ8WJ>VOz&tcBw|(0|8E zdSfTL!ogM3c6}6Ac;GP0?PvGZLv+kAch#-NhWeb(#fvsJ%v$3dR)@|^9NF#%7A9bG z;dppZ?04Q2^){xT1uhGgzl(5E-VbXWE)ckW8kY`{e$&yne$e*g`T?yI8$ooEy(gc%Ni5Sw(GRd;rCS-#nxJ{F$Edbx%b%9lco;(w(^rsub9_-KRIj zYW!}$I(-fx4_2HA%F6sczdy#UE(|Qa26wpyBlp+8J|@=Yh|asmw=r62#ek&VYEMrN zGDUu^ZL9Uk2w#`ZWqT4)4{XIt`Umw$-(ngCuTNVM=8s0%?5q#Xd3>y=*{9KD5e+%w zKkKs#XY|%q^3=zi6%w`n((ZX~jMljWYt-`X^|PMol4UZx*?8PeQUg>`DuagX*}j}ZMFSORRnmO0a|wCdBL{q&(DkRvmqi` zr~`8=zeof$!BDkDAK|Gww7X$T=J=a;<;kIrjh#y}!?roZW?yJ-psn`)c(} z^yz5qX4h}%JBLAfIitm;79`%S!M_*A;_RKXJg7A;DauY6`&R`L}{3R5xnb_@~&8332B|vb2*yxP4eOYAV~e%X>;-{ ze=~-)=52YO(wgY`wNGo)8c)h&Yk!NKeO}pwc*tBggagT$bCaA%{kpnRmv3Wywmw{3 zbjX*CD5BPQU^Fi8&Nw0BC_F~w78^W7PZV{uXp}0}W&Zt^BqeI1fbHq7s1C-&ulx~rYQl#g5NQAN~S%?7Tp zv33z__m-RXbdhYSPy7CE?G|0bj1>c?Z*8ZN7+hh0(Id&KOm3`|?A4;<1hlr>-0&I1 zo2#(~kJR5m(7hgqJ@SzgZ6!6Vu*c&Le$4#L8KZv0(N4Zj`!Zd8y113ieUg(&_^t)o zBbD>8<;EM&alMM}BC4!Dl6rVFZtu(GZrbzoxhtKMG$%CVQPJv``@0nC)T>8&V*`EQ z5i{5775(3S{ln`3@zlRU;Ausl;ypKJH2$(vI0!a_@gVS;o1OlEm-mRH$&0$@r4Cu+ z@Zxr5t^4bL%@JX@Mn$XOG^#x2!GLvY+etS6=wD+}(KnmpIopw!(bzsnplr2XeJ}c_ z^D7Oln@U;nqanj#w7n3fTIOKFIX&l8*}C7Qq`9tWVATtv!kq_P7>e{&?B|cBBnp~=Ni@|1{K-J6< z-vJ_V7}v=juyN}+nT(Ub!i%|zgM85MzZa4UiUu}IKJlxTP&7w5o(A<0l}FTV{)p$L zay9Roo*1+@?ov-4HaWWSTdAJOzUII5d$`MCf4!;VcQdN;Q~8C7CqZLwv=J)9upBs4 z37msq1y#Is3W?C5lSM9q6Dzr`SAoy%3i1IPW-j0JGkwnNFWAf)OP{szbg*MSbNtJx z^v3#=n0miPCy+kM-g;`PKG+5qHpqvI+W**HG$(R?a7}8}mF*gQ&# z%s$*2x2Il~1Ow?#zsQ>|9`7l9-pQ)*Tvss&E?Apap>hM}OKxQUoe}uC8(jxII$nzn z!wY+$l=t4MKa!{#bnWoV!%dpeVP9sP0#*OEOE8(=IKm$AOYJb2)EWY1rbjEscSm^V zmgIeAw#Jo}ib{NN<|eZ<$8N|o+}37EVBaW$gZwVsaITK~z>`yrgdcl@Cv~wa*Xnz{ z2`7(cwwem_wI30*Lwi=e;lFZs+z&}C`E#Z0c_`=Z!<3(Yw0QUP=^W!GCKtT+Xx3x0 zVSk(@ol<$K>vp+2bFRy~_He4p>^`)t_U^FKMz!_1GWCK*p&6kMb)kFpO3%g<1OjUb zS!|2Cy!Xy+k^c7U|CiUHdhgV7d@T_HgOA&bSmUr*V&7Xg4}9j?WY%W*)+2Gb|ITG^ zj?vBcueTNF=6Wpbw@NBG=HEV-oC5C4p$X-@RfRBGa2(mhG<}t6xbk3x?kLRlk{Eo> z!gey=z3q4WQi{^7jFEOkpK`nZW4*GQI%s>5Rf0w(9{jQif3!61^wQ{P>%fRSO^LNd0 z_U@|+mbEd-cFp|_?@pp|tj$t6@8owrqcd9${qfztE)X!VAB<5}f?Y0ke>@qrxq@=v zSnqssondP&m505neO4?o;cggeZpBMj>6ZmXL#GwJ`S@$}^O`%DGZpE})W>l8mIX0m z{SG~GO_7{z$(~;=s>Y2`MJWCzaXG(A>fX<6;etE^12ewvD|)+qR9E-)N!_K^mcsbG z#dq_>@yegqKCX|tb7N<@aZ@{5lXthz0A|8gvu?XQp~-zJl@ zI-`GHVDKDDGWu26DIlD~{yHwNulhHq);H+`NtW;R%_dy8Xz-OuaVwk3q0C{iwe3&( zIW63keJAgiK2Jr@B;SP_mf79pic6V!BE3F3ahLP!Rj%P%Ew7ntH52KWFv!AB^SI;f_f2S`JUDw43-ix& z-@MOAEOVC)YV4yq8C4yAdgf{U+UfQ<6i=f>k#O3_fy{~$$J6>azn-bf$Ey-W7JMNT z!Cuf*uGoa>E#z~T56?=uo@Hl67G6A~|E+@8I1DH+@O_WFXb?PSEN8sVh3Q27Ui@uJcuFm(r&=(2c+D%G}^R;RE z8bD9t+s5Hd9*$4$yzZy$xi2+3ilh|h>%5-m@Yzq)RnXC<&GnBUsT07XzV@7z?G3Rc7o=>LKX;M>3 z&$E9IOH>_N8(|arHEu)mCDQ3XV@j4nitKI3%OxmO-P<{B6qx zI_rH+mU31c(akUg@qA4dJX7zbWJahn?$xqG-?y1czwmZBy`uA|iS!W!6jyj_gnx|llQfe)pO z1FsqIZ7R%>1{e*gXQi(+GuAi)wW2uZ^YZB`Kl{~~)XmS{BGDLTUm~-ObR@I(<#2BG zbI!=++D!4P{Ur$V?(+V4pB0bisnV!fgZue0TW1#E?pE7dP8$yX#2LG1Ci32U zSu;jn;A?|(V)nYqLyjHMayXRQXp^1B_0Nms+FpBCHCrRPrb>Nwe6x_(Hso}Ty>wLU zr7uoLL3vz77_y*&%UE`viLS&ruU z#X_}+zWXLj{`#mRkt;UYf4S6&iJa+kda4ya-pQe$b1Y6!NM%+a8@Z|6R?-iggnA?C zF>A>0!iI8W{=2%oC;`YwmOVgadtffU=d6&pxK&^E?csi)e|%f5UTk80*>#A*EOolT z7T6Rk-(HXETJWZ1uPZNwf0fau>0GpGbvO^NOR3en!*lq~<=hmNXf;%x@;!BLKIkw* zX_U;t_n*J#w+A7KV|{}uv$YNn*GZ#J*m-*)-uXVh-EWrkY%*u-uP*Q&TkrZa>W4p; z;HH-(^(#xT+$0&>`er|V)eJK&O%BsK$z@~`$v&sY^vd{rxJn|4 z(Lb!eXXI7Y>Y&4^&sAZFeK-qVIEPNqE|iZ%ZeLYFhVxJKgEqU`f_rRq9RK>))A+inf*M_3X`;_=Z?7)<_-l;%Aq`_T zg+AJ+N&56>-NUW?P>+w@p`P|xVvm!nmG}S~cy2R8-a=<{?u@OQcuQleLJFsR-b~2H z0LPv2@WSduE}b2`_`h4NOpk|P+}QVO{opd0=Wlt-eXg`;S)B>rQmIn!CU}aKaw3`blfytRSnHCuwrV*~_7dtfJuhT# zDSl(irR}~Pk~ldZ5Q|8k}arp=kW zZ*~B9$@va$$5OIpK5?T=K_FNeSmT=aZsBU~9(~fyv9k=reTc4_d4A z-jSd++j8XrZnX_L=X~erFOY(#)wZ5%Sqet|6I;EJJmZ7WC!c*-E>xyH2U4BeP0=y9 zS%-PujY3&Q8@f?66lNX8k^0?&M#h)}#9I9E2`MWR!{IaSla%RjLrD=v@!XES+w(d3Y@2n8O^#T?T=0ddxwf(j zlO_ayE8%;S2@%`=aJPD|wS0eXaw9ee(;qcZy&s1&lA>q%Hu5gF{5hyy-poIm_1h8> zm*#)ud*QcFmtb1J?Hf*Fwb+~5Yfb0+wt8`o{c+~s-HM2hVi`B9!OUaNhm&80FUqpmf7@w0GT&-Y_#SvFHbTx+6}iIr8A zAe1>GQF=O^W5X<~jU%kN{;BGx@;y~m%bUJ`2$AYuDkDgh4P6+o*#-Jf{t9?_ThC$K zxWAv>X?ua-u#&2)ctn0ie3j&|&JpQdsa~>}vr`(qHiQZMb!R_&FLfP#${-ic)cLby zkT&kTqsGB0eGhoYLnkZXcNu!YNbx2xBDJh zFMVAn<;@bteY)JgZ;4uYZY#2mG>T_seRz+LDWhxAzt-&SZE)U;HaTt(3_JuT+FotT zeXX8y|pkwcf{#o%dVEjc1!A7`}eN)}S zJ#DVe%SBE<$Q=0b=)JloWB5p39!+J>*$f*_srvX7=W}`fG_`T{9n?eruRkYM>$`@x zqPF6!BHC}h$8Wvee@=SaoAZABA-C|aT32<=xeGYD`QEsLgbB5qP*h6lFpR*G@!j;v zf>XSdGJzx9+uOuQJp##)k~p!A%;tqhbxiz&Xm|p)`TC*MK&|4M=IwKsaNzgRPgZWk z$C8J$m7L|)ZfEqTtxxy1K-zO-Eu#11O8(wXG{7&wU{A<)^a+}BZkavv`&(KyJRA8< zdU4-z;3e?Cu<<5^-jy-D8n8E7`TS5)CmpAB=~$zKYVT$SK;4N1hM+LS+9x+dGpTSG8_S zKM)Nn1Ev|S>k5o*dbqa17%;}g)8B7;|GG+DWhbTVq?D%SKxC}rT^$vGCxnF!jQuMl&Z7ja74_G0{o3v)u+?%!)_ z#@6H85Kr@=_~Y8ETUKThU(+YSfykPbQgb?R^`j-E?Q;uV0$geE5K0UsdarW(y^3mS zEbwp`x)5(M>vkT+v_<|4y>5Af{4Vl}_Iv5Iul+qiVuBST1lZiceD(Y+lRvZnp`UD? z(sWd$i;TPY1dpY%l)ubzpq^xK*0-1ff5!oCNmuVcPif&IHp2yV@OSb;ijHtZHjPn; z7uHf{0S;cX`ZQYtYht=Ih}Lz{0o}XS`v7N9w{tx0G>1q?)F^%USqYL+pdx?Z&?j zrXDZrrCzD~YZKCI&G|flR~K;j{|=5-yTPeG)OLr-Gc@_|oxkq%s44W?TWY3XpM6{) z7!urvc(c%7t>3NfZP@Eu6fVzAJy>kPq@+$*PWnHN&#N>4|6jQu|L@-if4CUkLh!fM z&v#i|${gxvJ*3OF-P-X3|9&`d3Tj=3O89;XjI_1^EVtw+GTJSL6Qg*gSsfnRsOb8FG#f{N9mteAc@wy5K3}k{#&FyS|8|Yxs={(@- zb$5`oXs#gVY;!~AJO4x!PuOU-0?uoN_>fOWt%jtLxXFN#wa4X+@yOb>dp+HQVyS6i z-QL}5_WFM_CpOROTTRXb^_>qbV^iIW&eywcr_2>lRgg^bF*}bmA42} zF7>abPyM?sexKMnHmIZL;*b2_HS5{4zrx#msxcc1F1tm+`f2`60dd9{(To4}j{ch@ zXhMFEdxj5da*%Mq_QLjOKkc*%Rs7_dnWj#^|6g`#~MvrBBa~yaM`=LX~VfR9(?<{ z|L=1~*YGoqB9f#>!)>wkzF70ASPmXsx7HXk&$sZ6s~616S5U^te$XK`=rRG*n~6;y z<%F%eG?>dw-UlOPT$KfYJ(8hz^5emsK8Rl|xsxaZc35xq{Y9j^C0 zf=_D{?*cvg#=FPc>J7)6#R-O^U3Z{l7g&4z&< ze!bPw>^kvo{&64-1P`m%A3rz6Gfc}z{hGR9>;LB*3VQ5T0!i?!k!W;Z&W=v4CZeT2 z;;dPxR~_-#tvmHGd(6C%p55LEQ*h|n{@eO-*hI}OZa3Q=u7475wW|sk4%?oYF_n|MpRvLO(!7B?uU#$`U;MGls9bE8{BS2a0)B%jcRCquI+ zo}#k$ott)8or})(?Pm1Amzvo6`;q-D@{A~mTDSFf9_7?+GYD9#Rc0&9imbyi9SAli zxy09)Y;M2CI#*W``LLgS$ikcoI+00nArD|z^xg!MF<|~2a;KPy9wg4{=5VMG%H>Ht zac{$i4;Fk!NUvBhYG)4)5j5m!d;AU(vx(MYH0V2TA(HDJ4YTG*%L?ZH+$VU4mYzwz z<5r%<3EZT8@qYYR%1>EWKRp<;*?^HIp(Z+Wt;(K(seed$PTJ$HKWGz8(vZu=;PbMG zdSB*X-!Dwu7F+1Kb|foGgV#Qamye|RTzBTe+uy^%f}bwAc{J`wr`XDK6`x|r656ByyHV%VS&p4Wi_l3-{kQlEZ!dd*h~ zx}u12`FB~Rx^q0r+PVYvG|JDq>8|msMR)VHP_25}5`60(du#TrEf(=0ZvmN3;xOLw zig(MpUaVHekp4_P_{j)@*oCVQ5#JpJ1Fv34UN_l6pj=EzX0~W2oqf2LaP?`*d4c94 z)%#l)sTbQ2x3VcxD^2tlk>oG$^BOcWBrEnWYlUHsemU! zn?SP+YHY^|Mh8!QbcyLWPX$3E;j@)33rODk0vgKnfvt&<@Gxx}#?LYrUK zBY|GkX1H6K+|NTbPl2MKr@$6>e93y*PdPg)P4XH^o#PsVPg{3}*Uc238_Wbk?FFCT z6RfzVE2v2gkQwn%ukYg!EhpBne?5liuyc3??%5?Au=R5Cl8Vmz?dOYyXjX1nE z^ELR{O;GmtpQI3rkNHsauA-|5Iv}y}EVLdr$`EGmO2xjZ80v2Pa6t8J%>z+__=qlI z*M;;wAsp)uoZ@-m0Xcr$?6g4Hme~ki!UrK~yrE=y-Szd_lU!$9(BE@3eEY4Q5ZLDTxMy1R@?M04&f213!7{#{4Apswl&ksp>GFj>QO6>oL>9>xjik}yX0MW2HO?6WF*K;2HKr-QuoLm zHPWpyCI4zjuIek?xaDM|!GYH-{cy3U3&5U-KqpZFuil01mS*GAw`CvePn}E*sLAzN z*9;#q6AQGKC9_=ria~D+zUO)n--2@rP_TiWX%7>`k!@<9YpPeP5&E)QzA9Gayucrm z^<$9lTC9HfYZrru-AY@!qy#|7vNvMRwUKda$e^!hJqxyIYA_u<%e@G-D0f0im$SoLmVc6{G-N;5vs z!)|mFjWvBYm+D8;!8oCifsnGG7Rl|dAO;(96Ix4w;`H!$uw}jVNPZ>78#kT5QroIx9D29YHYK|?Q^_pnpU5@zRmHR z)1?~@$1#lrYrt-G4lo`Z|zcp6qCmhH0B%ASk1*OoZKu%dK~s-+$$ zXE`9JC{Hl>fH-u1DWes+hfhP>p5HaSjMf5bA+pxB!EvD_UCC`uN6`e)%V<;dHhL*I z!g$R1>0$_w|2>LUcj9ffoz1m}srY9sd)c&S?5)*txHfj+7Bx-ycCCKZ*`!|}v;FjA zuFLYN@~)Cq)@q*o(R(e}#>==;djjHIL^Dh7_Hp6mTX${s)j~d_fL7hM5lvbh(WIQ~ zy|N?P?HYB|UIUSGi=FHd=bXo*^9bUV#c4gYG%Yl`qo?!Lx3R zTCwhUbh|Cd@ks^(4Khy~uFwfxb|Vj82*JcICX1Xw`!;<4y~eH1VzbIl=t^_6eRb)9 z-tk^BYKpg;zaPh5r^ijG$L(4ki#2bk;^)S4U3;%WdJC zaH33a6}Aw-o0*Yc`lr4LIA<>CBQqZkqC#SsWBBo$n zEPg$aW~qg9rn?-K=b2YNWZ&RWYCy)oW2R;vdh6<0iVoBJzI%sd)7piijo(pc+?niVPaW!R9{^+O9*uV>kcQzw zJ2{&E$U19(iPpZ?uXQX~xeXeQfF zc=b#1&*<>Ka=z=O27xwqFAhsEBu$r~o^XE|ul@O-kL7Hf)cJOxKIpq4V+XIcN2##n0N ze}io~YrIkRDIVQAILHIuCu`v-SvFt8oF$=yU!$D~oE z!&a|{9l-Yd*iO3V`6-;WxBB6kgOf<_%7Mm%=l;aW$4RS>Sh!>#&aB%NJ)ZsncUb7q zqk*U^Idj;uW=2x&&sPU7_ZTCB?`Cpyl(Nqm__?DenVwx#34LvIAAe`xqzu{DZ*Dbu zFDuh>z5P)3y&uji=T9zcFfH()KS11#Ka*AJEyf2l^Zew@)TK^`zyULFb+|kDCfHV~ zd=DXJ`Kj8QzP(eCSm%fn<9e5DLK=u&if)DsSUAII@i6&OZ>q79A)@=sFw_Nj>$p&4 zRN2D~Fq0C^GDT5C6WCjD&p;JgD_)xJY2E{g3Z- zdjo!(p9;~l&pU49K@W_tEyvqWYmsd4vvy#OK%Hj6O4PU81ay5ZnqOSbm!Zt>CRgRvtP#NQObT`S<9!h-mn#KsN99yq zA1$pto_X8MbKou_qg7ScUg>+nZ<~+81I=GCtoa6O`a@%{Ce}jqscf{)5OhuJZ9`>B zORKEmRQ5Tyqoq+5{m&!!c=Q7>rT#d)!pd?~l<5FU`wqS%`Ykbfq8q33_6B6bv91T#-E#CEQLNEU zz%??7kK?AH&#(P_kWMQ)<-6qQ44ZN0Q41=rq6@dq+m7~`;=@x>gDd>Iyhqt`OW(D} zI(nLi3aui#?51cyR|4;pwC^2>!sv}ndMRk9Xosw!ADe3el@i_~g#L$rGp!dnHc#U} zz4D|Y7EN`Xm5T2`wY8R zY4fV7S9N{(XcV+>?w7w4lZ2mL(TBf7t!rDC<6ZJrL}OqnzkWQU zG+x22ZZ67>>nR z#@LT=iM#`N-z87T%)v< zGj@5)Ass*)EaTdktjNK3vzjm>NP>gEuBY3Z1EfH2FK6c!pi5uGh;F8YO09Hch!jrn zG{?d@?4HQ6*^Y<-8lCEIr*#h)l8L zLaNiJF~q#@(RN9tq``{xBSCU4pE}u?08<%Ll*F6GxeNY`!-;s}49J47@`Luvtr}CD zn}oM@n)is#xLo8xKdD*xj9eiW(eLI@5+Cv45>4D>0pF4MP6?9AJB*vFUcX<%^#<>S zXS6n(ah$}&!HmY=yUd|a`hO+z*+qGT`hc2Tc{ELb8{LI#X#~Sg( z#M-Cq*R#}ithGOQ)ilfqcYoT{BVbpu&f-I!Fm)K0#XTA66mnvL^Q| zC$qG7PTx-cl-hL^z$=}!2nGfxu2C0MSVq?0 z!Fqw8f%{@zQ~+TMpUig9*EXq*k5jk8vY_?)*`f8DjXweWgzKOc16*@HhmH6i;v9GJ z_RDN}4}MrBJE8tf)|bL{xDvjiQaxD`g)CY#J|^l zmx#Y#5MVke12I+b0GjgiA{sgjE`C;3QJ!#~3+JnQbsmpaGbCq_EKF!q=zy##H96Ws zI2qy{V2~4UjU|!UjIg-KgYftF&nNaIY&`BWJr%9dsU>p@V+ut&m~yNc9&9SG@k~HS zJg4$lIGWLf`}RBEi6diVSvab)D&bmNC81^wynRY>4XSj}ExK?3O*uQ>AqjOdTjLN6 z#KCN$RJ4)5In9Y`tGG*C^?Qf^5NFlDo(t|9Ve%bP%SJjn4?wBSAGa3KHha+SkrA-wpT8BGfA_ z4m@dwl@$1|A`2=m?uk7~6$=|fq zosRy-CQL_g7VUejs$pyVT}sa%3eU0xD>vTkIYg{gbX@nlF`J8LKvb402nPo6NZj* zdzai){pb0!JoIvA&g=XRnfbN|YARk5)7@#dt8HO1Psqylz(>i?tiLg*8{&?jz`4DK zs}2ZV+yrMRf}!X}_K%YKhWDBnS?h(Jo%nW&&z+05-=9eStBYUi>b&vV=B&9(2BlCz z7cz7EX;uE+8}1(@Q}~u5JcNJz<4nt%bSJD?JK-fk}QWTco6U131l1rS3Vi12jX(f1Bh+M^5($cGOkLz&uP zm9Ku>V&QBp?QpE^&?4yH$8OVhn)q*=`UWen1T&Ftb=}FA0N6LYc!oEb+3?&(1US!n z^K74q_U-riL@Vi-^9q3_BW*l-@agod{S&tH^~}9_zDH$LU$x)UYo$6mBr9OkB{cN~ z-_dF`%n%=)eb2VZfXxP4M$RBx;-=9V)+Z?PH=w%R) z*-v$J*x)*f`dHsadmv3t5Z)8f0*F4i_&yEcLo|qu&dHH$80fz`9c<>X>+|=2ZH8*& z`JW@TTQcM}N_UgvMeCJ?GHWro!@{ir<}^H^8LMG4nhX%DIwq{#+Hx=mG@H}o+SlNg z&+-S9#5dQ4U5@n1P5|HA8Z2*()4hS;V2(uG+;jIfs5RkG8@64tr-+BCJ3d{n#ud7L z_XDvWIp!_hZtEkmDwl$NCot-Z0dw9s0qtHaL}U6g#_h&wo4?<#st-70bNn<_J=oNv zu{MWuhhnA5K3Gz(iSW(g)HuLID|EN@V*#kts8^lr(AaL-ey&IHbXAbL(2EpU%+0CQ zbHUuWZM-uSXJvfBSZBxY%6`8~2+N?H$pF}62G|9jyR*}VQo~^N`8PSgcjnBmfdEg| z_;Yp9Ki`Vx`7e&fMl?nj@9n2NTU+#M>{A@kavuh5ffxLr+~cPmK)7ji@Za72duH1; zIv1JcVQunN@7eHMJ$CD~&wkvrD}S z_aMbDcmqEhJoNj;+co|EYMY~)j@G2vdkf}ouC@Qo-xOO>3~PXlveEl8cj@Zx1U3_9 z&*|6P)MjQgeVi}djel}P3p{Tp7}%o2Z2bivaw7lle{BZpYxlgYUgzSpDKu(rcpd*U H|L?y5!vQ?m literal 0 HcmV?d00001 diff --git a/Python File/.Stock_Price_Prediction_BASE_19716.ipynb.swp b/Python File/.Stock_Price_Prediction_BASE_19716.ipynb.swp new file mode 100644 index 0000000000000000000000000000000000000000..16afd7a9558ee0d8b5fb9ff62078695e5c8f2e5f GIT binary patch literal 319488 zcmeFaY0NC^b{=%%fQ=m-5(fx`#QCxv$G-I4r{>ANCiFaab$4}FRd=p+sIjM-r>-jF zAUO!}D-sAIA|Vn9A`nPOK|zQ?LI{xrFp>pApfH3;L;~^4QX+*P4A0wNf9LMA@43#k z9sZd8>8?|~Yp(ZQ?|RpI*0bJg)B1GzqI^z&hQHtS*=K)i@dKy-vHahE;IA(~`z*-G z&cFTNqC1~!ll=YCa(Z!md*8iep9isH1s`4d$Ag?2c=@e}6G|&$=k|V`T^tYp_1ue7 zT;hmYH^n)QUPhO|dp+fg$0_*l+bLi4y4vsyMv)lt^Gni1_D2u-^v_Q%@Tmp9y9LU^ ze=q;&XB^8shWbyu`$I3k=g0Qnecq=%pIYEk3w&yUPc87N1wOUFrxy6s0-svoQw#i- zZGj^BBcJ_K__`l>exdu^{{Km7c+{@i*W9siN%zemsQfB4by-|_tSTg36(o)36? z&fohy{>5{ve{}puKf3$V^w?Fdyptt+~eb4>d=XUeaaX=rBzkl+%{Z~Ia z{=1+1|C#6Z5B~PoA8+^nvFHBVbNlC>$KTrZ?|<&^Jh#8=?|S|5cKtu_+<$#;fA)F& z?fT#Q-2d*m{c|5({|`O)pPt*l^wIUd@426PZa@FKUw^zk{~vko|D(_C&p(g9J^v3p z_rHDLzx>hlKmO76KlFpIJKnB;c^bHD%G{_7uI{}a#sf8@FS(I0yK z@pkF4&BKf3;Bp8Ma%;oo>3e|Ga{Z+h|eexE%D{M-Bg;~(As_dkz6oAI;p^Z0XEd^UI< ze|vwxjgP;dd~U}d-T&>nZ#<6&A6@_4{b}>51wOUFrxy6s0-svoQww}*fln>)sRcf@ zz^~B)miyUfFF5{}i6f6782^0y{oe?fe--k7Kz;@C7a)HY@+TlI#Di!M7V=||UqJx= z&q4ls1nR#6`OhK$DdgXP{3*y4@<$>6GXjkN7V@7!{%yz~hvbkw z`qB^L{QEig`#otDl9*< zLhpOr_*>NDUB33dq&t7{dw1;1%h$aA_fUh+zkH9E$9LerFTe10xBj|)f7|z{ysWr@ z6ZF=UAOZdC_qx%CZ(_%8^Mda9|MX?Ti|Yp7uk(F=CXRyUeeAz4n#BA1mipGC<6d$n zPQ0(z3({`iaxc~Q=v;E><>C@0@!z|$V%vpf#Jio-ID;Be9h zYURX%WxvODP8=21CGxWGpn_h%d$oyQ|1Mwme)vRMcuzC$8ATCaUKr_fd=8`FwaHIe;KbLxyr9U!>s~>U zBn6+&FrN#uEVB|G{dKp-DK!6;TMIPHF|Rj~Iac6bf3hs6NUuLdNtDIcTZ;nEkQ2W4 z*4R&TAKY60oMR>V@z(O^f++K{^7sIe=Vb2n=a-+wd@d?HzTtb^8ofcYU%9oc@H8#p ze)8vv$V(!w{IHqi&smmdXwppV=QP7B9B%QoZ;f6=Lw~2OWxNT)@Z^5DHFe#$Jz^0*GS=4s`7-x^PR{UcMv^Cy{9oSd z;NHLZoniPqI(5mt(5)^8qVwLjeEvNza^id2cbNAQZ7ZHHbDSvI-x;CrE{}^ehrhU@ zUN7XH_QB&ncm`hj?2)+-&tPfs!;i78-20-;F68OwqDb^Bm{J&&ae)Qy<*( z-NPv1+%LZ^^a_hiJRk0RZ4vN6zi{F*dOVbS``~wu7X)9nofEs>^Y*WI{PLxL{>zvA z#V>!oynJUb>5q4V>{59zR*+%ZZeBw2FwcFliWiF5OfM=Zmz?plFGY;Kg%>6T`RT`* zbFqWwCG#HFeDehpTk!HY_w&b|pZ@l{uioO@@4orCjCAwkjGx`-yM6EsJmve* zqc2?!a*J%g2t; z!YkC@#LyvQ=Iyx8y#D&2MIX)d_TmBD7c2WB#BdMZ-hT1exAjgioaELYv>bZ;E0;g6 z`y%%O??E$vyF-z|Vt-M1dGSS_1efBgcX;+nREA0OV&yMU^0mhkD{^rZ|4ZBtPWYP6 z`(O-yshb}Rg6C*S`vdK&pUp+~#qq5<-hF>ol6lkkUsF#W2VX70FMLMg|2bmWA40tQ z*+22wXWw|nm_LHp`Ts(E{J%o}3go|r{Fjjb4DxS6{uJbwARgq~ke`Em1M(A)ABX%- z$p3?w`hSD`HOPMj`7@9|0l7h3$P&UrelO$)Apa-c;jcjcJ;|>yXCVTFhWtUu z4@1cN{vhPj-=`M%)B>Mc;8P2HYJuNG3y>J$U1Y{|LH@rlC{N?U1AN20+j&DuzeAbuOk#_p{ zBisx8GpqUH?b`KgnIQM_(|E6&mqlLijpwVqd;Mpgc+S^6Jjvq9i>&C?tA33JzY}mb{t4sA|Z-3~+y}kK&hpSN;1aH3BmtPJIdyTgl&N-TuO%L*F{-v^form`w|Nr?K zxW#WO{Qb(;y?xUQ{yum~^3Qjd5IsmG(TViNMenKGJ3Swt;x7JH+WtJ;pYZGI;6IZ| zzk9&8H`qtF6hFGExg8mk?apS8w9Af~QqK6#`mhcn`-G`xY4(K zq;jsO*L%fVP_plJmuk14#oe>cP5j}B=9bsZuGSiJbX~8ub5l0l_~PwLX%=K|vrG#o z3~EV8jj-@Fb2-l~W*%NfMQUAUw|+SvPltT8Ggpyc+ZCfi9Fw6NsMY`-&~d9iL&tvYKo6JR1#Ka~-*+ zUGw`L)#=RFVJmd1_Ly^)-0{}_;x6~EVZH1ZS93a07b76OjG5^rS5&k!-rf?EQSfpZ z+CtatYSGAvw!3lb)j}ybE=m@7-kK55+qm5da=1M%dbaJ!vZ4r$I%zxQd6S!5u@Rei zv1dlx*}g=3ZE~em461BA&l@iEl=01E819O3rq8cj)AZM);db4nI^+9j)F10}!7)g; zToSXbB!A|0WSN)BYQ0i*t1x!t*eO;Ah1DFLs%ec*Z49=JFuW=vLs9!|6}E=P7@5vW zZro=$^L#()Xus{OJ;n^J6jjACrac#9!&XBx!uRgy6;B_VRhaFy9`8*a_qREYQ~blq zYL6HbvO4Ic(9%3>lxnBnnqJQ>C;c-&<@j|gQPgBP>fQYXt*my8RhW$2?{z!0I#Hky z3Om0{FPqsyPiXpJTxes^yUQiBm{+57Y|U>s(O+NgoPX_5e#OYk`0vWX9~{)S#N zlI{Cya@Xf-b#U%WK8Lcjms_#ev*UwyVph6YRlesfuhV8V8JsqYDoJh~KMO>~E5o|3 zh28EZs==i`#+jgWI%$?kk_LrwkF8(SF_2m}h$1$+HM4PQW~?X{TC(r-#T83=*+39p>VG%Tvp38D)E>?P)+}fjYt%E-vVt6SMuznJo} z9Or}XW@!%V{;9JLc;Ba*+Mm?&Y8+{aT7}U-p{n?>99vV?cH?+JF1flBOah&wZ@<5-_l^FoqSw&HflEg8F!fuT)w>|Xn(qR1@mX+wNX zq*3inTTQ5H(RPh}?=0@SFdEnTR6}Qay)hb;?!)%Z7izStvWw<<^c45+G@(rG=wi)r z;cgYVs^q8#V|>2Eo%L1nm)C+3Qw?)p)e-EpGP}B-8?#YKP27_6vTaOTZmR4On%Au} zs|wxwtgnym&SFpq5~WB6m2!5;F%QLQ9dl76=ez9NmD^h5ON2%6Ct9&GE>13*ndaRori%z^yZ};1B&~NwU1*71yOXSOVn<_>H18lFtW;5$EPC4o? zMi)9&2C>t);c0VN$%i{_uL^C{uU%R$x3i8P39MsNO6F1Qp5X*{uqJ&esAixWeIus5 zwU$h+m67fxi9@>-ncT5gJx4H&0p^_1U~oP$j8xo(_DD-Q#y2IgIgEHg?bXR3zugB5 z%y*YU6pp&t59+ZMrYW`N6xYAr4?B*ghbyXdc)Zgwmdo9Y&0xzY2?=P*_QoSh;CsjY zSnMwI-KgFhuFCm_f}U`F*y|nqs9Q^Q9ED=$g}LC&oE;4@cL{qk?+KnACK2pP7}YTT zLJ&VmDKEl5eX|c6e zw+5UBTW>Ig76W@&AKZz_wUc`{KD5`UcR3HJ3MNiuFw0A&R0=7L+a=4wk9yXk_INp1 z?uOerbk?7TOki~UNvL$x`GU<>(N(sVV|{%x&%KEf-}&&mgh7`|b2hmN<%<)m_`Lk40fsrr4QGqGU=e7)@+@y}{f=VO~|7^_B0O z?W7lpOCfCCDys&tt;OQ5=?Rp7wxWz<7WG<3QE%FDNgtP|4cJb5&4)RXT(=*H(eBKy z##bZNR>!ump|&2CvXWN`IeetfWN>Dy@wFF<_`_ROMbW8dGeOyNcESY5xfW*^UL}rx zhq6jjjci+hH)$m{JgMfaaE{HG9 zI%~6JX|=eoR40nK`VvY4@o~n5qI9g*cLOt6W5!Qb9ch|43>+n%_~-D1h|yl9jFpWK zV09d;7VRUC7I|l@$-_l>J#Z_Q%?JdPy6BE2I$A|58j8Qtd?x8>D0H#|UheB!d z9#z>&O>D|I56y+79u(J0_e*ne)0S%=(be7M94L{I9{1bfws%e}BOD*}rZZbNtChmv ziGtZ~;h7xA1UO}AO!is8*>(_J_EG;3E%$e=8ZT9h>C;lb(1+7@O6~C89n(E;y2tGx z;t(-+N9y^j+x6MH+`7Bi-E}t;XRx*j2+`e(lh>^j1%q1!KgLY1Fys5Vj@T)Yjh+ms zqT4x#lbC|bUY0D&Qc~mW`kc9l1fG{EGL7$7aoz0>x`X{$-34SKH%e8e3!UXt-GUAE z7vmC5;sO8QSFJ`XOMTeuojSEhML}6|qq{J|Tqo=e#P|KvwI40#n&Irb_ilICjGPm& zi{Jb<(3jPU_`VtD8?Te%W5gYa`I}^)QQX|y9dlMZ@RF1abSp5GPPJ!z%z=kop5goE z*I-(#gzy*=U!#~W$Ghcx<+Ix<4gLuJQWDqP;3KRsT3QT3LEtxKWn@|v60jwn-(zOu zMqE@?m7O83%@@#&oVAzwxOa((@2LrMjF0g0h@CsxKHbFYLDMNia((xXn8tVNr8y#T zcRR*ZHmDuP9Mz0)k5pI(M5u{-LBEZA-qFgOXmGAKnb@hK;}t+eN4qI&9ge>qPud#x zzFA@Nq7I1rPw~Y<2hIEYU>-D1vmRg1Z02-)mDQzL1Au4Z+!Ev1-g|%>uE@7KEbj=O zA0>jeA1%r{m~HlO--X6q?{c{(WFsrfM#oHZa6z}H#>2KKH#g#6=JvdG+38_5t~c5+ zn9VQ1cTS6C!kBa7e4o$L&2Xk|ZrUP|Q`7CE$q`9SZ{|+C!5D6)tBS^Sxn@|*t=7Rb zxqAB=z@il?^LP}LgqfeW$#&>>NBu5+6>qIEDuZz4rN&%*i+jmsJ<~3P^8%AIw#HBaqhJ z(wV34Zx|`$_OswuQj+GVK?|pmfUSVn-@-;dH!P>|{NF z9xZ$3{MWfHflI(XW>Wt&w?MprBDS|4J#8?=q+bAqs_;|n?bA5mWfoh%3# zx#Yc_d5k9g5!$^FX4+!sB8Y9bH(Ktb+Guc2&xrmki_F1I;#8Rwv_gI0spA2dfp*^9 zofT%uF7apfHhe=@qkO7EaVr2R-CjAdbi+oh?qpk~!&#&A!Bkd!v$)8M{{6f$M~r`3 zPXG*A9&0N~Id9>!`vO)y2t?NAkL zQSWp=#0!mHtq?UZbTb&LKp!|wMtGEQ#bJKUB}0jhtZn(Uvff=f2fQONXJ(hq>Wy?D zzK)q)uRDi!I>%-0_!CPu<|92-yiE7J4sbG=-vJ=L+N@HsO@5lryTc*$>NJ~$1lOKV zX=|{ECMzgz@g|&FRKA&AD@vpic;bFlDNVuI-SZDIvtj?*+=X@JKy<3 z0+ej9xJW|DBt7ULO!tf?u^+L$BafZjBGtQ(%7fYVh09$OwAy+V!8$r^p00O{iy*=~ z!+Tt0dj-BxDG}T;IKnR1#iB1)J84|!n|RjOf_roVQd4fSPEYcH@OR@)Gkd|95KKf4a~2XFt_ZUFO-m0Rr9cxz&1$ z@S3r=hz7~jA72I=^vk4so%DIGGJ$92^HIOiXCy|}ZG>z)k~`P|Ct+;N=Bs%%Cquk@ zjc~zoH>sPPUX3)Z0NA#yBC%6uz!6p!!P>b94xTn$18wN?-OHqrS%Tl}Qyp=?yCA_h z!%vs%CO1c04|=cofY!Xlh7-+ez!FwMZ2K+Uk(>p_?@jmi##Y`PzB!(_w=eC(VCn8>>7a&dO9h{yWCPizceSaRScX2FAhtzfKU&@bE> ztN{A!l0{;-MedF=%Lr*Cz=jLEs(U9IaL^6P)Q#PZQ~>~7wu_y8;MOD2RimQ~7`NG= zh2g)NbDo=O<8u*vRnwb|;$lSXr&pFmp#YKYIM659HnkfA;8_`LM@cp^MU4jV+slez z%nGoPg_r7F0`u?;#iDn3VFYHwCYbo6{eK&ETVoeS!x&-cjIk{zfh)p!XHKemS z=Ika;=eLaD;`1x7nEO$Gb4PR#98=3E2ei7o31X3A>YVO|NO!QiDTYz6JK;F`=C=y9 z<&-fR?mpj^V*l9LS~@1|V~Y8G#YLEQ_km_2``0~9`^xg(w(NBo4kkj9$ciV~z;TO$ z%(W(q?z?*QE|e~M+iMV+G*GXn+*^UO_ER9lgFwa*!I)wwjyeESsE;XmN7YR`fNBtX zFxi+}Aq_h^7_%$V2h({p_VqN_&-2+m>YTEJr>T)L2F`PetO>x%=MQtR&yjdHq zkw3b+9_BSS&(vKg7=vZMI~{0(-}lDwJ0z~Yny__&4Tw*~d`x^R>eydcM1c~L|I#%C zJV;FvU`VFc_jxpT!}gdo4yU&2eWxeG+wNgUuILYQ#VB`cTN@ zVKMAs4(28?6hdvS!l}xmyu7>XmUnCpiIoD*5+Dh=#0MqXcBl;vV2v5cIk1^kjH7wG zZ1=bRXfPXwBqymMRYo1c*=05i)@$F`KXe!{A2(TvLJ~yo8o0I1)%Cd$l>&&gPh;{J zbd%n_Ts5$l$!>HgCX{)bcvZwm1XpLoQ9x|?4!%cJ>@fSR7(U<33Zp&l!^+Gu!#&QL zebC>S0Y#N&H=g!aebM!D8kRdQjO%toUM$MW((`HhmRG7zu#F-%8TpP;?{qNiaA;gOq~LAO9t4J?_G^7PnVJ)GZZ0NI86cq_XxoW!5S?;6y=_Pg z-;M2?&PFwf&w3HR?#}8Xm;?k^R7gJfVYby>EV&*7f4LuOgu&4r_QI} zGU*j5xCtF=#db?@0b{j=Irw}EGQl^?X6zKRPR zeU4DYw7i|eS}W7!Obw+&Qbx9K+>IbHz` zW~UKQfnC+bCTnpVSLSKVZXguVD<=ZdIAm-^@9;E znoo?8AN9jCr~sX6m&EdQs!hy-%?#eb*ph;t^R<1IY{1~?jMk+e#=P92^Kds)48`MM zGxgPE2v}r4o?ZBy343U(`Di{`Ts>gaB7X>1uqm)*dmXO(wRbuhsR;+YjO-#s&MfFy zQn-bmJnSXT`kbavw9Sx(Z#{xfjid+Cu7bC|#v)=uF@Y_K<>3}n^-L2tiPAbP_efCZ zdHaGV+y zbrBh9$X?+Rg41R;x~Hr9c0^{bgIsucEx7Co+i=-ZJ}0k$G9NblVYxpdS9yq&DfDZj z4)wCQ%OqE6WV73aB%$X6jP4>MIjhH9+1!nzazFQQz8x5(z3dgM816))dnevW!6Qk} zP(>U+^$J4-`+@i=e13;L>uqMerUPOI0Ezx_Z+yLvJ5tl(;pVEdP};`%es#V>br$F2 zS&O-aUa|qfd2PdE5SXkF)rhaOwMo1n^=PD%St~3rTR!JspVv)vo8*-O&Qa0F-Dxt6 zootl`M%K@`E*X2ANr-3tZV33@A#SCh^cRP^wMmYO?v^5*UhAG~p zcS9d^=dCwXVAEvzaD=mUPc%P^)>J2%2SzH+!zd~ivs>dc_l@I^Cc)!LTjsK~S}p|~ z4QzZJNFG}d+_iD4MJiuRyNQ~aE6Vq(K{)d@bHG86{kD{ajy*-PLG;!=bQ_SDyPP7d z0ZDLA-fcfW_>0!VXGoY)grm&2l%mX*;FAf?Xm-OXy)s;`fdY8y#LG7EUhN>$UjWNE zPpx6RJfRI&_xo8cR|GdFybqa2XK|i7%tQ~-m%XZw0#W7e(BUi93oTa- ziMcwUoT!R}^rOgY1gjW+M>4+a^+`|*a%EwE#X=}j(32Gh!Di}O}FflX(yhw!|wtt4t_3p=yx!I>841HMz;t}vt|_Q}pp zv_9RtBSu=CYEHTUp1~NnGWLi4Qs>lqN0LuY%vH#z9}AHA_qyPLk_MN5x)?QLOgM&l zkQU=B%psB)LK0nGC+A+g;?RFW<4k(6sl(H8yak|@Y0z`bv-2ijOb{%bk4$}8jC_M9 zQN?A`5w)%NDo4+D5XT{^s;9RMzM}w~$by^aR`V7>%wEKNWx&c#>2iSgjEARvS-jeK zX?3XykE8J5cGDsV2Z442S%kaZ;olrn!u1TN**;;9RFD{I0bzk%nu2SDH( zLR_IQ?vwl6G$hajI+cMCEZrk=yd}%sXy;cE&Dg8ceTR8O*WurcMwdf6^StsFobSur zw3Gc_A8jwOsOnKISJQd_bl!NARN6DE9XM6qA)G@|Y2Tg{JaS6ildAX1bw$ZeL%1S? z1;|A^gne0XEbWv=)(j@2O#l_FMiaryQt!6xJ@V8SaDhfM#MSkd;KD1j0-i|hssM0N zRD^2-WeY@UF`29;lgqZxQ$&y5Q{p20p(xYA)Z{L1NzB=em@!s@_p)b)EUNcN4`ZIC zebCj;2V+F-yv>EL`uBXgAJs0``T-uU>mC0JkAK?8v27B(y`4v!fJb5w5G?0%O4X{y zT=eE6t@4;<29nZzAA-e5a9Je%5Is-@2Y2{BxdGo5bJbjj^ZxK0>w~OWN@{WCC@o9m z;z~mHezi#)``&iJhUuLQi!p$^z$I`Pe|^3a4$<8Z#gSGRqcPV{g*)Xlgxene+< z48XyR*~l`2v+?y(Poq(Ag3TLT%uV9im+5I*3NnBSaEh7|=dvOIXqV*A4_D7a?&-2_ z0W+n&NsCHlYOoCBw5)eNt>}H>~ zzm?iyn(TsEeq6HFgDWV5|FT~Ii?z2fYR7C>RoiVXC#%7BuUoL6N4QwqjWLQa`y!0G z&%qr*-kv68Se%l0*VtN`1gnkb!z;oh!qcG(XPrR5t;DB*D^#{^*L!nB;HqwqJZDw& zygTnq$bj#T^&1eZ-h4^-5r}eog2PluOm&3$jqt~Mo6S(1flpkF4@+a+aVp8-Mm6H7 z8Hno?RgrkD(oC9+>j(L(f{kVY;P~dw^C?p}T+Gg5HHXI*uIkZQxd)f0G;$+MJaejW zULs{A`4w#uuiB&S!8o1^5G+Sq1Jep1fJ;9!mi^i(#U*e@W=F8Eg+Gubm8lZZ3)lth z`C%lIoQU?_wzUI%Z+zJ=3tqGg(_Iz7HE((X+Bfq4Q$R(wasocF004}M=spSc&h-Y) z?iySaYJarzUk6F(k| zYM8^C)B>D0_E;p$fnL^DzG1LbQn;>1D{#&g1Ncg*UBHg$E|GjHn087B(3CNF@8=CL zcA)+6l(6{1>c+zQ-4KUsQ-l|rcsOZLSz&?&vBbYM;9jVQ5arPYDLr7<@Y;Yz1&7?4 zf?HT0tVDjm0cU1ftw4+dEDc{C^G{Xt54`LG+^E@n$xp<3>e0I>UM3Cms8i9~JwQjHProkP_(Is{}&PsPpTZD+#pF zKc_(t7|gi)Y5QBG9d^N}Jm$>-Mv?)$WN@d~zxAXAh` z9(+&FW)F8(`{>Mk>WD7WMr97N zqbgps+mbZPYV57eVy+HgCMUh|C|};MtLc)S3!s&g`VqUTU?yjMm`Pd&^K10LQdeVp z8BSVcc7Tl%ew3f3si@?K4)S0OVx|ktc$A%2Ozo3`gK7c(C&92uzGZ8=J?cgUmzmG! zbk_De2M)wHu5T<}#ay(Dn=3e1&K08)f%~j+Cji`XeRMvC-<2cigKnM+rFXl{!JnW6 z;?%1HW1sR!zKekPZP;>Bos?NuzY;rP27^wI0IkC(y!De-srj4ML)AfaY;s9ODqkkN zhGy&9ai6Nx#OcY>uxuxH|T*OT@Nu&kFH`=L9zm~Py) zx9WG|AQBJh$A&oV)PkidQS6-cWdZ78hG-1!m=JDN_25~YL9s>0-zX|_X@x=j zydt4c(KVwx)i!z5DWS$~S&K=vs@3j&+7B?xnEf{DZTIF|F8g(hML?2)z3c+e=1|L^ zFf7X`sv#o0E;!djbay|btE+Cn=cR8ZV&&W(!+j2#<8;yjdKu0K2NuOM;G5Tly;R48 zCuhKePdbNKSJyxk6U6b^mk42C*0KX7Vs4A#cC)`Ds#%qll3X3yNG5{y8^HM^;QXGW zMrN8Ufh%+fi&)x`d8`<7prUd-fAE6N4)$}}-_6&00}8dj7HHYi7r-DW^Rit=%wiU3 zBIB0Ik)@-awohh`xfZ0o>$$EXCLpMqmeTMJB7WiM>+x_n$n-|olZ0~9DXs)Io7L0w z=-3+Z-^&d%pjQ~n8&n5E<04KkSjs=#1l>z(0t#JYYU%Ex6)W_Gv3q!4?vD285Fq`spQp!uymn?*CqG^~ixLaE z2$yPpsH`SL$dxC3Wij65ebo$+L-p396Y9kF5FM#8gm~R{e?b{UIt33zII^o*0j@1$ z+@T+2{(g`zv|ZFnOe-KwLh2}p&LfJU^%**2ha6O-MJ*_jOh3SJ!6mvDiuiu$XZK2K z=q^DbI+E{W%^lc4jTB-W7s$bk30Ui_D^K^kVCW2tcD6(km673bXd8l)zt&(ahW)uu zIqeMN`QDT^3i2xCdAvy5qC`?>ERb6F`^i}>qg}y)0L2Cuo*J#Q6r_2?Sq5-o&PsPv zLm6;w1=Gc*=7t{i1X7eYMM<44aR7}b5mqK#+?_H-!GdHVhV%T4@I4t4FK@x^ZN~H3 zTFp_%vUgjcrMVU7M!QU6wCQ!K7y!|7)D0YQ*EMC>KohbW z=#!|F;%>2`Zn8&NIfCW`ztD~e4Zau26Lj!AMKR!p7QqbouJfn^IONVeDL9Xm1?DUj z&UqE+ilGPM5qXpdV0RBpO)v8*8xQc(fYhvr#XQjXRJ{gA-dkMYn^hsRDkNYMZl|=c z79%)d5e>}dys6-;mq6N3v4@;`fu0b{T{5XJ@w{^sg(;yZpo!g4?_eZooFl5Jq=L58 zNQ>uzS7yj3pnAxjRj}z@En_s$lv^2;WG&tyE8jom3z~}1+mQHq-P3Xalq*TC zJ~G+x*YdigGN@!HgT3gG83~1>Mv8!Bv+vOze{|IZQvoH3Lq;3~CBXwW=is~28{yTR zsX18mA^;<#f7A>o6rppHT{YMtJ*AjH(_DSwme3^ROL`By1_WDe-|@P5byAc1s2K&30W}-|{??Q015*|oBjv!|8DEQ#f=7bf zR0ja%zSI_1idpqh6q^87Q7nQH#e_SO4#Atb;vK7d5l|J_Cu_mJw1Kn$Cao^lnT`Y$ z=};%*A~XrrF-()%5nm?-fIM;|XXsM411$1VqjVna?1J{lG7hkKfyU~Q&_#jJC|t}p zVuE@P${n+=V1?{5@aRP-BEJff8@NCbG}_5#jR{`JbiWWSwnFMn5^bT4A}?To8&yqU<7Dd=6A&+#TtgZxr#0S%)7eEW>AaB$0Ec+ZI z`0fDYFXuF-h0Eb|=T@zE-NRJXB$dmvd^xzlFd#FY0#HA+lL<#TqV03c5tK1wihTcW zD(=>(cLj7eg1Ilb_4C|eJ=8GBl!nyj6t~(u3fmi$kYL$c*+@)ZR-BB$mAQ34IP1Iy zxq>r_=`xbwbGUuMj3kg=aRJ^#pkgGkWIa9vJ;xQ{W-&21 zNCL)`ro-0wuH!f^DWTOV+}}hV6DW4uxi06Zzaz^s^wR_}6o0c2$CR)2Ac$u`Y^Fv| z1?m^6t&}_{Y;+wVr`MKwsa~enO{%NWiqt>DV46D2F|&soJ!ZM%C~PTiv5-3PqaON- z^5Z4x4#f^c%Qk zZCosFi#_yoKx)|bIpVf4Y$Kxv5_o;b6iFNOkCFtW-oCs}+hxbR^2{6Gh7n}e;s_Xz zjExd`vU;-}S|iwe)jw)BM-iT+u)L9)RWvM%A#Ng_m0>v*_;^U?%^&j!_}=jMHpi$P zu^Y??>qdr&@GY~HR)JLX&!=XW5Pg5x_Y2b!ZW%)HzBE5FMTs$wMK8p~dc6)-K;s&c z_X?TW4G!Yz1Vd{Y+TAGmyK#|qgHLFt1NSUic{CggO~>+~I&vlLY6N}ZZdlr+BDFHx zHO1F0l`k=X^Wm7(255nn=$B~g>K%2+Ul#j|VpGd9d>Wp~lQPa$6r_FK#E(@Ns+rY>o&Z2x+JesDJN8X7v z79}bJkk%iC(~q3N2!oRZj$p;0-Vh;S9W@dYwY30VZha&+anEe`!BBM6`4BuAe(#Os z$x%)fRKR0FjGWtX#11`jZ>TF53z8B|3BRlgRCA)S(i#I$N6~oBpir7{RYDEqM6Nok z0>Th3V3baJK+GDP!4+z^#HR+JYb@a76tE!J;GmYqJ!wTmn(-6mxYOUg4|1)>kN~Elrz8-2~Apwlc12 z2!1TJcFzPCc^n5a;?WG)q+z(O+WSWI=f-Nl?ZBfug&Y{~ATf4!1S6d`Ll9l;!X);B zAtmlCJCRVLmLIv*fx|Su9gT^e%RD!!m#92Pas3kcx@BC$i#Z$#7k&xInVY`WSR#}< z*Ac1N_u#f5|Gc+wdv+-!fFBFM<#%K~4|PTAuEu2EUL%0n+gKxnUXk=sOvBH~ZN!F3 z$pABAg_G!7NkJ%-7o9M0jV3zuSU|F54p+lA7u785wmsZ?GDszxLGtZzo%MG^8OtaX z7qF9$uD8sg3;Hso(%O-{cy~!?ObUoWSQg2!NJ|mW#KHKyIqk3W{uPDtq;3M_oTd}C z#{F=PCM5^%C0Pq&OV))su!K8pJ!)EK<9#sNhE&pkN&*7;{jdZca<$iYrNn&Zr7P&K zI7Ybyw?_y$@>Glsz9#s5bKA0rH>j9_FB@Bg>$}YYS~|$!k?loO)-!)egG;fPESwc7 zT18-?n0E!s0bv$wTeGz*>wKgxGRRf^?%eDh`oGcK51^}@Ipy#sn?&1?g!Ptin#p`R zJ4y%|4k%*noe0(^NZF2i_{)fSJS5!DW%r)0o$kWB_T0%8*Z`5V?ShvX#YA6wCzF=Wd zrfo|~Lh|#SvOgHq8+W2}=m|bqUSar=kI&8OAYiJ)*xf-%6n(*fvqcDF>TXJ66)Z2( zAuBu_`D8HL20^bnjo>t6HjRWwzGr|7RuiPHQN7qZpE}4xBd1d%rUj63--B0zHGD|@ zCRxKL53&)~SCL%gjTBH;8))J@*pl^Az(2ezi?V9=vL(2sm>|X_3-BBb5(12{zKAcc zgdPUNgYVEs8lXTd2|m_T0Wavd1irdrI_usU1ZlXNsKHDVZ2}3@QmPqRRDxto*2=&HdhE?S>j-80!md=rK2) zqQ0(|!!Dv~hs4KMgkCf|0-hA}`^AXOSZNhmSUaQwVZcfV|F@IEsSB@{l6!hgTR;I3$)S+nXL#7AiB(O)*00)n+oCjJ*nRLR38%Xe89P(XsnPw^LvMW@8T6x*=j*;N2-1(!4-^aK?|3^qfM zZy-pSTvj`303zr0u})S4`yXBj@9t5TUq(I{2g}I-INUZy-I<4&3;_bx6M6V(vm0ya z>R=~qM$SeWQsG(c(tJ9-3{bD3v#?V8bd1_r=Genx1{WSnQ5cKe5;@CmiJ=$=eK6;X zOLII_u8&y!w#T9X6}`H*{bg>fC*v4nc7Ft&UOY2Nh_b0-p9X+=;5#i?2CK*Q6X5{+ z4LmBl?ol6A)hz00$7J6G@!}pLI|e#$E?&ZApbda&C12Z(FNF@o*Pw z9(9DfnjS9KtSQ3BJ>7|aYK7bI2%v&od(^cY=-RY(Xl9^dg$64D&Q9Ji%dof=et2ry;y1Oqyfx zir!-_2GsDzbbo|(vU)wjhcAvKY3WW#zuzt!0*l5Z=S)JJp2oxN)JME*A%Oy4SkORL z%t+1`*LTkx!|%5oh+%;NU&++S+8-#t$+9Mfju76%GpE?c>Pz$z{Ni>)!W!2Hf1P~J z5D|$U2~2^yOs}NOl}BpFX}2RdgfubN@=R;dDn@q9QS7`LLT5F^7g<{fLVq(v!ur@h z3923fBl6ggvw?$ggeRq=9&jZ&R+~#JJ=0?b^>svlvqTU?jnG&a7xfb-aFp=>L;(JI zTny}N7ak4B;t>(uidQun8k zrN$N@9A04Kuow?8T{t?xbP=D;)b#W(H`2+DG zmek_bJ@KUHGht(OuLq1i2Jc`X$pY%ZecJ7T!AhqVaBBfEFJuxuXCuDuU zUX8T_R*PVhj1QrDy{oV5hY=$NNEPeGVI1qUxUY%~ETB>kj(RZXV%UMp^})ddtbRgH zt_V?6nL)|-kB~mLR4f!!(;G~N@NdDFUJuSd$k=Rv^^N-L`9SZ18P#3hhZ4zE1Y(({ z;~n6~5wM#x=(!mf;#;JhH@P9=+B=`FK`4a%XCtzY)a!#1Ovszyh;6q7|JrR3R}|W1 zdnjmr+3lfLjMQj6IF^Kfv3upA!mn!TNcFFtMnn?&nLT}*^c1ZVG-ql#D4LAaqf2BB6IzCUK$+k$$PdgWlQ=dE@TFUX zw@dATs$wju$=w^3krM0$sch!7%^b$%a zA&>wev~ZLV$b}=69}w!n0e28eAk_a+0-=N&Y9Rm5J8fsntX5iCmXqDPkG$obciwsD zop*(unDXsE zQapx*-uU!{)vhc(TkPPj`S8T>@C16>QBDkV^!Wv}8@q>j8cU5bf>C5Gd$hReyc)@# zA1fX!PaHbIJd3#ZXPMidLnE!A+Q-*s7nFB1mp*_y-IXW{wdn7kBM6?3S|G$VW|12l|-*Lx@^0$cT_fdEw zJP)Q}E8G{pMV!BP!gFB~RJaU&Lwvt4fQb2bJ&eL*;n&3U`xLwio(gH$375ft5ZCX0 z@FFlF4)=l|6MsO&_kR`@L~8%5HSX>h6lpG z6DQzS_&az3%))lq2tOtE!3;bAzD)eSTi`TgiPtv@Tj1gF2V(U73%nVg2{{n)`}*Ox z#OeDS+z8jhQP>Q3gD+FBH^VDH)bTT+$xArht-gAFaU|Sttw?<>BE8LLQkCfeDXbP3 z0^^uTQqf4IGWjW7TigG&NNNZCSu#ibOJ@h9D-@I4Mi+Dh z+qNVyGcM$tZbXh-%5zfzzwv9)Ah4f^Z#SZ-atP)^x++ftt9tS zyN#NV7IN9V2>K{uWf3ZiiQWGBaDSmRwMAvJQB)Qo{OoIwRBEKSz~{M)Ilr^8z!$O< zifgju&~89KJbJtRi1^n!$z#YH3t zQ$Q)K5Q}aoPJaQG7c z&y~~;9+VY3awCa@BUIXny;z3rq}BWF5Qy!ijaZQr+e>Q)Tx>I~6{oR{wAJ{IOD3M) z5g|=*I9-Cr2G%+o2LEW+ay3}yk|jy);FQ=gAlpf+_uHW(+e@oj5hvSA8?ypcwwE?) z#kXuDZ8a|Dl8L8xgh_M3PDwR5>5?U}Pl**fvz@eVB+>TL+L1cjN$UpqY%i@H7qpGE z)p(*yCZ67*lIDV)l4>y6B}>97abu3QlhzGY+D_W#oIW=&YCHK7)6|Nm+D6)H9M&Zh zPw!AjbHPqYHTdq5C9zIPL>94H+ezz&cx^9j)QSw-URpb#YDl89PCv~!{}r$a?gHOueE+ZT z1~?A}jDQ&T-@zFF-SBF79vp&)!DkrXi}C&`7=$a}zVKtl_aB8r@Cf)MCO8LY z;CGDKKL_uE%iuSR)4u^9fVaSlzyuxc4xgiLUJ0U((xRT0|EfMii+9e$cqqgJxOl!x zg~TY@8*wsA6FA(Iq)=#@7)GVqO%y${dr)g*tHhMIo89Ve7B*XMQ&X%Zhxnn8KlfI{ z=IV&_+$<0G$!Q~K+`Q}oY0Kg05`)n#!2?xs+WdpnxD+0aCPPZUBFQ0D>W}kB#cf(r zmiVqeF7Z)Pr}@H4BB>$qT}VA1O)|{wSNIs>V@N$e5+_pju+F#_-`D#2T!djL>BJ{R zc0bOAB7BaV4<1}nycVUmW{14-WYfpf6^~B+gHy)c5&myJ)(VZx+Qz7Agk&v}BEoh`55>|cHH6#bL?kJkUTS90 zVAC2LX2fgX_K@;#3#3cJxe)4F-t~*GBnP~ zl>3*;YQr{z>6_A&S)sX3CWz`cBPOOwW_r6D=G~esp{~k=W=>A`dm*iJTk>8UZE>KJ z_B0To`tpe#;tP9Th?!tJ+V-|B#*PiG+F8vh7Y#&I<-yF1Db3?pR$45~N@df$S|ZFD zCzMAYs$o;J44ZvtH)To6q@}*cc;{{-0jevrrF_eCuzY>cqFMw ztF%KJa<$AAX3Raac`Jx@--c!rVjDKMI!31=-3BdfUpleV4*eI}xmm@U<;8qbN;}6UH9NFEYH(xoiR)H};WbMFy!SgbNxX8*1qZX)!n~Q1u9h|= zvW4W#25CUrAm&0_T^sgP-tKI_b+_twF6h=ZNoQquQ7f!D$=+%8smZCHmi?Q3uHE7W z7jRpPdqDGg<+c&HN+2$U7WWKiwP=s^YSA1>#~kl~lqwa9q4KnmD$MuE#RW+LRz#%I zRKnBHD6pcG8<1H2 z2rN;xE}hwRi97zP6~t+%OOC6WH7&1!YBWzR0y-^~Hp<^-t*F|K9&f6N)%eu^>wJK!}S*8T_Jo*?D`UJV%t!z17x@Kwh9uZ0_646cH^ z!si+9zYU%T({Kc~!=Jz>8T%XXShzR*hOz&9VF9A>-;Do12k(V9!joVK?hl`3F5n;F zdNAP#Tm|=mFEcmrGB^c;@L2c>a|1U)8BW1=_+$74^8?R=gAj%X!#9~DcrB#h0QAFe znJ0J;yat{Qqi{d?G?n*H@G=l{29Je5fnQLcUxJUojbPPpPwj((H4RXA#88ToS2;K92Rc*V!% zE1O^6OWbr;tEi<6y2G_O)L3VSx`rjyIxA^~`@7QwR?v9X@Hiu#9cQN{?W~^gakoYd zH{4k@T`GsEc6OK@o)7!+sDtZf8J%wMfj*uaRJvs3%(7H2X7bIu=H?@a7WWk^D}^j8 zX0hC-Y-H{toylh^!J086Pqg|^;jwtFfahC>yvZx+-^$~~`o-1a}iaFqxrRLeS z;c2S9JetmsG;cbA?bKgS_VA-&RVL^_MRW8GM{9?)wL<}G#9$?;8LiePYBgR6IxF@H z(n?NAs}r!yI&4R=TGgutJ{7j5Q}v%O@!sw`gHMq&t+Rw)v|X*L(}A?3RCRlfmRD)e zXO{%wY5;P zB_~#DmOxt`N5H&Lwews36XQGZUAuPK7nB(PGt}<+8^)+&{6Fa%|38)S{*}&{U+Ddl zumS#?asA)Ivq6WiGM4`^ybjKR7~6lE@%$4(jPG|sA3O+t$0weSo$2Tyx8P&&T*yNd9soaZ<_g4l5LyHK)o_OsUu;7!a-ui9DT&RSMY-TDyAX(#{tpV$pRw;vYD%-48BWIq0H7JGUCs(E`mT9a< z&wz|uPj|GOp_Zg3#n1O{?rCx^`n__9MJFT0-{oAjOO!(x6J(M`)~!m$Mu9g$e@TQU zSmJbC(8A<0sZ=)jnY?*<1_}hR2^G?z%3{%MUQ@Q-Ln`B!&J5Ngi-q)nMeCY1cH%2) zCiZKgq?(L{BGFVh6ptIJP%M&;$_YJ@PQ_!sX2lb}k#OYa%Ts^%ibk_#nx)C!0qJy2 zTRGFvbRrUpkAB^fCfjdg(XggjZ*3v8_14x;OHx&%-CL6}I-;`hf8nBYlLRnFNgGug_)*5BEg>9M$Km)BPNS>MJ~ta?dX6(Tmv%)O39ujjlM z{iORfJ*)k8C|f9-_S@ryEbDg-nb{}3m^Cu_y0hLZItISGuE))mljRcw@Kdk3U?yiP z<|OOqv)PKTgK;-boJbYk((zkoxJ}9*Pbj?0gS@R!E!YG@Qv!#sKyQ>Fa4b{j_ z7s{1^m>iS0`0~VdgDZ=)-m&G(icwcdPK_{-pG;zbRS`Rlx(D2wG_zStNFnx^ETl{) zdpk$3&}Y0tqOs{0%ZGiZH|#w^rezXTHY>j08!N`E4DN#7Iio)8%c7^Dm#A;Z}% z{*j0ziG8m`N1PQ(u(Bs<7Wp;!{h=9(d-Z4xu@me$XndTiN*>}qZ-taEXR@qa&q&6hjle|P== zON{&927e9}I03@`|8n>Na{&JgFNP@?fJefe;A_kW+yu{nlMsR)_!e^lAA{GyJRE>W z!_S!$xCPz>e+C)Y4)=%eFbD8%cpemB9Jat+K-dWU9SBXp7)0T6_#I>WJK#<55;y~2 zWIX>w*aIqjj4}O}7{9+4UIEX7v#=e+`v1=u$Nw9A6kZN#xEdY+-(wvA0r)F82YWz* zyTi{J$A1W(508RhQm0>oTS3(C%b@+2eRa8it$S2;e%n6r7~gg!FK!Ll|JKzLtzQhI zmp^OWa%|qt%yrk-!cv|d8fUS)z80KD9CTx7Y20Exd3Jp*P=(@Izw2wE+A-P#9Q&T( z&7pdaxlSKhWAx&D*XV1Zof)+t^B2yFxL>)Gxc&kxZ??@HvNg@kxitpP3k`wD-+lk*&D&Saxmb|WVcsy_5^r4X)lP= zfOX{u;F7ZKzv$-r)qA>lXWiGu^*Fu5UZS8$1^W`P6I%1%)pTO~znMYlwPI|_`u|>M zfciPc`R{=nArC_T{{Z+6WBl)c@B>hWjqnx5_iu-n!}Tx?!|*7017rMIcr4rxKE=5H z49M_V#_>;rgAfC;&VLf_17C5*?>qSS7mV581y6z$48aC?Ap8$w`FFwq+!=(P|DWI} zY=-+oo^ksa#NeTDH~2o|_4mUI;ab=XzhulVd;mNTX2F0y_$_tw33w@pdYXiGUrkS# zt3;{MmUQ(i0d?ihs`0y4wyCM&u44tSx_Y~g6)ZmsUB?Puld#@6w-ozJ*Wcfo zI95pOk(j23KFFB=>5zky@Cf)4 zWB-@HH4p~j1MnX34dwt|2j@VA`@vV43-~D91kZsy48U)g7kCf62A&S1aDVt5a{}*y zS3(A^f*&$3@D_M6%)w3&a|It^Zs70W`EUvz26uvQGe7VTPz2%s|H1GZ<_A6suBQJe z?_=;-_#?QTd4iY2DEyqd{96!p`gBpROTFyJC-<-O7}Zs?xD_J)bt;9+f?H>xn#I3` zvrXOouexaqcS1bgw~+8PyZTxi90YbOfj@L?v+8BQDw_yn(Dkq2whgN#b^R+8O086Y zuEpZodA#WQS7_@R?fO?}`IzIh+pd2FzckZ`?I?Pzk2)@N|;6nLV5aWM_^*xs}ZWZJI>z%RcTllgF zyWvNS?>`GqhAZJ-AjbRefuryc5ZeAX!*fCS05}6zgIM=}F#ItHzyHE7fbjkQUU)OS z6rK;yf~PC;m6Dy2%i8?gX>`qPQwlma|-u{yTXr|NBA1N z9x|{C?g3w59^p0+@dQ5ruZKT{3K*ck)mT#3-1_tyO+2oj+C7y? z44v9{_~JGiHQrgHAt1tJ8FN7VTyMv%0&hzF)?`q+P|Eeusz~5FcfC$KYuF~8sfZSs zFT2}`)>vl(Y-i7YMl$&kV`1FdTVGwGbg7V&$}^Ua`hG0qilsslXWYVSF_SA62n6Ea zx@NKs8)GX^%P2dIxBpp;=cQR|TQ&-@PwNoL%eP(QMbf5G_AC)NcP&mF-c`wm-4;@F zp*R;%6Psma6)yG7l6`hION;ikZ@m!#E`)g@wQrrfNdgLFDt#0DxEa?a;%sNmo7?4n zb+g3jN)>XG394roxBhnKY)D0q^EPYlvoq=|(}FAJ z)Z+FHIn&73`x2<>BkU~P&Y>n7UnN`TWtbCzd2KFZ_a}2kcGg^#wwqc^?H(;0GDkG? z&~nd&*3p^hul3K+*p|+?*)uWbzoR#Cq!9K0zT!K+PyFP|PvT`wF$F85YR;BO&lbU{ z#co=x!icT^_c&5$N3+&-q+t1I=sHpmP2aiL#2b4}bcK!-#Q6VljQx%?z7*sCXF7wx ze`nk;d;okBZh{xVv*3x4g<~)Rd*JaP`~=!d!xwW4Hr^e?k$5;EnKHcq$a(5bS}gAr6m%JHd~bU-%4s z4E_;b4Px$LKkS69Ap8?N41Ukt!hgWO!j13>xB+%T93BUcfS)qA@HO}#yaHz7Fl>ao zz!#ZgxE03y9aD)6*Uz*JrW6Pdb8(NEiT*^;tQ{fN*JMJ+Qji@Oo@aNaa}~oj3pE`joU{f zS*>~J>d1|b$l>U|^CKtaNZ{4c&SlUeYE!&cd=+%!Q!j^e!mPrGw^e7xB*KstuTnCk ztkvleaM11b2;E2)zNXSR>T7cfYb&8H8}y?M+rNTYbe9gu#^# z?mM)5a7-H8y?1Q)`1roV)uD5PpG4nuywe(z+U}Xy*|F?lb#h^n4utZt>+i5t8W_9+o1y4g2_BGRp&>zbIiNj0j) zLy1Tt5{e{MGn9%bT1ZKzbUJ!8r9s~D<-%;_xXW$Rv-{F(+RuFasH$Vj@VFWh7 zqv0VS;syMQ^Yvx0&YROHYVJDjca77)kxtg8YG&rkb2)EX{`i=C5wG}RrJx^(m-O8e zC&tbm@iOywi^0bf?qrpehZVJ78gF$3zT39bL+xFtjGWI-g{H>T(Uyf>+2ctOH?Ebw zYkK!6EO`>hd*GVh%~D!XeBFGnn`X>pp*3rzC|Pfnx+PaP;ZPx;X0^1Cmqv_ADYGze z%{6(EFEfbt_dy$uk}t8fMTjkuvuJC73Q9hhBr=YXT(nXXYuWk`lz3!tbhni-hp-_y zk((wk$=Jxaou-s4Hzc}38Wk04Eq9t?S;z_)CegS`nPlq~qBCy)U%S3i`{Y(VPXv06 zg`@F^8dG8_p6KPU%7eVG+vXnUoG_78QDi*hhr=ok?c?#d@0nk+UcJ(3B@&i2B~rHv zDSqY0(@~A#YCKlEL}~rlc(&cAVk>8{ef7MGvS=y=k49yj@#}Ft)>szryo%InT#G3r z)8nydOlusn_F5;Fl#F`iSTsW3asDOhfvAvbrCMbj8Qe{1=KeS}5sro155Fo{9l*T0ura=hbHqwxk`R>qy~qzxH!~33vbap!fG}PDe&2 z_Pga}RMWti1aP}IvhzMn5;TxLu-&rNW?Ah5$sPE4^QDvbQM9Dw9OJ(;&jSf*bUVXq($P(oUMUJmIuK0OtLe=8Qf;uxY9y!0< zYUo7N;2b_$5^?B4$>d3#{9V8m(oyl7b=XT!hy~oHn`pDbt0RMO94K8;p23WQONvRn zQYe!OsnT_h&1HhPA~RbXO~U7=ML5$NnrumnxXu^yuvrq^m-e&EN?~dW2^~Ts>AL0Y z0pk}lTbse;r1d4mo-LJyt!S~pqmo(LisLOpqbv?c2_n19Y<0X|E3$m$);e=?d26-Q z{b4h=)e3Q$Igfmdt=&lB3tRo6wM0L}PMRHKa3MnmQ4Zz@5+*7{j$Bkc*$hb6^nUZD z@4BXUt2L=VAPM^~w~STM@$%f$tMby=;xT4Tm+rO>nz+A75|PQ9;vzn}KqPWuuO zjh3#7;4(DpP_9Tt%tY(+Ze_UE`}PjiZo;9^T&6tBV3D+1g{=1KNN2yc_xdH2h+EKQrO2#7h0COQU zC2kXv(yHuMgI%&SUg6bHHjx2m2Yh!4?@H!inzRt-m_)zZa700O(*n&}=3Z-8gS^$= zILiI`d?=GonG53Q7H7{cq;#EkqZd_Y*Iz0lt`{-m;|P4WS^+(+GgRg~`{vzvw(Vyd z=VAy|@4Yl5_e;B!_FbS_5harc{>)tS=OU-u7R^JtuE{pu;kG>CZZoSt;F=>7BY)x_ zZ9O~7{W`s9J=1eyzgRSF&|g zHnu9?nQL-hgW6Y%HeFj|=}f7Nne%ieoAUY<`*fGhY+8sw=qt>8%I#jnwbORyS!3zE zvArl&R+PIHE48-d-lJQKBBqS;w3!Ocmy9A2RI9f^>%L(9CRx3tdpDDL9*b~U$)c;b z-v>RtyBDz6;fM{J+>(OFH%_az9~JDsL3cXq1~_jD2P9$$kxf;HBbmHVOoZ%FiS^dI zO{^en&w(*+T_6-yPgE8#88p9;=!eqN%5YOamVy+VugYn@JEQ^vDXHY>UhUq573{SB_GrmD}_ zh7r6kB(OD}C{|kxj$>`O%t0|oVMYkBL_)9R%JG^mohkO#GJ!8OeDw` zDkg1freE5YC`ns(9L`I7GnL`l1SVnu+q0k9yxU0ZGwzi|xFSO>mlD=sR*8yCAWHL` zZYiIb%b4?628rfCc%mJ)K}UTZc^3{uI{^?3CTc=o(B;TsGow^s9;`%j;Qx#P)<8d_mD(l+a@#GomI# z>7*(r;;E>r#Nw{f03DO9^;Xq!W2k&2m!6&)^(n4uB~KUCC@#{8*?_I?K+3a@eDJKu zj}9lylWW)q<;gZYMb}C_)A-~p?B*gkr`a`o$SjA;+A($CakquGDG7>nVj*A&TU0bb zb=S4eJ}fVOTRoF7dEtmTpVE(Z?Q2HC~-g~|C$a11MsCXFDbyY$AuZV+ckp5%;fucXID^XeJpu%cAqAN`e3PeIh zWExT83ho!kFqA7|NSkDwNU^ z(U8Wov#Fa(G8#`*n}PGhtVOl`(Zcy?`usV~SDm#_%xhvK5b4BSL|PFKKFy5;@LpJB zB%lTx35ZPSXjt!Srk4-SsHQ1ajRZt?ELYhEQB92m+Rc*nIlKE4S$ZEjDWumalA-&) zll+8{fGAw8#J{DHKz$d9kw9Y(jYb0Xn+YQUv0a-+0_w)Pd((wC63CC8JUYLaDyNHQ zy(_TY5kV*JBWNfot44*9fLd=P;J+#Gl(rUT0*8+%`Gb+d$@I+NklPitTM?c3kg$hF z!sX;eF%yWajzfnaGlB4m%>=@tFKKNi5Jqp(ftf(Kg*biPm$d8xFFinSi&0CL)40G!tl94BGVtHWLW9Cs1#=da9-jt6?V4W+^NY zNWDda^<~4U_r%5Dd}(tt0k7V@_SIfZ1ealX!f0>*R)%Z6@BbBM0$vqXPhpUFvQamC zQOpDyOS}>@0WX(YY3~I#6Y%zGHP|IP;}u>F>)A}etAR_zOu#Ge%FG13&E00^Q;u48 z5o>2A;1$KThp|=vP0R$mbZ(K?vzb8i!q!*v1vV3CUWkF!F%t;Le3i@u0&-uTnShtc zIyMvV%4k0-*nflWbgOD6P`l@<=(|lb0dI3p?c6mJuyo<;#Z16EL5-4qUq95YnLt>G z!@0Q2wjR7vSgDzSwe;Jy3|PmO0pe7z&@!N*mAHNzT(=7?Edyv8D=-G|H>d{9zuy+X zUjG+<`R>YEz0m*nI*ZBQLDT0M zH^WQeX(03jTS0~gz!%xy?ePCV_!E34ltB0q?1x8#DAQe_`|8#}w+6a3(5-=P4RmXu zTLax1=+;2D23D^IYD8vYXuPFOTZAQbq$20_6TBdWqu69L7AGEw&L2}vg<=Ug9f~HR zNkdi))rfj=UMaV2osixm%j!w9I5iWE25PM?u605uj#|6c32ns9tyPL$1nY#OM(WUr zKC=6mo}ON=1gEvbQepouB;@Z9e@hj+sp;5yg}cZCn4`9BAb zhEJjIe=-Qa|2oKU72FqohNl1P@JSFc^Iixg(4ik54)=%uMBo2ect5-Zaxe%Fgm0tk z{~-J=JPS@kKlH*w;J)yCH2(hrZ-Hk+3Us&!d>S49jqp?ue*epmgF`R?kAw%oo#Aun z`GwE_kHGukb?{6m!7(@pI$Q~N2BG`6&y&+*_gWIE2r{~bsYL(8-knQ{`STKq3I)7` zSX*c0VX_jdnjck*D1cN>ZcUuTQk5+WlBmR-;i( zLzJ!|UKhUedz_2Z`p2i;kKx%~RwJ4oj)dd7*2K*|F8^hn$Z~3ccwbWq7q>bt|D(jO z!|OkadqvT;i0^8*OJAeqk42-3N<2K`_9&Xx%+sZqY*40_*bbf>Uz-f>uNG$8c{8z(hhL=pVUHWEFTDy6(hVu zDx8*^1igzDN6(jsPAXGjIr#ZqV4dLNo;@7vAM)$fZ8-S?g3C$#(`uVrZY>$^;}{Eay@YWeFo z6Iy<;U7K3|@Y-wnBgTQ<6MK&zn<|$U-Hy3U3464YXh}4blvShRi6dOE<#$WMeSK|| z{IUGlvB~23-BbCY*2afTf<|=`V99#e3|~AYf6R9;t~u?#XS})?E4W_pZ6t1ny+KO; z$cmNxk)@UVkQ(Ul+LT;@V||{FH6bqoiR_QyQFxu;UHTo`Mn)nTqS?Y zV$ktjU?qQ~Jq`H1h1J`) zx4U|$o>foB>)+wOSB2G67^H7pCrbXt60bzb@8wdbSH7?g|Gm9ht#HZCc!gKPdRFp# zHE@Y2`MvV4Ov&$U?lv=@xO0t_{9aL(Q1W}}+#;`MC4ck6)>rZcR`NG5#40KI12SJF zC4WHf%Tw}unXF?azgI^4QNjKjbf;TYC4cRnm#yUYHt#C=*QdjO?*y%il0ULqO8x*r zL|5CtjRq#|0b^s|DgUjHp=>O;72wVn2|Nmw99NY%~2rq%BKpwWkmGCh5Z}b8m zgm=N~;T2E>p)Ghk{1knF@b$kFzKIs#`OptvM+@+$un|5_*`EaqAdcf2=)Sr&(5-=P z4RmXuTLax1xJWf1md)JPvYec|8(IJ6XLFP8v_I9Lf+ggl`Jo|lSJ67xL@`6 z_xsdRb}qd&ndJy~mSLL`8%-@bIprt4iP*CD)!9PA`A{P+XqsszKWRnko3sPgIeFxW zb%x$-d)^?xxrpIfq1+-gv)DZ$w%g9$SeRt}xMEOlv*>1SeOatb`#uvnY|dOxu1TXZ zS((NS@H7GTd>L8a7bYq0bfIE@zhos?F~bcjW@zIv5|P^|<*AHGQSrV#B{KOo^Pe(u zIm6jfM0cGm7P6V7dkWpacu8~8dYHGG$dY9?t%zrn9IiQ4C}r>=xqT1e^k`h>oROW( znH9ct_L(+~%52HbzTG+|+IZQ>5z%cjvFK~LDRVB9bZdc%$u4qc3&o;UKZV(RY9;w+ z%{epcl-0lAJlcccDy|WYS~8<@62H(+K9&;HEV;QlA@zbvw|7F=CpmrQ|dcJfHf)i9;||Ozc`HPfwc*XO~v`tC1R2K|2bqs^eP}N=$|k z?ZI}|jktiOW~7XY;s35tg%Rzc0seh4;c6;3Z(fHi$q7 zHo(2$#~jR8K=|H&2fP}d4+-dnAE2XuBTT>_!P`0RDR>+_3aom-5`vc}4yr1Fdee$f z+c%dvM(Sjakzkpl$Rt?i7@Sef4XrA36xp?wIkuanr)(5idLNp}65Gwul{ShD-S?g3 zCuEKyuVu&_BX!z%WR8tFG|C+7Hxn{Pv0a-o$H>~t9FL}kHF-Rnoz6!OFSqaLBqoB8 zIa)O;WR8)GE_2*}Hoj{jb!>EcI=ncLPl7ft3Ejac25=(_42D7>Cb{8ICw ziOf-?@m|Xud$l*`?B#B~>5k9b`lzc326)}^nTSaJe|dc7whimwm0gY9VB`6QNZLY< zb8&->M_0b=C^oHeJh!Z6NB@X_1*?tz&HFl>FyJ;-)4sctb8dCyx}Cq&otz7@IEk*< z;v~AX#Ywa?i<9W3U~$r_kPXHdKHvJQV{y{P-j`)@;+-*X6=O+}bHhQlv^ep0P_OY9 zX7x1z5#+7(T%q|)sxmzw$y*C^W+|O5%nwMmTz{)2*RmXG53nSVu51m~x8HCDo-sZB zT_}?ZwJgSkw>XKmXJ>JNEl%1jg{8GzC5scU-o5tKUQGm-VR;&RZ~wM{)H4C8Z;cni z;>1_om$Jo)SB2G67^K4uz9JKaQpzk5g0HwBr3#gbnUWG&BRR9x{vjkBZOoRr?lI~& zb9}oHDre5Ks5KxtDfo&GqBNDshZ1B^$ce-vZHtTDEAdJ!PQ2rG7myuY{e`tS@%Cyp z*d;sT6PKyiC@y#feu&`%%IE8+4~zRg06_Jy#!G+l(FIZSFns zc4J4ZtJo3V30f74lZGk0mBxfEl2@0C&Lq;kEF5Fkw5~AHIcN;AVIcRNw?`f_0XUJloT z@HH5NE8*er6Lbz=g%7|v5WWUKgq9%z_kp*fTX+K81KxyY;V9f4e$6=(=k2TF+%4erfjtBKn-!#HDW^&%wfLv1k3!jz8a2 zEI+=tusAy%Pc5`Om{s-X8}Z6W&*!@79W${#$Xc#;ZCz-+_|Q!_RLG}i%b7x68Zj_V zSQxnGn!Iqi>&ZWZHXL;wSl0UU4N5+kOwN{!A<1mhD8~5+| z^Hm6fphd_!9LLEqJ8717H%kNkI6{s@^>9qa4KlUTn9e%MlG?9_!|||8VO2e%M51*G z*MmRbNGfS0Wlas4NezF#2{joq5|KnGl}s55fg{v#M5#6l=PBk~F@Mn9vv_KHerMQs zu47PCFER<% z{|9GObCFc_{~|l@1~8ekZVY{klNFZEq#Z)>k!m+f(%Np0MV8)&W_ta0b9C<=B189m zC;18ezsPGD`u}L7{=YGYM*V;NWfA*9zD2EQlGKYpn+>WWuXIHJ0 zKnqq26X!(e|DzXO|38u2pDIVwCo>0*dhvYPt%go~pgV`3&Q$ss>j@KIt49!T{Lg$> zNJqt2Qf1m~2*c6%*m|aFHF!gh=(FvYGhF9E5M$ffe1%cBCil3%a?|h|6xQ5)YCd%J z|6TiR%b31vpS?cqv#VD$@4EW`xr{k)maK)rZCesMoLJUK?)-vy9)&7&ux1IJye-;V zhx&hQ<@$fIX;=Rr)Sd{urT*XBLA~O7ZT0^xi@_N5 z0!N(C+Ecw>VEuoarC7$P_qFf$U(?$}itW|A*S^}TiQqCUPx0*S-Oss7(r-Iucd z->bsvDGX9Yt`q%#V~JOy|MzmKQ#oH){lB+YtHG|a{@=@dJ?sDL3fZPoyGA9ScT;(jSi%e?Oj<&1dl9bm>iYg96GW~(l4W%_^b zaNTBBf50_IhWkIWlAPXpcD7u}q!%r%Fb6vzEp^DtK9Yffgqg;j+h(c3n69D7>skNb zys-6^e1Y}<%?q(g`u~8;S4saLko)rV|6V5RSpV;p(SB60{|4RZR#pFByXR%=|Gmw< z$*ZpZe_iSSy%V%5`u~P0yo;&-za0U9@V_VY|AwO@zf|@A|A4mtjqnKf$pnY1Kk?<-%tboHHl>z;|!(@ zOWQhTPNB^&7fO9THG#-={rFvu>8h5D#=;>@kEx+ZRE~ra1icTXR5Kk(CKE{`l5~YB zl-t(*kIIFe(fPASGIKjifr>d#_pjG@Ic!HrR~1mKR7t0G;vBOp`@a-q|K~=BhqcmP z`S^**a(#ws9s3N`&`!0y%83s@RKowfDH(Y$WrKK#D=J+ov>gj<1iwa+YCxvqyG<1l1bL|H9g%tN+Kmuv|%D zi|Bh+py#WzW)yR*M$VUH1y+nno>`PsEE0++Y9bUdlvpUO%gK-yO`2L**LBr2+o><*0$<}xP^6@0t*b(|z^=ds1v zgP;e##d!S7@KJa>JPY>1{Xp31-vFE7OU@Yl0RIlbHqhYV@CU}+--j>48{n@ }h z0oVYKgx@me{yKaDUIUA82qgF^V{Q?j;3g1b@o5k-3AVtM@Cdjkd>y;|cf(8J9PEP2 z;H%7~yd7Qu&w?kzc{mMw;VO6x+!ua|4gY_@H{q-BLHJvEA(Y`P9D^Yc_Wt4=eOa8R z_FndVm-bVAc#w8E@_r=9W~2I;v^5V9LK5jdJh)qm4OjI6LJjXar6w}tXZOUttEtTg z2)z??Tpl3w{@Mz0FXqOFA>ZZeJog-l?>c|D5+0g4v1h{D?t(u&Xl*?_Xmth;Z9hB& zZ5Z(I5R|;>!$VNwnumwrMBc+gP?DO5hx$Zo`tT6Pco2iScsLe|YO*5i>b%ZeT$DcJ z!FWs!D=}5a)-WE6s7(y^FdmfRQdE`$j0fYgLYAvxJQ$D5vX3Sve%^V-c#xEs1In^4 zYq}EFo0Qx&9#pg#M*mTgVLgbgWVrDmW@HfCLA^h!N3ciKV__^Q#vBpr$y;V>Q$jC3d#)nlP# zJWko8ay+Rds;$E5Q+Ae(vnTfN-FbE>Ci{-a*ZFX8YxC^Ti79(p5d+%hMsix6k(?H6 zBquTnHj)d@sHQbkjpRgjt&QZ`%@V1ZZ6qhM^gc8*YHK$~cYq}_bl-Q9pD>aWc`d_8 zuD-`4NKRu8jYe|yn+YR1v0a-+a@yJ($rbjT7(X`@F*4dz%Dn>HeBRJHabZA1Nm(^2 zjO4V7ZX~xet>mJ!Glw(k@nzczwqsZa0dPK?WSIuen3M+oA z`Ow5jE=ZZJuUMI_FRjehJ5y%smx408RUt3DGP{kvFH4#2oiR^#xuh7d;UHTov%MW$ zTxE94V$ktjU}d)6o*wxEE3?}yg{4VqPn5r;GTWL-5TiDK(_|EHPEerZVhy6 z;Qw$9IIG##Kg+T#YpUs7zt&}G#n4n)#TC1vM$u!NM#$97NJvqPWICNnMinjYDmoBK z*+w2(?#S*V>Coa#GQKBJQ*}|T%k)lMFL$lWE(Pnd!LtQ*Z1DKt@q|9?w$K{!NsoOE zH!+gZJN8JeBgYE7(#81ya{A7X)#?8q!T9_>a3}aKWAKl```~7HEj$gbfuk@2dto!& z7kt7vXkzH@pF^gRO8^_#nD}5t~oM!XJH525AHzQ|9*H4 zJRK%r6FeF&gL}bm(fQvFZ-Qrn0TH+xd)=T+4@Ec&2SA61!TsTX(DVN*+zuZD zq5Z!Ro(;1w0f%7#`rtn}KjIwS(p>-V-U9qu{{x2(EomZ{H*udtaPG1z^FMIN{bp4~ z{`-&b8aGq=;!I`F$>m-EofzLD@{jdPO%AG$+VQmX?dbgv4u^JzCQ{l=^w_SJN3g2K zg1T2mZfLHIf2=-OkiJsAf6#`buEMp}STHELrwjKR3kD^w(fbD{^7Q^eNow@|^@-M0 z?;q2`(FhXwm=e>&x+UUw`g5mOcTSiHxf9hDWd7dY8m+QOO|T$j^#lvj0`&ff$T0|5 z4ZVL%mt{iw5YY!^J~jxAW%16dUGjKTjuNpa91Vw~O;Wphf9wL3FbAM05m}ZA?^7S! zhoiIv|4P565`hQ_zeemNtRp}6a>fy8zH&daM zmd5u%GLj0V6S5gHv`9D|HPaYAsBXvMJ)I8bPfd)ROvGjih2w!wr)#44*E_LdPb=af zqq*W=uT%W%p5mVd=Upeg^f*L76WQ4Bn#tc=W>vKSscQa3cC9u4?Plr8{6&`DhfWIV z>ik89?)y&i6PkaK*D^H!^}QyV|Hd2|HUIUS3C+LQu1(FqzV@2`_`Zeo$y14wGiT?# zh+XYIe|O@ffQFK?YE)?c^^33h-?Kk{Zn82rGc`8kUV80TLp#RA;s)j^=j%29`bE?H z>#Eny(DC|hG`+&slw5pRhUP!EV$FYSY0ZDEGtGbOQqcUjDrAEk-lvIv7v8GV*@A)R zRN?S-YtAT5W%53cuu)vXVmx0c4M_3pK=_G%)y49inFd;7N)F>9*%_f_|$ ztoiq7knt!hbE)mVYSKgIr z{=LoJW>zmpUpvjeSCl0*|6V$`$m?12-@LH(m3)CU|IG`rN}B(G%vVYCACUXE z>sa&emC=4wu>S_#=~h+qU%TgJYyQ2>yPAJb$-l0=v3nLmeX#bn$vmE{ZLs*0VIQaGdUqsjcY4|vN2;KnCfjKw{qp%e= z!Vl5>KLbXf4}OSd;N5T&yczx$o()-;fZgyQ_&r*IpTXzhW$;3{0m?885qJpvjIw>p zDdWdPIlHfJ4RmXuTLax1=+;2D2D&xSt$}V0{2#9Yd(GPZyDS@kX4*)f=uqTn=ZB?! zCSUJWHDy!`zH^v!7jZsZR%(Iay3i3r%ao!!0^yXi&a zZ)yhes+1YlLlMn1L&=n>hfLWBCk!L37)sg|Hh3DVcsj2|3ZYZkoij$D#_Hl)0CeJ4 zvTFfwDOdnZ>>o}<#}`V+r;Zoh7Fr`k>9HEV)XV~)V|SY|#90B?xzPV3NAG!io&LYq z8Kd8we}BXn{5JS7ya(P0&xQn?0^$2#*Z>H7{mbA^@NLHFUx8cTW_UWBhH((S|Ah^} zCb$p$7LEVc;Pdd$@b~Z(7=(Mm$I$(Y7=2g5XVLjT6Ly2J0T90bWw;D}jkf>W@GtNh zcquHvc8I`Z;Bxo{I{z=hN8sgf4)(#r;fLt^Z-uwO3m^#^Tm=$b4tIlpL+gJtya=*z zHQW!rNM*hio&!&X>tGg+!%nyo9s&1+e?!;*FYpQY2)qfN2Mcf-#$Y>af**5!taC&$ zoR{sZze1FsLJ1kneE*DDGRpmygH=z@KW?6zCAM(J$kxbvYyJGA)+m+=NrHMjnP$niZKGD+-+!NRRhT|ym1BsN*gvC$;>V}6V+XZmUIDRAETk|2h!ZG? zFhA)`l6sI1nX@J9pUQlpG*g!P2A63HFcF=oWY3RGWX~4MEstbXO#x!QyK=B8Ky0O^ z06`m$Ha7(bO72O<{iXmxiEB&&f)jbB06|G=OabZ>t*I#h?(2mUdp#bHDzR8ZDBr#7 zRa~}y*Z*-jti^>3`xr9(W?u1y>wioE6g|KcK#xVqQa|InI>kQN%TOVoo-GsfTpBSd zrKRHr#bYr7_Q_F2wf;8o(C?jB+x34;QFT?0MPhPPYbx&_#i75_uSaDy62>f3*EFTx zO+V$d%>d+hKTiBrYEDtL2r9kC1G3Eklt`>!CtgB0h6jD(D=785UJrHvGyydoQPUw) zi>7%-P0AtD#4JG9lV(^=Yldz%dj8)xTG%x~QL!+veJQ z29I?TX^4iBvT9UV0mLr46~J^Nok*Nbj%Rn}^<`Fr-bq*x>%la3@vH!1J=V?9`cre- zeb1^jQx76#)r!I1xHri2e|*JO0P&@*0OFll0mLr_D}YvoY!Jw=x)nehdta6nfOp0` ziSLra(}sg=X$9cz;Nn^Vv@8Z4-vzb;h_|PGzra=iZI;5)zpauLfLHHc`)aQyg3GWx z-LtoUThzCvRsg>0zLc#1yeh1o!XRzrIb{vL#1!B@jGU>c6XAlx6U^WJ06ZPrbGu1%!rSSM4; zX(i5zL-X~fc-?wa+*@z*FUmSAP9mG&6{nV2xrzstGrdJ7k)8KpGH0#9_AO3U80kwp z#B^_}-7LLDCXuE0q1g&iyE(e6Od><~eJA;e6(^C`GFF`8bs_~;oEmdzTyd)3OsqJG z?b=*%im&~O)6luG+}V+{YR=fdT(_68PBej53lrx=tT@H%R-8E5XnIl``_oyYf_%vD z@EQN1BgTwrHPKA6f`Xtdp(3bEo08Rd%Vx#5$l9m{^7KFSC0?&mzlzcuiEfERrPJG6 zzRpM?NiIuDuDqpOF^m3-mP<`M@u3Jk?b}Ij-pH9kC0eee5RLkzo}{l6rIsrt)5!Uf ztU!z!j_@C{iBLMK;gdQg#He9e52e#`N=`;qBM~*+^)*UhyQ4mQ{DgY0c&MD)d;FYl z_ccpUYt->}EGvxr*YccJWp%nGl){@Ovsg$@m$xgjyje;ZmE`nfIdk6J9#%I?b7m<~ zD4W}5zozL5>8RMyYHU`+T}ex8qMwYdQpj&xURN$9`-P`MF(q5>AI_93h0>yAR3v#p zPa0ZG*0oeLBJZf4d2w@HKN9M=8Vx5@Eg4b_JsygL<8mmjN6k=5i6qsS5j9mKRxP{J zYWGY;cO5-&uAE&sk-o^Swi9o_PIpL*x?(14_GJs@^7akZeXD$K*5Ix@Y29=-Y?cbe zN+w5ZEp6Xmq>S8#+IBi*XV7L#ZBrk4YF|1YIdO0#J10ln6Hv2E?R0g`T6ibEJDo}~ zQmMXOXi3dJWi!tOmCT$Wy8rDPL}Wgrv|*#a3L3Z3YBwsG*;zL6UBO%f4O@w>z`rYN ztIhU8)?|5_2aD}}$lFD)&~JS_t(@7sv3a)K?W$VWzPdeMAq~;rS4_#sOQ<~?++sK0 z$l5$+F$Cwlccxlh%o2$*$=CQV{)@PaPi}8H=CD7WB|^FX>MFZKg|w9M5ZY z!f+yOnpH>d*0tW-BlQ1|V0iiv#)4w}zsNu0^-ae0!sh>P;JNS=cmnK%ez+@qg|YtI z;3+T$Ti^lkUySK*g};Uu!ZYCpn1QR|Vel))`JaW?!yIgf2f|9^og^>ph(r$ZYazao~(ZfLJNR6O2?c@>6CXKN-1V)+}3dKO4`8=aT9fbDnL4 zX=Ky=hzB2MT(yiHiLLBC`KG3>kjCttSP!k1Tt^bdo3&49wV!GWPbJhGy7NRPi*dSB z1JWj`)-!*vFAHmIXXW8LtadXIt&{>Na(xNiW^0$OF=wULI)Xl-c|BMsPBdQM4p#hB zI6F8rXPiy%%asy4-P7IXqkOy*Q>U8qLycGyJ*9pgpz~!KW==dzGX?2?l6RY+JttJ% zCY`B>2k+{3R;%(=4jqo2J=^$A#Tp;I$HjD$)$F{Jg>4FkW^5M1#LOxtpKCLB3bxs4 zbiR27XC8ICWDN|gBbp?Rc&5@fL8{HxM3p_&AonxC;2=_k9336c|Jx&K!^mJTyg6-I-Q)@J$`)m@j3a}a$847#u;rq6^bihGtr_L z2f9V$L^pq)wC+di(9keHR9HM_S z!S3vuyf6gx)p@{8x96b5_5wuo{OtV9kYeU?(_yA^#rXfx3<7^H?Ee}6 z7n}j%XBgjq6vP}r7Lp)*{_TN>!`5dH+NhB!P5df z*FOyZ4{nCH!i(W4a1{1{IFCOQ=Q8+ZUlBBjE2P14c{V4WZ59i&(zG$h1gVr|Nkb~6 z-L>J2S(dE(zuV0!5)Vk;hq?#ynhUQtlPiilAnV`7Y@w3PB>Ibs;+aC=L^+T z(p3BI;|+~P8zmIpXBQ^{mh*OZVPPH3S>B8so4w5f&USjtSAv2ZjQYrLmrCbiJ9W4oq{89C`|1YRFu zRo0qV&lB^|eM(qC2j)E{b4dgWh)z3`Eg^;JrXAAaq!4?!TBoKzHWxmL9*(`#iKm)o z(01o+gSRd6tvz|4F3irVcRec3{cvG+B~(?`A+;r|@>i!g zS)xhQ-M!FQHObE}vT7p}p}4YgSyFPnLxHr0j4$mjAjBB)X zT)|yXG#W}HD-4-&9ukvsT91drZr9~CVR>%&Y?6oZ!ovB{&YG|o|4%bk7VGX}{4cZs z;w3cxkB2+MyBNd28J-Tp$N!_@7mU|G1b+u&T>pHy4)%izLf`+#a69AnkHQ<^FW@;~ zfbbWn!2dY={;}A9_tmX|ZVhy6pj!jo8tB$Qw+6a3(5-=P4XkPnxZ^JIuWyFl8H{b) zlbJ#UC<#LyNsGt}ICz!jGnHvckp>sc@~T?3q%x>>jKxVShCp@Z&=Z>4CR=5nl~)tf z2SxGBn0y09XL`sE8jzG3NF`#aP@JiPP()S3jIiSIkRA!k5!o=4skG8C!a7$xFY->M#PTM}E}x$0%<4BcE|-jZ5*`?bEVWGWc8Y}jd( zq`f7hI4u_PoaF}=@;1~>z=@0&Eq@$+8{9<-={T!A&66%PCM{)*1nS0S87GWVpS1z< zQfID|A_y%Ae(knzNU)ds%~)w-b+959B!$HxIY?9DC~8(ddTT$~yI`j6^acgPoeiq^ z6Bd6W;!jlk(ZnBJ{E3M_aq&lyH`J~wu^f8PS^8uZkhzp%A)gXOarPjTou-kTb`NH; zwj8yess}7e=6qUIuCk2b+>dJQ$8hb(NbSdH?MJQlqh9+lR{Jqt`%#g_XZz^I`2TWx zn12?%%(bkCi+_1Nj`iw?LJ$0sHR=C^@4_8$3kcu$&w@n=!6#UselLjiYT?`dzgdg^ zS9m3q;UGxx$It^mWR3dY;EnJ?cm_)Bx#CsR9wpf21 z`}-B~dmDX%~@y6<1#2c%J5pS$s zM!d0l8u7;JZNwX^#}RL=UPruHdCw!ZmaN0B?QLp5`6@?rKGvEIGFYlisA2ghZ2yCO zfcO-(|G|JyeA4ZIa9=Gx;Zs2Tqd1*~d$ld09H|!5k&ak-2-%38S#5D^Kdr4~#BZZs zI}`2QR_mN%h$+~dF=cKk=BI?MdFJ@e!(;REfxT0OL0*T(k4^7BHpRQMW&R8g4-KB= z-<_ut#oP>U1`kh+?Kv?#b~K@$l2huQ#ZyOi9y&QOHlNrVmlJ!lnSH~jvdR3RVnU6a zKX^7dJ2E~$WektW$>9<0;9|VuPkS&IUp%$AB{4LW85VgDP3+uvVq%1M@oD~yo;ZXq>sfW!g{ngfqlw>y@OMOL($npu4q(FoSU5+J$!h}gsQ5s(!RyRXO+>z z$10WhrcJUuI=W?XesmX4qiG!p;@r-usfoqd+yPB9%bPYG9^56$JAKj|&dU1_3=W;h zPL)P>4em{-v2uCt!1*Kc@qMSJ4-6g4j-@H@@x$Rn1vSU1R9Y+S9v;q|UD#r#v(fRH z#gXj6^U<<$RMt)%Iy7-`X8h2JbH|U(p30rd8*{_C^Aq{=3u6=Ecs!LlaCG;4IW~U& zaAj{eaVU2@cWUUG$RB;R7mENV>`CvVkEM6Y$s0QZQL;4 zCh>ls*c4NYXlH5~8mJKBPnePT3y`R$nr^D0r<~);`}^^IA8RcZtPKLK_mO<(eV+He z?>LvQ>)agYah#`ZGyMI&zwax1!Z_}^@`GV4dyu{&v&WiS(qgDZMS(& zw?Q1lPQVkzo>^P%jZTuJm9QerklYvEQGKtUw^Qe6u5x0-5?lG2PkfRuc-kgtyZo5mhjJlASAkb9*LUk&SMN1*u^ofglhUSASKcv#eWgKz zp_t&3P1i);@0X4Cmaf_4T{QJ5f4yT=9@wUsUc%5e{1mx1BkUdT-beZ8z&F?wjHMo)7ubd`^PVV7ORMOpl<0&&@l9 zhuYL$Cp?b3FW-e<(WtG#l`e{=QKjRsl>J)9^0QL6j2d0#?}86A!|0FlZj)!-q2M0f z`B1Q{SeO4eU#mFLyT?M8ce$HSHFnzhd5_}JF(WbNUe&@^)|p_^H1(hbDIQ9;wcAPJ zA~(Qijnv24xhz((c1X0GriQG%CiCYb)c0!nSY1ud?v97unC!M&Dae_*FL}Nn$6S`v z7nk!ef&nXyQB23KNv~F?>qYNMWx7{vpu8HU`PAeYZf@40agu9U&-7Y|UfwgTZZUR% zS&LHhIe(Z<<2Q9NgU#5gpYEDyr_&s?V=@i{*M2^?knu0;ryKAqCy~FaxOH1za$38| z#U6uGgh>qgg^(nH=Pk(|!o%xr8;2lTkBP*&Ndn{4oALFS23Jv|%~lNcxZHF&^XB{e z7#Znux&GGW4%+ic9tLVf1raOQ7VBTMgC|i(S!TS-S6}Z(p)Nuy(vxKVerXK{Kd~D7 zG8XbR9_7rx6w`z3yNZ85j;fQ@dWyY6+ma;FEof*_S6=7EY8EyXcuKA~T z#K2;MOWC_xZj9K!6VxEU9m9~$^;&9QBTeG(kEls3X)!Wwc{FRJs za+OQBV-I^2ST+)AuA9i`*?o^vfBCXm#9f?$zX--a<66O@nhTbn0Qt zlh6DRBK?hL-?L6aMH24Qp2=R*;ghQRcdmq@ZmjxbT(-)7iU*2X+3I0`T%TeseJmJ7 zx5Ysl#3S)b;lR0I;l~g^6xxz9DDkrUBowZPaoW0`l?@LoFq|n#1$*1Y}sKMrTFIUr{p@a zf*^d8Q4(&RN?!Sbir^PMjB+o&T`Sw&q^w`B_dTVr>6Z!uj+dzGVkn9(*oeGP(O>H4o3 ziU-kdv7ve=FA_%JBWGqrsW-642dm)wwxgCbJ?^gs6-L;GRv^-N8t3*Kcq7=V7IT1$ z*_8%gPH$qD)alci2b`wJW?ZhDi9gsrpC=3Fpfv8$)tKFpljv`l$SiwLhSI2u6!(CG z7*k2`ZQb1~8*q|ce0I33!{zF_aa5J*G#Sa9CfrvdtLd{ie^i4_%buU#-GHrH@rTsasC1_w?&=RaQ5pj_M=)ufyM*zj#Qk79dunFRB7a{auGyxG>o6;|=XsVitL1lZGn$3V8WGD0 z8{%ssMr+53c*p2cnzfB@oYVDbyY3A(usdmWUhj_SciEk}QQp2T`G$QSv|>4^FSEvw zFc6-Rc%-+JX%E~XrKwP&C4IZwQLV01w6*z4D})ix(*fq=aQt?`!5`$!Yb?0c%BQ*G zC)2k4Im4#lOtQ~gL$?J!WQk`@EcIr|Vh7#g)#o|0KD>@+7s%wX!!FY61(n$4cQxu- zx}?v23TM^vkLWIzae8hNZ?zplH{x>qyCL!n-T~O(wVa27#~;%r zZzVBggkYPz)8{9=l6cN&5DP8*Z*+Vya^1m%X`=t}rVIk>DeO@g)s79zsZbbv4yi+vEsAD!Fx)QK7~Q&NF>+ zU+$4>88J$B&s&H?%22z_hho#53ckTmz#R%%X_}l2V`kl(grn(O&$i70wxeu|!bukM z?s^q2aMx@bj~aX#+%2+*x`ur?aO?ftXBz~U@XzrAw!tT{Mq|Sd)ao!7^+VhE!APlB z*&K?4(PJC+3Bmw-(c-8#NWy5ZCjMa)3I@Bo%#VWBaUeLBpS6%ip5$`h?>)v|b}X&W|H_!sAtNgPv@AS{jj>zvw*=_YlOCCPQOse%h! z0pj6Z$L#i3Y?fh|UBnr^c`Mx{Zi0N~sdoRqpAY;yKM_B`$Jexyq67?Yx6Nmzr{{BF z>PFj()AE8nG6$N_JFS9PIN--*&usnTLe_ST4Kbx9G6Eyg?4#5nEPLHvpJlWdakvGp z)MXPnG!DpuMwFUFHPRtEmQ>T?Y>J}b*IGtk$7`8#2X>?pUg%6hOVpT@MZq*;)L`i0 zz_!G12qQe9)bODYBb3bEf9#3HXK@ii)2kL%gqY4*3|BACR9i0&dS4EWhs}p{v~-%+ za}m@n79{Ji*Mx;z)^WX9M(I79zXKc~GEA$6M|XcQx#nI3*s9TP4u>7_Z9-4cBQ5eX zM>nh0inc{;5%a#H!5X5TxLbH=<8W~qp=R#77$#})ebw-VL4 zqg~{T_(13PUFeY>z}+R0GrBWX>0sqoHYuuK1`J* zB-xVEQ(_Aa<=a@DKHga}NL-8DHaAWS|7;y!RdZTKy5M6!)T&|S%El3s?<$fJKwTD% zj{V*^n%y^_(|Xe&hkj*3sH?}{_eawA`@$X<=LM3s*R3>rj_J-gd~*=A{pElxZ*kSI zdXAAbr_CA}Dm8=~`CQk`a=%gX;8sJ8A;0(|vW`n?6R(|z;0Zro>7kroQ+j)xkFOS} zz<2K)ieUfkJYQRl)M=3)?So-)ZsBN*G(^A^X8(o!&4Xb)9X=~$;#7L89@j6)nU6(Y z`wusML9vNQZDCQPpxMo0lA~G*T(?Z~`CA05nGYd{O|dtI%i+!VM;*CqhNLlfF63U0 z0b=lM*s$X0;of1RZ@^+ct5lymQ6Gjghg@5|;OE;T$wzkK`IBCN+pO4AS}ob2E%QTn zMYO+-?| zdoXJ5G#**x&R#C7tW0H2lwS5y2nsi6;tlJHtCba|r?<9k4igUy1UAx5S7Df3IK=5S zGai@T>xjTuG%tcg@jV5c;CTPV@v!pj1@@ri%kfH&AJNfp{-Prpj=p0Mx*&S^oORfA zHayE_YsK}jA#v3)Kin6_dAmZ#f!{lU+l*y)c~Zs%yNP#P5C z)utUaR(jJ`{{{HyFvtF}4I;D;&M^ZN0v2j^S0#0dK+|SVt?wNliIF6Sr!tpDrX>pSfc&5w6)mz`T&r&Nr)p&;$ zxv~9p>7Kw-|G8i1OXJu8vAm1W<18X{eX`Ei(eCf>tqJ&t_wp}lX50_~)hd97@O^qK z3le`7oC^?XD9Ik45O?1>o=U3boF49uoj+>&g%7W;yO3?YDHL_Py%cj|!W6IEL7sv8 z6#m)Kk6uT`t-%C+hcs}}!xsfMu`#XQo#8=GS9<MQb_wYA?I(;vogK5p02 zKm!x(hXLBIzF7NHji;yH| zyq>0~>0Er`^?J81&vnOIxo*~vY;(Kq+0#eftnZI}vPy--0FqS1k6#Rp6dud=bQAz9 z_g0`r$v(FBdm-0k@58zk#zIt_a{F56s=1)JYbL~3z3hymqknCUl~Er!>>W=tht2bW zwNec0pp4&Kxmkh;hp^w~brbj+Firdcfc@cxxjOt2qf*y&wE#xGeOP?f>jIp?4e7<< z{(dwHqixUWjTzYBa73uQ$c&hSE4v_ns#)>!dbvW+A2E5J)Q+Km$)fw$-8$1cV6 z)2fR>-hCr81*T|6L zHOPBohk#Sm81&6Io4wi;W;jLcrQ%%biR>irYdZ2PFWk(hFUJ+wgy{WsC!TeA05%MU!yj!MrL^15cWPw{`ztA-T>+HX_5JbmC`_-( zDs}yg-C9s#(Qg$%HCK82IRBR7TS9P}qqqhbSuqAhk+g$F2s#ox(eImu?^TG6J*Gqz zt1il8x+(mtJFo~X0X?opjdOc8cYwDr)1$$6Bj9mcZ<@x&rSD`A1$v{=1nVu9L1!{N#HNWA!{NO@^M z@GMWf(&f+Ym;#DB@RDR(0KYfu%0Iq}^!2SO#2`QaO_#6d&u?uDV=125L}$*}+p|6K z`#1d1qtSP-2auufYwKN#;vVr*UX~2Je(PaRzF)ltPz2b{4S7t<`y^mAv(I^rsCfGr z=Wo>AX$#N$m>}Y}Z6R*!RU&`Fp+4g5Hil)21_<@# zdad_a?K=ogJ}dW#m^<)r{-@dj5Tu(Qoc7H+j9yVx1_P%SNcnp;OOfcy=fh?V7YHbw z8Vu8%@9FnB$(s+1{Pw92K-frqlGnLjvvPkx=s}HUeL{)iAlg041akV7xOk6edD^`@ zZR{8o3CRR7;<8h+DQ3KG;r|uSWG;7$O46mi`+N8F#vW|$s9X3oKnQ{A$AoS?gbcMZ zq^-6Pl*4uzB6cHTv7kNf@8f6ypU6aqgcOYb_0D3kbah4}2y^}*@szgxygqT)+;i_} zo){@|1wi$?nu>6S!XYhW_52;n%cS2Z(YVKdTpl=HcUyjd@bKoGusrWJH?9|BQU_R^ z0clLO5=6~H^&;dh>vf@wkr&6nSa_3Q3xGHJUZ??$El~?>7RvTly9ZdMpFbaBeAm`X zVsdXaJT)11V}G*nvKiWDC#Cc0SU_h8+-Xg0I*b%%V4bNvsy? z8IRvrh13+I{;toh?=6C|;Iw=WOQ5=oKL{*$@hFNiEG5`!(fw$6+ToEa@L()#AFAKL zSFoq>c83kN2z@M4uP;*6keeAHeA2D}|HmWhn(%_VnXbt1r$+D{7Tx=VHMl9L1jCPD z3!1X|U0NFyJr6tJMXX(VEKWKn_!rvRDEi^AQ4LudR&-mv{rI&(iwEN%-4|0RPL*CX4)0 zZtzv5`TVR8a&TKBzF5CRMf3>1kgk~dGjA5uc(2DqJ|2IVXOV_a9FE<4&p8eN&}%_# zI5nPaG|fUi%>`V4jt=;Z_+58#yA)BkihH*l0JOi4sohLxB=_u*@PF3w*&Ra8+oJN; z$w>DZ1K@LcZJ2E)t-5F0KzU!JAL$x73*WxVpU-ZO+T1=z8C(WU<8Iye#(wu& z2=-CI9@?xaTdfKY?vH&~aRqxqGm9*|uGplUd91wb#+8M`Mh$)tFh+WR0y8h~C)7Qx z&R@!zc;erOoSTsvoPzaYI9Z;I&ex@gWbZU9CWdT*WcYf19yJ(hbv95Lh-P3 z%?m}#FVx&Pj_UA|U!P%jCICU$9^*K+0&p%skWihnp1S90zXKnJGoS1IZrfVP_+GxR z+)3QExpol$xN<(94@-MDPU3r}k~&v>f-^Th>dFF&zUAz}7QTRw2{RNY>So3RQczZja7A8Lv3Hu7z9mXQ!%EVPBt>~)1zhpb zT^#t&BXIxA5q4FmYZNdYz^K5r{)l_TT1ZhhB=xv%yKD`V6jB*Eug_k8#DeH^C9!sS zZihzPX99RZNiPHJ?U`kFQwSG1&PYL{H&BomP%vxTthoU%tSb(r)dGH^ zuMl+ES|(b; ziV^i&h!Y)?d&FNj36vh-Mv4;kYHk9SbwfoBDLwG}h`}EY{3I$ti42`&!iWll?UKZ* zp9=N5!$Jzp`g7i_Net`MQRy8~$mbuVIp|PY`V2?54!h=KQLdUlI20mR0jUcoz#YCQ zHBp~=cRo$H-&?9|%{|w_bY6fcEf?y+s2;zVtdy(8cAsi*QE!0rWur`9-;N zNK-}+W7&4qb{zR2iC)?kIRVx4dWPl3f#OfkA1?_pIpM9OF`p7VC`DD$^;hbCi)fAa zLi_k?nqMxkM4TO{!-|^bd8$O6>C$`ky*W9-+s&%FV5e~?q+_3*Q~+mE3C08JH=wlu zgB0kiEMFWjRb)~}3Gp*VmA{#wegp3wQq(I~edB-f*En|kJ{rE$ffEenkIPhM5%7*6 zGc3Fu?ht#bb(%V(lD3&TZC@JsHaBy{vFi}NRp{|dANqJdX(a#K-zur2uCJy4~6dC@tNKuLrP0nqY%K^A9n}HLk>&B@iw(o7^ z3)U?c3oEt@1=-#*y!xy6?c`N7XnkbwjatqM{#AZ|lN_Zsgj0vL!^*IZ(e7sLS?`?L z*ubJqYA`&w6fK3y+|-f%|Khl(P7>3t>?Nt~+z3YJylH9fxJzUigVkBQP8WBUlTU8Y z{`ESST8Cq?WSDvtUC|{8g~M-=;%F1>NzKXQ!Oc^5MctJu>iUFrPu`TaLym?NNP0CS4A=M?Z9;2Zg%n>dj0vMDWw4?nU ziGR{}w91(t6$_{{-1!x@%U^wtljQ|Slj~4gHT z6t1mYHF^!3n$(2$={0dJ>jMlnR~C_WXT|>O?Oz!}$*tO+(^AyHTCqq^YJW zOcX%Vbe0@a0b#T++EcNS&V)K8gBI|6pK&@Y4+v-!Ao<~Fv*4?2fV2MU=KbNGfvUtv z6xdL}%aEJW45+E$5FPIhR$)Cz`CsDj^1&XS*fH4f0JMI!_N&OW+^W{L^LfZbVh?S^ zK42a`4&)hcfux&&HG{~=jc)>CrL7^8WUS6n4~gFIzm?xS!L3T48PJ3EO_m?7>!B!? zmoIRvIC&kxON`$zI3CgrMtHlfq?ZJb2L2mN`=u}fP!{qx=Z_^T-WI48!M(kECRe7a zG2YR&>^@vFpl)v2hr5|&l-uQF!Sk;#249?|n}YB6qgo5{!UG z&Kv2CrOGE;Bpl(bwbe##ZV^s59e7la3j9A*(2&?P0qPY}OwNDkJh8F1>t(BmD!SM8 zl4$(urU;AnnvEi(YUIFQYlLd+Ed##d?zO(bOP|`E*ec*Pvz&jX;_KtbCk1Ri=0c2O zbEqGGJhz)0hXnUMZ@qVE7%6i39Ju*Wmn#@1{NXV>NmmmZoLhde3@z2w7>Yf*^asF$ zCf~ptKX2~u@+R{UY$-bu9v1k?vlGlQ=WHjVMyTqZ!{U#e#uwYw100{mx@DJL?%`2n zs8J4uj55-#&e(v_zzSl)y;S#mz}_%hM#P!Odgf?kz!(x31N9__AG8#ynSGFPm@E=c zDB#@|CGtkphGnuKYwH~?W?cjllb|RAY}`gbs~B%!0}lUVozG&c&C3cL=d=?YURw~pv#6~gA;`0`9D_9@M9c44{ zl6|j+{}cHeONnz|z%4o|0;Z}W^|-!3(2eXW`Z&bjJ&rt^dn|nX(4ctYbNddQ`>l24 zV5bvzyPfEYisOV4QIB6#ZxSUv_g61@XcKDtQoREGV(OOq0cAo%#;H;#C*bkD0xGbu zUEAj{ta=^En`FG#N8)RyU@M9s2wt@;3$eay<#rlY^e-h+_jFhGg#35pmyTPwDmgYg zb&oSY!vjq$3%+1J-H~02k+!0eGvkGo_4-(ZU;o*hlJI61#^KF}4arrh0ltp^e05Jf zxY2E{=rGN$NT1w4uEH(2y?sBG(QT|zB8|G{j7ZY*h(FnUwx`%CADyeQEx{=T-tz)k z+moCVNe_}SWkDy@v3%T9bv}PBq_DQ67iBqD3nE^C?eSbUpd??SS??Ad@W~j|g>Mw# zB)>N5N4@)ea4t7sX`q%ycp}Ojjvou>U0xC}=`O&MYN)=zCV?C6_*agi{-I4m!3Gx8 zUadHBfZrt?32A})32tCBAINzpvGVKTANf~z-QLPOsiVr9lS*O?EB*{REmCyfAYem< z4IOtQfsjNheS3p>)Yld9KhN7)76yDaDZqgqemEv~`Gzg1PiAvLogcsMc2Q4nQd`{K zS$DxO?_nHOg~Zu)NF{oc?_NST&a07-iokva_XRhZr#;Ri3%NnwfCjzCrh;M@d>+jn zSaT1a^+iVPbj|s}bM~*ICn4v~1{b@+uZb$~RZBx5w%AAV=QNG06<~#;Ho}8Nu+c8$ zd`(YE^f-U;BV-$dO{DKm+Ac30(u%yL}P%U!6F_|1=gZs|65}Wf3>VJMsupKH4;7=v+qQMt1 zjxYNCY1FJGJRFzgv~%(%*cJ%Bm0i%sPq*9IZO#P5PL6{Jm_(U!<#>N2cuwnG;a#Iw zt4>|J)~>UkKj21{{1hxHIqiXSn5^jalNffonR}on0S>#)-8Z{#*RLCqJVZh0?Z0|T zxGegvYVb>|C&6PJ!2N0lJ_LgP`9ocEf#X15yDgOH$4h!3qOoe62-uD5=EKU5(p270 zV&epgXdKQuI}_OY6%c%(FoExmEtdBTUaMG@*lv^{(_$GxpCa1dWFrjwyZ5JWiWpC9!R)Mg>a zQzitKf8yC3Hmq|a zxnnzh;G-`C4(3cdUEyj!++v5^vU%Zr@C_c^rJ8kTKzSO-m_WTN>1r1#!QMSSQq8 zHv31+c5ASRF%2G0NaFtL>VkBwFdWx|Geiqb0scx}{55tS7xQ`fULucCV{GQ{6J~dX{Ri9wGnJ8!=I>HVIFt0-z3dM7dv(*xz~|wTq}c59fL0v#3Yf3I)es zu34ExbzkSuhyZZjcK@o?hyS8HA>d zq8&<}jcr4hR=X%xNJ;G*nZC__G$emjFW9KS>CoR*qb)|7mQ2C{4}h~g+F?wh*mI)N zkwW02{&^hd$(T^i$Zo*}jMrbjh}s;LKED^(Ep^{@1Xr4${M|VwdZ`@g5yOOoeyVhY z78V5>kpI&)If&*e!X<-_Yq40Y=pW~`hyM?*ux3oq=uGkV>lUj~{)W!0fZhxIA^r3j z=i?M(n!*;`(7#+>$47^gE74ogJkLFy!`W(C@xxq{V@dEkfyBdrHs7s2>|YO{Wr%xO zX!KT`!+}0yR!i6?K+8DCpPEz5h+vB8U62sr5bTXOwYPDr|A9YbGVZiRYzybgNQ^`D z83Z?NA4DwJ*d7VC_0695gYLe!4}L^Z$pf_KiDvsZ5(^b#H;~qr6!dQ&QVd4C(wtPR zE0^P7>hpv(j3UU~)OAf-!iB8^qY2 zWq4(ueZjT8FQNnT+KGqyC8#A}H_Dj9l>L!Ed(NXcKEW^9J)e8RtvnzYZ0smU;D1;{ zflAbtZ=#F~hrBUh;X_7iN0u|CWb|DfKNXwQB=T9zHJ4O z;xMq>@xflwiwoW&urcsh84YzU@a^G4Ams@2JE;dtA@V3x`H3dkI{0=2bws`~hmJod z!=05m)zSXATy540?Ngf^OY$;p{b#L})VcmKT*iMqF7=Oc9{;!XeQ)0nTbLGbv}a%d zUAp@$0E)%3Ka@_}O#sEgo%n1}1Eqmo-Yab9Phs*xNBF@FqyZjg?jYMSEJlyy8+cK> zx2NKFlA3~)q-n~IkM4NH;E^D>$RjvtIM93K!z-SN(%-qx_&`LG2wkL!y!5cy-%odD zKD&pX;5Z^S?F{a~9^3)-N%YT$O9HP9tQA}k0%agh2XwfTi2iXCEDORVA!QcGjA6kF zXyXv&C@0OSe2e)~=HKn_-#%|^SxG4A!|rtbDDbY> zEYBYcc>qKKOChBEvy!ns96;vni1vO0*OS&G=`>;UEQR@SV8P84blm4xfEMfmYYcr+ z`r$e1$aR$n?0)>a%O6(!TR44#)RSz|Z()}^T0u7k{`0)OSTf@5)3&zU|M4q|8hgat zO^*D8kZ*-Q$hY8Xmm99G0pve=qcHD1k6hs=kR>?jq5?L`e=tqQ!{%>tmZfOUt#&OD zcS6zO1gb0y6;W1=MGG#(z~`Lu=gj+*aQcikr6pyanX;Bo&| zQx4di=7|<97KaTVm&n@z6vcyM+bEg3 z)+@g`UQuVLIyCGp+x+o8L|+G5Foceml*O8P%kS%`ATRPDw5ouU0mme~Sc3meyZrTD z9w%$%0pFPntp{2fWBwGW6VTk}^P!1mz9PBuf@nt^I!eGEn=9T>PmACp0kjq39z_^L zL86yAVnfQr!=URrV|;-?Lh!ucs8N>XU!Mi4C430{JbS~N!Se9!7kyIRcLi)?CgjxV z$U{u(L$8fzNJw_jH38rw8t5}pOHzyepbAmmgQ59;zr0CujROGbN`uafLR%SpM1mKP zngbtyD?3fZ6dOD6@H>_F3p)!q1$e~?;-6dtSBrrdU(KzI_sw;n?yT}i^62u;?Scl{ z-^U{Z?c|tZ%^q!toV0q#9KGrwr8w-tg=>O)wcqbf)Bg1d(zb1fv*llox;YvUw#>V||G z`GUc_Z*^!evJ;Lc<8VQ~08n;6fdwCivY$aa1fUYxJ1g|y{tHt?gEs_x_Ob!)&1K@@ z#SSjY{6FpO`6AE4YL-QQWr8CqMlOuud-qzR>WLm0?!Xa_vMw>$fQ)XIUW$008aP1I zl>1sb`&k^y+A;Xzyajm^cVZym?Z=#cH`Lg!wB1LvQBZ%BN~K0-xL$u+2@Tn#+*dYB&)Vv+j7!dHxanbK?XfM%PtbG{#@t?xIbQQMWjFU8a4$B^WE=V1H)n45BbUDtRMapms z#KTg8z08iMY>SvgKBV9yu9O88Gb-MTN3lWKVeMgXPZC|Axdoc4fQ=xzMCW)#P5HdA zkN33tvJcYh0r?90O2p8KFyLVk&Co)_`_6aRr0-;LfcX?s>!oOS1qvI^Vwj^vLgIU% zi@$r6WN#_as=iPif?;(VFr@U|M9<>r>^AFP|AL9*WK|=+p9v5@d=}7pt_e2uiCTk} z*L+%qP$w)RG@q$$rvU3LLxo4WS!}6QKR|bi zy>NT!S+z{iP32c>{OQy2eTQ>}vyflY`-*m--~j**sWXldRQ>9A;GaQU@OBSuuMCYX zQ1PV@!v4KnN3zPB&@pTjiv&X*vxJaLjqIGi0WSP}i(?h1 zmA_?@F`rw+6eft&6=G1^vEkl;yN2~AS}xH`fdUE+)w%l4>L~#~C1@DJXCpbBq5*(Q zEAi1BGS6}AN!h1_MiQ33brf3!q~pX{?TgSFw$Drn?bDlDnE;PlXgX^uenj`vxbb@Yg->=HwBaQr8#I{7nCp|4L z(6xN(3l&aocX_qD)1XeH#=mKJ8Iq0_;~RVkh)DO;eZRY>$*|`{vOql znuS2Lfs#S$i}Gye}yT<^87fujRBv(qTMW9KU-82Xg!9CEAv#-)N8m zuX{Av71B_ymFQ$TgOl<4gxne3U7-JKE;u9Nafy;=c?Y{zgHA6SQc~~yJFO#>!unB0 zJYqp^>9o5&T3`HXq-?&|vzFXd~iT`z_c89FTz2XFq>oRv^wlQ5q572Lc3feVf!l6!C|)y|B(nldVnxM{>-Tz* zf-ikNklMM6+65O3?+?nFAZ{d>2#5qsK@WjQf)8XQ1R@hyc8ClY5}Jvi=`7PAptP`d zBSTr>e)%RG_Si0$&>a`h^FoVy-QJbvCu72XiOrH12>G8C!>=k2!cRuY#q+j{19T9uoiDZ}#UpiwD#*YC7+|W!m}!o{Q{n>s znM8x=dU~v>F>uhTjo0fqbYSdFzdl12P(UYuqFA~CcR*JZWk978WL!NXP#{fMp^rNyp zLxPQ{3*5Kv;S=4_g(W)n<$|U`q#{1=PKuKc&SEaNfKR_OUwvLv^hOa>LD~_xpj~96mXaYI`APze1ZU_Vry)58>0d-JTj1h4$^B7qAJO1u zCOzDa2e|XpnIKm0A4KA6o)Cxe9j^xnro0#R;aGA`F3cCn4ugb2^a3p+ygrb@Gjn%_ zo?V4@0+r!0F^$MPuakv)76GY66tJp4`eKnj3YKzkfGNw+s>hsM`Nl8Sl94oN<(dJo z{0kgx8+BaU?Ob&aLQ6$_8q_0*nmOYG!nKXYUoH$ErM~d!8^cq;s<&#@`qkD9JW6ZZ zOVIvKsGGL+ulY#Ui26b{8|GXHkK{sQcA~T9UQ*|EzhU~HAes#>a6D3?d2g8v$1iuLD=}_0 zi*tm47W*VYEJcnf=|lDxod#S@>wNK^M}d`To^Yj#Uu^QjCVm`8fSLi?#--T?KD>iO zmqYKLkPt(~50Z!6KWtyNMfx24G=B?#0y)t`RoN6>&6NmRgtVUwS3xkk=RsIjNROK- zh(U^s+_BxqSGWB`Q!%{LRJ`ZY7q!zsIV?sh`pDCq1Oq=fOfn zj1x4>@GXAJuc)vk`6}Uw5{_p^AulmdAxlv{Rj@4u(M5|$0C{M!N4Oy>@G);J^d(hP zkj17Hdg;sv4tFnb7(LS1gF#S$+-?J$p=QF;Lja53h&IbSR-uk0DtGSW;ZR)pq!;W_ zzY5?>C6bT2uh5Vfzky9=(1k8!{k!xj9&5x9XN~kQlcJJ?wlcz+vuvwwg8ZIVZ%;OrmL=jsKU_kJR1zCt&Q{$!yR`jn52A)16!AnB^6 z2{pl~8^TSW(dR1=ulkR(K>9%`z_QSug+=ii@`MHXccDUT(Zja^HXxc6PBxRz@`2`r z;Dmzn!kVWZ{n|njmoNodrNG0yp3A5qy|RQJ`TPU9!wf3sRSw$rf<_G_6}5@J5{=Dx z3tR*AokGIs&ZYb54d^UI(dYHyix_mkW{-#Vfbd|j(Mk|8PuE^%+XfjB=_GihtIzYi z(~NdI7 zDj&UZCfIu)jj~8R030CBSx8;(^Koq6vuU#i-ol3}<9FQw225x6u%VyuhyRz*hfu5Z z_2DamHGREhAH@l}%%h_i>I3LbCv(CdJZcH??hk98FZvVlMSg!i)D0F41an}8Zi8OXYAYgTzBSkfNUIgQ8K)yqXli077;7m8=*d;t$Kysew)qtpK^ZW}Z>niu4N7xbZxSJ;di~7^6 z5X}&XQgJMz{KtSaMfyQR3UWC%LnBxjm5I(I9G3RQD9tav6i6)vDm>Ty?Mn|Df%n}l z(RT^ZamXFMmW$q5a?r6qOslSD<@t@r>*c~i_2yn6Qouf>T+$;K*<(}tAY8|Tez{O) zBNWZ-7I)|+_yi&v^TxdBq(i@SDq$o%Q{d_KxV@t}3Lg=D&=1>+92^1kJ&0?2drbMhVw&=x~jJhly&{3>e z;h9o{=OKJ0XO+Yg8qrl{EO6`CiLQlb;4Stk{9B9|8hu7e;MTW@!djyx# zS&QIe&Og03WO+`gDFaIS-}6U*$|q37dX1uSED6f!1I{R0m38;){BX478#qPf9X;i+ zW>C%GPta!2vR`>0m3nYE(fioTBD_9*oXvl(*Ku`i-}|$CQFt5(6iL==!?N|e%5NX1 z)BhQrxBrIp|9@h}-~R&_ng54Y{=Yx}Km7f_!S$d1<^TQP$^ZZJ&z~#s=L-C}0)MW+ zpDXa^3jDbOf3CovEAZzE{J8>uuE3uw@aGEri&%lbPS_%^e{baDAOHOC{!19oN%H^y z0<-o4GMDfF@;86;@BQUd{M-MBzxkVg1J{55uVMBduKzEt{|~PJH?IFDuKyC({}oq* z>)*rm-(XJQe~s(^hU?$N^{?Y1^8)`XT>mky{}9&_*T049|A>nK4gVeH1d^G7|2eMz z1lNCr>p#FH;`%?~`qyxgIfDN!uKyRV{|r}yi`=V^>(4*`dsu=0)wlHDz2U!G4ShZI z|6xDXF&WnOFK8yD^w-&~|HPS)63TdJ?DMygzu^CN$@9y<^_K#^2%xqGE72FZe{?1! zn!5~ttNyLJ+bZn;&SyfN*Z-3vA@RTeoqzh2*+0JPf962Q!v9C+K~^nj^8cbo%;Khg z^C0p18wZKk-!w?P{)R!~^*0L=ufI`{c>PU+#OrSmBwl}WAo2RoJ_Zs${7;_(`FATq zhCt$P%)kHd;44Nz;wvUV;wuI~;w$Dq;w#2K;wz><;wy$f;wxr9;_Lsy(U1Sbt^H;4 zBl!(v@Z;|{{liI*|L|{r&VBrsGWT&qla4oko%_gqAxkE6AH(&zUaRkOaJlWv3q}nY zZDI43_|2W1hw>o4N86!ipeu}xGROl%%j-gD(e|}KMaL^ydsTEGt)1$+?(z35-HT{# zwC1waSW1hK=JjfS)H{$PMtgNV^Jz4TCEBR0HY>1AD6}Iqy)@mBJ}a9;Y~Rt72mLZm z_5R08Q~ttF`)7JRJoOOuE%Do3>K?rWiV{QvH-!9|a00YDs7F%XVb)>p+3xcCJX$-} zlAApUrL~fEQW542=Fkwn!=Z%Af};5{`^{&RVli?ESD5rdf#Mex+yP}U9n2xjYJ#d7 z{S;$gUctqzhkl#(Ph^V1zfAudK{i!@1{3{wnd$t`=pEd|D#8v&@9E-b3 zo8QiM5*Hz9NwT_f~(GW%e-qAXg-IIk@flnc$}x+3={OwcV^ zgHj$3kh9vt)!NuM%spwEHFy52SY?GecuUyMzihLz>Z`Nc-c>4TB|t480mn(ktv&uM~-fzSn2E3^;mOpfNoi zpe8(`H`tcTMjLzFHBqlzU-J1WS$7x0KAW^O+OCPt7K@+LIt9H4ilAs37u7xZ0!vKm zl9HaZ)#~oD{5uEPuSTue#dIe;Mm_-(FM@1Wttm`45$g$j5DZ8{dnti(u-51k{EGLl zDrf{hPPFk%weNdLI6A+1G*Aby?gIx8+v_!wt|MnPxKhX?UVjoL}%EJw`5sR z5a1uSq;E&&gXKrHR^y*BqcU9!v5sDm7`qCNomqn;1XjjW__H5Dg9e(W)VZMJoOR5v z!9q!iFt+Fu_s85FG=m5Y{3kfCl7qRI z*TrXjzWQfyC=>MU6Xi`aL1^jw9Ls5fHQs8Y>OEXg>QA`WWgv*UZvjR&DWYh!5x}%;|R4kn3=!1vJZBy7mW*RWVcQ1QnpaHWklrzSCn}4WO4dL0^{P!(eVcA>EaHXQ@?QU<>8!&uNTN*cvH+gEcEWy z({c~`gGi%06$RP}IL;zn@R+=$qzj4jNmDl^OlXez76Mn0`G0D{V^6Rba=zx|c-)*L z*;!x+lzKjgK8Tx~AIm*d-QdmeHH`bi!}}fHFGuGwxoZ_BN6f~+9EVyc(8C99fqq5ByHgjU>|rQ_*{r$``YQ~?51h*g>WH%`rwuV&kbak2>ikDQqwAw>b-`Z zoHW|Q&)DWt&Snv4bkI98JdEf4dp!xK_hAcB1&5xBVbVY|KOM{A_E|~%)m%cuF)YqF zgWT+?E2teW@7Esl>#!YQ5B5SSys*vCGo=A{+KPkeeJ+#?gMm1xd@)N6ByKukz{$=T z>_*YvnMoL)%W}7Y4^*)@5yZ%l7=?qal0N+c2s$Df*oiqfB(PP?!HkH;@z>8x@X(Eg z|8ZQf+Je)9g7YYO!hH+r4>-42L11tqu#T`F&9iPRtzbuQ~;1 ze<1s;y0vYxzQ{`QW_5!9QZlEab$#2c>LbiG>*sC4A$OIbW;KrRrGQky%U_xe--^u_ zlm&PPBd%K}>UOkS!v4jA2^`DyGQS%gp}vqq*xl?m1LwPMAAuXWb@ z_V>qrMYuo@9^_YRyWFTfLiC@V-`T(O024-)XKjP!j*?wIGXU#)W;Z`C>!S zZM4c^Rduu`ORv_r9S|K>Ef*9PzGZ!M99T`iZPxku)u-gx<;%hsZE~6*nf<|MeS9HytR@dw0y8pq-zfpi zno15fEE~=vj*| zHyBCez>)1L9=AK$wN3B539*#EEq!0Kw#We|lir$)i$2wWi)?Nq`&EKI@W-YUK?f8g5wcy0o~$1aVWrs3!+H^8SAOqV$+pjudF50m zzqT3J(f-(NTbEF|G)QG0edh-x}&f)T$?bY};9H?z54nTf5JE(Icboa47kdft}uu zq17^G(crvsq7^lHa*}lpM%kphYZL`GXLpl6?}T!?uR?D87PQ-kGPltV_Hb^d%}5xb zTFUh;Fz4^@%R;aE35ZCtafv$e`%Y(5+x=c&yQh#SWA_gHjU%_;4@wqr;tp<|rh9Q~Xe6ik=_f4WSz95B?7!pZu3}vjUAhiU z&giLRP()Ty^Vaynl35WWyxs-$BW`53@8?N%z_F*1EUplkDGw;7|71orna4M8Xy5@ao%qp|3Rw;n9_%Cw1&Xw0>q8S_U4N-dlMN%C(t3E0m!_o6Y zscD%r(O~aq-qo*S@Pj;cUv~Lf@9v>KyGq_ejT`Rhj^h0Nc4qFrwuazvk~(q@O>B0H}|due%G_ST?-NnnGLvg zCj{eC6MAw#>F-7QYiV$XYmwBW(=Pc=@*>2LmrmFC=#)G8@@qB#6&rx?l$(;Pqv)pO zY!d=$C*PITk7s0rlzPoYCm=Qaej`Hsl?DVwvA1#jy0NJ-J>#Opf=arQ&5j z*63l$0c)dDOIz#7s7}td52#oxefn5dBYxf~B$$mX0$ij|id&6ijvS|m!VI2wVc|={ z!*j%Yc+(5$0M4$FUbb1^x{){qK5d__3@p0%ZD+ z&*gP+4uL?fQwtPDg@xap>|cvSJV@7=*s2wde)^;(!{EEAsc4w8WnWkflA(YZ zoe7Lx&J5%YDxEpwo2tZ<#Ic)ovu(ZnB6r9LLzYUIKz*AH-~0K;9VlbUp- z@vvvyu8rsTvgpF1%?NR%n^XETAI&ZP3(4HTJ-**GD>O7;tc&AkwO2AffdjhBnq=f8 z-eP|Ti92r7`Y0EsPJ7q9j1?9pTUe~UmHaMz{iIWNJ`;`1u&Lh?PbbH6+pgvKu=u*_ z(w+>R+g=Lj`8lE5b?+Y-=Gu0RWq0Dy5Y>L~s%cceOT4g2Z9;x5Wz^ljU$c+oiai?h zZfE}9KZ@j|IeN_y){|s-FE#Je8nxX-z`aX-tYe2hA0~x1Kdn7_Vjp*~S>q%Fo}mca zIH}6UPddv{_~Dc8>=iF0Gm7+L!smu;MuEE>vF{DKTHQ>puQusnEf@iY*ay-BaRS&Fj@Y0)MEd54{ zGh479-^#w{ls=K_!Sku#sf*6iuWRlolV7K(LTz(0$)}smY&b&ka68Yk5c=w`!5d3U zolFvUeFFjCfj*FhWu7c7(!X*Bt^fGU^E~hUU$4W!44wM44vhjXK`RvpBY6bZVaGt%?m6?n(rnY|4RPE4A?8VHM6oy&7 zllJ;N{fgvEuUD|f4C}7O*Tsk~;2hud7(N?tT5ZY+r+?|JARD#t+HvO|CS<{2z0{V# zkm={U)KJPEC^Uz#=a%+Z{JP&Ae=|7mYlYL0`|4xYG`)B?M_{8Jl4xe1K<>>r?50vtZ)}+_uGrMvJ2ln0e!n>!eePr*p$-(tU z%Z4Ju5M7P_Y5mG&b|vfAS1qh$xr@4Zy6V+YpVI?WXaNJZUGJRM4tK^y*!JrLdqoS% zCz8PA7&7g4Gr;+>DBUdl@zJh%1&6Y~zPA6YPLf4=798PO`A1(#um7?}N`E!IzZU4j zZPFLUs-|3*E;Z;?vV}RaHjT;j{x8<4U8_O8_G1b#xd^IAPm)-eb^0@~UM+SuzwU^i zPOG0=lD%B^;u>Hd8rM^N2k?-0+LJ=&i@Xu3?1HpoKa5G)FIWY z2r8QYtw8jksr_g(Hv~PyQJPH#wn_{;cmF5DFYCPSdA@3me`XJ^U!`hxdOh5G8*IU$ zM@xm&p+U9GXsK^1jq6g_itfy}eh+OK+`mqJLd^4Xdb$5R$uVtopAK%+WtDG#{ivs( z!m(n6CD{$UM?E;>lE(t0Z86jzEpg3#7Mn+4M0?56mMpNB^zQpKeeMcXjJ29{$TqnD zXrfKWzcRP4<6m94)^ZBVBF;Ar4(l4c%Zn?J&Gx8!pH`m?GMI8TQ+fxDDV-l%<`Q%( z>9^_|rly#sC$eg_on|iA7l!wZJg26A%*kSc0yLWklb_5L%beK5t0nmegbvbV2xQ%8 z9&3!i_C--BF-I5kTR)R)L((iWp=KyNS|xzC*%%o*09$en~&TfE>GZhGmX-?jPMdt81Hx@L@6o_YVy5ZTp!^YsfJ9QaBzs6Uqq?ywQ?^aW72}wh4QW+C*_FXc6^)?3pwVbL&{QfVf!@5%hbnmp^ma_=_Q zvv^j(Fu48R7dfi}Lwb~RWdD}5J`6<6U$&H>!g2R?Kg4fBRr;=Zn02O3SQxc$ZA(tV zCHYzQpWizj;G6e22SNpue|dH~cd}aOJ09Lm`31b44Q#xf(TjWF2FoYeh`~4bKBdU= zUO)zAZy{qs*C!w55wd*2R<3Kt^Z3^GlAklX*nV8;wUQGwLCd)xKyd3GjOf4>R`m9D z{s5W4GYdPy2)66KFh1Mhsd(l!kdP1J62VojH^HC6yzF@_V2>zw8FL6f;(4d#apqfj z$&K-IBkO?F0)sV(uYM%6F4#jb0ylqnYr^Ae28k?w+^?|@*A&Et$Lp?C*;`m>4m^*Q zqs+gO7o1xeS4sYI6{)W<*JciwKIbW~C{LIH6W6uevt&H&UnS2@GP#~C zpc-lCyG96i5sE(Zb-0$gJ)tWRCQ2@Olj;+_0pPsfT=kEWzOeFahqIpNu(N#qNO<;x zm9ZxiSp5EKqhu*b4KzxBz|@1qaNTJ53Uh>Tx*T8HG;|$vlpM*1p>Hfqgyp=^d)_&o zrQ{C-Y-;%%_ZByd=XFtNx9=kAbpT_(2&rGuuv(8{{dWjJjIPpe&1}o$x<8hWq}2-O z^H)OWS(a7n{$aqqjogHu_w5PK?3FH4o5Hc`yjuQ8DqGVK7RhOB0 z<+Y|Dp*JOKE~wx|PuRcLENoP&S&4PEZt5aGu4^1}i~D|QH*|TbJFjUh&j3I3(-4qb z|J=5X79D42%92;+Yxya8Q{>gg+F(7)qAfUrL#J~xEJ~aO_sV`Du`3h>(RDbv?qCv1 z1~#w%)EIVS?Str~$hUWE2ajmPMQhS;`n2-?>?dczAH0XYW}^Y2M$`-#eLma(i=H&? zmh&O%Q*RI;t(33FnH;tWlY(mfbFbPO|^=gKjoPd&4tb78dJ-X`!i2|IR^K6fm%pyDru(Hn)M$a+3zE{4j;F&t*}#F zcz*(=%*2_(2lAiGBKMlXXYUkev?tU#6Y>l}&fu5iYba zW;az>nNIB>>%Y^l-_6%ldWEsD3Y!Tt-unRbKc!}C>4?xtbSQVNsw*!_{c1h+>V_@s zSA+%m>q36XU`oH@a5$e@Bu+*@*2;tM{;8)|qzW_lc83Om(jy1XCY&6#7 zGxNFWfLY(2cy6-bR9;9X`FIU#y5mc-Mz6Pg?QZMLgd!@T;e}%8*56BR7_mh3WaOTE zf#H~3f(mzn$)%p1PHiFAzp-qTCFEx@{_FE>>W<(V_s-v1 z$bGciE;FrP)+LvM`bqK1R(c$c4UdO}klGzJU0E6Pr`D=X3 z7FB7d)ceu?*Jym#S9DSn#0bKMn1-XU-^{S09095+)T#7SNHyMJrtenzP|yxxwU@oQ|tIwMmK4SI{rH=bvr zSM}I2q->&|UuiE`K$YcH>ZNZuXf%m(DDzYUvnjb(YV%L6X+>NMpd_i`F;0Kqtv!dW zgv{&0ByHvGeycFc;IZtuT(6sy-ks0DPg?Nii_=H4x|S(S zFj2=DM&$^+S6GMHV0N$2%#v*SFf6`b$$t%oT%4t^qLCvhQDzG2QCfb~L7U^@H&*T( zNA`}=+%GIuVX<6~@1H+4Zenvk?os{qX3P}L<+9moaHI0~XHItfDwJWA#tU<&{1U(R zsYQ+Q%wfyde0WE>&jt8#FF9)|TD6kz2AhyMz|G^@w>v%nR5v~oPjWAqX~0BfKE6ek z`DAv`;k^955mglHs2G76@*VUuZpF|Y$vyIyu57*jR+Fek-R;w-Y8I?V{>$urebHmY zZTcy{_fJk0pUx)njY!+}*Zs5f=AZCIk*ld2zVBeUZk$Yn)Ao8dxM-b^>L&sD9tAO> zh#J87%wc{p4SEtSdd>AXtZE~fvkdlqw(Z{Onb=6)HWdHoZkIP(nN99Llr3S52BQ_q zzSJE2WER+Mq;hR-Sb(bvENFKB2ATnK#cQO8lsc5}tSB`f>G3XQYu10=D<|(R>_R#^ zuB#Wf<4cR>8O$bco}D_o&XlI3tUqngoag7OpObYPgzijo(5Xc$2kR}Gho*s6NTsAXhtd9LYYBLZo4i<@cTrm!zoeZ}eGbf7ry_ z)y*njLDjJvcgi&$CTi52!Rkp(z7vKH?4GQ!sZ*CR5Ue!)v!+v{N|-2NYdSs4C(K@I z+g(eixoN83bDAH}24$kH-IqMyOeT0!tCbf`N9MF`)v=?#wsv2r&E$P<2I!THEjrm$ z5&rs9?~=GA=X%fY1w2h~JrmIdml>MvZ;%gYHtcr7R^NPSf0Y_9Nj)Lh$1nlO%u$jBLT<6E~o%n%(cQb0}quS76sIqgb z2R6oMo6Y1(1`oQO=YSbk{(3wbRi!nbn@t@(MrwAcv4K}{$57KWNIgg@zC?KGYO;yU zg61{PjeU~2VmF${mHB>Gtlz^?Z$Aq?8ayJwZ8oRFkwf5Ha0qyTht$7E4e3kC`Q;#b zSAMqe_C?>h7M?53KX>tQyn>#m)6a9W+kMu`_?xXdQlG2 z@4_54KG|gYI1JCM%|~7#Li+)H+Y)~Eq)T~bED{79Q4%d+b%M6~=QUwE;~wp` z!}2}S2b0e|oa)joi~4K zzhy&P$zFT-L4fmySxUeDTY1)MHQkoAapCq(t1?eIY*sj)ydeBlj}?n!gR5$s6|1(J zS2aiU@<`G+4@ph}`srSe;S&Wffv&vg^#+q1%@95pv+%B-A` zZlN_+Y1|F3=*m@!K58p~rqm9-6RC4^daUr$a<=s>mVL3dy|<`Wzm=@p>w$**t`ZoI zQC#Lp)Y+B7z}?))7Fl+(=gp?iSzkC?h~W!i4>B6OyR-SeiFmDKn7v9pn24kT$q#u0 z+e7BBGan%R3R)*}L%Cl9=aK#9(i@XPrPMVn77dx5$w)AsAH2mdx=0pBayUe8JkjMG zDLI0^X9P)w5SwP36{Ds13Bfd@}0rkT^ah3S;@FNY9D%^1_zn_@O#c=y#n1Z|;^-49N-be0zfE7&^M- zOgh3?Bh(PRK<6{BY2;(!r;!{@=g}ZL9nEh|dPTKs*T125_p_1k+J75)4I}i%8;?vH zl_B?h9%6?2r=RmqF46~Vv7c=?*;er#5x&2a`i)m=jScT*opKq~=5&p1aw}ezhLRL^)3r4go~c zx}D3KgZvD}JjY{DdPH);>`GlcVMCt`&}1XH9Fr}RY|7WL27o!{7HiW=T>Qq{Z*>oT zlzz*1vXQwqT;!Rhaz@?^E{|y9`(K1Vj5*;x-WlH=-*Ku@suJoJe`_-9=xrVRCUy+f zP&m~GlRmK#2$T8NWuAskS=72lk}&xGwivxG-W1DF_}*Egvl<9!u)P^m z{V#5N$rLxxj6G^#Y43G41(*LXY5>%@a^H`#`zSl!DSnm=l<>iMjSnnXd_DYCvJ1O`AM1G~Tc&E>9e!TFYen3XQUmfXFaw6rIMd`kmAsPq z?Yh2xPhaggx;!MmSbl~h#YSjvx3H-jO&0xm2P2ltpN8N2{Gp{<1>~s$(FDVLBITI! z)j66-;iO^Ffk^vcJl6dz=Knu^o>mFo;iU|Uk@1+O@5^$t>mEESRjTVc%iXwp_qVIj zXVeO+*=AN9h39`8on%|lW3I_ygIe=FdY!)aPQBf8LTB-szM{_i*{#>Auf}jr!7ZAv z9T`9i-H13Qo8&E^``d`mLs-w3AJ1e~dq?JZm@UE`_OrS^>GQN#!dcAClf^RsC+Q3H zC>-MEp`8Cq|9kp7J)Q%^PsiO159R&+ra3>Y(7!0h&YT5D3&(O;X`-TFI;CxAm=udJzX&jAj@UHDC*>_#7r$^bWzVNr%p_N+L zk}jEYXcbw!*G^A8r455`3M1bAVwjDa(yAQfOz7lK|A*Hl`rO{0OyT($oKM!qF!S2i zeVUU|ka0$_7AAAWf12OREFPhh*7%5K64tp|m|a--DPUKQU@{M`ZHp{Wre9;2>b+G9 zZ2*4FoB>Vuq1#Ect{9Jtp*w>=uRGW}ekuB(&-F+9P;>82j+W3$` z2_l?rvec@2=FOvcNj)~xVk+Z&ii6M{7y739*z4Gsdr_GwR z-$+fJ!1WWazi-uZ_fXDw*MSpi#Qm@wcblXCv;O-Z|D7!^!nwV*)JQ(c+`;u~KRl3i z9Vg6b<7%KUtuDz|jFq0og7;xmjM9P((H9F{h(bcEJS88udqQ_PqVI5^ZMc3UXiS$f z|86!w%^YMQZ4=em}{cSoJlRqlM zWky18{aKWL*s{mTtji(pjHWDSo6<)zf4TEf=j1&FA-$<3&u6ZS*W*D}s3vmTz_2ryKOJ$)oKrtJ*^C2RrRo9ar9UK;;NN7D|)rU)_q=vDAW5e5yBe z63OQgc={|`?rZT3$Ld8d^G(0C_+6!&xlp<4JAHI}|N7naaxQ0yr5k4P&}_Y4c{V>w z7LR2WlC{wIe7};N<(r&Mt5v4Iemaco+jdQ!l*Sf=xIWz!+z#_6iCI^yYwuZarB1(l z<%eICiM)noh9TNx+FP7IC#znls@Pj00VuUrgNDd-(YIsL3M7*(Gjo9E69Dr-Jdnj5 zvD?&Iiae(Tw`gGv+f65mM3_Ih`h53rK}wrb*|06KarLbo7!X_yt4aoHnvYLbgF#-%@V9<=jwqgDdj28)_zg42yCdDaAsG_SMYl!&$mY2r-;F1F;lJP6wwn1| zZaFot#^|z~O_Uac;jp02H%l#X9J|M6cx}ZCa$D%RIi`>`!%1>^pK% zymehyoAp9hnGpgAz>vtwz1Yx6eh-i$O^5uPM}5sgEQ%)2(EME9)s-8QxW%=;YL&fWv<$Ae&jiv zc6ZTQ@*&sTrq|Hl*?|0)N%1wzl?aX81$x^0=Jb;}-ad1u_gzD~y$cRR`9k(3`-nzp zr+mLJ$&$(=Zr6-tNJjB{q#+DdwjTMsgW(NMLf0N}u-&OB2Nv^`{LY<@arf%W?+Mf= zXYO=+c<*N;G*pIBVB0c3pHIb;Y)>UDe!riQ#l`zIZKd4XdLZ7cA=)7?BLJgPtE~-`_^4Y2ebjs*TB`%W67{G6TkjtmG(PsmjIx4OwPXVA z>VbFtpeceTE(m7KfKhY$@*FGWZpTXuRZ&j z6GSts6-Jd~wRid)_B;k&B$=+|VE%aEnQHuQkIyY_CE7cf9ryI@m$lt3vY1(2FJv^t zw_B6np&#zvJ8;nOmT%F%hDYN~3Icri7qz2JD>m-m$JVHO@GC>NHD#UpV>pjQ*R{YX zb2}bj@;4r>P1^XZT2*3=+1HYroN@P(bJjviVth~KnY3okt5wC493$oXY54Q*7c)dF zTUc|V;qehSboA(Jb(#>TQlMK+A-pqyx{m3GBLNp3lN+NSJ;k z_+_1tFLA$VSE>dE4g1C9dTP{W1;Jo>WLB%%RgG9``Qz})ZJHd7h*yE&;LizwFnayt z=&YB1_KF#6(K^kt`9SJC-SL|nc4b*w&X3h*>uR%h zUfC}s7Czn_qz@492k>#sqHcTjj)c1To=B7CaWA%!7Qs3QF%b6g^{;F@A^`5!s^y5| zlBam$)xxdzW;4A)R;=Fm_}pdtNc11g>+{*zD%#bGE8!1|)Iy`f$MI!QEfTxl`k`pm zJuRvoo14bIdF;ws(_9cbWNg{POy&2hRPTdRHDsjZ1QG&P>++ zWt`Vu)BL)8oo(__?WB?q2CA_UwvJ?AJe4A=|A3|3_iQ-wD|Nh`-16uRWp4A+N4|LJ zo7~55D$d%|#k32dA(Mvx@fp63CbRPr!r$`J^2FV zYu?cB+WLtMXXkPfUl{t!UVDE$YF0&)h73wGQ}d41ZuRy_(#Bo68^}wj5}!m}X99Ie z5A+$E578=RLw8AHCtM$Tu~AKtbHrCYOAb$&eJtI-toErU-e~Un)u6WH0AFRu0T)E- zzhgE<=UHt3Xn$FA6MBYf1p}Q@rzqtnphB$R(f;rt4LYC(8a(gMo7BoOli6;x!q%7t zhAX41P0F*9cxYJD%~--Y>aCQ+sQn$YCYAYJ5~QXa4$P7tK^~EHlSUVr<63Bfk5BO` zTr;C6XIKwRW`>dktW%7=t`Es5S()O|e930DeSI5mg4ZL*e1@rVPHAOcRgvQMl@aKe zasPJzrhLC_k~Wz`XSAFvqq-4hgfw~&!hg~Br5;Q&_p<9Y`;)Q6K>pwz>8lA6hdJ6) zvZ11DqCU^e6MI99#PyEkJ9986J9bNERAwCmeiz|Wc}NOilO%I8!{q)^>dc!Ch}C|_ zr~Lo#q}A(52j2<~ffz#2fW7yr$~-nH&pl78qNOCacZQs<%-&k-8F_*+S>IQtTPDNAZ^1`*oaagHI#BzYaG-pAWmnhsN-Eh31hPuy{}(luVyy{zA_N zTs>$RV! zDD~vb=nLg&dAhjn)~#_&dsBu)X^#^BphGA%$0#s=s~^9u}H6* zZm&bnr5J@xgMZ$svIfrVZ9HWSIw|{wLuw4KKG0nh`}}#hnc0Yol)ww6a01Vf!yK zmuG9ss2d&8Q3oPcRjc2kGGyJ*KH0-JPt)h@eOjK*OD*&%rfyqJMk^6gq-!HcvM>TlZzRWT_+@i=)1Cu;5 z7KbX2iK5NK{fF_n)N_`eVfL(iu(;HZlny$xnBVR`=~|nLzVUYIdbgdP#PiQ~s+nlP zLa|tO@puu!j2#dkINq*2R>(RsuLNTe6g0auUI1q7X}rX30!%@dXVBMPbzve*e=FRe zY|ZMC1AcuYHAlIIZqeG&tqSBAzD_E~TJXFWjFhe`@$mD^_{&51O{Ob6 zwn(Bxn{_YR`-ON)4)e=ujN`WPSYP$W=4uJ6L_Kl?lWb^^$w@7Fuby@X z(F+pDg{G9Op++DcyQfIGQ}V}a$B8}XoTBn^t=}+BzN8-Bpe2003Zn^I)J&vgl&_Wlq@ruF_eH!AzOvVxa}QkQ~;b zPfzR^<147ToCQ7ga9)qAE}?7q29oa=tt8rKn?q1w(iG2~i1}&BHDgn#9-QdfdQFv- zf@r;#oI}>a-Q#G}JaSMUyd>My3NPyN^zltq@_}{cbSRqZudgV^=;2@PW2dtmxXssQ z)gcv>dfOZ+Mo-`iG(=u`VD-k-lUh`A^Kw(E(&0BpCee#aVa8pry+0a?jDn=1ynM%t zKJP_)J}kUB-z&VF$YZpzm%Z8A(FDl8`HE+Y%(L8k*$U6pyOl>Hd;PdA76GoGtUf&5 zqLTZ!YKC$jZ4Q>q5UwO)3BRXNtaHg0OyGAoN$7j@5^e|B7fnxVjOS)NYDB%FuG|(& zvf%3n01{yIPP?B=+cC&=~McQ*J4XF3nla29?>k zif-8bYJDD1N72(S0~9)7WTn-(){cu689?0QP4a9eV?9f9;QZ#%(qH!HFyvt&lIXk&8@XWmBo^lknZ~z|F zIGwQa%vC@*>p$7B*6Zj0M2on^V$v^Xe`J1VAHq+M*G=a*yFLhb9W~Gh;-7mnfFU2v z`ZLcdTIwPrb9SP8YaV*N-%#EG^M3AUpY{5A6UNALvV&8XjBn-d$L*OqQ+bJwFXu?- z^l5iX?U3-0jGM7=7v2U0C&WO#l$HlERiwW`&LdK zEvcKV+K%Na%SF--4ImN@e)T+t6z;eLG^7Cq5<$xOL$ zRIB!m7ahIcOxR2XSA4c)_&Dq;jd;u?k{QaWMrQKctkx5|3TLic*g*vF>FKVxF<)jH zZ(%MF-#Ge~evUmkx>mx@RHgA}gm~UK^Hv|CZ&%TK9v%J(_u;|DZuZUzvtwtV^&Uu$Ruf-VcR*Tg_SOPQSg;b#feo;}E^tf5GXc*~%R%YH)_k5BdthFf7|LDUi zOE_L06rD;gb$wIn1cUO|&FNqVd7|GqG<{d1Pg7KK<&lJi=IGn96LPgLrKY}zL7_Gp z4jcttrudz0YRbzeFh>Y}(TDR8aOOM>%n!XON{+I2=UhZ`qSRRMK@PR=#JMqpM%(hl z7}L-p8+l$q$17Tw9t>RbX!v7qM9$s4PaXSo|1c8KQ{d1fYSBeU+DfG7ON)6RJgi90 z&xePwhS*kzSFyI;X^xpA+6X7>6inoLi7+{xi7rzG%b_T512kSyb1eRDq&mjMN~A~g zd*A`5lnkv^sjGiTpXK#p%{b7STr|GFL-+fjmM>Pypc_vtCDpx|CiCz?2cL{Vy}%f0 zUbhV+z=&wwCz3t6nNi3?Ewp~sq-4k8 zV4zEV0^*ZB4j;+`L>;vmEjMx?)nRQ2FCifoxRTORxj?IcQT5uhew1Dg2BYoFJ~ymB zm10Hq-iK%mvMh>F?n%$K%!s{LYm_#f2^qPK^O?EL;N<>&u1asCoUi_W{kdvak6Yt5 zxZKWX(aka+Wm2N`U$@EWbowv<$p8B2LHA{&qg($G;u^ zcE7ySzdgdg&D-W*;Ol?TrIWworTIUUe@T@7m;d!2eChuleCc*`@z43v&e}1Kvr6j- zEbejYF6}PeZL2`T5f|>XexAwwxL2M{#!->8Pp}JuW?ZRlYXoMv_$^P( zb3!BBzQx63((68_lP=AmvsyJ@^?7G+U)wu6zb`P4&8+w?efwgL^qSxOkJXMwbF9ug=4~r_I2&~OSw~phy;{p}==zVL@1Q%} zStm5dGHonFOC5)!P;}gk61#R!n*K{_7xA_oGi$xB+RtaR^&Eo?aVRbwM|$B{nSfbS zo4*#!kLvn-lbo4d4F;USbO)++<*6~L8GdO!c~O#GABSFD(tAbMU7OIgY(m#bi)UDtWE8_4nEpcyEo@rgk^7uHNcbO17{(Uvh2} zzhXJ-MGrNcMVr{P)nHMp9*fcVwwq7;+_}>W=8?yS&LZd3Uv2u`PJF67?5V=DsnTMs zE|lwZM)NT)ZkKiLRgAZ1ET4|`F1>)#HsHU3fDBM1r9?v1eJ^na(I$H z&dh6heK&tPN9AlPJX6?xCky$_@!Ou56aj~Are}JwJH{}c;G_o6`t0)kC97my59)z| z))9VlXbuMFjHCbK%?$1L_~QkoHi#!`5V+KbNWlY-*Wj1>XZ4^_cbEFDh2q6C;Q|W3 z(9{12vGn(xG_C|9GxmEn=CEw*n0cl(3(DT5b@wTATRTk+_tgfwiBqPCj&9i)KcRxAh~pHl=j zL;Uq*C||$(vg)Um$h;DNFhggUTF*Q0W5ir80%jUsnd4PMqZX_(cXAiT$MnbC@!euf z@VOlbUtesfV(wEpEh>Bexv^(7arhF(j-!(GBllc^7jMqtWz;>FKC)#D@K9L|EaT`- zm_Ov*R%P?6uotJp+G!w5YoPDHFs+mM>kP*exgHVGB?p% zVj`eRrfcb0&dlcvn!DY@S>y}OdK$_N23uRq`3kN7>)?00FReG)Ej!CvqEj9YS=4R^ znpiddGOgMCslD5o8B^3OLcolp-RHOWUnB)km^15YQHRfWLXG=y$*#R+T&2L>4ktrX z;cT}(x?vTMRin{BShx(UuPYwotA(N)6j@Fly}O7Xb$WD<{dw3Y+&tN0l~ujHajo1o z{&CL0SRdYv>Vb97e?PV$tC)XnXZu_gfz>=$g4>oR+QU08e!)r|^$*>mI}u;cp~`dM zJQ>s}G{wHfVhdlSi}q|XWrmPOZ+6d2&($1PQU3hlfmm^BOg5au6ed2#B0`tOuz@)6 z{LMqQcecNMKk|s|rdI|-A#>h5RqiZuUqiI6!}SN#7;lf7hEDUl+X$bYsRI@D=AP`M zcSUCoWxQJq`VfH2OSH^mYg5zju*jRCS$eAKjut;Jat)XyEQa|jLVy3O_YURg=y9bZ z(_eCmsLRv#hgcYA$4?IDMy)781>Fd*wQfIi;=Z$toBL7rWP@{PBg*H9_0=kIuh40o zRQK&oID+8ao^;^K56{KPoz?YJb)lf=U&?bjVJFb1Qg->com17`q|)kF5siYA2j~$Q>_(_Ex(DcDvhGSG2LDr#5Gzl zz}S16FvPAq6}ex%V9yKek0uKxfl3+_*E>DP)vXjFoTF{oJLB~IjX8zUQSO!*2J~-{ zYoGu^XS}9QuuAA{^DKXha(0JzXhbuaQ}MlS-2lUa?|)AR-D2rC<3%k1ajMdC5d&~i+x?27Z4oh!tj^AX(Uz@sbHFy(2 z42tIdt=+?Sw8oHZ0qUTC+h*+;beW~^Yu8B;731jry2R5a@4%zfb-)CEsHi{SrD__K z*SDUXirxko<8`V9S(D89ExGahFEyj@gsl(HT0TFoP1f%Ci#s|g;-`#6&=>alfDSI#}iXF|~PXiu4?d>Xhlkm8aHFH~| zF4S7va?e_#h|U`7x@ee<;@$4<*>iU(o$)j!iYlL7)wVI(*PPq-(sH9^;<2_HFS%ci zcCx)-J2jRE&#Ms;5Gw~W{x*{5{016I`)%W8Haj(a`AeAUDYefav$gEzv#NdpJF! zow!>RXlkhmw>ccU@;oi*zgB-%Qkk3V%6^AN;UA{fnSWQeBby!_%H4r$)3WTQ+y$l2tA2`*LvH+ zt%H`2pEam0$E~;-Pns~t4iRIuJU3SKwSTteSAQiF2$|lk4r6dc2hKc?v#U8Zc-v#9 z>EVNY#GAFOQ{L`%Px`4J!GFiDm>O~(cy12MAUu&@z-eL9-IRPx}3y^-ApC_!R7W`sFiSXCjeo;xyg8ria!it3{=D3 zD0uI!L%amMeQ0{ZlK@q|7)}(##xzFK^~xE5yp__?u2hqv{;KPs?k1bpgV#|}dK5Mr z$~pAxD;|y^D5h}C^gsCm*w+505$xTOhB9p@GaWyfBLM<@XKrt&bQWG zb}B>iSrEA*2l?~)8{OWPfFDZl{FhZ4vH#wmi*Np0oA1s~`tt`SVtyXBYUz`R9;--T zjx?~=&!vwnN+>&9#|JGVvG8+DSBGyHG%d6LX_t7H4rc-97^L-#s*?9O}qC4+W< z?(zECU^f1>&#P?HUiGxg_kG;V@l=S8c=}i7(!amY2)vwF^hUz%d--gmzsl@;7<21; zyIIelucSGzG1-H^T@RQ|p0SxL$7O9=6s(@rC!UNrr(Zp>B#(hEBWXwAkWb5&^b#8H z+c;fHR)Mpm)Y-rjcq#TIFoj4N2dDCwquVwBVZq2az?J>qc zg1eFeeInW*5p-;XXW-h*GDiG#XJ%IQ#^Z}PglAJSD)^loG+mZ;B#dVKtI=;3&5odo z1q&dvKH6wZAcpzIGpxqq3yWdi)pXz^y@?1%{UJS|?Nnw&d#4`D{Z)D# z&gi-m`<~xb$lGqx+}?_EE&9DShq{0zP=hbeYfxx1mqT!{7)dY4d2gqKKUo81evoK_ zoGqTQJ~j2zWt~g0eqEkhZ%JPXR)hzewZ?uoV7~*r-8nV9={Pz5=WqVX%9zZU3xKZ~M z$8ZMZT|V5YW148?o$1MI;kECbqD~Pl?QFnwVNOQZ<6%xT8*;^B^D=M;e7aUP*+=My_#Ph9MwHXgPmIR|JAj2Fq}N) zey}>fral&bP^07=ro-3{mTXr$MgEOqt3dyLw_nGUTJHaOeVxv23{!MEz0)Rmbo9!R zbCFT{FDN?I!;MPUk61?LS;eZ$HqhIQSYG8apqY^f|LrlCqRCsH6gy2Fe*; zwmkEllYfk?*gu+xNoosKG%;|y(6YAPc)V+e8HHfF#1k5hniZH}*5EuQB&rI64niIW zv<+*RtGSxJQJ0RaTXXU6j26GA@GSZq zMeAjUB`d6ZOa3fy_(&hJE_bi~k)MG+?AVteEb90;FMi#nS#s-T9+wnoY5}NJ{Mg!% zGd8is=igBRhf3Ntr*zZ}(e!uJQ{(mXsV-8nLQSXi7xz0Df2Ii+PYnB7j) zDHSZ?%}}^!O<(L}%bUEFtHw4tkHhT^J+nxzFhv)4e9C#U^es(ce5w|v?+A^5rQ**^Cd8<*=%7@^$0qELWX=55aR32x zvg0JK(hAKL3^{;$iUd(q6p6MwiK*pT5;=1>Tkl(3&H!GVpx4gD|FciLzey`xS3m9@ zdcX{Mzzpxs#0SBtFF%dqGCcIt^Q3iod{tPo-_0Y+&-y9;S#{sw|I#8^3&#ZS2yXSW zSp7TsZ2#Pm$Nf81q^BZh;o4e*wF6(b`x?P7h3g4RXZ+icdq#W!J*hE$gG4d_r^?Qs z504d}g`hXSec>R1DXsMJQ>Qc?rV`I3%*cMJhb#3Ju^c#zTJOU}pR^J0HuS;IINqiA z@>?f#Tb)v8EPk@4Fw%Pf-C+Kn1P|5wjo)HyKyX~82c`z_^4K%)OuA`MtjQHbDn#}1VaY!q(wlDOVg256E}PAHe1S_NeUaxKL{F*^ve#~F{q0hsH$1(P z3Y)YXfTPI_w1f0OiKL15Tb}=(9+ZT^)2tZ#0lq+)$KyEg(qCh@S6q0{QLJ#lXm@bI zFJ1txEG4JQN!j{Y`Jpq%qU@r*>J27}uxy*ZdQ!$AT&AN5)+@B%ws@BIFobr~Dc10S)7Cg3OucAyESpO^}xj<($SB`mo7ZyPFT` znhcKz4r5fd^!b95aMwHhDYvZT@CI;<_V1!FtC!2qz-xdnvmrdK?&tn3gc*zG<^uQ4 zO{5=T-3)A_aH8rq=gJXcG6TRby3R-C4=8o-U2l85Isvvs|LIgj165)6ei*UThG;eV zK!up8g--J0J!p>`7Y8H=o>t{a_=#J?1`MP}Sb6KSPE{>__N`Qqxk}akZURo$VyEuk;=2|V;Qj~=jt*?vR7|3#%8T1+~sjE(9Dyf zp4e-Lo#Nz8&cj)P+%=iryO%Q>ylQ=_m)yP9h3D*egu~eUPHp*{8XS(BzUZKmwhsrS z%jK8XJAMLrjYUIUS+jw11PN=_OE<;WQ{C6IA^Qc5-I7|{t3gBkZCGku=Y|b98v1@! zopm@`eTn>qlrkY#XCnNImr;I)HcsF7J-fK|x(6S!1TanBj(Myv@mQ#mr>0|&Cb!gv zsj0y`HZ1yZ6=&+;xMk2)&Jp!B(s}&_zvr_Uy`%}IS6VrwDFtmF%=gS1*IlmaxO?GE zs_(u$TelAdyS-wvpnC`Xnz{5DueH49-I1wHDVWK#!t_%z*R6y!uOAQK{o*%rF5r!h z2^pS$yqWlmD6rAFu5OE7Dp(j<&2`ZrDCKm3s6Kh_-T9JkC7 zSkW(Cbn$28?_tDqWzs5bU(5Uy)$73VX3j%U?VcRZ&xbkYk_IrdWt!nvhmGz0*53a{Alw!L|wn#Hih(6KlKv{J0ziCIGO7BdkgB^4d?y+<0(p zo;R6?TYDkI(3S?nonJi<^9UIoJb0{uekg~!34NP>CwMDjxAxbKW?qw5n$GZVR46k# z?NS%m5zbgodi?6Kx__G?ey{p&fmZ(bItf$uihLApHec*0m{55s;ujrscH4WF8`m?r zgp%Xtk+#QiCdv72!;ZCF>zra)S7-?-)PEEq#T7#e^b5(9qaUmuqz~}kz8jLqD?QU+ zZC~o>0w|$mC0hUd3>y2?OUvw6%q~(Z;dNU?<(`q)>20rYU0#o5PtF_>cIKhDKl(JM zuQ;)$9p*pvdT&t~dMCc=3UhGydbhZX)hw(KPV$Fm0a)aHNW8S!ye*q^g#|MwjU&&8 zGgsEX$M8Be-q?9q+si(4>jf>WMU8X06nhnVbLOUTj!X^Sd;@_3{))fy`IP2hFjzCn z7S9U>=;<_F>8buUhxVi|o@oZnVc4uO%MG93br3rA8<;YagO}-=)V_VkOyB8J^!B{x z5YN#uOiDc+?`2JSGCAV_%1qcmOI%Fu^)CP3Y?OZAgiJCtu$!zX#a<)-uw|E*DG1CeWGTX?409n@|TwFAD{PL{ub`m3dzX9xn(FSi3%5v z^~aJNr_Z4I11?bVqng3^-mKARRaisn-kbzz_L7|V^qL+9JnZe>ZQ}t2V^rnV&Qbka zIq-IEw%*BhJmmM{4%2e+(J5UPu3^&k5jdnGFW zgpuW2Snb!}K>9rIncs4o9R$6JQ|wteK6udYFkNF8IRVGmc_;JX&xr zJg@!wx@2RJ8x1OhAT%B7*JhUSIiZ{lX^OU5 z)o9)48jly@&j9?4u9_fsG(0xt8amirG<)Cwy2hlhr9AV?B4W1o!u*>juVdu{dxyF2 zYhp-#{n0!dD!_o*_z7O>`;S^MNTqq0l*2-2Y8-JE<)$D*N1a=Z^T$gseiy!ESM~$& zmvdGS4b&8Nb}-WZdhZr*SD$0LN`MWdbz2<4hkaSL%B2mCvGsqj_wKOH?C*ZpE@%J+ zkmw==TRX)$$mh>^#va=f5hUO5cY9{+5FL#@zK=ck@dc$!K^4)_q=^I)N`piN5{QC^ z3WPhtQpup#=F}nR<0TO>WAki_gKnypq2^Kzg-}?)kE+8-u85l8?OGwbi=N+ zYBHB4=;N}OBOvMU0gcWg^78=IH+zLsNxZh)=+liV8YRVFl(JHamNjo!ljnge~C2mRxIG{e>K zb7K8&Hf4su{)eHEq2a%sdr}bi0_SH$Y>o6>fLgryPUpo3*Sf6x-bBmw+DhpGMnq^A zemd8QQkgWl7pWhF@9u=i`@S@XhZOGd(+>uGWc${lgGb;EU_a*%7qZoAr2wHm4U8+u zd|Bd??Dg@i(ATmanE28i5wc84o>pefmgJC`{sjkgdYboXNx#i4_$7#xoUh$dzMIwJZh!+g5*&=*Z)_*QfVu z&n$>%{P|Se1qoZ%mw+Jmjh8urA^PsuqKnaP9e3q@n!bQMfS;OuJ^)v(PR@(axd)^M zP1MbEJAV3AnG@}?mVADifk!1?WiAV*>{P4JL;+*%#Eqk>6HB^HM zgZRS~#bqk^!C_Tg_(K+H^Tb)5dVLS)99@&9NVejxfH$N8FRS zRb7{qsx}dP)A58>0q(3@Y#@@ljz5qN(a{He+S|b!&S!J5qvoEj0!PM%Y*!=EB5ogA z;aurozRj`MchfNIJ*8Vhe>;^F0d z!4E((Cq{8*2&Y5pBF&P}=+@oruJBC6Z_F2rxQ{N(&pl#pf#|qeEOnx`%ywJAU-;PQ zUKh92F~mn`@TMJ}p5RnZ7Y~3VJQFWN@k|_d;Ri5C2#QcPQd76zj7U(cu7iO}Z5Mit z;!fQII06fS`#RntTs5Q^)(3&2_?-kP#ZAXEL+@a*Jq|^{!w9#n)sHB)( zzFhl=3Xb2!IxwB>2G?$Xlk9r$&ah=Z*80r>$p<2TeNiWP1)N`;x>kdM4fi9seTMfuDDg}G84x$5x;##Dz1h1 z1zPDOarcCly!X{rivOm_V7wy!<@n}pZWZwui-y}->4>GCjo*H{G-QTYyAIxKa=1&| zwG<$NuZSnswLX|iAJ7|^%$iE^tj;nEUbljZ!+%AtLw2zx}?gf>FXz4fIa9pjo%9TRrn8l4_^TN06rz+f} zf1;0_=Wr_JTfH27+oLv%g?74(1{1g&)H+y+kTag+Pj&Fqzz6rI;XsRQ^?LPa_y}kE zV&sJSQW{C%dJB_W~Z2i@L_(ejM&OVn6*Swgu4X3X%MN6#O_Q2icZH)F z@AVJmQtqA3YIA8`^L+DXqiq(p)1#D4!(}mD$;j?wzhpf@!*_ZXHFYVoK>QxV<5nXV znV1}~rsSd2p+l3ZqjULdOGFZVd)NAQ;1QF6plBbvHZ6Z%w~=2yRrdvF+=nMEy4>B= zQ6%$kA^6p5hN(Q+Z`b}!y!G;9>z!mhQi++I2W{Y94?F_A5EkNnaQ4TanrJ*&hAN=! zH0t#ebt=6#ZXq*MgL_)3=6Zv2)~P#%S8-cH7+0VB9dL>G=h>FVlwclPzdsUdjelde zkH$69!WvslsWdfUH)@yjK8s|X0;QPnQnc#9c83RE#IEb4tdUzUEf=D2=%MM*fk~(} z3)|0nc15eYC~00nKfF5{G?m{Uy_Qz;^rL-r2@ScMy_*l_S8?!yuVW(JsEh7a9WLPW zK`y-7QOTt5o;I`hYeB9WegKi!hTs(aLio$vHP0@Te~;B?QM$m{H5#w&Ew~u_s(U}U z(XiE#b=el*S8qBi-7Dj>8~^g?2VpgSZCcYw!O)0WW0|tocER89`|7RI{AXU<|GkfS z47O-Z4SmBuC`6ZKEY+jjNWBQ_q?zfYVk_5LIYp;(oJHM>u+gc4p54!#4 z1&D4U^aT%)62BPK>1%>^ReT82JC~fkkddc8eFWj5#U4U`hHLF!14O+M(Rf`fr0>zE z)ie?wOL}3(P#vrf)#f|XA5vC$8*YLEGqgkY#Ah(p2CbmxlUve1PDYcGE+I5uT7+eQ zn+zW+yz{$_5NiCe^xKF4C3mA#GwD!v8-AvJ!~aNM3r1-U;p!56g3)em)_L$|oP5g&V%kGboPY|B&s)=w^-|O==Sl95&ul!!WROdyPK`Be(v$5gtMM*Aj;rWJ z#}-zsL{0=RxDm0cIBU1N zU;6|sT~7YEHCk+?_Jpr(kBl7)Q7V0Cj)~0T%< z^`ut|2_;_-L6wy$LD*pv09>-Fhh)Fy+9Bq`kXT!sH04-^FY~GH?(;Y*5GB#faW!Bo zH!#uB&*xZGiSMO46Kc7Ir*GPO4=(OUe~5M}*DoK^>16U=Fwdw~qa1@X*fh7fU(DUA ztnAknP^m>%+jXX;LuwqESleTy2-6qJHgp^3#oS<3fhA!xMq(zsFO&@RxGIMq9Ehmx zD?nMitLZtMu6R-kx#N0ne2`^aUbgmf5hQ^L7U;9B34VQAX&+dnxHk~bB-7!xMNpjSNI% zg4ab$Xqvlm*6p8t2|yVw0HX94e#N(#-1BA`>}?3TlBdeCaFKR<73$Iid3o_5S@K`9UNd#`+zK z{#}|65I{}5Ch%9iaj&Fz_MYlo?u~mm%p*Ov#CL7qK5yJdg&>a6!kFtd>GRR618QPJwZ&$Wm70TKjKBUeC;voT=rQ) z7J?}eP`i_S%oscR$4Y&5!?f--6MMxfmZ)3Awe#^)Z3+JXB@~W$B^u>bcoY2qGhy#pN_XpmwA48G)b1SpB$}S6)x6|dG317 z;`MrBXd?HAa1L?}ov~fbSvXdN5UmC^Z8Kia*wN5|dZoEWMl;?wdhX%GN{p}WI;qq@ zFp(6yOlGLD+2mWSYK>qUdc|ly0E97z`T}A@1nc+d%Ld=I-k;~m?`n;dVS}bV$phN5n%M(Le$1u zk@He<6T?nz=3!Pi0=q^5&DOBc6iO|7E7;k#7&Srk?E-9 zbOitwEy4d02!y3Do;(zi-&wzAMFT4uTe6pH#;fFy#xwExmfVqeLDKStnM*n3-D3v9 zH6z;Mz!L6wYYXSmH4gdjfPPe4lxfnBxono*d;<4+9*7p}b7|8=9IzTEYv46WkYL>h zNtIB?Pwk1tZ#`MQw`)RxdLCD4)m;+_7LGLn&E3oq4$d(`XIRL!X%z*w$mffWF!~~KY)I5U$ zZcG2X*O#UKXTtK%Afd@}SZ%&Qc*}*rX(%P(ESS?y^K9R$(|62X4Xc8)mF@T1@;<)K z_De7Xnt=1>UcwI#?V$MG6ZO67Z9Xxp9xciquNtU=iJ>I-h`}WbROhz9F-U`=uoUk< zCN=%#AbCJ=0O?#E){c)~QTi{Vm8o==w7k5UvcCOw0($V;AGkkHGJmE&jT z+hHtuu}>Dbl5?KZkG%xnDl2jcKBo5ex&>g=H_@e|dF@&nqQ4}+Y~Ro_`;o5EJ-X0Qfp zZpz6JEFnQPnLdtDf3vvs4(b!|WYC(W-HqfWZo2n8H}TK+*hF@{wg;La zN)^~+m=BzlbC}>NGjp}}hBzH{F8O>Mc5)h7$Z`7b zl2zD_?>0PX_c4C4Zd~xeT8>#NC36=sdr@&dodOS$KEakjyf4P%Ng%gcp;$ubW94|$GT6i+o)t%xF*DJ% z=Nq04s%{E*5rNX#hc|lcv_QxTidr@ng4dG=Owt~T$^cl_@1mdL_NRW-Bg8Wls8n59G{ok zJCuHbrEXiUz6+jN1C~&4Azfv8cbW9Si$^8#FUR*{2dO+G_4czFPbIs03Xg?`2;2=5 zFLEF7zKdoP;Xh66>vPi}C%N6kx4yk)&ql(7{K@q3#M)ZYd6+oJk6d~o5E^Fec()ok zzL4}X%za}#`i$d4dlaPC7_KBsoAoE>u%;?HW3su?US6m>6IqB{6@4uJ4b&ZCTIEtY zD({PEb91MQmoply;d2)1pj^$u@w}+tcw?51Nx{d+(otCHO78Xte%!}M)6pGQa6W@k zqYx^?=U!ouOHOlyS3ywnWkut<81Ia)NuEA;7+Mm++fe#qyXe8K3jjB2ogdd*UFSK|XY(zyr+uV2}=m>;JD`A)8HueYMw2NPX{I+^Q!-mUf#6?j2*PS-t|np z7x#eSHd?J3m?bzY+9oUDwTwB{lhO6DH{pzB(n}UlQ)y0KbH_Qy8sD7uxbVD9TXFSS zh%va)A1PK}$D^^MW^jM5|Ku8BMCEaNg{E4rZ6=a=vcu^ojTRN7P)Uj;eI*w2`hb1d zV5V0%ruW6HuIz4W(VZ;T3A~CEvz@2EgnRaQ^~r1@XF>a_1J%d9yV+k&)kM>G(^kyV zY}eK?YHsp|?@OlgHU^WXaB)| zjjy$2s)BVZPIY{2Jqy#rtMtHU?SN;DS~(t9i$w(v%qBuhiFYp8QEQe_jxN_7jCaAg zxxT97ct|s750}+oS(1!bM?56*^@~tdvdZNisg&tO;;Xvfbd_oBPfv|EmNMGlWnov{ z3GH9k!*~Qj_tY*g#LL_bl-}b=>&%uin;I3l^RmhesK7Yj>3oQjs!Ava9tDykAMzQ6 zA@jauc#}_cJB&6O#zLNW&bXF5NBkLvsP%5MOR7}W$q_B-PW&h}2dL{4W7d(c^}?Hd z6MHnSC77_#hbq+6?zG=tj%5}WSEgs^7nONK|8(m?{mLCWpOlefxZ zf=tze*(%;i#J)8q9+knl_<4*&P{X_MVVAq%MrN%0agloi7*zH@xoN4hu@Zlxn*bV| z*J`zX3oiH_q-w&3hwMm+q}HLTxI9^MX5wLkO~rfb;=@p;Y0NxM({<6WO*)@s=&rBg zQ#Z#Wk2olqw;5m#9~1x2#@H|*_7n@Cs8S8$!7ZN8FU&S7HI`+J8HWu9i_|?+_^=F|=;LLHB^glCLb%mc#(gs0M3_c|h}i zuC1T72WjRY|ED^;lJF`AKj%UIV}HCl%5(ONU$0&0sf!EqLHIa-rvKl6_%HtO!;fP8 z_pki$!@u^kf#2Wxmw))-Z*xpJ{-=NGhadhsj{k(i=V){M>l}aoFa7Yt|H$#*bNp8v ze~;tCvE#5f437Vk-}}FF{0|)e4aa}M@gH#fO%8`c;gG-mZ*ctf-*0E&w=?kD8TjoC z{B{O@I|IL+f#1%+Z)f1QGw@IL41BZZmdC&GCqMl1+aG`Y>EDKjkw%9frGU#eF8_M?CE z+ZVi%ub=I^@^^}dlB*r7<=+{_vi7?&fiu4|w0-4waIY)s!KhSsZu$4`>!(ZpLw|~Q z*r8fEwkG4>{q*}^{ENTAUpXHxr?b3@a#j1~8{Ika;ZM`(B7gmyBtiUF6~!Zl$~*gU z@>grcT2cAM@BC@+6H>-=zrXYQA#wiT1peZ)`YG^|e=9!w&p-Y*@kIarck_QvE{S*e z<3DOR(U0B83C`ba*8fPJ`un$$KljaFJ$QfoN4X8V>3HcO{}T$r z=#TR!$A9wUoq746X8AAulOK75e)QM=C`bv}J^bO{_$xooJU>aqBR)AFe&m<@c#@a? z>lgg%@4o)ZkALmQzn;H(^^gAK$NUTJ+ZUy8UzERnp?~|L^6iW2w=ZhnzA(Ohp%(w> zZ~Xc%{*@m`moL|P;wPd*9QY4cUh>bcZ|LF|;_>2F3(H?yL>pzvPocgUp`9+)c zt5(i%ca@S_DgUl?lvb{~JN(Wq6}8{FwW3?9A^+ML>MuH?uU2l`BC&9+N3GSR@{1nm z7k}fQnpSQW9rl-){`U`?C}|15^>g2!^y5Fcsr%(~{~zHM)3Q0|LEOd z@ah{sAFw-+%7wE&iP3_WfVg9~1wVzx&s3`q$t6Gn46t3=!pX zuUQv2!G?|EJ+~>G+KZ0WTda24mVoWfdpmDTHumDV>l(#f*Sqw4|6gRfHF|2%YtPL^ z`7tdaoA}Hm6{>bjs++ePx1!0aWlwxKTek;B)2qI^y=J8$2|nFn*5-4Z3>SU3gS6K< zciNlvC1_ihcDxUxA_khhy>Y#xotaG1k6J*@S1_j4o%M-pgQ{J%Lp^Jjj}Zj;f*lrm zq2d(_5W-`{mOu*lY_J%b^~>tKb}`^bKj~fP@&!p}&wupCa(`E<#c?JXU%75aGYgS; z#1Xy#`{lj2y9+o;3y3+7xANZ9+aZ2Ii}eOR{zd%STMpvMgDv{npecH=(H`z8o|g)A z?fs1Sk?Ok!X>o@x0X3jY7%3d*`>+{Dq49}^7GyMCUz2M@2m|_)?27SG&R;>hpgKOH zCnd%@6FMMeeCRC#v0A25uAb`|UkD5_X|P=ku$;OIh5C$^qWJz7hduv;2aHxSMQ( z;%wcy&GCHM&3Usy&e3*Vggx?6;-)IpEDy8Qu>6}lF53zz3R*Vo+E(eW1>v{ zRknJ)UNu{r7?;?(q8aEoaktqJ&(qNz(^?>K@~`I`y+}6kCif$f3~1v(UX2m9A2qnt zc1bPuX0y&Q-l*!}vFSEXVlzZ)$vO~i!g=9T5bg#a^Y(7Ea{Vq8)&qg&Hn?w*GoXDxJzK*2x_z>2Hl4=N^s_rwB3mD#I>jkkxZN?@sC_hg zs}p=dMrcLvSMeAMI~a#tw??Kw=*)BFmXPXmj%K7Al_6+|5lh=EB^&ZIoNhX;VGS(Nv6rX|wx;uuOEJ4FO%lx=l&v7BeGn9OR zQK!`_eV(Ts&L*t|XK{{Z>dx(ag=>FxMRzOO#&vOvtZYk4gDz`fApE@0gD&jpwHj2> z#%UXh23Yk{dGTtRMl)Y>?oMPsxbXN7!V{h>{wc}Tw9##!;t*F z!rr-^(DuT+T(CTE{9ZxwcoXw6d)MNR3Ss?hZ!(F-j2%1zrld*YvDzOI-tGmDmZ6lw z-LX9Gw!VU!A4>P|LE~>An6d4afX53dWPw~Wwv&EtRT|5 z6i{Sr_+;ZJUs(=di@F1N^x6$S0R2ViDw4p+*vrkWF1L5*UPZ>yO3~0dGx8mBek7}_ zh8F)bS|K{x7e*LFa~jB4tQdYQnMI??=0&{8gDjA~@HwL?#N)(Vi83eY?j~K)Zer$J zt)RiWho57-ciqBOj}Uc6%RJ3=8}~tv2vszziv0Z(JXqupU2LY!elo zb?$nGYg$;`9wEx2+j7&@EUlt1EYe>Rn<4GdD;Fl$onv6jpieSL_s;EJ=}@C zAN4}#upP>K8Q#cjL5nV$vaKZs9~$|Jy{8Y~c(dR8&bH{ST}&*IHbnPqU(9e1eHwm& zSOoDXH#G_)w5&Ta?21Ej=Je(2rp|l_*NE-Q!Ss{ubU$RDpCHUuMvdB=4PdqRn>aN! zTftFv?;bjm!5R0C3VEWn-MzFL*@segywC;M z6@2qELJ(ib?B!BaP%+VsJ6+4OCr?X7F-SRQ$Y@H>0&GL3fHd;Urx1Lpm z+pi9(i(Y-jGo6iG^Y48&T0Z$uR!*s0#XsVfVGc5VJg3^-QQ_`CEUD?LSc`ieuC$AC z?NU$?Rvzu~xTg4GiIu2#YJ@_H&jTVb3K_>-wo7$va#2CmXJx7T$+*d~BE0*0ax3qL zojeOjfn{Gac6yZy&)81H%flp42d@{d1w||Db|$cFPd&Ww+1eDZ_%(MgXI8xay>>hetOuUq zJ=Z2o-HqtvQRei%;>yUA(X@`dr{g$V^>R!c4>~jv*blEAIcc#7M^B(eks>C_^BJa%2r%v zKHU1=N_MnEejQm^)y8Qj;Jt1O>11M5iP^#lWPv9T-2Xu#!pmf4_crx?ukk60M^Pn0 zft2K4O~ubO%PJG3W)<=fcUV2~-c?nvt|SxTtrRp+LcLyND((JNCNW66?ajMR@0{C7X+2>*G5*)Uz`t`{V|QUcqQs zS$k%a(86ANdo9rNEv1I4E&9hzZP{;cEbXX}*Z7>DN}YOqzLv(yX!tH-{Qu4e1qMOaA&|1=D&WtRq7416O1?W#WUKS5DiJz-JV1Vd31N1zTL;=&1QG+ znQSH3bzjL&{Eq2+MwWTrODQvATe4u=I}PUj4K>FyAd9v@@-%j?op(zz`zlg@SM^Kp z$#X0+O`5%+cv7CV`=0)|SwHTx;X4?LjveRyi`nkihx_AQ^H4udpM2ME41+6)4Em|v zqRamMYy9?F|KM@xHtT9*Zx3FnX!vt45S1pFb~CLWHL_Px;Aqy!(?T>#yLW7N7Lo;- zpvQM`06(W)f7iLbYLTsyFD1=K3-gMqX!AYiA)d*@09U>>-VPPTMniHnj`X1#Ye2Nd z!x_CSiz|pTSKXO-&FImiD1H`?yzk2Gpj(H>y}EkU zX03Ux*Lb>{f_T1_a5`RLFH|_*96X?kC~pF|mOVtf3Dl*2!<7q}F z>f~Ca*3x!o%+Q#xueTDw>cU&HuQO1#)G%D@t*!GOGUTnFtNvCoA-y#hL6^j*m9_wG@A#q8?%tOY<;tyn%iHmF}1KPIgf;4hWcWCLeq?&Re3)OE;1IM3%)9Bp7B;YK8lyGdp2ALdcz_>H$#tzO^Imd-NY)e&QK=NuNIK# ztMSy6jM;H`nx7_f_u-Joi0{8x!{PB|q|(*%wRd}r_Q&q)&SKqecZ?v$EKM>JW@rvc zAx~2L-+~|_OVmD5I89pYXl%Tc`|qT;SktnuEweJ>efhJYU+g3&>5Zk9eK?;;d?9b) z3O}hmUw0OAeKoe#(>wl*)e*jFALP>6qWSu~YK2jgHkhD}bTP<%5nuFU69I+`SxV#O zB^ql-v(D}=b%9`W(%w6<$Xw-{d`noma*t7emRnOX$p?BlVb8_&lly)!huL^HNQa>IawWv_i;9)hl>p*fDeRtaDOpV5nSw zuKQSUyE|2M{5dXJBHwp+%zGR=o0cUTR=k>GM+UO! zBoo=0;Xkz<-o#sFh}+;?^0179coY=HYp*g$XsSD40IJtpj=5IIlzJNYYhcGV(v5@U zq}+-*HWt*xJ3))Ee<(cx1oM~`1?FNYp|4EpqQ-ix)0r5B2Lo>4DJFfTHXx- z5blBG-ID(jMOq1KAv*nX`8cao@KD@`Xs=z#+A1>B37^Rr&q?~Gtv8;3TH*9`skT+i z4A5w|-s}7J7Lboqx?HNgo&PRfhl=06zrhK%rdz+&qjOK0-8$Rh_>onMzLNKI!{)6i zW5zMgG=D)Km*;oAbuLzdF@3q3VVca9lYmufc!msa-YmOF##uh+WJadHt>G*8-6Q@} zsp0QXk!+$$XjKn*i(wm(_h+(j$7&iToK*q<8SD_he3UELL~N z<1!d68CIH-TefqxikW+#;@>{NwE$5c-*MN zNv~DFM}}+LR%Yy#mgU{I?&Mwt9vD`red||89WL$TM({x_eMklO9I^k9xq-jt+D`8g zFve1{J;I3o^|h@=;yu zPW2UmNb3XhjcS#3muzX~alp*GrQYWsUmv_aY5irY#)tAT4%B4vZOaN!T^r)Jn|s^w zE~CYqK9{vq-312Y88IhYZaME_e7vWetw!a7lG?8~BnmK%b=ueGT_Pn{x%cKfj>KPU zlaT(-oT3&_K8Mo!qNT$&18O_+{mr4sX0;Sd+pcyp5CPTQ$CyN1kJ&@*82){7HO=v= z|59h5?HF9NiPxM|2hpLf%{S+0o0TdQTqWgrxMviK_rR`?=2D+^8U&@S^Z6Fnpl(;U z7(zKkW{l@n#$LBLZeRR^B}R`Q`u=)X-w$@>W}dfcbE|n)5IT<`KKQ20-J~vVt?@AI z$l3^C)js)#ccq8rBGGmlA513OLk<>%?|n! z@FsKH_od8jIGZ(ma`GHD>0x}TP0q$lVIUhH#dl$oCH6*<#F%~`TJ~+{Umv(B#pD+XG9v4@3i*b3f z?9e0R`G;Q_fO|mwYg0>)SZ_`NcLGKk&6D^KhZv$%(kp0;Rd2C|+_f}&fBfR#6_g0^c zgWAG6DKm!QJI15yR#ozv^WMbllg&a+-F$O@HB_REJGx&Qi;tSr`HWA~$F!n@1TUjH zW$v&s_GTwb8_a|CE5Dvud!hi0>T^h&jfS$~eJBjotpZJ1aK8eNatdE1vWj>qh z_VL~6(m%F)wk<(o?S?+=wd*V@3=tM1yS!KMSdNW#Y2J|LzT3){*>kOt#~olT{Z&J- zd`RuztuG~vF>EZ;ikX~1zi!LL)DRE)hEoOyCD(m85$*)Nr!N_ZS2e(cV69P4YE9dF<}!>dLl)>SgO&3uls&;7zAw{QXXp?5bIefc}XTezP$Dl(Tf z+$~|4;=fy&6A{2(z+K@P_@Lt1q-?SC#Gx=8bfrFBbKTcxE4Vd-X=+J+<)uWne}OH?!po1Yj;sZf zo&YJKN3F{ItJ=9)6It5_EU}7jS<`%8)NHS=y;9`CcyKyTwm6`iRbXB z(byMuNB%W;6F6Z?A|-Ui|$K|U3r!HR!H`3hn|qVyxrUm8Q_Fi_k~yD2)h#r zByeGfOt(A^}ZDX<87<;&6W)GjZqS+(B zJDRZr6pXwsC2^R!6Bs-;`HQk*&7Uii#m#^z#@G zzGWH}xrXWkdpudyI_BBOXOhZi;cct4GLwDsX36jMn*5D69IHndN!=KZ7>M0s5GHWu ze4UK&&BFDS>0C9MkYK>ma0dP4Nzsi#hYd3vF8)j$e@*-Ika|KB9G{uD0M6j}=RGBs zY0}GlW&dLTZw^mQk6g1nuPDG)9#2O4;D`9uDejb9HBm6UJ zj7Rmyy2X2~wx_SU(O?Fs-DPdBC?R~EbbZq&S9?WLZbZ&Fu}#HLBh+mrP3>oFOe;Nb z<8U|_Nv_e>xo+wQ$<|(#oJnc zOVub`C#fr%1?=(*la)To`F>=X9!eIUJD7Z=)xrGx&nOBGJ@ITE(C%tgjFxwaCD~73 zYn{-`?5#0=%s!aj0rRW!9_M{~3ioRINw~*$Y0)uAj^6GMdjo7xcgbP_m*4qne*Jed zW$}VM#l>7LefiB*64ofg;^wYUNv2jsGK{J#O+pWgc!9;AMOM0gm`hK3Oa;bk?2@mU z6-dzHsU8@uo@8#8@V;aWvnoozOy(_Kl}$XMFMcxG7oGEE&WNH>$BQskWtJO0XjhIA z^WsdEEW&QXXmlz|7MUnuC`_a^K8hr`7Y$ngzl7VNa_X;q@^w#aB*VH`pe15rp9=S4 zpH&^FqHqOFTDSY>-gud|)wymuR>A8W9ZRP~&;2!z(_y(>CJQHINKp*;_@Pqk?k{Jp zUX9>n5IRCiYy}5VC(M+BQLS|toKOf}s+-f{Bs^2kk{q0RU3c7eQfpFw4~yG{>w7{#Lu(k4uzRIobX(@K5V!FF>rA=j7pwe-l%GFse_*(g4N ztMwc2b>Uf;Y)8e(G;POnTUwh^s;wK96n^4UG8T$^_Hmrp$y8>bsxfxYb29z4vEQFs zu&aj9@195K8!qO1`1yHispK#Sr(K+MNyFhiwdFkxw8JB;wqI=;xvRR99xnHXEam(G zOt1T(LrxrZeL+8bbIK;!w?oX&t~f+cRaqkd!QnkDA25+$zxXYSpXqSPQA$aAgG4*i_(F=(i$#Cy+?g)<6In5KbOdiNEswv zFHME4oJs=uM~ACM&S#m6t=;t2;b2f4gDJuuxg;abRi@@X_BB>7!_D^r>63;SoTimm zC>#X>=WV62+?)uG8#SC!Ydo93$Xi)f$Al3z>toNlP_vLskq~R(1mJ|zG_`Q^7vFjV z-}5INa;UbFJF`ziXqxp?XJA&_k9qE~JYY(iuE_Z)kVyoX=L|X$mpK||4u8J>zAay1 z*UZ#MkkrzLU^@;Sw_%cj`_Rs`PP#srEQe3QrR#C06_fKs1{kk3SiYis{b=mH!?}I= z!gm_$?6mH3ea!C*X>ytbj-5O8emJ|T2X36wt(=k|IOPflYfAQ)f^dMp@OG}%U9c@Y z$>a=I@aAQ&iNNa`+ZM#|*0LU8s62?+OK(>I$@4ZMgDim`f}ou9C` zd!foMa0~FiZ?fbIF6XVBnIfO>2sF8uhIq8ATj11kryew+#!kLCe}UbTtZRAgGKaFE zSSNR?XRO%w-E=3PxnzZVM3t<=C!1a25D`4gwZ-oyR+9BT+D;`OunEu%VR7E))$4J5 z0z#jBU^bZB9XlcXdb7+-qXCC0y>fms$Oeu^uR&@SArDz#Qf*YQFag6Ld+UW?`;e6f zqQL!1n;4LF`Y~VS8+$&ofEzg;3k*U>P?=ZKJ0-hLiMB|))v(rt%{mW{_0rtPU+-3C z{p3I>8)7ttb8!@V(UB*-k3jaC@Fx3K;en)&? z*JZ*2;;8=~HG&TrGq-+W_IcSQ34)7C4;@Nohgfl1NS5Apb?gu`m;q(?#_f% zsv3N>!b1tmGQaUfYoYp&Jj)i6&hujlzZLj^ECkt~?bmwqF_=@X;4=;ck4+!acLHbv z?b9es+F-4pX3DM2HFTT8CAq2;^r8=lij57h(6u$LM@hASe&#Fx<9^`U zX1=s4?}!!VzxO%LVU2se{1@}Fue*(5t6b=v@;p4z+%QZA?&WqaXE6i(&5*qCO*Ewg zyKanDdpy^uHvAB986s%LpoYze160^}adp`c(YK6h!X#@R=!6El?M>2V2 zaM(SIr*3C=&jW4Px0lg4qdswyQ$@YLdt?#XE4G6pG zH=2H}-v0Gm@y_QQNX8uA>8bU=X4&gh@6(qxU0uuC1n^!nBD~(8Mzct!T5%gcH*!rb zWiH^3fZQjlF+DGYBa<~gQ@Pc(Q4Hs-LAeS?m@Y%szsM?*nkxJ>!_G5kkBPU{SPI#P zYQ!r^9zb?nfzx2pUchKxRcLE&+NKng4|0M>*Z$asov5>-Sk_1OoUVH4G{U-g6Z^S- z$8(>9@q<1tlU$%q^*km!IVL@8)8FL}HdTjQM#?oww+ zer(mHACS39(yZ%ERykr`{o(pCz{-E0{oJeN?e%c7-%&#xRfxCB8`+boGc|6|(y)o$ zKV3v#(o3Y)#uuJaBi(fXoBgI_*yq{eGSgfuun{9?1^x|7L7 zI3<8~xy}vMft?vk$)v~oT6F}A3r_G=h8J=wf_^bvKVEHT#s(|%PW;rNi&Da!I^arq z(RmL9o9x(@lfOrAQLaznVe17N{sM^QtT(*Uq>&?(O!zHMn%wmBYOR8F%$iD5W#}E0 zmhxH3Hi!g8buKr5*uKE$H!MD_Nz~IYFDIh$uwqb*cFrKvq;fR<^|;4S#z^D(s4aaT zzd`)|hmqeu=u@I<*1-AfuH=dJ3g_(QLE|dT2a{N6Tw#SYO#9L+z({+q^_g1=Y_5AQ znsU#V674rW*YvSj%$q|p{6q{f$up?Z)@jqF2afE12CVaO`#_fOvv7-q)M}l4AQokQ ztX<~)To<}!S=8OP;tSWMK4A5vwr7}N4KHBgX|H!pz!_UY)-e6AH7|W_{9_5>R{9W* zcaA|915m*(90qEn>769z!&IBCAe~y#*Ls?Q+hoIXi5s?E_tw*P!I1Z`_=O#eSNk^Y00uujf?(gVG25w|&4bC%x3|`{S}1= zZ)MckK)s%oL}IvZQ1jUTpgjeBmo(JhZk;!4u#l0h(&==oStCq3X$S(D=xPWrX&h zqn>P)?IQXvMz7xBU?VEbGQtWT+*7Xi_iFTq!oUWmN{^uutLv6-Ym+6hV(V-jeUg3 z$47F`zGi0i%Afbq&5)H*<2ciCQhukEMgtvCuWj1%!E;_14+VVrb5KwY@cFp*c0GsO z>+;EGQK&zANU8pbKJMcFTr`A#22ah7dWvX$)!iakSMRjnXUWHu8_oO>f<11*S?FBp zi~x0A)1>1&=Ng?__U`be;Ds;C^Nufpj>5Yt?#{1rmAdFjzHFj8!v7RKpf&6nT_1dRCu8V7el`Ij@|f5*69uaXA%4eY0hSkEj$p&vc8R zlqF|RpSJCzFG5^+*Brr3d^#)QL}f{EW~D+wvV1}~fapiBcfrMai5V>Wvq!-7Ux0um zF?z|)(b=ciiJtqRbqgBH%8F={i)dl*A4l?hqiN?3F@uRMq#9YbdsbE2XqmZ4ukYu2 zf@9&bZ$i91jHAM7x$8eaFLt_K$+EBM$g)j{YH$5W(rDIeteq3G?CG!ze^41}DCYxC zr=}t{$b!f}rUaSpZS7h!W?(9cJ=m@7Qen8FudPzM!=)2#1Q91ltlD?Ofu>OHIB$Wzw#uHvVqHxaaGL<(c){OGBl+Xh2~5ghs6 zKpTNa6id}HMdhXnR!^4c(FsVo^C9?O=fMSdFR4CjS^q8d)8vlUvVD5zxk;!ap@zbYS2GZ51$A=3}+yS;^7%T&lwNM7PGssP5 zwhWHV1^*s{f^<8(U?zH7;S^5DBy_sOC$et{U#owU+1HmwL;ioXX=8?vjATD7Zcfat zeYg0HuZX@9Skuae`e*o7WX_`%UdPumyi}R>mI}@YqLJZFsXdG4C9lcjq}cGksm6G>Y^1{ZpPNE_&mi~2+Te3;8~6cgzcWs)#EIthYJU9H`jH??VN{B-pv9GLle)#&+!2&|6+89PW7rva>dQPkYJv z2cNkvlV_z?WotX?ep)5?vgBQ=(a6-SBz>Q(=le?fV$RDfT~C41{z%Q((BU4i1-Dl0 z5`Xa6G*54?x%hmE$qZV&YDwHJNxnIA-KR6YFZ(MyVbSpSy+z5CQnsGOFl8F`j-Pc> zqy?bw5Movf^i|c!F2M&I#0BqlP`qjj8MYB5t@&DdctE}Kjgo4X3GvjK-0@mL@2pS3 zbZ%Uv_s5=^S$sG?m8$QBqG$f%If+0q=lwQbMs3|DS1q!u=|v%)Of_XjwjFggNtfL2 zD9zHM_!A)fRYWVeJtl8(#gVs^*~9)ptQLC9#QGdImNRn+IZjyYt8xvk&LAZ9n;wDIEbv)4v7c1waS@<@y>YQKna$z+Jmm~2DM#o>W^SR?=_^?IU>O-A$LU9+hf zA68X3xQ9rx0T;X4MSE2P2o|QTL)NS)@H&_#O3t0+ZsywDFRf9W-gTl=m%&XkEggd3 z6gSl1E##Vq5>hf}25{_WbTo5lO{U=_qIa%4_YPu#FM;lWO^gf5tkFs<-XhHi#p`olS7csU<(kV@ z!cmzJQ#_N|?LA@!+wB+^Lp2rE=?<&A++RV!pz|%E%z4f-nsF_wo=)r0m2r-BmgxBP zyK$-=cHN?q`{eAPjF2F0V@D_R-EH-wY4=zw3yx$I=362*)BlUTH|up!-PSWB)nBPQ zU)X>FbCC=8eQ#sTRhh;u#x^$CAk}}bXE66U**TRHRT7n=sA@@b&$ZX=Z20)TG2Zbu z!Qv2Px9b~nMM4xJ+7vXvzela>wPM-fN)3&|lwRt0qc_>D8jWdp5FL{A z*ucl6SWx3A3AxeV?}5iPCMU8yYg^}&xh0)7o80>Ax8r3yFXi{LZaQl;l$C{G|GWMb z9rS%QoL=x1xqqG6Q4hABRc5NX&|K!NtIz^=9}ycjtZ$(Cn#>a}g`-*_9M8_}Fpt*{ z1fRh{QIF)k%`JC&WVr+F3>C2FEsc5$X3h68_t>Hq*YV3r(&YfC8fg%#FX${wKb-U>8|HFW<-Q}Gfag4b6+`M^}|#J`pEL*q&N3dVm2 zZMT5ctQG=B0)gxGU|#arAp~?T55dP8q~qB;%uoho!QC|{I99QJ;`x*uKq9S~huIEL z{9w85x9$mRkz>}6SEB2);JKJw!o2p8ae=x6hQP{)sl)G`Jtrs0olE?8c(~+qX$jd- z+*+29sS3rO;88m|>>#w#7Y)r#)EzG8_M<*+x5_MM@i7@+gvb99Et*_6?3F5S^|<&X zt|nYzd|O=MIUU`>HNKJq{=#46Az7%E)S~g;Sy`DiYBRLacCPzoi|yEsCORo=ih93t z;q1VuV6X-3{}p2Sa!;vo4vVeQTjAdm#X+QMXr9Y6We{t%t^4u%``z!!UT=v1ivnNc zIcA-@-r_hJ4r$D-;P{sd7&`&$EIa1pM4DA({nXQBqGLbxkOI1WdQWOx>+1ck1*53yOi`oxN@n1r9zUWTM63!;DG~N zpofsh;Qw*dGd8Jdsd4$uB}-A&+Sh!OkXxNC-91v|)Ak(2=+ZwWXLXA<>VbzunQ0ep zo(6EB3!az-FBbNj_qp1v%MjAPJh^gSLnQQm<66twtfPn2`P6mD^JLaU?OjnTJ|!9L zXm-3_E(NLci)pq~cWI>o_q8JZM^^d|m0Z^P%ZN3+hn8h8#93f&gT_x-YbB_BI=L(7B{VMfPkNi>O1RmoSBy2?d;tI~qMWUH zKAvFKL9ns#F^+S^XJ0XLw0Oq@j&tUV_Puj%R1)E9VODm#Y~{Xq+TJ}M=9}T|$ejK& z;sC1g6bCpeU{qFtlwS`jm3bE=GcnY=6Tn#16!WJyeoJOyi@n-Ax#t(6%vDBT^6|KB zVG#AMF7%V}J>bC>VYmNYT#d?iA%XJ8M7+3W&)KZw&zG>_`IY&8xP(5%UM^U@WB|gy zz`NkM>>nYHpY@jp1k|xvwA7i(0ghOG*FWDAX0dnsdDp2CfPi9bNum!VBvsQcX!tc) zQ|yiH({1$jQ={~OGNfnQ)U6wbSz0UarM#yir--}#zW$_12M9S5jv|2Vx7Ie3Ec;II zxuD9~s~qt0Y**~JV>C5OZ1ZYaa3spyj7UniXM=^4sgucgkp&xzGx8_^Tn}9i+n9L2 zz=e9f*tkC>_)JbC5`%^l>_2}wlT9)Zn=O|;Yz*waie$peqwys7*bwgF`GHSFc-_PG zGMSa{l1=pNul9kmQ<789ejA)y>Pu$c1fQ~_(wT2O4>fB2AqrPDBgZo4piJ2tV|>V} z;E-XAhZJTE8%DeVq{74O66cLZ_wXs#^!G7oD>K2s$_!ioSM{+vsXQB5_2X8&y9#MZ z{8B!d(I68!@p&`g3eRp<-NQJC-u3>ZX4|BWSbrIKv&C}6dFg{WMY?%&@=GmqP#e_j zMuR=lcu0Q`M49H6Ym>8Aa4~}F)19X77Dv{QAHDo`b;<1-j3KC+n*k;Xb6I}^A1dL1 z9?rScUt>4`=E1x_-k7}%F9SH1JF@OI1aOH9(fUPQnR(T2(A4Si;(?e*IFNVrh3ie@*`9%+6V`b4<0aa0;Uaw| zrUwn+`g@f=9Dx$o^y+NQNmY><^R7{r(zS6VZ}dYWGRXn{lpcQ8`n>!e5!Kq0V-;vX zk(tPrjbQ!w&bG(UNX)oiWx44l3^%UOgkJPK(WHnC07&*6-r?&e`|Mb#(p&13!;;L~ zAH!UOSYm{Esgag^JmJi`rH1b%f&@8dxB6r&++*3C-gowut;cM+>ImmEnC^b&*hz&e z$l?SXVs>tMtfEC^q_5YG2vYzVC;_|5pb>-yBO=L`Cls`1i|->emWVx|z@u?Em&OD>(qc2)dDH$7o{l$aWY_aic~soGQ(0_RUevhE z#~?J?tRlJqy+;sKPoOlTw{dyB3zK8@&KmYB!Q4D9 zO}zbHYQCU$fUa%zX$XU>)WE+CEK~2xtm4{bRu~9Tfc)3sXl?4d*ihKOKfo3R1=?ny__DBX8cJY3|FcM%ntX@fxd0=Hv8~IZrFZM_9!U^c+9+a(d$rb zMv#8df+Jk@M!3k~0mmI$^sJLAb9%T&&W1brStqTXU0K5kiqXYr`a6mGwJqF>Z>!yH z|H}J(obYnd_GrHg;^o_|W^EHz-v>?5=hmqT7kOeEja{4d(`)k|RT{4I-k6;6Pg<`8 zN)v4A*(mjD6zDTJw)xMC17_@q>+026orc^=&wF|1Yzq*7`SzJcm^<-Z`s}`Ye^zSQ zku&v-1Kv5$G1DiA5ci*3Z)bZ!_+)R2Wd3_mIKQij&BGTivv;=tpS#kzjg$_wsp`&q8?t>v-eGDYpr7d_`Tr-b~K+%ItSZuZBmK-BCgO3|8s->@_;x-y^Fz6RWMm5Rr@h>>R_|9{C+l+!FnyAC0oU8u8Rc9xv z-+q&4vV%EQ?>F7ERl+<|v(53mKlJ+_F6jm^xaiE|!pg$I(@^7Yuky5xaYv_CTK#11 z)Thh0izE2pboMo`wO@E=Jou&>e%f#4hWFRyI=p9rXgN=7YtFE8Fz`LFt@%V7BY0NL z{0V@AG*J=S)uz-YRM>Zv)#Zy(M4s>q8sV8~t8_6(48A zjiTkWmu=yEAMB5Jts%Oy^OI?++0z^9!Sh+{ebw!*wp;gn@9r1iyHk|xk2>suZRdxR z&Z*kmK?95g>r#TJd+yH}F5BtZ{#EIR)I`>(@d0ktSttH;nz0+s2AS#&c~FA5#?d*8 z_Pi4D%J{6m`|XsQ`rB)aYn8MH-c~FxIY&G`G@5y=ZY5WHwLSD-59TR*int%(i}$H% zJUa&;eZD)qUGy*;U%^JKK=h$CmpxWr17jS0t(Oa4=3ZOVZEvu#Der;BU5QY*r$ zOF4c1E`_5^ea@Of_>#Y+-pHpy(ReXv?Og;j--tG?H$Wu@UNm>k^}~Q)mO8JgOGLf* zWL{nQRLY!n>iI95?P>_mUya)ISFDpeeR=v~d}JJU%&cDAz*nD?dTh5nD*Bi0WtS-& zMe^QHU(pDlyOr4(2C(045ANa%;K;_$IcuZ{CcInu?7zHPdo!A6H$!x}t#2b##!vfI z>WC8-;4$c5qx{(h%ZZEG@9Ru29nRq{h%Nlh{EdXVN^Nhbn-g}((p#0!wfwEah?%|X zMp!Xbdp)#5_1@@Qpip5Gq;}w0JRU3&iZ;Md&X~B3d*#nQ_ULt9lizy8h=29G2@d<( z$&B_TT+YMi@_mRN%k$R*b;16JB$m?J0nS>92X_rG+v{c}vxatcHQ8)cC0tIVJFQ0Y zG<}D3RvE@ENWa}&Chv#)E8$*b-ekecqp^^`Q__X24!DN(l-F@**5^Lr1i#1m7{JiKPt z_a_2cyu>If3~4R=gQrCna(H-va>#v0H~78d{5|O~Y@9F9>jv2=_#Bzdj+8CWl!u6L zF&YUL{Hn2gzLRM&TQj4{Zc?ku^*mGxXuy<((L}Dh4XU4r*D)r_HIK zT+H-$)W-{ORBsA1Mh}OJ-!S@4mgr?XMjrVWpJDeMV|5YSA>@wJ^jQ&JM9o0^DLUF+ zuNbQk(K|e!l#jhuclGelvWVALufUM#EZ6=y(&-mo)DrfX%3sBIV0MSEw_bl8W41&4 zzo=sTT&rph(xos#uPTJdS0r-8PviV^Fn#NJ_=(?y7@lqL`Uqdb{Z>R@}GpkijQReRI$9LyF8M?nH4A#O)_pU8pyxy8)7uwbT8=t+R`t4^G zceC~n!{th*|IOBDwbi@HZFD-F{^NfnP2oRC{-6BwzsvvpAOGP${BQD^e@1-#M?U1g z|4Xt1u_ynWH2Hu2(-;1;a1_4pazC8H>N7q`q~*nK%~#*rxPKDeLK740b9XBwv#Zbl z{A=z(XB*#M@(us9at{W#f66^@^BK52xd*=M-lytGxqX-Ve))cUqt|xR*-fTf@4a54 zdRV7+TF>p%E7~v3of&WJNszuTtBLZ!%c<>L^u#E%_jpEuJ#{x;+^DA4Seu$f(DaM< z*N?1Y(b!xTXKfw;0SBhGnE5j!HHyS>H;aB>q78bNuB~vkyceaVK)B*pW6$3 z;y_cP_l#lBagzX~+EVM4IFXnazOhu7I*=hqR{Np3z_+}8hI853EXrAhhva!c+Z`99 z*5Gu=Ps*|>dXD=Vy~3CIS?>(s_{PHKz3UB5q04!ENZ3{o>vVp;%*5NE?aFq#SR4@4 z@=S+e3|w~Uqr^Wr zIzeh0w;!+eg$~K4)fQ}=M;<}8ae0f+U>xdRyW}muD8P0ypG5n)*Jd?D0Y}6l%rOi> z=w|&zAH#J;u|=blI+yb{iQbh_RXxHdy5~rz)8e>TF2B{M_&hc6bjlCG_S6s08h8IC ze6-i|n3?7^q>-<#P=~(Y?#`!2?{d?EGe8+WJ~_cu4-h?-SuSZ)L{j z>snmmpjPb~Oy=Sr8N_b@+DfWc<6A39$6stPhx{^Tx792$M!oo0IW~Nm16(;~Ek}N@ z9`ZFf=lwR)k#=WL?Hs&~@W_I(KX+z$%Is%?>r%&$Bk!IvxQo`M*HTb^ZR5)PDc(CR zJg5#4T(nyR?Y4e*e}YQdEa4+E&5JdsSHq0g3h3?;wLa?>a$Y!XEvgd%c|QDJGs=Fm ziYq)D`I+){1NyAfI|rV*6kK<3VEy5pD89c@zAQQPv*%|fUL|=j&l3x{%$bd9GW^Jq z?_&(P?6&dG`PLsDYWvFx(4|T3c-UIK_c`vsO}R4zX?O8{tn|)ApWJuoZ4Zphp3iH_ zxta7j=>BVVzjb*)S~|%(UxM^m&-iKu#XNOycsFnn??b;~tzY)`!}tFnP8S^U|gL5T9l1!2L8HqB%_`VkpqiqUJ>~>IKcfzR^;M4+AH&d^kzP<$j;Gwu^WWc_9_E9?8;zjx5d2hnf4gq{ z#OuT^{X-~Um_s?<`z2-z`^I5f@#nrg#|F;ouli#)U(M{mXn9#Myhg zjn~34dg$;9Z&6uaidI~i1ew#|eb)leHnz8PP!V#& zD}Au9#x3Rj?e@Ok&M-jR44q&V%@=2*@=0VL^dC8Taqvq9McC4A#M{2c{KPko&)XxH ztO8xZBj4Kl?h}Xo{blV6mv&y$7R9@+3jXNF$=<{@Iq~OqJeo{J?`e$AsxfPx>+H~O z>D98{N6*Xt&|bSzkJavRMM4bj>;r4d#F2&(cUt9Z@T)OgfMdz`$L01ee9Y?| z3)LT-%zLiaH{)y|9kl%{#8ca^Y=+2K>5F&|_tgkfAb@ka^lIa=N4_jru5{roU?aCM%@ zG}cdFe630^p5l8~zVP=hSK(*BmT1AQmjDkT*6!adR56uN^0?rSL{Iz@)Mytis@fAy zHM7+weLIS)yMrYQmXrxk)X3y?w~oTIDGk5Hk26*3KeVtVA8XF_au+rAXY7TO(m_Hu z!MK0w-GXKEEp;q1vrtA{yXvIj-1R$55_MXQv6nYCy0&e%_P5RD(QPYmY?g+O0>)Jh%ACrx3JQ`@5VCsfBv`^ z_p4+<8P=>fu!2^nqXIQ!ABY9S7WhXic`)3IwSj&it&Xnt8jY8V-U~if%t&wA{Vnhs z{4RQmF(<`mR_yA#=iF9`EN-{1MZ5N4deO+9*Zc2tbY`{V`5k1RznT7*nZ-EJt6}uD zZCIIulJ`@NC07))h{-Q!hZ{OyC=*~yjZ67PDdHES)%gZZkSj?m@u@TVGG|P zXKuYQcs$%O^^0}YWTxV*CI;+Nd=PD^9a3k3NbLHpZ*G-yPs1n<45{ix_X(T{r4IMN zdq>ymX>@>he;lu$9q^{>rII_~Rm|`PHRG$lv=Mzvt3&-G$$U7JO)KkZQV%rZEa{59%{J=D(y1>43I*y2K1nW zjy21ww|h;!TQhw;fy?%gVYc2_SCBQl^1TzAx+^{jTSoCGZ4#_2!?8wnJ5{lBnBJcR zPCyOO9~bJA-tYtevzF^dOL~FQQ%m-Zc!`sgOTYp98twGqlVa7OW_1M2ves;avR?Sv z+PD!t)xbQS@7p)e;%bZDO}u`^l1vK@K|VWP4DrN&hA*}G$$N_p zN|ZlP1@yN5F}#3K8Ss?Of`cJg2v*?hze$aJm7NLmH=!6fyzJ834Bf>><&o;+tvYCiS9KQ*a$1{nV=x{PjSL*YocHQDCi=31feL$>^f;lHobJY37q5hu zhjhFHQny%?5;mEmjMfo`0fTv4h|!$oN|b@EgjtExm-93c0LV_F&BN?~PLkYpDMc}lDt#D-@;=47D z*n0-dg2z4HfgV`D&PH%&>}2A?c!J^Y;qe%L>GQY%L$6uPSysQ^+&ea`)u-j1XLUz+ z+vcgz7q0Dh#M_!TcCHos#(w%Vsz(35n4W)D>!=468_y2#u2D>JOTIyIcBrd#9!Xq$e8Bj32b z8h1yt6)oa5T%%cLCRXQ+A>;6vd3bAw2hr&#ee}`Jd3fmGDfq+URY?G?buZ5CW3$>n zzmEg8GUhy~FkG!x=1p-2+U%=^RoyD5{kVJR_kq6g zUG`co`68>7adL4TKyOWthos)*x#~1obNiaCj~{>PS6dBM`iDa>?lX+8Xq~~`QX0K1 ze`IRqX_$FRqRrwo-WC1ceCUR!4pA}mLrZ4YpN;7KC-d*CIsbNI`a$s3RQkey`kb9r zW!P+-)z~_9AM1Ip3(geX#($sV$zb3fq|amz7GCYN<7pSba5R6NJ2egdSIQhv)*+U0 z{|gi->J-%XF+<+d!xX=?v>6Sq=O2jlB=WA;`}Ok1YNOw}#ilp!`C0I7Fn%pOmSrqH zf%@^}XL^^%j$VJYw0o^pmmY(^ci2SAY&;*AzAgK9TKX~k4}V_2FoGlgrD{uI7&yYh zb|->Su&-PzzFP&u5FAw}BMB;A>WoC{73t0gjdAN+$*)^KM#_G3>?Be=snhTuuA`?} zyeRKJcV;3Z5wTU$o}$;6+Xmc#mB8$FQG<*+g_jz&vKRzD*oikw%_u57W6zwU9eTu% zJ?FW+2}jNma8a*`AIePt*y`|6YFdZp(VlNYa7tw@;XgH#Q9|d;`2e@JHH4epT5OH8 zDIQSN@0Z4+^?j-__YR|TvBmTPXj*C)puX7!NlnJZnNHn^N+CKykGLp~cx?_x{c zkbv>zM6y2Os~`~qtjx3tn7rytoYcT7+;wuuN{0> zKN~iS0rMx*!0@x)CcdmS`kD9H`0(vEny<=2n?LN%gv|>w#aS?NJ-+z2QTI~LZ6X(% zq2$d}km33BIe}A#k=OZsI`#`ba1wj2vQC{&Y~gfSt*hCoId6^7*7b(o)b-V)#WV}P zQ1w*rY@@(i_iU>H3$2xHA5Hi?F}FQZJ)>W;#6yf?H6d&#_ugW z0h^m^WAOL6(*H)2^wrxW%?@xp?zx>VPnn|52Rvzxea%1plkk zbZr@zyt~-&lBTWoxbvTXZYP>A^e*P46oir|LjWv(CBg@UQQZ*C&i2@Rj`;oLU>~<9 z4~cFg8#S7TEz-C)nsU}T**FayY;VjF*Tq*5FK*#$*bz1@UFJ=rIH^qGU)2h!c&p?!!VX}pgz8hKS9n97+_~K+Ep;!!-x7R8cfyWoYcgu6#X!%}nR#n+UjkvI*ccp8#-%?dkN-FAf!kjxcPt7D|qypMHBQKZqA* zIM&+>W3ZP1+Qjn7UCPg*r#M*j=9KY=QJ=cHl8Rr7;BtOT=RuRP8Ny|&C{d2NO4pW-Fyz#V-Z{2Ljm2o~=kN!K@B^bdopGY>KDjn>!G zX!GozR%>^1?tUQ0cH6yUzw#6hBk|QH$j_?Wll@yfymaGz`T5xkuOPg6Wc+HrgwJ*s z>&@@&!B(?9hO^yIvfcy);O&1Sh7 z|99;_|E>Gg|7zbq@+Vi~ugG*LOBwA{@q$N9xX-IXuz)rkO7o?}vg@`}KZ$YsVCGt& zCt{62X9NCC3Le$BJi7+|tfv|tR)dx(Yk4~SE&h=38T|zbL9Lp+Thh5f=|Q_EvAm*53sY55{xC`LcBwzfeAXf`z(u>WYfPy< z+sM=H{H?KFlEbUCV@kgr#yEI`I8PT7SH4r4`A##` zwf)g=?X$lRvhq?Jjbj>Wxd|n&O#vDuXuG?_sZl3%+ZBHj`+)1WTM>}A$~E2if%HiA z-a&Wz!qWg0tw=V>AD>;ck5BZfck}&`%^$n8ZyNl-qA(#ic&;hl#-%QXIzPfIhg$_wN3QQiJQ)6^q`(XqjwfD0rGDx7H)8E{VP=z&e>-s^EW-$2D!Qps=D4!&2a>4dE} zClXa>4C5l3VxqEO7zbxDDxPPsL@+SPB^RHLu)EnFxhtAOtW_h+4(SN+20)^hM)DN!>X>-F+Fzb@H zVqL!b4Jj%**>67zt67IrDvQie1zWWJi}lX_y>()J-dQj&_O+F&$Nd#AHA(Qkk{FEo zUVkw|3B)r)T-NT+JRn?t&5J>oI0RGw$6S>mZN$nRbWAPJFYg!P@1a_dML6tu8{Hgl zcH$QMagGaS_BJ`!H~3*;Z(b87w`p@Y>%RVngI^`ncn7{{eKQ`{Vs z`S-wwq;KEc&LsrHs%o)<;Fh|kMJiYr-iNd6CwK_3br-HSLKxZ#!NohCPn#@oN9r*1+mV zI$X`-{9B3^#Ea)7Qn@dWb@j=f-QETqigX|P++tcxow*Omj5C09e6Vle@oe7aYq;2x ztCjYCysxkO5dI)W)68Uum3h6yhd~j9Nn~0(?B!-X-N6tCUmuyv;6qis@BM?Og5#64 zARMoFenb0kQ)`lwqlO9^SY~lm|0Vo4;Ve*>p%zLLna4iy+GtLi-?}0De|nI!roWp{ z+shLwR%)K&i1=t0<>w7~lw_>xdqh*ZU&qYiAQ`{!T>Q7PMs>5<=qdSycw{|Cmushg z7b&R=mu#UlfZ_9*jFL^rC^K+REH-pLl*5#kWsR z&q740Ti5%2Ci&aKO|CCSWrj=a4V4 z>se$AeZ8;GduQ4AU*h>J*!Vy8{mAR~uUhXrNCS>~Ec5<8oJpQUfj&**K(8;>qW|j4 zGsZj^oK9xd505#}O){gjYkK9JpSG_$=a1x5y^slO(Mx8JKwk2cDj>PceXSMVRDXU# zha;Iz^6W#qNn~FiR3Fc~QQgu;tT2O{EBjLWC!7>}LcYq8d0s6L4;CdT#C);sXtS~P z1RJ{7AG^u=mgbT<(FKb&9gfFN-y|bS4X~A^2vvVoE4|u=j)LD)a;$c z`cg>s|Mv5F9N!v`EKTS`K0K@vv^CCU9y<22z|1y==<7}I&-XWpX)2m{!`@Z`D}wRE zeuDorhQz4d9}Fux{@ebhGwP?}BRVXClc|06t{-xZo4d*+pKrLWSA&^ElppWQvgUHv z20q^q7ep}5+>Hyb-$<`+&fB|m@Y@^A9kb7z^`6!wG``H@wHUnJjBLU|l=uH~H=Mbh zv%`$qcAu-F<-;$v%(VIO&DcLKHmgp= zQeqc>JP^tE{@@{9BT;b9_~m;do z*o(B72P(siqfKS|?u|Cv-*(%ZZz?_Kdg-}Y(YQ?SpK7{H)%NP|qXh*ZoG`{~1Tntx zGK=`Zt9t6!Fgox1!w@1f>)V;@8X&*cyI`UdiSN3$!E2@BLE6WyTKr7YV#^I_H(yFo z`Fz&fu?S0|xgPssi)Ps+YPQd18`t;G9 zA8Eo2_Xrn23viE<`(@9x9ad^QyswC}!%PdQsRo@%1KWb=@^c?TUxk%LCIEXUT#4XJ zE{L|BNLxbPxOy6uHV!iSVMl)O8bPr$Vz7m0MaT0xaPF|-OqPS-dZ@IW@4r_Y2U?tY zzB<=1b!c!1cTNYpsEp%tDz&a&H^rK%sddIuXVR~!rLWlB)e%pQdV=egXM)V7=7Sv< zkK#ek)1a8*f-No8FoEoMhA zUh4W$W^s$3#AFNUkOr33lDi&c241>P+otb4JT&gF?HD&&nUf~eA`$1zl57aUlT|6R zdTB?p!sqSrqNjC>+N*w8hvHYC{ z)T|T8dFi{%q8gzTJ}+O$m*;(iKSYinZBoEMtH!9(wC@1P+s+AF;*9b_48Y19GtCh@A8k2yz$bVa5L7;U^4oxkb>+m53|wM(8f97-s3y& zEm^qzbc8<#!Q^SnTr8*+1zeqSh9_ryFw^uOW(6n(sV?3Fv0&nzg?=3BGw~Dutjc{Ei-UJ{dM=hKG-t`u)B|Q>AX!x6 z`tJUJ!><=FIY_{bLMPGs;J!D`4?iN~iJk$Z=_x*ZMQTBCSUs-a3}yXudwG(>e#WDj zLE=Iaz5~7__#z)o2&oIaD!KoXAKLIqsH&yw^%H5!UuG6R{hIq4J=Z%C-^xW_LeJXT zOh2OCK{ww5AM9WTJ}a2B`%Llw?9`7V&GQoRF^ymf?`Qe75BJlCTLso&&1*N3SjLh+ z3YT>=r`q7M`xEW27EMTZlNzQ5y6a-d1KV!Eta|9f=%LLV8PXxxPizPiAiY zFB@BGK4Y`0il5qOz9Y{VGv?cmXq!Myl^VTevAkV4Jw|uZFu)+UYwC)d23;W|JS$Od zs?=v|IlFLCB`@0NN$m}HyY;%_(5GYP7PmnQS`{YAL)D>Oa7Up%AZ z<-Bhnsi#k9CsTy$2A=ZRYIvPJdj$m1y3DFO{<0~_=wSAMsKKp+3lvCpb`C2(bf62pDCGxTIaIvi~&e`W1bWxsl@mS|4IKjMa< z3^GjcW``_-F?+W0=w28bcF~ADUbCyGokQ-g-}j%^U|4uoy&>MlGTz)W6Yy;KUkN7w z^|$2T=vOF`l4be9FB|u(9Sn8OK2W9SSiC(Ip(cFab<&2I_bkn$c&@4{S>1e2nSlPnk&@ANF!nOXody!zxPo&}BSPsxS-jMwW?eL=XIoE8yj1vU_jvp2G2>vQDgE?kfYG3gG#~zApdUESEOk0n z_tWiM@DK=(SkJqM4M>Mr-3)r_ih)&!Eab$RU;W-S{P*S+N=;RYSY{C4S?#}(EAhYD z?D79|ueb5|Fq9}7cQ)Ql- zHnALF`)%C*=9|TG%vKq!Ps=6G(S~G7wo3KK{(EpF=OdBXBG5e#8?RsZ`;$?W|B8+9 z!5{MHc40t$MGfPI$=j{~Crf`7B{JGkz)k)6iY0 z)1YSJU(;H8eas8)g%{1=6~T7>-|d5iY~csK-$8y0!arz(0|~^f=>CJLQ#hE{aQ?&i z54_m)^;#^To>J`sm*4g4yE@E!tv-U|Yq*00$2_T@LSrF&E~zZj-Ta?E7WZYP0=|p5 zeBOfZu)Yodl~baPrq}vwJbo-|=k=0X(cEaQU*60A>BIOnijj&9i+5Tm=gPx9cv73c zwlMUsl5@S;Sdy)D5#OMR6Rt70i@tb9voE(Ey_<*3Sf5Btx^THTSuO#4O)orP-89_SZya|Wr_N0(G61FyACbK?Rh4^WY z>0vg{Qj%CVzy|2`SYe1~t1xx&kgPg{bujXV4~c;GSbYt79G|5(`AhWd_r4{(l6tp0 z&VnBqBdylS(9M2dvI@5Pv-Fp+`MZq9ly#4YQ^&4z8f%V>!QAJzV3~lN(*JP_^ zqgFKfeFR5DS2(@Hby)P>zRfuEZCrm;@*nXyw4UZzyI}(hOcFD!z=>^HQ*Q5HIa_Xc zH%51hS)Rkt>BFDx->4nZO-PdW7p?|_H$ABDp@nbY)64Bc% z*nWH!GZ4Qq&j@y|I`+@vOs{Awlz8jfn@B76FY&Csma<|O>J=AX^z8mc1bRL#Z?n#Ze(|@ZqJ1hP3MS*t zL0$OS)GT#nl6RDPvK`#Tb7~5YY=g<@y`jPl*n8}ocehUk^Pc$HHc2;yssDz|7#e8T zuFeEe!nK1UxFX(NIce`7{yRcqbB0&7S{y!8jH_qYrD&|e!HVmHr~$uJ@jxRY=UX2l zOl6eM@F0u7(1ou=xalTy(w`$ZSU!X28l-|}Gt6@OgIzts2CH!B)xbS=b<{nYSv~&o z?9o2Hqqk~$GjmqK*^tyj_jngh!2p>j%`ZIU^KXjXjn|(Ss-L3=;C{rMI+-#P-Agf{ z*KHJ%Ur8m#ni1{hZVWCmnp_)CeZt(uLw08tW+6VoSmk;%J)_4BJ>i+CH{sd8;kqEE zIEEjLvSJaUF77D>?Px0dQ$@T)8$^d%N^B;;X3x)IP;u^oc&pS1FFvdOlf$&;PkiAv zF%3s&S5wM+E?`6-j$r5sH~7AW;4r$L>SVh=w*IgooU?SeZBV6p-ffB0i=c8 zZNT-Lim2-4@*nH>$y%G;grE@&F?uB*0sIbuQn%H*c*Sl{F5hg%3c6oEIXud)eoUkE zZ2cVM3v5Q|Y&2LrYU6=7jsqbkt=t(~TbS`6;e%3FsU{dRV?i>OjI8m(4+o>vL&t(Y z@#h$1xV~;wt2BHx;0|Eyqk-?wI;~m18fx=d5i;@aJAy?VKMv13E_s(<^MW;~Y3#@s z{h-l~bLN2K(+Fem0%)w}4~n_WHp>~u6IynD*h{ZN@qZl1!Bbi6GdXv*hc(R}k?0FG z+5tn?7X(lNd@O#`14(tY>R!>~3JZ|6+iAk6?B01Ax7?lYS9luF1Wza|=f})KK0H4S zPu|)zE~>|As8RbgRQ4I_g-=do=)#}sSRR2h`+NVe5b=N_O@}VCiJA3cA*UtN<}{C};KJ#~r>T z*CkBBX7#n$0RtB++1z1pLB+#p(~cb5)1mBVTe#~N99$3kUi;_yvn0OO(_!s+eAfQ* zEa|aV63@o|84bkOkB4PHLxkCA6ce-uBNyUPP=c8;XthR1p4Age%eAKQePJqQMJ zBE&kM-94tqcMh@_Pa@Tb+7&%P$5MY^EXg1)eNn}aJy=w$xCPHQI>gh}W9VkHCmdEQ zM`GVSQzsrcsbnt*7z)zpX-t6o><5IA7acCxE*>ARm0`~qL%p_wJHiQXl4Os z3+$`1vBy`m(7SG#C^TNbpUNH2D&aT(t&_KB=n^0GP$b`gJc#?oiAV}s(5POKt||q> zY7c#aLe3hs5)C+W*Np>@t9e^=G!o&CS9}^O2f^w32{Y;EWp{IX=PHGCfe+cM{{8)^ z+qP)pF`&4lX||oM5&gl5K;#bB(VV1~x$hL5ujL*#!o#A|x?$Xj4@KWi=5E34SrdcY z=R^4Cd+~mlSDdtl&*LFjKel_*7p~USoe&QmZ#*OOZ8Ly%_Odq!rxrV7qIH=nULAPO z+v0ZnfmdAJY;Z4rm7pTLzK!q&wm%|L65ODCO>|Q(-bU+{ajg7!9)?F9Q|GK8By?9- zWfP!7e&mw%+MqH1;kP~2|IYei#=2BBZWc!kzFt>fxle_5be!xpmSx)FNtmd&(=FoUqS!{m;xu39{g{+|XMIOgSoT@TBBm!b5Ap+Y=t+_%iR z52ClZ3trrtbHv1j_|49>5es6{3(z(f$3f<#F(-)197CD9{WZR$%n|tBViV3rvpJev zXlFEF(ZxD?;=S1_;;&N7?s&MGt8+06kD0S$Qsbg~t>=qttuk+jJ4L6=TF#RzJ{Ij+ znpIlQ=)!zlqM@nTTt7-bMyZ54ESy)Zg$G`lY4eUbnfzby4(9{XY@mv8X3PV8dnLyc zzgzPmn78ET+!^8PqizGQcnAzS47YJle7xmD?2_>EDn0*`JFL_!B2f<=v5D*qk9`-% zu;2yM@yA~Uh|8bi^9YutZA2)j9dB1gAxaZX&bS4ZUf1=F$HJ>#1XD^63NF$jUkq)* zhb3F@1vMy7f|>W^`4zrV<%MT3ocXyTK88P;N#z_pPEOAgZyIx4T8qQ1;EXa|Q0N!t z7FFRKqR9$(Mf$2%ui^=>jNtm~Yy7hqQm&GRVCp-84}H$eyMpr{KL@R(niPYouHW1p zuH@vQ2!5I47r&J~=IHo-qxzI{tKv>fA`Ti)BtLg~Xy$P}Zr#AzzWB6Z{D61+szL5L zx#z;6yuK^0JWFOq62LsNiYBsIqs_;JDby&m{EuV^nBsd1e;y zNm;AjV&Jc;L-DbE$*O%&H?v4({^4TCw$sehySGd^yI=*vaZ)LaV-->UJ?HqX?;HNY z`aF*BQUl*=3GP&338&y32ES8dKNXTj@m85;MF49qg`p>^>mdv1TLlxycb#imj?#_*=qkVcf`vxFN1}a#kDOA)TO#*P6{}44(t2}>dD!_{ardU+%yc?VQMC*GlaPFYE8=mfQ)CZ1jqoTsl$Vs9 z>7DChEJxyp(`|y;np>G6i=JlX9dE@rJ63<6``e0O%4Ef2V0Bl+WsV6OoVKt2tlVf# z#Taef&9&QOX5Jo7lGn$~3==FL4&bq*m<2oDu@bOH9p76VnqW$7nX;;a`<6a4!kZY2 zpP7#b0(1T?oCj^QN|X!xknnYXeyZ?qt~Q^(xb11lDVOXg!s*XYRmgV1q>;HSo=1Vd z!n&}HEPA+y&f3f88oz8_hyTzCHh_9ll`1t_SL*B0_W6)AWgKzY zsBhg=ys5`Gq2N5tfkTf7G_e_KR->vkDlRnuf(0<;W5V84wI#RnQ`vBl4%Yp%kUR$j zJ>IOr6miG^c`EBS_6~~hu4V)91#-d3DZz(ju!n(F&b@2k#oexSic4rfRGuY&(g?a2 z*$>vzYbW5$Fl&YHYDl(1Z?)gi=6rT#Ry-}CYHlU3#LtUN!%g4DF7PRypX)ac=+&8M z+o_jV;!U4B4g_XFq`}M;W_NEmN{0niG!F-*=rvM%%5S>sUEJ%n1H3X8?~flL*16f` zysgHcQB61#RcAalthzhbS?9_YS8@jSVB19f^o^rXxs&e@E6oU_u`UqJIO1=(I^Pes z5%Vj^zxe+?Z^f{fnl_=4LwB!j;Fz-KVD2X~fJWnr;5<_~Yq11exTPmxfK8>PT#qJ@ z#V(D-lLXbRGx_r`4E*+ zKH#6LR27ng@xWiJc(CRKBTXbbp7ae~A=lZGKJ9b7RxRxL%M~MX7kxoZ40S$TRKW zEz8={@IJU#d#mH~bEWkq22A=Z8jVKvZ`OuadKVv@l|Wlf;pDufz9&s9N%s$HW`+<& zdzXLg*A%zdJ#C2M;R+ZZum%h4Ncef}Rk^OjZk~*HyyP~_0(%|de8D0^C_h5T-8wyH z^hzrEQi%Gc=Bu^2PvbE}rRUg*>I9(S3wH*qqYe%hWc{tBSIAlC)g53fQ6+drRxyOU zjCz;rIj6x|9F;MY*&4xp=kGe02>w&*)dVM1?&R0!cq*OWnis7Y!c%?I0t?T0D^3A> z=-@rHXH?d+IG|r&@`8TF;^^)7C4SCXg1@o&*m%JO|JN#!P>m9MI+~Eb-E}NJG5HOg5No3 z;y&sP1V?x%#j$SfO6`aOhiJzJ))CVQp83pqK7Yg0Y7E|*5}A-q;74-Ks<`OkH$AZu zZ6_QD@j`Sk3}SMy7R^r;2;Hze8-8;!*il%bf9G^L7#^6+XIAoaF2mEX#Gb~E;`F!0 ztVj~7SbPJ#&cEn%{|VFlw;1QY`~SUrzo2nt-xzDxs@*O9tb1V7`)%W@lq2HzEK28< zitCSs79aS@uQ~b-!fpROI>{bBbd$wMK4cClJU8WobA`TRCsQ+{;FnCWJcQz8C0%V_ znV=|tf{AYMh@KS~R>7|m^C;(;pi?($HSQGz=+%SbEB~yT>*X~+X{Y869*sQ~&a@)W zKy|~^7$PK0CFQXkb+uuD^^t41uCltVy87f4U$0qTd;GXB$y55X6e8Zy@3&jNc(lT6 zFN$*`9s_A+=rEeS*2xR~8`KeKF-_&NM3SFLHl#h#8{r0d@n9}KhPK?p(Lz;S%Fjo^`vAY!4+AW}I0we1@0#engwtuT&!0FTbp%?Nh=mKBu$k%qf1uwy{*}2w$pk3s0fZ4U+YEdO@Y2&veD+PdUcoF1B*YU z(|E1%I(kWdME($_yEC(@97ub~Bu@xN!?CyS364_EDmde73njm#nK1`TBt2pOwzu!y zsFxj?o7K$8phLYc8On!wiIb%APh}J1=>F8z{!?CuEj%tIfN$57xeK0zq9gw4(|2fa zzWT2L+mjtoIvD&B@sH;2L`C6L9m%JC@zdnTFN!S-vbQ0ou60F`d%kk^vBzrTdNQ z85&D`xq5BDn3@l_kD2pS`nzon@4H0odDMj59cJdzR;8I~fJ41xUX)(ZLK7T)V`dhS2--u8kD`Bvhk^l#3$MC+pVS|8ig9K`HYHY8wr`- z@F@5=vIu%K;HN6$7xyza05kZpWS-|)5CRHolvxUr2XW5Fht6y$uK(ByCbE{s)EOO$ zj3K`X?QV-F5oaI8LMA?{;*l&mtGM*O8Hi>YTMw(UC6xN;jHhAc9w9lw?*mP|H|mM5 zzy>)m$^5Hzu(=v{c%D8qg!=T_5e~F?h;B& z0s9C|GM58?yZkoSb&vtZjq`Z<{hiNO>UY5mlk1qXKqKpBLhDM1n9cbevMyXdA9mOCG*$GG{=f$V;ShQw&hXAA8^Cj`*nwC1 zQg8iE>*w;Z7r>fl=LqVm`yM+t*{tJbeagAvSoE^0Z~o{aYHxhri9Sr@JG|Jxxk#x& zyDtteki5eS|M-TA95cw#g0;`h8wH}*Z*0E5X#hV_OFiM<;QdBU`T8l!#eCo}F@Rit zS&W|JT_ifG9U|V??cF5H&G?<+mwnyRyHB)|Y6xC%xL%8TE;HdP4Y=e>k>pBd$q9>7 ze2xkVSC<^eK5OBL@t(x?KH*Y0F+`DeaJkmlPvPg8?z9OkUOsPxf+xXFG8Y+qLTq(j ztQ+Sh!r^eDlN)T}Jz^cj+eWAzAb@y8FxJv{{}oKc0uwPy@39gSNkcLq4C>$e0DKw2fps48iLX(dk_;_foS_V;>lF8`nB5-NIQGicL+kT9LipkinBX%vTx- zjXw~wL}r`>6&Yp#K+Lr=e9qFxgWMSOon5l;puaSQo0r$(1rM}Q&Imv&xv6l9L@(b% z(V8&+UUoR23C8m;c_N+#*K1_}qv$25P9?*!NSg&Z+|_xpQpsT+6!{d~7V{Vm1Gefx z5XNg%UE+%mmTc_=lO=41JzHa4ANAvBSobII$L@2Y7&#whWK;U#F5oqf&)m4-Yxmjc zN%aK|I$rZ?>kk-_{VBeg`El?@2{B1)kERw;|JAJlaq!zVw`|toC1$8VKaS**9p0RG z2cvpFRu=*S7+yScpNjzA{CUxZ(|FiG3FdhdePnzvoh_JGZvf^|i`G2uo;_K_6ua*G zyO#{JF9H^CW!ZRvf983lpAs(kR4OMvS%+&EL zYxU>ECvniv2oxrngU-yYZti!rft?V7mu$ncTfNV-1N)D@B*C{fqKUzy#}>~BTkMwM zoG9dfY?uk+y>c$B0fURu-^`IUI&(UwWslAD#`#pyx16AgGpHX=BYWwc+7Gt!@P1{` zdX>JjEk0f4`9-twxV1$0zUJ@gu3*u%3VdW(d6LB|c@xr`+rS3+uwejsm6>C_o5@ja zB>D6_6wg{)VG!_y7iZQv<41Y6JqL0RBNs<{!Fq=jW$g6A*Oh*nV#k@VYR*P~b|iqzaW@pI7+Psu*;3FKCZJ!K=JAH*&J&$O6ni3mPZHhMm2u>A&$C(C8v)$OEgM<#RIyB2D3$qKxCxVWAsAVkIxWNe zFU?9Jn_co2xgg3m>79N&tl3cvnME?u>}k`tp*IgLid%jgoI2ZC)jl1DxUT||cS^dh zRgwJgpi=OpR`_H8z5Uzc1-06fJ)k;_irZc_Qwl-0{$%@Dv0c=!iDpO zkuwVapx_gIyL;^>;@50#ZqDQXJNq>4*nR~1KcZGO@cE#oeE?nn4}dk`81VIgrhNk51FwPSfCt0jU18si;J_2unSHM#s z0J^{lK=tn^P;7+-3JVk#C@fG|ps+w;fx-fX1^&4O(u7w;+l!erSL%X(?xHiqL>38W zk5e7~nbl^Qb{%PxLG1|_YkIDPE;)il`v|8$Ml!5>nQJ4&n16!cu> z&axbVqSIa^nsy~AqR+%dre>W_xEV^!9`;Nx97|j>DwU*YCQ(;hcGFVrtRU_LrYp^* zfnl*FOv?9{EM`=fDm89mWX>E^8qHKM-I*0?b=F;em7nL~uAa0&lxYLzvbi&~RWGWI zN>nxy40rPG026U67Ww)e+Q$-?aIH&fxyHJ`*5CQ^)T>MRN z^1EQ*u)h0u***&vB5|=uLDY0_C#ranpr{wDmdq&||K7@Ry6z$fm@^)dv^k*?8Y%_y zoz5T4TA@|C7i(aY7AdBcl&++-n$lWI>nUxdw3*UYN{w=9JKu}r)NzDVhBo2m!G-UQ zEu}`>yMY%FXQmz7f+AbwYseqvY^Ic(oiGw>RuZz3kZM9|38^Qfk&tFWS_v`Ae<;!x zA{?o{PrZK#jN{+27xzFBS-kJGpxjla!o@l=SVB|Jy literal 0 HcmV?d00001 diff --git a/Python File/.Stock_Price_Prediction_BASE_20502.ipynb.swp b/Python File/.Stock_Price_Prediction_BASE_20502.ipynb.swp new file mode 100644 index 0000000000000000000000000000000000000000..405352b7219b1a99bfe820f616d71f4e78d9b532 GIT binary patch literal 36864 zcmeFad(1RjmlyOhC^#sHkZ3drk1v;*FFohft?M@Pjim4QuI{exs_N#O9P8R$-F3fp zRgGW*#`qVBMu{XwNYH3BF~MMrm&6z&ppFUA7!3%+C@6@xQBV*8f4iT4&i9`8J7@S9 z@SpL0a@PCw)4MLacCEekTEF#M`&hI#TfNAi)9>)}E8o5Qlj|Qi|GxIm{=i?}yn7eq zIaKlhU+vOc=Wr$0Z9z^4)Th7tJX z?>LruO!Z&?{vUez)xYZS4aa@@`qKz}8i7wE@M#1-jlic7_%s5aM&Q#3d>VmYh$B!W zzv`kd%O9QpZ+_JNe?QwN&+~uT^MT&3|CgTayJ!3MqxQe}Z2w1}?Z5A%_W$eI z{!cvHf88&B{qT1E|MS^?d$#{e&-S-*{R_|b&a?ej{%v19|Ia_$ug~@$d$zxw|9?E& z-@je|qx1jwXZ!it{)av~|7V}=)U*Bbzy0;YTmS#JXZvq{w*SPl{q6q$>$Cms`TqHj z&i`LNI{%mclGh8po&P^S+s)_o$Ite+`~OeRcJJB#FMo9YpL@3drf2&v|D~@V-p>CY zKRTa#w!hu~&wh0N@BZlgKl9P~|Nckk{}0dhpM2i`H~t-8z5jpzY;T_JzxSi|KmBZv zpY4DD4}SIhKlN4?w7qD_%{B3;-l;TnrHiS7~lQzXZv$nyc<5- z-}?XGJllWc^Zt{MuK&lL?caK~2OpjP{QA?cPb2VY1U`+xrxExx0-r|U(+GSTflnjw zX#{?b5ip&1?_SXUhlwMP{6GGD{QT9w``x>rh5R|lAA$S<$nS;x4oC}eAu5E0{3^&F z`4#Wp{Zo+t`j_J~}XCVI-?JRn!2R*> zyf56k_{8; zW`z$<(A!Xg1oUIybfFJ>V#QALg4gl?X=g&;aRT>mus=TB~+^Li19WBKmuN0#Me@%5u13X<@8X@T!D z~4=ycz&atBO=(Y4YFGyWUemsECq(!>LRS=U=7+;1ea^C7h9<+reoix8nZqT%w%2%z80hbgwS=B9OqW~_mnQuu zqksqK(u{-`gO3u+v0a>pOLuAcn=g$!zW$IU;`xy*D$kE(8G3$v!NT?W@v+jqynMMh zqSN2`p7;1VUy=Zm?4t?uuZ>2z{)2m<(-)VleYgip3m-m=W#;Y|W#*H+Uy35hf0Uvg0(@&G!$Zgk!&aw$Lq1vhaNP-Rp>e5Bh~2m(k;<+}i`cx7{H4a_sEbai5oez2cXh z{)sO;`CGsI^z!oEZ^`?3Kg|5feKCU!%Xae;lAF2Ci&?x-#AdotK{@1zAA2ccd|S9- zQjm{coY}q=G%uO^IOj)Ru&@O$k7GZ7eDlNKdH>Z*eCPd-JWeC8`EkUL@3YeV*5}Zr z54!hIB#gvw`S804o&mmlpBD}^=YzrgURBBqJW2S$Azu#jtImC>LQlQ>$|$pMqx|JC zetC~q{Sr)W6>m@v^8@^YYLEYCsmtmvvmY z7AVa5EBW~4K|aR6Z{*{b-Fi)_{n`3+T;qqn^}&;V`0jt`tFQitzV#J@@!reg@Z}uG z=fM5^F&$p~Fp0C`RewG>_I)0gnN8mPn?C%FEC1`=@>}4VS@bz38yMI5+YLk4jK0Xz z(!>LP;bvK!{m9GXJJZS$Hozu*?U#v*Ucsd}f7x!@cA1%W^94Me%>9v1{aPe}7hzdDHlxQ%@d^ua@8^-;wx# zfmrsJBHn%XkGy;Lt!Iq+%Md&N6~xDX3i3xG|2gD8h5Sd5e--k(Aio{rLcRm}amcqI zzaH{yA-@9h*AP?x8OYB-{xit$f&3204dOsn5EkmWY}A^rU&kWW9KM&Q#3d>VmIBk*Yi{w79%#0c*r3ywYflP^L)iZi%f^oQT# z?=D$ipDXrTRPi3b7V$oaht7R2f6fSBF4{?R4&f)|Ujztf$o1Z%V2#wbabJ4DxF=jA zf{lIQ*2D>XJ?{0e4~}|<03UxJ`fv=MVI%?isQR;y5Aje+hifC4dF$opN%Q5EKXgC7 z`ykwR9qqT^yc#)nsir+bYx-UnuME{SjGM_&Bp*I(Y~{o57ahT?gz zFV7?6^zlPDKKwJY`Qq)|&1;z;_wvK&*Uil$H~7}GYwutG%oErCnwuwCT)B}My?WKJ z(co8tiH|+4pLlhtzI@vs`fzVO|K4ylDudw77yI(bp<%D_HpAH`qq68>UM;>!Y!|TN9bKCV@Yjo&q~sCl=dn zmsh)7srR!v-O=`RB`h1c`0&_eC^x5uvIb{=O0GRH`ZL{F;gfv9Kbzxr5^n@2!Dp(a zgV9#obt8pyT&+IH?vj!`x3^MygDmb{G;ZpR&NR2WZuhm?7~|_^y;~TP?!>-(D8+e@ zIn639>@cWBKGnm*Q;pRkHp98fi1w*7|bCTI$U5b=+xH6)gs8uFVHs>%}p(mQ-w#UP1744am;6~}3 zZ-OMD1&8*P&1Nv)>}hHp4#z{kJ{E`guo!PsTaIMP=@^UPq)?S8O@_6QA0<}_jDFKy zpAK2J9rl(!s{v}&j+6d*KU-~^Te3LClqd3ntoWBle=5)OxK5q5QnjQzyW44EZn#dz z$|%{na zYiuINu$;<*mNK4^jKX~}$+X3lYns7kJlbt~RA+J@j|UTN z!P`1{Eq-FOmFUggjwE%(vf8W_%`EgiX*SDT_<$Y41v1)A8i0EgWU4g$0y3)ehybe`cFV?;LKta+Tc8bkUx>`dW0kG}*?- z`Cv~s4CBOSJzpyo(|93WtAkij+X_3 z?3Q6&*Zh8e6O_QOPjSY}olcr%qNqY)oKx!+bqu7|38ILNZq0m>8W}4Hg_;~X17Xcl zZnj)UEt}E8dfYgM#w<22!<6G$TXs4fnqLNusO6H>SqPPuCb#w^B%<6A%`(!n@ak07 z)hlLQNs9AfZ@V%^_2Asu1YOUgn%bMz(s~l9iBg5pP^PN*xSE(V)^g%_?w=+L^_GNJ zUM?fC+ueEvyBrS#74PUub)>C?vE9w4oY;+BW_u7BLEg3IG@0k~4jJI(c%7X%k>MF( z-S1=acP3Y;(;zvdi{WNd6)Vgcn)dJrl+o+m<=G8mxVmi3Nt(zV>XZoU!KEw}Md4LF zNKcppRsyArNk*+! zQ%-P3ikchCK+URJDiA&Gfg?TrNY=Sp+^e6-CRo z#*OS2GcMrW!^x3(K9MKq?RI0a8{Fc~%eR4}CPNZXM6CJzPo*~N; zOS|d_PZOzBdsEj_s#>-^{m{P%haQZ^wLaI-nSOtQ0i_49y^Ez1?W@dJU6-EW`kf|} zs6Ab5I4<0;BS#T!<)}|Ce%#qyMQ?R27$H@$_EjC;N-LwMX}LZhm(Sdkgn z$~a4f(vBQ1;P(7x;h~#UMq@&m=%sUoG8m4EFVMX{%*z@ z6y@PD^QO}&&%H6!%Pq!`Vec*csRVA8AdGbe0!or4fC54*&If^pbpA( znBVThCDuE?5crd341#)MhG|M|IN9;8_v4Cu`h?JoLsiluTtXEWF`N<;#hvfRm- z;=BFRVIuTa`F>mcfSufSnCML_4>MWtvD{Xq=-R^Li!m4`0Mw6xd7ELfU z^9|MlQ=uq|tE6gL-^?;g*|~qL7Eax3j#KwASxi=?VZ}GWl0|KPtc<1$0|cWidWw}( zy$bH06~=OGPA*bqu}m@x)ON>;W1lbAt$onzsa;MMaTqt$D4+7M_DY{Y#m)Cb2ZU6XXDbJ%JID$URN;aVrk5$H-560 zJ5V_-gGt#n9XHL-#J3BG31TrjLx%H}7WS9YtB4b&fR!CWl~jnxzwWCCbTHq2gB&7mY8Q%cNMdxmvB;n^{cs+ z%aosO?#_0c4WmAu+~6p=z*OcMDv_$2;n#M>1a#DdYpw%1#%Jrvee z+1^~cor{(9BVomdty5*y5Vo~g-c>Du^3T_le#)YLYs<<_J+0`|>bwQp>7aTrN222l z0wLO8*!AS9r|SCD78cajrBYUOD?W#h)R_)1Y&E&|LjgbNRaF$7YCh-X17{^na9XHw z=64n1=yxcyG?d7)czBa$V!@M|ToXE-Erw^#5adbtFv2pY+XZ-1KA$9y}xP-{uT``yLxD35p8z4*x6skUkoBMV#G z!B1TfUz)WyM#<7jabGKT6mhj5iahagCWS0_%+_-PBiLZYPu3lAme>p&r7rQ$;Rz9= zy-pc3n;gOFI8`miM;b5l&Q6s^%kX;S*0LLGLdQLrvb!NB_)t!cyXyqAbb38Ne=Y$` zw=fC$((1ZYWyv+MDU&=jmZEZ$9XCC!jO9&TZ9GI*cZai~M0$EU>_)r(B{B7Ia@3m6 zeABGga`#RY%yJ6X;5a70AtQZy$O6u?g2+EagJZNh+|_EbQZT2_E6t~m=iQ9jqu(9F zxomr<-7w-1G55yG<*UCp7t_D>_OY|?ZKw8dV-XOdcMztpzr`pR-YWPpMskH2KP)uF zPKl)VB|sIu&Ly126kPVQWLcIH8+$+CjAg`kyAnl~@xwZFBkKN5^@JH~IlDOsuA7PEz(qaPVQeYhrp(c)x_crOfCo{97;icYYLZ^yOR{#+m^(JpL zIR08ZZEM*3W{t&*IwI~r$G(Xdv=|(MMbOyIW^%o-nceXeRukt90G_FROY~EF?*neQ zBHwDWU7L5kDB;z^cv;rLe0zZV&Nt3xpG$o{8=F}+K4q$n6MB6m9<@cey%GO1w-&9# z&W`Izy;VoSeBlG%IWJcUV=RdCeYwoGqq(}hsmnx44QGHMMfLJqi&3PE(}|Z8W^vgiyOGx$4|?=fxV8GY3??bh!dDI9(3+_RQ;^JW z>B5f-HPzH|J#A(87VV|ZbZpV5$?d-C_cBe8^$T9pxDVi`7w&l>C-Wp+RXyk{AicwV zxKQXVPeyk~yG9`jGM0M^IEJ4U%19heJUOuGO1>XdI3P0D=yNd;YU^a=qEs9!$Q$O*UP_WxKuJ z48i#1Z_V#un)2a(e7%&I_gFOGZ!)IrC^}q{$`xr^IIRx?wBOw)f*Ha`8Q>3XLE_Nm zVnUNXvk37^EfgHUuW>p%Om}S2*<8BNTsSm$$ykI*y4945yVl1T?gnik`kW#x>Uew( z|3}c4K_?3WMk>4R-Z(|m!5HIS@N;#!cM!z3yBjTaQguAMq!&bgrb*V|Cb6qb3|hWE zcB#`5n1OoP-t9G3$sX}%4iWDZPFXvwNn+qzF=K*zjaGJCQYI(=GzXT+s4T4d$h_0G4Qo zMNKe8(dkeXY*GJwKgLUyUat`~Fmy8h1v$UoBRy*d{;E7QN93 zdUc-9LxO8BX0*n4_P2D3cs58`YaRic4d768X8wAJ)yHE*j-nK}z9g2tkGD#mg2-7{MN$f{#@7QIhw@7jC<1Kz(2yjq*D!kZ_% z&C|`EaS%kf7kH1$>>$H8Dn)`j1}E6%x>ydRYA;Ued>hXPYH*LvKx)cuwps{fmMm^2 zcR)aUNMYTovW5#W98`yE73~t(QRv)gH@OhJAVt56B!;<-n^n7Fh;OSp3&g;in}|mX z=jWrUE#aTh%*l=q#Q9W9xJZt2*>*j;@yjZmAk@oDmAC>{$Od`{)9RK0`kakfwOwhS z)ZKVz7GaYV2))@`x7h>w&WmEdVu6K>Z}}Mb;F=bv*9)^Jcn$+Ra8GeZfHxyk^ZnJ>nJMw^ouS+fwb?Md!n51fRt zu$r$I)q+g%-ZjDrtNpZYa(X>h)dFDKs)~e8nE^*wn*?j;A~<;JYy-5R*X{Y!Mq&wm zb4WGB{mzmE<4kw9+BCT_-nr0w*#orZE*~e%Ui*Y&01c%`Gw61-r~ylu39;?BbWd^? zn7=p8J&+#tr{r1dSn@I%aF0*`X-N?CnFVp5=3~zFWd*)unAoo^jx-^lf7xasiSM73d9l6a| zaFpm|0mf~%7-9IY#-hv3)XAlY-Ky!&$8j+x_R}rPqL6_|cWmerY@5=H0r0GKwj(E7 ziK50s`0ZsyFlHIp$WlmvFU?Go+xfZPa=_Q;lj)`FAs{Lvf`=H9Cy=<= z%+=Y*OisCA0;9`KV1@BouXF_{4Bq{De-?}o_+Hql;MY=`VR%mBK*gFIR&)j2-#>dKuK=!Y9o(<&Hy=~d+DjZJv zB#~rSw1DFl1zBqi7O(H>()&>KwYJ|NGHIY*Pr0`|XC7uih=+lMDS|o0P#kpxrcj?! z(nrNfJAi5sdobCATO$oSKI-!;(g(9eH1V`FI4lO+Xy^BlbW;F2F*$N5`|Y_m8p`YW zaw$a`V;Mac0Y=X21aB7==z66Md5mq3b$9pDibOH1+N%cAa)(`)R>)tpL_vbYM2@}X z-6{iiP!a<`@*?B*`oMY;vW|38*}AP(7+yy-?DiG(pm-*9^p!m2vFUg~2y zYDj#L=hVe!ML>PQRi=~m-Z7vPm6qISE7RbgT+a<#?gJz)rZsJQUgclNat!Cs+fdwf zN>N)8FmKjI8|06!j*E58$ungi^7?Q!=*@;I?+x4u{0@<;uLf*gU;*M2upSfNiaHIJ zCQ+b-1Q?R2&3zFqoUlD5jm;^oa^Gvo=(c~@kt^PZG3Oi!S$bJZd9N#C z?%3N>pIgXG|jOB{luL~ThK3EerM?$?qdaus25psa%)J~9&90F?+=0h~i z^P`A7ar#im({VZKV-4n}F%&{+&BCtAleD@!o3?9P91<%9oFzaKQi%sj)ZIuO>A)H@ zl5=1)vzSDScGVtkgYj@a3Q0~y<9i2m&ty7ET)uko4QrRhy+(>gmFM@_#VDTRP3?(teI}Uofmq0 zI)s&xWx8{kH-})bH3Et%jb1z(tOtVQ<}@sKT%+?w}tCr?4nc%pN+2&2!d21bPO~83XpFEp*th1r7rI$wP z0IRD{!uixv#J;M5azVah+&>?6D;()QhZMZ!TEjrMl|ikorZZz|ER5y!DMKXm19dm$ zkAhw9X16Vg;d`-l)7Ypc@mW9WZhG_j1SSCi7G;tTewb}#AB&F5z+WDODq(Q+hTfoS z%=VMI1n7-)6j}6&6x@W4xn?^hI2EJG(Yz=fp&Pg7hV*wl&xRMlcwi7%gQq6tl^o#_ ztcL_g*I<5gl6y*Z%+OrljS!N>>z=*5dLk$T`*<{gE}+;j(e@<&w?N%!I(9ry)A#cm zok|Z{&OpHlwzfd1VwmpUX3e!>bfwAEa#?Uh4!S`ey4yQ;y%oRiP*zbG5wdc~rQfzt zh5dHWbfkCr9;*1)J$z8*@tx`u5kpt7HoXM`ye#y)f=d z9Xb#9b6J;N4mML;Pe*`74wJdx&6%)|v0985U=UC0yWQd*MPx2jk9n$RQC3G#(BG$;mv2!tE{4RxvLHS036nS=>@8Y_H)0`1+X88pVH0muxI`4yx(*{%m5%UI34t__i@KcIy&AQWgd#V zI6tf}cc{+ta=NH7x712DAULn3y9@%8&9NGHD|KTKFGxA*>2%)mD}UF`yRY}_C7MO@ zN&#mpc*nh2GK%eNod$X~$haPvdz?XtXMy&N|=yO|CvBc=%g z9@N`Yh>Rn!;WR@GK0m+_?jkuPJTR`qBDO(6!8*Q;Wf!)T^^|Bni4p-0#b!L6?im3F zs(&}KC^Fmy7!J_I!9~&Pa&(!g@@j^4|4QHznPaLJ@dd7RpJZZ5@qj;rt^3V9>9EKA(>!4I8Tg;b%le!4}QQ7q=69j zK}%_KK7kFB-D&@ZchFn3?ns7BlceJb&elCqy)4>Lon#T{sjvv6s94T#jmO-#wl|&z zk2~!ce`U5@3OE|r_$Cltwjj7`V^_;m@(rtrnz zZR3N|L8iX|mT{Sxqj+`37_RU4i&U-&Zcca~QWr0abCr2_Htfy%D$fmg!SU;uJaRA>Ttr{ix<2tl zm3t$*TPbd6I!Z|FO;GbZ-=73YY9WsuwTP19+Xgv4NnTSpe7lIQo2xU<@J6ie(B2(A z8)@8Ev8z?NW3+7J@;9~XT`qCgUJM^Ruj#&E_wxmooRM!~%sYppPNwi-vL$N^?3ir0 zQyY8ihv2pM-9g=KL!O$l#LI@FN6Z(;4g`Jnw5O3M$6J%B*^Lp@qe; z+o^6>7*Z1ZWEVTyobSCcBd*UiC;EVAFbA%T_2GM|b853E$tOGJD&*5ogZ?vzkrLTOphIdOZl~U>eAUs zDu2vx;CUVZ5O_KtS9llq>3w17B4`4gN=FEm9uPU+lGT2^_o|3yto8Z6$2y{E@NdRr z|Cr8Qx4Z?H`zklAS<|A6oKo+s zX#H|iQIg#duE=l+a?u`PUlyE7E2WV&gUM(UKn3gZly|e#y{-C>Jhcxl(0Goxy5137 zcx_a`6Nz2r0WJzMe{G;_fgmoY)Ae-f?*?6p=&^H79E3j)>+yEUF~wz$JE~4`rT@9&u52m?QpFZ;O3gv@viXrXN?qF2Ep6gMYIjN zNDKmkNyt8^wux=s+aB03{j+W|I&c@b1UBPsE_cEqy6b{4RttSR;RY#x zr#yym+l20>%HkOVa4=)Gl7!%Fa`o$3G!D+Nc|+gWCa&er&a;x2091fe)RZ`u6#zgx zB!7Oqx-N20{-y=Yv|hpL)khz}g;0cT!qPeT*BiP#$m$kzb37m+Le5`qqLVhjL+AO1 zB;^PmtPH{&cyLc~kb0f9cxGu9ba-h01AZOva?2D;TS0{Mz+ZPUZ-;6}*yW&pw1~$& z3p`wcWr9pY8N{_5G`QtcD`0qBhtT_(+qtOXWc6{QPl-Yo*PudX>-9dnI3f0aFgmz%3KOXaZ$ zM*V3({H(B-efs?iX&h$BKA7jH6>C1Yf)e;Ihb6FBYX_rt%Jx;Y+tpIC9_|jB3Hy11 zi?!S8;|QxS!l?TK+!5sMX+nm@A&Gm9&6Pp0+ITU#B1|GY9lEeL3G~}cJPNo%Wm#5z zFvbL~>h;Ne)^)e*EILy%;d>M91_Z0WSkVInqTGStFclJ09e!~m{IULaI}+yL6Bm=? zO5b$sO0>CgjW}u!;yOiDBwnjjgC_I(LH?>>qgenrp0Rg5%HWT_(OIq+@Yuq2J-*2I zz<)|3HT={yW-{j{Vn&i*(GKydHQpWd)1?5xa=g>AtN;S=2bsPa)OIPXfIBjKf_*K$ zp(H9yl?ZOYE@97)V}ayE)bF*e9pHNt|F9~$f~gzMx&W?u(-P3Wk@uegDzfA=@QEb= zU@S!UX{dFsH*j`0;G$56n-A903LGm5mOio(2ohC#_P}C_VqV{(xoXU7 zSEm&I0@IrY(fn?2y!L+QtfhYx6eixzM|9jM7)N`w2)v|Y-SU%cos)@}&WB6YX9{%|jCFUOkg zW*+K@{8^(gN6A)XH`?z=nq@t4H%75ghA@-U{$!l5?$`BfMK5^J%1Ql*RaG#P^8w5x zErIzpeqgEViM0x+Eiya6MhQR4%hFVk^J52jFa|M`PctrMQYLIjK&{%&S)koiKwzr^kTS;S=5lNh{ago7zX! zL3CCOC z$%v+oli`yy;KC*)_~MC#Ffeb~p&T){WpTS%-xbBE%1TbIHmxU9 z-u!vs{1I?|*H$7UO;*4aI)p_m?#Vho^(jMEZ1mxsUJneNq2A6{NTM)|lH2xYV{I1r%N!0%GyO_qW* zk2p&QPRyCR1j=t6Qj1nhMwi$}1)n%4f>s3T*N!Vnxz#d3B4T=6s%w`WC{; z-77|pWNHhy!Ri45nkP`wXHywu22>DOJ^HQ2yb569+L`I!mXR;0uEl1tJ z30K`vx&<^LtARcVaw+VWYw9Msl$j%FK6aPtDWSplB6)%i?kCGS+|VMJ1K+hDbpXfQ zUL*zQlCr>@rNTv50lK1Vfp9_|B?8#p2UF9{+{(fY+%zCHD?+gd)NZO=gHzXC`tZ%F zkXaWZFbStqn%IjG9I%K6W^>tA@YPEoZK&8oPQAdJ5XyZrt^Ih>ISKrXP!ur4&bWWn z6AaD?Ra9a@n@Xg{i@+^2ZRwQIB;-r_54;8hTlLU! z%R{O!q9{uj7RUhvXqFuvz^nuM*?!;2!6gqjG)uJ$n3ga_k`c9_vO=nV5MiU#iMO*x zqLe*Z4+tJfo=dRQQ_J7^2e&?qE~v>v;l`jx{BsyDu+J}mL3pJS*~(hm*^)s&Qwv=BqE4A| z6*o8fQHy;QL5l-s;Bd}7;N?jLLi09f-Hld|8cmJVq&{j!L1aJ;2Y|oL^!mV*g+@;~ zaCauxBBbDvAUD+kKzS(D<&|RA0~Ez3z*S_EU_>$Dj-(^-X0GUCbuR*{0{djcTYeje zOJLH<}XIz9Kp*p%@PlE)jn9z4H9E6BiFdrfWfjk48==*7If4wUUz8%)|n5al=9>7yENJs~-vmf#^l3(w__b>xBKCC8pJ!L2J)n*Jb#t}Tb6R3~=&O`+$ zc>Mul9#Jvp*V!HZhgVs(KRF)njv^nC5V+ICT|*q(Aykf-fllNmI4yiK;nz2BGaZjf zUC7GZ&1ie2k{EN3y6Ro-Om%wH-|AZFG^n{aQ`BZKJea(#m}_LQ_+VDK*K5nC?lci5 z$pT3kMw|q}Nk0fws{(?X_#|x%FA{kH9o(pD3L7Vxx0rxjNrQikiT5eSQh-_`Od9d_j-V-s!1xh%XZ7555s`WcnU!M*iNS$Web+a zF(**Q^cnK~`B$FFbpHtjw3F7I|;K-QHys zF~ja-zMQj!6;W;D9Z;klp#Q!$S8o@Pur6_mS~aeh*bXRHK8Y^`2b1>*l8QzafBtbk z()zbhIC0Yo^=(r;6OH5nTWpbw2#%5cxUaFJiz!xq&0W9wrMILO!!B$g1Kjbt-`!^; zpch;Oe;#WHXieEvc8FoJz~s|k`A7pq`5+nd1XD%r1!`(}8GD&NFq|9m;R#Qf!q4A<2kl%JEVkGqi}r#c}$?#ZRfgLp#F|*%P>e2#8BOvi8!Ww ztp`Co17b5ZwkuG-NNuI)LSdup7&*PR%uB_eUAL*GL~Bz241;NCFvrXRZuErZPUEnp zxaCsp#E*LDE6R^oB)CNi+krejpM;^7n`ZOea7_8y)g3KLrC`2ncQS)WV zkTlf=-P~PK=B}W`z)wno|i~g zj8Ns`%G74L1gO5CQ{>kC6nTpjn!6peVz^EESlkIan{d9r%D8<}I+e8oGd7Do}DB)__mnpF%eiz#j(ot0rb75I2a=Pe%V z2>9Oc_qL~~9kW}k2%AQNiSSIL6xV@R3@+zppAdb2*ms|43AYTP_&{8on4-j-$EFv; zae)b*E#g2kX)sUXDQ5f+$9=IW7m zUuyn+I|DzHIY}f-jIA%^$9MC2F4KLU^b zSUj4hGEGLy*=Vh0~9m!5EX11dd?EpxzK6VI4Ih6SXxDUT%FNHu1ph4#7yU zmBk1=neM?IOVg8-%BXxPU9v?ubtfKv!SF$1Bvz({_~-ERoXdT94ZID5^?D z=T7-e!}0ZwtdEl`d^%-79TPg~)P#QtfCQV446e;ez;+2lu~V$oZFq&R{#sulqqa0{ z9(5B$tJq4vDk1o>)W*3GT;$OXWW=Qzut~#kQ?>W4;4Sp^klTYtcMdr)-a%sQ>m!F{d^esDJ(s%Nv|gd|9L4o3QYCfX5WR|g8cKr#O2wQgaCfR1DD^E{XCR4sk@qxb$f#V=3rru5PD70 zM==dQC$|tA$|VELh~>|MVwv7K7y5 z@j4&uM-sMCD15M!Pma6Fp$pn7q|(|J-FWXOG!_NKAS{bySfr*1XyRaU*`5#A#o&rU zc~Un4a!%8UTK#^!MAMQ3_mb>|u_OD!99hDhHXk*u^T{C???NhRKqUcz{C->k54l>K zyIf*DbJI2SSD2t&f;%9D9J>nUMz<#Td~@5eh&QO1fiD}IgzLM@0$Myu;E^2!L((#D zMT1MRoG$G(DOyEfAscrY+W}z}Y+IwXD)VxpdLL2qI7kAt6Y?g!9S&YW|2lTD&- zNy2(ZIL%}|ou5Pm4M!BQ_Rj?C#Z}@IJ}8&vbw_XBOjj|)se?ihq=3llE~VU0cVR4 z#+3bx#46Zcq(gRiICYcZd=~`$>O6+ijMX&aANigkPFPQownp`0|8nji4~?8ojhGfd z#{B?Z3HI=<}b+&wJEY{rV~$i&_u6$k@nLioR(6i$_} zpZ96exxx1b$D0&clYMy#gA<+eW7z@U-14g|EpOSEj ztmbkh_$ThpSrUs_0@i3FN*yx+3E3q1o)GcIN_N4gC3Q*;k~3Ww00StChyxb>EopSY zC3~{$0N`vN?Xat^u6ateXry9K;3atzMNy|j41fX>M1HcjTrN8$CZ^DaO_yB<&{l9s z6GBf=K*V4(1o=9Gl&QboQ$r9ruaAAQ8rc8vN_cmVy8JToz&KbG3w4-#AFB% zu%F1oN1NYRQ&Wa}eml0e;)n__N{{ZQGk=JB4UL7BI;0cS&N8PyHZ$Ubb8^!Bq7SCibEOz=7I0D zWEt!pH%Ry+>^JbJ?0P_bR8_O6qn(iNrid30u=<(4w%yIdFccR7hB-orDeIKb{p^a}jq zc1yw<#{++zJkAIai5Brpfx1k$q>QyoYR74(!`p;3u~73&Z80i(cFIxgydFVkRm2xr zTk!l~J3_+xG&u8$76K!3*^skl>rJ){hE!t+Ai)$^@Vg~hfM1Qk{=LMC}SQrQO z6K8Og@P8rz|2!^+R$sho2VLmtOfw!_v_r-5GPpGGN#M`-)!T!I13%$#0ls%y+{i;C zQHp))yB$*Zr;@G4mLMGZuyNRo2beA#9bmeMS;>Y_8bX?8YHU>RmO*{X$DS*Fva?HX zj`tY9Vv?{o9pGhZF@NyONcrQUk99Ga5&{j_V^LD0_E8y2f>3W`dyWlmu*u180i2dG zN&TOO7}g)aCZsCBAKpT(1Wn)JOTuQ}7K93V!k!;IcKmYT26YkdWxlW44-A+*lSy*8 zAaME46gz()KE#$<+@>#_wS3NR&EEBh*~g#{I+84)9^7ZWJ{YWYY67?B5fhU=#squ7 zv(XN~EVjw;&l?Iwh0;J?w}|Iwh`y30L4O5xj^p`t)fq2~^p3jQoBF_XNnSZtfjo|8 zkNw2JT%VHt{rWZb4p=XPZ8ABA%Jr_i?jJ^s7$8;b8;5zU(ZZoBGO&P3EjVexf{S4X z{Of~*2Uz`#oLmv2rZR()A08onY%16&sHV4A4B_8`FTELFfRM4-5c?YqHjAOw2Q#X- zx{pMXs|bWLO(%Q6k7Hmr7tnJvFvNFAJ8yGcz`6Hsx&fgO_MeT&ccfk)lwd;M1V?PQ zBly>Ti@2gt{oS#kyQ^LwwPK`3hcw=e)a6DSX(^^gSR- zOux(j+u6C~AP7TI)crV6#P1M6tU?eJq+x6f(Lw-4(baqE3XE%LoA>Uw#3E&|J}ro} zbQ3xOR}ddBbV1R1nRnwQ?{{TbTrB$OY>R9;QNC?dB_#9?x%}R%ub*x1J5N&zA@SRW z91I+N+2P$-3AV9Q2!b(&Qx#YJ_h_u%`zpD~AcbeqvtPmOKk!H!xc2GV9A}MBL)4?x zewjLwvdotnb0ihi;W^fLx&d*|3bYBuE9Xu-#P)da^RR@{c2-#(_KA;H@wHnjjx9`Dr}qI3VI*cS%F9Z literal 0 HcmV?d00001 diff --git a/Python File/.Stock_Price_Prediction_LOCAL_19716.ipynb.swp b/Python File/.Stock_Price_Prediction_LOCAL_19716.ipynb.swp new file mode 100644 index 0000000000000000000000000000000000000000..607249a39081106859b05a0182f8cbad37f6b894 GIT binary patch literal 552960 zcmeF434j|_{rIbbsE7hysHo#s*ex{K+{e-udbiNh(v}LeuuPK4Zo1iIn`GNAhoFeZ z&jSxcK?TGM6}(YyPgKP7?@vWVQ9wk+`#^u9{y*QDH8Hxt^tdaafYhUV~h@SHght$F;=kH>%g_+PG_GpAUUgOmTQS$x6?8&_2WYxV4s za(N`MxKIfe%UQkHbm_~A)&6Bhb);4v>)%)_XGa3-D}}7VzecW*trg0p{`C{J;c`h^ zQ79T#kU=vD|Jp$Y*Q{H*c+FrqoeU>}g|UfJrs*!-pWPhj=0HmhjMwsk)IoEik+9j+ z=k~l1R=;lB-2f8`X&4F$XbaSAa1Kk|x=0G^ZTpcwnXvLrt?o!zgMZxYnsjND4L{vdVy0`>Xvrt?oz$1hZ$ z(I;46?D(Iqj&D?-*EgLijzOd3w|NL)CHAI_BRsP3NDXj;~jr z|7<${Om*D8ezhua`~J^T=WUhIB~9m_tbQOXwN2*_Q|ImUzq{%D zbJh8i)aM_X&Ofgy{^L}Iv+w_Wb^e9w^G!|X4_C)0)aOT=&fD$6PG7I8uy*`*y!P{r zG@XBuiq}rx%}wVub>6=IX{y58@xNG|xASkX>3mPq`HwZ7pR3O6>hr%%=U<|Z+x7oU z)u8PAAED0M?f;sl^GB-lC#cWIsRn0X->Z(>>08ruzE7RE^Y`6N=jW;OcKiNC)A^&+ z`P0;ATs3I>{zo@me^Jx<`Rcs=eD^k;52*8Y`-mN69kAoK`z5=4Ufy)RUtMqatKV%p zA5!NRsm}vdhhoPcR>w=~b9K}Ch&sMpeSWs-d{iB`%kSZ)^D%YaPTxtY!?N!mSLf~e zdwJ9OggS5cPk(GWpH%1Vays^4>wq19N}WGTeHNO|+wU#Ae%#x1-p*IM{CW>*jQEHs^8(scdjn$9m(=k4b^P<8lr{C2+D@oZ^2Z`Uik{k^;C{0bGnUBCX+ zbbh5eZ(qOSS=Isj{;Smajq3BVrt_=SaXWv0*L41Pb>1$&w0a@g@t>g1+xhrEP3P@+ zx2bS*w>-3(=0>PM3Y3V$*s1 zIy;^lo6g($`V{q?Pf;&aJAS)da_amu)p_-rnzL0MA6K8dnyx=x9p9-wf7f*W40YU& zKleQAfPMc#b^c)W`89Q3z2@f_>bOeQoI9JY&#UwHd*qMmyn2n#8Era$m>Lk+@mJOP z#p?68rt=f(xcz)DSLf~c&sXQ|=XR6&P1k>@DSkB^oD)>xZfLq*9qxW~bD*08 z-5lsR2Xs2zC3ND8WV}!3l~z~&hw<5;;J5G{_%vJz7r0##7cZ&*g>S-F zL1c|L!8uTX6lm})c!+e}44;B4;SzWSNO~7S_ph4+-5luVKsN`vInd34ZVpT>2Q=4T zk3Ke5EM#?a9pjEtE;v*!4;77Iwp`RR<%(V_S0;jmQms-bRSVgpw^hrfo&oLbIrS)d za(Yc~IA)*iDUa92#%onhZc!JUJKwodon4*dbWbuB2_+3Z5{PF~p+GFjH$9vQ2SV{! zDw&9960vx^r+#U{yl7)KR>&nb?^=^uvazQgvFje1)-!ArhK6h0BN9qD5pX=CSB=5( zNET&s;$2m1TX<)6dlYHc7DN`?AearT(`L0Bhkqee|{N_mg5%gByPP7Y?v<0ZLi z!hWottWhiu)+WXbxnZ`PGgRzWgw8Xc?mS~pF0U=r#&W@mq2~s()g67kxk_P&(Z6;= zTV{S)DrKadSgsiv7O+;WrKg&?^ptm0~?P-i+YtMZ1GGkC(vv5;o+?W?65w6GUsTsSZ0PR$m4{6nBrxdF-o_5rgO{Alw zkD4W1t>p;qI_FfJ&KpHMZWsw8n+l}Eu|yzdWb%P*ByR*Vu}mnD$wu{fHdcS;9@Qw; zos>CcV_`{PD8ABld#8e#3F)NrJDD-vx*xL(ej0V(tZ&tkqM=txL7EyXuB&#H8#VOO zV0HVrP8AYG95bkwrJ6qEoY%A2@rs_E7_4T?6=S|ORxz@L zsx)79fF_Y2HxG>JJi@N|R5Phx_W69+`sONxh6gVeN+e)#l-6FfpMH&bY=bdWF{%=^ ztL;#I8ZI}l8>|{d!(3)=$55;2h0JDdYUa0VO;hr@pGGoJHCxDqadx4|o+1d@gk=>Bzc zpqm5T9O&jiHwU^o(9MBv4s>&1Z^!`=+IvbFByEJC!O=pgTtO}lxsUSO6!w%@V2k-Z zJB*5mIGpZ@2E&nH#E}ffCWb~4#;SuwbS4sC51V3T6K&LyS-B_j7g5v(ja{N^u)r$+KUVxY2spPZ=DWaAJ1LIQ4`?>teAj>Z>PrE;O|} zqXiL6P0^3kS;Bu$Q7;XRivU_E<;%`t=SGh5z|IPFFXuYRr{+ZD3J8Jv#Gw5&>#e=W zQLT^X8Zjy*qc~4JT95U!I%Z@&ZqC-`!5xUdnW88#YUo7l+mBVsJB*TEveY`KTjE-S zR-jqZQ(>HnP*)1sYM&0p%5XG$+9^9Sp=H$_CpeX-GqEzA>PW6cD`khXpN;xHR;&f9 z!{wcQq6e!Nxg4$)YDJ^3cZpunR#x<}VXd6kHkfLGW~G^go48{<7|Z9&(FHLAZCmroKj8Uk6>sqxIvl`qy~Pvn1DTXd0hkjVe`I_59$H)qa!;9MxdMmQGkB=AjeDQty#a4&A>y2f>!D5saz=$%!&`f_Y*DXP`7Uboe1(48C*lSD=CgRlE17w&fA(sc^!-hb@78R) z3M1$|hqMnp$G_UyUQv4;oAf#4MaDc!(S8=pNgU%Bk^4z9W%S_`$8LR?(Lyd)G^Y4G z1Lab2B2dl;|58Q%3m@@+w`u*0Wt<&;*)NhQe#;%PmW$VO9vh@R2| zu{28YbUYRbWQ}+>7Yk>SseH&)t;{K#0N2UP1}amd;#0p`iovY&{lm4a8 z9jughR^?zal#HoE`GQf*nFqH>7)^@8igv5Kq{l}~RxHvnsCeY`)*jyLD8*|9!@StJ zN>1hEiLJ|+<=~a!y3l;K@zKHYQepeJF=)Mc8lK6%dsQDD;}s_7)T7yF!c6T^j-ha( zA!3O-8VZC%oC+mdPKA?!P*|?wl$}OqlFWRtW3C#bdWn{1&eB*ZXo!cj8P#m1FedYK z_IW!pdJ>7}Tot2}C5;&=9kDCUPBRjfd`9YEYLBNYlcpWH4ms<0DWg@)C9B?d%jvA{dRuL&;P$9gWA6sm4sJmkMW7p-4lHj;d0L zq=+J&P9_@8dX`E&7K%26@+*~CG8zoILTXwp9S`!Lp|JZQG%d-^BjH3M`UsW_L!enN zmPjz23dO^TP&kzcCmJf^)}DH?M8dI9DDBE9PFls1NXLToFpc>|kL%S~Sb@-3?taCR z2n8eQc+z!0O^ZZ=iDWV!aThFYB|!qB(PZKgESIIla&}YV~Ma|gNX+tjUAkKsic#Qp?pgv8V$zj!5Ug11rrMg!_Zlu0Z` zXO@a2cqKO!nP;n!pbeq?T1_OKj;F)X#(PS~6-&k9&2JyN*<>=7B=Bx68HpV6|6In- zBLBzAZa|Ah z#&#XkB3mIbS>e&X76-Js;dCOoEYc>NQg9AvrEI)}0d1_zaz&%kCPqsM z5vb_7!gzH+i-(SwH1MQ%&*<5ap$bdsa)_I#;7Hl>)QZrG<-So{ODvUqD%t^W5!x>U z+bBJT^f4rg_PKB8Y90lAXOC!!(B2P;4DYX^@k_yi{>*r-RxbI8{{7V*Lq6xY-thFs~p`=U1>$(I>eJ$O&!NXt5;PGFhz3TGgF9 zcLsMxgXPLlzl>xhv(SB5ZI4iq*cf7=wxeL|TvFb}fshtRCqkN{Q%#7|TCFx~>jdrE zV>L-Xb)elZpo9~hIS;Yan$SU+Rj6u?GQ?cdS<=jAtFzQ?hoPC;!k|d`t(p>vc7auO z92KHl*CTC-q?b!s7B-J?S2c~ask~Y`2I~$irtM6jgcjZBDNNmzt;2Lbz|@pYDvP~i zvyzDh#j|EC==al{q1_dItLIhZUVly0iauw}^A+EdoUY{-B@+pT2aH)lMCPyBvjT_1 zK?ZKANV1c#$zVL0Os1oqg^k72sd%Kbu*p~!8B)5nnNyKB}SSLvgClO*3sYHiG!tgzv>@eO` zG=c`Vljo&cgd)*!Ct*XeDHMq$YPS_hA{AjoA5L{#B9O zO$FnLR4mnD*k~k~>a3MSr%)tP#=EUZ;%JPLkxpAlBp3?E($R2dSr4w7ddLK4#Jx1uzEO=|7FhqWRXpg|5qsi_4~;AAA?Ka6(IJWUI5o3 z=U)g#kbMC2;9+F^d*R#gcF4jp&;w5cS=;|E*Z{JI|1RYFFTwla&9EI-!grAEFNd{| zhQA@#zY0!;e<8?<^CS|A{@y%T;?2|v&fdpoJQE;DZ*XKbGx*8RlhDa)g6rBPNOw39{q{pD1% z(YR#Qv=&_z&jwIFYfN%#!8HFwc7$WukjAlKTH~h{8Rmc)M2iIESRk@Fo<+(HhWQ!b zXCQLc+O!rBjM)A$C(~W_3c=^1h$1$XTz74N_KQyDU9bQ^;imb{M8EQTvaexbe1+SHYhS5-Dg zW{2xL&PV%8&R%9o=%A$qGTr4Yk^`1n2t}~9<9R{9zNpu`{#uo=p~$6zNLH>Xj2PO^ zVYU`el*hHIVH~S%X4xy-iCGlcs~znXq1Q3H_bKGHz85=XH;*l%wed=+Z5i2@cJjGp z#F#jJzIOJx?JJL_dDKd4y)Uh0M|s3pFBD-N7V=iL$wR7)v@5i>aPq*a z9=aPEtA#2P8#$51sz6`w+>SMHZ8B4@PL#4*UZqVQRMdZssy=dXp10n*T{7Ie-GeG8 z*)hzn-NnUXc_+KmkJWlJm<$-{)dsX)QH8c^8<4e$Mt`}1#R8|-uXI%b)0IlXodOLraBM~74HBB0Lo*5>ad<;33q60 zmlg&lM6}9KM(+#F*VO;P=)88#DpTI2B4NXWiY2N(n_~*c+s4#7Jrs+^mc*C(rezD= z(WtR7r&mT!*IG(&z#NrNtx~snC9CXR7Fix$;r~b)YsOnCzYYaB!3b?$z99PdL)oaXhoijy?NoR@2^jwbRr?fxoKPyW`{znv^Qxtg? z`QNtl`gLUei$UxFtcEy>@Z^--C!+YQjupXWYwcCJnAwxEp<)I(x(Cx4 zn^`(%`lK_J#KBgAkPvhtcOL|6+KwaH80@*K5vyVnj*2MBK)GL zC%mqLrH0E^q?$2cKTEsOtmYE9+Qs3iGx4rEzV+0dPnJNUW?bZi)iC`M+9X9Z3b~EK zfhj|n0UG4j#z5^P2)|NkoE`FeQm-OuR{&GY!%jqrx**{@D(qMP?7}ChF=gSWcTrw3DY@SJ}_bHIpbOOP!@FMsovV8?kg)|%h z??JXVK-Tm>ggk#I+zKCt*TZ(mzzX;ca{WaRgC8N!zYONW)8Rqn_}k$FZ~>eN;=?Th zN5KB@TV(n#z-Qs3@Gdw9MBWd>Jm`VL;c@Uw;w2Bd=%aZ+h7B%gn96L^6!`M|KMxzX^=cEL-((n19lG7^*<~O**h#o$0A0Kovqn` zZiMoISTvUm=*dhj5Kd(>(PS=f8u z`fOyh7vNf7&5Z%(S8G3k`PJHnz*l?s0=M>xn%t?cIJd4eSE`#|tp)DpS8H9o`PEuZ z&sTdDzE9NTYRFkRO>o)IFAGo2uhv3sD?W35xB1mtSIk$UHdmATL``YbR{)#wSu2Ol zuhxR&#`sb}Yk4zA?N!k}QB#Wbm8@ob)(TiFYIEVN`PEu)Yksws>GIWH-Rl!Ihpj*9 zpVU_|$DzK85eW5_#<|n_YOWpCG^Z=16t}jNqh<1iez73t>KbjnxLU3iBWoj_1yXbD z`#GmvCmY)xEvx0e9CM;-2`w?TnPrzdo;$D4Pw2KDXqJ~T)TN3g=H|WGThP$Sx;C|- zq3!wwv^-ktQ~IxC=fxPyu17773wB_G&WT-V_}a$ktAUcV$fA!jZa++O`hC62#dx8X!#xJZ;!KYU ztPZPM%Osb|qTA{KqYE=|yV`dy*VeMbTAvltKaZ{K)U@7)dvJ>mS3g;6R;=}#yvjRX z3gut4waP@h$8B3YjV0en*?2@}D?vz(*kU|J)B5|hO=WRXfHB6JHp=LrfJ&1skgSBR ziu($W{=>>x-*rSRchk_lo9q89R_rsY}nOZ)s6Wzp-k>GaHWiu^wp z;p8tOpdkMTm7sDp^7MtE!v>Ib_H*H8P)?DZtig#m*J$r9#T9#MMDXEKE<+nAQjQGfkX%!Z_z|N zoQ-0B$kXn@)XWY%I&EBbO*3{)Gh#!uZfUM-nvp*4Y}+nZqaD+(X~wQ;M)M8mZZKWb zjHWWtr^$5f|LryQ|6Yu+Ec@Es>;M0k`Th^W|3C?jhZlnF3-B`50E~k80hE0J2g7}= z0k|Gs4`)IYo(=!UI)ER*hv8))b^wlqf3hY(YysQ~SHWvwJuHCz;AN}{I0Akr>j9ty z=dl(b3ripfhroU4C2oOB;e05B?u0;-Xw5(IpR97;owUW*jbaw5LlJiPS z-L*&BwMW{uN7{is(oU3rel}v5HIseJU3;XROoQ!HHb(agoXr0tYR_4Uj4JZ~DkY=-09k(!0&o|y{ny}?@GN)$nf`wu z3H!kxk>#&|L*Oe!_EuO6e@Aw|2F4%>hr_>+;qQh!;ImMMKO@862(N$=JQYNym-YTf z!c*Xn$n4*RTi`0#0joe{`TLODMULME%OC*H1=-90Nq7aE2#3Khkk>x~7sL4=cKn|Q ze?xBnI$Q1&FydaABRWOhA9xsm$s=i;(^>CA@D_VBmO)B6w z?7VC1#KUV_t9LXo zpN!=aF`ZphM$S*vY%oXKNkm<9q)xFbm6&5v(Xx8#wvyO2N7^+<+BHY&XMbo)3$|2eYGl$>m=3UWadKO%T?3`%ioa^vF*&#gOQdU{w4;jK zHBj1iX{It&*ELY;v+Po{Y@K!ul;#6n1Epe9xoe=bV*{lk|07nLd+SC1zd(tt;`{F{ zPzBKgEQelrD*PMS{}*sEtc3qV=D!wX&A+Voe-iu)S^p>S1$aBW0bU7WAMgy=4C`Pu z1mRHl54wO~z?~re0Y3q+hs~hD_t6V{6TSkUhxfy4paw666G8k2_QGFD)GhE{cqd#8 zZ-gprh9z(W91aJ--_Rpm51U{OEQe#^C2#=z1$~0(7`_SDgV-Sy{{muvQ1%(f+JwvD z5|F(HuZ0qv1PkFP_&;6)48a*7>mTAEHW%iD z`De)or_ZtFgq~9dYq)z0;vQzqux(vE()PN-F}L-O2J2oP2D|#gv2c987IRrKlhpYe zG3pUzDTa;Cc5=b~)??WptGcWnx$dscuFi3~Cl!z9qcI~Jh^520urtE>KsKET2NL;I zlD)~{NH`R-^OJ`um=|S6Yqexz!}wBTVx`MMiR&H&&FEEQ5Nk7X7u!o1o|W|CaJgC= zNQF|Nepke%*&Bj7NpKrRQwdad)Uf3}m@SW&Y6P!m@igqlQD-XHhT6+2O>|0?CZ33= z_k5*EruBR>k_|+SBsC|K$_6reBo&CoBY8cQ(WBX1!d13brAeogr!5~UWR{+`dfg*j zX`C#cUZtU<8LU!~aTm5wGrv@Vrc|6SS4R7+p2*dTrEijY)^bh0P?IyIs(qb=n%A%+ zrpJn&`>ZXL*6O=9%55usO@Z>2@~BoFFZbBwcZVA;ee>z36@QM-n8 zXdyBju^YzpN=-6%zGjuqd~L!i6Z4Ds2^EV>QbzI?8N@GRq1JZ_C+BO{fx=nF!cZ_W zU!%Bk<F!~2(d^3YLz~tv*;%t6yVD97nn8}) z=18$|sIRE#qedSsbDaH)!Ny)7m&Y?0FGDfOx)8&r>Z`k+sSC;IjeIQ{tF4Ios#LX_ zF*LETcht~JEc9>-sXYySgcXI|IW$Dmc-35O6$ODsveAOopX|_!4ikl$he3S~acPifyPMR&+g<@zRd%nAWYzdPRm6Q;ec^Y`L^!cD~85eLjMLFz0s;AKH+ARU)kC|D=p6DF&i1Uv*Y3rP9xzH;S z{-GaP)1)H*rx5OPBI6>G5#9^$gp1*gP=+nA2;wjo9tZzKXYglu5WWkahAZI$I13Ee z2y@}zqA!5o!vpY5_&B@^UJIwdaS#Vtvv3#sgYUuT;WKa*yc%S$gXkK>zrkJT5WWN- zgY#e=B%lZWhVJ02AU+M=0-GTXbKs}w39f^8fanrVhsE$b_#OHH(I0#o-T-I9Qs{*_ z@ICYZp8>JIScMfZ4-SG~Q6FxC%i(;G`jLg{{5kE${DPHU(;Kyq%X7|V%DD-jv(i{< z72lJb#&Tl>gUzv6G?A=tb7^`6>*s>n@S=Ehx^@FQdX#u7MQ<;E9Xv}S9ZC>v*f)6? z+VelxLB1r@!Kgfq+@-yNOEM;wl>FOm4-<~0gRw*`o$lmeqOnkFcRoxco}5C?L{if& zrUmWlwj>Zkg3~YI;YFRAken9Niy;`WOW+RmG4NPaDk-#jKTU-Y;sbDl#aNz)mD_x=N~m%DT) zZMK4Fns`z#phU2<5|@g;OCQ}&B0V9pERVDsA7-?WL)Mt$^UR7lM_K;fTHSr^Db9-O zHI$0w((y}yyRfY+h2YD4a{@W!#Ta%)#DKHe^fPIUz{@n>7a3gL_R+IO zu{c9ELK69>R&sLd8I2%vL(%FEK;dLUD3MT@| zY&LDAq9G#|3b$05rN;3iCm)}VEG=x$`Mx9eOqFpmc=9SE@;~CI<)a??f1?uczJP51 zNsxU2V<7hbUIPC?hQAZ8fy?2|Fa{#$&xam(E*t>AM|Qs-?uH-1t?(Xr1Dpk`Ap*Vd zWcU{H`)%+^xEd~o2{<19hKw$20^S14KE_uqO9o|yo#W?_6vxo45l~+ zw2)5#yqr|>#q!PpZJ6PnQSu39S$P}K0{+ir8v*kVfgg=A#04W;>m$&7S&LHt$8UjV z<3;BB6|R#{zbkCFtlmkUTODB~P{}go9Vp<=PQ0~^^ZFbKSXmGV>?l;n^lzJWWc@Ce$ zvR}OMsR|SbUSU)8s;Q(;4Q#ziEq}ycwv*N&Gl5oG=c^1rY#TK=lrsX%>@qNAu|m#1 zxoym>47hvYB>$LMhXcQz!+0^DH_tn(q|}>}P`B*idYJk_uScq%bv;c{pJ2I&6+ARw zn;Q;?r}7x4U|TK)azc@Q1vo+jvVnX^Oi^PD&cyuPq*St(g2#DVo%n)Niv99w{gtK z7V?Fxs%}!xP*n|^ivfHqns?=EPAK!kH6s@&;v%XThz@XvN=e?IMkT{kY=_mSA(99^ zUnZK%&@KE=i`Q-8}-R^(@xQJ@>6s# z1KLnUpXl)MrO^&(W^?knqWuH2pn8;Uz23ZJm5AA)i_*uZ9w<949St{juf{K@>)A*q zi=Ho*3L(vfqk)tWLYfOFGc2MD=k-LqMVi~bWcZ}?s?4ctS4aJ&IY;A{3eB;HhvzwItmhff%qfrgT28cS z0~%elUQ5L4#i_zF&1Zdc<_5i912O?8!RoViUZG@WOhQGR=`^oUGG!&9>hoM)q2kOX znQ=K2P%WXRwrIgxXRshsS+oFunMQHZg3KZ-Zx-}t7TNi;px-*#Ge_kA6Oc_mA~GuS z{{|6M`TH%h{tw|&*bE~3%Uu5*Z~>IyGVI0nc zHDJ%X{~X!<5_lMy{Tpy8oC&huKM8+FcE1NMhqK@m_$RWwti}HVTnpoH5{Rw9e<0I; z99|6-I0Ie`|3=3D4%`GEgqOm6kahNd7g--GKMI$^g&=d}5qKC` z|4#S_yd2VSFg!p$eh)qelBXYrS^ATDQvdUGfZI}e=#6}&GbOSz!pZY;2pgk5uLe7u zIs4ZxVDnhi5k#yNvT8VA59KFwnX`=n#In&UBLyTjqvG>u`J%BakSmCy!PJp3reFb| zPhiKgpj_n{#^Y7R{FLYmss>9Ti=7J}GBhG^>!SMlmmaHpR%& z-b&3guz#^MrlP1K> zv3i*4c01d~k!U zP!OU24SPO=vpYUhuGPw;Ok$&aMde(``RW$~p86-hZr#>(hkW}4C+D~JZ0+%U$jLLx z>d>azi_u@Nw|m6h-DA7zYrT$Jb*+7sb6v<@6XxLuv{E@>ef7+(2A3pN_EK1d%GNT! zUfFdEg!~~cu;%##2%EVAt)kB|W8A3K_16ipsD6qU_|+atC|A*UsvKeqkiDYDd_s*K zA3W(u{r&2volx&TdF^?(sfIVcr|C4WSEy&eDZIv=KB81Ed3SXFRo~2h*?knq^G=r{ z^iJ6n9;aS0C+U2h=Ps0_rUa}}&5POS!1gD-YL~r1ai~xm9?!7rVzj@S zEsPXuj7s%NsqqI}A=m@a9|gCy`yQj6d!~2PG@5PW zV-pPMdaK%*CAP`&+B(Y!7FpYKrnwu+{|0`s`qx8evTerI&(#f?^9a*@rQ4#5{Ync3 zW4>YzD*ga{q&bILpK$W&SM6ESkY+~7zj6AL_R-5k0xw_QsyV$nEIpWB>1$S%N+a^_ z0{!#diY~B|x-&+!XM5EJuVdEGUF81?0_s;pPDTD-r-apaAn$L5|3kii8=MCtFc+Q< zvVMOD91Zs(=gZvvjqoN|3%&4o_&Kuv4Iu09hd|cd&x2>dZOHwvgB-{l{&V2x$o#f% z0G;ng!L#6T@O5N=SwCNebub_Hho2$$-w5LO@1?L5{)x>0LwFsCuYe3ZA09&9zXN36 zU-sSifXx5@6IuTw@M<^)j)X(u!^rwC1DX2|f$W|CJ97R#FbZM^Fbpq%ACrfYkGIX9 z%-^Bvpsp5>Z=R|F8RHbj45?xLOHDy}lf4O+8Lp;LkM|Uve=TadziBzn8bxpIx#yBw zJ0H$DQ}ng+&=4;Hy3s+lotJ8ra&ds!#O#QXdzq=b61m(R$UGR(D>BB-7%~Gq)uzyr zi29ldeY{ro?F)7VCLi05>bnB=!ih*Ir&m*mGf1ek zrfDqna3nezyN{zwV<$DQDc@>b87iqVF+%#IHM`|a1ota*PX6vQarZ15dGJgHBHRKJbS%9`(i8%+?wtA`37|>*NaJ|py zz>48hQr3%{beq!kSf` z^*6GVPii-7mz=okj}g>X*R(>_)G6$&$atp2`bC5A6;Vu}=0NY@l?@){&@xi;&VH}h zC=y$cFs-Y!2ou)kL9I_IV&?fI+AD7FcXL2nUSD;z6E9az7LZS6GK;APr(>`t+ALE# z(ovj=oZyttnU+^iuUiKuOVxN)v^eCyGL~W{o-`s*nLU!NcQPNq>kh1N&W@OhAsOFi z^^z!x40E(^b_Ww^o2l4+m2Oi|28{q>WdVqf;>;DK|2Rk4G_aNhc z9%?WMC&0tV_+Nl?pdX$GPlV4S-*1B`{1Tb|J8(0|od2`oZe;qm!pmSAEQSF58JYez zcsFbZ@d+4(7s1bw>pu%u!5bk1^Wb6R`cHw#`eH+`9}a|DknOJq@eL?`0cD>5e&qV^ z!Yv>+^0q<>enWnJAHD!*gXG^S;QX}=_9((>jzFD)RZ`4=IUwk~#rjOr)_azAGiOb5 zOvJA9)nwjz_mMN|s$tvmu%` zk2=~6P^L8GQ99U;WLJA5h^bs<`qD?aT374()nRjMKwcj$6q&AN$z!=Xre~)*ALA6N zcLSvwFSp-jb+y}!D|CkgPyaS(j;+kuZw#`{!V(a3KFC&ig?+UOuK98I9Fotd(=4E! zhOF^sL2J3_z1l+KbtoG>W>}EcXw&+)ZANFL78Ftfg2vU#$gv&k6m8ajo#)mgT5+Dge7JE%{! z_pbo;cX~&2EYoPUOGU-cysKt`?kqRI>~9hbZ4n`iv0h4gx0FauFU_hR|4#(k^8Rz(E|*?k?Do2VX`P@OntXe~|s}f;YiN=!HY!Kgj;q z!Z~mX#6Z^n{{q?nbMQ{s1?ylQJORFe4nWrak3#@{hU|Ykh|TpgFGuxU^O9o#3>5DvT$Zqe3y87SAS*#{JH>M`5QSoUnzoR zf2ItUMa5ekmX#y6zD$gt%b7wcU)E%n&!>`2;RR{x8*&EQqFJ0TRvmnk)pq$peTX-C z*VFOX*tfY(Ha7MyfkyGxQ*=<%DdrHSu0v6Mcn7h13J}x1PCbnCPHBAp>BhS6)(yL7 zRim_awZjhT(>}cOuAS0)8WqEeZVEM`%>~U>p>2(96Aul?Rx9{q%@nFfo3~QKXe8|0 zC3HHT3D0A}t$NS<^zoB*3Hks=g4iyQ^DcXPaN^l3=mRp6YkT1oido&t^NQKYeY^In zhBB@EZ;7Lm60k4wsarB4k=1EDm$g^b@73=4QgSbq_sXZb87|+Y6^BPh5vTi z`U|h!>#QEiuMJE=!>yTnWSr%v{?BH{X>Am$vQ+?=H$IIfo;Q;b-AWzl2+p_ z(X?wWp0(b)WqAhmDtMayQp>W1r6rN^)7G8>wuxnaerwOMeCu3uLTnq=W?yqe)Ho$? z4ZZq|;83vn9#dH#F(Yk7L+5JiDn$N24DmFF%qsH#S|zIf1bP1}AT|KEf!F|eF8m#N z|2yy@5FJ1ao&vu@-oFhlg>ewOe)l2oe;aNBvDbexh>iZQA@6?*u7Go40GACqXZ~0G@$EJ|&V!XUmb1wHsq+O*I>4 z;^s&tp9U^Tw_I*13okCisknP$%SXXV_T=W8_ps>~$C{0_mdQ-NtYM1U&rG#kKUJG4 z<_lnvm?PH;ISkaJk`rx(ITLQ$j&vEUH}{=b<^;|2*sV7&%wm9`YF%rNLmIYZN+2rV zqSgmr&@aca(z3dw>Duwuem%`7?I={rrBU|W(kHMHhQ((UqcSdq$DEkhkCyF)BIcWt z{i;oC*ARfHs$62VZ&3$S*wtcKJ89--N-;X4Owvf^y7I`$U$WL( zWZsgEvP;(^cOAjjp6D`5#NI9>7nrjL?wff`VBxv1#SSQsVi&)26TA4uz7VBr?m=$Wo>{c8v9Jb46O9yVF~L z1Y4i%#6m48@|-BX#L6Odij-h`W5}p+bPyw9r4cC+&hp#dpxeAjwm%$<_tS-pvz4@e z$Y8w)@0MJ@?F}#Q{y34SxXcW0sd4V&QR+%3<0fgq{nYP8%43wO@#Z1xyZtth&Po3K ztn$Sy;;XQ5R2u$4nspj&LOQl-+qJcNi}Y)=yIH9b_D{j2 z8jTKXsJCXrt7=l@ri!7y2Gr6*2hF}%MKz#5$4IXBlzyt7e_z{RtzU$$gApZEafezx6ZvYMfu`~EB_$r9K!4JS| zL2M450^+A{0Qz8m_%-Vc-UvrQ4~WfyXTkrm&Om(i-455ldqMUj$XbMB;ZAfFSHjtF zEIbwVgMXuwcnI!-&w=or!fz=*u}Sc4xD7r8uL3F8?XdU!*&_rcrMVpH zm;<9G%c5diOCNRl)8MiahCjt|PPK+jjf(4>ywr%Jaec!;suYu);8&&th%8#ix2>$VchMjH|IvcpR^ z_nE>TuG+;6;OO8GrwCF1!6F6L3W&O3q1LNs**>agCwk{=rNM3GOqGLyu)8|dFXYtO zy-RxswuFNCYY3l?H*;gGS}2xF=CKe5%`@2Gk#i$PrDPO2)mtqLjg||!-qRc3hCSAU z5-o}7Yt@u04`(GgJ$p{gLc2~fcIJ{Ny>wG;`&7#+X1hz8+?!8JSvB|{H&Z@{(M`)> zs_lr}U5xg#(Qq0rt?n4LgOe|=sy}UAX*qd9x{_Re%1bwFJITIlr?odagB-!lTO=rj z>)f;h$8IZk)z+R>9109=h^%+6Lw~M|*GRf}=fyKU$8KXZj9TB;o)uwjBdx?3*xJKh z2Rwq<_o6uLFdK|4Q*&kr4Bzs#dA7g~xU^i#vkewC_gWoA|E__pTT2ozdJXHi--YXm zmpN}1^+<43iq52unxXY?k18+;8V-ljiC8om zNu?vK6mvBr6;|64jzzUZIClE!UMIK26PPhir#w!!mUi>BY)`#hx?B=Rcxpwh#F*K7V zC!+Caj9{@?GUAaPW+~&9F_B7zqY1nPM|p}^syRwi+fOUpGRL}s{Hq3ej+4bn#*qvd zT~FyW=g!BGiBN`Q;8h?M&c^UEh;PwsCKC!IlbLirpEFXabf{i2)HpJ?ybw$8sx4nv zD;ciaH;yCsh|9Q0#4e-hykx>MtCT#YcA6qa4}f4e+Ny!Onvj*eVgjY zh{XCfwTK!j817T;?v3c2AA|TTp%3iz*&3s)cY#Fd{Fuo@I^84@+TUjqpV^xdSL4j` zn1RDmH0wi#=Pa?ANRj^!MK~OgxohPAWlB(7h1}n(Dd?NfAdH;uSHEaa2{r^W~ z`>P-WJ#Y{5{FSf?o(*>*yI%$((=Ubtpoq+VKl1n%=!Iv%oygi3!Jm<#N8o43%vZyk z;T#x-8e`@G{s2eefjs0dn(u;5^t0agg-@zeP^|I$Q_ufh>qGzuzMt ze*xYGYeDw+zXX0up1chtZ_<)K4S)5%#_Vs*pZl~W&j=<)O>_6O8f)sab8S}R7~9Gk z930kFelt@HKB_HwI{7{`OP($D(N+Tc8XK&yZ?_kt_^79yh4FR2-~-8R!2GKuG{!*5ZOM`rvSK3$8igTJnK$+1A!yJSmm*!3>yWC<_k zX2a9<7qzp&Z^-3T)Ovf{*8G{9!qaN~68kt#R+}nb*SjQ{?vdS%3pl#oCGAyE&gv6C z{|&7**Pb`GS8#N_OIGS@38s;svUY3V^)Bf(+?a-U$)**kP3k{(jNqMuxr}O1zVsnT z&v80eY4H8y)k;4OzVu>$v5@J<1;cQ;6b*($tO&!u6Go**5X!6edO2B1XB6v-`F_62 ztV(cfVgQvP4pUFY1KCThdk(M@%Md%0qhjJ*SwpoJF^l%4scVz7Mx%;Wq1AhQ2m@F{pRjKPucdgT7C zFc1ESyf6O$z6!5`3IyRP@Bn&%*Fqjnf`za@`~rQzXW%t(9LW6rX z5PJaP6X1L33f>N~U*J3F2W|w}BX9;B590st6Xc`hrO}`-aMup=h2WU?bXw>>Vmj0j zR_jY8J0Ib*=EXKm*)<)y&zlZys?-fSQ|p|kBMKjR&Q|f*d;I*&9NXa@gZ?O;w)bf9 zN9iO;ru+97`$y#H|!zW}d>lVLF&0`DL{B~MMeiYia-52s5s zztAsEzWv8zUQKl!bp^t1v6;!EEq$z-CUv?rbF-+u`E0jjvzPGfGZO7=fZ3!Lx6OUD zRK3}ne#8JYh^%PXV!IU+3!{5 zJ-WG$>XNE`&G}1V&3Nq5S#xWc(3^poPmc`nPn+E%&Bkhv&XU>GtIQywZLLE3uP@o{ zPA#22->WX|xs2|(K3M^M_J&TYHhFGM_iC&@z2u&+Nv6cHmpip=Tdz9Ka^82F_64Vw z5zEhl7-)01BbQYZ%ML=>o-OIe-47FZU6ryC8UbozjwoH z;mPnTWc+u+tDpjN;Q{3P_rhja3<3BR^8K6PGXWjGC1zya_x@$!!K)Avc+gInvIrp4T9jZqO;-N3WaA#yo0#E%^&?ZF@N~ zZp~xbO=e@BsyCs3X8QIn7{E1Ol3h2Mjs3EjmF=3dhXC9#`Qu*}9b4v~(QCUwb=qzm zHcP|I`o>SUs!QGw`+}QHk^d3X9sB?G`v2RJ`LBYPK?r__yf420z6@`H)8K{hFf#wg zp$wxmJbwaYuK!2K`yYT;zySOfIp1FI|37?}_5MBZb7cHG;IkmI z{}xyQ5%>+V{trO>|LuVFFb_oj|1|s$48d{`e*k|&?*Ak-`vPc@ak}6 zzakzEapKFys~X18)qccwQ>1NQK;AiFj}2!vE4t1weeD@^one{{lpd<%HJDvzm|bU> z(s`M309~T8C8YZBw%wW)##2m~?sZBuX;vZ5@M*kWs6Ou-b8$k4X4~5=#;d<{ybZ5( zYHP_>KHJ;n{bHM3PwibIDq}r0v~Dr6!-_HG8qwy0=Bm)P4z!7ftg)2`J}UevRF5`A z-Y|}smNUkt7&>vq*mg`ZiCaH=aN=3`?Y#S`3#Z=jJ+GLZ+;3_q)5`yrI65f-`y!vZ zHOtO0MgD&t^8bfr-k<&dFO*OIev8ciLwGA}ha=!Vik}h6vn;y#GNs8}hIL zo&@(J^IrxRg4p<%z5maHUm}lBz>DD!^k#m(|`;mRvJijA%JMir#O}CdYh2X^Wo~?`mBHG|?NMSrMeU@@o+aPy zg&CVhVaheLRhX8)GbzEn$;BB4(StnGq|VIDnpgKKmdIazq4AdW* zZ=Lk%UFVFr-)nk{nOj!rd>W0GdURxa+si33js8ronce=(>ebwXn7yidYqCfcbU)~% zeV#k8<9BgyaNg*Cuqllhn>#3X4`Ova`$We_Vbmsyc$<~BYN?irgZXsTS%3U3Zdrh|}!BuGzJmp@m7m!Z^AGNBY4s)|zHa>Qh zE*)lGTjh&?CA8Q7KZE&ek^d)@?0q%zeh#8a_CJizhmiGu3ZH@x!IdC(0Lrimj)OFa zkHEv=U+4gS1z(3Rz%?ND0k*-hkc1G3pTMWXpG8jqcfdR0O;CX(1mXE`2>crz!Y|-T zcne$zIXE6Pcs3ja|6)DCPvQIUE%+K-3vYsRU=TKg*cj-CKeNu@lW;bqKzs#W0!u+` z3Va4+ufYf5Js`FQ3veG$!U70`l=q?F z@n^r>l#`O$>S8vqbLsNb@zou^PD&hScd5`E`+8oQo%k-X9gh$kWvHHUyHoOVv1IHr zvg2ZkX)s$JFVzSh4cl={!+DAAF3IufWBFc+xc!sZVU#N$31K-Zi8Og0vI8!)osjtX zUh=zeJ@I<@Uh)g>_~?;Gvh`7Zfg5};`3G`*FZl&&@V(R=Xs*`I_mbryen_0dStd?h z9aF0(v8g*_O5>g=5=w?cp?Er+42z#4S9PR@sS?DeP{?&_tH$DkJ{-aAkGJb3oH0%enwEhrS4+;zI`bM1;vzf&;1?Upv2x@qS`u9_d)ma&^;r%oT!c5Ksl$y+We|W`>)8?p9it$w;lT6b;#NK!A@l8#c&in3mylup8qO%1IXHewJ;x^ z15bc2AUnSY$}j+j!QYUTzXjKV$j@TS|3nyohmn_WfLFt55QO`YhrbKAfXK^1_#XKp zc{3sTGpm1%mB6YM)v~tJ(DWjoCBw*>t>erW7e>d*m6~3voyoF!ygSs&T82=WqWQJF zgP}qp$M<2w)rjoqt%&z&$ArabuK!WB!&M)WY`g*e=bQl+$+TmA+O7#k4TtJWt4=fb;?Yy)UGP(H@1wR;qzV?pl` zcT5=FiyRY1XIzbaW^r0wR27hg2ei3e$Am5Z;pT>MazD?nrnly#IYWkTBYdam2wg58 zbk0_sp@134Tvuy5rn4N@W%05U$m1hv$aFz%pTuh&~xJh`gBj>220a)4Glc?V*a7r@Z>4ud9UX2d&bwi_$9R z`dRyU*D;~y>58Ydfi=#acO4Vjs|1{7mtDt%aUU2W=G^Vx(RP3Pl*OdOS5EEY2YdOQ*dq%xUoK9x#m zjBu=Hj>!Lr&vP z(BN+5{yX5+kcGu?4|;&l!H3}zI0FXY=^#D;FNHDK0xRJua6kHi8{mELCO8hB1%E|H za5vlm=fFA$!gFDN_za1BJBU4i67<9K;g{$MM0ap8Yy+_g@K5vu--VmuYPcBY!ynNR zyb;6(z%$^#=m$Ov?}Y+91wKbU?gYtCUGh|wl2uk{|9nP`^_Nz=#ZC24eq*M6*0G=? zY}WT4bUs37bx_x_;5e!wy_D0sjs@+;Mss81vYyM~tCbCpc}(|*ef1}HxW}MlL8t9K zS{w^H32N9-HBc@UCj!~wLNPZmpy#ph+j$S;(`_qNRy=fs&zQ(GOCG2i#ryz9K8#&~ zYE7@yJOg{EZq%05##HQ6js<;6VjpxY=$(=o*PxE=D%9WoGaDi7O^yXy@^r@8`6zWP z*pg9Q$AZpFo_D;fZFC(AO2#~j91A*C-_+|?j4>=M;Vf8+e8#;+$DOa^KH$;jSWx7D zMEE%+kyTm$Z~Omy5V`-0a2}irF*p={OW?17?EfEwEwBuDs#^GpqGTegve>GeTYhfPz8`=LWa20HV zW8rA{DKh^JFbb!@GPnzQ|KlL*@iVXx`rw&x1#VgvBIZ~;i3jzay<>9fo)Gt&jwx-@0UrJbcqJE+ebg#WspYhxQd%`hv<5dnsZssq)UT^JG(wjR`uFMA)UFm z4$HqbnmM(5YNFRvx=X3F*E$!B&NMp$I_r#g&Xyl0S&M`z%bf$7K3*$(O1TXd_1LK4 zCpeGlyBxddkx4ix(R)?OV}V?GXQ}gUuA}Crgz)AT`6zHM==4DzX|sDI zR9M z7wjO9yUqnIX%6+1qaB!a=Ys9Z!MkNQwqk3@?7j5N>~=-|KO6ydm&mEe|MvX9$p1w+ z9{z)T|7-X@i2uJ6;E8Yp^8NeZO>jK?6}kQvD1-R_TLJrltotv(3*brcS7iA+;Ikn6 z@Yg{v{0n*h|AEN)AA)VL80N!a@E~&ir{Gnv5DtO+kn2Uxe;cd>@&ETi_!%<&%`gUA zU?m&@_aoPf|GyfD|GyJpf4CPJ|LyP!D8UQh$?$FD{F~rSFbGG%0q`?qeVO|g9{@{0 z?EgPR9{vEX0Lf2T2jKVDqzRa1tBx(P+e@x}XFnZ#{JtT&E(YDX+B1nQRPV;w&IqdK zJ|Ax*yPiS4Mp1MIOUt99tj018|CmcsxAqh;@*@IM*TtZB$LOztaP(nnJloDcXyG_NKomz7*s9>TMN~@G^xhR_aYaA&SRTn zHs<)1;e79hpF&mKXI%_7=14oAWL~-9F5XA4i^0Y`YJ4qOGYbs{f(Hk!gG#gGsg5Dz z);y+N3^wMedK3C*rgsA+7uR)N4BDNT*p_U})^^R=e*k8dLL2>0$0Oqzjl>!hsO`pK z(^R0gj7B<|r za{u)pdVp8J06ZCPLhgSp81NjB{r?|@OF``Q^}|ER{8vE%Rx0`bR^2pBtK{J=N2|u&*Sxm z^Q*&cJe=9;ZlxIy&zsaEMVmR?mdO0Il6KJcYW5D@n3CT($ zYs=`&7G9dWOY{0@p*S(1A(NLe3!gQ7@~m;t=9^G6PHV|q*gpkR_bwRidKYvW;B2+M zhPQ^VW#ak_m-pI>hFIDOjBVdN-g+f_magkvkahaQI%^3Aw8&V^B*y35bUN+RUfXn& z{!3jN)EZ>hvQ1p;QP7tTwd!MWq-(Oq_yqVtT3Ju!gQ}wOM{xn z>oa_sDU9{Z)d?LAo7!|y^_PzKn!JV;_HE*^hk0sv>HCsHIJSfOj0n9;L}l#RUOA-7 zVk#A5$~B_R1)huKkW2=JQ^hT~F~I%}(V1=OCw+MP7Bu|6=>^GB^In!l_YQG)Y{*6Xw(5A%dvC3_1tra6dIp8vb z?CMMQj1lB~bUZwqST-`9jEKx2BTS3N5gB;2H-aqVA#78aw$`Uo51g{!BPPo0{#E2v z;Hqx&v&BTYxJzv^dhBm^oa^mumdNC>!r+mR^_<2>*Uef$)kr$M@QbZ z2lNed%)7&*aNN^rBX$nPAinDr1pt%9`w?ddQ#m2SmT6Y$v8pLCdcjd~Q3|9g;AZ$)Mm`CnHu>kp9muZ0WX zWQc?8|Nk2@|DA9xoDVhF20E;Rr^5px|HHdr6c)ha;0NdfJ`PvIdq8~rodd&g0xW?L z912f?CxH0+y9aKAPr$|SI@kf?^Y10_57rKR6K;cB;d*#CoDW5i{RJx^3@?IvSW_TA z{+7ZE;U07mAA=9Vm2erH2N^gKj)AAZU(i830AGiTK>Ytz!S(?-!1n_|Yz@8=Hp2dJ z8~TO|VL3bjK8wy_0*--yqjR_(-Ur*@+vpWmgOtZDQYLNx?1rQI!&ZB)YL+`w-sQ|D z&YFSbOp%Fkf9uW7hUe?Ovg=Xm2d%E!w%FUXSJT2rp>Pig(9aKV?!hHxJygiAieiIvTj>v;%3Tntc8+MFXAU>AvX8{QSfkCfa}c1**iCn{cPQ0f&_Y{ETgugv zZgw}xwwv8_chieYK{*v~5JgZ#5#^9uK|BD#8^OQefy%8Y;)Q}2{=d&$d%f>ukMu~{ z@cE`8nVFq==bd-n-}Aoj^BZ#RM5BR7*MzGD6EZXY7UXsd$Jd!AROpX>3$&Kdr&d7;=^J)iY?NPdt|walFUXTL$?EJ{-(4$b*)&Fq zdz_RbJy3!F?J3Zkyun`?A#OOp#GH=PpkbQ^_9V?na;U%m2bM*RocDB_C>{m zJ+VknAnuO^klcS4qU(2qGtlu1Ap&oO zT|jdF%UJ(K@Lo6$VlWwA13yHgUkxY0p&*+5CGZQh_*dbBkcZznW~kg^*9k1waT*mv15wxuk*A;(|O$uq6! z;qnyKRaSndiNJ2BS$OLTs*{D+t=ObNsR-tDvhYg5Y)4sm-KuZSIPGNNmAh-!ecOu8 zu*?-PW*thb%i#P*h6I9`MsZ{)liPs7V=jetYYG9FS(7O->Xazty7Ps>ZdI#l9vBbU zju)&V`eIMCl_d`7^l|WTsA#r4=F671(oKSq_3$g= z0pEce;S|Wg{_s-x4KabQz=vQM_66|+{0HTF6-fD>BW0}pGCO_lH#(PNt(Q?WV|L%j zBb{@*4PCh#-LTmCEs{3g&RI067YsR60q3$ zL~fAry_ckkk6!SV6prNT?CPi3N?4?xVbDbXvax2jyp`^mn6UP+iWXK~ z{Hj9bmUQf4JNB@(gKcIA&xzV}>|yP`XZ<8>_u1QC>|xytat6GtahwTe539L~31ttf zxrPa7539bC#@|tz2vWm|amw$0FJV^R%I+bE{+Im!t3;ck|BtZs>5XXpOW{120|q>c z&c7YR`%gRoBG3i@hsOUhq~J(67=D7bzXDDJnGXz5!nX(e*EfAEDn*2hsD#fiw312xWC6ybq+@`at*P3VQR0%C2gqlcYvX zROL_V&u3F!+clP1P9HR|daBmq zoF3A#srYbZav6I8jlBrTEHKGdQz`weU)l@Dl!ZybEqGBU*>&4Xv#iD}Om#y_DRz?V zx+9^IWVgCl?MG5s0~=}yloh+(yg1|efKvnP$4srU^;hXG1aTI`ZN4PCH7|j-+C3*; zYA;;XwtN(fv#F*@ZlGw&cAKaN8I{)3@`r zb%y~Cr$u7%!WOzr=PhNw(Av1rZPoVGZSxi7Jub6gTIf(Y#q8++TK~TX(ffD6HIRox zApm>BU(o#G18^S9f<53VH2>G(6R-fHFc}_0?|%zMVHGTZgWwNn{(E2}$U6ST@GAHn z`u}1$3yRPMyTbnw1NbI<3{o%+UJZ{C2lyI%01ktF;6KCxehHVuDR3Ofy8Q1D3%CI! zZ{RRUzQBJH3wRLDgTo;VZ-xI66OeWKXF?2i1j!TlQ8)(P4ts!%{a;0Fpae4J|0J=1 zyP#?RzZUMHS9(>?PO&<`+@3JnMkRaVp{o8qw55_3-EhSH0Rh$#)Z_e8EjO zWj900iZMQ=U(@4gsr>7X(MbAZXD3bF>X^Vzs)>{sIF{y0zQ#h^hS9ufN)bx}@&+8N zs#tt@HlJY1k2!-#xycwQtJOVduUys2TCaXVDmPVK2aQ_C1h%eXQ7WE&B)w|VbU2h9 zCe{6DOB6ay$QB9z*{@OMl~H~yaoQeCU|o4udt=p)@8-Uxjxtl#Sm*AK^#Um`LDJ88 zBqvzoOOR^ZvOFhKIyviE^J1h}3&pB8YtFx&Il~&&^Ocu9=_ac+(e^j+w5snW)p)Km zfa!B*$En8>nz-|ola`Z&RWz>{{b|?qq}3|GzFND(}2cr9*M(2MAE{BugD3}I2gXH}C23!P1keq+w11PxxJ_R!8KMwoBAJO^W z2k`-%4c)L8JciDf{C!u#$6z7E;Xmm7pTiCCKInrt!XMH4--9o}$#5*Z0q#NTUk~CZ za6E{IfOrRd2`+%sVHNBRqW`}HIhX}LcoW=9d0Y(%kg_=fI$xa<=#+rI1Zv(`ZS`}i z6mrXfE=Bv=$#)zmq% z8Hqmbn7~Sg5)Y%;jtQ((6r(sq&Pq2RCMi^{AmGBl2-@jep z74WoZc#yn*;{7M<`-eet|Gge|hUd}r&%pg4YXLq9YhfO|1)d=;B5MLJhSQ)QBCr$u zm$Cl8!SCT`AaelDf)u<1c8A9((=URQ?YpFWRbP&1(x)m7YBG4v9xG9)ZpU)QO34!H zrYY5J?k2F5t(_#Lx{a$+lta=v zh%^?8hr;Fm!W_P0N5;PG+_I!)iiH9pa*>8fLK=_9!m*Gh6KSL; zWEk=2%KAO)?{@8S#>z~joJ%+w=4k#{PfxJNA5i24b?>X3c{msi_9~s@_nL+rS;p&UYY&La5|mn5BS2VXxK+0_Mor7CoJL;^8_NEeayZ_t9`2Zp9t40IYpW`Nn?K(Ci{koSCkol1YU|pr zfxPd>@)R&XMP6CcMzUOT&5Nrw%ga!$i(#vlmzuNhm|%9J7Z6VY zSv&AH_zN+Jr$9UbAA)be3pd=V~ylVAZnN4!CN20jXh z!j5n^F@`f?4m?kc;Z`^qX23s*D?9-*k6<@Aml%Sq6Zk&JT7i=x2p13^cnwJIfCUf+ z16~c{8*nvz9LzGODCB)n{%R)AzQ+idynob#5Os0>aN{9;&6uv{*PZmIjr$mO(w}aP z^rz*=PJSXiN1bbBzChx3CaZM}G|k4wX9lA4IiH>P-lrIn*-{Rpj4v)7NhdP{nIwUL zEN^RhV`n8dx5$iPowHws@^J3I;?7r%u?0H@nobwd?cj6_G&=^GX7EEZx}`JFRCPBt zuYqPyGDS0$jQisLc)}M7@>6oaAMzy$-A4WXKsX%=I*}vZ0+|$&y{l(%q<_wa;?Pif z!|IA?bX9bqY@pc_4oz|z6AsZxOxKCIusN+)qMr}7?C$u*aJrNbkH*U1)yFMDLFX7P z1a&(OniIi6Gg^pmIDAg&$mO%<&UC71qqU=_joM*`=t4v{Hw^Z7AA8uWvCK1b1{>w` z#gY{ct$M|F*$$Z;%G@GRl%rN`(sJl`+5A{0mEUmWU}W{7&6ZA}jncsyGt_MyCiBLK z78vG*%b@>42?ZC8DTmEk=(`DPOUfV3aVqh z=~is&bU6wmYdX`tMh}ZG1AhO0%GX8J_L9~X!mKRs3tG#V?PH@Rj%>$ z*g+keHkYBK3W@cGwQ5qiq09=ouHn}=hDiXqkos1rP;CGv|4e#cdR$f+Q#EgBy{!Y$VQeKA5b(_ zq;yfRn6 zCyGOw)$h{Ws+&N4xp%BLC$9BoxSYUrt6Oh|E0PY1{x=Y&CyPF1{QoHak*{x|^{)mQ z?_Uc0!++5DH-hB-OTr@Ph5bQt|D6s7+=jOQ9DE4oLm2*z#=jVj0$E4!EIR*TxEUnR zpRDzt0z1NQ(D=8)`$2O39SH}6=>F^ATo{5wU`O~1djD5&7A%H?;Q;tEn*SlV2u5KE zyd8Fchtd2WhEpH|`@(#m5vHLTsX~5)i6*Q)QKzg>G$swD zxwgALmGgw8)t6vb+bdHO$u)xoCSazl#cXY^a2sPCm!bgl*XAsJV`k?Tx=iQnx8LNa zu5eS;r7c&`Rin9H>jFJjOtw^;w#)-Fo;Ar78r!(#rf0osxX5Wqm*ocsv#jjMre!sO z*~IzGcGaULv)&9LpYU z@Q5I}fsFoaKDkD7nB-`om@o7iBl%3@Ik3W(Yl*V1t6$62PqEicZ{oqN2&s8I!{x2i zYR)j+q+)K!%3zjK!oy@h)0Z=4{+#qcf~5}j{3iF<<kApuujP#O zLuuwi6^!+1V<@pMZ6s91(8#+@UHqz}aZ4N*1w%Tjv-8=};T%gqaz!R-4RbP9E{G|1 z5a&S6MXQdjex7~hL~cc6eI}cAiy%$r0Vabn6y`Pz)`yQ4ot4_FXjt9*v&x#!t@>!+ zSXVV#B)7#7)5px7>7lH=EmXQ}jQQd(v{zs_6fP zwqE@OdjBT)G`tVq2!BTB{}S$j_rM7J8@+!QtOJ>|zYy+2@5`M15m*6|?|%f+iBv(Kd0`N5Y{!$RlzYhHH3$*=b;b?d#OoiX0>Cc2C;brg) zdj1!19efJ9;tS2>#444th6?C9<80IAa$o%-xakKn)T6k$}YWV^K9iPxCJk21J3Gt zH)dgKTNfvv<5VM+D6BzkNaiE+wmT}k{FZ2~a%GCTmYI5L87EtDestXB z^qrAqenvQ07o&cx#;B@Zk8?x2Dphd1lMu=m?Dg7i>;dOFvNqJ*Tm4nKFD~afZD?dd z|G2Ab=(x9gHN6>a%SXXDo3>swEpBdKl< z$0(^SS42EGPUvWxHQ=lm&Ts9(+*S-YMgPx3vwm8%EBb%2C15B00lohqNDN>dEP);1 zPiTIL0elRKZ~*KMFQEIc2Fd^52Sz1@{vJxDw8S0hk7_gvW^k z$Qu2nFaso);Pb=*#QX0(&<}gSPl*G36RrY@4a|bq!kxqdJ_N(CFFZ;t;AZ#?ydR?Q zKVkr1gtZ{~0AB`oqy1(6|9e5!02uHmwEy?v3OE&(K@aQ-e?a@+0T;tMkeq+AzW;ZW zqm<>PZY;nq&=&uxlP~3Ww|d~*dFPDBh_b1mJ1I~*DNvnS*hSmCl!+%(?dZL%x0e1g z6=mY4Ky@z8`nR=Uoi=0fSlwgK9L%;TQ%33RSuAERhF*NfinByYf@Hp6rtaxAw9~6S zO@hmftGbU=HF4gfmsQgUd({qSQ;kMY*N<_o7}nvGs?zK8l{?t=(iM01sWyEa9vmmK zpedRry4N1Js!Bw(WCdAsghq@YJr(m9rh<-IR<;UW-h%dy%Dbk%Jzjf^Pw6|g-?gI9 zOeAn-RjXE|)E%RdJK*f3saqW@&PjEz#U||7TCuL^SaF(W8JY^Idfd#;n3eygoUqPq zcoFPmpP!QM9_+@3BSQi}nTKJ1Ml+KwG;!GSn{rzUA$q+RRVCQg#W_ug-F9u>K%m!^ zQ4h#g*qRlm=zqyy|1&hL=>J|@r(TEFzZlMj#n27EL+3j={Z8TML*cFPYIq*4|7Exs zME{Hb-yR_P{|?v$i@^u7_Ww6%{o7yz90YFw$pdgZdjFGfB)!`HkZXQWuDkQqDS_>*1nS=2 z6~7o}0%4}FSVAkM2R9zFh?S^Qja;Am<|w+qTAlB=|3}q&RveQ4QiinJLz!%_IFUYE%Bk%@|5+Mj7pYBUeuXc?ouiizP7KB9kPsgQOqJe6LTNjm>S!DKgb zXY(T?X8FkKpjM8bO|MI5?Q^aC+#Gp%^u<9s-_pix+DiPKNs(Te*`RJn#g|F>!nNs> zTg|>*l}X7=5>_N;;S__J9w}XLE&ywK>1KHpL|grrD&6W8qVQC!ieaOU#imBZ(ou6d zjhb$LgQYn}Z}3GLIBBr(JOe1ICRq2BnF}%+8inatY&sJwJq#)vla%GHbRpW!9H;QO zg61tY!-lG{YCN`|{|s9P-Hb*bgjc{7Y_Jsmh93Vc$Xb2L(RUFX0DHoJ(B4?P%3eL3<5XFh^#MI0d{ zAEx_1Dm$l8jTu(RHN&cUuXH(VtLSHcq*aC`AGmow&`5I&L$b!4xY2eWQMDPCYdLZSonn zoz|u?QDTNM-TbHiyVF8DAJl0GG$qk#2#ihu*QpzAJdXV{=I4xrak!O5kuqJEDdcnF z1&2d6fqRzq7t)1MS>41MAxXn7sYu24-JAe9Z`r~HY(Sr{$S&4syv&U(jFJ&wW=Jyd zktV#mrrVg_UofW4AVhaqrZjJ~f2wwWK4;X7&C4eh(m8yH+;b@vHX7MH>E}(SdA1xO zi7QzTN<&7je_bZMK3(X}7Y4hhPwSsyw=T3dl|FTDe4Eg=m62}SH9m}Tjx8D=%C6&U zd|3I`+4}B(m1i@hg#iW8|J~@_7ex0m{-3kOujKwqfC1v|_gdH)BnQAx;2UrihzG!0 zSPFZB`1}2basR)<18@Ue3X&gS5p=<`#1y^_mx1I77=r2W8h9D}lUT!_;n#3IydPG> zT-XzyBL47YI17?+0xSdZ510mTh8KuQ{2d;HYvBs`G<*V116fC~2qeeA6nGuH1b$8Y z;uiQ2oCBwW%r8iQcmhiPf!D#S;P1pY9)r)rJKz-{>kVYyK@rw~cn_QivtfVO9c2B% zkKkqyFM{{O5||GWmfzU)Eu?;XH`+KK(8@56-xIH3~0tTJoomq_ke#Orrn!ZCfRK=xr}MPNd_l#)}~R! z;FLv}GS%E3h$;_MYerG(ufrL3vFGZDo!3yF<0HQsyq20H^vKl=r2YND*7ldO9EhYt zsh-yMH%oJ1pyNQ*iUUIy;gl~OO$U4f!FYct5aN$L zv2vf^c7<6obN>1b^GCv&dGX`7RR^ke4AeUgR1?90>iE8ybNt!mM=qbYewI^38+D*+ z+gCnJXnC77?F&Zv(0A?~n_Zu6N*k{KqF8_lhqF&o{+ z3ui8#Yi?)`%+!puIA^|arn602cbp{)ms;DH!z?w&nQSbU!ZP)vOw}5-WT!P@t5`AM zRDbJNIstvc*^|nh!0K3b*P#JpsmxB2jFPcfBvARq;VX9J#@RPaHjPHZQJfZg0^xW# z9FJF=iSn{4!SM}xt5(9g;CMClTQYc@3dC)h!rP*Ln%`O(tIC}Hr8BWeEB z#hl7?Vz{EKz8;>7aKPy=A@fDxJSvKOA>0Wrtc9{{U z+PBc)4g_Q{Zy?azFl|L?*v%LRv3_dqKvlJY0&p5P4(I+)->}&NPTAO3LLwP6WUM+h z#*nn=|JNcB53%+CTw5;Qf!03-GB6E3imu-k#MkdgI2b0uE$DSw&;Jp0`Ht{owD(ux za`+$&K>*$YuY`xt*plDx^YCF<41Rb4J^fv{0^S2FVLFJ`{wum#^80@m&VzZd2RwzA zz8xgD|0-AjuY=ps&XVtMCy@CB%VA&m2YUGt_#vDJgRlfgB1gzMR&?5OnWm&7w`f==CIzCWxW4i41 zsM~=LRK#&Z?D#;rkDU2~lda1NV;lWxk{o9U7ttq_(0g%YD3jY@N6@k3DJC;(G9@BG z%*Ho^1OFfcd}R%pC-LclTrTMgEfv#TgV5>t%tmLIzCXkMC;Cq z z%Z3;s=8t?c_Y6!WKR?}*0}s?qXjhz!>!DO}G8NrL#VM8lT5&en#70D+bsqky#$*(J zGpAu*zB1!x#c6G+GGh2>Nt&*J*8q}aD3up8Av1M4Ps4cUa5|Mq7*o(r1L;E1DjT0Q z2-Rz*I6Y7?dZ4MQ^>@y$e37{Pr>T6k!)Tkc>h))-O8R?VcPg8w;*IeD)SktbtaoD+ z5VdaUh?RrE9W&HnWTi`y8=Km602;%=IF@Rm*8e#zA|F;hM;UL%%en~7q^8ckl z*8U#=uY(7O4O|bEegLoL{~sY%@J;vTH6bkQpWOC^Rm^vxyI|o zs?V5fC!sVmM|7N{T6d0$csLe~Z=z4L<+GjHtPqms9nzHf!S>=D<#iv_FKwFd3ja6r zNzwESR1LP~!7X>Stlop$8LC>QR^Ce2?{nRq+zBre#5u}Us^#3c>f%=wD!0T*|J!kn zGW)Y;EXmDDZ{{jc6uHpwPNis@9hYTxST!2F0_ zJI5!ERw;A#m0Js^IrpbNJ+qk!v^10u3o_N`H2OQulhtvKs_i?}t$BB!z0K_$Rnv)4 z-C50Dw9N(m%2${Ef}C|!K8fY`=5yJNJ~QD=Z*O7%=ljN681K^x`}b3xm_Z;oGnn%g z)7gPuV<4N};A8n#p`_fn(W}TNipXzCo3r(AtBA)11|-M=SdO ztw>T?|1SD}q3Bb-ME^_f|IfgQ&(emGi zTVO4`86Kz1E`WD~lwTG+zgmA~Hr8O&&QaG@>+y;#*kkLaY_d}l>4OdG=73s!q@BC6 zV<1(KTw`tr&Qhb+_mfoJD}BpSv8!YtDa)|FKJ!n?9MGzd&~%j=tB%!yM_py42H5L5 z)FFBORl3cblhNr#Zy@E?9k*!8!;O`dK;Bv%1F6;wq}(z#pQP=x>TQk}#OA4qszytC zMwyYcID*zkC~Esk>PAO(SWR14(F1(+g0DB;32d{m8sE6G%vzFxrCuX3TFNW?v62#h zgKz8}v1~PDrhuhC?)Q&u&>W4sG}jDH8L2{k#Fxsi&uKcUiZ?(*g=cq9Y8yTzlDaR_ z#7%GE1?ZJS%;~r_UI6-Qb6O+@u(!}l5mULNuaF7YDByyJJ01^u_d}h1q(X5(xPxOBj z(R!h1SM>i9TflxDy?;DRh6mC2cYuujzZYb^e*|`dN6`2;!TVr6B;jrFZ*=~Xa6fz= zhT)y?96JB|a0wLQNRYh$PowpJ1|NrYAijTZfS15;(E74=|77TfH^Ix{8)$wR^FInC z1~3I4ME8pa;5je~l7sL~@Ho2vTkvsM3zCoUKj{9Sz;z&b36BHu2-p?ANeti=7=mTc z1-~Z_a1Fc<-U@KqBjFlY8U4~OO@p-wgFl_|JV zzMCOL60)ZY_8wk`Q_9Dtcd$R+l`5@%FxB4)A!v%GiFV4P=UXLbJ5EuFQoca1E$O45 zy~ch`C@aSJl)h8@?M_BZ%G`SgH?VOyaw`W+MV%qigKe-?ge^X8L!HGt4>knmO_4NxV5NyYkEn;7B!1| z-4j=-Sc25opSK1v{oP@WE~SOeGwUF;iL`IM{9GU<9J}cvEX{~wYg-0d89_~PBFylCPDmn{ zZY(XJ4Odi5fym^{eavBBjgmEA&Xz}$)S;|;@`u5cFIlFN7|vvwS|QF&WUEiACp3&v zBG&BK#!I8}_S*ZleQz6UsH++)Z8Pnm5%e*tG0Ld=wPXz~s7CHQTR94DL83pMm1e>n zO*PNfZT6?u47Q2>KOcemsOVJm|B<#>y&l~^3iBZZk_Yg6==~4FA+Q5Hiq5|PjsqX; z2|K_I=={^+MCgUr!f(;|--ge?sc>OW1iTr3j=sMO zz6={-8N37D4w8rOUidKNVLo($%=^C@WX`|j2$%tqgYOwMzU1Cp3G*NXGVfpV?VS!Y zVJhqik~iQ6_yEiV@e~lx#5>_yNW*M+jxv;Te55ta-$Iz6kzH!u+nP~~7M>5SwFcF& z*_XM>1*Q6tXgC_Cxj?gV-yR*p6%C83G{@)`zDOe|4HlkftJ}m2-RWhix>hwJp<@~4 z4CZ(kE;ZI_mA4v)PHQXH)*e^Tyk%6RV;SYX(wbQx?)B_d_4~B%wQ@aDujr{dO3PAL z9Y=Rspl!f1$}N5KhpIq;x?E~nHm{O#Hq`|3Z2>%#U|36L`<6^X{5v@w*Da@Rsk>e^ z+ac^v>ohjGTbwx&J^HQeSrf9cJv^roXU^C(ApqScx{LKZwkgQ^<6Z;Bs5?rP3e4pT z!-=fslp3DYzR8y%NBxFggIl4y7w)|B9KO2B4^&rw534kKn@jOgn`$ptlI7Qurw0jS zrsvPO(#Oh`pJpD?K;Dpb_?k-A#QS_3>r_@XK-y+(tnRt`4m8jkZ(%&K>Zr=mqXy1K zxnJ$*V$~-ZtsZsa)(xj+buysaT_Mr`$mB`)h?GSCA7o3)L(%)sq46(-C_IL)m)w6r z_!WBoR5%cRgZBO)NM8IObD)#qE${<0_BwbY+<~@U3^QRrcmPc;YwHgHSx;Yt*MaEi zVb~SEiiVc?^e4hm;DHsUGy- zTm$*m4Bp!{Npa4^JU4mgPwNW4GMB3-OQa?%%*@q!Xvygs^FlH`y) z)gCtXmE|k5j5`g1(P;?Ghpnn+wBHa^9j-OszK&5?Zre2qi?wbPCcAcw!WPkHf&R}L+z)op!qy0X}^|@0s?Bf`@zSa5uh7X#_^_iIwIwB=^l9cge5;+zqz+lp#ZbNk{>%y1<|5zP z*2c;VYW{siS6u^Z#+k%kk_j2sqbVD)!e>UiU0c!r$n8llm2c?(O`@jxdIbG{E66+m z$piQ~I2VTDIG7GW*auz>4-q4{0loy6!zFMA48Rfy!&G=9yc~W`9N{A9hkfB*VhN|f zK_I?=pMsCU`EWK2!(x~Y2f{y@C-4l2-+<%{cpq$pJS+u2i08oHm^bi!xD?jHEZ7%b z3QrKT_$s^)-UaJm7*2p`ARd3eC6;jqd<+J_2Rp#S#5H~f_krXTyb5G(!AVd6XRbkn zpQpiruq*t9_{Xo{n{W$U2D0{G8Hn%S%Rzkq{sA%{;ivEwxEv&Aaw=rt7}yJBUcyPR z9QK0Wavy&KGCx7Q3?yH{C*Vvd!Yq*7ga(-Re3H{1*mfO@{rOqp^{bD{teaJ+knB~# zj4o@L3n7u1-`yYC)`*LTW5L1Z^yd=&5?8U0Q59=(eper535T6yv|!`W@f@27o?~kl z&zl!19OhqsOlY|ijcc@agxaVb!{lwwM(|XbnM#=USxd;^oGupgg(;OLRg;a`810lu z`k!;RG<^uORWIDGfkJ-RC|X(ny3@I0dRP`{S^fd;j_yZP>{}nmtaRyF>0DvOLuo&~ z^A@eeOYqnwnd258-fY1Iox`^9SWTX6M7rxQ$vuT)ezcGjA0o%TsQ%Pv_8lILMhYZ+ zTDR8SuQK}TvTwjdWYwZcfX+mYz16 z*MWc-VXDo?!c&bZ!>@36AwQZ+O*yc#WwR{D zjUEyuV>O3zNcVr*IZ3yXE< z(k8OOPDl3mz)ZhyK`gUq_Cn_gY_zu)Xyd7%qNL1wBE7b7xBPD=S(;*X@hfZpWM0o} z(&kNJ1Kzqt#~aEt%ENc5qK3EJ_d0g?@KiB8a9rkyWx-~P!QVzPn4Q+J%x{oOm$4SJ zMUWq=3t^f3%A6cy?qXiE=zm%BzlpJR(f@Nq{PXo~H2v4$O1KoxgAtesPov*&g>&Fw z_&56fHaH35@JBTKwXha~@C7I0)VV zFM*$g$wq%N=B3ysg(J!c}IpENZblJ6`Ew0>4jo0FN5vK-J}!IvlwX;$#b`Y`p? z=*zuhI5u$&$D-xDYg^rLEIKZ^l3JS2tEk*3RlM|_wz!!I<(j6Y-o>Y5IA*PP!Tzjc zIOfze>t9~`9m6rVNGOe3tFQ7a*j-yN=qvxydV4#Lc9!{G`LE9J>nmQzaEwA%6nFIu z^37p5=H6`chp|o}fL&QClr2%I_}P2FKM>RI%~bd~-j0FR@r?3R2F;>@ z`kGri;hMr6%FB>fNxkr4%p-_(+rU8D-ydwSENad`%5or*4yAfp+utnBfq`&3qS=4! z(sa(KmGYF1Yp*d_NNm)6d~H>bL31)3h{2&|5APFB=7*WaXj(EReAd*1 z>DI`9L*0!ob1LajX*gRkFd~mdmowpflKGJE%^f1eu5)CxRIJ#cawNt2>wGix8S9Cr z1K~i*mktEezEHd;FWB+P_Ii35BCz6ck< zi6B0IuK~&Ve-Vtp32+#^3Z5iBAY=BIgRDDvC%gfkB}VWY_&&%Qgd?FFB=_IT;bt!K zLO30AAY<}xh9`&c|?*MpR2Ldw*=h1RX?()1e3FRk_jshbVOZLubZXP7JU%SlKZSNS~1PR8esXIRHG z%zD)1JN*kML?bz1iH>N)GtPGQ+DZL}I%v-L2TCf zQ2I&jdxn)?ujVUOQ?V=RYq^eFuQ_j>%ngQSc!zQyE6|r>HXYn6t3+IUgOY1S=jY!cYe~ktTbxpVf!=dF-Gb zf-&=arwWPnb_vNCPMRrkEXXj=&?x2Q-!)_FXM6d(^e)uTl)ZuV#`ju5U-b%AZm5c* zYbwRq`5zR@**;aXG^-}TtFNqy($%9+UN%msKpmZqs)L#5J4 zv3J_E!Axmrw7;9k!n9&CvnEqwH9ku?s{e;|l%wh5w4OjT9M(h`%qP&UhK4n)gW2y; zVqJ#p7sM@i>Ff+oa{J`#fVbJmc7X6QepOh1=%J{#N|Nm)p{~d4| z$b5gv0k}K-fsOBmi(mv!fWzQ9wEyiO`2b5WA9jcTqWzzOkH88z3}jBgf6)KGgU`Xc z;Y5hSZXjL&m%uqN3U7y<;CA%?7vQ6?5DtX@qW$lN%b+qJ;IGj9Uxi^f7UsZ1=>0Fl z+0YM%z!Z2rT#D}B07*C!UJcKq`Okm_@B(`ODflTI2fM)Y=>5mxdbk8~@OR4bJ~#uU zOif=!2?Lm4O}CsLV_i-x%}(f`%~na9?`*26P5MW!97Jfya7UlEQvIZIYP0j%e1Rsr z+@hJ8TN=;z$uZ{E=Yq9-FdILLrn#zkPk7vks+hCpKIqHXDl|LJyjhC5i3YK;3wG+$ zSXIxX%%m|_zXQi8sq%1kIZ)ImYvbB7v{Mz4be6Vt8?lPf{nm=ZmtfxF`d;SF=EuP= zYGT=lHCT8~_rtZ=v8vm4U?b+LirTuvwb}WS#%0DvORY*^J}2|!c-x41 zmG>4b=&JXXS25c!CG~4m-%fkfrjt|+t?GAey^w3(PhOYkY^v!R8HTAk%up>NaT~P} z^Q>157dh{{Wo{eSq>Wf(9ov?kN<}@>_cQI+*^s=5#_Of#an>@kOWli+{E=ca=(C3t zJev|b39Lu;lKu^ia<8$X>(L9oqA?jYqX#qPeeP&LIiistF!i8WXqsx?N*Rw+m!b0c z@*D(d%KE}hlIdlpVc#Kl?ye@dG`8ib8y)cST}X}=SV!7xjO0m%lrAVgtf~8;)l?Nv zvDZyEn_bcWZ$X=GK&y)WcgFuk|7YQFcmaL?6#Nv#a605*Z`cX$Md#lJ zAA~+Q2wnldM(fMi|G6M*>fZ#C|NjBF6r?<59)RwvronWZ3uly4m$%h?Tx!$Uj~$3| z>ace7(=o2}81}U6W}Lo}$A(O}88p|RwKtWa2?LT=l5%%k#5yiw&Gu~Fcvy8d*@nAV z3?mha=Em_>_c4Y5XxutChmD=9Si`GTV zRYUGg)%KL;)<=%jO+phDy1@>u{uwm;Y`i+{bW!S)Z{mbxXmdikh`Be?>cv{$8-6e= z2L`rZ7qRLxs(vk*1tyu!D+4mtFYU;VvM?#Q1x>n$)%0eYsGKc@2DPs~52-GXrCO?w z@g&-BLVaPXA5cp1Nc$z}TCvHnta*x#CNE!o`!CWluHC1exNxxQUYUJ}Wn!Y>cIAys z(TpNEgU;qs8~b9^P39QI>SYSp(5}jg-R}H^@&$Wom#W@~wlY!!S`47NFD|DyviXJu zMgPx4q+TRi75%^17OW4U`_G3XAOcbpBUCa_oH&=0OOaL+Ae=Tmw#?fZh4| zcWC`@gUtJ14@+S;xPvmh8l)^gF6G(IR~t>Ly%1bAg~WTxjH6e?xGni#PmjF z9h0$+$(Z(W9jo)}*#LP3AMHS;DaXn|5_^vZj;d4$t?pMFHLcd)tsb?BMpii-q|tO9 z0PG~$x7|Za)EvPGIPZB){Tr)ENc65FC2lF5Qr~+=3oBz*iC$S2;kjcIx7q$E z;liD^&f{j;53kV z|GU7C(fXqOKLC>dF95HBJJI~tK-|{qyYlbv(dG}qy>JbPW?v1f;24+-`@{dx>d(QS z;rDPaTo0GPyI}();V5`3JdcL|Gdu;4!FS+Ga3O4hwXgyXhkZcw{uPjd*TWrX`aDdA zN73=WfS<4Bibgzkdb<;SKN$G``IB|2o_VqWMQ50jt3La%F^JrhBMJ+#r9c zH6p}AC7l?q$W+TFxx}z!&h9FfQsj52_*)A}A^g!ua$vw8@bN9-3x(qSzEmud^rZ&k z1A$;9IFL@Jx+Xd2Y$ws3RZOft=J3O2t)3n8SA2X$;t9@j%Ouf_wUH-tARw9D)k$9!Yc?J*1mAR}Sg^k1FYHqepZS=gI+{pW8W} zB+->)HIYO&Qj^V=B)auSs86C>yPG7@mHiq_q8mA|=3_U165afv$1GhtJCw*o2HhvH z(ImRjHl7N}nroJ*X??KOljzPG2n>fu*BqJYS>ALm;Yb_BU^zd?i@${=x>kExpE!7> zb3&NGx{Ydmqd!jWvt?ftIiIT5S>ZnG>2M(ju(A_1YIHfaC}{_rw*63zcz_!OK1Yhe&1 zC*T4wK>PrH1~o6k!#JAK;#_3;c-~#f|VK_&A&oo1hQ;@JnJ6SAxVT4uankbNC{xhAHq6F^5ZF z6?DO`h&y~2J^;@WSCBZvW84q9C)YS}1na&y?T+0()aMMfb4^F$@}DNCRGTQ%3Nrav zVB-!s4qCZO%=n>`+r*smLyMY9`(&}OHO1fgBPn+6HA?(3SF#%3z*H;!=79(5;)`{s z;x^qCr&1exc0SWOq4Hmy-*?je8p<*2`r1Uz`-rzEC7F;Omcs6TW2BANB`g$#5*; zx)RZKw(QX&!$-|MYQVQ~O)`F{HnO`_&0Ztz7({i&(^po+UGv&s^Rgo##lr z1|y%5wtcgr1cm3==5xym>9p&{sxf?ZH#TJJF->0?&T$Q2l^;`~`s(9{4f?P31m_&z z)1O(o`p|fy$pQ?=oe*VfrmxZN>H={;z5&D6qvCTm9a##_UUST$$GZD%cEi_5r6-!> zNj!?Uv-;Q8NSwTv_%bH8tz^UO z4*Ns?Se(rQ;doCxWFArUKk|9fQd|Eou=W4bX#MM82)>V|p98m`;ol9b;b@o%Z-PhB z=Rbt6!uvtA{4p>aUILHs0oTGNI2OXNEBp~1eiwWe&WBAf9sY?PzXv`6IoKaw3zF;a zF37>_K<51?;1%#=boLeSVK^10!=51CfPX@B%e?=~;S7kwrReTFOox}jGidK$z(w$0 zm?X6Oeb|ktyesKYZ%dhbV~!`E zlO9yj;pO7%YOOwMyPan4tt+Tb=3e&!seU#(nR}&Ry6lOB+d<}Dx9XeY6`jnza(B(T z?<}HhD|4@TB=?(j;EsPRMO-%y;?_fnP-B6dF0}o!D!;7Td!;+3BW?~VF?-d7?VCz~ zWo3itHMXXItXu9K|JaG^9~&zt+}-N_v9WPUlIbxizKJ9Ost7NQPZJ$p&FqExp@oir zY{x%V=Qr4{f2`<#k*;gy8{_}WZ4vt*x?l4D%N&5UAYOn5>2t&Vf}BgURq3_&2eDkH9hTcl7@U zVG|6%J|KR8KPC>a7WRi<69@P%+yv*rJm`Y|5(AJi`5WN_Ai4kJ@HW^DzDYdbOpttl zhrsUeOJV|d!}YKN_JiHvKg0yS4c9>q4u=C^68xOFz)dg+OF-5NNSxq)I1|h=c6)5* z54ssXjrA|8hHt%Ayf!z5$$f8E=8dsO_p4`*)LcvxjbCFISTm^Vb&1ZV+5uZrglyx9 ze7#D(@jfe4pej;;+BeSd8L2{kB$Z#E(-ct?cW=C2q57mcJ}WPMCy}pZ=F)N^-TPNU-^7>68TczuG;ivQa-QypnkHepJMZdwg2EY*6fzI(uJZYtj(;V zg;f{7sx{=6IF2A4n^}Tbgi@-Kf|;&6s)9>qGs!iH{%qPTwqzoQTa}UCz?Ae96W)27 zWD_Gr7XGUCt$q&7kLWclf1gqIG3UFx^NXfA_h;Jde0Fp=x2%xJ6`8F#Ow5P)31^!q zk;+WMLpd9i^#3I;TU? z{|6vn^S1t9VC#Pw|Nk7k8)W|fKJYIz{#9@xoB?5YEqoh||7ExsLhwp>7;S$md<@ACt(4+7Jh)9KMiF5{c_k1Zbi$Bw_g|xcr|+S|BRdHXjpB4zGAnVcxOBxaB4t{(NkBHIM3$}T4}4@ za{{UMLKbbyN5MFoYT^?53g8w^d2q2ZIwcjZkk9rehtkP4>C~zEnxcJbk$*2vU)kzr zZ~Lrzo8zUsd1|7nSHgp%k5c&D$l5qr7~A20%Q^1r8s|90liFruWykNw$s}%K`N~#I zneb}W?DuHxCfk9ptlI`DuFYwYNZ6uoyj73Pc)rlu8boZV<=O1MvR>sq#*`V+|48e) z{D0p2!>iy|=>3nv5F8A1;Ddh<1CacJvNnGu z>;*4}zYqub2Al;)z=7~9;s6)JSx|(dU?=z)v4C^oSP&n8Cy57K38%miEQ1$_1KbU3 zAqIQE_lN_$9}=(%%&(fRnQbUr>)@xE^5;?A%6(kj7)^PLhGni-!dA~-uxI8?uXG)i zVxl}^X7AC!QI%4m)&1;~aeJqBTh->-G|`}$W2oCs-EjK%&YE^zO&ePZsPD))R}AZL zP1FdF9crtBXC3f34n^Yx5Hu>OiR$6e98^WCI_Z29rF_B7+GRh+%8D^QrC;-)v{e3e z$7m&;Z{6F*b_H}sB|EmVj2DxhW*{+~$!_dr{dO)-HnU_}^8&7px@)KAo5!@)FLi8X zJGQdw5ekLKu6@f?cQ}+$)g~IO#yWsC?at-%Qj&KWl|1vlqmO}`hLGL>`{LbL#1#kfD4lkhh zZwB!NOv5aA3&{Nc@4&lYIRrs+0z84{{}!AIet0vy0`5ffe+G_**MoQp`~kiTXM(H& zcs)Fb-WRWc3*dB!!5;8E%0tTJMk$xhSEmFzC9v(3K#j_2D>_^yoLi26DVkkX;@a`; z-)*=@gSSUBDV+kH{2fkg@VQF~(z;mi za3<$$)#KN0Wgka2wx^hALa0^%!P80BUK8WFO~-9^v$)NQ{(mz)dzr^B`hS_-%io9= zUk!_3f7lat2FbDiWB5E=46;7|-OvvQLlCBdjNR`H&!EwN0k^}Aa4EbWRze7-!hWzX z>;S(-yZ;1khO6P@a3&lNd%J^s z*Tc^6Jlg&lxF4>CPeK9a!`|>G;v(OKPrOO#-{ENxzrbtY92kI^@OpTH zGQA3Lt)*+_LeYO;~)Hg{84uIQTT8o}u{uF6KL z-^k5Is@tS08)@xETQnPKEE4hu{P9@a`cCI~l5@}G--^tnF%oOW;*mf!6pI9dF-0~| z)Hb zQ}supfnYS|j|bxQpYLQQr4V|0LXluR5{yK`q(8M1iB^@!!kMHd4Rl9Bfk+?{?g@s1 zv2e(*%}pBY#(Odnj|JE+8tDnue)_iHoEZ;>d!ngO#24pOeW7?V?dy-l!@g)D(342V zq65)TPq|*$`PFCUjz4zcas9D1`TX*VOs`emY+J@TGZJzV&9;!}c_1KZvenL+(HiH> zsOy|r`J8lFX_e(L)=w%MNzX$$r_b|7f5WoNl*76I(>I(b6*3#9Z0svB>|)H2iEpV! z56QMk%!l(iIi&kP?VO~Ov{?@5{M^p*#5+@t)r5CuZKH{IX8jTBy)$cf6YosfuR-t3 z=$7}+jL+XNaNP0z$E{htF5osHzP7KlZq4A5 z+07P1PaDNxUp|U+!g^8vNfAB-N2fhFwh4qkw6%d5C!`nde133PG_cIsZCU9~EyqBLP zN8l^rN#+FH3Max#;a|)L_#6BY?uVP;Gw>cb2?k&pyb-=k{9ywug*U?EocKfVQ@9sy zgbU#e7=d@d6xbX7M{MCPxDCDlm%zD@hj+psh%I~-&W2w27x4x07uW&%HS)R<|Mj*${ zlyChI*~Rsye2SBC2PG;_rW`xA))zSTdyU)jO%4PC&76k$PRr+fcK&Q%`3x#f%iPEe zkXD~ilg5Q(mJ#DjOVVZ%q>Smin;$@nu;|n%(i{(`&AddZL}86&NaBCh6M))H-&w9i z@)H%Q)=;tI2kG;5{2kC@ddbKH}8SMx%L=HfqOV z%lnR4w1{xtVTDX;X*y9z4$WRZ#SCu6rW%qQZ@6!eKTS1~>kbJ|rJqNJk=)=R2jtR& zeP&p;xOOx_(7DfysUA>eH0bWl@lQG+*OyCY28Zb57Z2z?Avo3GaD=MkQ;h(g*#Z8q z#}E9Who6J|jMJqNg+SQ9vUlO#4dn z(0!y8Oef7gZf1BSUno@-Q1$T#3i)B9XiXvMcCXQ}_fwo;#qKTpUmm`E&Qe1C8`qQ$ zJ+9db6K%kLdLu!0GTiwE9=z zy&(Ajqc9mBMYI11&V>P(15cpg?|`e}B1pg?usb}CmcJN^a3Vxt$tG))iF8NYZ^ks-KOH zk)#yNc4Q>!R{i=x&9+;Mh8y2hrZ|#KkTW2YGqVEpXYmwr$qXrRj99 zF;psz6nm#l8_bl3M*F*y`Qd5BWM)mK#1!I0Ay@rBnPPD?U7Uthb2zMx9CK_t5N?lK zl2m^vu`WXhnswAfosHtiP$sv588@WaN0*>j${*OBFAOU4?VG3EF_Po~s#{6p)$kVG z3PVx3mDw=a7pM{g*c$fyyqxBzydtoEY0w25yoEX4) zX#YVw2Cz5({sX-)YXaT_c{l-H3$h;Ivv59af*`yG9z*Y61!qGq><6!fJ1J8s*Gtse zUl9(d`;}V<%^$d_W3O&hR4_ZuOeY&Br6^LNdNHPF>Jex45*umqo-|e7qlx3O2G0~0+qgNT+xt{J$BoM%8jxlA!9hfa z*l|fmRuT?xd*+aF%UVDZM^;|1mBprG4p}JV*E=$=Wpl^|%6Oa-cvn7O9dpQ9b4aiI zpnkHepJHp;uX=`A6aC1>-Yey;)auP3?7(80flRVI&BGujk?_cRuX*{H-5utXBu29( zdm5d4?DA=J8}r4}&yXbX>kApugXN6%Lumpa1!H~MASA+Yr>YnldAF&HUv)HYiIdj9 zV-9J~i|m*~I=yzs^wCMfstcVs+r0?QA>H21_F@j{UQo5I;x=XuDf)kZWT)w0hyGt+ zOVAt9`Io|ZFd3dh-`@*Y!h0YOCxFc7{|0;!E`X)*4)`8A|06IL{O}g|G&+A7yaV12 z|3vFQ0XM;P*b}~o#=i+Z18;@@q3dseOW<5M7$(7OX!{%-2XjI4`&|hIcpJP1{*9LZ zDjW^_fN1*L;YxTHWFY`Mz(eTxFT+_-02$-o7yf~ce*}IApMfDb82*Z;zZ)(BDZ619 z`>RgQcd~2d(gj(aZ!sR~zPOy{ zv`q&!bq#HzZZ%dcHBnTrf^jz0RC|2|aEqoq1XvlFWL=5UOX+B`K;^>orIJ8_|Dv-8=};oP!9B3ERQ{xDr%H=eas?H((}=39F(eO5$% zoT9}O%kHtk!qX4JZlRXGs(o<=1V#Vvjd0y4`W5|ulr3Uq{r~x}5z??9$ol?U(EOLd z`H%%4>;$)=`DN_?!>|Ajf?uQgzYDUaKLv|n4|pj&i2naPtc69eA4u;1``{c9|Gya^ zYxiX?z&GHNun=Aae)euGgQVg-$B zJi~e}^Dmj)K;Dq)GMc`Qs-f2?d2{G1m1f;dLe^0A8rsV;tgd;hv-%tB?^U$|E$6#e z-+^i+s}%iqD`@ss=&jq+C~djcz)_W2q1FBDlX1JJ)#u;pQ73NQa60%MzsG`SjkNx# ztctWWP6VO-ro*G-TlE-gbKyHvaaC?fHAiT~ZP409b6ttvb!1S)o5}OJQMb>DUgDi= zJa<%wg7p_@eVGGr3LFmm z!>`f#AAn6T0NwCvxErni9>~K9@HY4#8vpn30EqYBCO8E4f@k@_AA-yWI2O7=yak>@ z>)#F+!E$&d{0*)D8xZZk5q$78I{!hq6Fvhcg5>Ob8m)gVoB=X7K-K{42G5}PFN61k z==A?^tq;Ska23cLeOaHMf?n{0l*j&He_3^8rIRdzGz*i;)ut;yS{fNGxp^7V8`8$*3SEVs=Gc}lhv35cr_9gS9xf1yuB5tZ1*`R7`MNV2pZjH^Ikv1-= zM@dCcw6cws@~vj1Ri1k%AMFIlM;o9Dw3?4r_N}Tu&aCvlJ~KSvG{X8B;Pw_IHr_wi zUmQ8u`mU%=+f+7MH!V)L;!MX(NUPXqn@UHkIKPII(Mmg4{?aYGYpk17^{Q_<&ZT(O zcYGZWR&`)nT$-jT%`rNSFVgr*b5*hZo~OA;P92MOI+3=72pl+O=wcjVDfG&n&viPl z<+eh8V(35_*3eW}Czhc%ZS43umJ67|9mwVr%o{Z4rYp;|!5Z3l)#R3&!G+pU^3*6x z3-abb&8q2%8LNzW%N8y$N{K;D#Za|Z8V&6ZKAGt~l$WUvrr3>^ehjLKlV~_>t9`GP z-;wGkxa#fbr58Pgu(~9i`A_3o6y0GQ5sUe3CS|CC*-pza*2u+J#)zmpz zX1u{y+}3>^MgKF*J?Spdy6FGaw%~mRy?-xA-v3X-Meq^W04KmD0dFTZum<*o9}o{X4MifEjQQ zNdEud5+9KK|6d2m`M(JUVI|Cjec)B_FfoH$-~*6=9(WD>m6*X#;Yv6eMqmI|!V$19 z{EPU(gK#~(7nZ}`@GP-}AA`&*_!is-pN2Ca4=dp9AfALf!5^4k@MX9HJ_?d|a2=cg zZ-)oC3710=_Jb#wXYe^l!(@BT!9~O_PJq4PXWTFIo^ij*t+f24%skgg^*v^CYP+R# zLwKE3-a(HgkPP15UiPC2zJ&t~6yuS53~_n46cE zmeTQ2tutJWwQ9Jk+i|huFKDLTbqxk}o4d}Om4>UjjjIe-^&7c{tGZ393|DJ6+M-U`P_)HoLO>4>C`c2CB6%W;T49C?Te>l)%epj4}dtYVixIY%?iT3zop_o4$ zk&ASyyS&D!o|fZkpgS7&_k@ChNIV*e1bS54iQB3_-i<|R4<#4qiG<>jS`$?cXx?EX z5Q=q2gMnBu*2970!9eXtZwq#-v{~tpzd!6tMw0^S0|Td=j5Wz7DKF!VzAsEB*ro> zW~-wA<7mjVt^eoR`u}b;z2y7{BFn)^zS+5&F za3nm7j{YRfg5RN`uY0=ixn&gg3!y=;|ZkE$|rSA-Vfyj)2VN zm-3PM0WE!5ZvyALQlJy+T#QFZHk;1YMmt?aYFH_U)w7MNT5bE)qls~rgJ8aL_G2q6 zli{75sXQeQXIXqiWHP(Y`cWAwtx8$nNy{y_WjjjCjnZ`%HKjL{q#hJ}15{zDUkVM( zwKq{o%Qdr*&a!f1oq8!q#d48OUhdK=gQQpH*hoJ)uOz`A!z41n4%;F#8s4^6wadURxCDP1_A zXspVy=#eaoo6_Ccbg{Tfj?Zs(A8@edsH%{QT@l?CC2iNgibm37@Upy>Zu+s4(y2dR zD&>cJ5q=^4lxG<+$ZTQ}lBDM-khI;$AcCf4wPt#AKYdEHCwCBZdpP5Ver45BJwEP& z@vWYkn<_<5zwO7@-qs1MRIPd8|Qpy2)=%=ax>u$ z^mc5br8lC?oU#?lh!iv?nT zmOiB38obu!y8IfhxWnaNT8DK$)69ZX;T`V${zYjME&3mMJ*gzxmhu0iZGn3m+W$fr z1@Zj*8*u=c|1V?wAA(_+1+Rx65D)k)oDZ8|I!Mm{KM)^~`TuvoS~wK;gWcdi#0##1 z)8Isy4`GmefOo@n@F_SE4u{vlpNJ9M0UrnP0z3dDKj81-0k{K>2Z@ITf_ym*y7jM86wzu-h%DW_t@Sy!?4%&(3ZLF_N)6)i zUY8fB`n~Qhi?s8qdS?8$r@6@rN@e#+R_U89Rxgv&9=+fzE4nnBaSvyXOPcOR3VEE0 z*PK9U=fU?51vMj8Yz-vh2aTdBE_>ywtCKXFIny@%{{1vtG%$sadpKGs=FvhUd4`G8 z1?8bs-9deAS9e*fA7pD?!*~YpJf4U0`%m{&xXFjgA;yW3sJpB?%jt^L<*(|gb5ER% zOr1>KolM>3*D(sq3D-Ca=yk1?v)zj@Q+N5{+g?(2m#=7>&edJ6sPa?2J)!P0CX`#W z?jk0jU9{#>8h=q~Vn+=Rjg)%;mI8Lg@dWmZt}oQK%X2$5jIJ*!g=4fc{(p*SQ}q84 zrb0zOqxnB>>;FakdjLrOznjqep9Y!RKNI$apP==>4&njO4>MqQ_$5037RbOdcqjY? zjW28e-wj!i_5XiD+usSFgi)xRD{vhe|6CXanY+IaNdCW%qVZ*Jz-vI}=syV=kh%FX zH$dj+-vQUasjve)jK2RcoB|n;IRbaXCP>3k@Dlhon*LoN{(k$wtKcp){V+sow7rzu z$+oVyi>~p1Y8rIIJSEwmhJF)&rDs80Fyp=io zJiiaa+S5o(HErVYnP5C2w=-uTG9`1Qb{BbZe zK24Xtv#foECq;1^SXzXP`ap9J}LKv2HE0rF3P{B5xR|2vRh0{NXF zhy(CzKoAe$zW_lw`DibI1<3yeK7c<4@&`fwIgsyzpqzXZ|Nm1UKMV3*ke>wkwIF{D zd;-4+f@1&Q2KgJ%mwyHX_31x@`t^r=-f;uGMVkMJ&U$A!f3Ow^pqA%DKY*j(U&rHP zWtiT?Uju{3J;6qPPiK7Wa_=<~f8-OMZvV<0`LZ{Lu6cG9e4uN7goXPfuj(z``lYHx zzjFm(e?FB%`G7`&C;OQCH@-OSeyk<0e)zO|MN4@OHhzdUJS;ZvZXxj|{r-KU z^wo|cA1<-|yq&RbdOJ{aP>oG&HJ(c$BNtk2eZ^{y$~HzW;T?Kz@&l_$#yW-ZTk6!kzp` zy9dwjYdHP>*8d2D@$L2TSI{QXuP5lxB_9h|y{|joe8ErWe&x6O8oGRpOYs&=|6p|L zBbLI49Z^4Q+`PRweK=_Pw$BCG|9>9r)9--YisJw3ldbwE!0t!<|DOZNK#(8ce*t^{ z_krv{aFD+Q_Wdt{{47WWvIF`1K>i!B@qY>A_kz3xL3aN?3i8*$#z%Gi{vgOd4Pt@3 z0Qsw6^;{N|Rke>(9KoIZ$*MR&j=(9fp@(UmW2QedC-g{dCzcZ=cx14=wqWxIi6(1R>&!gs5x$h5*by#+v5BS@cA%1j)e7|e` zSp|JvqWf1siSD;l2HNG|DN+bUS_WGY;_@F*$Pd@RcVB=@;6twESE+d)Ip!(H1?iX4;_3feAiom?arILW2LuQC`$7I9*y#T= z$e#iEFF_E0|M!FZE)XBY0hxeMAb$gH{6|4h{2mASb6~Ik9LP_B{7+z`|MMWf7vy(? z{4B^1KqL?hq#z#16yzsB{$Y^63^x292l*F4kWDXx{AQ3} z1@c$Gj{lEA{#lTp1G$0ZAm0ah0rEG&p8xMb{xHbz08v1G9mrpS{`yZq{v(h-3i3-J z{{jfg^GAL85(Ir7%KH=RW3uC~P#E&LnDx5_uU`_MR`ME-duu$ts*Wu^7kzzI2Kk@L zP+e-EKtGDXavwZ(^MSJ0A3Whzf#kOeUw`oMw@Y7tqbt8z=WXSOu%qK|e;N)S*hljFPk(+IGp}AGq|Ng@M?j%!oS|5# z@ys%C`L_?=g+4?!QHDLwGt`^^z0s1V3!{qIh9cN- zPpHC8QUnEMuxai+mwYOMO|hSoIKz(_hT@qq&Z91Uo_(mF{=ZNJnED#LkHwI3SWbXO|ToLS-1QbI4 zKpE_pP$cN>Lf9{fkCeh5F7=UO*dM*zTO;F*g4n}FUunVjm&E=NE)1kv|5U>cu%J)j z!C(FQ-a^(t!gZeuVm~hX{M%Q(>QEwkXy}hpB>M|$6_v?;&sE-2DEkYi4yCe(b3e6M zHeBMJHSQ-~NN(!4P+$}?PC7Sjq0%S>xi4W;o&5So)9O##0M|&-ztZq;OuMJ~+2yLf zPv^<7@5VQfssUvKH*^EHapBxYU3mEJi}kZv@+(ZJnfY?1s-Jrh@_zX$?EUf$^#KDe zc)W|JL(vx}C{<{`Y~X}-J4KRf+@z~g=b-P;P38=`{UeH`Q2yvdXME_0edWyUty1Bbne%CEXPM+p42<2JqT5Y z^Xl)(J(fQ(wK32%Kl9?Jhkw5K|8IT++5d>w{|`cZAKCw4!VjOn3csTo0RJWk+WYTk zLHmK;J2fprsuY2I@ z9{82f1J4dRaM8Wvg?;hbADg#L(Kds7_ZyEB-f$;Axi1$1cmcoZ(>US!5%n3)kNwZa zp38g|;Q{*@;o>|__<=`;_#2Mb({Pf04ZS+Nqy3ma9JhI7Y{ETga{SZ?)Ra%!)bzDC z5@HyT9{^YR*}?vY5cxO$Fp5|IE{Kmmy)Yek{4B_?0{I)j-Tz-f{%eq51o>A%em}_1 zf$Tv>AgG@Ie+u$1gB(C)ke>!YHT^M=e+1-jgLC08fc%dje-h;9KzfiG@ZE zJ;>h#Zo&T!g7y>q(;z<&@{=Hc75D`IImpk096+`pOAs04r$GK85R^0UmqGr05R^Oc z^B`#7fH?>aG6F$-gZ~Y91%DRgPXd1+1^EGp38H}fHjv){^4Ebw@UMX!LB=2`ci<;M z(B1*R3Iy>B(Eb7c0SJ0GzXbC1!rvTqkD=o%B7SVGm9)cO?eqPqA%(BJ7bX9>8wB5$ z!>kU!4M92AhrQZ{D9ZP~g~+XL^{t0#LdkM88A-+t#1h!9n<(;;l9 zmc0;Eb=VO;ed8*h9N>66*Z?%Xx-G)$+duXB%a^C@)VzH8?V;;V&HW|pk^&(qR0gg3 z-uu4%&WqprTa&9>#WiZ|8+rhG3Tx{MOLJfYVCl)jVC%JGo>89@IJf}o=CcC!RdM66 z#*(mdYpkw(EOqZ;RbxJE&VmK#HGW>)zss@TeX)o7&X!wc!+vCP4tqT|P#+t%g@dm6 z!BAxC(bGS`o_-5Xmmj=lkJ)+8VC(Mpr-jvi=SVbw*+J z^mlaeMFyJo+rxYNsUN(^y)*2X^}?-Rz}78L)}X4J$93U#4_^(V1AeKS&<#F+_y*Y1*6HNxurvefokxkKsR` z8GnYel=s<~@afM2oN_<&ectz?h{VSc`T9LR2MPlslF!>y+HA&eH0_P)53TgvI(*qy zC-fA@rYY+0Vvo0f%7N*PWS`fLFA>OpL=Pd{?52ygm;d_0D{KTpsSDoHE6|>FBmF%ibCk z-~5Re!}pKz1hcz^z`)b+gVR2P^M+=^aDDr{r-ps!#p9s{3Ib}wD=xzKUOZZk0;VtP zB1O?r_~Un8JidS#{XIye{mu(`h#oj$gAeXu(mum3I^@_&l!|J{d~@Ah5knGJfHhS*GGFu7gg>MCtmQM!wxjfDLVPEu)R>j7B(1$f0}DvCH0GM z!*cd&W&Yyhy`g8G6p~HbP1-AVdM@hc*YVyb@!#C?9!Tg(kYAtKRS)g?>f*0g#cvv* z+|f2+FY04{MY`U7%z!ZU^764!%ZuDc8@Iq3gEkR+k$sQCKY!JdFVO5>-2~qI11M3h zCTcXZ7%=uX1{L^z9r)#*phz148~OFyueufPjJ_<=y!m$W5)n*7SnptuclaOl3#{+o z%D?rUAq!|=27K>ZpMC2cWq{6)PBEycZ^J*RjLG-DP2k^o!MqD*p05wO57b$kHuZ1+ z7TV9?^74(?;J3d2InpR^3~Xp3vWTA-iMS`N?k#=&14f8T!|`#{@xdR6F!y~`7M$^m#e*llkf z_vX^}#z^?#B#@t;4!!*Xb@dAZ_=YzI#~)N6;)QSv>z{cZa;QDfA_Oq7_ftT=dAb1F z!ip?L3-rkpwcQn8&Ei~u5AcAFlYI<75$M-BD+veqSC(vQJba_syQwwb86N520Xe-p zTTwmOyQ??jac`EM7IP={Gqv!@albzMt)gFJcfP~@xx%dPeDmh9>kEH(?wBXVr#ZTt zWQz;SR^TW82>;t0wzGW01ce}orZq_?TXQ$gG%5(G)1G%I4C5nZDJ!&b76pAN#1ofv z!xh1wZoRz_^>CZ7H;YpX|Xe=vW`1fBf{})w98wDB7_Cu)z#9< zm%E8Ho$RH_R238btXw9Ewo$OCmYw>v6(x5|uj!1-ZazU=?>t5=vnb%U`PAOrL+`LV z&Cs(zn=?la*~ib)Vk&Hh4i<#ic>eL4={9 z>tZ6GBW!%exT}>G?iR2fwLb6K&3d)Ek{M1W%DiWNcmcKLHO%zHhu-vdy>6}9eYC&d zaxQ{(Jo{JW^ zr{WBN5Q@3)`B7e9j3v|J%~W5W4w)F7u@QH`2zse*#D>e3(smM!sD9+=cFIIJKi@T^ zx13IQdvnyxHc@FD$Z5>;!OloZ{a&BfDIJ={s56SNvrUsVN0?m&0i^%H9~b)>4KUXz znji>q{!aU>i8JO>y~v_?x*eMR1^(W7E#*R+*7|jm@OQsjBupS3x73QIOsbHEw<+#! zT1TwTO0UrIPP-_*tSDoWFHnHuEs(RJwbZT)|ot@+gyHs8j z;+<{VkFlW6&bviY?Vvqt_0k6$6F&aA3@+!O18!GiF`=Fm>zLpPhGEFEbkp5-KNFX; zOgajQtCEb5-q%{o#=*K*`bn=|&gS~u_ji4ICPLu<7OtL@YnM!8VTuMEKbs$&TR1dOxxxyLD(wzq24YwfR^&UAld2pYNyj(vUjz)m?#Flf-bA8iVrKw zYbcR#l*@Tr&`an@FDX~2QeVn@N+mn5x!^}HypiqQQ7^|`jnlJBadPM`V7AjMYK=5u zm@Ab;GK)DmAF^)SbwzpJ#kWOv=8rwbqdXBgC{bfmI6h%351w#mnFxg(QdNM&--pqJf()Hc3s)nornx=2KIy2TuGs81u8OM55)iuZA(dKw9+%PNI z(^y*>>e$!j%Y9ZbVJ2c%w{0xy98|SAzj57>Q;tV&vpYDQp!C2tt+E6}8qvdD1%Clq z1Bc07o+!P;v3sV0yIXTvyqKxuP&b$IYEqgm(cDNRBc-)nP5>voEbq0vJ``)|z9&b7 z6=V)sD-^?rjhvXN$_;$e8?r1}dDwuAYCLa1xSQj3e`&_r_8+)DV z6-CoUvoeygR;B3*^w=(%-#Naeyn^1tsU?hS+Q2ZDZ|qHG)TE=}zOlsFJ?#Y1I=Q%; z`Q=_$S|5b)jz*>9(9G^Og6AJ|e9`qBrpYNmdK@aGMf$cR3rB{p@@jb-P1tl^!#)vnYz}fa16K(2+;&tgG#TyfBo^aILit zRM078x`mg+9L6l0ic9^FmCUF$FV3ZiFgA;L=X~yQt3KLsyjAAvY%`N*l-o=$pzAKK zdLi8`V;R@CCz*2VFTK;?#g+Dnooki(aXa>M&i5nG-W0X7@6ir)YK6KR1cn z?P${D@xhK$WqPd__~Wfh8RyLbq2l6Hix>Oh0ah2g&nFW4IbJgpL3n(9fJIo?!j}{2 zAPpMf%^#&nx$m;=YMPBU_t~j#OViBka&08qg4*bXEmPgh;?VhmtiTd>xAxN|tkU($ zG^d`mxmt;{$}}%ZR(P@Kmr5m|i7pGJbCw)tB|!qAYON>yQiicqhUDH*EpHl#`oUbL zTWF>r=aMjAEoBDFw`Qd`_HO07qI>PERH-tS-DGnC;Sb3|_t)*I6L{^eU=NDEvxu{v zx8;c8^Fe1z{xpVbElnajfU!s>1BS^pf0s}0dV1{bDtx?eUcO4{B%3+RzFgc*Ewcz% z4mUR{I>UE1>7)tVQxJ??5uDv>PPrbflDqZ3s<%@+#;~zd_qj6k_j<7v9CrcFzryJS zyVHTRow=@^9aq`X4i)-%9dO2VwixSbknC|MVdTzXoQh*O$_5 z`bDsA!f7uW=UR>N(VAfNU_;Z~VVj{pURR67UUYZ!dB7>E?BTQGz8v0@z--6T{WROz zm82I{HJ{Rx2h0f;2Y8m5IB`$R4%~a_I>HJ7)bujZFm^00b^9@H!~^O_SQWLcJe$hs zm9B+SD0b7O;@^ZAjV_OBpzdJ7!!+Psfp5Ysnt0%;4ekeVGLW7u)VIh zd66i)8GtarYN82PtzOEK+H=j*cS4H31ATXF;|I>WE^_EIPz)w&p(HfBS-h6EbSNJ7 z5Bw)x7x8L;^iJ}E5S8(E7jazNUvUd>&Kq3oCeB4gk zmFC=<974$p@eYTjEZf8|xU}paLG4GAU66!)oOuWAm%w2wZM|0Fx89bviG=9)U z7BT_gw!R&yxpqRG33C_S=cpb;ZVwn4J~M$ArPEq+uG5<}W6)ReX1~p)`|SGWyY%}d z{O&wI&oLHLMfW#2xt|P=uohgQFs6#|xU41m;{CEb2-nAWnqKFtLqfL)Zv1>-0^Qd) zl;?i4px;gu^st1+AI9zaq|WA&DDLek6{Ta)Sa*{eTbJ$O zSZBjX6lSMNzfMbT+YmfpLBd39u$3MiH9OxNKC%fm$Xl!0EmZJ&Q??cLOvrWe zl~DVjy3>ayY%RdUJ8onzc+TG%SHnpi%U<2#5fC0OZ#WBJlVsHk!@`H(c%FBSyl&&U zE)8oW!(MuN)Ug4;V_whqex>#%;0VjKH^n+_HEnaoC1NC8i6$!4Dn@pwC|JFBo-Yn` z37>T7T18EIfCoO`h*;C?bJaidP|+3{9PoS9hynzSykikG@wRh1XuSY+EJd*|$h zGLxM}vNlP^+-xqrshXx^`9>MR@(JFYu(L|QxXaC1vB(i`8hb+3^L(`w62pnF+i){G z2OEI;b*cmKwrNXi!Jd13o8B3A2BRBm**>Wnz9V1$HvvI-m zmX)o1Qr{1{YOiBHT60}SEL{?=?Ouw~pMpg+4)80FjV2mD(pGCdfnLR6h2NXg**U#C zvcT!)vIUcmvrC?2`ElUMDthv5#dWBEcY9}&l-`B5f|m5aU^}ppr&^g_%p~u8-V&;x zRs6x_D#f|f_iPzhi}PvgS=(X#6fM6wi1!wwTnwo~y72Ys@{Gm*bB8=BoU-IVEO$J`AxV=;+Ru8UbuT(Z05uwPH_c?!$I_+Iyl zyy0a2zR>VtzDhOYUS)F*112d}dbKMFi0L$d?nXZ5*0Y&BJrOP;l0@J&^EpNA8_y!H zK?t}fQr2ZE$F{j;mF=)bTT0`I?#WTepaif+kk#>)j}OXhx8k}B;90@3-53@H_*ARi8rG_-tdPEDYL&@g)-lGtbZMDWdyOS~Kg4}7 ze_8W<8?&)auflLNrq^am8q3u_p|!K^HRLh8TPATltk#iNg?-J!`{Y669Q!+4uf?rq zBy@7pGn`4l?sq56X3k<}iA5QCHS}HY({YR1bC@JI+q(D}bae^R^Kgg zCIDm)c0FcauUD+fvaZDs2X%%SfY-tP@e1NdGR&7WnF;mj zID4Q>c{o0m>q9QS!iEyM58IuE<#DBKhwF;g_8{HM+3xwg^>7~{Du%YHjvTKS`K}!9 zDlm8Gz}OBkvw{O#@WyZ2d!tWlN(k&o=d0}6Vb8c1nv6pkJJdH1Lg~rD%9)P)UkZ>3i4d@Typ+AOk)qqF#fkmeS z#?8*wRv9jD35j^G7t(@|iQZsfrM_Ow>wtX$`<`e#@uh+^hm##H&ncBA2 z-{!aZQyrhZ6|pY7*ru@D@4Ca&x|3_)d#5k{NoRNmF3F`wRiC%+yJtJP`TvRpPfiD~N$Cco-!k+KgX^+JbH=8nK1 z(erve-L3U8IDu)V9(5ISSk|!CIXU=v(@}RmpD~*xNo=hMw*lvF3VxHc#Qmtyg(qQdCPOxt2kGS1k$fKez_B6Z%m_H0m#`BD{=^OZZP2?zU=2`C~fCtud zSv@xt+WiNM~Z`Q-SSgkZ-)R=lwt!CZ^fGsJOCE299o))D;hU*c44R)QL z2m_X2OF3&BjMK1kbzC6-sJu92IK3O+4~41-HqLnRRun@90!NbI-!!f z>j3{3(iY*;0{PhYm+3KgZd!3SmSb!-IZDCu8u{UQ6hZ*y7FM_1on=OH7v~S(@Kq0S zXZkKC)!2GN0StY%zpq3*DK|YIEy0m#Rc2{=4cqYisO?#fo2U&{-5eY1Tmsv67`Eu# z%dOt50;wHu*0i(s*ey-(4r}4ymHxxVl@8$lmI&qUD6C1cX3a)J9R?`pT*}$`Bi^GmuUysXsFh?+3YLcd6rR#piP!aa*}EVp`LH~b?Js1YJ}o2Q4wFr^GS{muhwma0t~3x8BKQ6)6sOn8J{MFX3)`e zOmC)R&_dhABy&4zgiTMhU(TQbZ5Ce-8@Ik#>!_3D`8@{w&O#t13?LSArXdOo&Q#ZWdyfuGpq`NOSF)#Wp$QLcNOwr4th0C>9# zd=4iTL1=>waA`*jqf?+OqsjwU!Ug%985HVhR`K=#9`A5D@q){JhXQn9>mE7n*jSzI z)~+)1tL5FCo(|>eVmR$(N%Nf2ow#astt+#oj0|jIb>8>=s9Wr{8MA>{AWPhRN|QZ{ zf%ZEPRkDkd9)^h$o$(#Sc~&zi&X?p2ZzeJMjJL$KwhH=OS_bXBh3R&tXY%Y$9$4&>;|P>OL|K9BtOUxUjU;d2V(?kW4&a&HH6u>*-S*+pT8K3I zZcz!^saEkphYja0CeJvOKB>a)a5DB-{Nz&upEX>3vUu{TX@CVL)*=~$zbJnAhc4g+ zo9a`|JFUfM>@@}Oe4NYkdi?OWALN5%F1F)#>#kNd0w0oKZI9cDzH*+|e;n5HMf?h% zUKZe+m*mL1Jbc%W-vw45aG`RW$BTUH1%WU-ILC+2P829y7fwe>R86Ug5=C7bj8P8# z55NJnX>z=3t$ro%`b~at1Fq6_Qf`}Lt=5b*;N}TxNFFa)|L$BLm{WlW^(tQ^ZGVI) z0yJM140uJ-a-H}|xmD*k-om{x1kSX6cH__i+Y7l?*0FqC>8Appgb{&UHK&Bhr{PLI z#pmUo?LF>nrQ*a{rv6~V^9Tn|EFmrytKK}_>^%vD2f50cVmAD~-KSICF-3%+He0~7 zr!|Kq>e@USWj?+zSF1%o-?Qxqju3Luht~&7!|LWjutCj&F}0l9d$lab)w-fi@qo<$ zXRh`))3$;g6ZYjHK zFy$`}D1T7@OMU{j$N0#Tmyr=9I>>vB>)cz68hr zspglq4vzl<9RHrLI7L6$4hu0H#v!O=M>_{$G)g>TWGx}y71n0l8C{oMkAwemD{-go zWWPoC_O91xF-gI5{T*x8ViL1Tj%TwuLdu(SMOx%4ACgE_8(G|_(@+!7foO02A z+-a}wuMXGK84VvVjXZF%!$C8TT;JXX9S|E}r|k3-OYIK+F(~Z2@icB_G;Y_2<5ttE z@y3nDdN2%V)E?*`@M^tYN9Oqy%|&_7vC6^PWD%Mil3;^PeY!|sgY<0K7U^u^J;z3N z=c`~|y~S*)6qkg|JuBS>6nT5)vp~A1o}XYAMbwE7@JM{R5=S^WF7&|<44la@ z0os8J_J;vDzBG0@9<6D6UF3P);@vvE^PS0!R_irc9l&P@c133Z*TFDh`J|TCW^&t0 z4nA*|I5?W&vvKLQU{yU`QxLz$Y@#GQ(>xwZ@HK0{Ns%Q>u2A9hdECn^1O#&_8qe)P$O<)-4Oo0bn7c; z+h9`!?@RKvmXvDAvIl?g8z4jKY@8CuEM?r~oJxx|LKQKW`+XpBBUUWBfX?~I} zmGgem9|xOhUb?+;nuEU`oLA)@&;Yccrrgnba@vt(i0n7Yn9uDn?)L_cg@w+*aI8Cs1n{TWV@KQ zqeW6gi?BR1mjW0K_hH6QL|hxy0v$!HYImdu0Gki?u3{}GN0QX$^5v9a7)P@ehIK7C zK(3*IAIHgY$FbOSY&6{r+`nb+PQ~4L3{gNVV^~ogi%DR45ZE=rI>=WYuyGVl9$j}^ zLJ3ZpGu1V0v7^RZadzlITZ%jO3;yz4W2qLbCp)F}1RS+BHsZ5Q-+5lJdXLY%z4)Yc zg>c1@JRFJra@Rm`A3ic((3ktj)jZ{5BKJ83u?|0wcgej_DZZ_8#&DAR4gvQe_F|q6 zq$czH+Q9j)NwWz22J^V{MNHr$x5*$Vaws=vI+DScE|0_0)d&S=ZqI0YzM>(J#n$2! z$S>j~vi1B}QVLpwVv)59@FiY*0ry9a0*-UuIzmWdDk3*7tENn60(duQ&tL*Q!Z0AM z`S$b}^c!$y@2Zq!x0$zI-LHVOyT%05BdBC`1kAH7%d|h#XKr#jxk!PH(%ptNQ6@_r z@DZ}%R)kyQN@=cW%g?0y=62UMH%6NsV`sVKR3oxU9&zfhqzS7&I^0^H?drKmD;Fb0 z&44w!n<_vW(RUQE5U5VtwUw3_vF00vM;aLQ)GT=@|5^1=ZQS_^uCfvk?v zVdByW#Mr<)(xqt^0Ur;m#^W(Z9Jqr*1d+{vK4C{N7xLr~A71;b!ql~kPG~G|IY}}@ zRfBM1Pe~I7sZJaPJ=+d|-_Jm^<5I2DsU+Pa-V1lrKwY&=F{j}e!F2qK`@u{LI z1p%_femXg+!K{el%MEc47kGbu=xv}U=;bPdfc5Qp&6i-!U#%CMsKA3f_@MEU76FT& zru6s_2i3;N5N;5KGr|qK*@b)XJfO=2b9Xq*WnODip6@Qxr#8%oHY7@Kii+(5mABxy zEcSXGLMQM!$@!#|Vx3{-D(=S1q&Uw+bc+o*s8fC4+7NuS0M%gCRl3>Dh**q@?!nKX zbZ^EA>ut0xR;y~4Vsxk%n-K-B489u?(MnQMqf@)P>h34I1iHmXZJ%s_HZu)_oajC`A%d(9za#9Q-18yUlE*$^#%hc$4pt?lCNTF1q4CkrsdhwoR=l3U_q}() z+d0k6#-Y0Q5-iH{*qC$R`GlM~*h`b`QAoG@a&=vMTzB`?`oSL&W4L~qEP(*)_76xt z*O3i4zgcd!(iaz_ayG1*07=Q7xEXD`7xF2dd+@;?-TOh&T_{>;^pKEDP>Gn>-f2&y zrq#f~5snK5>_h8vR?gex4773ydAw@frX7{>cvM^n&U5EZ0S_;1r@L5`s+Fc)NqXDE65k&&6fEXS9&D2SY1}ev-bz0MjrC&{n`2_$X1od|{_ZTyaV=k`hY6^Ysg4H4iD3$}yv|Y%haA&ja z6xkk9Y=Qn5<>Kygcmt~|Gs`-Qbgg^QNT- z>sG?4gj4v#Gw!6TWQu$Yx)ImHKpfU6EmQ>6oQuMGZ)DzS&@al^72I+oY5nAOeZ+M9 z&0(>h6O)6aEscA-Da*OzkmDOPR@g4Kr|o9HWAyZn74d4qT#Wp4dWrBvH|l4bPLtwUDYF@HF9EyG%sG>q zY^8v`hQ`f82G0mwi=)?|Dsvb73~uP#YIv}QXPIncn7h%Wzim@8MUx)vYvAK;%ENV@ zZs#|$RJ{Fw8yDhY_*6TIT5+Bf*IRpr zSoCf&X9k~u80_Hr;#coej;r|)p77hL3_eT3c(8!hx;nQ@6Y>|@K1}+MAMt%N`11U! z3+g7V%komVQRp*mQBpRLW^CYyhm~E?SldNGI5!AJ1rBcyj8xvnMm@&w?CITCfH%(j z*S=?WY=3OJ4t%g{me>Q_xglOiv0?8i%j0yo!L0+tYIc_gk8WLFK7|W(HN5%xNExY= z8vIg=u$5uZ{B1NEQEmtBcqy*eLvX#K`u^N9;3Q;YEadHy8)7li9pd9E@J%3U()Uc2 zVN~s4RlrhX+gq#Y{RZBtrfJ|I!w|EPFzhbn-DIAuPH*#GP7TOEQ>g0yHmd zaM#9G7h(PF#sLwy@u1U3U2SdVI;<^HT;LR<)JL1mhL6Df(FjLLbS%=d4WQF8JvSI< zn{1->Vu4jghB3(oaKFA>0!?^tA)MtxA2t3ovnj|Qc;f5_TBd)98+4my{oYF$b}d zc#UALy{|7P)=?p%J8@abFWk|nD5Yc@ zkNin7PVTS-mts;iWg8dDYEnMUO&@4{@8bs5YfKws5ch{jB0Vh>V{wC6(kA8XljLoI z`*Ae%Whak}87}dCd-t`egmMeS=?E;u^hf}=J(|<9#Jl^lRE{@JB1EfMT@bAUK7qEX z1!4ydczOjH2{@GV}_sH_e#}{N6EDEbK_sreR0)rdY zXtoCfV>C13y6Hk3jZmgbTMJ zH1E10wRU=KTcEtGo4se~RdqerW0k*=sJ+`MW_-kUfe|#-jGTsdT0-7OOODrjb=G?e z77MCtzFoq6?7EGnA(wu9!B^6?A?~_mGi#V$aZ6erKZ^WQ4`K6l>Hu|VWVxff#Od|1 z^|lCG$+&9btNjL8J|_4Wa?`3nO#pv235{!rL^Za!s5aw`$TsA9Dnr@=dC_+T;`5Ug z#4DJxI^*2B9o_HuewW^l20v1K%*>{@I$}pW%U6g;({{FH^}wHp)Dk>K+%<*HAd(!8 zMm$*&Y(vm2YwURp>-!7DI=xP2H(=$&ci`EnQWtgm3W$XLuE$u?$MEacj|ST_jC>&0 zlyCc2sd+F`yzFL=iWBN-QLy<{>iM^($yto?2nZ~%1M~rm9bw@uvnnyZTA61~1DLCW zO$+LRsv&*|##DOgB3Y7f;GD%JNwH~PV8CU1a7Hlq7zb%v#X zB?C5m@HWI6;A7EXQ+SUBPerTQ*>LeE?gntUA#JT~E6JSVK&YJ~Zbvh6&ptaxese*% z1OIw!xZc``S535l{EEqdt1}%kK#`j`e*3=25kR zAk7j#Vxe<;_!$}S1W3tDbnROg)yK=g(VmENh~F#@XJvqq2yNCYk_G<7j)XcXD<;`G`vavs{!~ z5~ue4sVA?O0Y?biU9O56$>9k^2eXc6eGb^Qe1;bp&s|$%h$9HLJO$HBteC>zuJFu_ zfR`^bth?AFTOu=%ZJ=6!@AHfKz;4b_gv{yba<^x+IYtIxkH3}UuwR-3S4f8Vk8nIH zdG(iM)@Y2Jri;mHz3rX7K1-YH&1#b(4>q`Xg5b6%uID$V#O)Dpk&Yf9 z%m#5f#EY9d`F#Pa@O@9)!!xzDn>q)-z@|=VRx}k)z~ADuYx`E6@8by1M@58gs2vU9 zvrEP8Mqa4Z4453MN#DCnoAWdnG=UPBQ}SF+53p9Q zJnRgVQ2ZDur=tUl0vM;+eaqTF4{+_lrrf|-J?hL_nLtZT>O6Jz74A(j=4>fflkKJP zFish9KUsm-OuG8OuH!L(og_?XVQH9j?Hz(IgO5YbL*Q#=>pkRvtnuombg8uEF_~i< z7lY+7d5jmCTnh`c=Tf;{?#d{2OPH^uTU#sO`C1hCPY3QEK2sKZInIlXkCeF;u{uWa#o*RSXW(s3)9ow)MW3t8SNy!-Cr=14zLK;b0lV19wABB6Jz z9WBVq0A<*zMaqvL-8RrM;gw{Q(_=Y?JuBsYrcb9=gV6yuIkP^|6n5Lz6H(iuN#BXw5ZflfG8 zlCzQVJIb{wbH9t)5wWbsJ4T@YxTpLYA5i?tX}8F0UpiDCP`v zoLSgJMmgj4P0G;v;28NZv==c9PH-{(ka(shY$vOY>)wIJa}8v#fewQF8{nI%;u$a2 z=eF7pF-{bhp3W;}w7Tsb7g*7@>#7}YWN2&!MWsG;57@+TSPM>u-oTER+mbo&CIl=L z=snEC%OiJcA@=B}R$a5lQ^PNft!q~W@|}bp?Nv4n4iW;Jljm~=PB~yRK*MCo z=@ljCuyzqrkbnxDo*@CXq$!K(@8h)GRHNg#T9#&TfY<|08?DxZbE==w6%cL-2I>hN zwH-lr_L+6(cox#KQy|{mO4vwe-vct^V!v`qE=q`y-)mLSnECF+8ixi8SI9RLU)%c- z*oM^3=|x~5a%w`1ylTS^+pj45JUy&!Mh>kG*2-#g%BjckQoOxx^NYmJ4v<)Yjo?_r z0MjDljz`+(-T8>uCie4OYbKfypZ36vJ;0zRcJ0Nii|#&CwTPHUW#l;{&)y;ZD{Mh6 zOz)I@@XTV2;b?iy<0-6fr?>!9UC4&|;%v59z1Gb-$+fY*WU*aB)rHa7uo!Ka*epf|DyNJ54j zf)e3Z24vP|Iyun&7!qDfyN6`-6@<@B8bUB(q(k+H z@f;s<`wjSZmxlziy*}!wDA;kvkVC18m8TqNOl$kHELLEy7i4uqW&`4+L1KBXLeFnk zMA#CDdqfd{J%OV}0a@P(3ly(2fnAjbG{fA%+J*yA4i&+OkbbdS>a^by9^`ZrJJZxH z$bCp5vDzt6j=|~#v_6~Zz6>Ao{kHo-Ha2o(U9p@qxB%F6w{_@C8=K~vhQ)3~SXQ%U zkJe6vi|&^h1>iYFb8V4WV=|O{B9Tp^aaKvXH1@D&lC0D0@n(H`%5nEc5Edb;90!wo z$c0C|M=MM2%ejcwiWc&EkiCxVssQ4KBqGzrz&{Lnzd~HM+`{XiYcA(qv9CmRhfK`Y zAVMheaGKmGJF~>BqKjg7B^k#$32eb#BdlzSkYeg7xULNEPIN?X^6h>Cxw%1_A|B8} zDgF0yDEBKJ@$TsPmLXg|>S&1^V#sxLmOQ7J(PN3fZYZOPJ~{4LW&G7r+-5wE${i5| zi%G%|?R5=l*@YMA$~34U8v!~MaD#IrhkS7p;-)!bRc2-eJjN2=`;iF-ycdb!P!o{({e;~z$nnzs|{>d`mn#3QP!ISPGUqlo4VqqhiWkcf35|7^bX=ylk+u%bb4^v zc^3jQ#BLkN^8j}MUTlo(h}3M;?rNC@4(6@p$$>8&19+t8!dSaNsB;3L&ga}9q1_EO z+Yxe&9V%4sJCl%I@K@YnS2&0R0oFFPMvrC4AL}6u*cgxp)e;9^nW5yBV{nZW(uI5_ zU=1VRRx1&m4Y;O-bR-VAevtb`hXxdP2wPj9vGi_lO=}>^o*;3j?+!(a_re92dP-oj zT@D=N+hWFIQ3XXW2*}-AYzjzr-b1o8bD5()o(mVnB#LZ_TrVi+zEV}5-=nynza}6z zxm=Cg%{c`=M4mxR(+q$YO`G7?C@J83IyLDQ&fT9wLL*^XdI4(jkwnx$O^^$4ud~a{ zPPqB`IsQ4a?;{JGSY)(G!7Bl__4UeO)g1DH_C6Tl{gz=ykW>Wijm_#}0ByDeo-pGA z4;;7>oAV8Fh;pcL^aj@w6UGf_Wws=qpUH-$;)7gEdW}=_&E{^whK3{8^9aY-)4-Fb zHUtiQVKJzgziYWh32>7N@ZjWksGO3PGv0Pqr_ft2u?Hw#WbpbNC=LUr4Fupu0f!Yrwxf=jLyQW>&v_3i|0$&Ws5-K-=#B4< zQu}CEM5rOSnbJoO64oG~^p*^Awk%!=G^H9cEb z8FT6(Bj5mmis82nJN zH(Zl*vO>?#OQ@G}*ze|}+Mc@^ggr~l9Go~>eTKRY8}wc-880`d9Wg7H?9WTzn3h^o`E0=)$9J%#oI;OupS8D8=*4uPW)sXM_*#Tb zs&^1CZVog)S&k)5sv-6u#Vn*>2@VwlFoU~EKBTu#18MCmjA(f>8K3Vhw|R>9S1_bS z8|VmY?F6`%k0=Pw^ehIT+$({}MGzZ^{2+WSgNprs*n87h+0ykq=ztwNb_P32_<`j_ zJKciY_pUx?&C`wBO3icCs;X6Mt*X9P=dQ7)HBU7-Mu~_Z1h6a-6d@26fy7}5P6Ry-#;v_wBwO1Zv7?#vW;Qfz`r9y2D?BHhi2NFm1s?#2H;->9oB= zuRq&$*Mc9Sx>U}~5#T}SW!3A)-eT_$Tj9wgezzLS8o_r!P9~}Q)%$H@7cea1f5D7n zoH;w}I`#x9XM7RcxApF{I1v9}n=v*9tD8L*>1sy%I%lS<{-$S&VVhs~X|Y;#u-+fm zOhg*c-{CzD&7m0&T_oUZ#*T(3KRt}fL)k(YH9R+Et#j&bOJiFKYfbNtimlLv4ocbq zuXQ|Kw0&vx5ZhJCIY6PNhJM%#NvzjA)On<)a@BznZAgG_*%@Xf8ynH+8`i8?7&RBz z$C8qT3A{M^8nG{^KsEy4D{Esfa^yyHU4%5rgHC%B1k#bSszjqba=r&AgS#N{ue0>* zg-@j*@6DkLs;r}<8$VtJuAa-fprtCUAc1kpgY+aCU8kdD4vA>n($T(H*# z@Bv(9HCy$wQ1KUYR(uTYvx5J zE^IeEll^s+_^Qv?{W?o)ws4K%X=>PO!;0CpFI!F7>-iIF<4%@aabxgCIt$U)Fx}J^ zluI%X98}4>W_-P5T63!zay_&I_M{q%wWGy{x<@SwwX@2xUI*pITgtT}#_e0O%DI}j`r)fnkhq2Q!qq3t-gWRi~tdYZwhub##6Q-;W%*F3X$6+r! zTnZ`P4wHh3+tl6%@pNN9-W+djmuSU9+rcq#ZFJqf4;-B(BjqhVb2W}$%m7Q%&m=+f zF1u{b_V{>%ng?JQk=%Mb=3*PHkO-SwPSa`ztkGqWFfn(XF7hD9Rl8)mlQy>*5x2{% zHEDHkYh?3?Vyv_6t8t#q+slH=>vm?gJiRg2q#>1EO3b64DNOI*t(k0*gN0AifL6NUmva8 z+^MNIPN>*R*j4+;BF@x6&1yRZybtod=4r#D5fBde!-YmVh?H_6k4R$g&_`SJhj|T* z(ZXhHx=2xMKo4wKP^n>hep1fn!ogMHUD&5PBqnL74w%7jd?MxLWm_L1b}(m#xB0!< zp!?Ss&GQe-!)&3qw*!jCd?I;g_jM$>eTI#77|sP0sK9DN=uOi*3o12_hCl;>N9v63 z`(O=E+STT5K{}3G#zrRPXc*T{=^&e$?7jKQ0j$Mb><-`LyRB$t-WIOjcpM(ek_3h%6NVLNjG~*knDIe~`etU1lsI_K* zG=vlJOw#BL_v+2cr(?@b@Z$oTuB%igD%eM3<$7Zjb z4=d2Wo4O?_oT_H5Mpq$@3=pjVPlos_~e^CqBtJQ6#VxN@0M z)y8D?Ks2WG%CE0R&_9iRj3sRP*ng$7y1r`dB=Cm&l>|>iHXm6WPtG|S ztt8;9`YpP-TsGR<&aS^j7q;4SYQ(OPKhnRzhrn^dqB+Z>-aQuB#+_gF3(i1IXB_nW zk{0XgaLV#PzIsePGNz|qevwSnN(lnu3uipm**`1OH42dVz)ou?HFj}hcSKAHb-NPBdL{KRi&pCq=PW-1QM(}aC}23Q zR7|kXoXO!l4dksq9yg=$tiwo3V8c7#VA-5iPp5|2F!H3kZ8w*# z)*?v6W!m)vc{@3=&BOkxtjmGaFE(0p+-^*ZKw423zs9!i!?C>tLT*HtbpZ+PfrG#%@B()|SU=!f5+~O=^s} zDrO_4b85HYq}r;-!Mc-A`a^Dg0E*!tOcB1bj;B@Ibf#Lp6GxkV@2qYGUZHlUDjQ#? zy?TsdK6TIc*S@rvp^EX`(5%^vq7za>&N`@%VHb;)-8VAU%So=)DS(q3b*nXM&($$- zbz};dpz-27IO^&KDN>!aW%1`T@N5oiNuy|ZI4vaF)is^c!Zn#S{=&zTYId3@IT~l^; z$X}{MM4}RYsReRM;lItKphcGcv# zf>HF`=f>@&GBYQGO{c}oBsUG($j>n69Vx{#mYpzUFYuBNmO;QH9Ot6KnWYGps3gHR zR}SIl;9?HY0PV#|ShY$kFLl1ARdwl&e9bC>S72J1y-(mx@Vt$MSV>V@7C9h6i4!$j z?pd!2b<|g(?jP6(aYu?plyIax{C8Od2mNAwl{nxD!A}h}9#t`n*;6szW_ENGD&&et zH5oR&`3>i0&lS{UH8AnAr?PfslcP<3me)r;^V)TRtOTuO1tn~bgN}2ZdBtWn)xy&m z$xLa7Y07DOY9nPiCV7)5v*aq4sX_*ROSl*194S{3eCS6w}99*0B~)K zl-LXa80vB86xYv?+VAt)i0*nK^qn&Ix?a^Od_=~S%GS5b3#qHTx`C1%Vw2gk>=_{V zv3ZR;R&r7?E@2$I-6GOROE;!P6hOvvlrHAS-JGWfzol$ zGgGfk#$Ef%`TU}G`(7_=qRvQT&nUrL1<1pa)LV|B+uky^H#p+IWL{hu)4IG?#`yw? zLQ?NM0*>fpR)vkFyxI*>WMGK7F40noko47wXFVVn59{k?npOR4ZS(zf?B=a_ z=mOTR5_n&jEySBIaF3bO&eMeeP~&}d@ll?6?p=m@`&!ys>Z*n2NLC~^tcLz z(;%B3;7J9pFAL~lekqPQWDn-|*oG*&0>1MNuZ+I#yD*87F9ZmY&Q+Wj;}&Ib6;SEo z1zRX0Vtp;^=%3eScWVd4_qLr)Nd1HhTkLY?4Q-%la(ltTtzamnam-OPm4@Rc2D@?C z`i*Fb{DCYgficVK>IrRsZOvz^QOoSLOS9)Yo_Kam)xq2-ft1#nae5SkaVU3_hUC}F zL<8t}LAB)~A6#yIg*v}%kw~Z)xW!g)YhDK>eWeNfUyxi4CYp_8i43V8zB4)sNj%76M(rgB71}kEc753*1+&RV2>D0NKR;? zdS1ZFNXwM7!z~4W+87d_c-jPD`dXXu+GRparS`H1b%<+{w?Uaee`$xx+gOE39|G z1z^<9+{yfC;%zR&>vA2Q$Bw5t{gTRi80+DzuXo2%5BRE_H;GT|@n~HJKH`ECj{*eN z45{0WjS|h6;7B0s3h11bWtFX4zV``bUZV?&TCTLjtZ4>GhT4TXD%EOxb%*V$Ps^vB z*a8NTrYm?bf+uvt#5mmQcsu9L0t@M8sw3gugBkA40_?>a*_(lRJ?vltQnLpvFSXz6 zx%y?kTbz1?awYDf=ErEkk?}_xgZT^Fu36l3#6{j~lcA9KjG6v%MW+!E4XMHcJd^>rAUtpu8uhWL=Jnq}mX)A2S@jZ4~ zdvT8J>&TPS)%dC>>;6!br9;7W*2wvWJ~A)m^~~|c^P$CfTHf^X3ej5GKG@7+(!5&k z{-~P_g@j%J6d*l;kFAk=1nP8=stAo(I$WvEs2}lllL7AD#N$ola!T`s=MM+Rx#G21 z(k4MV^YScQs1I1KokmS+7WTl=Ksk?@%)3K=5e&E#@%Q?+zVO!eq%Jj}J)NCE*&K9s zmVTs*9El#HAaNbB6BjNwH`(wx-LF*|C?yDV;-_Pu%fYM)*fy^@J>>7$r)Gm0snQoGeZo?UBZbF!voqIrVj08O34nu zYoM0U79E1sJocz-%IkG@xIb|=SY6K<3NNC|oZvUG(>NQZ73}9Vuk9;#%G5bl>)25K%SG`*MSeC3&*Q>%1^o3 zxW`9JrXGU1Px5yk;u}!t$}5!|^b^70BR?&bnOcsMfY%nZ%J(OYtHF9ksvvo= zC=1!5;#JD{Te)w`yX|Si>@^KoRvz72b1jRl$8{c92<2D)j&@bJ+OsizU0Jjz&^kJy zTMUk*A>ep@-j1F=vo4Z_JQIRFFxptFEC9l!v!?~Vi`dEA*R5?}xL)q-BpY4+0TNjDiu-~*6>6_<0aoG$&o^+t=WWGnhHS+3) z9bmrH^66>E@9rSt;)k80Ti8oPwIwHk z&Z?HdI-pc2Z+K(?k5Fjdg4(X9lG@wWpmZB}PEI*om@*_E=(@Owoh`BJGBO?>xIX}0 zJeqIRHoZaW7(lk1=m1=W=)^_f@&H}TB@X0z2EVjZk5NN}U`TlpqXVG<*dWP51m46t z1wOJxYD6&fO;5-FXDAowpHbKVhY8dfJHj*gItaJ`xp`J$LIkt^2zmjtfq~KM-E*6a zFK$U_e&F}qu___ zzzYOCTLf^$VwzD}U#}v9{VdV_eqRkZ461wG9r-G9Y4LUKtH-_r6yBrEpfY?5AU%Vt zVHYysZGfMHubJSaT$mOQt_8IgX8}NlX&Gre2hykK0+??MS7Z^D0MCjUHY4CfD;#)L zPVk9lhv{K$&VYHL3WKtaNo_p1k2b(Z?rt_K+aNdw0>KKou2El8O>cZSiVaL|6uCAw zDzB2dvN8@dvt|8FhH*wreocXjMt12kIr>AdV|+DI_A*JB$BOX&tnC|Y7aIrxH*zx zjT}XQMqW;Jx)vfz=0cS9&w{Dt6sE>+n^$#i0%j=B!6TFNih`6GibI)yFch>_UyV`1 zm28jtux!)34|AB__t*^aX$IJ9t0iF3fu%>q7*n+2$+T>(Vg`Auqg0~C`y^kHxle4U zX}OD-Y%wfK_^K=574VrVMmx)7i#$@e2ziLo(jKGD;qz3%|Dj6h?kq~nE_`2Q;P5tF zHY|d&bEC7p0D8SR#0nSBlTK&Ho?PUF&w;yuC}7tL1nq6Sk5LEv-$8K?sn>AmPD4SF z+kQ@L>Xu>jNPN+VVp*+N^brcHRPG@2wMmnqZ$hCh2!^B!Z0k@{HBypTHJfK?j_l19 z{I&Wv=3Qo^c2$iMeQLQ_P{`qntu);PBf)A9L|RL`GH|#}T;AFY6BMDW^qndL2ajOo zbmIYywXX-SN=mok<|TQrHw>2mzN`||LY~t>o+bk_nhUFBUF1YV5K(uny02veuFPXChawRs^-m)de!PfEOOc!1F_HX@oS> z6v!ibx*~X>1%H&Xad6Au3cVmOkWVJbE8>d-;n%uY&4|y$6ad*SSu|rV;fDz_E1-{7 zZ*A{}tICYJ>@1d>C3gjR59-NoxHufvZ{#~5w`C&uMXzyMPmU99XO9D&AhPU4(~l!@ zX?We5B%Z>h$RU-t;zuY@7T|aVQO?a2H;zERTMABgyVEw?+8E(&MauI3-KBLx}~ok82p%Cpx`h zecLyG*J8i~+4TVXaR?3! z>~AX#ryZbHA8VQ~N%%R3{trJ@I{;E3yj2ajD{EQ;TZnK!K6x^+=&zn3N))>#g5!4#Xy~B>fW&wVmV3$+599sZwXGu6$qmM^WlAq=)YdIX@+Qb(k zfZGZ%{(w}ffwf6{%Ji^fPVdu-lAGn>OJ;n-S0CV9E1m~@pisIKW(Ad9`m`#+nT*H*eblh0D3l0g16z<5U(*)72QNcEyY%~UI&frK zE%&-qEB>Zlm)(+p&ZpMS&7%pid3zF;MAv~|RIQN=H`Gz~&jNj-2E0L30qKcG!McvQa#=(-W z5g5A&f6|oTQC+)8Qr{hbM^!=(TZK!cT68mD10ms-aCgzDbfPyk*pK4abV0Z=Ut_({ zXzq-JYM_nqbF4N-g9%WUfeAfz?LlWbnS@FiT7BrQ1evP#<)cO&BY_$_(!CK-$s5ylDi||h&8ZrJso%bC0HbTR7>TX*VDJH0rEL#<^q`g}obxZf|HX?6zsS!oe&351e*^L# zLUPCf;zGU-X+r)n$nSvs@^63f;;%#gGUQJ}4iFnMg|s0IQh0zX#_+{wCz-A%6+-Cm=rt$sjw(64HSDBar{*H@|rC zuR=bA{1(VhfA@WNuR?wX@{^E13aKG3gonHb`CiD+{-zf%{$t3$ z2l+Q4|2*UXF(B_lz60`e-}&OjzXkabhz0q5klzFOd*AWm#b1H^G~}lse+u%)AUjA4 zatHY(^xt2H`~)O`d;s}JA-@Ciy%5sB-vRlgA3|dK>9o9Q4)*EyzV=R+1!*?eV88mc zciz7XSoIml?ZYt(A9UN{?TGyLr}{RT?ZbhsBo06apTu`4FUa@juYT=oF}be$`2U}F zqK514$%(g{fWZ0w)2AKYAbi2Ld$}ELKYaMKgC`BGb2~7yQ~%QsdOYS+4_Qo>_s8TQ z)_war@7`&o4Q|}tJ|P6QOVSKrs|5$(H>dLc6h_>SD3ot(v~T+9j(LTgZAL`wS5_nu zTRsoM-52Db$Del|It+&@vMS?HhUEYW4U6juH}Cz?@7#TOrz&^gYyA3iK49`SzWh)W zmAgBE`-Cq)-rJ9C&~F~(qkbiiEeMh%Fgz=9j41Ntu|FaMzTNIkzmlUFmH|Vr%t$he zH~sj*w|>Qe$n|AOtedcKLhV2r$tNA#`RX0}O2*|Bk>dc`%}I!5ef+>%C*N_eWRb%Y zvM}=*N#K~bZ+{~P2KVoWFCJeNjg?d-n4Vsjm((Y;z(tt@@9^0xz7yNg!*}3@DxZ9J zKT+RYqVSP+khSZ* z%j?oF%DW%F!^+{Q@83QD{OU$4{@#sP`%Qm=?wTxW$t6Ep198bWAHK*#zF8-6!N}=EI`wnc2RrW8 ze~l8MB!77O_wT#rt$hP{%A^CHU*T6i?Y02pyf}STWO@1C?ffFEZ1nyo-u129zI)fQ zL$?A`k$?9sF4hk-@HRi+EZk3K&%-opWeZaB!=dPQ{Ww+L`Hb^|eH;a!V_w|GKWR}+ zqELNBKJMM}J?l0<(AjqAdtZJ9B!d!h#%Fx??_$e7`nO)f8JMWW9rmws=il9?R^fjx zTKBg$v9DDO!#W?bks#87`0$B|?jHUEJkJ08$Ntdg{`cm3kC&69H~;l`3shMbAN?m6 z6?9ShDfWRk3j?MzVSdL7_3OI0OTK_@(tnAaihn6MEceorJnp5)s4nBU0cR`9N6-8) z>ShKK9@A+NfwAw`d2wgHz#x7Yyuto9aC3VfKaAYl!cIQFf9I!(yDL6`ga7?I2k2nC z*Tw$of53C^-_?HZB!&M0^Hi06_f97#-UjsT`cJn0cM5PayJTN}?D01<`|j>XpAL+- zcKG{E&3~QyMHQAGbq9vf)4Bd+dB8Ux-w9>)v9a#(^X%xmyXP|q=l>8&FYV%0k-M+R z2IkoAv3RxH7iE%PUZFsc{JyixJLZg979{LzNMH}`M5#&c83gj!0?}YqIu;n?( zS0L{~emCSFhWstq^#3K~FG79{@=rp1$X6i07xLR7-wFBKu=oE8yu1Cv4G*{5VWMcdOW*_g)*g5B_`XTbAf;$9P4)A20REdy?=z?6Y!T-&{x^ zd@1+C3cJNVCeDRo2Pf7C??EGi+FHDS7rzdCyR4vreED|O$H&C9zg-r#z|zkuSY&%U zeDC9S5L^^6g6#N?-1^>Z_&l1?b1mhaySt)-A^6^xU%h_4kN4&4*YADhD@OnwYzy)T z5AFQW+H_Uq_wEHc+&gr7DS=AMzhW60pc>`N6bcTk$%4M=Jv8(lIaPBCpcR zS2;%b>fNdUOSPTH`*{1+yLNIHC*@sg7X^8}Z#-$fZ_p2)ynXbIJ3Lesp?&Vk_Ojt ze_iz9N833*pbu^D)syxnE%I%!K43vVSwtQ+xu+_^Lk~QiBlp_fy=y7JV02U&=7!?B zF9qI~U-}LsycAHR1#D%J6kdPSix1N)XCxE|u2aMz#V5Caau2-RuZ?R-dYlHIW41on z%9v4Ps(JTr2IN}Um-jw=W=DUx|LUH4GZDY~^*iK9-R(&q=XSjH$s9#;KU>p!KH4N&8OYxiP`fl+=!fYf2YS5K%2jNx43_q+u*xRggc_;KO1=OJpc6k;n4`s zUj5arZ9Zhae)ke9&}}KYqwd&Gy~NG*x?SVRYkk&>kcAEpz%p-N{&D5If4YxfnSJiF z{?vB3bsSm$p4{N$HsRCh^YzEpeKNQoW;`}v3My^9Ae za{D8Hg+Ue<7?{z659q0l@i+wEJ_m+38Jr)TcNpZD-!?>`K>CuaYHWA}r*`^iIGQ?H9OB%T5s z_5RIQb?*saUcnWBm++DZ0~DLw2Lku;$0MiS9*@iiOkL~&w=0u{ALrh#NB)NU>zfC0 zKI7=ncP?n8jgC<>t8aC52wz}y1bGtSW#S^qgD^S0y7wX6@1uA7C`I+?O#^uU?xvzV zJ{mgulh3^A7RBS4A88oR`|)-z2*`YF%ET9$=3p2rZoBHkJ)e%AC+B|d*%!Bf<7CIX zxIH>OzQkvpef$?_-*?}|`t<77gzt?LqBZPDlY*Nlx|{eBTrzJa-pAkV(zcu+{%3$j?Cj zUC6%-IYPbxX+pjm^2@N{e-ZKv5MtB+3CNE@e8>lo-wF9!u;u>)2#Mzt8()R|Amjz) z@56roUm?E$A#wemg#01M*CE8l{~pNSfZhI6kbfGYLHdvegv9jkAm0J`yRg~+2gtt- z`4=F61ag4TkbfNVJ0af#A${}rN&o!+Ki{4fxVI;6I`p^0i75+`C%B69((z;os;|ty z^i+p`>2RzMgfWK|9q(~+Vxhc`uV$&KmFZ4x_4etfD#1H{55!YASp}JU(8O;~{aKXb z$3+Tv{G5ST^@{{vAJaxY9{YbQ(}R8Het$geO%}s_wh0b;vg+fN9*=uSU?4}`M`u6v zNDbeALgvV)9{(oAfL!}A4Em`@Kg%8YCP%$V9{JQ`o@I}G?5M}|k#8{?`9=?Y9;bNQ z8vhUp9CxBD+%i0#3^+765QgxRYuMP4wRma#)l)3IikMe6fI^5)a?OpOm8Oxl+$jQSr&G6_^y?=h+56TkfA z43hw9TDZ$wSt_4+fzN#Pk0#VZ0?X|d_iN;{WR7p!ZSeB<3+(MqZ$AC%-0Y(T84dUN z;aBHYBz@)fO3$-TJ|%zUX>*d!B17V>y$i`KpK!gW*({&oA|$otc9mZ-x8)Nr_SPf) z>L^K;sKJ%3b&KBK{LS{_Y71WQlCeeT*2eOk1Pn49J?3#}VcWRZv$q}K zPrU|h{dHac`tC={o9vCx;kCOTy-zb;9*6F2M<9;3=kxqC=DiU6e+8@R&k)P%8~3>Y zZd%`VcW*X^XIj`>4(x}`WA78+@rRFF3Hy~> z#?a$O?yZln-};_^{=M-0qxk%z^!%gz{G;;L$G2~#KL4I&$mfqaup32DfdGAb2iUW_ zon0ezcNadi*^@WEIo=*$lD$Q?9+KqW_M$&;!UwM$@>bI@DG`lBY>oUyVp(bUxiSDB z9HVctq7lsW?kMt~jSR%IlOg?t?v zo#_g=kiF?31FpB#XR?G1_rvC8IT##K%Xs3ZRDXU15=~EMP}S%IGd@Bcy{icE1&qyN zyN=^=XAKrPfH1ckDPa9?oB*Rnva--#gI4-Qe$OUcp36eESIj-B`|oNI!23lvBOI8; zVSHfTvyqc=P%TBFI8CYZW zVcWQ{>!Q=3w1Whq78#5T)37kM;N|X~yX>GfY9(RZWB?Hko*lmo2oKE>STw*_nclco z)a7~2cq-+amS0`YXCYN+ITEWiN*>D*z#gWk(H7M9;s{i4)cCTX_{`QQ0N!s6RumT= zYTE^7**VX~+Mu}JIBal81avvD<*xAT8(|gz@4(Io&nK4yLl6K%vr)sIn#pRt$}I); zcQnw$eA+it)bAG3q_JB$o5nhyCxSv{dtm#8d-?#L(^b^mCQaZwRLgmh&Om=!6EYl- zbjFF0dOWBzvBemZ94vW zJFbAbA6|+B{B}jSEDuy1^nv3@C5ttf+(O_QV)E6V34YrtfGFY^L%K$PG2U!9Kf6vZ zJ7O$=%}1RAlx|sHG0T8C=Q4f(2nsvY7pTFdoz0YSj@7KaTLa5MSOZ|uUAm&Jn%Quv z)Z?pB@!bPzf@y6ENLlb6q1bW1okZ5?GNl9S1l$2|2DHF|NniRt2ve6sGk2?TPpKW& zNLGWc7Fes*HKpkBj-^(pZ?$#s)Rto~{Bh1Q8=q}ppn#ZTaBT z9FhOyueu1_j-8PMix@@Oeikm%BOoCp&b#(YydGlvQdZSc2~JVb1PY_y+6tOcTP5Gu z!QC_*Fm+o#tUTQ<>Rh6vvf>G7 z7O8n%O(+z7o8fY25CF#vrN3aq1c7Qx^y}d^RwcA)mH-FhyzDMZGaUQ3;^!;_%PcR0 z6ZIU4)ETv~9LRyqEVRx_Fw=8MDrd2tr=qCRWq6E%nb~ceKV+$puru#?MXLR*7@peBs8nPwr{u;3*9DvRl4+&Y1Wh}qw2 zw5NTZR*E^+vjb}AtA!(`C*Bc-UVC=|I30&H>Ctfs4p7}A#Mo3F^Rl!Aeu%^R8;nCn zDS)=c;wkI=bUIO`a{)FfE323?ZEm^){rzTr#ztmr7|B~Dcn45V z)_S6^RV(RiH=t~_TIai$kqqjnhmig1JG_adu(y6}SYrVY}faydQ zF2iPwR-^bs$kTy&^#SH-a`L$%?Xla>4})bNsQB0RWx`LV%hbrC`J{i9-A&FzCv%-+ zat<$|6LPM@##D@#o=lgnv&w)dSrq`(;Q>F^9%15(azt4mK#F?9)+8DhYl+PPpTx|T z6B8J+?WH+%ccS*LA{KZ?XeG(gi`As8yl)yj=^Ub1np*%xpCID z<_R#&gN0t2vAzJV5T#NqK%*`ZZDOtFO2Cm+d>bG|lAjxx4jiyvOi?U}Zm=aFs5P*2 zL9t}85rBetdlO%+JmfNS+=B|Mp&gW(0c_&Mixl6QuugehQ?ZEwZ>`c*fgaD;Afe;5Pv`!MCk-xMx8XpRY!9U{Mr$6pX-`=2DBBZZ`2hR_}AM$ zF={u?D+0tb#8PbnM;E)nXfIUPiz6};1~kx}1H$)qk!MqhQ=DZcrzH#J>b!%TX1G*kq(RsF_ zKntD-&;@TCZ(T_q_xs|kzXK;Qa8s&U)$%;Q6a*b~1O8vIwoGMZ4m|lwJ+EWDC{Rp% zsSXbua41K;&aMHj

    ^Mj*L8uUCGP=ETvN&~Et!!N)ROYaD_z3xxFD#eB7Cax`#- zco1n_j+tPL4hkS?F4ulLgswJRk@Z!Z)U6X(&H*w&FvAs20oj+)b*E3oKogyMfbK+q^6w5leN}FW0t$BVO zsS|&Ct>R0&HJM}Y)HC!2vyOF9ToFtNp&IX%{Y5*hIToz<{mP3bmxQ^lrylf-d~|i0 z@(Pw2F1K_j%(3bNpX!n*TK5EfU66wMB7n_&odDO1?+injJW6w3m|_>qz~LcUB>0Zl z23(Cjmdx(VI46vgg34zY#Zz#ZXJqeAtU<#QMwf!>p>Q__$1m{(bkj01x0;)sg1uxj9|wgp}30Ai_P^$e?kF@}n;8iq$31oMPT zyu=M?Z8EKHco`Dkm58o4f+8?)o>k@83pPb$jk`@H$jP=%Rw=f|BLp{`F-MNj;@Ao) z@bNh*mh*HJf-q6O=GI0YR`sa9s$P_DOJKE#1ZS*@DJ+#4(6NKkIZN_XV9E0zxuuf= ze7*Fvv>^;yt;4)tXRw{9is)ljp#U=HivFc)GXJG1kh)b9I-ZyTnWed)TA&+gR8>3< z_aV0bJ%c$<8+ph&Om1x2>$CSi7q6GtJFMR{soL7_R(VD^_|io7B(Rkq zI2!~!iU&yAxkV^U^XpajSXjP>HYowLBb1Vtlk$tOw(_9-ebbEnKWKhTCl^8CRvT_lMPEXkPxh^LH)lHa8da$|8F*`D8QENzpQ zte6;oAPecW*JQtQHr8yI_XhZ&2rewnX_VM7A>BoPCsyZ)-Z5MBnBGr^i+I75Q=k(7 z%kr=Wp4mAuM(mndrcmMUbuXMg3Kc-5IcI?1o5wB>eyEuay`-z<)RtgPov(Ia!J8pa zftN<~#2Lqt8lrK!ivrk2b5_$C>VVDnvMBM6YaS+9QKFGNxg1}wAZqJ@8^AikH&AY- z?D+_Yc#ua#i=m*vrUI^JZ{pOz+6S{IBeCNHfQ*Vs8yj=N!VW$|NIY;4Tpt5~YD!{T(=VZ1CBWpv&MVi?B<;4rBY zvWTo0dkjUHV2T6=B?`m`%h41wYuMY(6XP(#c3RR418$)g3ozJB4!T@V&rDr z2EgVx>za9Z=vMrAt7!7X2~Ox!XrYYVZ8sGy;8psh)PqYF`n7|-Y%*y|k(8IG~Kt*eMnr;3MPS7TWmA&coKFC#=CS(&()t*!3%G!FXe_=I8AO@2`D0_^<7) zeCSN(BK%Wx*i23wE~w$$+b_LYzuSVt#`5Ad9G}foQ@~h~Ht3w(^V(quEOg>lINDdL zkmTS*=$F9aa2PN!_W^`fgHxy7Gx|j?Vk89dLOnJcqt?3eFrkK*Z5t1$54cMM=Y8Sd z6E5AD0d_VkW~-I4ScMZ%oAZiQpTI9UYmee?$^pymVvNCIY2EN)#c_(kyv`!Bh7f(` zwucAfvtsnf+KRC?2&HQZTh=kISDMZT%TANv#2Ma$9u9Zn*ry2Iu`nAH@Y}AhTVZDf z#XP4EF!n9*j9JUlh`i&l0opQPX`K@Q$<2==ol&iIuek+Twj+v?3J(tu%s2^~tXvXo z&)P^kM}6syiQmj1Tz& zo~(9r@bw+N+hWTsI=eQOqgHds<;~qz$yOtCQqIx={F+B#$GW`ZT>#(ZI9H$r8b<&@ z7Yw?(wFX+c8E=-WZYNwq`P^Qu-F7{K2E78jFYyCM7c;!<7IXNbLT6STMHRkDXNdU} zP#KJLXVhj+g!e7j6%kmd2XGOx4snl~XSs_V>*PtcbTx-p-klmnV~|(|E%NP=6z;~8 zHs3kVSHlL{ZN(aHzj^YUGdo?ZrsiP|IQdzIB?Klpuln%K>8#AwIdE@xl3(O#X+X%$ zd%(i;sns~{^)_Q+!fU4D)5Tg~74WKTH? zd>H^Z_JE@ALC=~ zX%AR#8be{P0V3Qq+9uYXM*~2$;(r^ST3WA;&%795jfV#|7>8Kn<+3Cj|D?fInm*B!!W?hl zpcsK&l->-Fu~TrP4)l@p;&7FvtTj((2+#m^5u{U>N!gbBuoMEKbCC7>#Bh8ha$df^ zOxnYOJo0HM`aZWf!X7yx&Nx^h{&tJ$5Z-lZzyNr=9n>)sE^*BfXr)e|cZw*ti;c(* zDI+GB#SuvS)@286-N5*nVSQXv6m`0ic#d85TRRUc*QSoH@Vego$uvx;3%&9R*l;%B zVf%V6sK5X{iSUm#8rFavU#Y92h&0U(x97EVjrnq!8#wZ?yDrjBq=V*<4o+BtSJ846 zPWA5MGLHoTb`Jgdm6-JCDS&T=WsWqO3?fW=mku zf*y0eN}*dXX7%MTI8DgjwnApiRHky!Okuw)FVZIRh`vj()%dVQJOsey7d*$KC<}WE z9F^NSAbXd@K3M{9eA&}Xpwjp<-H*u${~9C{5eJZXegU*AMJ@Y@R* zLXrzlokLV(y|q0K86Ec2NP}P3b67s!?H2wDVYm?5W`A^HN_`2pWqFI25qC#;o?#K0 zG!1ibqWMG?^h*Lg4IF4S0(=Ywa%(D>%U)UNJI3X0ku_=4u%^RnQTE1&#+^BBLO%C< z6W%Qi7bH$=;#;s6*c!orbtSqTD5}Sk2YvHV@BIJzZvgFIF-5yPLK$1w+=vJCryvoQ zxfrfU(7MbKly5Z#>dy0WSo!u))9SEuOqT>=e6Vlq5f_(a39-RF+3PFobVDQ^7&}jm zu>f%nF^`AvuaX!=cd=b(Ent0DdmU@Xf?#d;n*ut&wVljP)$9zHz_10qT{*(O%UB<} zfK$8t^tvLpdtVPP=UJyo_S#mVRYeGcYRiBbT6E9Q{~44RXX+CAZ#iVL5J4WD44o&> zblhmXq=2LaFgZAuN|*I@ai|j= z9st#LIVPdSP6%I%FlwJv-k#KDaxonNZJu@2 zJziDZB0~#zTJzh40 z8y6Gt3U3yC&4T5e3y&3(%~bTZY9Y=D z*6}srHILXCaHgix=AI?x5Dj_GjA8RytZ*3|FXrexYQuZR!gtc`VbCyckL=4}0g(HG zW8ZZ4n@@s_s67cj-E$qaHI1f<0<1z(277d$jc!yj{a_-e5xkC8ZWCMI%r`}5!U+r7 z!qKU?#U*cX%z%X-b3E8%-<~wQN}4&XG?`A%rcw!cuG{n=G`zDm*|^h9(3x24gP|~? zyS{EN>XGj{y6o6j@Bx9~Fpj~Kz?Z-Thc3`s6i!`enm(WNac|tGl0AvPtXCtl=m?!1 z7t7PDT%JTkY!CzX8MiV2U7coqV&O6Gv8?O0%8U!05<+PTr{ z7g#j$AM<$=YrgLJg(nrJu1#aTw$|>AcEvsU(&Z>#Tt}O+@Z!TGV;7?q)M&x)!co_7 zn@bt%D)CvezOjTt5Dq|Ji!~pa?cJ%CSqP7V`biCeb`2`Ija!%?r2JGpClLD~nb+r4 z)!YCHQ%6`#XfQKya21C_bEPRp0-tZU^I(-88AOWfvXl@ku)%?bSxJ1@W=UezL=OVT zVGWPVr6|UoD=`&x6021wMO|Op4(XRxy*a~Uvs=$CCz_ahf^FT^^OXl*>|xr)SmTa; zUKR!(4g0(Uqjb?BHgerTTz=0E3IC+QA-83QQ7Q#Do5gOciZ#(a!#LLn^H%jBKTLc; z$S;>5aIZvrFAdiUcwYVSVGs$5PI<@$KTOLQ`-5C-K zVVBpS=HE*LVxc<}N>rn4b>MQjWvoft6{*1$qDRcA1|nGCUYOwTDS z2(AYHcnn?}n(mt_FHiSpk`EASR!(%8))qW_txf2GLrd>mS0o;mN7zg-(JfvzNIStx zc3Ll@UP7F)ha+RbY%XS?U%5(7;bFz%YVfg`%XHM*4q(?4T?-x7&i(3`W{$5Q!;a*+ zkX#C{w=;>qDXPv?@5ZHoj)qT`*s8Z29paM>b?9?EnC+3{G=%^DnlO9=xi-UgJh&Wg zu@7e2oG(47(G6kLx{<&PSx}Pnb_c?FaDd;Vkf#m!Y+C!M-L7siUW6>R+aB`bLgL2@ z5747M;%ix;Pma5e-HY=7hrKuHd0t)Dg!T*pLI?>71d}Zo?1NmJ#CB}Qs7jE|X`I+e zoY;<$s$|D@632a)*g_1c0Su5B0RyIt7$ET%uJ>HGRH%J^+&zO+-Sqpf?na~Q@~M|1*^Uz>2^nBMjE;a_qts<9oitmuWGhetBL3*TodbWhP}&e3d8s z26=_!b!K;$FO!pSC`x@UL{OXGPo6L7?Y0RH;kC3jQRJY>B@6IV-0LZZy~s*bH^9vI zlA}rXdAq@W_4@hT+QagXa%H_et9y#Vt2=UelDv=4EMBK_zM44()7(1|<=nF*OhaEC z%(fx>X~x4`VQ&A0g&?yoQ4hg7vN-L^mvE@TPwGO0dm#M_g;G8?_0N|p@h-R_nB zcu~-htsJ$zK=XlTjWs`Dgu=A(-uSM?OqG_>F{)t~vUc?i9w92O8o}BCdm6x9cBcb|IrEw6 zBKf#IUUcs8`}ZOi#;7-L+5RQy3XX;A4o@h&z-x%f=vG%Kx?0L9^clB^zfkFich{J^ z9af0zp>^$Ym&L@g8fC1y&}qFh25i^1bcQcid+=0sxukIUC2g z18)HDq=Ypj#4OqW_I>xB=*n~X{7C3i@!spTMXIx$ZM-(R^EcH0#hYeN;@#M-u*q&W z04v&OG~^UByb^6mv$gnfnA((usr!>OdM!`rdpGJ59$*o?Ev|%DSs)yZugckqu??k* z0Uw{8iduLg?agj7-YG+0OIkZT=OdYSY7C@R{DReM=$)BZer?HPL|9Lc^N-l0wU?R~ zic?5jU_7^cTx!$~)L(OR#K$~maSn-Crv(BtZcmz`HF-GNz~xlW8Qtqyxs=LXFKV;r z^X9Jkbn9;b-}~M#D}J*Yz}9DJBh7VSN5=vJj;jUt8-})Bwl^D2U!3rJF@d3)1u0_2 z+ZDH8O#yZ|Zdf0)iu3aHpwYrhB~P+vm~&S5~O+q_)%rAze!1F5J0J(MLwRai@JpG+lJPz zK8L%cVMI5;6@ZD^G<`P2q?y2fx%+iA+QV-v7iIO)pk}HLBWZ$j)drN6dV3MCt^9aj zLn_^&jCpq}l^bj`?)V6oIY6$Sokve7n=h;OnU~CQ`6PVuSVXPG8ilz?WvcV65($}u zE#V?Fknh&%NH5$TbUW zsM*Y)VmR+`_jFDj88n_=C|J}Pa40bJq7+mzd1%yca_Y&U0nu=1Vnf!Y_#zj6;RUWf z$d};RhujdLfvK#+Lq*Ji&&ZYc8ShA6=$y%NHk|Yn_~be0(fsV|WWXR&?PKnRX<)EH z3ul}^tkWBS%&D54dH@~^iS~NYc8k10U#b&y*w&4ZR~%7-Ug9w~m8NgMFEpk>K6t^X zLAOV@KR-WwT2q%X+Dw#uA2?PjiWQ)Pu45hO3XWfQ0?tIP+yC@W1F3sUyZ6g9^J`{G z#g*n6>e2%WHZ29g3EAvQf&SPGae9wk| zdu(FM9u_92fJBX%ujj$exUtkaLI0R?bgq4Uw{Ly%K@FqNw#zbER<9F|sORbRy|?TW zURC;f+xx7^uaJ7YipC#3-X_M<)AO@u&5!YwUz)wN?C(-ZN^Zx_853r?F2=cAoIo5) zv3$1mKZceFgjpQwgA}IY_xm}ae(q*=Yo;To30KSGhhJXTPLjV->;gV<9P!sIpjAIp zJ4WoL49aP^7D_mLfNeq(5V-s8^Mo#GjF^X8h8;n@j1LCCi`N3D7;*x8DWw{BOLngs zhPv;lj|fIO4pAe0#|GKBd=!*rQA5Us2F-h?*#|CCm#jyM?XP}FCTD3aNl1=@_)PX+ z!uPE$PrN-Al{Eqkp3P=KDfLAL9Q#UJP<^FuOW&cG(NB<y`@Jk{-w(zNauV6%0NXOv&88M<0|%vD zen+W9?{()#^0d>bc2!;&1@6(K?lMk`0SyFBhI)YHUv6*WNiaVv=b}M8%=b!GD|BX7 zTdckmxH`1wE-;u+sSAlSIcg8!6eRNSqHesV77mY%v=dlwJ^qYZ-7hoUzIq?YdR7e@h;6i3`p9rrmdM zT$3|BBbpW5`a`guzcMNT6He&=&?CR)MV>Fl-+Q7VORUmb)|n9pTJkdv1T5(|oP6>%@^e%mk^w2Sd`R%LvnK z?QjGlwI%L_5H^l=v%Um-2j+-{5uB@es!n}=7fn3b$-cJc$dsJq~D}xNE~SNq}Mmlo3N24&5VWWMkFH0_YpZ z`TRL?O8C&#R0BGf14p^&^A>ExDg3oqG$V7GDd@X@FcXMQ`;`4+iISLui;VZ%!!d_II`j=0kz6<;yc4)4U z|7OmhF97Ss1Rkh(jM`>*qw&Ml=KX0Z@Z}*o^hh?(+Z32{NXj-TNFq45H@kKDIl}CP zAMH_(YbdeD*Nwx~uq#F10f%iEuqV9G1LobQetFQPH$eAxDTlyUF_l9B+c>??v}ahn z&xnUlB5_;p)%}S{RXAW1foR4|`uMpw2?xH(+N-8b9hQ2Nyz9=6oDRD5lTAW@Z(r+u zb1oRy&<`lpEnl0AZYs`p7~6k!<6Wq}MjNYHelfbGskM5^%|UZ6CiB zI~QmSLhv6rj3}CxhhDj$Z!|WMH#`X|B@)+SY&lD;qfDEr_Qs_-Ttag!V}W>DpMZDn zqGpfU@n)c?LXY!%G>;pjzEZM~SoY0+R+0W}ifxOer; z1QWHaT#@>c>}mh*it5k3Z$i+ORnRk@3X%da-f@AFAI6K+lfl7Mt5uiKuYJ9Zr;~bz z2lYwuQ%8+C2hdra^qXYpJ(nx5v9ji69S?S8iq3=Tn5Fqw;o|*OxqQEV|KH7pY;2mj zfsZ$Ex^f`krV0Rg8TkpKa^}k^GI3x$uY|E1_%0(HN=beQ}3n);*oI7*=yVBwKy3tn1mbq>8E-Dl5>Pc^dJ*z(<~S1 zE!I$cXuW3bSBoXERWlv@xuDrC&^5hY2M*{}bPv5(%pW%eeG+oK$MhUd#A{QCy1q0w`sC?1gH)4;NPp;pwBn+*7Ax&Dp|b9&?o5i>PZY;*!()q;!VY3`{YAXX1b`L%%+Wa6ZJWPWiK~Sl_0S^=kmk4)5D{xMj%^e+zjpeW)1fW5d(F6876;6ZC0Or;N8xnwFb*&vdhwZ@J8Q?+eXh#ufU8BmH2C z!ks(Cz}|?XRytgSt$df$jcM=prSsD5@cxW}i`V2N)M6m%)ll{%^>Rc16}b3vOC&7n zi)oFX7w#KVmQt1b7(74;y`6PbDx(ym!-BTBRc5&Jd%@M|fpPMstnH{r}F8v|e79r}X_9AVduEH(7gFZzxr>H)^!3?Xau z8*mrQ7>C*Sz!D!K+>IhJc;^I?Or%xk+_UT5-%3D^rvkg(uun#CDL1|QI7gBu8RqkA zdt`ptq-&F=whn!2D{TY1Wbr&_vH@8C6m7TNDjcPIdvpl`W}2&Ay(ccQzxibisJBd) zFfR7@NV4y6Rt8hwMP|DKFN-jVi50vB)I*0w7*Bz-#`+IK=1yJ_gDt z9j2VHmp-kOcLlp;q>dO7BF8`<4kW?+N+9aRt2@Xio2++hoNQ=g`mwD?`;JpFk#Hks427a z;xs-E^&r_#yGLM^ZNDDLP-|#ybRS?=-^;-V7+s=DnJClqqX+ug$iB2+O&N9T2^a0kZd7-x;osEu>&BJ-;nZVSpVqotq zt4`2`!)&W=q9^KQ;E@GiM!)q4%J^mKsFfBkBVVH4Y$9y?qlMx8 zXw*cNvCMfX{{(?Po5#l2xstqv$ikcYYQuQBX*$%UMb~E>`g7HoJBrM}b-Y&KvOApX zj!=_0#5Hl?yZw3+uG>8h|Mr777e>vvZ8ac+2R^iBr=74sg6DugHR4+gHMip}IFr&D z&gXy|%P?{V-Vx^VQ%2!6*gxYt&{Iw#;yhvw+i+SU-Bp@3@^&^}tuevk#G+4YrveS& zf*gv$)-&`YaqQQQdhn6wDNZc|+X$J*+j}A-OB!D<gbx(<(jm8MC_e;Mw!5cp)AD_STZCfIIwO_(} ztclio-1(ie2-mDUqTDlbF~io6H69g*#UJNq_)_H3I(u9Dbhr3Sc9HWrvpd4efl6AM zi~vC4R2ue#^qT0fBL@N!Ei6xuz{5ez*G;7I=^6NWNO-7<2N;EH8>`orYRSA5uqaBr znxh^SC-k4(%s_c5))>=$23?fT?W)PLrfm95G`|cU$;i%gK`zGXe12)=*#tGH^?G~{ z<_4TO?y}Q)aIy{nQM{r}%8#$+v8km+gFRZ14?CcM0(bjDDW#FVdY|~zytw8&!`lcN zaaaBh?t#wFqn{>elWjX`ht$yQ00Gcu1GkB=K%*q(Lc>QXQ^eFuz|aGEZH@$&xJ^VZ z7(_lEG16w4R3Oa8ZjPL_ zh-rQ#y3n4eLGA#`!qXlfXzfgj4VL>`0@WVPCgEP9%GXH$;=Z|EBVbt1)H^w4$E6TR z;Qhgmen0*`>$U*4x-GoB$89k0D1df4CaCaWWs4DE0#@h4DaI~Pxx{fGF0#I<0tLiO zBQatffHO2mX8_ySb2Fav?mo%@okvxdhFkmDA9>stEp`3C#%)Q6Gz^eiW`-i9`m5=YST+i8mcVmh%F%3^jy~3a^=1BbV@!B%G|i zpG4(~u-g3ra*L z!>qr{4zsZ~CH2uNZ?SL-A2;zM0T0E0D!LF0X!p7p0{R$$@LJ zzCl#R$T^006)-`FI8`p^@GV&bq4nvPuPt-bx|4&4(XiS5{o&N_TF2ii4}93bPjD(F z(A2nLZgQBq`5HA?VeMAutL;S89`p}e%>BO@PED6j>@=DYoIzOafaiN&mN+{i!qCy& z<-ql8I+rv=p3=mit(192==@_(7z4=qRHxmC@EFr~ni7S)`A*ngyZg+s?5D^fMn}2v zP>=ftBx*(0jk@PusD7o-F2GpU$HmS^B3H%vO*>W zXtSc?=Z!Cggf6E|0a`~xw5%7`YB2K=NE}RFOQWV-WT-<4XX72Ixi@={p=ZS0qd+oDM=BiKh z`(Dq*`H*xP3RD}(*G6%7@3*Vl>f0)bb_uQ?uyfSwqm!q3ju2XFj+thpt5M+hT*^UHA%`|m@y1#y({V^=w~NN~WK>|@c6leK zx}iS#DN`4(qT`|6LkQ3H&3#g8CEgeF861>=xy)&{zdU~?)hglx5y?&{Vz{L&N@)c6 zO=*>C@~M^!%x!(0_AAZzMV8mx%N@A+&vOIJq*tQiM$#3Ee%wJ(<43#0i{+jL_Si_B z`4k~-hHh(KP(x)s#~Bt~hCNy;qTIakyIuc2@%IqKV8u0Yq;4+0k^mDtzXlLTzHBkM ziXQB$2a`38<3TUws!{I0?LSil}f5DfgN1ijjZZPM`1y909GL z2@WI21ctw2C#1C%QT??G;dBHxD+r$ewcXIp+TOp-`evY()Lxlca4tqFz!aX8IT2lb zWsQ>>*1048T>8>*kY8*7y@PUo2s+RQto#Ro1xbfn7Dlu~el*x=ylsh<@6~%OgyXD|ng4ml)Jmkc{ zzYV-c2|8tQREa$O{ypI-S|Alz^gV&QT81HV&=2@=f{x4wPG$if$N+l7$3+s6hLkAb zebgYdeSEOljQz!=Q{cSEcB{qsC%ZRJ4bfG5XUYCi&Hr**>Uq%pK- zWIr!UF-B`b>M-oN5WjgUbw9P2h&*5mQ0+a1h6IGbYTKZhS~`{6vye^h?zS+CPevu< zC?IVbARg~MhB{DYa5a|pad!we=P$A_6GM`MWf{V%%LW=10n}z{i#XCn3|L+%2?E}$ z_ZUqM;%ONMX$i$KS@zGDBtl=j6(%o{!>Ai_vcQdAk=txMOmg`f5Sm`G z=SRYeH$h^Co)vcI7WiT9jk$HxpYbC5jnuY!+CDzB6*OkhcZH@=^>r77FCPYUG4K+K zf(FF?hpS*#yvweHa3oG4ZTC5yp@tZL5LNqA^c+j_VZb`_8tWskaEAU6VFSG54JRIE zuBXGgJB(`ptXl;~(SUEeoO!HbZ)&3^8xE)(*jdCb($ymFGxcoE4f;(G1e*ZDRG|=J zTHIG;8a#TgwhykPAP>AB%%>qS*_Y_4qHjv|C1&&enRx6O%qG7~6UVG%P;TdxT0k0H z#L>(oXuWVasNT>vNjea^#CxFW;Y7x^kW6T4c*^%~=A{2H)Cpf8m*yJ)37{kMJoy`! zucUPcz6Q211_)z|#AU=jqXg%Fl$f+@>r$8uSF{jow(~a1aFmCf7oiph4g6C9Lo12IveI z_#9vTfENiIGLD~v4r*AcXYTs>1y`=!?7@=48<+;SW6IGG9l9)wh-NlgQ@w$zg7#I9 z>>N0cWjmZ1XrRgHo#D2PLRG;&-=TQ3u71*^WfreRfBlYjU5H*p?_I>x=-wFH2}%fv z?Ewz@O@I;d>Imn|lZ7UO^JKv@==lh7$8VFzW^&+m$-G|(G^=)N@Gt_>Y@5D|EBb;B zmZ=c3p79GNt;X6$3os-sGUafg{Q&;iQsE}#st@evZ*~B(3$Kr7n2wIziuHpl=tAod`#&Q7M z7vnh>YJ5>&1>H4vioGs}gn@?^;p+>*A;2vfn@Ue?AVj`=TGqPg2TkRTrUN!@$a|i` zWHM8rGdZ6l|7zMbtAF%QrcahTbkO=Upkj7xf;aa>EPp*$FB2qdx3Ye)uEtnC#DV0)uhSpakFu3SKikqXj0J=!mwKewbC=0{h~*0h;-a}3hI@#T zln_DmYy0^nj=+<21|Xw1Hg-^+01>M%DS$fP zPYwcBI&h_eQP==g(YC6JgS;sS-$8xQ^Z?-L0|k;W5E?>of-Kt=^-)f_hJI(n<+S-5qSOs?N`7Tqn0%%kXXc+dYDW9^p8nHV7x;gu|ES``0{+{_=v8Kdo*Ve zAWUHI#?YRn^#bitzxY7A4O%KFE=2VGI9I$A4#$8{4+}zF1zlLoF>RcNw>wZO^G9Ik zBKI`jgb%ac%!{Y{Ig-FX7$pH`+mdf!KWfOo@dA)|)#$q%v9F-If;~3UD;zNB+u(Ux zF(e)Tpq&dbuh)ZOy^uBwm_8Bb4w$e8xE)}aKtIEzHpVU?*N#FZ;t_6sd-^`(Vs}f6DDyaT1H(3Ud;^k zr*j2bh?Obj7%d~CD?No(0e!FbkQd) zp7j6GJ6xlVFfo2x)@Vi_4pSzh{R-}08F$;)w!Hv#CYQ8d0{;h}1$)M-fM&QQf=|Z^ zgWi)jO8eI&*u=!tr*ZvH z@bml6as9`*{sUb99tDn5J6!)ee%Akh>%YbIU*PI-6}bK;t_v>uUH>|+ zU;q2{4*Yrte!T;~-hp55z^`}U*E{g*9r*PQ{CWp|y#xO+-GM*hOZE4{N;(j^iSPQ8 z-=nR;|9;|%)8EVE;Qo6LqM3o4^3?*2YoN%Md3BmIBj zeFsCaf3rRB@@;y?eZJ-7U$AOE?(_S-*pSo>>msEf1mZ~V@~ zZ~3#Y2WHOjOsmPJt$qf-#ZUO{gWkoT_FDVXfBVJa4pw!)V}JM8e)~Ia_~UO4pY!zj zg#Hld50UM;^vmY^pHavESGfK| zT>mbve;b#N>#yVDaQ!Q|{yAL#8|wJ~9@oE*>tDq6PvQEn(N9?6l5qVqxc<9;@;ATv z&v5;1T>mDnC9c1YOTab4_0Qt^KmLi|{N{he_21z7PjLNhT>loXzlrN##`Q1Y`p0nn zpTE4;|Ak)fumAme2Y$T+zutjg@4&Bj;MY6w>mB&@4*bP;;16l@Z-4tQ{kOWrGY3Ve-SAVZA7d!4B)Iw$Q|6ieU zJ{YS%TN3=q5{3T%U!pwu<;(t(rAe7o!QX0!n&MKOd&QeE7q+ z$UlE)|DRcS|M3fl+j*HK!>bwmyN6dd{?l*ZPyg*#@9uvHy}P&S>W{sc?r4ZTFyG*%pCrZ z4#ZOQt^bUn!vh-7E_vnKd6oeP%}fsf5CEGzw{DZx5szQ~Jp~E&ei!&-x_s*r?7W?c zq^;KnfYj%Y>sf^42|xzwtXTbcc*lR0kJdqoqJG*WQ!W{BGxvgzox&}Ep@NHt&9Zkc z8M6SXiuE*sT=qO#EaSzJc%0qZ?R8^JyrRKpCw{@RtKp&b1HL2!Z9>T(xSik%MuY?B zZD_sNC3ug434MJ}3QbTUL3x5UHi%QgIKadPt3;Mc{J;1YtcoP06@o7y%oZXVd% zc{O(B8=SldfpsnXOK0v$Z$}!<+LJojbh52{;1EbP6#2;dude1|VTSyFA{VuC>(zq(iS`3f&70U;p?L_sa!M%Lsv)ngHGn6pmVq zlo;a6TyZ8IcTV2hCgIHYNpKzQ1M*68$p?*idHxDCmhS0Ez(x^q2BtV5$I0>?nz&p< zy2}M|jK)$1e@t%+aZ8(M*B4NX*n$O&UHs8UC9kp{&Mq+5{DpiZ2k%7&&xVm&>y9Qcg&Bj3Ly3rNw_ z81dizMUf$GN}Qhzn0XL4fFtLuo;$-9?+2?5FW)7wNX)2M^Vj+84qd0ydw#mDxR{`)j@Ki0rz}qF#q`?0W7`7Avx=&sJCy65A#Zpb| zBZyjDNxud3HRxsLK~@x@e~8&{_XtEO?%YzTm%7?e8)i+J42Hh_pf&LM+d;#TeVTO z(7kzH`JBUd6mft75?6vot%60(@+Q#b(mIl+hr`h)4PJ8(s+(~yMA)}NXiLG)zcw2Y zLYqWrVXuUb9CT*xM0DM9l7qE4;PoI){xwFEkeOsvt3uWE3{C-rae>*K)-b1Uc^fb@ zC=^0l-*YQa-oQ~Loq_Qe)KQhzJv>Yx&ZVYD&*uB@^9DO)HwRC{17#G>38@8Wcx4tg zX}Morop&pVY#HC2ug4aQP+hMf+0X<_+;y(}2Qjya$lnc-tTZ08)iU0xMn;~J`t~S} zzu0eUh%Fvr9G&EZsUEloFbjr^CqSUlBiSye5q!Q+umlLb;5`N+?-z};(jLif7LK0= zxZ2Wg^(JygIqg~UjAb+Y?jKFg4L5~Gk4$>C_wF-p@r*gxWGQE%on#&9e2y;U4`Nv< z@c7|fZNJ{kJHKbz-Gy10e#jMd&s)HH0{okY1%Qm3g&1z&mE{kbR2S0fb$WMqev@Z! zPre05v40M{>fQbT(&UFW%n7ksljXrHxyc>%suJAP|K8@wKN zIy!40GbxMX4w5n7Pm>Cyr-x`T{{%jKdjYwPh;O=125mVQ*@S#B4o8>sdF&d=1%8r+ zUJFP5MxGSG{XVT2X7CihE< z5udm}yw2On`1^f+gnM-X)A0p>rZD-42seJdJ!HUU^S7x77`<}$Ku^El13zSm{BrcCumS%yXXCnMaaM#XJlb9=nFZbNlhI}Jt(#`G z##-^bz@1(>3HSPgy`n~v1f_EKf};ZnQ+5x{iGF|7VsjO4x+zYCEF%xZf$NB~38vko z@ei6n91BvfLq~E6ITG@!$J#oIHTIBfS(6l&(mE{<;fh0aWUU z!_hQ`0X-`)!*|9A3@DemPvT0rllLrWdo8%&=|ur(zE}VwUWpfT77*{4csknJJFGRf z>pH%hhU@cg!;i;TII$K<8t;%&-C(c#4o4Lv{mv_Y6LYOcdIS(E0Ez4>)FdJqn85O? z@ot?mqaz4;(=p#k9PaJeVGH|avRFRXAx?vIH_7*l{xCjIz_PWkC1aG?3qC4U6hc2A zHs_Kk8vbsan>Ms03L7`+655KwGFQgyI|FtUEX+J?6`YkhGq3p9o-#yAcQ;R~WHYb=^n7Qvxs4KSG^egkKy7FP8>@a9~`6A&-F`i|)^o!P{^j z8dvA4XkX_MfIT=pF5&&nD{lyf_Rz>3OS@|V{JjWH`z1#*0E1!Z6jrUs=nys-G|9m& zP@;9B?4lHRO|U!UNiYp??c_-e?s14j1R9f*k?lCxagEb=GE7&%&3J8&n(CFeyCJVB z&MUByEJ@RB0ZRM(1N89aL|ipv0u7IeMZT+pe*CC~9F+sPX7bAx{L<>NT@&zOGI*l4 zc~0KH4#z3wa|37LJLrf&T;+LI!|5iR z9yG0kh{|dKf+E{B?|pWPt#O}kVG20-j6&tIG_T~RYKUS=8p(Luegn>oRr#5z6R8pS7&I5e80>)hX4yyJD@8;>7SU| zXRaTdFMM_nvk&4{c*pDVV+4f_-2_k~oLi1(5XWB`4hm)>LrIhrM25V;#IbvyEX{*; z-xS+5boiMD4?()r`+PIWy}`zd%x|xVr~c`yh~|I|CogCgnza6h*4ksU{K9uURl9u& zFY=ZjxE_T*2C?}C<$t_Zm{ZGf0_PZIv4C-B(_RdNx8cp9)Z~mtyipT+CdNKy4*SK+ z_aJY8?E?)8__mR&0gkI28pd&Abg8)mt#|_Rc?lX_zK)K9M)va=mZ8yPHm% z%_dTltKmLraSyaN^3*wQ+}bCD*SiNF$nK%9cN#Q?u9FoV|u#X}duqP`80 z1UtMI$|_o(rwp&Ai07b{`M~K5R~Nz1*Bf~4FpSd9``O5gx+|3C74v98y_|vePeO6a zfk-QN746_zNBtVS84KE%Ysm0yT*>vJ!~Pm{N~6;w`6}Hynh;!0CNbxMopIt8)7Zc zOtnW7t_H6V$^fgc7SU^1fWv-x!}oW&!ovCXNuZg625HoMZLhSReWm2RgDF5Al5pJ355RX{z@rJnY+dbF@acN?(DJ z?>_Q!=D_g62_8_{r@9Y3wP++Q8Dl)VFF?a3@cjx5s6X|wjojCVV#sAVQ|^m{Gkfzyj+3R5_uB*i{A9U=Y1e~kw zAo;FvcSJYRHksr#`7QXvvcHP6R_&VZ6V+&(Las8W;1` zNZ&rYg+jJ?WS4jbKRNY!_VF_Q@*gch(>rL4Sh>%P0wf08_km5uq{T9BS-9BC&1m5K z;N2}j24g)B>uK!c2>(LP5=jf#R%3T|-GD?zylfTn0w+IpIL(`=q_x(^AJ@+&FohBj zK{HhAiO?S*bq|dhd;<(8z`@~4@Nn!Ooy#fCxp7BpTR%47!9vY)!;1*m@H&Su2n1_U z*UMuRkG$#o!@cw>A&Hi2Xee*RQP6A*vKEJbUU+6}()^0|*wM0pnr+;r0@*zxj-PW7 zo>c|4>!|H6ImyLAq6+1XfmBaG4$X14*6QSsLweoBH)LjJjGjvII_@Dv?0Nd79o7Ny z=86s}%ZlQPc_ED+;?4=9vuTbYjxlh+Y@+4BN(X2Enb>(YR1eO56tkx*iP0)uN?s7w z?&v*p4jwDhV&BO}oE%`%Lk~)v3>rVgVQLz@d+E%9!n7NV`yjIxQUR<-5O!aluB0X8 zu)TyNe>a1V$ns%H>4VgG*~a2;sxfKe7mTHv26Sq?WCff&;@0pi`YWh!p_iT5+W9tS zV7i1N?ULvY-A~6n4?2}AtqJ51j2hTup;9x5qsjY)2Q8DtgJ;2`#_M|C5~8fDU|3D2 zB3MW80~9PviEjEm;5dfsI0jPC5!U%;)_N%%w;>;OCf_z~4Ue?u&XoukDe3h*Pv9qe zpe94ni$UbE)ykI0XTfbCDbAHXg!g!swxG;h;K^9SwlD=V8G0XEco)fH-5VyTIhA=jHP2hB}*5+gZzyuqGy+kP@79gbXuXx9kwUdD@n z22lOAZ!PC=j`(RTLvpg*vq`n`_`2NJDGXJROZRwo(1tl~q-lV9nz-6vZbDC34v$j~ zn#Dd;y<>5*U2S~bGEJsHND~G>tj&ReRH42mPlOl@>J0qB8R)m{8|q!7Z&#y0p*@z? z&|>19yLcaodXM`CeF}DcVn?Zu7=hN`Lwk~5gf-9q{(jsQHZl*GdOmpWd*EX5pfAf+ z!}V_U=nn|P%h~wxqjfQEAMS#aHl`aMbaSlFG!KgFkZ)YmoB03cwLNe9h zvL!~(c@U%bcfDK^Nxyzq@_T&8W64JzvbP_e+q4b&!E0;<3m-MXj_8X088=)z-RNhM z>6%FgCd_2ONe{v|yfgp~l!FTT)yf&Uz-fEcp@vc+Y`{I@i6yYx7-QHZ$};*Yti405 ze>_`q({UtOe?2!5QnY<|q3K4`>+ zHY#YwT;Jfq1AW66+aBRV*6eE!XZe98KE7?+=qA|~Nua23I~~uJG4yo7K_&$iY0%=; z@Aq1Tw1Ah0%@{=5ncDBl`%$MFo%&$;39(#V9%O_gi~QkjrI?QPU@p&3?>)SrtBK$d zZ=L+RpWi)>xp(g0py|21Kjj8H2wKB?elp2w((FC=mRqtod@p&IksjF>dWCqO>gEhD zvi;*&e;^*uBQ-ox{rZBp;*;XQ4$a{Gk+`ZOiL0T{K?+sS=!7N?xW1d{B-$jfdxc^9 z>+^wcYab;XZ;43Qnb9BKSAN#7Jr`!+Kcc>o5qO|e>@u&{rTk>(c9AGSjpam@hmi^GW=#Iuz!yOWlKZDCX4I|@9oC6b`|fj z&f&8CqKmeD8zc|U`uO_?_OQZTidIOSUk~!!C=vwp1_W6V7L)qxVX~0$aC3D|sm<*R z58dw=a$dV{{_L>edS}e!H4H4bq`9=883on=J2SXlSMrnGQV+^e9ZC0n*#z85IFaOK zG2>R`Ep=Nb|7d=Mw*K-0%^^^Id8y#w(Hc44@&?_K@>&HFq`ohMM&}nEUdx{vNkXfz{qcTA&kSxCXNbUU;TQ`kju^i2VgcVXsCQX;iQ=Md zPyizy;kUx-_}(1APd=YW6QheiHl3ODJ$h-&BC4M&=~Iv{DJu+CYtRLO?f|Q?F7m$b z$yPcaGxF7Wx`jXy(qIpZyMj3DJ-Faj9OM!UZGRpL{Pj&JA1SS4;gNfW!)QnNJpPxu0 z$VBeMEz?b{wRHs(KhwPRcpsk)C&*55hg*3Mi&B&pZIP2kTk1nL2O6EEBX5$IVR5W0 z5UQ`d@*R8@+0YkGB&{62$I(F|9Y>~t*2cFxQr=(Qp_?{?*qHI29+jR5**1Cfk#^)p zOtRwe_%6G9rmi0FzYxgN#Tk0z@U%N8DYT!E;06UWFFsB-L9d$M#tLG_Tfe-jy(S>d zfslIdOzmjO9M{G$TUbKuLWc-F>C~t(I*g9qvkl~@&;<#yw_z3-jcgz>oB8h?+%v%z6vs-#seFL>?fH}~fh6AF0l%;zK#Zeo3ynR?Gp?5QV79Au{8`FSIj<-umM4Iry`aZ`=mCN$Aj!0sZsjde9!&F5F_eBM$~7DK{*R?+u;^ z%P%mC|LuCp}tgCn18w%1lp2eFhaVbhPFd6c|6D?7J1!XniV_f zMyhaH`0Ur$a4|;iu&8o+%_Uq6Li=?3Fs2I;7BB8%MLE6pi|+x3N|?Lz(5jwq0v=`& zG45f*XZH~_irg?&&NoZM=h+-EN%}7Z2L2GRe$(7YWH2z9mfLQ# z95X@J_w4y@qZYvN$2BZ;d0GJ;YqMFU-qfeSLq5eX;dKKP1t0gXrIFt-hd5 z>RYag%6kdzoa9!Jj^Mb7cO5j~6Cb*4qFiZti*Mx0T)@1kLcQT1F%xC#hQTO;^xFdT z72)Gvm}q%4j`9O^SSEcX;SN{+Bsd>@ zxS&y>DCPN$W@PVZgA=N*wY*6#Iadt60i|}lDvOf>+g(fD)G+Oy9nmOEWD zbXJx(=3a-R*B0F}dC;3dx_%#HF7WtX&nsjTG^?gQRk_Vv@_<8QR{2bXG1Isn>BEd~ z(E1S!J7&>voqUkqE$`oxrKD#SV`37)gr#p$S#&>)IDA491zOvj*V~>hV<;qfMfSis zI9ueGC+ah9uSDrt4E5AhZJuXib9cG+(1*(|YVkmQuFef}30Lo9^muR<^7%V3CD2(v z`#w4Coz|9^ZR#j?O@s^qn-wGXq{4wrzhB930S2*j4-f>L6YbggNj1tTi4R}4{bjy3 zqloH1^#8_-HD;fCNDpUZ<}&-b`G;F1!i0b9kkTD#wt1rZ#@s_YXIvH?e$95SUW4`L zz+phA78&{CW~<_=GW{E-e^xM_k07bE-#?(wsV=(MXe-k5Oxs{HS8Zs3``8~1D#WbF zFL*=SrFvDxPepSN051Oc=RtuSQ}Lpq*6$))J^krc9(*k`IuGGM(ZR?@A}`?3R}^}7 z=8pC+OY1Zz|4pleFQt=~2ze0YUEYnGIXc-Xd7g?vYh={a1}tE7g!FIT;Fyzz6L~ zUMP@08~kfX*B&asGF0|V6-^d%++S>awZW@{`G-h&2fdDFbo+;;HDW;RXpQ+$> zBSt9QX%RD;>FzM66;QGvChRP8&~IMgsjMPkO{}ule(p8*u*3DZ!5k4eIAVvQTF})d zpT}X2YMN(kiPa)5jteIZdtkiaHxjoP=vaHwxz2w4Ip5t5ElP}XuQBvw#U0Ms#SCNB z<^V}t(xMYZ21>zU5L`pb(xA`9g!HwnXO`wPh(&txx|s0mO-lMnR4OU8Q$M7a?+7ZtsGIA)E$-f~F&FRsZFbFlu?NfqWnIy=-}~% zw&0^`-Gi}RQ9ce)``a`uNWXW8E9XH=6?yDGip~9Y_mhfAfh9Y3 zfX$eP>y0q8=v5}VDkQ}uD-sJbs-j2Q!tijAxs-5VFtUA}(h>S9Q#J^9Z{*pS*$6kv zcUbg^d6A>pZb9B#)MJTVru9VIrt{2wik=$yt2NHlB~G5=nk{-cIld-^s+J>F&0T8a z(wr~Gz-J3vH2B+_*R@<-$}*W30+1)~qi$nT35D{zY{`b+A~f?s4Ln-fZkSQWvxzf; zH!6g=5rp8+4xFqU<&0uQy%7!{sZ_ijDDbcHtuW(neI;wh(qdFz@HBK+2}*- zrZPh0ae>-^4@Ed!ShpEdCQq1|gmk)!t6pApxG%?4W z!8I=q;e}U9)9JgSG0J39;dihoXRoMnq1QL~whX$ut>Xwx{eF?(?5qLOZP~YEyJ11Y z`M8-3y2St!U^0Xx=%RbGEm5U zLE&~Es{#%|#4p4}==>S^7Dd;$cPu|G2;-4SEMW*TnnS#b(Fw5&XYEOPq$=SDO!C1E z3ElDqhz>f9`#DmMZ_}3XyF2eN65v_W+~Ni5n@!aB{T>vuEaT~46un23=fp^>@=Y!6XjH1x{NZkrWg^gMUV-b$263dUPx0H z-d&IHE9(yIa>PteQ&V|5mg6Ai!Im!9zE5HN#Y7hRtDB@dw*2_Y0^D^rak$06i#47l zCoG+D_Wp$2jw1_&A!op9{K5d|^(22~5wprR7-1HVjI_ZL>@0GzUOP^<8J{jR40-`hQIq^V|aSoI+A{xv}VAzycY_Nlsv&fm!!SfRU}W5V4G*Z{;(dOz1eml1GbHAV<> zO!JTLY45)roY@#xF+V;Rq&GXJH781_yHVQ${~0uEMd6_r>4kg34L?U+l3ywd`nn)HR2 zuLYg^_jMaDBf!qCHZXz8_jvTWX-q~KR)L)Brv_-mwz_?AghC@!|8h-t%2Bh0vi$7< zHo|O#ze>RK@Z#vcc%Twm2#e;f=`_z1Q2A>bw<7f0sL>+;RJ^=Dz47z!}oNTTE;tv9ZW;i^%U zG?S4kqy9`qDmpx=oHPpSli8=lsdRRjrKkLT8Pc4xrn-_Ex#J_09NIhX~({kPtX8;%y z;Zfa5Bt;yN|EGpPFy?nFk`_*&pA1Zd8m7;iyVh&h#KbW-&?}qWCh;Ls0h^u>SLUO7 zcU_-iR_B#TlC*&RYDcvL_MFNQ&ma0Dx(!VA{Z|zH%X?%tn>1X0?n|@f;dM+{ z0;i^)40?DNIsW7^e9bQIk}fyj@`ZKwC;LAOmtRIL^=f3o7f$>OM|$T4%=e!8PQS1> z^od$bAFOht*Kk(SF|R$W2RuTYmz1MRRZ^EzcxG|p9kIL7Bfz9I0);MS#D6FhABl>E zoK01Chd8M?sz;RpAIqxe-D+%Z&P?+~4nN?SkVVv@T)t*#16lmCtTe)~RJG;pRy6Zq z3H$kld72A61LqGlLljL0Y$61bM|cg;v8}0BfF{Glk9UO&weQgW{*se#P4D?-cTHni z7Ju3AJs`X#9#iZi=3(#&M2_ed9~Jlas;nonL%y&2{PkDiF`*9qEAgQILHd3cfVJuL z)A!ToFV7OooNAt*KGpnlUl&&~&{t@&$2-oKyzJ*$itq2u3ei{Lz<&rDfSyFR2)R4_ z2Snls$roU18#179N8x_Im&zLd-OUB+lFbZuultJT{O#d`fH{Pne;^_U}O7yy~Z2z~CWRAcIf zL7QE~iY5^UXBZ%cXg6+j-TX5%zPAvRi_s&(3$DkMFG#?vi;e*!<*sTj(L_AXKC4A4 z*N6qb;G=rNM=epW%yrW?kfUtoOD{#pLJK0a%g^T&u(!i%K?EVQF8;1PpWn!Tba{WV z*z<%{n2)D{vb61ut^orwaDj5v*eo0|FyS&V`LLn1kD+F~ARUHn34s?+ahz3H6N{Q{*jvF*`KF2vaPC5|BIVXGxZH$Vp({D#-Rs9h9nU~98gKz&kHzO~j|nVHV(_Z{OI&*3wQ z&y{|ZQZd0C&ayo4qkf0*2bm!lA+xz>k9?4o#2nJQVoOd2JihB}jJK;~2ShM`Nk@D4 zxyD)R#lDhKj_w_~MgdbC#W2#k-MTERImCb|;ga9FlmkDX(?m8Mvs!W*4o1aNuA8Uy z5wpsCyE_~k`{cJ9F6bqGo5yI3-*&fCa%v@u+O+>*voGT+>kG`&VGDwMz28FR1*7Y) z-4ZOD{SMojwUDzc>)lGorX&XNe*gdX{LBU#B;s(g0q67>Heu?`9b4k`7N04s()O`h zf=*E0kAwEdAoKPu9QwW!?9J@G<2u&6=5e0=65y__a8Z<8mXDB%Buvm5(@i##I(*EE z$!v^luL1m;oqxy&x33a0uTq4+zU3f2cx{6S#bzh_B)QW%|CY*Zxd|Ibk#d41K9|eK zq3^}TcbU1c3vS>Z=KAyAOq7E&>D7W&4k)OMzx%1d(o#&<4YG9H_%jFkWZK*ueNs{! z25|d;JeH$hav#=6RtUd~GwtM?_;WM`*t@SD*4)#k(~^U?@?KOCQoJ9GaJf62>RIn9 zT1c{QaHtor^2cqJ#N(fC&+qRBSvliVMe;s={NXsT`2j>Pxais=Z}^+uqREw)n_P$Y z#oH{e*`2jNp1~d8`%33R#-P4|G-~gx7Z^z6=}0pMDOqh)af36we?L=WXVM(g87-u2IA5%nuiiW0HtJ#e(!bNylBX`JHJE7 zoJ}{tMUxl#N#9+4_m>TTmgqff3m1L8qKzF4iF#*0o&A<1X!^Ux=WOK!kUP%r7_)kG zJASVOFKw^0xrz^a+1s{MILyt_zW>kn*?W<<+m^cMd7P`)Y3)g0u!ev9(w^H97%A9S zXJt>Ooq88j`f6BB8|`y%`=^%*m%Xy5`WOBTw?%>eu zC%SX~wV#b@W$DjO#$_D$lap1Mv}OQjqKRh4_KT{_<&n`%l#}5g{?m>7nRaE56FNC{OOXq9Xx$I>P zw+gp%Fuv%J6o;l9B(yg3w`6cGv@++)sq72su^nbh^}+4<(5Ls+F`g9%t@1zewti65RmIx(U9yKE zl7Ft6!e@C~hR_JVzl2OHfd&ZNMMo~gL2~Z~cQvm!Z20&W*;jA7(Q#rANGk`^8+2Ys zI;IGEl5i!MfOrRNU-3%%;>z6qF6Fg5z56#Tii43IelLT}24;JQE!j9zz$3yeqj%kB zQ_OBL?<-qrlcUO?p{e*>lmTWEj+5g@>Jmy2#9cOUMo;-qw zc~VouzP{(@;`3?5K-~?Es+m9vLa`#a1DsX%z|c=eJOp;|N#UDB4|;CaWcw-eCwCKe znb(3_8=?=@$7CzzTYE}kYlELV96o5zJ;iufcIUne-K~&v4s6UiQx?b3+)ihGL_?F2 zyJJgcXEpq}m3_2gc;3}qvh~}^WMU%T|ZLtqArh!6voXE8lgXdQVkS~ zABTLVsTD^?3LYn%|L8{#;zxp$ok#;!s_u5HTH!BT5WGc6Oz=}5PPWVuN!`uj7nt!D z5-{ceFZU5t?*%GN(TLQRaQf_*;@Ma%oX+U@H&2Fz?M1-=-uLs=Ps+KE{QPjW@-><= z*dk;XJ+IVpj{Ec~u5Li=9ayPgkt__?k%QfXH}y5#K{Z?HHac8)-H?2+U&T=ZG}oIO z%emKvsG!w8izBI`B`;(%cIGwloyaCXRdl0vl?bx)pw|Nzgd1+3e<&%UI{Myw%kY@G znq<=lroP_-()-mnL-xVwMgjG@m3iFgeU^hq zWh^>6qf$8R(~{M^v7s?|4l+9ul;!h>cY-7{3$~;CuIiG7zP(er|aOHbQ; z`hNN(q4BWaHz3Fu`+wpLT!b5Q`TTt)^wt@dXQ1TyHuB`GbR%6m9M7sTy6u9OXsVH6 zf?s-`&|U7f{T+2?VePiQn-vRo+NWOM-m1po;1zv1wA3UkGmfW=#P+y*EQwUG15d9Y4%0zf1j`KRofVI54a9BHP=a zwS4&@1n{@q&)|Q3!I;j@=?PfPCn$%O?R&wkZ}Yb572S;ExR`Lsx0Us4gp)7)N)ne6 z@pQ3{9^Gpe7E7(NJ_5e_IXDb-KHK!s>_m1o*}V#~nsN^ByX<+}s1b*pH$|un%vbe# zK?}MH%^iJ)r60>#g!isOfI4|HwmnTYPCW8=Kc-@<>S)p=;7-C-Oo>6&Sd3}$t+?Tda}#|;B8K}J-6ONAFYf~PvU#r zWiQzwgjjZk!=Ol6psnkTeqXcaJMmO-l76ov_j|;6w4fPWX*1nD!ryXc>^=921y_5# zUep}n6U@-`7UugIHe4Y{3lQ*(K6@45el)%%lesBgc{5(eP*hVLeBGJ>iEMu{vaW9*RY;N=*hp8@@!{rt3Hk7j^@(iJFirk zN0pif!EJVRRd_q)8CBiGeTZw7`GPshZFlH=tocUcKHbj5gW~c2Nj@+FUPT+Ywa04( zuQU{X+vySeN=2e<2cphNt`Fd?}F!B zt}%h@2R8QDl6BmFuH#enNdVt^AKQAhb&nbBnvX5{Xa^AKUS%a`YoXVz`wp2*bx<^l zIpRaZ&NAjC5Pq@{}qW2%j zgo7Z9bZ>queK=<3Nqd{~M9Z@beN+_(prD!?c`=QhbGPzLm+Jnit_phZL}pw2-abKA zUN3CjepiC2?kMz$Y`04P@ua5>m35`Q0QaS)eQA?{?E}W_qQ!OuMd~%b7e~{t)N8N{ z_oF+R-#f@^{y1DWo-NcidHxN>=%c9D8`W2Kf0M{fhE`>3r`Iv$jsg*tcqqIqo3OPz zInTYXVc;1cn%L>lYgFsAR6Kg%DcQkJhrj{G>+c+X_DuN68)P$h82YO6>+El0O?5pBH*)r*E;zXA^Ow!5!kh0f*6X#_ zsjB-^H2{7)W6lDGuGnPUYU^~HBBWP@uhpk4n#bq;egO>7UVNtUgb%cw4RfwlIqlVR zmf2JLTb)fRDL<=Ld&vgCWV8N4;Bf5OfTlH$NHiTrLlsN|vkKQO@Eahhu3$=*tKuIu zpDExdbb$RLKk1W3fMEK%`JMBfn6dDNfhw^?v7lxeenc5{+EN z6P@Twun^8YqB4=u&*#kFQ-5Ex_7$JBM2X!CUxM)}-hRHii}rl_;^1m}Gsb^=en0ps z&-%)jYk>qmU(p-MXIraUBjl)ac!o zY*7mKQ}r)iVeDbnBwjWc^{=VlUiXsot0UygHitww(Ff!4n!i zDyJB!VAhZQ5$r}l1T=+4D7c?AdCuXUC6)rOt(KjTXy)3%h}P_>cYoA@pHl09pe#yS2{Vn zM^k$5=-ivQ*$LrfMK|s`y%#uV#jz&i;C@>%3Ij`cG{NAhUnSJ~QCS)1`YdR0o^7_@ zB<{~o@85z>7rq&FNy&>kIB8g4KFuH|jgh&!3nz`NSviMK+3kAO3u*{BkQmSn_G4t4 z02ku>W7P3vnKKk%58L8JHbjgNWlyjB4g#4nDQ zA8*))!_q?{=e|3^mD$ydk$hQR+TV##%Cd56mX;D?%FImCVvdG?s-BJts*wIdTc@?WEg=laMo8VAN2F z=PNdNog(Hii_CQ<9Pn+x97A}=&Im1Im$i8XQDt8-usATx$^G7w^Mc0DpU=W{CV8vq_b0v#@JB^JIehpjaT4uifeEr_6HQ66Zy=L<=?YQTVc2(!N-tt}y z##p=u3jeA}kTEmZ5Kif~^b(lzcg3xi;=(ZZ4u^_x;47H+*|F)`$(!|Nuq9uwY4#Yy z7t_fBwdmqhtMn2nwWWfs+#HyCv`X*=#nWwnHokFGST))=&t(35fm^(LQh?GD;)OP^ z+{#(1aE6QTV^yTz^Jwokh#Fq5%h{agzXZ5nJiRJwu-_V3 z0C;sJuLae^U-EgW!HxBL{yE+pzxws(%#{d2#n)~H?aqAYcpb4R8`&MNjEXxN*5Ex! z@4}v6PuJqZGh?2;Zb|-m!Cp<1V;(@qg5Z`L-Cz9f*7o=Hu{K08d%cLTIp~_5Ak&gs z{YtIy`T7@TiZi_r0O%pUg1X{M)DtH(N{7MM>fxe-TsPVQ;#Pu)oGmq!jg_Djs!ls)vD z<*#1(CRN}4ZD&~gY?JL8m0HCQL@u*NrV`l!(A1fNaXSGV{OLJWqIB2Smq{JUUh?@h z8myOex}l*m^2uR!+V)q)@a>Gh#T?uaIy)_s3R7d)rB_1_w9)5J>@KY}{NMfH#mAK$ zwO?=ZbWP~aA;wO8<_%41hDl(X=jw6~e`7GvkNO#pDgl0SZuWj^m+#j&JwvGn`zZh4 z-OLUd`S|)t&tKHs57P@ITl`&~)f|Dw>rWqq&*RqJp1fZ24VPb99nl=zuxFupX(o5C z*{P1I)Hv1S)P+sa+%&`4wE7#IDn&h#`GJu=R>v#+?aRDc*1@(_yBq4~`KY{`)d|ez z>ka_!Uh@R+a7WYbdv6X!2-$2+>S_Xb&Rx6vOD5_+`P{yDq#lgL7gRaF?b3G>ob0Xz z6>uagVOITn6w|7WQ_E~Im4Dm)Gh28yYA<=I2~y_#V!tb!oq|1)c=mIFwqSo233Ody7D{iRIj!&3M1TLvi0{ zv;iWdTPuhVuhk~DCcs)yaYBwBqrB&&=ge_}IyAr!5#v+Nz;X|Nlp*&oxEKg&^8oF& zy?QC85C4nJQQ2?{RCOZ)wV}s`PYQzMvQIaos{gX5!sm0?ya$L^TiAYA7M)`Uoi${1 za6pCLAI5T`#+EBv!^UjjHL~MC{F1m0*RT$s z%3sxwTYO0^Ot?(bh~O7gM}={HuevhSD*6vyu~ftWc$I-aoet+s;Puw<{x_I;5jn1! z23jgjbWfuK4XGN7W~zf|bt@j8!MZkCzwW6J;}RDTJIvBb#*CrHICVLK*0r$;9^n#-{NNS_Jr#bd`KA&p)F@A14&pO?g3k^P0uP6NN zQoApB2TU?}Sm(1NJq3mVx^ceL`yJt=yLdqamvy7_xfo4W^XsLO*`3y4(BJFN-kUd? z#e!FszMvgUX^YUpk+_bKDYl_dGdfz2| z9AxKfa27kT?A3a$#+-W!8q8HF+1~Gx|Fb!u!bCf@;hg*31s5|AV#PnoTgf=Dp{$)P zn7jP0g7HPLzDA{<|Ae1P{!;8pc@9bcQF318y}a(1&k+3peu1y^<~(=tumYpmY{0WR zlEVzwt_N2gmM-%C*5gqhgf;N6SJ1t+ECB7h34kjFv|(;rn`l z=o?>gKm7Z>zWsw%`qaF`mJS;ws`16=blh17`=v`?@f?kqUuvhV>QJ_TFatxMOyXyEU7%kW zQ=;GAT{7YV7wiGvMXQl`%<4AIg)(aBP41G_o~P?OzSMi^ zzgfyiRFs;F&I$YC@gsnby*ZT_tJI3+y$1jZ7c>?cP*cX4@7$%;0|7#%xvsVYhGi5Q~+7&l{s8d(CbQ;fc#ky+BJ-O=I!z z6^!D6=hT+&{~qPdA}D6MF0|15wCMh34G+^uAFrL<`#ZqpJ>%BY*!o zy!Zi+(K5~RUSEpO(tq-aM>ZV>9$7M%co~i49TU8+nV0-D%3Hy5c4-}Zr6&tWdbJuq zxaaTB*|KANV22G?$5bnXTY;*;WNV@=~V+kyjmaP}L8cEF4WA*BzU3!TxOd8lGYKfhyrJ zmKk3pSpR-kr?yi1>6vAIrbA^+DHBJQ4X_K z6P5>au5Ue&*_)w*Uq1T(N{bp6gF*$ffT1>hwwvtY2POLHYTQv8B;g zvKPd{e6Qrpa;&Y))7Sut;SDPY3Yt*7asu(SL_){;-4}@+B86tfz1CN~>RGGcwz3WP zjS6V^cswrP1>P2dmKAzcjk?`dNXK2jUg4hfF794~`ttuEH?+F0HcafNxh801g~ikw zEjM~MevB@c%YXPElEEVRf1Q8num0+P=J8km@!#hE{dZ*T{Z~BxGamm5kC=zcqsHUk z=kagz_}6*-_vG;XH$47R9{&!Hf0M_5`>+1hUpYJmJpMf%|HHrXSAX?i^Y|}#ym`1h z<~)Wx+C2UP9{(DT|M6cY1CYmm$>YD^@t^aEco;nXn#aGzBLN5yQ^J+1!NhFLfMx~`u6zqZbX@z}o9xr_so=RaXy{9hRc#&ekk#&a13#&ekj#&a12#&ekiCeQ!tzbsS0 z_>+J35HSAn|9J-3-(Dq&0ONNge(@^-VDhVkdGSpA7r&DJ#jk{a@hjP1{7Uo}zmohV zzy9TG$^GJY|2Jd5{@1tqm((wLg?~4F|9PdqoAUK{fA^1>U;ppR{AyOGo4?KcI+dAU z05Inxicf&zc=#M=+e&EfwgB{#-q;AU(^9>vqbS-x^=IX2y;MghKmuXXazF09+AHJr z3^&`|w$jh`n^%@Kv+a2Ie!auujPJGYYST{p{{DO_fpW%Ayk6-Y^&$=`$!9u!Rc$=T z_BXY=yTWvBc42(@U9n1mTJM#*SEghC?9cCZ_3DULaI?MDwxxFXy{jm~RV#gYTHp@x zXgBG=cZ6+u|2!^Uoye!rZ6eg6?{@s%mfT_z8nzjz^)~w1(1hWllo>4U>kH%_kOlOW&C2a~j7o$>Z!bhHk( z{rcgG;q_v>`Y?ON9{`3!&`Gu88b!j1KUTDLPTxHshG+KO%{%p~cQ!{&NDD6m+h%oo zVm@d@;*-(e9j@tQQIianQb+ZSzPrcvG=N4b8oGFguiNjf&Yp~u$t9wH?evz+Rxf17 zV5bUeN<2^24wB{Y2s^M#6c5q{LGs$)V^(5UPjY1jw@R81J|s>CU9JM>%vB1=SAs<=!mlmJCA<9e?5tJYMp|;ih2yy1@JXG? zQd7w#fy3e$MnV)%9oI%1r9;UP!O`!~?98vT*8Z}QL0^t6d;%DPV7JW8LFL%Mf8e>o zISP^o^XbiMgkI_OB7dN^z14T~fl(*R?C^%rV92#opvpwr6iYPznJxsx31(Ti7@>oz z{k*r47!)cKKr2PU~%08wK;=|th2L1D!|7$&qNi%c=C3KS8KnGFnte_9*E zS<^<Uoac56Tm1iH~bKm^@d3 z`>svbV5}E6- z+GID3+UOZ_!Og97t9i~7&PQ(`I*SyxA|6x_?hk#g$*as%c`x89^g8ec3_KZv-};nI z?>o(r%&kBAWM*ewfpuPoIT;EJ$110aCZ4E#G^SC&sd;0{c6bpn&$W|a0u~|aTmkof1nh!JagePF1!*dp3<(BusB~MfF zuj#+g;7@wtQ^k}Y!?L`Jm%~qqUmf)Nx4~#TVVK3_jz#I-eb#zIdHs-%7wK`=Iy~2p zxRV?h4#3j#Js2cPf4z z2@#24X-McKsOoxK-o<-RiFcmaIK$0K^DKc*QO?sEhy5|yBx@5STrv6ptSMXVr)Y9d z>xpEC3}Hx%j(1vRU@Alm8@SC%-YyeB?1r4ZKg~r4r09($kwo3)bdegL)!44-_vUK1 z6hFo5aM6`Hh=FI+{5kmJlfwU(1F^Md2`37%PX*RfBKjfa057eg?UL1eFqic;#l<@-Ykru+FqlOUB+idRR^w;Ft5Rk^uj+x>d3w-|0UM7+9YXewXAZ{Q8-gzM0alM` zUZ}{NaOJ@l50iHDW2YulaL1d34%D{oCUBdIbHZ4T3xXi?5XzX;_SaCKl0r%Hemi=$ zuZ*rcpYO))89po1#IN3o4crD!x@pa;!K15j2f|$AN^HezYt*aFXFalyX555}^cUD6 z(;1iT+__$6&(FSj{EV4m^~{pr1hGw9$sRk}JQ$)B3*q{W(Oh)cb+sVJ^B~L1Yz6MO zN^<$!Tkvr0oPlQ+Zaw>jA*syI)WZrphIrlnG^X%U4c-s-#g?BQzYtyro9(iv7q?8W zr$g)<;P5QPx;`f&ANu*6+vWJXFc_h6s)h9#o2lf!^%)ycy^a>Abh>&( zzt=G>Bo`H7x~?OIdu-0hF|`|#9|XA*EfLq--07jW=iT(V3*p_uVa1LE9!d>jrEYC8O*KHKPoO*S4G);sf@{ywwp8;c0)+9<0@X zJhIJrT;@2IbNbRq28RXnrNRdNQv8I536I?DjO`IlEGP6}!Xqr8)~;bTR0r)-T-oA# zY(!Eo7>vqm)rkh(qgGwr&obkByz;7W@E|2Qy?1jDF}V5oUKo@WiuR>oD)+rT^QZ{c zhuz=K#8vine~mcT&Vzpc`{sCAlJPq&{mW#|RT-LiH%TZXKP91k_!GOY){5aw*kky(y>XEdC3&*7 z&^}uPwrG{|4)9F!K*id34C~N(NImz)o$ezKEY(!@H!qu!8ucgN9`xH@s!Xf-n z+oyQGt)|F{tPwYCFxTd3ppRFJ^wx@;$8@hVp8vG9AHC0EMlK|uf#x24ckynH8p!sU z`Rw}9U%U?f<~f{hn)^lE8Km85J3aOn;&c3$j0B#e(|05qe~D7uPx12DPvd9fNB7hW zhSs$Yg|Lo3fG=qBWkpe5|!jLqeP&TYd9ZOC8x+IF<|w`U$j@y<)7s-tb(-Q{wfPJehxC&!Y$- z9v*cKs1+Sw9W?0TKGSA3*wqtw70vE%mOy~}7x#>lCpNs|WhGt=526_G%l&RA*nN@G z2YnTut>l+v?6sAXc!CfHe2m*N-yX6z7&R4t(Q_4(F!;0*Z?vWC$geVnZwhZ@Tp3~E z)@%j3-~Jq{gWJ;Q=vAut0(5odN$u8saK03am3UvaShKHt$aYueA`Jq(%m~^nJpx3R zKOT3lO~M%{?`0;hRFL-78EeZNvh4@cMbTk_E)n9$&yc9=5xob5`GRs@)g9sI`zQR= z9nRk_xhlt3>9JXIi4w|pIOGnr!uZUWSI_|CIor9Iwqo67fa_9E&!tw=QN(z=N>HyB zx5=>XWp!&^onBhaVWd|FdZlMzD^o#_=z%TFCyKR47D}h{^PvrYL&>2br{Ke;Vd7iy zDlW#G;cdtMPPJw0w05OODf6ifdJ{>d9vu!usLTEDou%0nj6F*^kl<{%;nf2jdbn=sCETPKdDTAe&Q1#4SQ*yyR%SZj} zzv{4~QPbWo*WnTG>E4%|ik8hQr!`{2puylx)u=*thIxV-8xC7kUDtd&{fXD`B1+Ek z?VnHk{EgpBf9^qp5;kyZOKqMgk24%qblhkAfcJw*4;+yfd=NeIF}Bf!ihbBm8&{;~ z!s@s-NhSB)Zo<9~RjIpu8+zy|zdy+x7ry&SG`yvLc_Q_(vTNW)EtVm8$-5rjqoQL{ z<`e@CRn0CfdpOC$EcLHkqW$(M890&jPx-6T6%Xmr&0G9X#_@vEfqS8PpRb3%O;o|y zF60cD71{|oo~f_7DCwxDR-;n~egl41$!3fZdp+uLEQjJVu^&HwhHn;8-J1MJLVf7m z=5_;jRnu?YZG#u^Co@ttE64B#`=^SCVUlc@rH#ch)GHSu#2(wnlDhhtE&hQ#ui*mK znvbr1{H_Og>)t(1@wX;1{7W6nH56*?-+eA~EIQ}Gyz|~1v5OR6!tmkk{y{%y-hvzu zGV?nPUU@^Lj$j_gsqo z`jkx8^W@VQHA`K-BgKz{tn7_NK}<~{_ACN_K-xNPT+8R%EmwhE$GENXz1a{|dwSab z)X;1 zG%notsy7lnEe+AHCRq!JlYFWB0H@~akBc|uH9KAcB!$!-K=wjR*k#&oMnx^okj%mHcOqGb!6Bhu>DZrF&{@9-K_g3D_WAfIzPQJuy99J3 zBw~F{Rncn@4hVMhVDIAD-zyi4C~Sfi(y3<19%8(yN8^tA+o|kf@RB?w6|2u3QG|VM zFZH9-Z{6PCDW9K}Q$(JqCuc8+&b`$h8ErDEndwLO;EHN~7*K307zW!8y8B`mHNa=s z-#^FG-GRJ+fCo(ZG*FLnS%r&;%8NsaUe=$KzF49m56VF8=`Fwp~7ZjLw!Fvk;p4@5|Bi;xyBq)f0X z6v+jUT;|RL-e9}4mD1w8IobNS>`5di)@?S(hXXI}6%e@-t=OXzZ`{t3A93u~x1XX@ zu>!wu2h|ExzQ%ckA4zU%FRywpI_LZGxlFb8V)`4YMK!c)dTQOrtqGazUsXkHz!Gm- zkIp~rJ>?(zp7($B{xWYvJ_4&LMFYEa#hZJKz13f^MZ@%5ci+18(;anvi#;R$VRthj zGlP4UgdUobs#fng;>ET{s{7})a$YZU3o~!_&OIyf^uO$1B{%hiB=!x?Ntqw9;quXd6KQzYyuV9sTg#bXwYuNDH=Cho zx5|vR5^t|PSJa+l+mL)XZM`y%g{GYuT9-WaE*Xn=b1T^AcdRS&IqS;cLZ-)}J8q)c z@!o=wmHWa{r)TbsfGkP3#`^yiyY-S|`e6nFzZ=h0yi1Z=mmcG=;v$8Ufu_}J7&Q77 zaH0*Ex5*|=4Vox(=7yc7>Rk~26V~)OyoEChxYs%$cvEaq4B|^w_Fj^kH30KTTwo*o%7u8l|^p z%1b2Y4dakVDY>-5TXrPFV!z@D8&H=^5i{?^G2WcR&Mi8&uDW2z2dnhm+~dAP*u@_0 z@p*s_jx-wZVPiz3;J^>b!2EC)n`XgLEzP#q=9Hy9w|+P_FX|BXM-j4NExK zF4xFSw~|xczE#@Sud3s#9v5Ke5uVp(T_rn;g2+1ORfejHirPnf9;e((%{;q2r zPvdSv`@<+U++gaHDQ7VJsw;SVn-Fu}WK&hV%dp7Mf}FRvE9xxKW;J4R|8g07x#BZK zAi!?tVIoA0aG6l%o%2MJkrrfJwaW-`lg>!TfHv&Dl(RmHn-*z(o3i&~VWp-aEyVf>L~r^-h#o2GXO z8~BI?><<`eKNn#+lVu%GeQnH|%4DvtnlV zGJEoQ58Ax>FD?E#cRyEpUv96V-nj0u)yUtWR%8??y6Kq-Hy*8KBX!k&shv!E?_~Nh zui?C&_dbsrHlXe1rtx&uECu1t%>;v{hrp3|XJCD6?iQ;HANu5KwbsV(K}1zp=0XA5pMgN!{!*IF zGXG{Hb4lW^-o-*bXVzW$-c^NQfPxo&Dr*ki=cpUtiG6mt^MaA1p1+eX13uGq{#;wG z?)MSOL_Lp1L+TLd7y(`%4$R%gD`rd4y7bwTvpp+XQ5jayuW?_oj^P|gRyv-IEE2rq zm|aFKSw~k;kr6omZK*91@RD}DTYcDez2?oVL#gwhQ-lA&Y`6MolWs$Y;v^7Czr07@B0eyA+3$J_)S(@}Ic{#&akl7dSl7b~UY?{bO&Uf@J z<*byP?nZUZdO*=gpL6-_z!H3E^_u>Zvv)9WkhDRV<}RAu_gnei8}XPwujw%>q5NEp z9R1?(Q|5PhPZY%s6G2{rE<-f|`QXcIS@J$^kDt7zM14H*mO8&C?DOoEu2-KIUkSu+HIGLUP5INmk1xkM z-oMN$k$?anHlDw;^nkKXRAcj&*FQDL3}`+kZOaz_o#bu;`ntTI_8_inco9WU!P3-t zfyUTw+WI-+S&gfPZm2;;HD{ z&lOFg`cpzFBV%$7JMm1w)fctd=tcWK`E@!O%0k?hr@tC%c%mkX>s&N0cJouAoR^H= z{KfqWSE8~r#ucXmKS(QmLTCMWGoHgs!5vKc)tPuclsv7mXx+CP^-casS5;{hTD`lg zZ@m@ym!;Q)yOj)wj&1Df!MIncAG_=e$(L?mKXW__U+sLe9}#i_3B`=lxp*~XSL%=P zogUhcWw!GYefagCQlt9xsl6B5Qw^^h94HB{E%`x`BM6BE%~Z18XKYQdrZn=S%ssVQ z98w0{AJH05kyZ&oydLUVI9?3K$gj>Yh{66xm7JQ+%Yh{F(4#|iN6XxubH6%kDH3#B zOUt}mnRhv`{tsAT9{XyJGwUR^_sHVFn=PgdES>&}|>a^qOi;ivfB48?cZAx6n4K&3O1Fl!hSrXv;dCJoxUd@M@(m0JUF9RzRPd-5A zPGLa8N!??;A$#d1TC}cvfj%S`(h*lXl?OU&M5E%lkU#5|kLcz+{^=P7)| z-$(jFk<$8=942PfVT}wN@&7w=X7fJk6YqJdQ+~spOx@0P@!oc??F+qh3~1GjTvKoC z{9RvWE8ptSCpT7d;3(AM(2Oa8WAJ40`SZeKx=7Q60W&U ze7|Ipv^8hJ|FthvY!hFl&*g25%h_i0Gh;l!@BcsdoNkAXpVF^?ls%svdqc3oL!4}x z4YpbDeH++6tA-W!^qh)k6BE zX0|57ER`cmG`JP1+>N!2B8i?mrhU`56BRSl8D3I<{Mltc5PtxBpQqwY`)6K=u>f~% zIY0FnOf*{r!N=?EA3RvanMAOHx?ap9X)*%tH%nX2r~{_$ zkv+$};#_gW*K{S(TKbfXPV(kulD)ti&pfM=i%qtv6Gdz$?bSdb8L>I~O*Y@^zH-1O ztN$x&ECJaai{hMKQhJl|lK`*5msm&5XkGqxA0ctBw1cQsV**bp#+_jy=NkHZMwe&t ze}N%F5+>*1=boRGzt1ta%GWQG&CLW5nm<2yK$;tjsjRRL9X@c|sobJ^5pAMSS;DCpe2o z!*g}zbjP&HKX9i~d}NevAMAk|X_1#S1K~dJ@$YXp?RB68BSmn#GV`nSOcUH*w7>3*8arOt>6we%Y_+Wo%K5RGGz2J;KZ!0n0+j92MPbh22 zBF0CW`rEbv-;N4AA0(&7;W1yW=_8-LG7At@V(;5^fg!#SZYq zJ(?)_sP0z%W?;FZ6X4psmMOfOe*n)Mh3{ted5XS=(}d_n=G*1GM=P@^u=`bgce!tl zTGitcmzG)1NBXPpv+dhb2Dkk9>x{`6ct4QFNdF3mF?Vu|)|vQ_BiU;a-0abtHR3bb zrW`-rB$#hIzuvQ&ti#w{bSnPiv-Be(rw(B`&n^9qBKgit;eM5>^2b-6yqEi+mmKpm zmwhmfcjTzj&Tq%%`JUs`+Lu!=o8W@VOkxFxwIk~g9OJGowLL^E1rz;LT}uYt+DpZ^ z7R(Xsaqf?>jM?DZ_wv1g)DiTnf@6DmqcyQo>zSuoQdwVPcR#rwB0Ia>GJCGh?QMAO z7S_FbOb^CrU_!2bf9B6BuDlhkbDD1V#dx~QOv&W!kDz3uE&CkY>h-!jO=T9R$MH;l zMz4Fl$^9pf>5)naPSQ&~^mc*u0NB-`EGWL?;HVMKPJgq%@V@uLJEozdg;0)Ux~92F zy$Rn^@og|)*wy#OSNK)m&8i!XB(G;Aw8EM=WX?RYI?_vk^We{Y#&5%DlUUq7N}b4` zeTo)_PD5Nej|1S@bFyf_=gzjI8PW1eK=1{gQaH@6`l)-x0?RGxjowc?y1w=l20=~r zV#CU*f{l}O`FkyD;akjWtN0}C_J%S!virz;h{n0R4|Q)86Pl3V8K~p4PbNi=eiaaI z`Yiogw$g*owrB%-a-P9nml+d-JD8!2WQ*^&>f%9eg`%U7EM8{^U&>p8o4&~`0b`gl zi2nuc`)z@)rrs#5*%o~m?>0T1a{^h$XD=A`3+1u*TPHj5H-WwVrb=(|ReJkhp=5`| z$2aG@Ze_k#_QuVI<06ZDQ#O$Wgbt7A%i;aMeO~#Cv<(-|q8HfVxw>52KAHjgfZjXB zFooDc^*Lv_x{AmQpjv%D`nCr#YyMNmUwslX0)+pDDJXg{_<^&5^!QKK`wf2oz<$)y z6}{MVExB_)@W5#6jZ2^IlDm%eWhQ*%33`$7<>IN;d|=N{zZ|$;*2Zh%n^oHAI?32R zKBNa*&hkuZ4s6EP8+;IzbV0rOy(eF5kPodY5^_WE)=FE2$0GzmU zKpb_3HIBxm7%0qudjX3As3qEt^~6AV(Kftyq31PbL&4@)4PvYQtyUjX=l0nDDakLC zFulVDK5~6ii7&8dzYD5)#W?_0FN?dDypbXOZZdD$R*$CVN3~&)S)y2!b87y4StUU&V^rgo)&AD6fWgKv6`gDUg4@vojS z<%*nRyqrruWg;V+f|0Ngg#9`9@?3Jv9bry;1S&~(29)lJwV>V#-()~AcBj63&Yd*C z;OByG;4dK`swsZsMuQAx1#QttG*#Yw@zo?F>@4|y=f7|c(Ly+iHviSJYrSD|+;Gq- zoi?u@nztQrKI+VLB5OtwUu%8KXzeQ*v7vl#)OW!>sa0-yXyx{RkCwd7_am@otxl)1 zH9EDkle)~7!dwv#=Jm7ZiMN!@cR^2feY>3RaeI<$c(D76N>=K?*5@*Z`$3i|%mRf2 zewEReRNX71uTh&=W)T5K&o#2GWl!Mb{$;V7a({ogxK}hRkPq9!lSRjnRQnp zg2vt#KEm;Zx;}aX`9+wF-L9mXJw6!pO)P^_+qGovsX2dvT!ozJfUdfOE-Lly+Y%Om z%%=);p)PGWvS;e|Mi#j(gf8qWRt&a?>ZIHg7NrKK&Q=(olwNgho*J{|dTl(Zi1nZ7 zc#htB@^D?e)$()W1*jTF5^hNP4K=m^q@xa2z#qN@)|;c2oZ^D0Ul?^vtH4Pshq|GC zmx_*G-gwO@2?In9XQrv2caNH)a2~%_iv{@8YtvIIdjQ4kZnz;se4#4$FgdUH@7jii zeJ9CH>pa;b9aja{O*K-?eG;1BY?pI+-#f1~_7#u$K3SI`G~@A2cpHz(x%A`{Pv<YPjj`lT!bAZ&(Mqk1Wc+MQrLwo> zGiM&s_EOq_c6;+2`A;jJeejM8myiuzGrx9BeVH*H2Bn#`3y%v>KtQ0LFb{jT>aYcu05oJDt9BUk6#9%`wcoO^9^ zoMCl(xi3xY^=17$$u-B-U-HWg8Gl|lhSi6tIcYH@i8eK6yzftHX-)LO z*`0Z`#oT&G3WCtuaWpQog3rb)r8GiK!xdlMvb7>@SPdcQIT9h$8SUGb=RG7~FMZ%w za7c-Ea2VW0D_R(@-i}UKNHW5#B;&Sm`nI2aglaD2sVO`Jum8I@;m6z;pLJZV*O}T@ z$r&ay0sta;9oBIqH5cz~joqf~V|#z5)zE|rN7F&W4pH^GfR`I}@gV-AjPCF_ z>Y@YZ1g#d@CPVL2L;nqLmiYn_h;e&*Ux=x%Ki*BZvyIHfWj|NBzc(IYd3e7YAsnq4 zH(!<<<`jJaf?G1Rq(1HJ6Mfp`)rU>=+rPK?WiQcj5^~fzG;+HL(b%V=Wz3SW4ks^E zBPjDG>5!ThN+^@xG4d#unZ#;>HY6iUcavpCJ^RHnCwtwQ7vm0!R#8f@(svfKQ<7v@ zri-^V=(9oX_mV&7UNL$XKk#sQA`Q4VCv9g_=R`d|m6u6T0i}vT(P4QW8Tom=TGhhY z+IP7{8aW(ohJAqZTu&ooO%Xa&P=7(B-z3rP4Q+)(*;Sp|XbR0gb7M7*6E%Ws-kW)L7l<5H@=3;N6NYK6b%&+YEg zRTJFta+Ni)xWBx*hzoe1bRhbM5)R`t(>;mX6~|##T9V4fBf3!yd2h&c?SiBUU7;92Qw_ z7^Y7}R(0p+s=k(B-G9D3p2!3Cf^>42cFuw^j)F$R#^d~sDZ znHwwl<57Byi+}12ympb690uXfoxHl5VX6-vzO0T-2I%Vz_5dhzxum}YW*uS3n_gMB z=_l_MUciIycSo;T+@u}wISytpEM&u8mi*AGRHOS}Jdsac7$5MWU9(5@I_v;n)N{{gJxnyZ zlj+u*YgxOVrPsORu4bsb}bfwspTPhfh*$Z%e`*vKv~`4cxQ^03%>i1kX** zG~snXh$!X51UOIQZ2q{erskFKImK}y2L)T|ET`0bpS@(epp>6AUyDt;k`>Tvao%Wl ze(g}VkSdZ_2)tJ_|2^5GBhb;A62n|2XvE@e>HhdhcfoR!GgZYapzis%&*BV?z_Fzs zt*I(138~A33fR8ajw{qYg=19$a9zurstH1)Vm`(Gj^y)r4%SvTk66d?Mx2cQv^ELsh$a~i(hJw`bf^4jVhk| z=#ma|8o6pLb%Zhk8>nLPY*ioIC+ALjV604m|0?L9c6!fRLO?2 zlhCAzzmf+5-l1L#Pt0d z0tp=(-+|fkV$`@$>SzwRw98Oo>Ba{0~c`3iG0-@-&MFn&C?T_hE zsrmioonYP(S}10s1Ng1?)}y$0*ypb|WWO7jl`45u)Z$;h06N1_JPl4sWpLgU))N6X z!}pDFGpI4ra zOX+W)F8YWcO?a@zdnfOZV^#9i)<#hWIx6$#XVaHE?vFsY9{a^+)LEuD5!b80LbTWB z`?H_c3yKj|>dBnx9j7m6ecQyG8vb9u$)K>)Yyc$BBqQK0_44Duxvm~9qH7zcNpA^X zOxdaEr;~&D`c84OXe23G5>wsHU)AA-c}4d(ve%4~rkzc@lh?Ne8Fu}feX4m4e~mv1 z$w(`_rbm5K&D2TfdQt7krK*4WkEGgGFir^}s5Z_;FtfPOju!;?d9zgo0kj9x|AoDG z37KYH)3lbB6R94E;7G;AYN4vg-klj48IhR<3VA+9o+Bc&tJq{jZ>_ceZSA6W)2-EodqJ%4KYo8^WW*cK z`#kr3-KUSr7Fi|6aoe9%x0(X9ht%BKBCnj*;FYL zVB^=othZ_{Z%}wP(h*4rhitrw`Wv-fEu3y#bg_SqcPBQM6-_x)jk$MISpn95ud4ui zp5x|r9K|UbndDvX0IFA}!_L`aVd}T+UMydZavf!lK`}khJ)BNwJGQY0XAeHQeP4LT z=CxHj4VGUS)5Q$*ZaH&A&(wvx5C}gbwRFr$M1*RZcDm&ZVeun>#`a8n)S<#QIJw3m z0C^{!Y|v^pWFL~}cB<1jRgp1@j{W|D|G%0n74#7o9(#Km7fanKKaHm&eJysiR7ooC z>+3@5I($@Pv#gsGuBIuUm-4Akz$X|j_NiG3vDPdsp$&Z?<8u`yE7$-L40%QxVxm05 zbCKcldcdq>g@`XYvC$dkpL6b^6|H~KJ|3UNky7{YnKCzL4&1kGo;9ddUP<52wU$fP z(QG8M26XuGyWb(^63JEposomL>PV$Dku$5#w$=QPkLb~GzD7fS7tmza$_jE z$pv5V*b-($dbIF=a0iUU`1H2iO*_kT+%(*z||UC|rwO7iB*EeChvACeLChv$oktW}7J96KcuRy)U`7?M>9#K&GiWJ2rvE zEHO&cWz3w-36hsnUzDF!^r=rWNwk7PbO9x^a?#@VR*6Y8QQUGFrv0uyyGvifkXoVa z)yETmliYX=F3vrk9f-MO+9=DXa;t1k0l{2YcHyb*B>y6@F;O@DHY_2k5{%Ht-f`20 zLGo@NL{PD5mwdxQm(kDlshrZo3>=)WLh@%L;PG^fJ=;}ht32}sUB|8Y;<}=ml5feq zZoJUx?IgoMw%iKQE0qI1M({MEBfDPUkci(?CnqHlb%aGKnHmQC{^P2xj^|SK^r~p- z^ooY|!JPD#wS7lZ92>IH^3&0tXbVTuO*WW zW6*2ceAf29py#9mpce+`#tBaYNip=x^4z7ewi{NOPNkL<8_mT4?)sV(BoeZG?Q_lb z_Y3Jwbr(-|Bc)HfGo!Dp;bl@(Z9fBnSDGQd;LikR?W5#-2xSDPs7C9tBtNy6xjw~$ znFMFye&wDHIlV5W>|ip>Spic#E{=TW&O}7Z{qoY;=gW*j@cWbQJv=5%ba>ft4_ap zsHT#;&`MXmVskWp@z}73EP#4FWX*?D50AZQ!_zNrqA4H2COcOO#wXh>>x0Gyt;m^u zo3@kvT!=kmN@_rLrXr*P;l%bd*8){d8f|3q(35#3@vb5^cZG^MQ%(GF_L30RQ=c9P} zBa_IrGt05jrq|B3fuEJ<1|P*WSYjdV8yyzP_eEwr+UvG&Oy{!=kI|zoHMFN~TRix# z4(Pj1Ip7@V^n=jO@&b1}{-R;|M5t+~A0MrjqnTT^-_ii&$xJKsB{P&=HZWbQr?w*{S>3uOLim4y1=2@}6s~2~eXdH{@ z-l#)QOb=T8$Xhy|L$M;?z?}7W6sgy&^i7Uj{oiVzx(cg<@kFX|1HOV z$nkeL`W*iQc>w<<$KU4ozsLdj`yBr@$KT~hISh^;IDVhw_c;Cm*#Q4L$N$9fpL6_2 z9REJYk>gJ|{!NbGm2_&$G^<+&vX3uWCZ*j zj(?BiZ*%ocmMtF4E*j4{O%0= znKSTD7@m(P#;K?W=NE@kS^GsrIUIiBxtjJ120*G-AyBEjFZ~&K{ug>~E zrSSZE^&f|wAD!>XAO6V?XnBYOeMR zHWIsE=%qu=QN4qQW$#z-?1yvymz-8t+wM3@=hNmsy#0@_?CU%J{Mvr?f&LKq$zP98kLMrCmGR@L#yUlem_3PiQMR-blJzjInvtK_Qzy7n|WjOqH84h@0 z8vTB&A%3}Ldwsu#vh$hRi>}pQteo<;EhJyE(9I@yOKC%{SQR_8v3c3*;Bn z(zh87PqZ-AJ{b;8xE&*!9)z<7<6A^hYx08mF<~~L+3nRtjW45mVDCQY#w=U!ncg$nH))?`QC8IOe+3Q5rX+cA#Nu51t2q)IUy3g-qK|K9`F9xlcdS z!-QY2x-WHme)l$uqihMEt$E$7EizAmG;ZQp~T=sRiYzZTVgwkt9p zv52mHSTKKHj7Lwrv=yC;+PyJ#=gzUAc2D%W;52M5Zl299J#gADyPh}d%4(#{*Nt?%`)Hp}@j_}SxU|#rxxw)A+L&RgJo{^VY(B1%3Gf&-jtu|M5Qm(% zxOgg-W0RqCan@`v7jCbn`0Ro>d@&7kIXmRWxnVZhtX#%rQllL-Am^O+tBQ^R=84}HD17?ify zJ?2AU_9Zuy&+T>!lvYQO~!hk`Kc3N+oD=#Uugjc%LPH1HMeUH;g%a8V@r!gl%&xp+< zNngD8(3Z^EmR~Bao5L5royU>nY1Rel|5R-aVz;q%oVTz--@*Y{3O{guHSn4;XS{zR z3w@nvd{#}-<8;s$RN}C1Nw3JB)<1;Z&hAFPTHCj=$#zeCu(zA-w6vhdO>id*+HyzP zrWl2efo4tuNrpL#$hcKqecVPP?!oWjmR>T)h!~ddeiUvFip$+2bZU)P`G{2E z5^^7}3r$^okm85BzVLoFI`!J5(Jo}P0IMd7rETl5*f7{25}b()y+SmfsnWhRZujxE zxqL9UW#%t4g|B<1c2KIEf-sXz+iDTbd?|(NEmrZ5o3rY2#-22!?{NP|!Z-m)dWm*m z?3vA{xsEwM-wk{Zy8yO|(?;Qd=8xM3hJG=_2VT3ZO7&@w9<$x)V-PNY#$is6+GxNi zd7k9+5uMCR=y(3<(#y9V^u z4Y`WalESd6L$>jI1JHFJ_2_=DH*|epb9Bsp{XpD9u7}+1Cf2l9T@6nRWt2$0PIjYdURPG&%oTwQa&G2kCp8bBdynHy9!z0@lzQVmb-}cyCWV2T`i(h zy;Yg8a$g%TxSXEknLD1FzRCBkwcE_llfHw5H=w%TgxEFN(aZDS`*E_Qb*EoV4yYh&uJg+3*+53nzqY|b-td# z7da_tt=^UM^b+gpA%Ul{DdAoD%#ExF3!w)8w9{NLS7a_GbAxJ6&U0keF(0t-Hqn_X z$`jv0ZvvYK4JjzHNxvgLfhFT4x4AqG(&e+`KMl^iW=Uo6p`!gnF%_rc9h`Z!GTrwmK$_6=m5-_&(qk07JJX0+LSiDaVW52H z8B>duHaQHdNj&bnCHJIUU^2k$6%ne&OahGWom`*8qfk#y5G9P98zyu1kDl${q*>?+ z&ka>`FR)QlL#aHbcxKyXT<$hln4S;UP+K~yrVn>ZXZVPZ-rd%8w42=6%9Z)AHOnH-v#n4ANkYUrL_p;{whR>&_Bh5XThp^ z*&Y`K<0|@{R%F7st{<>e!e!oq6I2*feJ;zXLtZlXOcp*$v*a1X`Atu%eCGRpk~2TQ z^n_T29H%Ur9f{4BypLcIV{u^gSMI=DVeZ$OlT+L{s#Wo{#(FkT9cxSdqU;b+lo%>k zYO+qRB3#-B;X`QVW`_2ruxGiyy>mVn>j;R>pyDfl(0Iu)a~$oHm4Y(4F)o9&*Jrsv zLezL5O6qaVtz8F+P`QffVBiEDOK)`Iiv)1JwZW+72CL-Pz1mnZG#KG!>zQeIQdnVV3_G z63|{r+Pu+JixOwZ{W}|uvxr$!QQIOV#GmliYRvNn*IPd89U|h)Xuhc`+C+ybT=C%e zN#TK)zDmdyjJPwuv~|Yj`T3YM3%;fmflcGjxL9B{6rzXlEM4oh_;?ZBu;o;n8jr-& zr=!jrx3w%I;+dbLP4dV6dV|ZoK3tK3)p1VRNIWdOA_tJpwxA$(Lo2L*hDn~SWi=B)`iYfF5Qrk)X96D}cZ-XXgt z4TjJne1&&c-sOxy+ZGO1;{ZEwxq?t)%yb2A&UWR(jeTuIkFJPbOnF|7dH43(UNKWH z7>z zZ{s@UtRM?eBzpi>611U`ne{%&yx8XDD@H4T08u&|kcCR_lQ3^Kram7QKHdt?3CZYa z-O5R2I4;FpsLj@p!i>0R<7=y4tMd+Kpq3@X8OrVZmyjX7o) zEfASD)^3RSwX8mSv#l_2S6jF<758TFd z-RR-(;4>~$_bx?`pDar|Z&nf}6h$zFPQsJ+sZlueF5V0)(--5Z#y>IoU@_V_?F-}3 z6Z37oHS;J)@es7y?cypWt41g#tDJW=gle%Hv+qdYiXkk?PUBiBnkq;_>{ZHu+77g> zcgTmeC!Pc0s#545<-Une7s?zAO1)MC^EJCY|hYEX$>TDnc5*J|9^;4-&WrJD}Afz^1az222Qv$nwxhu=>!#aKc9%l+nXqf@`))Ey$mD2kIz2BHUvRi+{>6TEjwN-n>b~|j z_89s~G&RCgcqU zt1t0g#4V+2Y{m_YFy|<(fnk_8?pO0>q~g&5=8FbuSKCEJ_9e28nq%S1>tLhOqQgR) z9HAw}W8uXcCqp2>RKj}~a35+Lo+XPF!IM=}GN^cvw7XfocQ=;klxKIy+?Mo9>ugaHiyfTW{;Pc zvl~6UokK z_{UD1Enm0ZLl`@^yT~}XIrTi>;%;a?k->XuaZlSC?9Uc)Gik^xLVwNt@h)|bGrNtp3N7m!7HSGp0KG)uZMN7v0h38 zPV~C{-+leda30idkPdF+bKO9TU%JUYqB)0%dF8>KpfN0h=v7jzVf1@$KupALgO1Z| zp%;ywLuEcdo;z*?`|b^f2{k*n!Wg8VAHz?=e*E_OFrLZ^vexZ0aliEX!n5nL_kO{q zJp*i1(7fgU9$Wvq5ebN6e2ns(-VoB@RM^U7{WRt1L?I?4#Q3?2itT~;}{ zWNF%&u#;PXlDw~?>TM?ZeBvt_eM)t)$sVqzwJ-UrLj7t+XRZ0(PtUelYBff!jyrYK zL`jWw?UQHVUg<(^Vz*JiR4~*NviB5{%6iKyy`N=&=FHx4ATa5kDu}enXY9B`)_UrE zG>_4}SgX7M8-|PF@t}&QXf1tT__(YTkH>ha8k<9*lD046-F1SreXO)bNsqUlHuq|4 zMa!p=fzOG<$*y9G4~a2*qR4Bgv+q#Mc~Z-b=rG>D*bb1uBl$rP`q2}3f<<|=_`C>qxCHa!W%;5c74xUJ0YiZGZ9^`Js_7X_k*PA z^mv5BgDuOsls+Bh)Q@@};RPOguu+TKwfN}IdWUCsb6$$>2D>Zn>Sp(7^I&W=C#S#U zUxV!uLvEu%be(y)@48_rnb)GzgQT~{fVEw&$4x8je0>e3CoPfdGN2Appw z5qRlhW$9Q=>J7JDcH0uZnynU+=L|e_v@B&S$(9S>v?$XHMu(z3(hIe9I`0Z9YC4$( z?wEV|g-+Qc?KfJ8u^{Jbu@B4gUIB)f!t8vGj?~4IMzDJ9ojY+a)=sgO-iR7q4@4fi z+zwc)-VeoCtsfW|Qd|wwRE0y-`6%SS!6@JxPz`$ zjPdtB&+JDIgY(yGvA{Sp2WU^mjLJTUH;dKk^gg4{vkd4EzfVo>$7z!!hJrRFEAk=U zq>xLxNzA5Y2jp;O{;rTkHTd>=A&y!vP8@G*n%5?e?g%t;n-0g&AV?}yatwe)pI^zU zycI8?@20%Afy=Vhm}u`pOoIZCR|1rKOR(g+wo5bF5J_L1mA5-*4%u&z4UUW(&vH=5 zNZ$V>;^px}5{b3WS~&0SSUz_bUc5t(`L=Rq6Ujlxfqu&P>%^RNsVOWUoHrOmX%`f&L+}_t3 z*K?e6#U1JtuBpbTdgRZ;qRBB9bUU@KJs1B{!*D-PY1vb0dNgK79(i?D_*o6Lb!JFb zrgzS=q!m_I-Jq#c-QNA?ByDhIjH=hVL6u57Jr3gc|K@>MNQT<5O*`3V*tZ#A7ft>f`R*-LikHBw<{FC)ISjI#_=+pLQgL5p&O2_@>=s9=#4!w@*;Bm^mdmcAgy$ny70jRg;eKeo;_Bl1A4tLFk zJWko!KH^J9mG@W;oAYfMJIm>{)f;R;=w~QONxpxB0Niy-Z~*&|6GN|DC3d`oVR23xsj*-Xd^MKqMOv(;;ITF6|k7gD@OS za#%mPub1Yo_Nk3C4?iSyV6EWYS+8Mryr*CL7Qckze>!djGA}?bO>lOk!Xw7ANRM3q zk_7we-RjPprJ$DGPwfWz`wxv$tgwU7)7&#>=$nR{w^ z6+cS(j#py6|K!&vq3)=lZ<7DlC0vW45|CfI)uGr_qlHR~m9-B{1O@vGHt)*g`LoKs zqlx7VJL11yOZHJ~a2`YpdT%7YR;aVS-3KMaZ%{+;K7JjZ7j;(Amf3<~^LQ6a@hy6T z+T;0qr`v;PQu1$KTsJGJvxr!LyY9?p61@)d*E<+Cd53-Yw`;g8uPY`cn6+kwJ~!0XfWEPhljS9oFUC6NDiCzQtB=^x#%c;A-w>gI4uz8F;;Qm~)NiI!%-iGvMqK zYurDBrZ!zD^rj)~iWir-;+$P8{(63#=L0Yc1lpH)8|x|AdmGZ)1RlFQ>URcV#Jcct zkU2xjE9X?^U)S8XE*$dQ7nKT^UcV;+>xbp5@ImQg(mEq2z;y5#dsb|jz!oY+>q>s0 z(K}50Bnis8(`^ox56M?7WPk={_`D~x{KLW+|5^Y~K5|3!7-h^WYTo4YEuyd&qDzz4p%VFjF{Pn}QA@@dQ{{{)!yIT>Xje?L24C(QLoXYw%t2u8=>Y>u2A@ z;A zl?();_D0;OXCAZR6YlZ*!7QMxPsLvZYxq)9ynR3u`-PQD7?0_+C%(}}WaxJDgIQkD zQ))@Zk*#;3Ht1rBV>lDfQ9XYK^cTypGP^#0spU}IWXgyb&YInOowmLs z&w`Hj86`9bZ5~&g6Tv7e;zfDQ@my&5uKm8~C)T;CD~5Lm{jShB5w}BB@on>k0q7Imh$* zaL({D8%=dy{mnhIb;=X7nCl|Q6Q7iYZBBj@7@|%2KrfjDdY%>jBYd(H_Zca>GaM~g z#l^3i+;5WGvBsz4#ZT5M%M4`pbXp`{em*LpH%6o}or;Em2dv(htk{BoqlLNmgO?T@ zUmMBdd>cajUu%r``D&SD&NQFFdekQ` zh&sZ%NVaXGW4A*ZSkhlCqbo^bry&Qe6+R2N>824mDi{YUM*@&<~IduH`Z0|uMQhKqbjnE;6@la9kbVb zBImb#2v2^&-S3@A&&}D#Jnj~x+u>%?2RG@9>Z;>aEQblS8iKVc<{8=%2KH-`&wv;r z(5@WCZNA^L=TFKH^PL}i)*U8obKr6S7)MaM(nd4l$-4MFZiwiI? z<@sHbp3|r)^Yc6_fc?1VRhV}DxW-6bDg2ZAWWHLJFN15V2cx`R;GSVoXg<|>AkV#s zOaqHT=Puc9VIo;cl&s{g$$WLa{nh7N+3%*)LUoQ+vi6|1H{0;;M@G)eWz%o^Lu%97 zsF+ds>H~vmxg_*Yj+tO$u8=IXQ7Wc}M+aMIzwOQ`S_7V#0V3 z)|x5)Hq(+Al5^CcpFbf`dZB$Ls*M7|x&^mr9d`S=NX^7!8A+e;cBkI4+_(6(dewF~ z?{}q_Iazh!EWRenAZL|OPOzOoyJCU~=hNTbOy4E;m5*t)^Sm0_D*e-7lXVBg5&6TE z%$s?B-`VZ`{drYbjGP;p#XPGDb+dYK-3QA@ovWW3b_7>yAv&vNntnYG!lcxgj^y)o zm${7+o!FT*SVi)6CtkP#(?H>ogVMp+`nND|JvE7ZOR;r?rpM5>DRo4Z?4zf(SmIbn+ADqUD*WRbD(HB9aKR<+U71QZ8f@7{E8{#N<>k29fJ}On_E|Qs$``=YyJMf+cxMR~In!<@>!7RtVw$u~y^$_`NDujO| zSm{e;T4CyP^(oc^K>YhsEoa)Fo1Kf@?G$7!n!hWCf!f7^#^Imw#NNy?`7K5!ZWN-duT-ljszpb{eEy8rud|f+Y`A+?$w+1 zEBfGUwBX*SqjP*?Q))eO{~%X8@G3Cr%yCC-IVu1r^%-FT6(!G*(i-Jy|qSEz`KvhGLd zWXX`rvwh;VWb|4ZB-XFjfME5C2$Id$Hp%Im!jn6`Z< z&pRhlb>GO6o6O(_?^&CaKRIyHVWp?>c^F5mP!Wr8+Y>f=bJPsLsiEB_W?gctV3a94OGzj^ zNS3Ez9@7?|-%1yQOf52mGE+n)8$u_zz1M?Lr9PqX9w6;BMUV59yQS>5Mz17Ucs|Xp zswq4!Snc#r%@vz?K$o1Bl21>}w7m)2HvPmC=#gtc)jK?y1@qxts&wxPMYJTMw z2|pfv#(5EbBzU#?9LV?9WRrG$%Kq;|k6xaMWkT;IM^18-vW9O;Z{r%$bXt;I$lo(I zbBC|T(c}MTUm*|M+;e_=soWLyq@Q@KxcAG$SG-2rvVb4`#yaG*l73xl)11zl<8(Zc zx_#2LTYs@%Ew$AavaDuGpMZ9-AILhyY>fSaw#(|Eo@vdZtrI=VS~RGRWTJ$Q*`jvn zH`Vd6rV8h$G=T>30m48O4E;4vSUYBUL8$^trl3EI>}_tZ^{S)K$oz(j2|thRdTBjC z4&f}gS9Hg2=ijq0-%}XQ$&p-!@J-JOxEU>=+eNFVlD*zuM9TTyFVf<cA63u zvs^rQi*%*r^$)4%m7N>R2fm#uce8rdn=Na0u4=ctHe7B?_eQ*Y?fR3#@~PV=P4e6Q zX6l4Gbv$W?z*LqeIFj&}+6lE>DfyJ!K#pAHRQ%Fr`1m$%C2%?DIi$a*QtmZx4?;@c zA7sqCz5kwO<)viLz6_c=VU(@Cv@-HuLHX-t=QUI(@?7s&fMqPON~x znd{5a$mrbHR+XNs%CI4IV(8JON%Z=f|X-F z`Ar%T_Cg05dZp@$Sfe?)9VH&oOM^Xz87ngXG}Q|Gg!XahKN+6U)(#0XDrxA;j_e1~ zvsNfegu8D=&STn>nG^1LLpf!L9cA~|KpX7buQ z%w2kXEGN?SXaTS%)5^Ke;RZw|wp_UK8^_!kHd*TZw_QqJm_g`g#`@Vjjl*%{sw|Vm zR_O$-`_eis!uwU}Uz2V)dDfLVJ*d{Y)6$Cb3wsA7?Snr@cQ^1}Zt$cp7@yAZ{tWZB z3Qd&u=_qIIGc##5kc$#hI}kpe+25+gmnA{9H<(v%a&2VW3ReZUOVv1?AaN}^R^Qg@ z!_t0UMk~47Np6Mkiyp$^uaW|@J%q~+?5^7@jyeqQQ?go?%8wZW4&v-X7M%2KR7f9I zb)UY_x`qWp_$Y#|#UWuYe8%-XLz~%J7^{2xR7t1LYL&7FfTk6-@LRp>d2g5eZ_C@# z+39u+dNu?%_RcTUu97-8EyKR-7NL^Of(n5!uQ_VeLlpBq6+bqQ>&^-O?FGI+2;^tK z)-Pu0BC7$zfN@FqzM;wmczj5`#6?`-RNT*AQq%$)-VC+oBiF}M{H_CC8+Q9X@^jtX z72Ow~rOaUZ%aXLKC5tN@(J%EMY_49<@_0|Qxt7i)TakTKCj+>r7PsYCr(0jgYqKM? zx4eVvM?K+7c8!`e3;=mn*4i9WHh(nyHCm-6da%&ht*ip` z*ewMbUakE4yVCaGRm^RflEqw#Mj{823U}))J~paIB0j&e$B0wv!~N=Agz2W%?MuEU zCl^X)x^HMw?z@axoQ~QQ#qq^annw_mT4srcjLKBskP|hYF;F3N;`|~-kdHyWY*#}-#=iuDH9h-qbIVMow8*p?RfN;C*rT@6*)iE zy>cfP{dGPe=Ks7(rCPBkSu~$*&W%qCB+^jppU%=-fE`Mx7QNx#wFd?c#+qmf0d}UC zm#)`R%?hI`-`;g(R_B1uPxg}OaDJ_K8hLRpA*vaC=ZP_R!=k5_4b^h5by|l#*%mDM zXU_%9bb7VD_InjH1nOR6=t)0oE&QyqAsJ7-U^F=ojsw3~j}b4j-bOu{<?d zFR10$-1|f_wLisLsi#C)cgXH*drHjEkY0A`TOKeqchX`c{vn=mOlCa0zH4u_j(pW| z_Kyjoo6nmXWuqQqjBlqV?7NcFJk2$)_|iyER$c*xh)FOUsL`I~-?kAt8PwDLyH@tD z?AZ`1X7-V;p;5lfxe@tjVMp2QU%EGV)Sm04{nqJ=B}D~wJ_r_p?DJwg}EIF*VyT% zwXJe+$-$Y-sjIqJI1ji#STCHZn${viOKnEvA)1VJkeg!awAKc-$x|JH^kws>*Qg(h zlqTJ_FufH($}L%V*wlpYn-XTmkeOon7LA_3{75_2%hTGZ|d_FViIrr(+?UfCz z_Ub}reCEi6LC)tB8`+x1`J`U3`_*KCkCzVlcC>4q=`&&G#EGe7m_#5eUIrS*-CYm8 zkZYA8hmIU)v+a-UV(68`=lLvCKg0-pX=bzKC3VO2*(bdQeqq!;)@DYY89U#+V#228 zV8fdy&V^+DJz0(^=lH@y3yi0vFz3f_13HzQWt@Kxn8=T$2o z<8$~-Do@N+9ukiQ&$%Z|KirI;cOjd+Yw<_;liTq}=KJMx1p!RI6-|$7n>g0V zt=Fv8J=1=LnwM5yNG3MOOGqzCd4}y1OKgm@dSSjbmRwuLM!cA%9qW^Bux%GwA^XM+NB_FA3!~SO9?clxb-e!|qyVp~! z2m5q&x3yQHGP%v^?(_VZq=50q(>oLK8QzjI-Ie<`k?X-&&bM%m8D#8>;rPZ#xEv%M>xB%i2vuevhd0@%NJ)#$PML%C)g-?)p`k(``d z%Ox7Ah?=1Yp_aujzYAq{q%}8+omP>78~LMJ*qfu;txl=Yo-kO^yA8^NZ75o0c}|)E zBm2V&Eou>G9$G&B9r3=2k830e+Zk~_=q_cvr;O;ED7VC<+gpgj>+tUN($*C@JbCm{ z$=S(yIov1*sHKJ5J#H9}V4fBq7P?3DGB<0aE;CZQu!10O?d5CDW4fTUEfnKw)>xgZ zcN@CvecKFuFFdnmDtks&H^d1Vx=g|%{8{L-0@B@L=BC%B7Hk!ja)Ib-&83M_C|hdb zGsD3>FkhAdC_Gz!%Rabm&U3j%} zL6&re3nTaH8_H`yzn_@ns-sfa>HG}b{Rj#kJ&n3&GR31wW}+_K_Nt`JWTx~f9{jgo)cT!f?CkhP!#%uHv6`WA z>#wx&W7!sF@QM!L&faE79WC-g*5m@c_fNKNL(L+>j81JA3sT=-ivM*@?>CTjudt_^ zP{bQs^tt{9Y!jC_6qu7=p$nYmdEZ5_og)Em7iFG{P2=9zmC=)ibL1yzQQqVhgEUc6 zZ&%c(gjxX7rN2>*_-sl#nMybJ-u(KvtMcDft+oxZaH3BuYSsKR-Uai=X2^Lr?VRP0 z^=oz{S5uujcT8fAGD%DwA@K;jrZdX3u7+cu9XI`%12uY~xX$iMRe0e!>2{y) zxSdqBV-?KyT|g;HC3rOMZFBgYg(W2bS-43)2nEu za9O`=^g1=aNwd>UJ#)&sPrEjjRA|o`1f=*_fBO1L( z0zd@TgM5s#>&C3_m-?#v8Ja5|CDo)hC;wf+om&1l7danB@l!9(OYC!t7sco2JpFe! zlOZCN_5M-1F!wVrnAN*RZ_{fX*W}9K02PEnPc-xDDCj*ut%-Oe2RwJxc4JZ}N3tdx zhY#8lcHO+FP3h29>MLfi$I(RAzo)K-RZ@2{Vb31R7o3wLh!B9GUzE|rK^2^dd$_$u zwa-^9L~9a`;^)O60@?xashX{8FhMCZD6gsU7U*a zhg)ffp8x;jYil8Sg{;N9xCD4+pI-e0nM)-M>JnJ>Xu{(~TVl`2lt!;qOg9+0j>mJ& zKG%l*nCHOMcg=HY!wV`7aC`EA2oc*0W4$=x=h~De!Z}`-rPf*I`!LwKZ9hH8J_x*u z9Xtm6wpS3gIs2Z~u;L6^6`djc{l^K5z-YR>f6g_+9!*BweLGuK8ub!yZig45*I-*t z+{b}EZT8ZnH$1M_tB)lx9D900my{jK8Cn+>k8JsPel)DMH(xj_2ry~<=GnIL*_6He zDK}5Yl4n*Z-?&dI&qA*(8E|<<-UKmw!9xX^l`%teVMWZ&%umHP4nA8n$av>MZ8@r& zCAHD3?4HL`BQJ7d8W@L&J!U=T@qu;PCkOl;(7|O~o*o!f2U6edCg=G;xWxVzK+vbn zEkJ;%YfQYj##9mm59lBLQ4zi}RC!hZNgCynonXPCIA z^M*(z$rB^cnQU4rFKI+o3h3XEhS((bip5w0ofq<7C;dlgFoi1|9}T5H*eY-cG6^gDA}> zcWm5E3S=P$MXVUlLMYm=ysrDwLi4P8wvy+eF>wb*1HC5u&vv!1FFtq(my-EM_KjEg zbM~K3WDTlQzFo;L?(37YW6+!nVb!bph-ZNc`)TV)kXD zbjLHRY0VCOoF@5Sa5U;=5;e0!Q4e?uj&&_yts(5y8&G@{ZP3>*X1ZiytUdY5TUZ*; z;}RYdX?I!;ZLA`_oKDUzh=dO=@m)q6&3}Dg>Fo#SO17eh^~t|yp2O(Ua(c~~chnQS zgU#!Gd46NX7p6{EKsi*T?6-{`tbB=(>V9k%$Aa=8#&i2@s2E9&&l-V$)s4GhvS3>o z2R-*rD$3rzZl!+^kCmj*AB!%yCwka6%>4@;&3eZ`_rPUFV9jl^R3N{-{>@Qfzs z_O8Bq^UWz_y?T}RhIfXSUqI@7!$6SQ%P6QULX&2bzLWI?mG-$h;{{eE42TkseV{3I zrUO4{K12k^g`Itx%~x?Py-}xnm~x6Tg?z_(#p<5~oY5uDaB!K^o9_$LV;G@LI;YEk z;5~Z`TR%lj#H9^-TYIFiXN14y-syOF>6Ap6hv(M%$DG|m0R$n963N6padU!aWj!h^ z%Nt5cq_qrhoddxqR)0iQu@a4DcQIdYje{z)WARzsr-Iejx!;6`pZeLm+die2ye5<^ zc*Vi5QzV~YoohSosA)B3a!(E=&u|+^ZY7bnFbZ56U&cqfzPz;GY|1_?uCBMIb1zbM z4}RYn(2YANk;Zw#uagi2MYaot7O@8gp((g|g`H+k!xxo+#f8f*&XQ}-z~}tM>IZ@l zS*zh#)wF8UyP)ZlW4HA{i7frygD$Eb^-aaQn$oIQbfG% zZ$V|C!x>&qre0X%&tOin~eH)V17jcI;;{x}`fJv!{q3H;*A@Nj-#hl`t=$PRXvl z>T@HeYR>dy%4kyhevwZdGHVm7c=_bLC)uY;&K6>C9v&qkImClaZ+VwdYoHlmZ&k>6 zX_~r!$t+Yd3(h4LiVqyHGBPKIc@mWJEV3cpFR!#X4@6VOLGccd3iY zZ?$FDip-j6+;g?TE~%kQG1{xo=Y^q<{60Io26U-6?RTDO%phU19x}SV5kOL@`diRM zH*SsfR`hAPc2;^~k9vE){$iQsdRV!nbM0N|h0R(EZ(P$xJnC|tgRl1-b6b- zFw=OiSan#==ZD~MXgA47poJRc8D=imgPc3bSsGz%StNnizq5x}9M++~juz`JW*59< zSNhLv15VQ>*Ady3gX7n;9GBj1lxxl+*(cDal2$7=a<^F2$xv7^uwwrrJ=>c{GoxB+ zC73=!y%@@$&kf~0)(4aPH}X5+0mKZ02In9BXFdG5NuF=BLrU^BK zQ#ZlRJG*|S<+ye3bs9}}Yy{wqI%vb>$7UDB=aI#EaJH=RV6fyzK9-UehM4nkyNUnN ze=mOVUFTMp;a|=PAQ@X`(KFe%&O^nT>)m-}MlqvVg;j4tj_;r&bGh~~x{2?5O}hob zCi@PO+M zif3p)8JQgoMT49-h$!0`x{}?=N#1&=BjITs!b2OFqzNVz|Hnh2R0v?F4wT+edOhb3 zts-iy&!I1Uyvo$}PxR@k=SDD^OQ?3SPdl=9tN_F9gxPD0)}VcEN>1)(Lho}90LWNG zw_vEy5w=e{s4)a7_6{ z$H&@a&xCT_rK(yqWqupX_Us$Wt+dKqB4eJTPdj~i?G;8);RP*ynSMC4^a}nqw@<@r z`jUC*s5u|$jxa7aC%U$V&Bjx+CduPXpjcMIB-UmwdCzw1FiREha9G$>u+Z9=y~KDp zS8N6**A-k>cG+hI++?>aI+Nb&O$OjCE&*}~N5e`wh`6>%aP2iOo2M~e7Sy7nengM- zD33cA@rM$&==6#gc40HL2Z|r~E)nxo!Sey;^Y=hJ=qS9F8w^p!RY)8zX|>W<2)k6m zyUmO(lo>Yyg4lvHjgmcDjjg%7ejfO2N~6S#X9x8qewjl3;|El=y3v7(@toX;t&Kjt zoQ|4%UXZ(HC`Mt>PB^iRI~x?zKFcGbjuw2Q+jD~s=H4&x?=s_QqxGwxV-=mmJj4k< zSq?gOWTe#mYQ6|EUoMw=vGojTv3W=I!02Kup{*`>@Fig@J2zgB|Ij$GLZ|deAuc zHYKLBM|gQfK{0G`!w#?a;cQ7AS#O`mQ{|y*5wi&R$Z{2HLNo+@M zVfmZ2*;xo9r80GHC&}8L&-tw8%f_^YN4wgd77Dc^t%2#Sj~!>dnc9P^u%ph%76(lh z)>~xC9_>?@v0+O$Q>4|iEP4#82x*+LTcHyyZH-=gcx?g5!QCUw6v#K-{(j16QEkWN zalh|`s6+`+Zb6Qki{k2fxvP+kxr>YS zS!}YC8PEn%OXx5rYM=M31cf0z=;s`}(CoJA`J49vrs00vnHRh*y=nGR`Vg)I{dW9q z4r{=BOH6H`Y%Jq4C?Z-b*G{KqTk_Xh$KjD4ePq=;=t!HL#%sbnw`%oxuCZs$Dxw!T z2{hWefOu4_;(9QM4r}swE2;Q52G#O`rtuOK+Oxysaj`cGC-D+Cx(ybOTQ32H;MF71 zpjerKo+LDDEH`6y&y!%+*sDAP!zR4T&535}UOwN#l&yM2dH~T$F}=gW1mtCGEAm_` z!E!Agyu+3r&_lfP7qS!?yX~cka5CvXFEnjD97jQjO?S3p43AFwM&^7FW{3u}(cPXL z-@)X~tv+L1oeZn;_Uh9ji?_tmo<8N?jO(botA2QnJ>J|~wL*Oo(q1eUdI$&Y+Fo)D zOP@ndc|of@af865Jsjau*cF%s@U z>GNnN>s62~ud|ZQ_3~^tg!^6^^MRLd6&`_}*YuS=7!u_(m_*)Wu5C-7;b2jTX4k^y z=(fXig#mvssTtje(Qkg-8eYpqqO3CGxNo;;-^bVqYlRDaR2FT?6yGFecmT2v7VAkp zkeo}q1^xtVnp%9=tOt&D!z{VJIUC7i-1L&DP(K#y_$mYDt>}!=Z=sepr$fG4tk9Xw-*U4mn+>1E&U7LPR`@|^newSy` zDb}=`l{lTn6`&(GObFETIzWhVoGXcAG1jb1HtlM$oLHmgVyEeMbXDGgd;9V#Pw25a z=(^}%0iK}u(-+UJZafh!pZA^XELwGfQRxyuKjUht6P)~(NXWqV+odl4{L+y+tEXV6 z9HA2x{FQLvE45;6CiGPDl+VFgc*i^u(^v4++*(k>Prn{^)nU$Ms9&7&d!kQIf!INI zm5&l|RQL{VGCoS3)t*#`2`( zIHTcskb#=nFIjIN33a@761}?HH$DV-^xO@~3V9|y=iTPM#|&L>EJM3h6SdH~l`U&C zo;Rj{lFWr01&U*NbL7#oC~%8-GvJuW zQc*2khoj|@wKBQ!;6IxcS$8UX_>vtSy=mX%{i8zOCKKVmU{#(L(66mn$J`Pz;O$kY z7Yb*elNNTl=yYc3ahZ%;?HE&|Jf8`(-t{q~>KR*{=Fc=~dTM7?^1QCniu_%)pm#oY zEqbwOX?*Gs0U_Mn-9Xm6*3cXcS+sWN6*WtIw@uCK9UI(eugbBIZL@osDlSzcwW)Xu z3*Upo+U*NqC*~nT*2euTpXdHuY?s;*6?m}-{sSW~@#f)DTTEo9k7W=+ML8`pr%z|a zo{kQ*ca}0n>i!l!x9+RM-thls?_GMGSGPT{1+8ju=^%kXN&XW}^a^NjHy|4X{pp4DTyRcN90UeszH+jLGXk=dp4Mfh($sJvxNO5eQ$ zyIwYeGfu03hd<@V1CgA!qej|zBhemr-bkKjjFcmE8F=MtNR!Jx#s)d85} zD(leOLdv)6RP=oJw053X3=u>qp4RM}Mems?5EKqeeP7qELwuroli6T<-~`)!d{NrR z^5InAVWDRAcs#6kt{tD6AR30lI1CG#_2F{lx;|cY5drdnL6vE*>(^&$EXKQ*wTfx> z=jY|?rHR?gsFz#SpqHK2URUb9*S-N6v2W?onkO(nLwEJf#aNq+5_ZY~;ru$>zCnQ- zZDvBII#|zpSbw%{8jlb)l8#%MUR=!w_VxO``b{Q6$sS=qlVEaG<<#%h!nmhhIE3!`03#GB?v&qYn= zmVAv4@>PKnakAIr(8k`F1A9+b_04)I?^SiI<=J4s6jy7dLma}#jDtiKla&~8B$hr1 zVi$1QKXvYNz1ib_Dn(>AP`?)2AJ1X)9PR3gLV99Iwz;x-Hf3*5E>w^)JrTO(1bpCq z3h8Z*J=@@2+T6 zUwU=FK?);%{T&v)ACMcqr$9s|CbNH|4B2vzqX}F1GAn&wV>Q;t4gZpo@<5Kku|7K| z@MLgi(e}M`d0wa2`(nM{baspcvtHIWT8y30rELetY0*5v&fspq#R!f1OZbdW(rU!bh~gW6@8u;uj%&}ie=$4n$>0jaZyGh3t2P6? zV@f6@Q24;tmo~kWgVUFv_J|JRrF9yeMm#sH2*?XlZs^9cREuC%wp#%%n-jbEU@=MaTjRY_sm15x;kN$Rq|W|2S0QK# zUmg+|O@TUFH)nxYFVJV#3sZC3&Ck`mAoic-h58xYX8K06g2pmcYjh301sz)$zPKdD z-`k!ekIs=ZFyuYp_y7OI&z9cM=B$zM{e7U0A35S(wSE81>ZH+Po zj_F!Y9Q=2O#9N)(X)$CFDS$_7E|uB4p3hV992hQ%Etk2X?rY^3T+qcAvhE&%QVG)f zyxTf@5La}$k&xCKt41h0Ni@0om+tB;{u;eHE_IWQd0uuGsdAjNzSMg+PsvsE09n;) zB8958gkwR_28MTGtu*V(9MkoMFIDzSihS-1%g|>1>kynXC5U7(Mongv$57+HO)53j z`MQ`X4fqVOMFM*`o^B9uEn(6I?oP*yG6xORW{2w#D!o(6CBLcHyzJBLxH&wGURN*{ z-ykjYeS1K`n|)2=2z;+k0k2r=+XPbR@p(A3+c=fu(cbh+y3w`;YXX_}w)>SAxtu<$ z*p?@Y)BOD^9oixM%0^%6NMGi>K7R2IxW^6eCaAEF{gi$OX%B(dTR9)GKTx|23-&ashRup?p!<-tESrMSLmfC1F{)r zM|-rJ?mC&>i88x*hKJ+#11h}Yusb{beD{(b{RLpRAHJl{2#2ietnKyD>oWZW)zyg7 z3Fmzjo#8msUHS9uI-2AF%q>~RLYCa5#*COV$x7^C7dHvOCfo-cR=?8{ye}r5CQ^G$ z-@7g8e;R$^vXBL`9t$S(#`dfKp^rJfdhOTVbX_=8>`)WK7|P6f4hMO3+0CxQt8mW% z2+vE9`)90ZgVooEGDXP*UyGSU=Um`a2D`+XSew4O@8N-T5|65Bd%da2$vsWt-mr<} zOOw5}7Jyk$mz&gvvvyc+QEZ@YOHWFWFJjAXuZre0-`er*@>uHIcxJipSEKcKsTU_jg)#$2q z+sMj%=0!gEYwF@3tzD2krHXwGRW@gU+9mwJLy+USV+%= zrKuI2`bsDt)VjCz29WYt4=L{V!(Pj53-1^_#J9w&@-6&Dy#q@1DejRd7>c zC{b(GSR3Xg1TJqMM)an?*x$O}{c5nt+K=)mIPA7txh~v31<);&Jhh0mxIJ(C52MwV zo^%ReC~FZ#de|J*ec`3O;MVt~$Afp=U*?SC+`KjENXFk>cr!@+hw?XeyEh)X^VfdS zx7L6z)9|%7q>!5<^>`glrqT%~q@C!8L83ZQ_DDL0+N6FtnN;|fdUxWNw&BUy?xL)6 zr?T&i%hk72Uo}A?H6NTWRUju8ZP^1}``1A!&xGf1r^Z$exwp9NUrXaEu)|z(8V?4Z zxlI(swHf0Bjl2N#^)>bjb6F=9K>osZSA>in#&PFbs|_b;Vz6ak=EYE~rk5IfC@Yrr z&e)pyV6*Xfayp%_=l}dS$qkcTIe&2&^o{ zc&{uZa5QrJu(iv+T>7IyY!-WOz9gz zALWc3T-G0M4Pyk!+_A%Iy(E0gPPqTpMcdA65NdDk4|P+os-e3yzIYIVnr9+f?z4M4 z$s3%7??L-rhz4wP@!UmbwIxgR1TbEIKjQKC{G0e;_pi3*Y$KonS(8n8M@1WZPC2*N z^u9QrwU<>f_Mr=49^dxoAD_uP=yq-S(!M>z1p;s7*@Zsb=;3L)yRACkliaQwa{Y)8 zr?SbOcIOt>9~mDF>`=@6@%d%L>pNf<&?48H&O3rLhfi>rV#3F$3RkPfe8*D8LOV6t zT;a_kgu9^c##i5eT-T;>tX`0kBYp6_pVc$94ws@+v!CtDaRUDEmg9Nh4K)5yLjl$> zl3e%OqT$ES4X?ZFyYouMib>2}BO)_Iw9}OYUpRmR_)n34O^f}(`p)jp>T}V!DPZK| z;w0}JlHKg8_qCd6A(S221qEEnaMePMvJjmfdtHQS&UTV*CMC&LxD(NOn7)Po>L9bK z?<&6X4Bhs7mP9vyKh=YJ%ktiBExv8$-Nt3ycjM9^^TN{Y*h?F?37y@15~Pf^zFy20 zHP{+co*0!xJkOYJxwIwc(WtuOgsC02-qu3!3-TCpE>Lj)ZX1c$j1k?tMh)^-Rw)Hk ztxQAuNe^Ew{h-|W@qXjydNh;akFwY|YfX3B$0y{EeQizp+E0oos5WaGJJGL?@L#!^^Vv##z1t^P%x4MOY31Y$ z;!`ZR#F~#jn9B9P?KcPJ>$;U%*^X*{r_b?@=Q4Md`{`+&qDXCJF`q`n{Kf+7Rk>hv zMe^Q;%4%#ah8--Zr7T-zR}6L29umA~E1E8%3A@)axI8RwW3xOOtgt3G=E28bj(R`pT`n{%#_%*d z818pby38wj<9eL5dNd7p=jHm=*y;^sCM2@mfb4%d6pF7kQpJ)q8gR}4@{e(h_fXn*puzAv6E`F35m8-v-vjVpt!p6a*OFl#;^xG4@Y*+b=i>yhcYS!3FNQWubg_M$Zm z@j?9V54YKQ-;6}(-*);(SF#qwi1PRls~)uXCkO8n{~;MJC(#RJY{6!W=H!cSE}hys zsH>gl=2ZRi0^&kHywS*&)Q%opoynlv>#z#ggs*%ad>QZ zIx?4~?jP=8J843~2p!3o83#mu;Kg?t8 z1~T6lFUdj?pBU!Gb$TzPB*Lfmo|8c$u;_6@V(yTt<~7IPgm6YUPzUxV|0EeKb**Q9 zk9D@~HMACDAE~jLC1YG?tZQ$(vQlmPi+WrARxe`~a-Nh;--?<`sZIVVSkg|ltd6$W z^ubQiz2Q7_u0ge_>+NLP&)~&8k-<^}2nIclqHe3EK@^(edI1YaE0?cl_yI)7#FJ8y zR^+7UN~+KbNj92vC! zZ&cLy`o3eeC;QOiV!xJy>taB^_|0bSwFLjrrWT7E$25Mqhne{n?pM=KZnq}d+4q!u zn}rPR_g@^Hrg}QhMBi<%m-zeu4!-8E*-SpP!wLOp=@pcv)X?++=b?&I#dY<3%iN*% zBctq3*Fo4CY>qifMLhbacnkYYw5%VeiSh0Nb24VNtX_t7V-YPFCASY=< z`RMm)>e}k{@`$u;Try}x$s;|!H})ZS+xF_L>(8ULg6Xk~U;C>6oak6MxD_LlK6Db^ z<$Q@gvDZFtBWez7aCOC>U@~|*rfe|n=udU`^8^WvWQhpkNh@M@5b!xS53N}jB$hLz zuO-N}rOfYVxk$2OMDJ4<4;LoOOD__{n8 zU=U7?bFsgn7jMZ~-k$7QxRu#Wa9X7=2K3|NCG(H4)@Zzr_vc`|etj>@dl0I{<}3q7 zltih_^N#9hTfSY#on%e4Dm__LomY(G=rNDi@AcjP?ADK?QN7QDt=Dh1O55nK^*_~H zUhJ7kGrwAWq59>cYu0<4(E)U$xpQej+#3*`;K~2?N+*1Cg-894tYOGmJLqT^=tantfXFKrEYWT*A>%k>y5K{b=td*HE>gP z;MFtz)*IIblfAsR$g0EUY24;=(2Q7QZQC`#DY0(Sr;~!I^<(2ELbh8Cy5Ht;VXf!_ zo8lS&Wc-K|$bAANRSe;5RR`HR`Ei}?V}BwxZj+1AR`$i~UG)ueQn64;EnBq#5@*{t43E3SOJ!zktD!!OLt3 z4U9%Lk;zMgZL9>_7?11Cqa{g?;H5+S-!JnC6CLA?iWdoU3%=P-Y5mxLvf8Z|)V0p` zGC$MVJkyeG+byR#@LKep&er~?^_`8^ZI7)*lC{KBPwi}w$1myO1+O@dsH(Kz^#3l2 z-ZFniw-kJ(dlImAg-9}iA5+aIWNlfq6~03lO{5NMs^nM<7W4ThI1@RfM8q!bCj-Hc z%?hQ$comAzIn&S1F&>!TIwDIFI+HWP;-cMUhS!?i0Swge`2;TRu&34D&ZRGBn4k@d zHSp}6*1PMuxx*_2UH$aA8`OXMS&Aw5W1~LRmyB(F^pii-zwMSfe zW4v@Q#D78GrVsHb5$>}HrRPJ(S;~CE8gYHVi5pEVe}4^A(ka*K*9T|njS4G8yHwM~VD* z_D>yp=0^w4L8C4CDZYgkPqOOQv!{0Gm1fKBydRWL?pRY>!TZFGyLlYDmC1VcHt$ng zU1?5hvC+UzlK0FKzKY~K4<%1!?t}?^`R=^P*WU2bIUdJwS!h9_OvbJY_bBNB;#19B z(&{X}d^Ehb;Rc@C331cRdW~x`c@pKR4GvdwdOpp@?2r{-j6EA9ue#BpR9M^MFM2X} zFX6Bz08fKiBoEoLirP}IIt(^FEn6#4t$QPh86_b+Do zLb)(b-|MzLxBIp|u;#joPs093oknj?)sFO6xm*a=8efOSJ!4%5Bg?AivD|}`qdzc; z!?g{(AGHKhH@a`FCpiskkE8&vYSoBC)koS!NMi1wA08!lVO$L*JA+B>YuvR;f(16G z%w38e-uOo^C3&3n8Q#Tq2oyEIy+_TxEfUrRYuBQ#%C*>A6|T`8;uc)I&Rj>%a!mx! z&Jm*G8}{1#3c;}Do#s*+UIo@OMA#gyci_gok;QD#CA;s{t>ofJ- z70g5Vc;8*2H|)N2LwMU($sdg_NPAb)9HaPM|@#b4dSnD}l)^=v0ATwW5FJ0i;LL?!_R$;ck zEWuSGPv<)bSlDB#^&mcLvKCmAUG>QtLk1BA<9Z$9usavtB?$7dHRP?kkec8m#pdK1X_@JfI1Fo z=P$oZ1PT-vTmj0v+pIZn9<1brCZ1U_t&ZRpP0K838ff())Ut)we3?I=hS$yoZO(Yz z-l2(pN+YT7uZt?Z$9tlm1fw_&pQB?F!a^_Xv_vjIZKU;r zYf=}_#^}Jdq};E=dT>FboR+7}St@x@8OV661?Gtx+m&m&n7|<0sG}ag%h66MyMoD9 z)7!mixac1b_ZlLAeam{f$7Z3LNn8K)JNKg6wsTjv=Od@_gE!J&Y#rlYicatU4nO2y zL>Kty*Zb$!QvUOwvvUz?osZ14an-5K$GB56x6)6npH|q#7OB|IahrCMo~+RtilLg8 zV{aRG;svb(RjGRz&wI2>@T35Aq}w&cBb02pX&2i4{1%fLcl{&32K=Q9Dz)~kS5ctG zoFLoB(!_0H6S8_%!_JTE9p~}+{1~qKIkV=?L)q=`j(ET@uTG|IBzMRmYxgC0IdxZh zeb1Fq$G6CH4P;c~dn%D}ZP7O^XrJp^Q?npeG%W6T;xF-E75?pDR>F;~m7Kb|by&T# z={C#EM>ouOgU9{;RyVuhSvfFhZAdo2;z(%nSql=A;E74s; z{8+D7vNJ|Y^lB|dezBv~#HSk$W3eBvI}N5-FK>(&PYA!~G2MUA--)oWyrCJQQDEQN zQ&UzQ+$^a>S=A4~I(F(_o!twVe*&NF*bh|>lK4ZWk*AX~GwbcxPnYk`x4x*)kF|tw2k6o;+`V+4oHV-H9 z`X5zKnL5vqP-Zs=&%<+LFgEq2To;$Va~)p>kNw=ZIB(AD@pGFHJuHKb?gS$nGAE7n zwH%#vU&vcW@O9s$&whb}-8NmZtY`U{?j<3Iw-#N{jS?-yIh*T%Yap&0X7IjwpZ;f8 zQ;kXLXrBzLn_g$tA)c2kmp-5q&S~_Z^;#|zxDmq}f~;~zpc$jHr#VsMy=WPFl3|Eh z4()jd?I2z~B?WVlYvqtO@vc789Dz+90T1X8EB%{Sh(CR`FFNx#y0dbhioqH?n|-e` zE|4%HzASMK7e)OUAJIMZ__$m1p*TtlpUWF98Fv7%EYEnLy%K~im2jWcq z!)o6!mS{Bcy$|=NpD4@mN>%N8HF793TF2)h|7`cW3a?a-O5Gzx=&{zpSkqDa((}H> zvrqX1+heI>H!%ceX6okPcbg`JwI*Hc6jf$CFUW1UJj~*=OHYnNZc#Itu4b2jUyz(7<4Z49?xdPue-sn!8_~ zB>~HmcYHWB);dLY`Op*2VmRcK*KzUQro89%X0b`@kGo+~7cBHoPL@DjU)ZU4d7f_g zb@qg(7&5)?i7$Jke0D5^&*($Cw`rP9JiB*RPu7$D#x2&3)kwH|3)0>JNvEfUh+~=? zsr8eX+U{;1s-!UmHhjIy;g?-s(g)f zdt&(dFaZ@G*45g=tqz3G5o*Ys#nWcIz}GNak;2Y+xfE-0(SG`G(xJ_=|?@D~sZLw-D5 zjMIh5d|ZnJFH&wJ^CaR}rMyVaYx*=J9B%oY9URgHyty07BB)dAm~@+bzF=zLydd8! zAV`fLMpEybq-VMcU!}-bF>NMdvc5O%k$`~IGz;O?-B#tg@|cW={*pd`F5^mW zWcoek;vSCCLN*=Q1JC>0MBUrAXkjC=x>#1^1cvmOJv?1?9k=XNWT%K2* z{n#=}Z+NLtWAU1t2WeUKdcvbJa`W)MgYgv*=CT(9kxUhA`o(K3k1r`NvnBkGuirLc zw&7Ff;3|wT9T!|&AaXLfruaIug*`EFBkg6~Nt{=HbD63?s`1S`w1!K(A_=~b9MNMe z47;@3#2fkvH_g$VPN&D3B`2er3%4M&;j*lGW9L|nHy=a%9BAG@Th^+Hb{<+EMa^V}+*j;)fB)uY?myK#c_ zO-I?I`57|H-Q?qj(g`C+mByX zxlxF5DjZ@;s76yu zkSv<&)c3gS$`-W8MyHY|Tkqz3=s9a965XqC{FfU51Uqi0wu$!`n%_w&u$=yNTf?ta zcf(QS5vDHOh~^`IRq0Qr)@?^7>fkKRx|yvNY-p3LgKugB%R^=*4D$6uWqQLO0&itI zLbFUQYDR4&vW?|MErins_4Wq=1GPuBTHw>x(16QFg^PE|@={%W?=iRKe6?+H?sGmi zbM`ymp!EIb;z9D==6-;`U2q-11HJj8OP%%Qi_TzsS(r;`T&LE16N3I_rovz zn(N-`7CgM|w$i@AI7DNC=iBYIWj`&=F7V*{*YNQWKKxgA+U5x&kqZky<;`WtS$J$# zc^aT%G|;3(fKt1-gj?&@;V^wXUzP<|;ScjT{$gW2)BxAg3lq zcNwuStCWVX`3z4$Ki}Jo(YeQot%2N~J6(#Sp41}#0j$w3YJLmi%+j>Jp&IG&w`pCP&GD4ErLN^TtIRA*gR9N~Ao zB==mUF&IMDY=5Y~dtGk){2Xc-g3?>MIp3H|t^46Fk{J;9pn86~#F7nr;uDkPc4@R2 zlE`N;whboiRexiV=9C7kKPp4hT1yG-Z)&IZ_D6QYX!6-y=mI;Pjm0& zMmT%>vcQpbx!Vo#@8_CrJSxw8lov18o#L6(36;T7QEpupfOqItCIlY8YD1y%fdpPI zCimerHp5x0JON1;Q%-tgp9kB`1AaQjvyat%#T--2+S#i(&$0m8(*tnfqrcA1Yw7R% zb0ig^P{W8LV}DMvC|QoPoABVpfiUg8_g(V6&o@9%1pD%NF6gzYYs@Tm#%vm0b;Cxc zy>LRilc~KYBbL=&>T3KtT>Lp&tb?G&e!tyEKC=ua6E=EOvCCe4P>8_0vAVGxukjIC z-IOG#pc!6gg7caN6V7a2fs_h5O?@^nC5sX<|9JG>Tku)QE|P(%KOLWQD_ux z)xP9|bnQAbwtKZN_2gMsHlj_jd2)3-6%P2C)3|cZPx$DKidcs$7#W;!Xd?IdT$zm@ zH#|lzkGJGCHv=%pn#_X(Q`Xps^`}xwZCi=+Q83M>ZHByQ{_Gsvk&-P&N?snwniuxR zDGC7ij3!w@)$e&=^KLAwM8kX#<#N?T!e4$RVaVL32^%0Bvv3PvbZpeLExsYtY`F}p zXC^rs;J^)QDY(!`!#l>ut+X5{`U!y}*_$M9I;#cOW50_y#X8Sq8|e*%hii&GQ+?GY zzXNAfwrSDUM!+6>T!6Oc>OwR`nO9qm_AI5>D{K{KB;KK&`4^k*h-N4%)0Sw5hF-bc zcWaw;soJpfdaU#`lyp(t>7ScHqsRfUvUuJ?I=&-ieKjvXmDICy!NK2>JCOzTWmRi( z?AzhNE6!GfO2fTG2y)U>Zthg^wR*^j;=`q)Yz$lBNXV7Dao zi`;L6ZmNu-%Os~Z-qD0I={28%*imjF{mG{-eT3`i&)dhb7{YPirb_3Bmx^et=ZV53 zee3GDY9PLZFeF*!XMna_6(FEVmN(%j^#oNFc1g!q>&xjBf74c9?$h)Je|dHuAVKPK z=4Wi>y~vC!?rbHRYPYxgU!mFS+F_OfL%bX0+bvc0O*e5-|0KouX8s)5+a< zkkkf7s05gseiTJ1C(LnovOm&|=FT~6kmA}>^vOy*kIj_@ZeetrvqD0448S0)V*p%*5L&_+HH1;(&-I{D-nx8R!+Q#?DAn=!FN_N)IFQR6TdFu47J&G zW94=)8qX>rQ}SLu^eux1Hn&F)sjhufOD0!Pj{k&Gy~1K>z_}eLUZUY zWodbRE@{ywej|(cqi%8BUXH`YZgVa*8nRBEwH?4w{1FvLO9-DNgxtar_hCT;fGCXd zYIRygcY=&pNy~#K9KH98%b>D6Yty&n;Z)7|(jf?4UXiHIM;hmTBMeALpr?ER|#%noT%d?W^(Xg zMLaXY08aw!m07s%ovd*S89Bi*ozCEl5}ln$^eC7~agTnmx9Xb0`Ri13Suj5qy+Fmp z!K=|-aW3$<#vaba}{3|Zv!~DPuI5+L#HOo z_@VUFdVT~6`n$)y%HU4*we4)Oe(T&uWR6w)L4D(um)`b4AM&3Vg&;VsOiRqmA1BBZ zjrwGU&s0sKrQYzsyX^oKVVo^%)R`LEZg!8F?2Wm34G!(cb@cH|2DZdy$s&*ozLdK7Jk|4q*a>jQk}I)0U`c6be{g5`hbiJrMJMBk4G{4H3=(wljT zwhK0d(`sKlwrmK#)dZ400EpntKM;HtQgkxGhiNjZs#g6NRcZ-*GQ6)6Wgs3|GoM@< z_l}lX!zcw&$Ltcv<%PFRFb%OG$>JYD*eT68V~2dWBtbhc7I-ItU~72F{;=s+Kz{@) zIG}Z@1^RRKo#(y~sZ7J7{*nEI7QrG(S!naCUfIa9x}N3!C3hN!@v3hvM_1P5lw999 zt_UyBXkhxs#p~Hsha7XG(SXV-rSFxQQQH8pB|hr$T)yuvi15xC#g)y2{(RLKTiM>u z%F^ekN!bMlQ}1&cjQ2^orAp36h!%CPr3H{ul2s2)!KcGUP?<^%>OGyZ!n!~fI_nLX zsAw_KSj9G~a8NzDmxu^+CGKE9)5a0LQfAg>zLQ>*$`(#l(SEXgQ4BWoS(27^k_9wR z!((laqou0(iCy0o&0e&j-$iqSvuKd+wi~IL=Mv08kD=Ue&4y}@i`rvB+{G7nv$qYM zzP0tH4A?r1N${>Zj~44iKV$I(W3E(z-!Kj!c)p)6?l+B&H|xuLaK-E0Kg~W@EvYV@ zGC^j{Rz^#x)^tYIBfe>-TuVQ+X#fpZVYTvEU8$EHpZb24BpVR3Hz`riz3P??`JA~e zH_l!O0pqus7ZE;(%=;4hVp7)fpnZKgVDM-02SrnK`IEoVjeXH%v%5XM|0XoZiNU67 zqQ&$2bkg-2Xe|Do)Y}Q(|C+b0HYIzF!Hp|foGF*@A`;&x;YOW}9Uu4UUQEKFXpH-E zKdh%h1H=og7y{MOj+6h@JTMM}ezdI==~!b;&B7%yhY!PyJIBtt zvO8ic;n)!`YAB^x^x8VYpI;V&FTGK9KL%H z>lN*Sa94*6qnGEUQDJLgks;-anWK2>eZ4T09ry~fW&T4w-8v%F_Qw}>H`(B&%#F-a zj=(Se;&^lc_%V+9ohml8TmRcEFxYULlQ5TA&J1!eX>k3Ec#w?=H(X$>OnlVMdN6*} zx?gRScr;rp)`^E;Dz$@keBr;7j=sy+BhN)gP;fGsXRgv}M{-$eGb3!-`;AS#hs7_R zJW5pon_cS#XI?<7W|c0Fa}KBSGhH>x?ya$B=}@q!@Wp4!Z!gYh`pU^(bSrDxY>wl>fSsM zqf=Mdb20Cdad2@@hZ1nU&PImwS@{htNienh+;c0P7km9)NM3M0>PdE3x_&Oe!(!=& zk1N)XY~h^zoo^@0emFm)+YJO?;^m#b;E6qxp7DYS?$Pcfx{>5w1t!>M{owzj1m)b*j?@lMEMaDXgDj0TGtN;@1&eV?=|PP9zUD1O zse1dA?&XDs7$Qzbfx5wrvc6wsu-m#t=JHiXBUxPp zyLs1t3S`OdvuYfnzl{u;Q7OC3a0XKQx^=elQ*odD>XGzPg-85bZ@J%lKW)Ln!ugQh z<@GAvPM5kVaX7Qxu7U8gj1J^o8lW0anne*PT$JQ$1>3DR94ECfRKklG)wEo@^L;q< zw&hd3biq@83h%inWnIw-ZPLT)QXW3q&exZG*1b1|a{V{oSM+w8TtcsJMm$~_J{mv= z?}F~dS{K8GHOFdiJ%@CM2V{L2r#NI#gMRgeKWYK7c&nbQCx(UY4RKp{9w67h`(7T2 zyIaYkp?J`PQYYzByXOn)>Z7jBvSpE{ET5accvyb)%5}Y1KNevT4HiS@B5n8%-5(wT zg8wy;RN>8hTbnP)rPdtX*Q8?*7dDjn>GIsPp3vmS$M15@{mIy#l|65NNDx0h@byvW-La7oFgWOu zrM5_0(mYlnBn`l>#smE2c?xHJU|v08^-_-5MK2PHs}0b5_p;Zw2lug=@PX_f-JR{7 zfM|G4ahR40ti#q82KoKCC2H86i zjTo<{;4H_c2@&Z#H{!4~=4+p}>~Zd3e+`*A1j=&-&iZaWC~Lpxar)99?`?w_Mn^EI zQ?}7dm+Q4+f?HL|r#^qqM7`e0C0{&A*_$1G!Q3COBbvi8_{;Q*0}vrt`TE1CNt^NC z5|6?+fpX*-x))b+@MO-l?n93*G*0>&hrXI*Ui!g?nC`19y(c5%a`|0n@T7EF0O;(~ zNP0a8G2|7YsXfYPU$H<&ZLisgYs3>uFE%-Hr_LvsO{bM!kxvah4ngr(u+8`;1uRo;4*wGwO zxOVX}Wsp8NE-cIg{5s{^pv!qy!64t-BT(CzQx&DrAXp4m&hpgkJ9ru}{ip@F+hqQV zHKv�><=FqafQh_P(YBz@iM=tt?MaOKMnuEbg0OsSU!|V|Y1@bk> z;fpHy=>4P#?so;RkI?M6X?67(kqRgo2FmjZS?mU7OztxAB4!0cvdV5K!jQ@Y@~OU4XmPkcwy(6q4Gfq@Pe zXJAvywGBYG-O{guY4(dbV80>rpqg;H8eyfeNHK_vLbW`?04>4|1S8uDYw7iLI<59E z@dNhn2VH!EYgmIoG_W(=dZf;8OD+YTJX<{7r8gI9z;IWsQk|`Xb(Dm{Wh8X>_3o{D zuL&0J;D~$gxv77w~y#GyYYL!S(Fie zf+r5I;B;UyRSYx$LuC%yc3VaB1$a8@mKfVaN6CpOjnN=9<}<%3Jn`e#&mI3<$-J5p zTcM<#-K8eW;x1$fY-Ig_+nz|eq{^zh-<0mxc+q#JsdqMq9rGmI1tyMnrzK_9bA9Wd zS9s%khf)@|UTcQ_tMhA$&zi)6;bCOrtzs9L8;^5l>>f4wnOOz)Ckh+Y#URIk9t8@}9OAOHH=eXImF)KF7={@NT{vb<$QzFe#D;M*(3>5vD{XXp~! z?)>O=%)@x=WF<&2?uJ!%{?#!5$T1)qa7I5;11f$#9;^O+VR;H(w?qg6H+T;xFzZtY zU0&W>&~l;mL#>Tb)X^70MEk{1H^7^9n+MG*rfogyr4da1tjqO%;q%o_101+BbvWG#OJwLa?Ke*^X%zV?r|`vCJ#)*SH-kHHsQwbf&QC&@L& zd;*Rg+$-iSLSQ%#QhV^-w}lNe4|cPLf&-c8Pi5w82oxYXWOgF{p1EB3l6)SkysZvC zcGmB4-5-^f6ZzS+a$+sx-rGlbrdwWqshHv);6CAg%y*nabhh}AtIrcN`R4aH#Ruz_ zzd_!Mz*-P^qXrPs?hV1s!VnDlA~_{JjNBFRaA8Bf8qVH)zG z@9y^A6C6a$vt+HSl-myz?Qr!e7SBO{bxUGKjrbO~792=U(_XDMtzG4vz>`XZUzVTL zakvnE>X~yL4g&*hDtg;d=|BcOnYl2HDdr&ZEP?~7(`wG;X&9^wLIJ2WTw?Ud>a9Yf zS^4#D^@;H37D?vjgV9z$ha*fyv#Hj$vW~wbp0-vksy6xOO9$}&=2r4FYr6@)-bYI{2-HFP@>_1$H@j{#_pb7LWhqU;pW+|Cz^s$K$`@@t^XDd3ZcJJpLAs|C8tcUwQm5e|)X~L0<3A z|M~M7`12X~^BMT_8Tj)V`12X~^BMT_8Tj)V`12X~^BMRTJ_A3(l)o9?j8#2imj9EV ze)+dwzWPJ*$kRuD|4jz-Kl!`A{?;FVI^6T)Kh*2K>hG22-_z^6-QTOp|9FRe_3t47 ztOS)^L#@`dKm6%WqwgP8b+a7@)1XW45CQAIy!>xogM{%gh>l^-Yt$N*Uw?&v-{GP8 zS5OY*)x$hb@Bg4&juYRD!{na-gQn6{%D;KeKln-P?fBha-`gd~VHN%Eo&O=){(8{=_}7E{LmKCQ{~jiF9sc@4o+r-@QfNE)MR0)35Km+h2bF;{Ka}^FM~K|J|QCamno;{lzWV|MkE9+do@z zlIPL&_;VfxKl3y{ALYIL{@{QA-H+FiNcTUz6ZJ3t?$3YvuJZfu{_6KXt^V$(wcmZG z{qDQ^@4jpN?z`sizx!*iq5tlus`3~A`1>Bb{ZBvr+uU!7+;ji&7Xpy4e)=!})t`R) z&v^V}9y1Cm#R%zw*;h{~M40iN}A%YK{|K1>{Yn4*cRzmbkDsr65e9`>%i$6Vq{>#6q%8#@8o441x-yauw zM@91ZIrN^v&)(1RAK&tC-_-r*!!5b|@hH`w^W>K=mEXU?-+vcfQrPQ1U%Wi!YK^1a z-%ktq>Syo%GdI?6e)$h~5M5tx@Bi?R_wYad(@pqKe!Z=^A%Cokzb*#*=uTFB@mJsF zpxUQA8Jm4+NqoZEV9q=T)K z&;J+(!*%|@-CbYL8DF$!8>SG(VzsLv7_9X13~5i@&Ef?JtLz4GG&Hucf1RegO6_A} zB{)G0>Y*d?jY-`s^!&HKYhLtXTa1BO-(JVP zxxJ`eXVv|o`kCp0NoH4|e!RwX(rs2R_w{Re8heIh#8FSt0v!XSw%p1z~*Z+2NgN7tlh7eLUoJ>+h5&uSQxj1i( zT~mKQQl3^l!6NKTnfI6Fpv>s)KVy78?7H#UJfEI$D+)ZiR#3K-!%gNz55H<2KabU= z!CAUJ5CEt;xnZ4FcQT!O7c4s9nI&I;$dlxMZhA_yxejg+)Hd;$_(1yz^>W&UXI6T~ zs#aef@B}%f=1uKaBaEQ{0As@!5^Lc8ADf<}G+A<~x)4CG0{~k$P2`*ZA@J z!uI96^^IJY(C!HB*S++EWB2^R_?CPEe&FEW@A(q+;7v*p;2Dy zVEsi!yai|C+j1T=jHyZPk&P;1*eTTey??}%vVST|F3En+X>7(B<2&(0@1O8VjXisG zMsp{_G)26BF7ak(akTc-klEidHH?yt`o;s_36q!McizHj781=$ilk1)^ zL8D)~Xt%d3*_tZTC6hQR$x+n5rK+l!Gamo8ph$IVw|?{I2G^WZYk7Y;1CDM~8Q7g{YGu zG)9f?@|MokWI-UmpJ1HH^(BIhj{$4BkWbqkcjp;R zl;EWoJehww^Yge1;dC_>-T{Ng>UD?rLcNYe^_k`SeX!Q>XgI6_=pozgNqFa{d2(2X zkade4*P;s34#Ad}x_%IxL+p5K-fV;I0Axeml37*`!CLd4*Fw8qZyDZ6OUXL!w-Yau z33ol`#A@~0uxIRNCpz!TSU7kx zyHX^ApgBl-Xkp1_3c9BjnhF{(;3riq0s5|!QELwP+^J7AGoSm zgZ|LR%eU&?p=g%sWuwas*>83)&+8NCs79?=VX@*ZUOK5^Zcfzqnj6pb<$b2;uInl; zrFi%?J??bIyrLgwGR@~c|+~I+KcP7)N@4<|@k58kZ+=%qU^8$gta@duF z2J6RcaI0hVepsK-%3G(RG%xL;n12p>sn#uy{Q11iqJa8PX40z%*VKN3UqjCl-eg_) zJGwA$o_FmDfz4cTNK7_0CqS-+Njut(C8AEEoS7+S>}r=O+K+OPB^aY*m38%ScV>pH zE8Bx#ll+3SzkQ7cd$AwIqhp$X-H-Gt_dsR$)s2-l7cIX{XI18q=HoC|rrkZcs`W)4 z6o(D>Uo$h8>eOshm2+Oz=0n!qoA^Y)nB{V=Gj8plZ4yXAhy+P|z^kGh^sIvh8xyJ~ z{?n=WcCcOvU+^UNa9xY9*WAEaeUBDtp31(x%=Xq*-4a2u;v&y6xh!zJ#Zww84X5|K z=~T=9cyP<=PrtfX;?3%6)qQr6hR|oo3~^GsZY6yr=CbZ@RdR*~jr%IPGPuu(zO(a8 zI5ELvJQ`JAhiyz=s=Fzb@&Ik>S%a>-t?YICF z6#J2LgO9Ypo7H0CGXB! zk*qI|4IA2QnRf6i30Jl1ip69+BX-_*9`So2_wup^by^jpH%gm zgYe?hnw%Er&qDksI#*@37l|sGs=ALKeLcY+C78ZdNao}I^TGuIO=pTxU?V@uaiwu`)f}Uaj>s@lLaa`hIR^9sI*;X%Ogr z+uta{)vFWYQQoof2bTWe3}QG6xe>Sh5)KHwl^*^;;jV5BSs0c#hzl5uf0}D!QOSjO zS%=GswCIe7>Pd2vM$7rR-;Kz3X*G(YI{#o4bb!BDE_*C;rP4;^Vb5Dp6y;n$ekND+ zkMZ5b9J^u*TT-}uNengNe(h^}Z|0sJ9;Cw3VeXL5g(j(+bxkNjyP0-<4bAj$hlp`0Q}W;}S!}%GQ2qJW5aYo|3(vIbEeP zepf~n!+)McTv4ewL3P^S^`mgDivGE=FSK<>+5&mSDp!;jm)1=&O0(OwKHalu z}Ue`c1fX=d2D*&j`5|@mR;X;kJJ4GDn9z-*1sjegW_E|tYIxowqHG-C_)n)0I2$&+Grix%ZvzK8xTmbY zF_byWN(a_SDJ^z+_v%eFp`WCZrPqi@ujL})_I%~#byb65k|fj;q#j>JXE+|!?OOaa zcH5xCGaoih{2!N(h3_>g+?UluiE^dxBT|Zv$N7Y{9DbK`Ll#nfJjq`b$v9=9}fQbS&R;(!Fec^kI4*vG@Qb3oiM_m;Vsa1q$iZ^R@|w*qFP@s<6TY8oHsy?-K;hC={^|L zw&;75hAN)C-Q^wi;rjz!c_4L1W4|9=6_tJSILA%v^Rz^d3 zDXFu#y8U16omtbW-j&8bkQWFD$fffluC?E@c*STOajnIwAO`H$U6=Xm3ZK;<~+cVS$i zfkP~}pT^Epc+7b2s#~1{^);J`7H!m@8}(aQ8+cPuWbeLsVPb49J{|{L?ES+8_BNuQ z1u6@+zq|OPluvgQE+Dvm>-QFsev{#^e$e-$c*QDdB2(UrE@&B}?J)?jOVm5UxzTKn z-zV8j?#CGRzZk`YzdWP;?3LZnbx(vh{V3TKGJo!$Y82R!|LshW8kfy?t4jm&WXE~n zvNDTj@pIH@1*=h$6e;CXj=n|>qH`Z%dKnv<&sO_5h)TeHSPbX_Kw z?L|aAW-EuZdsZ*t7L&*6{cTpo^GBy__Eu+mmRzhX|JH3b(U2DZWlit&=#8!9sgLLt zQq_9vaZ&V#tHQ%;)IDxiFDo}C%VZjD(70Wt2GA2P6)E-Ur_{q9gYy3N2XJZd~Ad9v_TeX9eS781`Z^Ys2``_cy7r%8cV@(}{94Qav zx%-$*kH>WRZD8M1f6fxa*?uP~1iW<*E<5zR(^fgoZj0aA5Rxpe12Z?|I?m4anbup( z_pJKU*l}YICj(E7y3>!2$nNk z+>KLui0b@z@mQRe#U>K{3jIa#36@|1k5O5gNo~J0s~9d|_s~Hr zqbjBrZ%Ao~e<8e^n&N+!0U@n3Fqg}GwobqN1VQRSt4Zgn{4$1hJ6gsQpoz}W_%_y! z(O4O|`zZ1Dg|-gSknMIMK9KaB>-0+MSFn@1e4C)NJ>rWC5BZ)GMbsGe`t^I+8l^-W zg_j4p#eEjh3q~CfO|^!!xsMjfM<<-5Ij&5^t2I8?W!$~b+qcbhyvhyH^tYPM8f^x` z8#i{sbzyVWS0UMCgCZVz$x#|q-?(B^K5B4AeI6ZW+S`dYmj7Vy-ty31?~*O`ZN_E8 zU$p!4q}oU6YxpXO!5Zg_`H-y2G-9vhtQH<8Mr-~$LT8YygZ>J8q^^&HZg3fN$VX0f zM`~E{9#2~6F^d~LhIK*FPQFg_K3RO*sFmmYv>=nPG*0?6lYZFUCF_H?J80$(Qf2L# zTH&Q1mG^r*-^{X?U%91OL1@TR)2(}4Rzj0{^#V55GkXVO<{F((_dlz641 zM(a@aIq-mz5V&ObI8QND=piVQx@ml`SuPVui$K-f6WswMaXhZmJ;uh3%XmCWPcB+a zCpi_pZns=WDkvP-JpCqbBc*756lfaM^FtX@w;hM97cH2_x|#NYH)5$L&+7u-cvP`+ zIoFPFGY9F5`5*ED>+?e1^E-J>H$P)DcO*D#{pBIYd===IGr`8Xs#Nr9OG#yd5l^Ghn(F^hsxb(jPJ*IypI#{35$nfUCHj69kBylyVIY?-NKg~&7EKa zz4=M%(+}R5f=`Ht+82kmM$5MIBqInk(WV<}uHxxNuc5*@+!!?{hde#?1f719H~o2* z6a0C{PW`p2ArM@!H#=c9!pxW4$ZnYv_~{RWUI)Z$v1WL&=~b2e!RZbqss>&={^j91 z%R$(eIbEQ7jQkXlc|;3)Mla^<{OJ#C4$^94fE+3kwAH60+D9mVEYBw8;MR`oDP{YH`ab z(6u}W7<@)=VvWPk68YZBK6B6W@wCbCtwZ8+w=CprPT`R?Qobl2vZoOLA&yhE?^%=1^U;rfww96Ku?yF#H-@5a0W_ZBHie zewXCsL9m*|R=pUAj%bAvWPRS_H-mFB;|S86?Q&JSb;oPeUf1knzkIO7u$G>T$8&f# zCrfYk?b=>b>a?|aCjCwk zbB}HuIpE{|-jX3`qpr_tIyOLOH=WNh4C-O=l>M1kfk^TFaf;l`^>D1$llt!`TC)Q~ z(6(4;HrYD5O?<2#XsF9aWSg1$spOmeELu(`a`x9gPkq@uqQTjr8&OKc^sfyr=O;?B zL2}|>Oxj6*YJgft{%(Kn5AzD%s7K>ntthJ&HI>F{vb;*Q_5Y$AU zw|J%B7ZeSx#-rr+8{m1ikLQdgxQsQzr*HWoW~|!+6W6PflP%fv&Z5?j7*&L#ZxWUB zyQ1!o`9^#}UZ*}{eDhc}o6U>r#H*|7XYQ85xZI+L*~H}ig7au*F8MAzu*~kp0V-wY ziC}#oarfK%tr+N5l@)U>I~5Ej4Z*szevf#=O0L?*YZ9(EhbnNIdQ8o46y)+ut^e+s zI=-%Hy5WHoU#R7C#CDRkD*%U9X{d5XE$w7uwm0a*H3F@B&DIYmEG|BBI za{xt2r8r2F6{fqzjodtQnVNa_IN-BKu`v6-_I5lav23@jQ)6G|<6+I?+cQt=8rSG~ z{=E7XiiGPvImxUj^$vO$<<~3QaeGyw$WA{Kiql@Ksdge023sg*J8qtvaXl5!Aqy{= zf`6;nYn*$O7wEo6Z8!)AZzMfl>&|q-ijCj5*kOOPsAeuX;L;!2``^AcK+7cKN(6~@ zdumwLCm>&r>@rLvb|&wC2NwxTJ(AMm7TEKnj-e;PQZwL4KbXHGI6CM~v{OV{Yy4tQb$I)1;;n%(EMZ6{-%siIe&0+bOH7Eu$2BE@Hse zB^Zu8$G?`$r03KG>JfiRa-~wv@|579(__7fD847HV_E6gQ?OWNJU@QHmrNX4YkG#Z z^}H7U@~ctHuos$PuDF!@jweqQv=NAp!VupR>Z~$Im(nW^K{MuJ@f@TJ)>OHa%m{VL zv#NODzIG;fVRXNij|bBJ6M;xlLv+3)o{yFMF2NBz@7b+vC-ZrV_eEuE*pgMvJ&`%~ zR15@%(vuIsU{?$A8rZiEeuCcmGx5SRH$_2#XPep&|9G;7Zf}3Pqs)`P_<` zat-9W2mP@%|L$E9jq&VDWwwzGW!AnN%-n84kE|4KsXX7|)ID@^+>7a_$B!`ocKg90 z1j}JY^-x!@gE|ve#aok_z0ty##=!&5!YnK4orC%GEc@G}^paW15kZ_nu}cX_+W*t=d6AN;X5+TEDQAIhcCA0AFey?0CJop$vpZO3Cd7)Wij&aWfu z`zE=z)AVce#t_uBYE3UC8@aJ2r)zY`hM&FQ;vfpuXCTCo1ptuHBsLlKKNlqd6F=l-SyAR}4M0F~o`x%i%5 zA>E-?eOuded?SQv9!SV4Buluhj;# zFjz{h-X7e-vXH*%Q2}buUh{s zL_6O_xBJVIo{nc6{j~+!W4E+kk8b#93$_nwY6Wb;@{r^l>+AjKZS?0^Wqh7kB$ts% zBZX5E(XDIAG9 zaZ~fyi<*)0>(y(Q`qXpY>rS(G=lkGE52mK3r9TjHvBIXI+ROo0*Iu2dkU@LZJx7PA zq*G%CF8&t}@r1tx`V_1GL&6|BiwxzE-6yBshePGovp8da=S^2aoRpd%2T~O{j-&I*sc4sex{@~T&nCI23ZwLuZ{`fWnz0rt%&V4IB;`#cfgqL@2cWYkD z(Dnx7Kc2+h=$W<3(2sU0`)w-z1z{`MWUUKFq%vx=qz|pM&mP3=)Soa0(`Zk>egzY* zT}*vwpO!VYW)IJ!Dcm1ZcL-W%y*7h(a@vcZsd8Gs&IXQYwHz*q=Hl_63x>V&37FWi zGNR;f_KqAktA}gMuuELw3lD6UjFy8yYHQD{n$w=MlG1V3xLoTHIhb7~o>i+YFxbBA z(k%t>&$mjJLF!2sO19zFB}AA1HmBzIbofriBkRW}3SN%>Qq-yVTUKk-yD6IDs**~k z{rKFI3)Z-2jjgH_>0Uy;CbxymEk$qa?ttBwL(-Xx;T$g#eO7jl-ECnWDD}H8rG7R4 zoYuAc-tPyKzugn+M?Ic?&1vIG>8fY-c2zh$=2;xhd3?F%i$VCIFCtv~2wA|NHg`S& z#ltS~7|WsG!RDZK(VFa=QmooX@E>)(ou|B-5Aj?Go&t0dOW82l_Fvt{i#1-JwwP(0 zzV}nB!Ba-~a82iYtab>TUWD4x+3HjEAbbS_QDx0UYdF>!&zeQ(?xbQ`=(uJxaa6Q zlh1KZCczjY)<*msZr@q;4_2|2^GN(pyEp`n#3SuPP=!Odr22BgT@elg27)urR<3)0 z)_oV}ID>+fieIh?5U8to>R#PvwX{vMB|&Q&cP9(D(d)=t z;&z6z#(TqWG5xY#s7!m#q&hck;W6y;7W2A@LRm%|X8%*KGVAzUsL%U5Ml0j}a66u7 zfG(BntXSXp4;Sm_jaGeLXlk1azhRxro)Ub9{SghsO7!t5DJ$c?$35+mlnfbCJ26x_y<7|FErSi4&K8{K|Wwx6hW?v|zX2_fogP+0OwfC74712suiv z;Ll}mq(7Q&cw9R)cY(?oYq{cMNoaVMm5Zz#mHtz8lygj>f#vcK8-G04@qw-lNYLvV9 z8c&1w=3{C{NO|P{ICgz982|WkaFbRmSMr_V?p;AOh;ysdK7zxZ3ezyY)aFu|kx|!} zz4&1Q~kfogw;%W#_CaF3#f>36VM8R}gm-<{$>leJ{y4TtT&sMPnrt|hgzmO$&mbvB#`8=)&=Ta#j3c>*(r_Q zYr+KnRqwaiOI-&}c`C$b>h@hSNE@}vNB!(oehuE`+{!=rw9cmqYh$t}IgCT=BTimisbFRqeIaWFM)2UfSwhjxHIaYvI2d zn{Cv)?S-41)CmS2U?$phwhH+V6s^KHV$M^(Jr4^^@j_#b}kPav18au7&Q2ZNXN#zw_9S4{8yUsJapX^@|_d6f0AANZ2 zZQ(yx4>@N1p9+MH(2;Xf-Qs&{JGbSc01uk?j>)ief^>vG(xG@vRzSx{C;jX zW%iouqgr{g!sEa0lWLYM$OGmHzM0Ckw86$S4zN;mX50f$DLR3@M2dTgz--{HQMJ@hlvk6UV%D zuGC?x?B?_6dmhv9AK_1G5%IC);cO*mx#9c$?xgW;M+>Mu5qlBX&rb69eBl7UF$R0# zYzIzYOW!hm6>%w04Qr!_1dIEP1MjEf&urYL&bT`q?j860EQ!9{ zM?p_J+}&z7wD+WbRp#6BTDHf}ldF=IIuq_#f1k$5-_PChh>`e>O@XsnvI1@-0>FCr zD=(=v$TNAlt+P>)Ba(Ud$CB?gX;ttyk{qR4BIl0)>c^b&%2U-ExwM13-XEE8ku$g% z&!QM~#gV<+)G1c;$4SASE{D@auR~Qz-CQi08qIqsW#He*Ip!{y2%6om5OZ2LaZ20w z1N??FeM;JH<2};@<>?frowHhIorvxAn|sZSr5}b@K@FyT~g#<=W}o2S`euzi5} zs_9iGfBN7c@30JWIkEODdzf5tUo+fbC_m~2ICoXPDcjrV;Y2YF@#|3rR zxHvvVhd(BpM$5ztYb~UVomym4&Eo#; zD*UVw_CfZ3ySfi&4iD?C{!)(j7Npmj^?3rXF5&PuPL@%N;8dS#htst1b-sMJ(VLyC z6?*MGHPf%pJ}(gr3GPF@nZMe2WqTiu`U8W)rP$WpV)-l@ZSxub%Qo%W`2+ucG_*2mU4}~dehQ4_nE;l1@)e{9Q16kg zw@Um-my|j14QjTx4v9dd?4$+v(>-NpXB_Jo8U}>$z*^jD-D?gedlauLm%u0WWMu9L{Y#-Gb`Y{hK~>VY}{^28i^ea8Cg4gya^sz zhfcq*I#4XDRljZ?qMGUblR2?|RZ1ni4wW(;8QS*s$hu$WzMnByKvh99$w%)#x3$`p zeRX7hB~{)aOgUG-Rdu#{nBw<|tz(lqdLjPEf2~=sj`jV8aNzjD+o{tP4JaUk5z;^u3=Q!)OGe!L5T1i!zee=BpJ>-mes`e!GHURYD zXrmbECwi##q&=@zPts{TFp`uR%oAaHJ|2YUis8YHS_QRyY8~5utz)&8DG|~gd$jIH zcHFdX%_l$Z4gP%3-QEApb~}=!$D@6=cfMHjDOe7kY`fMRG0!*fjjLzO%QsNQ$bL{E zHK;NHQ(K`)A7%ONx-^*UM4ksNX5*{la0XWkPF}a&eLTPS>V5aA-v_}MDpw6FcK4AQ zZ$|Vgy|(Wixdos0I5@cK?i(DQrO_Wvw#y3)N3(80$QvD{1{@HoVFn`A1c~TbUyBs6pq`qt`@l)(&uFPuMHe;<65#C zGW$d^8qG(p>VKWhTJKrGVezpb47g9DKbRETtnlOfS-;0N*!usRLqU(-4j~C%t0Wpd z*7LJftBGi7fH-U3?Z3`=?AERNggs`_jIVZoj43$u>{V&}IBdCO&-|H_$b6}c@ew8e z0i5}OCTr;m_jT zbJTC-$b^dLb} z*GHoYpMgV$_gqo<#wO-~NO#MU3bJ&^mR>Ka_ zBu)9a7<}HAyZ)Cs*!K$)x6KxMt)0n=s={j@2kU3pD!lGOc>6~WdbAYO#mBohv&6h0ZGuR zC{l}+e|ax96?8>A#^vAjD^{)ZS=QDAsHd5Kyq4|ZSBviEYoJ?#C#|FJ zNx1qf=Da|25vzl}jns>6h)dZLsZ~|<7dy#cKBhHjW=K}dU)Bo49Lq8{j#=H`Au;Hy zgmL)_IHrD|a=ZyN%TO-53A17SjJM?Yz{P`W!bvN5(d*0w##ox%4L4aoJ((ptf}GiB z27QGH6$x#A8_y7WRfpm3OXqr?UW*tg3VI4`acd=6FUJ{Y=c_7tjik=;8Qo7uwMO^t z44xaz1VZfvpFa|;=+PC_qy|W|V5HWMfsd9GYuHAgAv!Gk5j5|Rd$-XoJi__OM-aOs z7oHwByc-dR*I~W}Kf49WUN$6!SbWS!qIVTth1&&*4d%Y_G*N~ybFaMEH!GTQm^>{| zJ+tb7C_#Kg7jfu8`koSw)c~g`ZrmVi6|}l-P_}h4hL`X`NE&P@S>6xT^Bl=_#s$4x zpy4})j;z~f&D;e^bCu+aH@fpFH$;m^?kqy?6C2j99-{wp&*#H|?e|ovs=v9X%-qn+ zGPhK#!SiLJwSC3?-89~-mAgDYH@GwisnA0e3aYi9dJeAWu19n>&1-kr0qFz_2Q=b4 zq?$6a6$p&s?GEp-IaRH^^ykX=eIagWZ`MFI?|49i-dqNd3(Mz5MS(P*P1V#sX9n3b zqf^EGvIODRk;%9eu65p<_uDys=DPN)0flq$dSz*hly3wX4~Hjv-Bub|`k zJ=4@2sGSA#O+7w)wm+f_Mh|&hyTgUH&p!{z%kmz*=H-Nxa{B^LR9=ViPO=VVHnu@Z zk}1rEL{s+rED&VUR&z+a-b;^(m1C~JiiizO-4B)6p;jDQ{m$bP6^86x@~m6K{f1mJ z5@e>s>VtDqb;upn;=MK_|7t|8>f7Ji`E*=`179`N)6JkR0DB$*o$NAr^)_U;IGJ3& zZS!0&R5CH3CfDaZ-G2s5EYMo!%yL(E40_w}J-uNNxz`w=U<*6b9EFG@JJde+Sbc5A z=*yyXlWoX(fj=heM%n#5_jZwJtm(V?sH@#|)KixC|^1o-%>Q0^QzPr8mF%|zzWG|cbwWF~)k38)FZc(cW z->yA)b+_>s$m}@#=w6-|3ePH8W$o5wH7-5DHs0Eu+7l4xCYo7tx6ex_-P@iqP%`Xr4}xRk zB2Mgh6>`GBwaWqu*5&fo6IBf*v#xZPh%S%9>Lq%kc(rgdcx`qqUp!zUSj0vpsKI)~aVX#W&BGJ$BveDdMa(R-%_i zjgXJ7G!9j5JL&Y%T|p!wldHRY>_!1oGY7r(tH?!%>3qxnY27jozG&kQ)EN&ZyGfx! z-5mg6%0M10LR{xba+{ApBVIt1A{R z$%iv5x}(QaKj02a6?!xf^-Iniwye1pzK++s1($n*5y5vmjjT#O;0*jc(38xrHmZa{ zb^Dln=ie~*+1DfcH7?gL-LReGNcO!S&MW6nDr+##@Ss0I+zmd{P3$ZuCp7cCbE2zK zr$gX?nYTGTEPNA8Bd>fIxz8oW!l_B9Wl=;2zUU|1_1TYj~ zrp$i4FGA(gN`~7}K2yB2QSD6T&OUK0xQobW6~#6;>XGo<)-!WJ^EV7@zOF}qs2!Ei zSc*QCjn*20u2uVczcQnxt$1)M2b|lxwf4#epJ(dG*}OlX@r5f@?)QBgH#4ad((VY) z1h~(Uk$}QYwyOxi%vdr+zUT9o$O&dV>Is-qeV*R_%dixb=>ST{F1{mb6l#6ZjZ=9$ zL$cvm*Tef^Jub%-YqS$^jdbGUxM=9}Yd;^P%Z5(*AvrpuR**Q3b)SLkB>=Z z1y4nB@9^)^K4nW3m$j$2EA-O~ts=VYmS{jX0`KIs?_G()=udQdDQKr?hm6rG&^-c` zLY^ap{--}Ptv5L~h4zt0pvig)@{DQHWs*J`=^V#G3P@z6#vcb9>jc|`f3E#rAm zEbKs1<6yFhX=bitD&X;~t#?0sgtOuM$a~szOQ|E8_=t7BGg%|;JC{;0A>Rp#?P zJ?~ThnrtA(@Oi4%_|c@Q*-F0^7cUv$sKemvE33(*t~|v1r&@Oi%ab{`6p{8(_>1b) z?@O)4SGQBr>zffxKrZtrB3n6X{Bd{djwvA5!>@;XgYY7SCsPUTKmI%0m=*e;LpFfF zL#=BXxAQ~tRzzc9RDS(<9Xnp>S12e;efQ98DQa_)34Z$5PDyY%Ce-d21a z2pSm@oC%RSA&@Cm@00t$85gT&tZ=xW?|4Sw9YAl;qxcTLeydTPPJhK}V|$G{0c|nQ zVX98ZI++hxq@DI%IEE8(meG!r=u3IbjOoxFhVnV?at-YCcpYYnHs;ouVX(7#ST-6) zA8KBbpnAP6@6yYboNJVpa>lNs6w(2-!91u<$ch~9x0@*=g3vv!yn4KkEFcAXdpSGr z0A1=bKy))BRBEFlL!@wmr#TVMVedkY&3-bXUpc1+Gcq1LVCouF$_onW8 zLo_U_k(_rEl%TVIM)ep>$V;{I^%qqx`VK0;4^ZESVX^@79>96!6llw=@Pyp z@tqPRm3A37zxsng4c8mI7mA&yw}K!Hh=UnVz7Ls0Uyg6#)^VcJo3z+_uUF_gW)D7f zUwVaO_)^-ZouwD&x$wZO_6W>MIf>uGHNnbC>GyhCeT}(Nh-H{U?J1nq))mU~A8gln zFD<%^7vWz_tQS|d20Ye?CnnZDX1|`tre%1m;k#DFjPTH?&Kv@ECF?9W&JQkD7fhCCS;9nX(iUKk0}WpgLCcq4C_DdzuZm7XJ47nx$lx_OEeirG?b4V;5fOv`sKDIDuIQoA`X*{X?_6c9}gH zoGmJ3WIu-=SH_27PKLhv0x+nv}7CxD2p|5RG8=q(P3(JD``)7wXXf+!G z_zBmcnhkNy`JA@mdx&$~%{i`<^~3#PmGnpt5p50{fk~fq4gsSEC|c4t-j??3c=~SF zLT4mamL&`yP6NXwkeS@hNViDO>;8DwWL-16#5Ui};eY$CtLu zEwmXFX?Mo4ra7>wz{V2+A@Q6_1L0`yrd+q*`A!@eBg@QEDw`axwUHBQ*2LQ<7uTSd zD!N4*4xlb)N9mJLC$lvUL025irj-|MDA`Z zTsoCiGHcA-mWu@r>8t53z8a@xxWU74;S1%WDVT2+h-rdDp=SDgkj=DD4q~*@y%A_j zwUoDT()5RA08&vs z^alP_9-H17ENO)vurzFaO?$jM!_;C<_KBLDAp zm&0i(y!c4p%_^1pRwXHI5)b5a;7K#eKkIpa#Tf)|Xx1MGoK2}2Wq9r7uj5m( zBE5W|4>dJ58jwfq3CI?g$HXC7)9aMXjegH1Cs!F!B!|q0UY{BTdL zKOBYAvk|V2VF>+-A<(dEoK`{F0S+cET=1Awkl}2He;wsF-?h1~-xtm%$ABN}&0H(S_6NZj*|B&2N_2>DsKJ`;(&R+U}%p5J~NVMYI|7B zQ?jxh@KN$J>m}xNBis=xaBlDZrVBzBw7?lMcO<%z<1?qe;khP8)_7xQC%&EHb7!ON zUriPEVai(QW+Edo78S*vu zDC}12zGA(v@8KPRFMd9)!*E?}c4$69vhdGhPYU=i^hB?797Q(sWTco+wZee32Ox$x z5aFrURgV@^+OrG}$cJ|&Lz&uPlWu<8V&QD9O@C57phZx>&%?H3wea7#3^Z0=4rU_V zs@F}|0N4>;JflcvHr%%{0nYROA~`0aefxbs(MnqS;)TGHkv1MZ_;fnPv4HJ-zjAGg za-8q#n@%~qzZ6S_WCd)xhNiycC)&-X?&G6#?3*STu*tBRkTb}ZxUH>vw8J%eAiODY zl(mOL{%8)XA*VOGZ4TBO^fCy@?58R^Y;c{5^7Nwd5lE90gy%%G0HP1hzJ(@yh$gYo zDLHaY4gFWQi_IK%eXC=m!%%IqXjoFag(EJbbT=tpv`(H?=4}RdShzL8oJJQkV>N6> z!y#f-ONW(PTMvhB)#UWJ52|p>=jjtlV#(*iE=PK0%Z2Z44A)Wf@@V2Wm?9C^k6gVi zYE3xQnrY_jDdJ&jPcHYnc89Lt`#`Kmjv2-KeSJ(;Cepxw)*XiVSQ zq|?0Y)3US`b;uc;;-{&o?zX<0R2OjWP^`R?50=y(5xyy$8Vi_cgYLF|&H$B~^;b7J zHTQeApZi%nT`Ndk=tVLt<`&fIsbFqgHl7)Zvpl$AtaIRZCBNS#gk@09a0u)%2kZjR zJ(zK`Qo~@iXiTr=L7%T`Aiz@(f36<-=O}Ak8^La(?I!5ro#TvqYl>cteTpMmuEVe+ z@WSdR_xNcC5N>K+{C5w3?%Cc$=OVK_tWCa^wAn1JMW4{#<-6)nf(0b<8a45n+*cnQ z!+^kU5JTO+VvJZho|3h+k1OF5x)AfiDrSUH(kzYId&U&po}HD{p%%lx6?kWz7c3|b zd^xgStGm&U_39eam1dgo-KAcIdl2InyoH|)9{T;_?HYf7war4?76!*{mU3+1+e*aZTkx)6;WzwzECm zP4}H;Cx8^9Uo1`OfryUVD1c@lEZ%ZlO?g#Q!yN^IXj_?yTt#rD?-e*^g#wy#77rJw&mo<+We@Yjj`y@dZA zx%BTGOo+694EYe+uMqw>BY%MKzaW?KFIpHM|0?p; zIDRAHN0ARB-$D2hJ>?d=1)vh47b%{fpllpZ`VVAI9-F5dH_`4dizc{(IyyzV!Rz_J4<5`ZrDZ zZ;{LR_7HxEj6eDKxc%QCm*-C<`~|{y68=1L4dZ*8@LwaB>;Li-;`2X;Tweb>2>%uG zRcQaXMe*^^BA59YBK()gWq!93{tR+?|9FA$Um#zH^OsJH&wr4N{{rDZM=t$4MEK8; z%j>InQr!Mek<0UQ9pO(Sm-p2Jg#QHjh3NmHljHV(jNC##NcaKdA47gW;ro%x^YE1rz3>_5cvh@-$kd!?LUEhGjfCQ$C1nRaftAJ$mRJ< zzdvq&FLLSsEa8ul@sAV!C~|pz&t4q2{|MpJg#Q3}8RL79@Q0Dh>+jst;`YCfd;-TC zgny5We~9q!BA5OzIz4XxA>{pNe?8&fK`yVqt%QFYxm;gI3ExA;uQ($<|AWZKasDlY z??x{3bC~d5$mRL({XpFQ1IU-5{m&A9Kk`k;pCJ5O$mR7_`e5AteaL0}n+d-c`6{&k z6yf(Em+SMaGvoH}Mm~b$O~Sv4T%O(|1MnGoFX%qd9U%WRw+UJcdIUbd?*i=v-3Iz1XbRK^ zdKTWKo(4S$dJN>(8aIHh1{t6p5Cfe7ItFp=0o?=I2D%CKDUcs;A1HYx8AvjaWFW~v zl7S=xNe2GA46w*c(HzG#bS-#}amK1-tF~P=c~-Ygt!%rRu-!)1u!L(^o}qtalV@AX zQg&6UWkRWFLW{LYs@Qem)P)CdJr200JsgR2umV`=?kVKExmL)O%02l^u^W!Gj&esP zUn=%=ca_Rr#ZpOW4K;#6<9gAkbWO|-_4JP`EyIyH7*nRWQJoSnMjZPx(ff0>-WhgJY}}D1(<0M8q`H54OPqpLm67 zg2ny%C=)ic3SM)Be>iEox=}V8%;mwDb_NgdnoX}TvJFby#0I537{*l`(|4&`=S#8> zM8rKs@LB%^$|wRSo9j6|i=F^)YmqcT9F|rK&afvc&^yAyg){$)qEzC%i|aj^-i~5d zrpU{a8ND#cGv#7A-&NK-wUST=IF9l3U3`NW0?<5Z8EJb27pS`e;gSgPQjP(8SJi?{{6F0Fda zX)w)WmNO@JG^+v>{yCLMhkw6(qc`#JQjV-9Ty|G19~j>>F|~HcRoBUMDD%5VcFb#? z1dFKoR&rI!um8USb+QR{wO{|s{l&|nrXK^fgIKN4Y&-iscXb)&R=oZk;pwEM@1yw=ApcSA3Xd&oDsQ34S_JQsOeHnB$s0z9abP?zr z&_d92;OB18HqaK(mq4EeSs*`#X;AV?GLU2-$v~2UBm+qXk_;pnNHXxhkO9AFSFAEr z+E4_kHN&!9sEhN_R`@$8_OL9FWxg`QUBAQutaN5O3fV$f890q<4T>>OHDS-hx2M3D zV*M}Cc7`=8%n9`um=G$T_4gW@{hHk(y|Cb>?KK0c58Q6?Yx&%4hIW~R@9TnX*!7TJ zW}QZ8Ia=ei0_kj(#j?~#&%=Si?oQ3{3)7(VgXo&YzhY`uweA<7hBax2&EZ7h=7CHF z&J~XH^F)KF7*GUi4OMzG+WanZCu;-0rnzfza|ybpH2?G*uFo+!e6?Aff%3O(`WqMm z_C)0Lj%&|wOS78WIvbniT5MN$rZXMSa6 zZ_m8yO4yZ>{iJWO-W^k9y(#<3Hh&+ib;|u_VF;7ArTaCPUE*ra6tgGUSgXWz2swguh2a7SV$FbvyYwrRV4X}zIYbe8kk zsA&sfSXCybI0GZB>IV=h{~_}DU(H!yA96iL(2;Iucvy%Ws*(22R(r8^SZW=1wGO*m Thdq(QsJY%&dq+OKG4StS6&Jg& literal 0 HcmV?d00001 diff --git a/Python File/.Stock_Price_Prediction_REMOTE_19716.ipynb.swp b/Python File/.Stock_Price_Prediction_REMOTE_19716.ipynb.swp new file mode 100644 index 0000000000000000000000000000000000000000..987f9cd1c5207f68f25f3f0bbb1955974d81ed8e GIT binary patch literal 16384 zcmeI3dyE}b9mj`?2=Yt`2{9T^XA|#Tv-i2(Ev;FT?RIN7bho7!nkuZrxie?(4m&UA z%q;h|6cdSmXf%OJqW@qtDj`Hn2>7Vckkq8ns15puX&^>kCRqOwgaT5*@0mGsckbINothmzjq^4bo@SK}b8wc@~Bt?Z2)li@$J95Z$TzqYp* zuLM5X>9{P5Vx&>x}`B)b;6$C9x6tCR0=2sMk;W*HrZ^XU-dD4 z6S;chO(SEeK&60EKq;UUPzopolmbctrGQf4|5JfD+^BsHP1_)wcSOEkF!cJCynGq{ z)gk+v(r)D8GJ`yye@J_NSie;o#$^06(%zMyj}4`NL)!0?_HDAldH#QwcF`7bofxve zF6~if))wEFy~)$RChd1h`{P6QSEaot?Vq@CF#Tz1zf0O58?wJ5?FXg3`ToK5FH8HH zw102N{x@kqB<=b|gXv$A_El-Wf5`r#w693}#UB_<|5s_Zr9B+7OF6WUNc-=H>@rxr zC{fzN^iUKC15V?B|1|g&I126s3GjdoZUyt;W8fzvf$$p5E=&&*QHhGK@yov-$riE zLp&B!i^ddThx)ncCUadQ?u8<%?$Kz~3hwartgu6A()GCOdFGYSgCq`4Md21Lqe;%1D&)pq8=+d9>ir))plYdj;PPk7O!mC z;}gUT+{E+w3`CG`i_Mn_kzWgMUAB;AROZMfW}V(l$z#+njTgj#9Cj3Vgs-}cMt(KR zg5V{H;=ybNQ;m^b)VEwlJcn~3_`B7)KhRJW#}ebw>RI!9gC({&&6e`c9T;7Cx1Bw< zrrz7YT4B^$A5iDrK&e_$5SDK)VW_au1S!p0w~;wF;HwWUqDV-m3nauySt(Kv}1$2UbxtW+#c|G_c; z-di*{E2X`ICp>+$#EE!Jrbrar!9_>O7M{P2!5oB6AhSMod)(pa47A_j33Z)=X+QL* z`?J^R(c6oG{lmZB$mA0U1hnjI&5bbM8zx^Xms;Bwma2GH8k{oEj%Y>B8mle#Fq?`u zbAe0SWGRSQ8;|kw>;YVoK7fn=`2)CQ-_lZTy@)~wrM;QvS@p#Js9dUo=6HfJ##9T+m~%l(*k`gUrXNkq+_!Ob9I6C{k7>2NW( z%K(f6J4pjDM@3F|f*=OPzFpewM)t0t)j-8v$H$h=@UW?N^V;uD!}hTb=0A~jVYooq zf#hjAgEN<Fs0`m?T{wU|KdFULm~%aG>$%~=10nL$@#|{wbL`2!_XB0(B#$g&gLTDSl`LKs ztq==$enk4=aL<7QLf)v0SvRhAE5lK2{PG)l!)cV)vKsdKITw5{g@#OOY12gOd|9%r zc|V~pZpV3!aB-wg1k^6`!RRjaJBe^*2oGvMxL;5|$6N|oRzKaSc3KYH3AAVAwb`5f zs(q4_QLj}N`OF=cRnxPNJY?pG!ow(7V?On>+n||O2Tg&aOhz7d3@m3JfPQbUyB@Q| JkZ90v_D?pfd&>X- literal 0 HcmV?d00001 diff --git a/Python File/.Stock_Price_Prediction_REMOTE_20502.ipynb.swp b/Python File/.Stock_Price_Prediction_REMOTE_20502.ipynb.swp new file mode 100644 index 0000000000000000000000000000000000000000..a230f839aac05c2582eb3cfddc3b3ce1bf4b97cc GIT binary patch literal 16384 zcmeI3du$v>9mlt!^g$m~sVX4^VzQRFGx9xrj@>56NRHzWtMSFnwNaoo+qvD@^Va+7 z&aQixG)1D~4-iOgsKj3&5VWeQ7O83r1c53ADFOje;SUsn5NYWj5dMIc5*`UH-`Sl# z?_ExP28htC{PEq*Z=T0|_mSe_F;MbOW z@oM0cU5?ALC`K9u|MMuuzJ;Z|w=Nis`gFZfb;6$C9x6tCR0=2sMk;WPHr1F+zv^T9 z7IOXO+eXGxfl2|TfKosypcGIFC^pO3p(tc3d8}A-W|BAG) zOZ($P_PVL23WxkX;6= z7o~twKq;UUPzopolmbctrGQdEDWDX%NEM)#rir6mN1T^&|35$fzxrNHdkOpzJO`cz zUjz4pgMfh+Xn@V&xob7;L2&XKyazu9KLn40FMuv!U>bY`Tn&DHwWj?DJO#cEIM@YF zU8QM9!IR)I@J;Yp5P%gh3C4jAJ^(HOFT6+7ehR(=9tK@tfjhu$U@zDTZUC=cscEOd zN$?0b0zMD!2Zuo$%!3MeAGi$s>IzLe2EGTL0#AS=fP)pV8_a-f!OIZzH259(4LAnA z0lo;jfPqhe17H?x0at-DIJ3V9o&Y|ufdM`NJ_bGnt^}{ZH}C>D0gi)b!BOy4@EPEP zTflBG1-5{5@JAd64}b+Q3uZta+yKtN-*F231RMnqf&_TL26uu5@L_NrIE(S}d+oF>+nSSLdc4IB}5-1bC%`!9kS@-5fB;&5!a9_8^WPrUMY-uP6S`Bi4F z332QoN=qW^)J+(_BX1pIZ8Rts>3`cEGD||Mx)YtWE217NJ08SkQPp;0BaW!g(H5_4 z+2a$$4BW)?`7A_`Z;Q>B36Wn5Z(X*SWmM+KC1#!8Y{_HPFO3((fE;!dc!aOHj7EMn z%Yxt~h~mL)22+iZ-PE^SMm&deA^6+Xxj)cQ6~_|e(dtn<|y2Aq{vCJ601e0FkzIDY6-lg-{5 zC9F6&#>h^jCh;mGSq23CSIi?HT!ntV&+jOrWWI7%N6Dt*q(|>Tx zzw;Ii&Pr+T;0aG3EpZ|qlW7tK_i)isvV|9KV=xDy6UdxT-5z&%Is@%@ctTz0VA>D; z>HhpRdi3^UVE^#?8<~6pfq<5st+^5Ad&A`G+IWnYXAj_#^Z{J_&mX`g`~p=M>l9%)Xee!ZVcB8?Nb-doxSTF#D2XZquECr5A<%0N_n9hs3tj#%qg z<2dBoYqj**=hcA6+i$AhRIe2>PTPp6*|rqPivuBV*!eqw##>!#3d3VyM}*=q`C+!m zwnSnFW$?Qbiq17y6a~=)NyBKHV{;a>(SaeuzTA&#r*EgGnMBm=8QcsaHbKIOnGP3o zy9~fMu#+?Zb5!JXCkSFt?AxW?p3L4Av>K?m>-gBx86Gy(ZeII6Y1ls2!Tcw(E({ka zJCHn0XK?1S^fB{12W%xB--sEH4Ia8qJeY$N2`fg}Ba{VZ9x@yT3{H#trw-_$rs4@~KKM?0j6^S?Nce;bJNe|~>gocm9LUx1&1 zAAoOxFM|iby`Txi`TzakdTtmsfSv+D?|!$ z>FX>Khh>=csp@2-I@v#ChP{r5V?8%qcpyZ6I(}U(evUoW_kN&EoaB*3Y_P7ltCGdb zq7`D{&W}hx9PT-AK*$?)G3&;)Ze=)%jbDBvZ#a$eT2{keKj(t)rO=QmEp3`;oi9t4 zHSZ_X#qBuH5iX9@iGbQ=J{aAlekT#G4B>q)yA7Iob>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "SOQbXSiB-g5G", + "outputId": "55ee6ec8-9146-4ebf-c2fe-b4b06bc3a5c4" + }, +<<<<<<< HEAD + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n" + ] + } + ], + "source": [ + "from google.colab import drive\n", + "drive.mount('/content/drive')\n", + "df = pd.read_csv('drive/My Drive/Colab Notebooks/Stock Price Prediction RNN/SBIN.csv')" +======= + "outputs": [], + "source": [ + "# from google.colab import drive\n", + "# drive.mount('/content/drive')\n", + "# df = pd.read_csv('drive/My Drive/Colab Notebooks/Stock Price Prediction RNN/SBIN.csv')\n", + "df = pd.read_csv('SBIN.csv')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Data Analysis and Visualization" +>>>>>>> upstream/main + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "Sc4id6VxL8BS", + "outputId": "78207ea2-5b80-47a2-a1b1-0548765b6455" + }, + "outputs": [ + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "summary": "{\n \"name\": \"df\",\n \"rows\": 7074,\n \"fields\": [\n {\n \"column\": \"Date\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 7074,\n \"samples\": [\n \"11-08-2016\",\n \"30-10-2007\",\n \"17-01-2017\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Open\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 154.7732294451065,\n \"min\": 13.478195,\n \"max\": 703.650024,\n \"num_unique_values\": 4758,\n \"samples\": [\n 174.399994,\n 31.0324,\n 187.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"High\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 156.34507839355788,\n \"min\": 13.935802,\n \"max\": 728.349976,\n \"num_unique_values\": 5403,\n \"samples\": [\n 473.0,\n 495.450012,\n 78.321663\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Low\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 152.98051601861624,\n \"min\": 13.214009,\n \"max\": 694.200012,\n \"num_unique_values\": 5488,\n \"samples\": [\n 60.2957,\n 22.677523,\n 16.983376\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 154.63054905628158,\n \"min\": 13.346102,\n \"max\": 725.25,\n \"num_unique_values\": 5975,\n \"samples\": [\n 633.599976,\n 241.100006,\n 107.834999\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Adj Close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 152.90324918554683,\n \"min\": 9.53141,\n \"max\": 725.25,\n \"num_unique_values\": 6575,\n \"samples\": [\n 12.345289,\n 223.836212,\n 16.758821\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Volume\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 34627439.399630256,\n \"min\": 0.0,\n \"max\": 446948261.0,\n \"num_unique_values\": 6948,\n \"samples\": [\n 29959130.0,\n 1648453.0,\n 14077470.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", + "type": "dataframe", + "variable_name": "df" + }, + "text/html": [ + "\n", + "
    \n", + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    DateOpenHighLowCloseAdj CloseVolume
    001-01-199618.69114718.97892218.54018418.82324012.40993143733533.0
    102-01-199618.89400518.96476717.73819218.22410612.01493156167280.0
    203-01-199618.32789218.56848917.64383917.73819211.69457768296318.0
    304-01-199617.50231217.83254217.22397217.67686311.65414286073880.0
    405-01-199617.73819217.78536617.45985217.57779311.58882776613039.0
    \n", + "
    \n", + "
    \n", + "\n", + "
    \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
    \n", + "\n", + "\n", + "
    \n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
    \n", + "\n", + "
    \n", + "
    \n" + ], + "text/plain": [ + " Date Open High Low Close Adj Close \\\n", + "0 01-01-1996 18.691147 18.978922 18.540184 18.823240 12.409931 \n", + "1 02-01-1996 18.894005 18.964767 17.738192 18.224106 12.014931 \n", + "2 03-01-1996 18.327892 18.568489 17.643839 17.738192 11.694577 \n", + "3 04-01-1996 17.502312 17.832542 17.223972 17.676863 11.654142 \n", + "4 05-01-1996 17.738192 17.785366 17.459852 17.577793 11.588827 \n", + "\n", + " Volume \n", + "0 43733533.0 \n", + "1 56167280.0 \n", + "2 68296318.0 \n", + "3 86073880.0 \n", + "4 76613039.0 " + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], +======= + "execution_count": null, + "metadata": {}, + "outputs": [], +>>>>>>> upstream/main + "source": [ + "# Print first 5 rows of dataset\n", + "df.head()" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 7, + "metadata": { + "id": "7LaYGXsfN-8y" + }, +======= + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# basic dataset features information\n", + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Summary of numerical columns\n", + "df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Checking for null values\n", + "df.isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, +>>>>>>> upstream/main + "outputs": [], + "source": [ + "# Drop the 'Date' and 'Adj Close' columns\n", + "df.drop(['Date', 'Adj Close'], axis=1, inplace=True)" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "pqbTBdnBOKJc", + "outputId": "42ed663c-ae0f-43d7-a7bd-18bb37dfef6f" + }, + "outputs": [ + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "summary": "{\n \"name\": \"df\",\n \"rows\": 7074,\n \"fields\": [\n {\n \"column\": \"Open\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 154.7732294451065,\n \"min\": 13.478195,\n \"max\": 703.650024,\n \"num_unique_values\": 4758,\n \"samples\": [\n 174.399994,\n 31.0324,\n 187.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"High\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 156.34507839355788,\n \"min\": 13.935802,\n \"max\": 728.349976,\n \"num_unique_values\": 5403,\n \"samples\": [\n 473.0,\n 495.450012,\n 78.321663\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Low\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 152.98051601861624,\n \"min\": 13.214009,\n \"max\": 694.200012,\n \"num_unique_values\": 5488,\n \"samples\": [\n 60.2957,\n 22.677523,\n 16.983376\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 154.63054905628158,\n \"min\": 13.346102,\n \"max\": 725.25,\n \"num_unique_values\": 5975,\n \"samples\": [\n 633.599976,\n 241.100006,\n 107.834999\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Volume\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 34627439.399630256,\n \"min\": 0.0,\n \"max\": 446948261.0,\n \"num_unique_values\": 6948,\n \"samples\": [\n 29959130.0,\n 1648453.0,\n 14077470.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", + "type": "dataframe", + "variable_name": "df" + }, + "text/html": [ + "\n", + "
    \n", + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    OpenHighLowCloseVolume
    018.69114718.97892218.54018418.82324043733533.0
    118.89400518.96476717.73819218.22410656167280.0
    218.32789218.56848917.64383917.73819268296318.0
    317.50231217.83254217.22397217.67686386073880.0
    417.73819217.78536617.45985217.57779376613039.0
    \n", + "
    \n", + "
    \n", + "\n", + "
    \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
    \n", + "\n", + "\n", + "
    \n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
    \n", + "\n", + "
    \n", + "
    \n" + ], + "text/plain": [ + " Open High Low Close Volume\n", + "0 18.691147 18.978922 18.540184 18.823240 43733533.0\n", + "1 18.894005 18.964767 17.738192 18.224106 56167280.0\n", + "2 18.327892 18.568489 17.643839 17.738192 68296318.0\n", + "3 17.502312 17.832542 17.223972 17.676863 86073880.0\n", + "4 17.738192 17.785366 17.459852 17.577793 76613039.0" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], +======= + "execution_count": null, + "metadata": {}, + "outputs": [], +>>>>>>> upstream/main + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 9, +======= + "execution_count": 5, +>>>>>>> upstream/main + "metadata": { + "id": "dydEPoNeM6eN" + }, + "outputs": [], + "source": [ + "# Handle missing values\n", + "from sklearn.impute import SimpleImputer\n", + "imputer = SimpleImputer(strategy='mean')\n", + "df = pd.DataFrame(imputer.fit_transform(df), columns=df.columns)" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 10, +======= + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Checking for null values\n", + "df.isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Adding Indicators" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### SMA" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Its the avg of stock price over a specific time period\n", + "\n", + "SMA = (sum of closing price os past n days) / n\n", + "\n", + "It helps identify trends by filtering out shortterm fluctuations\n", + "\n", + "Price above SMA indicate Uptrend and price below SMA indicate lowertrend" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "df[\"SMA_10\"] = df[\"Close\"].rolling(window=10).mean()\n", + "df[\"SMA_50\"] = df[\"Close\"].rolling(window=50).mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "df.dropna(subset=['SMA_10', 'SMA_50'], inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    OpenHighLowCloseVolumeSMA_10SMA_50
    4922.64921822.73413522.27652722.63506539637704.023.10257920.537146
    5022.17273922.36144321.83779022.11612939109363.022.92944320.603004
    5122.09254122.18689221.88968322.08310527429706.022.75725020.680184
    5222.07366922.68695821.96044722.61147727421227.022.63506520.777649
    5322.69167522.88981422.46523122.58788936343129.022.62657320.875870
    \n", + "
    " + ], + "text/plain": [ + " Open High Low Close Volume SMA_10 \\\n", + "49 22.649218 22.734135 22.276527 22.635065 39637704.0 23.102579 \n", + "50 22.172739 22.361443 21.837790 22.116129 39109363.0 22.929443 \n", + "51 22.092541 22.186892 21.889683 22.083105 27429706.0 22.757250 \n", + "52 22.073669 22.686958 21.960447 22.611477 27421227.0 22.635065 \n", + "53 22.691675 22.889814 22.465231 22.587889 36343129.0 22.626573 \n", + "\n", + " SMA_50 \n", + "49 20.537146 \n", + "50 20.603004 \n", + "51 20.680184 \n", + "52 20.777649 \n", + "53 20.875870 " + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### RSI" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It is a momentum indicator used to measure the speed and change of price movements. It ranges from 0 to 100 and helps identify whether a stock is overbought or oversold. \n", + "\n", + "RSI > 70: Overbought \n", + "RSI < 30: Oversold" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "delta = df['Close'].diff(1)\n", + "\n", + "gain = delta.where(delta > 0, 0)\n", + "loss = -delta.where(delta < 0, 0)\n", + "\n", + "avg_gain = gain.rolling(window=14).mean()\n", + "avg_loss = loss.rolling(window=14).mean()\n", + "\n", + "rs = avg_gain / avg_loss # Relative Strength\n", + "df['RSI'] = 100 - (100 / (1 + rs))\n", + "\n", + "df.dropna(subset=['RSI'], inplace=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Representing RSI Graphically" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAMWCAYAAADs4eXxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUZcLG4SeBEGqCICSgNEVFsCBIyWJFBBELih0FFcGCvaN8YFtxdVdXFNuqYC/YZVVARFSKAgqLgAiIgkIoIonUtPn+eD05Z2bOTGYm0/O7ryvX6WfeSSaQ57wtw+PxeAQAAAAAAKIuM9EFAAAAAAAgXRG6AQAAAACIEUI3AAAAAAAxQugGAAAAACBGCN0AAAAAAMQIoRsAAAAAgBghdAMAAAAAECOEbgAAAAAAYoTQDQAAAABAjBC6AQCowT7//HNlZGTorbfeSsjrT5o0SRkZGfr5558T8voAAMQaoRsAgDhbsmSJzjrrLLVp00Z169bVPvvsoxNPPFGPPfaY13n333+/3nvvvcQUMgQ///yzMjIyKr9q1aql1q1b64wzztCiRYsSXTwAAJJChsfj8SS6EAAA1BRz5szR8ccfr9atW2vo0KHKz8/XunXrNG/ePK1evVqrVq2qPLdhw4Y666yzNGnSpJiV5/PPP9fxxx+vyZMn66yzzgrr2p9//lnt2rXT+eefr5NPPlnl5eVavny5nnzySe3Zs0fz5s1T586dg96jvLxcpaWlys7OVkZGRjXeCQAAyal2ogsAAEBN8ve//125ubmaP3++Gjdu7HVs06ZNiSlUNXXp0kUXXnhh5XavXr102mmn6cknn9TTTz/tes2OHTvUoEED1apVS7Vq1YpXUQEAiDualwMAEEerV69Wp06d/AK3JDVv3rxyPSMjQzt27NALL7xQ2Xz74osvrjz+3XffqX///srJyVHDhg11wgknaN68eX733LZtm2644Qa1bdtW2dnZ2nfffTVkyBBt2bIlYBn37NmjU045Rbm5uZozZ07Y77F3796SpDVr1kiy+23PmjVLV111lZo3b659993X65hvn+6PP/5Yxx57rBo1aqScnBx169ZNr776qtc5X3/9tU466STl5uaqfv36OvbYYzV79uywywsAQCxR0w0AQBy1adNGc+fO1ffff69DDjkk4HkvvfSSLrvsMnXv3l0jRoyQJO2///6SpKVLl+roo49WTk6Obr31VmVlZenpp5/Wcccdp1mzZqlHjx6SpO3bt+voo4/W8uXLdemll6pLly7asmWLPvjgA/3666/ae++9/V53165dOv3007VgwQJ9+umn6tatW9jvcfXq1ZKkpk2beu2/6qqr1KxZM40ZM0Y7duwIeP2kSZN06aWXqlOnTho1apQaN26s7777Tp988okuuOACSdJnn32m/v37q2vXrho7dqwyMzM1ceJE9e7dW19++aW6d+8edrkBAIgFQjcAAHF08803q3///urcubO6d++uo48+WieccIKOP/54ZWVlVZ534YUX6oorrtB+++3n1XRbkkaPHq3S0lJ99dVX2m+//SRJQ4YM0UEHHaRbb71Vs2bNkiQ99NBD+v777/XOO+/ojDPO8LrebUiX7du365RTTtHSpUv12WefVdkf27Jz505t2bJF5eXl+uGHH3TDDTdIks4++2yv85o0aaIZM2YEbU5eVFSka6+9Vt27d9fnn3+uunXrVh6zyuzxeHTFFVfo+OOP18cff1zZF/zyyy9Xp06dNHr0aE2bNi2ksgMAEGs0LwcAII5OPPFEzZ07V6eddpoWL16sBx98UP369dM+++yjDz74oMrry8vLNW3aNA0cOLAycEtSixYtdMEFF+irr75ScXGxJOntt9/W4Ycf7hW4Lb6DlhUVFalv37764Ycf9Pnnn4ccuCVp7NixatasmfLz83Xcccdp9erV+sc//qEzzzzT67zhw4dX2X97+vTp+vPPP3X77bd7BW5nmRctWqSVK1fqggsu0O+//64tW7Zoy5Yt2rFjh0444QR98cUXqqioCLn8AADEEjXdAADEWbdu3fTOO++opKREixcv1rvvvqtHHnlEZ511lhYtWqSOHTsGvHbz5s3auXOnDjroIL9jBx98sCoqKrRu3Tp16tRJq1ev1qBBg0Iq0/XXX6/du3fru+++U6dOncJ6PyNGjNDZZ5+tzMxMNW7cWJ06dVJ2drbfee3atavyXlbT9GBN71euXClJGjp0aMBzioqKtNdee1X5egAAxBqhGwCABKlTp466deumbt266cADD9Qll1yiyZMna+zYsXEvy+mnn67XX39dDzzwgF588UVlZobeGO6AAw5Qnz59qjyvXr161SliJasW+6GHHgpYI9+wYcOovBYAANVF6AYAIAkceeSRkqQNGzZU7nObt7pZs2aqX7++VqxY4Xfshx9+UGZmplq1aiXJDLz2/fffh/T6AwcOVN++fXXxxRerUaNGevLJJyN5G9VmDRb3/fffq3379kHPycnJCSnsAwCQSPTpBgAgjmbOnOk6iNlHH30kSV7Nxhs0aKBt27Z5nVerVi317dtX77//vtc0Wxs3btSrr76qo446Sjk5OZKkQYMGVTZf9+VWhiFDhmj8+PF66qmndNttt0Xy9qqtb9++atSokcaNG6fdu3d7HbPK3LVrV+2///765z//qe3bt/vdY/PmzXEpKwAAoaCmGwCAOLrmmmu0c+dOnXHGGerQoYNKSko0Z84cvfHGG2rbtq0uueSSynO7du2qTz/9VA8//LBatmypdu3aqUePHrrvvvs0ffp0HXXUUbrqqqtUu3ZtPf3009qzZ48efPDByutvueUWvfXWWzr77LN16aWXqmvXrtq6das++OADPfXUUzr88MP9ynf11VeruLhYd955p3Jzc3XHHXfE5ftiycnJ0SOPPKLLLrtM3bp10wUXXKC99tpLixcv1s6dO/XCCy8oMzNTzz77rPr3769OnTrpkksu0T777KPffvtNM2fOVE5Ojj788MO4lhsAgEAI3QAAxNE///lPTZ48WR999JGeeeYZlZSUqHXr1rrqqqs0evRoNW7cuPLchx9+WCNGjNDo0aO1a9cuDR06VD169FCnTp305ZdfatSoURo3bpwqKirUo0cPvfzyy5VzdEumX/OXX36psWPH6t1339ULL7yg5s2b64QTTtC+++4bsIx33HGHioqKKoP3yJEjY/kt8TNs2DA1b95cDzzwgO69915lZWWpQ4cOlVORSdJxxx2nuXPn6t5779Xjjz+u7du3Kz8/Xz169NDll18e1/ICABBMhsetfRkAAAAAAKg2+nQDAAAAABAjhG4AAAAAAGKE0A0AAAAAQIwQugEAAAAAiBFCNwAAAAAAMULoBgAAAAAgRpinW1JFRYXWr1+vRo0aKSMjI9HFAQAAAAAkOY/Hoz///FMtW7ZUZmbg+mxCt6T169erVatWiS4GAAAAACDFrFu3Tvvuu2/A44RuSY0aNZJkvlk5OTkJLg0AAAAAINkVFxerVatWlXkyEEK3VNmkPCcnh9ANAAAAAAhZVV2UGUgNAAAAAIAYIXQDAAAAABAjhG4AAAAAAGKEPt0hqqioUElJSaKLgTjIyspSrVq1El0MAAAAAGmA0B2CkpISrVmzRhUVFYkuCuKkcePGys/PZ952AAAAANVC6K6Cx+PRhg0bVKtWLbVq1SropOdIfR6PRzt37tSmTZskSS1atEhwiQAAAACkMkJ3FcrKyrRz5061bNlS9evXT3RxEAf16tWTJG3atEnNmzenqTkAAACAiFFtW4Xy8nJJUp06dRJcEsST9YCltLQ0wSUBAAAAkMoI3SGib2/Nws8bAAAAQDQQugEAAAAAiBFCdw2XkZGh9957L9HFCNtxxx2n66+/PtHFAAAAAICgCN1prLCwUNdcc432228/ZWdnq1WrVjr11FM1Y8aMRBet0l133aWMjAxlZGSodu3aatu2rW644QZt37496HXvvPOO7r333jiVEgAAAAAiw+jlaernn39Wr1691LhxYz300EM69NBDVVpaqqlTp2rkyJH64YcfEl3ESp06ddKnn36qsrIyzZ49W5deeql27typp59+2u/ckpIS1alTR02aNElASQEAAAAgPNR0p6mrrrpKGRkZ+uabbzRo0CAdeOCB6tSpk2688UbNmzcv4HVLlixR7969Va9ePTVt2lQjRozwqnX+/PPP1b17dzVo0ECNGzdWr1699Msvv1Qef//999WlSxfVrVtX++23n+6++26VlZUFLWvt2rWVn5+vfffdV+eee64GDx6sDz74QJKpCe/cubOeffZZtWvXTnXr1pXk37x8z549uu2229SqVStlZ2erffv2eu655yqPf//99+rfv78aNmyovLw8XXTRRdqyZUtY31MAAAAACBc13WHyeKSdOxPz2vXrS6EMqr1161Z98skn+vvf/64GDRr4HW/cuLHrdTt27FC/fv1UUFCg+fPna9OmTbrssst09dVXa9KkSSorK9PAgQM1fPhwvfbaayopKdE333xTOdL3l19+qSFDhmj8+PE6+uijtXr1ao0YMUKSNHbs2JDfZ7169VRSUlK5vWrVKr399tt65513As6ZPWTIEM2dO1fjx4/X4YcfrjVr1lSG6m3btql379667LLL9Mgjj2jXrl267bbbdM455+izzz4LuVwAAAAAEC5Cd5h27pQaNkzMa2/fLrlkaD+rVq2Sx+NRhw4dwrr/q6++qt27d+vFF1+sDOuPP/64Tj31VP3jH/9QVlaWioqKdMopp2j//feXJB188MGV19999926/fbbNXToUEnSfvvtp3vvvVe33npryKF74cKFevXVV9W7d+/KfSUlJXrxxRfVrFkz12t+/PFHvfnmm5o+fbr69OlT+dqWxx9/XEcccYTuv//+yn3PP/+8WrVqpR9//FEHHnhgSGUDAAAAgHARutOQx+OJ6Lrly5fr8MMP96od79WrlyoqKrRixQodc8wxuvjii9WvXz+deOKJ6tOnj8455xy1aNFCkrR48WLNnj1bf//73yuvLy8v1+7du7Vz507Vr1/f9XWXLFmihg0bqry8XCUlJRowYIAef/zxyuNt2rQJGLgladGiRapVq5aOPfZY1+OLFy/WzJkz1dDlacnq1asJ3QAAAABihtAdpvr1TY1zol47FAcccIAyMjJiMljaxIkTde211+qTTz7RG2+8odGjR2v69Onq2bOntm/frrvvvltnnnmm33VWX2w3Bx10kD744APVrl1bLVu2VJ06dbyOuzWRd6pXr17Q49u3b6+srfdlPTAAAAAAgFggdIcpIyO0Jt6J1KRJE/Xr108TJkzQtdde6xdat23b5tqv++CDD9akSZO0Y8eOymtmz56tzMxMHXTQQZXnHXHEETriiCM0atQoFRQU6NVXX1XPnj3VpUsXrVixQu3btw+rvHXq1An7GqdDDz1UFRUVmjVrVmXzcqcuXbro7bffVtu2bVW7Nh95AAAAIJlt3Wq69ebmSo0aJbo01cfo5WlqwoQJKi8vV/fu3fX2229r5cqVWr58ucaPH6+CggLXawYPHqy6detq6NCh+v777zVz5kxdc801uuiii5SXl6c1a9Zo1KhRmjt3rn755RdNmzZNK1eurOzXPWbMGL344ou6++67tXTpUi1fvlyvv/66Ro8eHdP32rZtWw0dOlSXXnqp3nvvPa1Zs0aff/653nzzTUnSyJEjtXXrVp1//vmaP3++Vq9eralTp+qSSy5ReXl5TMsGAAAAIDy33y61aiWNH5/okkQHoTtN7bfffvr22291/PHH66abbtIhhxyiE088UTNmzNCTTz7pek39+vU1depUbd26Vd26ddNZZ52lE044obJ/df369fXDDz9UTkE2YsQIjRw5UpdffrkkqV+/fpoyZYqmTZumbt26qWfPnnrkkUfUpk2bmL/fJ598UmeddZauuuoqdejQQcOHD9eOHTskSS1bttTs2bNVXl6uvn376tBDD9X111+vxo0bKzOTXwEAAAAgmVRUmGW6/Kme4Yl01K00UlxcrNzcXBUVFSknJ8fr2O7du7VmzRqvOaKR/vi5AwAAAIlx6aXSxInSuHGm1jtZBcuRTmny7AAAAAAAkA6sauF0qelOk7cBAAAAAEgH6da8PE3eBgAAAAAgHRC6AQAAAACIEUI3AAAAAAAxQuiuoRjkvWapsH7TAQAAAMRVuoXu2okuQLLLyspSRkaGNm/erGbNmikjIyPRRUIMeTwelZSUaPPmzcrMzFSdOnUSXSQAAACgRiF01zC1atXSvvvuq19//VU///xzoouDOKlfv75at26tzHT5TQcAAABSBKG7BmrYsKEOOOAAlZaWJrooiINatWqpdu3atGoAAAAAEoDQHUVt27bVL7/84rf/qquu0oQJE7R7927ddNNNev3117Vnzx7169dPTzzxhPLy8irPXbt2ra688krNnDlTDRs21NChQzVu3DjVrh3dt1arVi3VqlUrqvcEAAAAAHhLt9Cd0Lcxf/58bdiwofJr+vTpkqSzzz5bknTDDTfoww8/1OTJkzVr1iytX79eZ555ZuX15eXlGjBggEpKSjRnzhy98MILmjRpksaMGZOQ9wMAAAAAqB4rdKdLw9OEhu5mzZopPz+/8mvKlCnaf//9deyxx6qoqEjPPfecHn74YfXu3Vtdu3bVxIkTNWfOHM2bN0+SNG3aNC1btkwvv/yyOnfurP79++vee+/VhAkTVFJSksi3BgAAAACIgDVxFDXdUVZSUqKXX35Zl156qTIyMrRw4UKVlpaqT58+led06NBBrVu31ty5cyVJc+fO1aGHHurV3Lxfv34qLi7W0qVL4/4eAAAAAADVk27Ny5NmILX33ntP27Zt08UXXyxJKiwsVJ06ddS4cWOv8/Ly8lRYWFh5jjNwW8etY4Hs2bNHe/bsqdwuLi6OwjsAAAAAAFRXuoXupHkbzz33nPr376+WLVvG/LXGjRun3Nzcyq9WrVrF/DUBAAAAAFUjdMfAL7/8ok8//VSXXXZZ5b78/HyVlJRo27ZtXudu3LhR+fn5leds3LjR77h1LJBRo0apqKio8mvdunVReicAAAAAgOogdMfAxIkT1bx5cw0YMKByX9euXZWVlaUZM2ZU7luxYoXWrl2rgoICSVJBQYGWLFmiTZs2VZ4zffp05eTkqGPHjgFfLzs7Wzk5OV5fAAAAAIDES7fQnfA+3RUVFZo4caKGDh3qNbd2bm6uhg0bphtvvFFNmjRRTk6OrrnmGhUUFKhnz56SpL59+6pjx4666KKL9OCDD6qwsFCjR4/WyJEjlZ2dnai3BAAAAACIEKE7yj799FOtXbtWl156qd+xRx55RJmZmRo0aJD27Nmjfv366Yknnqg8XqtWLU2ZMkVXXnmlCgoK1KBBAw0dOlT33HNPPN8CAAAAACBK0i10Z3g81ixoNVdxcbFyc3NVVFREU3MAAAAASKCjjpJmz5beeUc644xElyawUHNkmjw7AAAAAACkg3Sr6U6TtwEAAAAASAdW6M7ISGw5ooXQDQAAAABIGtR0AwAAAAAQI9aoY4RuAAAAAACijJpuAAAAAABihNANAAAAAECMELoBAAAAAIgRQjcAAAAAADFC6AYAAAAAIEYI3QAAAAAAxAihGwAAAACAGCF0AwAAAAAQI1bozshIbDmihdANAAAAAEga1HQDAAAAABAjHo9ZEroBAAAAAIgyaroBAAAAAIgRQjcAAAAAADFC6AYAAAAAIEYI3QAAAAAAxAihGwAAAACAGCF0AwAAAAAQJZMmScOGSeXlZjvdQnftRBcAAAAAAFBzXXKJWfbtK517bvqF7jR5GwAAAACAVLZhg1kSugEAAAAAiLIbbjDLXbvMMiMjcWWJJkI3AAAAACApbNkilZWZdWq6AQAAAACohp07vbdfftler1MnvmWJFUI3AAAAACAhtmzx3t661V7Pzo5vWWKF0A0AAAAASAhr0DRLUZG9TugGAAAAAKAafEP3a6/Z6zQvBwAAAACgGnxD9+bN9npWVnzLEiuEbgAAAABAQviGbkufPkwZBgAAAABAtXg87vubNo1vOWKJ0A0AAAAASIhANd3p0p9bInQDAAAAABIkUOhOl/7cEqEbAAAAAJAg1HQDAAAAABAj1HQDAAAAABAj1HQDAAAAABAj1HQDAAAAABAj1HQDAAAAAGqEH36QzjxT+u67+L1mTajprp3oAgAAAAAAEu+kk6RffpE++kjavTs+r0lNNwAAAACgRvjlF7Pcsyd+r1lebpa1annvT6eabkI3AAAAACCqvvxSWras6vOsGvV99vHen0413TQvBwAAAABEzZo10jHHmHWPJ/i5u3aZZV6etHatvZ+abgAAAABA2ohmk/IHHgj9XKumu149adw4e//vv0evPIlG6AYAAACAGmrnTumll6TRo6N3z2eeCf1cq6a7Xj3p4ovt/V98Eb3yJBrNywEAAACghrruOunZZ/33b9ggtWhR/ft7PFJGRuDjX39tllu3SplpWiWcpm8LAAAAAFCV115z39+yZeDpvMJRWhr8+BNPmOX8+d4jmFfVFzyVELoBAAAAoIYKVru8cGH1719V6A5Uln79qv/ayYLQDQAAAAA1VLDQvX179e9fVhb8+N57m+Uzz3iX5bTTqv/ayYLQDQAAAAA1VLD+1qtWVf/+VdV0W8e7dfMO3enUvzuN3goAAAAAIBzBwu2IEdW/f7DQXVwsFRWZ9bZtvY8FexiQahIeun/77TddeOGFatq0qerVq6dDDz1UCxYsqDzu8Xg0ZswYtWjRQvXq1VOfPn20cuVKr3ts3bpVgwcPVk5Ojho3bqxhw4ZpezTaQgAAAABAGotFjbJzQDQrdJeW+g/M5mx63qiR9+Bp1HRHyR9//KFevXopKytLH3/8sZYtW6Z//etf2muvvSrPefDBBzV+/Hg99dRT+vrrr9WgQQP169dPu61Z1CUNHjxYS5cu1fTp0zVlyhR98cUXGhGNxzIAAAAAkMaqqlEOdwTz8nLzZSktlUpKpA4dTBh3zr/tPC8zU6pf395u3jy8101mGR5P4gZjv/322zV79mx9+eWXrsc9Ho9atmypm266STfffLMkqaioSHl5eZo0aZLOO+88LV++XB07dtT8+fN15JFHSpI++eQTnXzyyfr111/VsmXLKstRXFys3NxcFRUVKScnJ3pvEAAAAACSWH6+tHFj4OMvvihddFHo99u1yzs8//CDtGOH1LWrvW/7dqlBA/O6+fkm+Fvh/vffzXqzZuG9j0QINUcmtKb7gw8+0JFHHqmzzz5bzZs31xFHHKH//Oc/lcfXrFmjwsJC9enTp3Jfbm6uevTooblz50qS5s6dq8aNG1cGbknq06ePMjMz9bU107qPPXv2qLi42OsLAAAAAGqaqmq6hwwJ734ffOC9XVoqZWV579u1yyytmm5nU/KmTVMjcIcjoaH7p59+0pNPPqkDDjhAU6dO1ZVXXqlrr71WL7zwgiSpsLBQkpSXl+d1XV5eXuWxwsJCNfdpe1C7dm01adKk8hxf48aNU25ubuVXq1atov3WAAAAACDpRbvd8/PPe29bzcudrJBthW5nH/B0lNDQXVFRoS5duuj+++/XEUccoREjRmj48OF66qmnYvq6o0aNUlFRUeXXunXrYvp6AAAAAJCMqprSK1y+83KXlkpbt3rvs5qSW0tCdwy1aNFCHTt29Np38MEHa+3atZKk/Px8SdJGn04GGzdurDyWn5+vTZs2eR0vKyvT1q1bK8/xlZ2drZycHK8vAAAAAKhpnCF5yZLwry8vN03KrUbGzsHRJBO6feJa5TluzcvTUULfXq9evbRixQqvfT/++KPatGkjSWrXrp3y8/M1Y8aMyuPFxcX6+uuvVVBQIEkqKCjQtm3btHDhwspzPvvsM1VUVKhHjx5xeBcAAAAAkJqcobtTJ/dzgjVBf/FF6fTTpcMOM9uzZnkfLy01A6k5LV9uljQvj4MbbrhB8+bN0/33369Vq1bp1Vdf1TPPPKORI0dKkjIyMnT99dfrvvvu0wcffKAlS5ZoyJAhatmypQYOHCjJ1IyfdNJJGj58uL755hvNnj1bV199tc4777yQRi4HAAAAgJrK2bw80KBqvrXXTp98YpabN/uHa8mE+s2bvfddcolZ1pTm5bUT+eLdunXTu+++q1GjRumee+5Ru3bt9O9//1uDBw+uPOfWW2/Vjh07NGLECG3btk1HHXWUPvnkE9WtW7fynFdeeUVXX321TjjhBGVmZmrQoEEaP358It4SAAAAAKSMTp2kRYuCn1NeLtUOkByzs+31X37xP15aKo0e7b3v55/t+0rp37w8oaFbkk455RSdcsopAY9nZGTonnvu0T333BPwnCZNmujVV1+NRfEAAAAAIG01aGCWf00g5cqqkXbjrAWfNs3/eLCB2mheDgAAAABIa1af7saNA58TrHm589gNNwS+vxsrzKd7TXeavz0AAAAAQCBWTXRWlvf+du3s9UA13T/+KL3xRvD7Bwvd1HQDAAAAANKaFYp9+2w7g3Cgmu5bbqn6/qWlUpcu/vtnzZK6d/d/rXRE6AYAAACAGipQTbczhLvVdBcVmfm5q1JWJpWUmPVjjrH3Dx9ecwZSS/O3BwAAAAAIJFDorqqme8GCwPds2NAO2GVl0p49Zt2apGrvvaWVK91fKx0lfPRyAAAAAED8/f67tGqVWfdtXp6Zaebt9njca7p/+y3wfc88U/rzT7PuDN0NG5rl7t3e56d76KamGwAAAABqoCuvtNd9a7ozMuxm32413UOHBr5v3bp2iC8ttUO3NT3Z9u3e56d783JqugEAAACgBvr6a3vdt6Y7I8PUQJeXB58yzI0zdF9zjb3fCt2+qOkGAAAAAKSNXbvMcu1ae5/Vt9virOkONGVYIM7Q7ZSb634+oRsAAAAAkBbmzZPq15fuuMN7/44d3tt16thhONya7uxs9z7f++zjfn66Ny9P87cHAAAAALAUFJjluHHe+605s595xoTj556zQ3dVNd0NG0o5OfZ23brSzJn+52VnS3/7m/9+aroBAAAAAGmtbl2zHD5c+vVX6ZBDgg+k5rRqlVRc7H0vj8f/vKws937dhG4AAAAAQNo58kizbNTI/XgoNd377Sfl5XnvswK8rwYN3EP3+vXBy5nqCN0AAAAAUAO1aGGWjzzifjxYTfd++5nlk0/6H6tbV6pXz39/rVqmP7mvX3+tuqypjNANAAAAADWQNX92nTrux5013eXlphm51Wz8p5/MsqjI/7rsbOmzz9zvGWjasHRG6AYAAACAGqikxCwDhW5nTfeIEdIBB0gTJ3r311650iyHDLH31asn9ezpfk9CNwAAAACgRvj8c7PMznY/7qzpfv55s37PPXYNuSRdeqn3UpLatQv8mm6h+6STQipuyiJ0AwAAAEANFkpNtyU7W9q5097ee2+zdPbVDnQ/63pfF1wQWjlTFaEbAAAAAGqwqvp0O0N3Xp5d052ZKdWu7X+PrCz/e733XuBjboOrpZPaiS4AAAAAACBxQhlIzVJRIZWWmnVngHZbX7VK2rrVTE2WkeF/nuXwwyMrd6ogdAMAAABADeA29Zdkh2tfbs3LQwndVojff3/z5WRdK5l+4g0bSu3bV132VEboBgAAAIAaoLjYfb9VC+3Lraa7vNwe9dwZtJ1hunHjwGV4/HF7/cwzpdzcwOemC/p0AwAAAEANUFjovj8nx33/smVm2bu3va+szL2me5997PVgfbR/+81ed2tqno4I3QAAAABQA2zd6r6/Q4fQ7xGoeXlurpmze926wDXnknTWWfY6oRsAAAAAkDacTcAtrVvbI5CHorzcPXRLpm/2vvsGv/7ii+31cF43lRG6AQAAAKAGKCvz3xdu8A3UvDxUmY4EGqxGPJ0QugEAAACgBnCr6Q40cnkgFRX2PN2BphqDtxpSoQ8AAAAANZtbTXe4obu83Iw6LklLl4Zfhl69TG33wQeHf22qInQDAAAAQA0QjZru8nLpzz8jL0NOjrm+JtWSE7oBAAAAIE2VlUnnny91724GTfOVGWaH4/Ly6pcp2JRi6Yg+3QAAAACQ5P73PzPw2H33hXfd559Lb70l3Xpr9Gq6ER5CNwAAAAAkucMPN8v/+7/wrvN47PW33vI/Xp3Q3aRJeNfWVIRuAAAAAEhiv/4anfu8/77/vkhC94EHmvXnnqt+mWoCQjcAAAAAJLGff4782oqKqBVDkgndVj/wxo2je+90RegGAAAAgCRWnZG+S0qCH//998DHunf337dzpz1Pd926kZerJiF0AwAAAEASy8qK/Nply4IfX7068DG3eb1r15bWrDHr2dmRl6smIXQDAAAAQBKYNUtavNh/f22fiZ6dg6NV5fbbIy+P20jl27fb69R0h4Z5ugEAAAAgwX79VTruOLNeUWGmB7NYzbktZWXVq/0OlVtNt1NNm287UtR0AwAAAECCrVplr0+d6n3s0Ue9t6sKw9FS1euEO/J5TUXoBgAAAIAEcwbcH3/0PjZ9uvd2OM3L3QZDC5VV8x5Iy5aR37smIXQDAAAAQII5Q/euXd7HfGuU//wz9PsefHDkZbrnHumOOwIfzyRNhoRvEwAAAAAkWGmpvb57t/cx39D9yCOR3TdczZtLf/975NfDIHQDAAAAQII5B0tr08b72LBh3tubNoV+3+qEbkQHoRsAAAAAEmzrVnu9Th3vY82aeW/71oQHU1IS/PgZZ4R+L6enn47supqI0A0AAAAACXb55fa67/zYFRXe287Q/d130oYNge/7ww/++yZNstdfeSXkInpp0iSy62oi5ukGAAAAgCTiG7p9a6ut0L1okdSli1kvLZVqu6S7FSv89110kdSokdStm1SvXmRlrFs3sutqImq6AQAAACCJ+Ibum27y3p42zSyPOsre9/jjod8/M1M680ypVavIyidJ2dmRX1vTELoBAAAAIIk4Q/fOnYGP79hh7/vkE//znNOQVceSJWb6sGeesfdR0x06mpcDAAAAQBJx9tl+8033czwe7223ObOLi/337btv+OU55BDzNXmyvY/QHTpqugEAAAAgidxyi70+frz7Obt2eW+79d3ets0s69e39519duTlco6qTvPy0BG6AQAAACCBgg2c9t137tf4Nh3fssX/nKIis8zNld56Sxo4UBozJuJier1GVlbk96lpaF4OAAAAAAnkW2vdvXvV15SWem+7NSW39uXkSIMGma/q2LPHXvdt3o7AElrTfddddykjI8Prq0OHDpXHd+/erZEjR6pp06Zq2LChBg0apI0bN3rdY+3atRowYIDq16+v5s2b65ZbblFZtEYMAAAAAIAY8x0szTmq+PHHu1/jG7rdWDXmsWgKfvDB0b9nukp4TXenTp306aefVm7Xdkwud8MNN+i///2vJk+erNzcXF199dU688wzNXv2bElSeXm5BgwYoPz8fM2ZM0cbNmzQkCFDlJWVpfvvvz/u7wUAAAAAwuUbuqdMsdebNHG/JpTQbZ0Trabg++9vr2dkROeeNUHCQ3ft2rWVn5/vt7+oqEjPPfecXn31VfXu3VuSNHHiRB188MGaN2+eevbsqWnTpmnZsmX69NNPlZeXp86dO+vee+/Vbbfdprvuukt1nD39AQAAACAJrV3rvb1njxnBvG5d7ybdTt9847/P4/EOw9EO3X37So8+KnXuHJ371RQJH0ht5cqVatmypfbbbz8NHjxYa//6xC1cuFClpaXq06dP5bkdOnRQ69atNXfuXEnS3LlzdeihhyovL6/ynH79+qm4uFhLly6N7xsBAAAAgAj8/rv/PiswOwdVczrrrMDX+G7XjlJVa0aGdO210jHHROd+NUVCa7p79OihSZMm6aCDDtKGDRt099136+ijj9b333+vwsJC1alTR40bN/a6Ji8vT4WFhZKkwsJCr8BtHbeOBbJnzx7tcTwyKnYbdQAAAAAA4sAtWFsDlQWq6XZTWuo9rVe0a7oRmYSG7v79+1euH3bYYerRo4fatGmjN998U/Xq1YvZ644bN0533313zO4PAAAAAKH65BP/fdY0YoFqut0EqukmdCdWwpuXOzVu3FgHHnigVq1apfz8fJWUlGibNaP7XzZu3FjZBzw/P99vNHNr262fuGXUqFEqKiqq/Fq3bl103wgAAAAAhGjSJP99VugOp6bbN6ATupNDUoXu7du3a/Xq1WrRooW6du2qrKwszZgxo/L4ihUrtHbtWhUUFEiSCgoKtGTJEm3atKnynOnTpysnJ0cdO3YM+DrZ2dnKycnx+gIAAACAZHHppdK771LTnQ4S2rz85ptv1qmnnqo2bdpo/fr1Gjt2rGrVqqXzzz9fubm5GjZsmG688UY1adJEOTk5uuaaa1RQUKCePXtKkvr27auOHTvqoosu0oMPPqjCwkKNHj1aI0eOVHYsJqMDAAAAgDj48EPz5QzM7dtLq1YFvsY3dJeVmSWhO7ESGrp//fVXnX/++fr999/VrFkzHXXUUZo3b56aNWsmSXrkkUeUmZmpQYMGac+ePerXr5+eeOKJyutr1aqlKVOm6Morr1RBQYEaNGigoUOH6p577knUWwIAAACAqLGCdJcu0rPPmqVTZqZUUeF9ru+1hO7ESmjofv3114Mer1u3riZMmKAJEyYEPKdNmzb66KOPol00AAAAAEgab7wh7bWX//7HH5f+7//MtGOxnjIMkUmqPt0AAAAAAH/t25tabV9lZXZNtjN0l5VJt91m1qnpTixCNwAAAAAkAbdQLUktWgQ+XlLiHrq//tpez8iITvkQGUI3AAAAACTQvvua5VtvuR+3QrVb6D77bKlOHbPuHOl81y57/YMPql9GRI7QDQAAAAAJtGWLWe69t3Toof7HrT7ZvqH7nnuk1q2l1avNtmO25cp5viVp27aoFRURIHQDAAAAQIJUVEi7d5v1nTul00/3PydQTbdVQ24ZM8Zed9Z0H3hg9cuJyBG6AQAAACBBfEccdxtpPFDoDjYquTN0ezyRlQ3RQegGAAAAgARxNgPv1St46PYdEC1Y6LZqzyUpLy/y8qH6CN0AAAAAkCBlZfZ6VpZ7kA7Up9vaX1BglgcdZB9z1nQPH179ciJyhG4AAAAASBBn6K5dO7zm5db+gQPNcsUK+5gVunv2lM49NypFRYQI3QAAAACQIM7QnZnpPi1YVc3LrdHLJalNG2nhQmn7drN9yCHM051ohG4AAAAASBArdNeqZcJxRYX/OVa4DhS6L7/c3rd2rXTeedJdd5ntd96JanERAUI3AAAAACSIFbqtAO0Wuq2abl/WNQ0beu9ftcpe37q1euVD9RG6AQAAACBBwg3dAwb4769VK/D9H3igeuVD9RG6AQAAACBBrCnDrODsnELM4gzdBxxgr1tBPVjoPvjg6pUP1UfoBgAAAIAECaWm2zmiuTOAhxK669evXvlQfYRuAAAAAEiA8nJp8WKzbvW99nj8z3MG7Tp1/PcTupObyyxwAAAAAIBY2r1b6tRJ+umnqs8NFLqp6U4N1HQDAAAAQJzNmOEeuN1GKnfuo3l56iF0AwAAAECScNZkW774wv14KKG7bt3olAuRI3QDAAAAQJxlZLjvHzZMatvWe9+KFfa6W613sNAd7Bjig9ANAAAAAHHw7bfSWWdJK1cGPic31zQ7dzYLr06f7pYtIysroofQDQAAAABx0LWr9Pbb0qmn+td0t2hhr2dkSHvvbW83b26vh9Onu1+/wDXqiB9CNwAAAADE0YoV/mH4ppu8t+vVs9fLy+1155zdVYXuhg0jLyOih9ANAAAAAAlWVua9XVFhr5eW2uvOgF1Vn+4GDaJTNlQPoRsAAAAAEmyffby3naG7Rw973VlDbtV0ZwZIdbt2RadsqB5CNwAAAAAk2Pnne287Q/fEifa6W+gOZPLk6pcL1UfoBgAAAIA48+3T7dtE3Bm6nQOpOa9zDqqG5EXoBgAAAIAk4wzdTs6m5IGalVsGDoxacVANhG4AAAAAiDPniORu7rzTLM87z3u/s6bbbTqwpk3t9UsuiaxsiC5CNwAAAADEWVWhe8QIafly6aWXvPcHmne7Wzczzdinn9r7Ao1qjviqous9AAAAAKC6PB7v7apCd0aG1KGD//5ATcrnzZNKSqQtW6o+F/HFjwEAAAAAouzTT6UzzpA2bDDbv/7qfbyq0B1I/fru+zMzpbp1pWbN7H0bN0b2GoguaroBAAAAIMpOPNEss7Ol11/3bxZeVmav9+8f+n379pVOOUXq3Nn9eHa2vb5nT+j3RewQugEAAAAgRtatM0vfpt7Omu4zzwz9frVqSR9+GNq5zmCPxKF5OQAAAADEiG9fboszdA8bFpvXLi2NzX0RHmq6AQAAACBG9uyR3n1XmjHDe78Vuvv3DzwieXUdeWRs7ovwELoBAAAAIEa+/da9+fi4cWbZoEH0X3PlSunHH6Wjjor+vRE+QjcAAAAAxNmPP5rlYYdF/97t25svJAf6dAMAAABAgjRsmOgSINYI3QAAAACQIJdckugSINYI3QAAAAAQRaFO1XXuuVLjxjEtCpIAoRsAAAAAoui550I7r3792JYDyYHQDQAAAABR9N13oZ2XnR3bciA5ELoBAAAAIIratg3tPEJ3zUDoBgAAAIAoOuCAwMfOOsteJ3TXDIRuAAAAAIgit4HUmjSRNmyQ+va19xG6awZCNwAAAACE6c8/pTVr3I+5he7//lfKz5d27bL3bdkSm7IhuRC6AQAAACBM7dpJ++0nrVjhf8wtdPfsaZYVFfa+7dtjUzYkF0I3AAAAAITp99/Ncto0/2MlJYGvKy+31zMyolsmJCdCNwAAAABEqHZt/33Llpll48Zm2aePfcxZ042aweUjAgAAAAAIRa1a/vs2bTLLO+6QBgyQ2re3jzlD95FHxrZsSA6EbgAAAACIkMfjv8/q052dLXXs6H2stNRev/LK2JULyYPm5QAAAAAQhj/+sNevuML/uNVv263p+Z9/2utux5F+kiZ0P/DAA8rIyND1119fuW/37t0aOXKkmjZtqoYNG2rQoEHauHGj13Vr167VgAEDVL9+fTVv3ly33HKLytyGCwQAAACAKHj+ee9t31HIrTji1vT8wgvN0hrNHOkvKUL3/Pnz9fTTT+uwww7z2n/DDTfoww8/1OTJkzVr1iytX79eZ555ZuXx8vJyDRgwQCUlJZozZ45eeOEFTZo0SWPGjIn3WwAAAABQQ/jW8f3rX97bwWq6Dz1UWr9e+uKL2JQNySfhoXv79u0aPHiw/vOf/2ivvfaq3F9UVKTnnntODz/8sHr37q2uXbtq4sSJmjNnjubNmydJmjZtmpYtW6aXX35ZnTt3Vv/+/XXvvfdqwoQJKgk2Tj8AAAAARCjTJ0VZ04dZgtV0S1KLFlJWVvTLheSU8NA9cuRIDRgwQH2c4+hLWrhwoUpLS732d+jQQa1bt9bcuXMlSXPnztWhhx6qvLy8ynP69eun4uJiLV26NOBr7tmzR8XFxV5fAAAAABAKnwa6foLVdKPmSejH4PXXX9e3336r+fPn+x0rLCxUnTp11Nia3O4veXl5KiwsrDzHGbit49axQMaNG6e77767mqUHAAAAUBO5jVjuZIXuQDXdqFkSVtO9bt06XXfddXrllVdUt27duL72qFGjVFRUVPm1bt26uL4+AAAAgNT15pvBj1vNy6nphpTA0L1w4UJt2rRJXbp0Ue3atVW7dm3NmjVL48ePV+3atZWXl6eSkhJt27bN67qNGzcqPz9fkpSfn+83mrm1bZ3jJjs7Wzk5OV5fAAAAABCKiRODH6emG04JC90nnHCClixZokWLFlV+HXnkkRo8eHDlelZWlmbMmFF5zYoVK7R27VoVFBRIkgoKCrRkyRJt2rSp8pzp06crJydHHX1noQcAAACAGPAdIoqabjgl7GPQqFEjHXLIIV77GjRooKZNm1buHzZsmG688UY1adJEOTk5uuaaa1RQUKCef01q17dvX3Xs2FEXXXSRHnzwQRUWFmr06NEaOXKksrOz4/6eAAAAANQ8++/vvU1NN5yS+tnLI488oszMTA0aNEh79uxRv3799MQTT1Qer1WrlqZMmaIrr7xSBQUFatCggYYOHap77rkngaUGAAAAUJPk5npvU9MNpwyPp6qx9wIrKSnRmjVrtP/++6t2Cn+iiouLlZubq6KiIvp3AwAAAAgqI8N7+5BDpCVL7O3DDjPb06dLPjMjI42EmiMj6tO9c+dODRs2TPXr11enTp20du1aSdI111yjBx54ILISAwAAAEAK8J186fvvvbep6YZTRKF71KhRWrx4sT7//HOv6b769OmjN954I2qFAwAAAIBkE2SiJEn06Ya3iJ69vPfee3rjjTfUs2dPZTjaVnTq1EmrV6+OWuEAAAAAINlUVAQ/Tk03nCKq6d68ebOaN2/ut3/Hjh1eIRwAAAAA0o1b6C4sNMudO6WffjLrDRrEr0xIXhGF7iOPPFL//e9/K7etoP3ss89WzqENAAAAAOnICt033WTvW7fOLB0xSQccEL8yIXlF1ODh/vvvV//+/bVs2TKVlZXp0Ucf1bJlyzRnzhzNmjUr2mUEAAAAgKRh9dk++WTpX/8y61ZTcmd/73r14lsuJKeIarqPOuooLVq0SGVlZTr00EM1bdo0NW/eXHPnzlXXrl2jXUYAAAAASBpWTbezx21JifexDh3iWyYkr4i79u+///76z3/+E82yAAAAAEDSs4J1ZqZ08MHS8uXSrl3+xwApwprujz76SFOnTvXbP3XqVH388cfVLhQAAAAAJCsrWNeqZc/ZvXu3/zFAijB033777Sq3OjI4eDwe3X777dUuFAAAAICawWqWnUqsKJSZaffb3rzZLKnphq+IPgorV65Ux44d/fZ36NBBq1atqnahAAAAAKS/e+4xoXX+/ESXJDzOYP2//5n1IUP8jwFShKE7NzdXP1mTzzmsWrVKDZiMDgAAAEAVXnlFGjvWhNTrr090acLjDNbbt9v7p08ndMNfRB+F008/Xddff71Wr15duW/VqlW66aabdNppp0WtcAAAAADS04UX2usZGYkrRyQC9dvu29e76TkgRRi6H3zwQTVo0EAdOnRQu3bt1K5dOx188MFq2rSp/vnPf0a7jAAAAADSWKoF1GDBesoUs0y1JvOInYimDMvNzdWcOXM0ffp0LV68WPXq1dNhhx2mY445JtrlAwAAAJDmUrWm2y10P/10fMuC5BfxPN0ZGRnq27ev+vbtG83yAAAAAKhhUjV016plarS7dUtseZDcQg7d48eP14gRI1S3bl2NHz8+6LnXXntttQsGAAAAIL0UFpqBx/LyvPeXliamPJHweMyXZGq6mzRJbHmQ/DI8HusjE1y7du20YMECNW3aVO3atQt8w4wM15HNk1lxcbFyc3NVVFSknJycRBcHAAAASEtWjfbVV0uPP27vP+QQacmSxJQpXOXlUu2/qi63bJF27pRat3Y/N7SkhVQVao4MuaZ7zZo1rusAAAAAEI6ZM723UymcWk3LJVPTXadO4sqC1BD2OIGlpaXaf//9tXz58liUBwAAAEAacgZr36m2CgriW5bqcIbuWrWkrCz38x56KD7lQfILO3RnZWVp9+7dsSgLAAAAgDRVVmavr1vnfSyV+nSHWtN91FHxKQ+SX0Qz4o0cOVL/+Mc/VOb8zQEAAACAAJzB+o8/vI+VlMS3LNVhzdEtmdAdqKa7adP4lAfJL6Ipw+bPn68ZM2Zo2rRpOvTQQ9WgQQOv4++8805UCgcAAAAgPQSrzU6l0O3bvDw72/289u3jUx4kv4hCd+PGjTVo0KBolwUAAABAmgoWuvfsiV85qsu3pluShg2TnnvO+7xUm3scsRNW6K6oqNBDDz2kH3/8USUlJerdu7fuuusu1atXL1blAwAAAJAG3HqmnnGG9O67Vdd0ezzSf/8rdeokBZm9OC58a7olqXHjhBQFKSKsPt1///vfdccdd6hhw4baZ599NH78eI0cOTJWZQMAAACQJtxquvfayyyrqumeOlU69VRpv/2iX65wOWu6rdrsO+/0PmfIkPiVB8kvrND94osv6oknntDUqVP13nvv6cMPP9Qrr7yiCufjHgAAAADw4Ra6rRriqmq6v/gi6sWJmBV9MjPt0L3XXlKTJvY5w4fHv1xIXmGF7rVr1+rkk0+u3O7Tp48yMjK0fv36qBcMAAAAQPooLPTfF2rozoxozqXYsGq6fcvk3A40jRhqprA+vmVlZapbt67XvqysLJWm0sR6AAAgKf3zn9Lrrye6FABiZeBA/31W8/KFC6Vffw18bTKGbqs/t5tA04ihZgprIDWPx6OLL75Y2Y5x8Xfv3q0rrrjCa9owpgwDAADh+Pln6ZZbzPoZZwSeggdA6tq82X+fcwCyhx82X26coXv3bsmnHjCunM3LnbZssdcJ3XAKK3QPHTrUb9+FF14YtcIAAICayTmqcVGR1Lx54soCIH723tted9Th+XEG3PHjpRtvlGpHNPlx9YVS003zcjiF9VGdOHFirMoBAABqMOdowPRaA2oO5wO21q0Dn+cM3f/+tzR2rHT//dINN8SsaAFZNd00L0eokqh3BAAAqKmcodttLl8A/jwe00968OBElyRynTvb68GCqrNWe8MG08T8xhtjVqygAg2k5kTohhOhGwAAJBw13TVPSYkJjYjc2rXS++9Lr76aGoMQHnSQ9/Ztt5ngesopZtv574Cv556LXbnCFUpNN+NSwInQDQAAEo6a7ppl40apaVNpyJBElyS1bd1qr59/fuLKEapjjjHLQw+VZs2SHnjAbFvhNVjoXrUqtmULx65dZhksWDdrFp+yIDUQugEAQMJR012z/Oc/0vbt0ssvJ7okqe244xJdgvBYNcTnnWcHcEn64w+zXLcu8LWnnea+f8eO6JQtHFZ5renOgKoQugEAQEJ9/LH03nv2NjXd6W/37kSXID0UFwc+lozfY6s7gW9f6C++MMv77gt87QcfuO8fPbr65QrXnj1mWa9e/F8bqYnQDQAAEqakRDr5ZO8/tqnpTn9WaEFsvPWWCYQTJiS6JNKbb0qffmrWA81vXRVnM3pfM2bY6/EaI8B6HxkZ8Xk9pD5CNwAASJhvv/XfR013+rP6xCJyy5d7bztrXc8+2yyvvjp+5XGzerV07rnSiSea7ViE7qIi6csvTQDOzJR27oysrOGI9H2g5uKjAgAAEqagwH8fNd3pb8qURJcg9a1d671dUpKYcgTj7KPt8UQeVoO9tx07vPuHT50a3r0jEaiZ/IwZ0ogR8Qn+SC2EbgAAkBCBwjU13envl18SXYLU5vFIAwZ47ysvDz76dyI4y1NeHjh033GHWZ5xhvt9grWM+P137+26dcMrYyQCvY/evaWnn6avN/wRugEAQEJs3+6+n5rumsUKMAjd6tXuATvZfnecD9BKSgL3hW7RwiyzstzvE84YAIkM3UAgfFQAAEBCBArd1HSnn7vvlh5/3N5u395eT7agmArq1HHfn2xNzJ2/y9u2BQ6rtWubZaDPQjifkXgM0kfoRrhqJ7oAAACgZvrzT/f9yTjVESK3fr10111m/aCDpF69pFWr7ONlZVJ2dkKKlrIChe7cXGnYsPiWJRhn6H7//cB9oa0a7kAP3P73v8heM1YI3QgXHxUAAJAQv/7qvj9QDThSk7P5eN++0kcfeR+npju6nnsuOvfZsqX693A+QNtvP7tJfDg13b/9Jl17beivGY9+7YRuhIuPCgAASAjnyMZOvlMhIbX5hiDfWm1Cd/hiPR/1889LzZpJ99xTvfs4m3oXFZmRxiWpQQPv84LVdC9bFt5rxjN0M083QkXoBgAAcffLL9Jll7kfe/DB+JYFseUbgoYM8d4mdCcf63dz7Njq3cf5sz33XHs6r0aNvM8LVtNdv777vZcscd9PTTeSER8VAAAQd0cdlegSIF58Q9C2bd7bhO7APB73EBnrmu5o3T/Ugd18a7qXLjVzb3/+uV077uuAA9z3x2M0/EB904FA+KgAAIC4C9SfG+mnqppHQndgAwaY5vi+wTOcUBwotMZDoNDtO26Db033wIHSl19Kxx8v/fCD+z2ys/2bqUvUdCM58VEBAABJZ8aMRJcA0ULojtzHH5vv3957R36P6obu+fMjvzbQz/bYY723fWu6CwvtY851STrrLOmRR8z6d9/535vQjWTERwUAACSdPn38myEjNS1eHPw4odsMOLZ5c+DjvtPo+dZ0v/pq4Frl6s7d3b174NrmqgR67datvbd9a7qdYda3ufjkydL115v1du387x2P5uWEboSLjwoAAEioxYul/ff3379xY/zLgugbPDj48SeeqNnBu7RUqltXat7cu9tFsCbkvsfOOsuuLfZV3dAt+U/zFqpI+3QHC91OVlh3inVN9+efSyNGmHVCN0KV0I/Kk08+qcMOO0w5OTnKyclRQUGBPv7448rju3fv1siRI9W0aVM1bNhQgwYN0kaf/4HXrl2rAQMGqH79+mrevLluueUWlbnNNwAAAJLSYYdJq1b57y8qin9ZEH9PP12zR6yfPdte//RTez3UGtvcXDu0ujVDj0bozs8PfnzJEumaa6Q1ayJ77XBquqsS69B9/PH2OqEboUroR2XffffVAw88oIULF2rBggXq3bu3Tj/9dC1dulSSdMMNN+jDDz/U5MmTNWvWLK1fv15nnnlm5fXl5eUaMGCASkpKNGfOHL3wwguaNGmSxowZk6i3BAAAQtCkiVkG+2M+GmEBqeG99xJdgsRxNh131mAHC4/O8/7v/+z1k0/2Pzcav0e+zdt9HX+89Pjj0o03eu+fPj20+/vWdDvnv3aG7rvuqvpe8ejTbSF0I1QJ/aiceuqpOvnkk3XAAQfowAMP1N///nc1bNhQ8+bNU1FRkZ577jk9/PDD6t27t7p27aqJEydqzpw5mjdvniRp2rRpWrZsmV5++WV17txZ/fv317333qsJEyaohP+pAQBIWj16mOW4cYHPqclNjtNJbm7V5yxYYM/hXNM4P+fOP1+DNdx0hm5n0G3Y0P/caPxJXNXv4u+/m+V773mH3gULzPLII4NfH0pN98iRoc0bHo8+3RbnwwEgmKR5PlNeXq7XX39dO3bsUEFBgRYuXKjS0lL16dOn8pwOHTqodevWmjt3riRp7ty5OvTQQ5WXl1d5Tr9+/VRcXFxZWw4AAJKP9Yd5rVr2vosu8j6H0J0ejj46tPPcamlrgj177PU2bez1UHpL1qvnHfysAcacRo+OuGiVAv0ulpVJ//qX974//jBL5/vKyZGaNg18f+vfgd9+Mw8U3EJ348ahlZWabiSjhH9UlixZooYNGyo7O1tXXHGF3n33XXXs2FGFhYWqU6eOGvv8huXl5anwr7kDCgsLvQK3ddw6FsiePXtUXFzs9QUAAOLHLXTfe6/3OYTu9FBV02RLPGsok8nZZ9vrzu+Bb3h01m4HGmTtgAP890WjBUGg38Xnn5duvtl7386dZmnVfktmPu1gAdU5b3dxsff7C3ekcEI3klHCPyoHHXSQFi1apK+//lpXXnmlhg4dqmXLlsX0NceNG6fc3NzKr1atWsX09QAAgDe30O3bDJnQnR7cQveRR0onnhj/siSL3bul11+Xpkzx3u/8zPt+35zHrFDq1rz5H/+oXtms0BzotZ2WLPHfZ80L7gzdFRVmhPZAune3131DsxW6nf9WBEPoRjJK+EelTp06at++vbp27apx48bp8MMP16OPPqr8/HyVlJRom88knRs3blT+X6Ou5Ofn+41mbm3nBxmZZdSoUSoqKqr8WrduXXTfFAAACMr6I945zZFv81FCd3rwDY8HHCB9803ozYXT0dix0vnnS6ee6r3f+Zn37Sm5a5e9Hix0Bwu3objtNv99Tz3lfq7bNGVWrbWzIWlpqRmlvl496cUX/a9xTv1VVhZeTbfVLcEK7vFsMUHoRqiS7qNSUVGhPXv2qGvXrsrKytKMGTMqj61YsUJr165VQUGBJKmgoEBLlizRpk2bKs+ZPn26cnJy1LFjx4CvkZ2dXTlNmfUFAADixxrcqU6dwOcQutODNZiW5eCDTVisVy8x5UkGr7zivr+0VHruOfP14Yfex5x9pIP529+qV7Znn/Xf55yK7L77pIICU6PtFrqtPt3O0F1WJvXvL/35p//YDZL3wwPfgd+smutAAffDD6Vt26ROnbzPjwdCN0LlMqV8/IwaNUr9+/dX69at9eeff+rVV1/V559/rqlTpyo3N1fDhg3TjTfeqCZNmignJ0fXXHONCgoK1LNnT0lS37591bFjR1100UV68MEHVVhYqNGjR2vkyJHKzs5O5FsDAABBWAEi2H/XoYTu+fOlSy+VHnpIOumk6JQN0fPLL/b6mDHS6tXSP/9ptgOF7l9/NSGsRQvp/fdNDeY++8S+rPH022/u+zdtch8MTQq9efmRR0qffy4dd1xkZXPrDuB8HWuKsv/8xz109+sn/e9/0pw59r7Wrc0ylCbizz3nvV1VTXdmpumaYt07nqGb0csRqoSG7k2bNmnIkCHasGGDcnNzddhhh2nq1Kk68a9OPo888ogyMzM1aNAg7dmzR/369dMTTzxReX2tWrU0ZcoUXXnllSooKFCDBg00dOhQ3XPPPYl6SwAAIATRquk+5xzp559NLVqgwaWQOH/+aa937Srdfbe97dYMevduqWNHc92TT0pXXmmaoVu1p+luxYrAx0IN3ZJ07LGRl+Gii6SXXvLe53x4Ypk927RacPN//2cemFgeeij013/nHWnzZns71IHUEhG6a+rgfwhfQkP3c76PsnzUrVtXEyZM0IQJEwKe06ZNG3300UfRLhoAAIihaNV0+wz9giTjDEDNm3sfq1/f//w1a+ygfscdZun2M/Z4zEBdzmbP6eDJJwMfc/t9CFbTeued0t//Hn4Z2rY1yxYtpIEDTZk2bpS+/lrq0cM+7623pKOOcr+HxyN17iwtWmRaNITzc/rf/7y3Qx1IbcsWs/z229BfKxK1a9vTuUVjDnTUDPREAAAAcWf9sVrd0E2fyuTmDN1/9Q6stO++/uf//LO9Hqx2OzNTatYsOtNhpQq3mu5grrkmtPM9HtNNw3rYYfXFPucc6fLL7fMee8z/2q++MsvcXO+HKh98YJq5Syb8V0dVfbotb79tls4a9lhwzp/OuBMIFf9VAQCAuHrvPbtPKwOppTcrMFl9ep3cgqA1EnWoUrUff8uWoZ135plSXp5ZD6d5ueT9u+UMir7eftv0mz/6aLP96KNm+dRT7q0R3Dz9tPdc25I9IJvPRENhc5vpIFFmzvTepqYboSJ0AwCAuHn1VemMM+ztSGu6ly83QW7r1uiVDdHnNh+7Zf786L5GKnEbrMzN9u12eA63eblzGq5g36OXXzbLxYu99+fkeIdujydwyGzeXOrWzf1Ydfs9J1PofvNN720eDCJUhG4AABAXHo80eLD3vmBhINgftFddJa1bF51yIXasGla30N20aXRe45lnonOfeNq5M7Tzpk0zU3NJ7vN0B+M793Ugvg+++vQxy7vukho0sPeXl5vR1d3Uqyc9+KD3Pqsf98CBVZc1mFBD97/+Vb3XCYXvAwRCN0JF6AYAAHHh9od/ixaBz//uO+mEE7ynHrLQrDM1BKvpDoczZPoGzhkzqnfvaFm71nu09kDKy0Ov6e7SxW7N4Rz5PZTm5c7vebDQ7dvFwwq39et713RnZgaeK7x+ff8m89bAZqHOx96mjfv+Tz/1LlcgffuapfNBQbT5/tzWr4/dayG9ELoBAEBcuP3hn5PjvX3jjfb6u+9Kn30m9erlfx3z46aGYKE7nGbHzimrfK9Lhubla9ea0Gj1vw7Gt++zJN10kzRypPTDD97hc/Roe93t4UI0mpf7hm7nz8x5rH37wA8L6tcP3HIh1Adk//2v+37rNb/5Jvj11mcsWJeV6vJ9gLB8eexeC+mF0A0AAOIilHD00EPSgAHux779VsrPlz76iFHLU8WGDWbpFrqDDaLnyzkSt2+T3mQI3V9+aZbOJuCBWM2369QxIfv996V//EN6/HHpoIOk/fe3z/UNubNnm2UozcudvyPBgq/z5+Dx+D8oue46s/z888BNuOvVC1yj7TtqfSCBarotVk12INb7jeXc2c7R9SXprLNi91pIL/yXBQAA4iJYE1eLNRWUm65dzUjIAwYQulPFhReapVvt7i23SB06hHafKVPsdd/PUTKEbudDBd95osvKTI10RoZpKr5ggdlfUmJC9mmneV/vXPcdnd0K7KE0L3d6443Ax5w1w7t3+4du6/iXX0oTJ7rfw2qGvmWLd4gPFsYD3SMQtxYvTlZ5Y/V52LXLf4q6ZBjcDamB/7IAAEBchBK6pdAGJwqlpg/R9d13Zrq3UDl/jmvW+B/fe+/Imuf6fj5iWbMZKmdT7uef9z7mbBZ95ZVV38sZpOvVk44/3t7evdv7sx9q6L7hhsDHnGX/88/AodtXo0b2uhWYmzaVDjzQ3p+bG1r5pKofpFV13CpvrD4P//tfbO6LmoHQDQAA4sI3dDv/OA92nhu3AYwI4rHVpYuZ7u3000MbfTuUptahOvFEs/zpJ//gnww13U6+4dDZtPurr6q+ftEie71OHemCC7yPP/FEZJ/1QE3MnQ8xduwILXR36SI98IB3OS3Omu1wQndVqhqMz/q+x+LzsH27dNll/vv794/+ayE9EboBAEBcWGG6Th1p1SppyRL386oa2fmAA+yRkd3uj9j64ANp3Liqz7OmuoqG0lIzXdX++0uXXup9LBlCtzO4+jY5dn4fQhnt2jktV2amdMgh3sevvjr85uWS9Mcf7q/14Yf29m23hRa6s7OlU0+1t31r5y3RDN2JrOn+v/+Tvv/e3v7lF9PlwXcKRCAQQjcAAIgL55zN++8feCAt3xrSI47w3l650n3qIkJ3/Hz9ddXzpIc6F3Uoysq8R/J2Sobm5c7psnxDarg1/v36eW/37Cm99JL7ueGEbrffmYMO8m76P3lyaKG7Th2pVSsTRNeu9T7m7JudLjXd//63vb7vvlLr1mZsCWZRQKgI3QAAIC6sP4adfUjd+IaU776Tzj3X/ZwuXex9ofQFR3RMn26CR7Dmtc7Qbc21HKnSUv+Roy2JqOn2eAL3rfZt+h1obutA3nhDmjTJe87vCy/0HnRu9erw7im5Ny/fts1/n1Uzb8137fZwzPod7tTJhG8nZ013oNYsofCt2U50n27Lr7/G9v5IT4RuAAAQF1ZNdFWhe++9/fe9+ab7ubfdZq9//XVk5ULkPvkk8DErdLdtK51wQvVeZ+1aE/TdxDt0ezzS0UdLxxxjB2xn0PMtT1XdJXzl5kpDh0oNG3rvt6Ylk6RRo8wynJrWrVu9twP1Cy8uNsucHLOsW9f/nGC/w877hjpHtxvfZvqh1nT7PhABkgGhGwAAxEWooXv8eDM10rXXVn1P5wjKVc3ji/iy+hBHY1ola75vN/FuXr5pk5kv+6uv7LEFnEH7oYdMGLYGRPMdzdzSvn14r+t8GLXPPmZZVej+4AN73RnaJfdA3LatHbqt3y23n1+w32FnS5XWrYOXz9d995ll587e85VLodd0S9H/TIQ67RkQCKEbAADExWOPmeXmzcHP23dfU6vpO2qzG9+5fZNhUC0Y111nlitXxvZ14j1nu7MbgxVc3UKeNRbBnDn+x448Upo5M/zX7tnTLPPzQzv/1FOlJk3cr3EL3U2b2s3arZput2AfrNbZWbN/662hldNy553me/ntt/7N2sOZUiza/w44f75VzScOuCF0AwCAuHj66fDODzQ/sFNenve2c4RhxN/MmdKNN5p+zD/+GPl9jj029HOrajkRbc6+6tu3m2nM7rwztGuPOMI0154xwzxcCtfhh5ul1e86lOblVp/yDz+U/vtfM1DbunXufc0XLrTXrdDdrp3/ecG+587Qfd55VZfPV0aG+Qq3hUSsaro9Hu/vVSj/LgG+CN0AACAphfLHrW9wCXfQKlSPb//73r2lRx4xwfKYY8y+Aw4I/77hBK6q+vpGmzN0b9pk5pufPz+0a7/5xjRJtwJtuKxaVqsMoYRuK6C/8YZ0yinStGnSDTdU/bti9eW2atedQg3d1RndO9DsBoHEqqbbd1YEQjciQegGAABJqXHjqs+xRli2bN8ek6IggC1bpKeecj/WvLlZXn99+Pc96KDQz4136HbOu33MMeEFvNq1/T+z4bD6FoczHdt++5lljx72vo0bvZuXT57sf50zMI8f730sWFPvcAeOC2T2bHvdbXBFX87PQTRDt28zfEI3IkHoBgAASalp06rP8a1Jo093/F15pfv+t94yS7fRr6vyf/8nDR5sjwOQLBYu9J9HO5iffrLXb7ih+q9v1XRb/a5DqUm+9FKzPPhge19+vl3TvddeUteuwe/h21zb+eDB1yWXmOVRR1VdtlDdeGPV5zgfBESzeblvi4Bwa+ABidANAADiwPlH8LffhnZNJH/c+jYFRXT4TjcVjrVrw78mL096+WXTXN3JbUR752fr8celf/wj/NcLVa9ewQOnL+cDiauuqv7rW4OhWSOjhxK6rab6kybZ+/bZx67BrVPHf3Ru39YDBQXe28GmArvpJmnqVNN/PFqcZQ8kXjXdhG5EgtANAABiztnkNJI+vm6soLBmjb2P0B0bvqNQn3GG9/b330uLF7tfe+654b2Wsxm077Raw4fbg4lZrNBdViZdc410++3Szz+H95qhCnfMgGnT7HVrFPHqCKX1h6958/z3lZba7yU7279svn3qu3eXPv/c3g42hVvt2mb6vkj7rbsJZYT6WNV0+4bu6nQPQM1F6AYAADHnnLs3WnPeWjWobdtKf/ubWU/l5uU33WSmSfN4El0Sf74jkb/zjvf27bfb83L7atUqtNeoW1eaONG7htS3VjE31z+AWX1/nQ92XnkltNeMp9zc6t/D9/sRSk23WwDds8eePzw729zX2RTerZ+8c0T5qqb9i7YXX6z6HGvUcym6/w74PmixpoIDwkHoBgAAMWcN/FSnTnQGvvJ4vAdXsu7pW9P966/S779X//VirbRUevhh6bXXpA8+SL7g7fyZ3Xyz//FFi6Tjj3e/NtR5jRs2lC6+2L82d8AAe71pU/9pqKx5s53haPTo0F4zXC1aRH5tLAZ8c84ZHohb7fiff9oD4FnzqDunBqtqGrZoDZYWqm7dQjvPeiATrZruXbu8BwIcPjy23ReQvgjdAAAg5qxRxUMNYBa3Jqpuoc8KCc4ars8+M7Wse+9tpnZKZs4HAwMHSq++mrCiuHIGRrdA+9tvga8NpWmwFPhBw8CB9nr9+mZAsvffN9NfOfkGwR9+kO6/P7oBsVmzqs/Zd18zjVgsbNnivV1YWPU1bt9/Z622kzUyt7OJvxtny5VYCWX2Al/W5zRaNd0PPCB99JFZ32cf6ZlnotNiATUPoRsAAMScNSDWtm3hXWfN9ez00EP++9xqup19iWfODO914803BN1zT2LKEYp4DyTlOwZAVpZ02mneAfiPP/ybAR98sHTnndItt0SvLFWNxH788dK6df7zx4fbrz0Q5wjkoXJrgr5ggb3urNVesEAaOVJ64YXg94xHTXckoTvaNd1Ll9rr4cwdD/gidAMAgEovvCDNmRP9+4ZSI+dm0iQzYvOwYaaG6aab3M+zgoMVul97zbtWMNnn1r3oIu/tX35JTDkCcT7MiGQKsOo49ljpueekuXO99ztr3ydNChwEX389emWp6qGRVcP62WexKUO3btKUKeFdU1W/b2dAPeQQMwK8NUp6IJEE4nCNGWOW55wT+jXRrul2itXgfKgZquixAQAAaoovvzR9aqXo9ikePz7ya5s2tUdKfuqpwH1NfZuXX3CB9/Hq1FJ9843pyxvqgGCR8K3pDneU7Fhzhu5QBu+KNmuu6UBmz/bu4+/kO9J6dTgHlDvnHOnNN01AtR4qudWwRvtzM2CAGTww1BDYvHnw4+HUCn/+uZkze8KE0K+J1MUXm2bu4cx2EO2a7mQbWwGpi5puAAAgKfT5s8N13XXRuU+wwZ0CDaRmCWXAKTdLl5o//Fu3juz6UJ18svd2ss0F3Llz7F8j3DDvLNPbb0tDhrifF4vgdOCBZh7xN96QvvvO3u/2OYv0sxdMqP3kJTPd21FHRed1jz1WWrhQ6tkzOvcLJiND6tgxvAdmsazpBqqD0A0AACT5z0ebSnybl/uKdOAn3ybNseJbM7fffoHPnT/fjKAczbmIq2LVlp59dvDzfAPSkiWxKY8kXX55aOdFc+5263M2Y4Z5r+ec490Ue8cOs7zmGntfpF0rggknVDZqJE2dGv0yJCPr+xKtnzk13YgWQjcAAJAUu2bDhxxir7dsGZvX8G1e3qmT9/FIQ3csaind+PYVDhbUunc382JHs69yVazva1VNlX2/X3l5sSmPZH7mVTU7l6L34MTjscOc78OFCy80y1GjzNI52N8HH0Tn9Z2sweEGDQrt/GQf0yBa/vzTLKM1EOHy5fZ6PJrUI30RugEAgCTvJqvRqOEpK5OWLfPed8UV1b+vG9/m5b5zc1vzhIcrXqH766/NcvJks9y2reqa7FgMeBeI9X11Dl7Wt69ZOgPdk096X1evXuivEclnLpSmx40ahX9fN87aZd+uDpMmSatX22MJZGeb89etk049NTqv73TVVaaZ9yuvhHZ+LOYIT2Zvvhmd+xQV2etVTaMGBEPoBgAAkrxruq+7Tlq0qHr3u/ZaU+P8/fdme8wYuyYw2nxruv/4w/t4Mtd0/+tfduBs0cLeX9VgavFsXm59X53h7d13pS++8P6cnHii93WxHuk8lL7vVu1ndTmbLPuG/Vq1/LsEZGb6Tx0WLRkZUpcu0anBTsTAeKni9NPt9WBjSgBVIXQDAABJ3n98P/aYdMQR4c+r7eRb6zl4cOz+cHXWdO/ebQdWa7qhaITuP/6ITdC9+WZ73TkPs3OOYIuzNtg5gFesWaHb+fOrX186+mjv6aPq1/e+LpyfdyThL5TQ7dvqIVLOz0K6zNl85plmdH64c3aHOeywxJUDqY/QDQAAJLmHnr32imzKL7da8tzc8O8TKivclZZ6Nwm1BrlasCCy+zqDVpMmVQ8kFsyPP5q+vsEGrNtrL3vdrc+2s7Z11arIyxIut+blFmfozsmx+8E2axbzYoUUfrdujc7DEudnOpVDt7Psb78tHXlk4sqS7NasMcuRI2kRgOohdAMAUA0lJdLHH0feZziZBAom4Uz5VVxsBgE74gj/Y7EM3Q0amOWYMdKjj5r1Ro3smtfffovsvr7Ny995J7L7SGa+6FtvNf1xLb7fc+cf9oce6n3stde8a3bbto28LOFya15uqVvX1JbOm2d+Dh06mAcf69bFvly+Nd39+vmfU1Hh/SAmUuedZ6+nch/p445LdAlSx8SJZhmPzzLSG6EbAIAIbN8u/e9/ZuCkk082YeOttxJdquoJ1n/Z46m6trCkxARrZ79kp1j2783JsdfHjTPLFi2kbt2qd99o9um2BpWbOdPe9/LL9nqHDmZ5xhlm6fsgxxqky+KcqirW3JqXO3Xr5j3QVE5O+P2NIxlI7ccfvbc/+sg0uz/sMGnKFPthzK+/hn9vy6xZ5mHI+vX2vlSs9dywwbT4sMZVsL43qJrvgJBAuAjdAABEoFEj6fDDTfNMy9lnS089Zf64TUXBAmZBgdS1a/D5bwOF7XhwG7AqN9du+lzVoGSBuH1PJk2S2reP/A9xZxgdOtRe/+ors7TKPH9+8PvEcyC1YM3LE8m3CX5mptS5s7R4sTRggD1v9mGHRf79ctZwp7L8fPM7fPzx5rO2enWiS5Q6GEQN1UXoBgAgTMHC6ZVXSgceGL+yRFOwvsZff236tAbrR7x1a9SLFDK3+aCzsuyA65xvNxxuP+tLLjGBZciQyO65fLn7fZs2NUurxYTVtDWcssWK1Z852EOX6oqk9njMGHvd2R/eTZcu4d9fCj5neqrq1Su2c6inA2fLi1Tuw4/kQOgGACBM27dX73iyCiXEJWvtmO+o2ZLp72v1+a2oMM2NwxXse1Kdgcyc/bp9WSOuS2Yu5sWL3cNuLAOwL2uE6+Li+L1mKE44wV6vqrn94sWRNWHv2DH8a5D6nL/7++yTuHIgPRC6AQAIUyjz/kbyx32ihRK6f/7Zff+rrwa/LtbT7QQK3YccYm+femr49w32PanO4FzPPhv4M+IcuO7II01zabf5zeNZ023p3Tv+rxmMc5yAxx+v+vxIuhk0ahT+NUgtc+eahzJOzs/KhRfGtzxIP4RuAADCFEpNdqR9iBMplBBn9ZH1dcUV7vtnzJAGDZLeey/iYoWkXj3/fXXquO8PR7iDgc2a5T6gnttAXs4HEf/4h73uFvL++U//ffGs6W7e3CzbtYvfa4bC+fPxHe1dkt5/33s73FkGPB7TtcJp4cLw7oHktnmz9Le/mYdbTs7uNunSrx+Jw7AAAACE4emnpdmzqz5v167YjtYdC8H6dFsChe5du9z39+4dn9rRQDXd1RXq4FuXXGKmzPrhB7M9dqx011328RUr/K/5/nt7/dpr7fWGDUN7zXjWdO/ebZbhPoSIJ7cHLKedZoK29fkI9DkNxHegtpdeirxvOJKT84FYRYUZjE+yH5zWqpV8Awgi9VDTDQBAiHbuNDW6L70U2rmpZOZM6cknvfc984x0zDHe+wK9L6smNFHcQrc1zVV1WGGzKpMm2YFbku6+2/v46NGBr61b1/sBTaihO5413db3IZkfJAVq1VCvnj2lXLi/l84R5G+6SRo8OLKyIXk5u3k4/82wHkJG4+EdQOgGACBEoQYwKfwatUQ76ST/fU2amKmxnAKFln79zDJRg065zTn8yy9m+eKLZhlJLa0zSPtq1swsA30unH/Mz5sX+D6+o25XFWytBxzxqumuqLADSLKF7k6dzNR9J54YvDbSCuTh/l46W39cc01qzs+N4JytWZwPsqxBA5O5dQdSB6EbAIAQhfMHe6rVdLs1La9b179/8RNPBL9+2DB73x13RKdsoXCr6baah/bta5YlJeHVfpeVmQGWAtmyxdxzyRL3486ppg46yCzd+h27TXW1bp37PXNy7D7j8arpdn42ki10164tffutNHVq8POsz0c4v5dlZdKECfY24Ss9OR+OrV1rr1vNzqsaFR8IBaEbAIAQhRO6U6mmO1Cw3LbNfX7r//3Pf5/1fp1NfKs7iFk4srPNwGSNG9v7rJqqJk3M0uMJb8Txzz8PftzjMcF77Fj347//bq9bLQacfbctbqF7333d79mokd3n9Mcfg5cvWpw1+ckWuiXz/aiqBtpqleA2oF0gubne24Sv9OQM3c88Y69b/6btvXd8y4P0ROgGACBE6VrTHWg05q1bpU8/9d+/YYP39oIF0hdfmHVnKDviiOiULxQZGWYuaWfZrJ9BVpbd9Dicn+HDD1d9zrffSgUF7sf++MNe/+9/zdIZxC1uoTuQhg2lTZvs7Xg83LFCd0aGqVlORS1amOXWraFf4/wdrqomHanL2frF+VAuFcYxQOogdAMAEKKrrw793NWrY1eOaAtUI73//u614M6gV1oqdetmanwl8wfqjBnSI49IJ58c/bIGk51tXr9TJ7N9zjn2MesP53CmcjvxxKrPOf10aeVK92PO0G2ZPNl/X7ihe8AAe3vbttCvjZT1PatbN3X7NFuD04Uy3Z+bQA9WkPqc/545f58I3YgmQjcAACGyanOd6tVzD63Dh8e+PNESaHTek06Sunc389gWFdnNLP/80z7HN1jWq2emCLv++sQFtKlTpcce857b2uqPG07oDmW6sIqKwKPZu4XuQw7x32c1fw9Fo0bm52Vd4/Ya0fbNN2aZyuEj3NDtO8ZBKr93BBfoM0HoRjQRugEAiNDWrdKaNfZ0RKnK6vvsy+o7vPfe5j3+7W9m2xoVXPLv350Mf6Dus49pleCceiuS0B3OaPVu3ALxDTf47wun77v1nqza8VjXdO/cabcYSNVabin80H3zzd7bqdqsvqZ5/3173dlXO5gdO+x15+wLhG5EE6EbAIAI7bWXlJcX+h93ycotiFx3nf++jz4yS+cI5kOGeJ8Tz8HTwmGF7nCCtFXD27VreK9lTenlDN1W6HObg9v5EKMq1vXWgHGxrun+7Td7PZUGB/Rlfd+crTSCeewxe33FitR+4FCTWAPmSYFnAPDlDN1ffWWvE7oRTYRuAABqON9B315+Wfr3v/3P693bLOvXN4MPnXee/6BqyfoHqlXOZctCv+aDD8zSbaC5K690v+ajj+xp0x58UPr6a7NuNVfOyvK/xrdW1dK5s/8+6/trlemUU8zPK1as6dak1A7d1jzukQxw2LZtVIuCGHIOihZs3nYn50PHmTPtdUI3oimhoXvcuHHq1q2bGjVqpObNm2vgwIFasWKF1zm7d+/WyJEj1bRpUzVs2FCDBg3Sxo0bvc5Zu3atBgwYoPr166t58+a65ZZbVBavySsBADVeoJruVKkB9w0i/fq5n9etm1muXm0GS3vjDf9zkvUPVKtZuXMe8WCc03Gdeab/cbcpvR59VOrf3+5vvXu3dOyxZr201CyzsqQpU7yvO+AA9zLMnCktXuy9z22e8Ysucr8+Gn7+OXb3jqdw5um2flYWtwclSE7O349QuwQ4a7otu3dLVtxI1n/TkFoSGrpnzZqlkSNHat68eZo+fbpKS0vVt29f7XB8+m+44QZ9+OGHmjx5smbNmqX169frTMf/fuXl5RowYIBKSko0Z84cvfDCC5o0aZLGjBmTiLcEAEhjbk2DpcDhOpSBuJKB9d/u6NGm+W2geWmXLrXX4zFqdqyEUmNr1VBL3oOfvfOOediw//7+11ifA+do5Hv2mCBgHcvK8h59XDKDo7lp3NjMPX7uufa+QM3jfQf+ioWjjor9a8RKOKH7lVe8t2lanjrCrXNbtcr8u+erXj3pP/8x64RuRENCQ/cnn3yiiy++WJ06ddLhhx+uSZMmae3atVr4V5upoqIiPffcc3r44YfVu3dvde3aVRMnTtScOXM0b948SdK0adO0bNkyvfzyy+rcubP69++ve++9VxMmTFBJPP4HAgDUGM4ar0A1pnPm2Oup0ujKCiKNGgV+sCB5//EZqB9yfn70yhVNmY6/ePbfv+q+3c6ftbPG7KSTzMBibv1F27c3S6sps8VZc+o7Unwo06q9+KL/vf7+d+9znn666vuEa/Zse71VK7u5fSqyQrc1tZ2bX381TY2DnYPk1rOnvR7KQ0/fMSkk71YuEqEb0ZFUfbqL/pqRvslf7bIWLlyo0tJS9enTp/KcDh06qHXr1pr718Shc+fO1aGHHqq8vLzKc/r166fi4mItdT6Sd9izZ4+Ki4u9vgAACKa83B606tNPpWeesY+NGGGWvXtLhx9u70+10F3VIGjWYGSS9x+mAwaY7fnzzcByyejhh+31DRvMe/V4THh++WX/JsXOP9idgd2q9XSbm9sK0L5/pDvvHUlTZWdQt8riOwr6tddGvzuDs7b/kUfCm0882VitG6zB8Xx98415sNCoUep0C4E/5wOvYKHb+rf5hx/8j73zjvc2oRvRkDShu6KiQtdff7169eqlQ/5qx1VYWKg6deqosTVE51/y8vJUWFhYeU6ez//w1rZ1jq9x48YpNze38qtVq1ZRfjcAgHTz7LP2ert23kHsrrukTz6R3nvPu1Y0VUK31bw8WC238zzJ/n40bSpNmmT6JR95ZEyKFxVufzi//bZ00EGmT/STT3ofc/7s3EK3b/PyDh3sY5k+f11VN3Q7Wfd2e0AS6sjcoXKG/WQdlT5Ua9cGPlZSIvXoYW87W0FcfnnsyoTYsD63gR6eLF1qHiB16OA++v+oUd7bhG5EQ9KE7pEjR+r777/X66+/HvPXGjVqlIqKiiq/1oU6pwAAoMaypsuS/EfFzcoyg481apSaodsavde3WbSvq67y3zd6dOA+4MnE7Q/nL76wa0CdoxZL3g8YnAOdWaF3+HDv84N975yhO9QRlX2ddZZZ3nSTvc+31jbUOahD5VbDnqqc3UGcP4/XX/duwSF5b7dpE9tyIfqsh1/OObudbr7Z/K74jN0cEKEb0ZAU/4ReffXVmjJlimbOnKl9HcOB5ufnq6SkRNt8RmvZuHGj8v/qNJafn+83mrm1nR+gY1l2drZycnK8vgAACMb5h3qwAJKZaf/Rlyqh2wqYVYXu44/33xdoELBk4/aHs7NBXMOGpi+vVTtmfU8OPlhq0cI+z/rZ+n6vnNu+A29ZNadZWf7HQm3K/MYb0qZN3n1Wu3Xzfl++TeSry/kAKdVDd9Om9rpzMLXzz/c/1/lnoXMQPaQGa6aCq692P+42A0AwhG5EQ0L/CfV4PLr66qv17rvv6rPPPlO7du28jnft2lVZWVmaMWNG5b4VK1Zo7dq1KigokCQVFBRoyZIl2rRpU+U506dPV05Ojjp27BifNwIASHvO57tV9W21wkqqhe6qmpdL/jV/qRy6J0+21999V2rWTLr7brNtfU+OOcb7Gis0+zYTb93a/xyLda/qNC3PzDTl8+WsjY526P72W3u9V6/o3jvenLXXVigLxDmQ2imnxKY8iI/Vq/33hdtnn9CNaEho6B45cqRefvllvfrqq2rUqJEKCwtVWFioXX+19crNzdWwYcN04403aubMmVq4cKEuueQSFRQUqOdfj3r79u2rjh076qKLLtLixYs1depUjR49WiNHjlS2b3shAAAidNhh9npV4TTVQneozcsl/1HLUyV0VzVnrxWMfUN3gwbef6RbNb6+wdrZfPlvf/M+tnWrWcZivmfnnzpVjcgergkTzLJevdA+G8ksI8P+/lc1uc3vv5vluecyXViqa9/eu2b7hRfMQJhuAnWTIXQjGhIaup988kkVFRXpuOOOU4sWLSq/3njjjcpzHnnkEZ1yyikaNGiQjjnmGOXn5+sdx7CCtWrV0pQpU1SrVi0VFBTowgsv1JAhQ3TPPfck4i0BANKU1fvpgguqPjeZQvf335uBwlatCnxOqM3LJf+QnSqzc4ZbCxzoexIohB17rL3epIkdtCXp6KPNMtah+9BDQ5uHOhTO/uGhzGueCqzvVVWfWaumm7qb9PDvf9vrF1/sfk6vXtJzz7kfI3QjGqp47htbnhDad9StW1cTJkzQBOtxq4s2bdroI+cINwAARJn1h3oo81Bbo0i/8oo0ZkzsyhSKE04wfYEXLpSWLfM/XlJij+AbSvPy5s29R8k+8cTolDPWwn04EM6DCMk/jLt1QQhl3uBwdehg5pe2fPmlGdQvmF27zJRjZ5wR+Ny/ZnFNK1ZTfKt5eaAZY19+2ft8pLabbzaDQAYbgf+FFwI/mKS1A6IhxYfFAAAgPqya0nBqK8eOjU1ZwmENebJ8ufvxOXPs9VCmhXIOqDV3rlS/fuRli6dwR6EON3SHwln7HS2+U50Fau5fWmpq4y+9VPrnP6Wnn5ZOOinwfZ39nj//vNrFTApWiLYewPhO++aLmu70sX178PC8//6Bf97OQfiASBG6AQAIgfWHejrUfnk8JnjNmuXddDKUPy6df7g6R9JOdj16SA8+GPr5mzebZbNm4Q+8ZIlHI7z27aWWLe3t8ePdz1u+3EyRNnGi9N13Vd/XaqZeq5Z30/lUZoUqa6oo54BpbtLhdx3Gxx9XfY7vuA/vvSe9+KJ0+OExKRJqGEI3AABBlJebsGL1ckqHP8Tfflu65RbpuOPscNWpU2jNKFO5qWWgKYTcWNOJ5eVF/nr9+1d9TqSB3snZbcAxLI4X52BSzu4BgVj9uPfZJ/JyJRur9cK554bW6oCa7vQRbCDFWbPM0veh4+mnm/EwgGggdAMAEMR553nX9EUyGNaePdL06ckzINUPP9jr1e27nErCCVFWs/zmzaP3+rm50btXuPd1DiQXaPRmJ+thTChdDlKFs2bbbSopX+nwgA1GoH+33nnHnhawQwd7P7MOI9oI3QCQJHbutGvXwvXzz7EZpAnSW295b4fyh/j//Z9Zdu1qlrfdJvXt6z2tVLxlZUnffGNq7J0PDrZtM8tU6ZtdHZkh/tXjHFyuSZPA51k/52BOO81ed/5RHw/btklvvmn+bQk0kFygmnZrkLF0/VyE0sKAmu704Tad3ogRpjbb4gzmzv1ANBC6ASBJ7LOP1KKF90jEoZg4UWrXzgyQhNgLpabbmtPbCiyPPmqWr70WmzKFolYt06/56qulDz+09w8ZYpah1nQ7+w+nouXLTdN6S+PG/uf06uV9PNCUQXffbWqNN24M/HqOWU5dm2oHC/WRsh7AnXWWaUp93XXeA6M5BWp9YT0sCKX/d7RUpyl/uJxToknSkUf6n0NNd2oaMMB/n1vofuqpwA/iQn1AB4SKjxQAJAmrxtHqXxaqu+4yyxdeiGZpEEgof4hbwTzcuaGj7euv7XXnH5HO5uWWUEP3s8+a5vZTplSvbInSoYOZKsvi1jR7wQJ7vW5dE8guuEC6807v8zIyzJRswZqg16pl+tAff7z3IGdvvin17i3961+RvQ9fU6fa67/8YpYzZpjls88GrukOpX93rH36qflM+bYqiSXnlGi33SbNn+//maamOzV98IH/PrfQHayrDKEb0ZbQeboBAEg1qRS6naOLW310JffazUC1ub7atUv9KaScYapZMzukBpKRYeZcj9SZZ5ovp7PPNl/R0revqUn/7Tfp99/Nz8kpUOjOz5deekm68MLolSVcJ5xgvmItM9NuBeAM3VY3Ad8aUkJ3anILzL7/5gWbLk8yD8uAaOI5DgAAYQilebl1jlvtSjJwa2qc6AcE8eQMU77NjFPZ3nub5e+/+x8LFLol6corY1OeZGa1LJK8R7a+7TZ7nebl6WPpUu/t//43+PkFBbErC2omQjcAAGEI5Q9x64/4pUulU0/1PpYMA945p4+ypOuAWW6cP8N0GqXYmvLIbf7p558PfF2LFrEpT7Jx/u45a7qdD9KcY2NQ0526hgwxA1nutZfZfvVV7+OBmo+vWGHGYejbN7blQ81D6AYAIIB58/z3hVPTLfn3E03WmtVzz010CRIjHs2a48UK3aNH+x/75JPA10VjrvBU8J//2OvWWBiZmd4BzDm2ATXdqeuFF8zYDNYsBKE68EDvMR+AaCF0AwAQwKJF/vtC+UM82OBUoUwzFW833CCdeGKiSxE/zlGyr7giceWINmtk+Z9/lr76Kvi5Z51lr1tzklucn99EjrgfbZddJrVu7b2vts/oRg0b2us15WFETRPKPPVAtBG6AQAIwGqa6BRK6A7Wl9s5gnWyOP74RJcgvnJypB9/lNauTa9Rip2Dp33zTfBzX3rJnjquuNi7n7+zyf3BB0evfMnAd1oy35YrjRrZ68k6JgMid/fd6dW6Bakjjf6rAQAgutz+6A6lebnbPLGJsN9+VZ/Tpo3Up0/sy5JsDjhAatXKrAebOiiVOAPluHHBz61bVzr5ZLumd/Nm+9ivv9rroU4llyp8R+n3rel2PoQ55JDYlwex5ftv8T77JKYcAKEbAIAA3Ppfh1LTnSx9Qd3moHY68UTpp5+kevXiU55klSw/r+rq1s1edxuh3nLttWaZmWmPeN6qlTRhgv+5++8fvfIlA9/PuttDtDlzzJzhnTvHpUiIIWfLBYnB8ZA4hG4AAAKw+rb26GHvC6Wm242zRi1e03NVNVL69denV/PqSN1yi/t+3z/Yk53zIUugcQV++03697/t7cJCe/3qq/3PT5dWABbf+ZfdRnovKJAGDYpPeRBbvj/HSP/9BqqL/2oBIMUx2E/sWDXdTZrY+yKtFXXWmu/cGXmZwhEsdB97rGleDDO43VtvefeJlqQLLkhMeSLVuHHV57RsGXqQTqdB1CyErprFN3SnS6sWpB5CNwAADiNHmrm1Kyrs2kJrKiYp8j/a69Sxa5XdQveuXdF/gGKF7ieekG680fsPUN8av5qsTh3zvfEdOO/hhxNTnkj59k/2dcopwY936WI+g9bn9Nhjo1OuZPLQQ4kuAeIpI8N7MEAeuiBRqvjnGQCQ7NKt+WcilZWZgCpJS5a413RH2v85I0OqX9/c0zd0b95spjI64QTTlD0nR7ruushex8kK3R07Slde6f1ZKSio/v3TjbNlwFNPmZ9XqttnH9OkXDLvydewYdJzz5n1b781vwPW9yEd+/ofeGCiS4B4c36O0+F3GqmJmm4ASHE0L4+e5cvt9cxM6fnnzbqzb2+oA/EcdJC9vmyZWVojQfuG7vPOMyOl//e/0pgxpq/17beHVXRX5eVm6dZv+/rrq3//dHb55YkuQWT+8Q/v7XvukebPl9ascR+5+YknpAcftLeLi+1135G+gVTkrN0mdCNRCN0AAPzl99/tdWf4WL/eXg91cK1586RFi8xDEat5o/UHn2/o/uwz/+v/8Q9p69bQXisQq8bSCt2DB9vHcnKqd+90dPfdZjlsWGLLUR2+Nbm1aklHHim1bet+fp060hVX2NuLF9vrjPSMdOBswZJu884jddC8HABSHM3Lo8c52NmHH9rrLVtK77xjwmvDhqHdq3Fj/4Gt3EL3nDmB7/Hyy6ZpeKTzaFt/bFr9t084QXrlFbPOgEL+TjvNPGDJz090SaInlL77ztq/DRvMskMH/m1BenD+DqTajARIH4RuAEhxNC+Pjj//lB54wN52NtO96Sb/QbYiYYWbHTvsfb16BT7f6te9ebM9n3I4fGu6nfM4w12LFokuQfX4to6oanA1yTuUXHihWf7wQ/TKlGy6dDH911EzzJtnrzNFIhKFjx4AADIDmc2e7X4sGoFbkhYsMMtXXw3vum3bIns939B9yCHS9OnSr79Gdj8kvxNO8N4mZPh7661ElwBATcM/xQCQ4mgCWn2zZwcOtkcfHb3XsVolhDv/caTT3PiGbsk0VXcbUAvpoU0b7/nXIx0XoEOH6JQnGbVrJ735ppSbK338caJLg1h75plElwAgdANAyqN5efXs2CEddVTg4y++GL+yBDJtWmTXBRu9HOnrsMPs9ZKSyO7hNrhfOjn7bPNA4qSTEl0SxNqwYdK990qzZiW6JKjJ+G8YAFCj/fln8OOBRn2OpxEjIrvOraYb6e/mm+31Vq1Cu+bll723U71veyj4vagZMjOl0aOlY45JdElQk/HPDQCkOJqXV8+uXYGPde8e3dcaOdIs9903uvcNxHf0ctQMTZtKL7wgXXutdPrpoV0zeLA94NQTT8SubABQEzF6OQCgRnOOJO5rv/2i+1onnSRNmBC/WkRqumuuIUPMVzh69KC7CgDEAv8NAwBqNGsAtdat/Y9Fe05Xa45v53zgoYg0NBO6AQBIPP4bBoAUR81U9fzxh1k2b+5/zJpXO1oaNDDLYLXrbk49NbLXYyA1AAASj/+GAQA1mhW699pLevddM+COpW7d6L6WVdO9dq10ySWBR5a+6CLv7YMOiuz1qOkGACDx+G8YAFIcA6lVz9ChZrlmjTRwoHfoLi2N7mu1aWOvT5okPf+8+3k9enhv+5bD47FrsQOZONFuxs5AagAAJA6hGwBSHM3LI7Nxo3Tppfb2qlVmmZ1t7ysuju5r+jZX37DB/TzfEdXLyry3TztN6tBB2r3b/fodO7zfGzXdAAAkDv8NAwBqpCuuMLXBltmz/c+JdSuCQLXVwUK3xyNNmWIeEnz1lfv1vn3GCd0AACQO/w0DQIqjeXlkFi601zMypJ49/c+JtC91qHbudN/vG7qffNKu1XbWbgf62fvWjBO6AQBIHP4bBoAUR/PyyDj7STdo4B1MP/tMuukm6eqrY1sGa2A1X7t2STk53vtuv90s//wz+D09HumUU7z3EboBAEgc/hsGAKS0336Tfv45/Oucods3/B5/vPTPf3r3744W53zgztHLp0yRDjzQrA8a5N90/NFHTQ32AQfY+9z6dD/2mPTdd9776tSpXpkBAEDkCN0AkOJqcvPyigpp332ldu2k114L/bp166Tff7e3A9U4x4Lz57Vtm1lmZkoDBpgm70uXSkcdJR16qAnaTkuWeA/u5tsMXZKuu85/nzU/OAAAiD9CNwCkuJrcvHzLFnv9ggtCv+7ww723rfms4+HBB+315cu9X79hQ6ljR/t4Vpb3tb411oH6hPuiphsAgMQhdAMAUlZhYWTX/fGH9/ZPP1W/LKE65xzpkkvM+hdfBD+3dm3vbd/5ut1qups29d9Xk1tDAACQaIRuAEhxNTlQOUN3376hXZMMLQOsvttV8Q3dL7zgve0Wun1r/BctCrlYAAAgBgjdAJBkwg2FyRAiE2XDBnvdtxY4ELfBx2I9NZivevVCO8+3efm//+297da83Pl9uPde/6b0AAAgvgjdAICU5azpnjlTeuop74HG3PgG1aws6eWXo1+2YLZvD+0835puX++/b0Yqv/9+ac8es88aEX3kSGn06MjLCAAAoqOK/84BAPFWk5uLh+u337y3r7xSmjvXvxm2kzN0//67VLeuVL9+bMoXSKdOoZ3nW9Pt65tvpC5dzHrt2tKtt9qhu127yMsHAACih5puAEDKmjbNf9+LL/oPlOZkhe7GjaUmTeIfuCVp4MDQzquqpttp4UKztGq8YzHHOAAACB+hGwCQktatk1ascD/WpIlUVuZ+bMcOs0xE2A5XOKE786//0T/80CyZJgwAgORA6AaAJFOTB0YLx0svBT+elSWtWeO//88/zbJRo+iXKdoCNS9364PeoYO0das9UFwm/8MDAJAU+C8ZAJCSWrSo+pzLLvPfV1Rklrm50S1PdRx5pPv+QDXd55/vv6+0VJo0qeprAQBAfBG6ASDJMJBaaKw5qps1C3yO2/fSGt08Jyf6ZYrU55+77w9U052ZKTVv7r1vxw7pppvs7X79olI0AABQTTwHBwCkJKtv9kknSYcdJu23nzRokPs5Fo/HjPgtJU9Nd3a21KCB+zFrJHI3mzZ5b/tOQxZKSwAAABB7hG4AQEp67z2z3LlTuvlm977w8+Z5b993n/TYY2Y9mUJ3IFb/7FCEOvc3AACIr4Q2L//iiy906qmnqmXLlsrIyNB71l9Qf/F4PBozZoxatGihevXqqU+fPlq5cqXXOVu3btXgwYOVk5Ojxo0ba9iwYdrOXx4AUhgDqVXtww+lOXPM+oIFZpmR4T5i9y+/2OtjxtjryTK6d7ByBKvp9hVsmjQAAJA4CQ3dO3bs0OGHH64JEya4Hn/wwQc1fvx4PfXUU/r666/VoEED9evXT7sdj/4HDx6spUuXavr06ZoyZYq++OILjRgxIl5vAQCQAJdfbq87/wtZtUr67jvplVfsfW4jmEvS8uWxKVu4AvXblqR99gl87LDDvLenTo1OeQAAQHQlNHT3799f9913n8444wy/Yx6PR//+9781evRonX766TrssMP04osvav369ZU14suXL9cnn3yiZ599Vj169NBRRx2lxx57TK+//rrWr18f53cDANHBQGpV27DBXh8wwF5v1Urq3Nl8Wazm5L4OPzwWJQtfsNDdvbv01FPSp59KF15o9ll9ta+7ziwPPji25QMAANWTtKOXr1mzRoWFherTp0/lvtzcXPXo0UNz586VJM2dO1eNGzfWkY65Vvr06aPMzEx9/fXXcS8zACD2Skvt9b/+O/DTsaO9/s477uckOqxaDwtuuCH4eZdfLp1wgvT449Lf/y59+aXZf8klplZ//vzYlhMAAFRP0g6kVlhYKEnKy8vz2p+Xl1d5rLCwUM195kypXbu2mjRpUnmOmz179mjPnj2V28XW/DEAgKRnzbMtSV27hnaNx+M9KFnLlu5zeMfT5MnS4sWmNjsUubnSHXfY2xkZdo3+3/5m93GX7BHaAQBA4iVtTXcsjRs3Trm5uZVfrVq1SnSRAKASA6kFdu653vNyB2uafddd9vq0ad59uFeulGon+LFzvXpSz55mzu3qOuEE7+0OHap/TwAAEB1JG7rz8/MlSRs3bvTav3Hjxspj+fn52uQzUWlZWZm2bt1aeY6bUaNGqaioqPJr3bp1US49ACDaioqkN98M/fzbb7fXTzrJrhXPy5Pq149u2RLN+SBCCjzvNwAAiL+kDd3t2rVTfn6+ZsyYUbmvuLhYX3/9tQoKCiRJBQUF2rZtmxYuXFh5zmeffaaKigr16NEj4L2zs7OVk5Pj9QUAySLdB1KbN880737lFem556S77w7tutWrvbdPOSX4+dnZ7uHa51luWvAN3dGoPQcAANGR0MZ127dv16pVqyq316xZo0WLFqlJkyZq3bq1rr/+et1333064IAD1K5dO/3f//2fWrZsqYEDB0qSDj74YJ100kkaPny4nnrqKZWWlurqq6/Weeedp5YtWyboXQEAAtm2TfrruWnlaNySmWP63/8OfF15uX//7Q8/rPr1du7035cs83NHU7o/qAEAIJUlNHQvWLBAxx9/fOX2jTfeKEkaOnSoJk2apFtvvVU7duzQiBEjtG3bNh111FH65JNPVLdu3cprXnnlFV199dU64YQTlJmZqUGDBmn8+PFxfy8AUNOUl5tlrVqhX7PXXu77H300eOhetMh7+/ffQ39NX8ccE/m1yapnT3v9r1k1AQBAkkho6D7uuOPkCTJiUEZGhu655x7dc889Ac9p0qSJXn311VgUDwASIhUGUrNqnisqzLRVzuC9e7cZ4Cwjw7uZ8x9/RP56//mPvX711VKTJpHf68wzI782WTkbd4XzEAQAAMQevb4AAGF7800z3dWSJdLTT5t9M2ZI999vRuWuXduEv4svtq9xjh4ejsJC+zUk6eGHQ7/WreHT8OGRlSOZOUdxb98+ceUAAAD+CN0AkGSSvX+uxyNdcIG9PXKk6Tvdp490553e577wgjR1qln3HQgtVP/6l/d2sGnCfF1zjf++RE8VFitTpkiTJjFdGAAAySZN//QAAMTKY4/573MOiubrpJOkpUulv4bt0IUXSi+/HPrrffCBve6cezsS4Uw5lmoGDEh0CQAAgBtqugEgCaRCP27L/Pn++959N/g1nTpJW7aY9Xnz3M8vLPTf98gj0o8/mvUHH5TuuCO8skrSV19JV1xhRk4/++zwrwcAAKgOaroBIMkkewD/7rvqXf/cc+4jiA8caAK5xeOxa8clacSI8JqWW3r1Ml8AAACJQE03ACSBZA/alvJyadUqs750qf/xxo2lNm3M+tChUl6e9/GsLDtw/+9/0v/9n33s66+9z/WtUc/JibjYAAAACUPoBoAkk8wDqf3yi7Rnj5SdLR10kDR5sn0sL89MC7ZihfTxx9ITT5im3U7vvGOvH3qodPfdUv369r5ly+x1Zwh/6aXk/r4AAAAEQvNyAECVtm41TbR37DDbBx5opgRzNtu2QnF2thk8TTLTV3k80saN0vffS717e983I8PUaHfqZLaPOsq8liRde619XrCB2gAAAJIZoRsAkkAyNy8vLpaaNvXeZ01L5Wzy/cQTge+Rl+ff1Nyy7772en6+We7eHX45AQAAkhGhGwCSTLIF8Jtu8t/XrZtZNmggXXWVtGuXGQgtEs7gfsYZZrl2rb3vo48iuy8AAEAyIHQDQBJItqDt9L//+e9zjj4+YUL1X2P4cOk//5Huv980YT/rLLN///2l/v2rf38AAIBEYSA1AEgy8RgwrLxcKi0N7Vxn82/LIYdEtzzOsjz6qDRypFkP1CQdAAAgVRC6AaCG2b1batjQNOsuLg5+bmmptGSJWX/vPWnLFmnDBtOsPJrOPNN726pd79Iluq8DAAAQb4RuAEgC8Wxe3qqVCd67d0uXXhr4vFWrpDp1pJUrzfa++5oB1azBzqLp5JPd9++9d/RfCwAAIJ4I3QCQZGIZwIuLTW21ZcGCwOcecID3dps2sSmTZKYfKyvz35+dHbvXBAAAiAdCNwAkgXjVdM+b573t2697zhwpK8u/X/nf/hb7WudataSnnvLeF6wmHgAAIBUQugEgDqZNMzXHM2dWfW6sBlLzeKR+/bz3rV8vvf66vd2rl3+N86xZ0uzZsSmTr8svN6/fvbt05JE0LwcAAKmP0A0AcXDyyaaPdO/eUmGh//E9e+z1Cy90b2odiRkzpA4dTHDOdPyLX6+evX7++dKPP7qXS5IOPzw6ZQlVrVqmRv7rr73LDAAAkIr4cwYA4qC83F5v0UK66ipp8mQzN3VZmdS+vff5X34Zndc991xpxQrpuOO89y9c6L190EH+I4hL0sCBUm5udMoSjowMAjcAAEgP/EkDADHm1l/7ySelc86RRowwfag3bfI+/uOP1X/d8nLp99/99z/zjHTwwSbwO82da6+XlJhyv/tu9csBAABQkxG6ASDG1q0L/5rFi6v3mu+/L9Wu7b9/332l4cPN+mWXmTm3fX31lXkQAAAAgOojdANAjL32WmjnffONdMUVZn3Vquq95sCB7vsvv9x7Oz9feughe/uqq8xgagAAAIgOQjcAxFhJSWjndesmHX+8WXcOrBauX34JfMytBvvyy6W6dc36uHGRvy4AAAD8EboBIMZ+/tksL7jA3te9u/c5xxxjltnZZhlqUHezfr29Pn68dNZZ9rZbDXijRtKCBWbAtZycyF8XAAAA/gjdABBjzz9vlj17SsuWSVOnmumwKirscw44wCzr1DHLefOkxx6L7PX+/NMs8/Kka64xo6Rv2yb98YcZpdxNp07SgQdG9noAAAAIjNANADG0c6e9vs8+ZtTwvn3NdkaGNH26aVb+r3+ZfVZNtyRde234r7d+vdSvn1nv3Nnen5srNW4c/v0AAABQPYRuAIiSxx4zo4Y7pwh79FF7/Ywz/K/p08cMoGbNhW3VdIeqqEjavdve3mcfe/3ww8O7FwAAAKKP0A0AUTBihKmZHjhQysyU3nzTNPO+4w5zvFUrU7NdFWdNtyTdc0/gc5cvN7XXmze7H7/++hAKDgAAgJgidANAFPznP97b557rPSjZE09Edt+xY6UtW0xt9vDhZmC0P/6QFi2SOnYMfN3y5VKLFpG9JgAAAKKndqILAACpaPVq6ZRTpA0bzLIqvXuHdl+3Ucsff9xMIfbss2b7uuuC32PSJKlDh9BeDwAAALFFTTcAhOH5500z8fbtpR9+MH2qX3nFPr57t3Tffd7XLFki1a8f2v333tt/3913Sw88EPgaa7oxy6mnhvZaAAAAiD1CNwCEaOxYadiwwMeHDzd9su+804Tz66+XysulQw4J/TUOOkh6+mnpww+lo46q+vydO6VZs6S33zbbLVtKTZqE/noAAACIrQyPxznObs1UXFys3NxcFRUVKcfZCRMA/vLBB9Lppwc/Z+VKUwMeLTt3Sg0aeO979lnpssvM+sSJ0sUX28d275bq1o3e6wMAACCwUHMkNd0AUIVVq/wD99lnm37Ww4fb+6IZuCXTJN26/8yZUkWFqWnfsEH66itp6FDv8wncAAAAyYeablHTDcBdebn08MPSa69J331n7589W/rb38y6xyO98IJ07LFSu3aJKScAAADiL9QcyejlqBaPRxo3zvRhbdfONK+tVSvRpQKqr6JCqu3yL+S2bVJurr2dkeHdxBsAAABwonk5Atq508z1G0yfPiZwS9KaNSakZGSYprBAKnvhBf99Gzd6B24AAACgKoTuFLN2rXTaaWa0YsuKFaaG+dlnTeDNyDC1dJHYvl36+WdTg92rl9Sxo7nf889LP/5o1rOypM8+M+uffeZ+n969pVdfjawMQDyUl0u33SZ98on78YkTvbdnz5aaN499uQAAAJBe6NOt1OrTnZFhr3/2mfT++9Kjj/qf99VXJjSHq0sX03d16lSpX7/Qr/vtN2mfffz3z5pl5hD2eKRPP5WOPjr8wZ7OO0964w2zvmNH6PMdA24eeki69VbvfatXS/vtZz6nFRXm4dZ++5ljCxZIXbvGv5wAAABIboxenoZ8H4/07u0euCUzv2/TpiY433uv/7VuvvzSHiwqnMA9apSZG3jnTlOeKVPsY9bgUpmZUt++0siRod1z/Xrp3HPNQwYrcEtm+qQ33wy9bLFUWip1727KOH9+ZPfgkVfsVVSYQc+sViC+gVuS9t/fHMvMNF0krMB9wgkEbgAAAFQPNd1KnZruhx+Wbrop8ut//FE64IDAx5216ME8+6yZDzg31wTjrCz/c849N3A4Hj1auvtuE3CcKirMvvJy9wGsnPbskerUCa280fLJJ1L//qZJcu/e0hdfSH//u328tNS/3CtXSk89ZR4+nHaa97HLLjNzP8+ZI/3yi2mdMGpU/N+XZL73Dz9syn/ddaF/FqKhvNx0a4hFX2mPR8rLkzZvjuz6Z581U3QBAAAAvkLNkYRupUboLitzD7cW66dYUmKacH/zTfDzfN15p3T//f77H3rINDX/9FOzff/9JhhWZcMGE1jGjHE/ftZZ0uTJpjz/+pe5Z1mZCaJ79kgvveR9/pYtJsRfdZW9r6IivuGwqtfKzZV69LBD+eLFUufO9vHdu6VFi6QLL5See84EcTe7d0vZ2dEqdXAVFWYwPOfAdx98IJ16qln3eKSFC6VDDon+HNAejzRwoHk9Sfr2W+mII0wA/+036cAD7e/5unXmgdMNN5jtLl3s71F5ufnsOL9nHo+5xzvvmIcITh06SIcdZmqxL73U/IyWLvUv34gR0hNPMBo/AAAA3BG6w5AKofvpp6UrrjDrX31lmnK//rr08cemprRtW+/zf/1VatXKNKudM8f/fh9+KLVoYZrOTpokXXKJfSw7W7roIumZZ0zo+eUXacAAU+NnhZ5QlZRIf/xhgkuzZt7H/vMf6b77zP0DcQbrigrvADRjhgm3q1ebc6wmwdVVVmYeNjRv7l3L2ayZCf+h+OIL86DinnvCf/1DDpGWLHE/5vF4txA4+GATViMJxNu3S40auR9bu9Z8fq65Rnr8cbPv//5Puv568/0uKTFhtUGD8F/X8tFH5nMVzODB0tixJoC7GTBA+u9/zXrbtuZhTt265nPla+tWaa+9Ar9WYaF5sNW0aUjFBwAAQA1H6A5DsofuP/80gXLLFtM0+957w7t+5kzplFNMUK/K7NkmqMfCihWmv/fNN4d2/vr15sGAU3GxaSK/aZMJhd27S2+/bY498YQ0dKg90FpZmTRvnlRQEF5t5QkneI/KbgX/QDXd8+dL3bqFfv9QvPKKqWlt0UI6+2zTEqBRI/dm+xdeaLcMmDNH+v13u6baje/Di0AaNDAD1wVzyy3S5ZebBxKBfnX27DEPMfr3Nw95tmzxfwATS3l5Zjq7evXi95oAAABIf4TuMCR76PZ4pPfeM02S3303eDPzQMaMqTqsT5smnXhiREUMy/jx3k1+8/JMoBw8WDrjDBPSunULHHK/+so0oQ9k1izvpts9e5owGmpTdN/z7rlHOvxw6fTTzfapp5oa/zVrTG1vly7mgcbYsaYW+sEHva+/7TbpH/9wf63TTzfNq++809zrrLMCl+uf/wz+wGKvvUyrAslMd3Xxxd7HN240U8Bt3ep/bXa2+b5Xxz/+Yb4v1ufzt9/MgH4//2yf4/aAolcv87DH915PPul9bcOGpnXEpk3256dTJ/P9X7zY1L736mUeKhQWmibpp55qPvvRbhoPAAAAELrDkOyhOxo2bDAjjEvSkUea2uDvv7cD2EsvmRrTeBk3TrrjDjPN2E8/hTd42M6d4TdrnjfP9Lf2tWCBdPXVpjlynz5mn2/o3mcfE9pWrzbbVf3GzJhh30sKvY92qDXQ1j137pSaNAlejt69TUgtKnJvom2Fc4/HfG3d6l8LfcAB0ty5ZmmF+r59zUMaX337mq4Qd94Z+jztzhYNGzaY0L733mbb6kbRoIF0zjnx7cMPAAAABEPoDkNNCN2BbN9ugkx1+uYmQr9+duh7+mlTszl2bPBrRo824fqaa0yz6Nq17QcRkqlt//FHOwBOm2ZCpNMVV5ga2Kr8+qsJxu3bh/6eJFMLvGCBvX3EEdL//mcGC7M4R6EfMcLU/krScceZWt+HHw7ttT7+WDrpJP/977wjDRpkpnd77LHAQbe01Ezn9tNPplb52Wfdz9trLxOiV6703l9VH2sAAAAgmRG6w1CTQ3e6Wb3aDrpr15rm8itWhH+fzEzTJ9x3WrPly83o17FidQNo08a7afXPP5sm1+eea8J1MO+/b0YFd3PUUdILL5iB2qzm8tHSubNp5m0ZPtzUTlu1/ldeaaZPk2L/fQQAAABijdAdBkJ3+tq82YxCHq6DDpJ++ME7xEsmiMdyCqmyMmnCBFOTX51QWl5umpP/9JPZPvlk033gnHNiV35nX/1Jk8ygdr527TKDs1nNxwEAAIBURegOA6E7vRUXm5rdn382tcTffGMGW9t3XzNS+9/+Zvozv/SSaTq+Z48ZIdwK2z//LD3/vKm5bdUqgW8kAqWlphl9PPpCV1RI551nlm++6d9KAAAAAEgnhO4wELoBAAAAAOEINUdSFwUAAAAAQIwQugEAAAAAiJG0Cd0TJkxQ27ZtVbduXfXo0UPffPNNoosEAAAAAKjh0iJ0v/HGG7rxxhs1duxYffvttzr88MPVr18/bdq0KdFFAwAAAADUYGkRuh9++GENHz5cl1xyiTp27KinnnpK9evX1/PPP5/oogEAAAAAarCUD90lJSVauHCh+vTpU7kvMzNTffr00dy5c12v2bNnj4qLi72+AAAAAACItpQP3Vu2bFF5ebny8vK89ufl5amwsND1mnHjxik3N7fyq1WqTb4MAAAAAEgJKR+6IzFq1CgVFRVVfq1bty7RRQIAAAAApKHaiS5Ade29996qVauWNm7c6LV/48aNys/Pd70mOztb2dnZ8SgeAAAAAKAGS/ma7jp16qhr166aMWNG5b6KigrNmDFDBQUFCSwZAAAAAKCmS/mabkm68cYbNXToUB155JHq3r27/v3vf2vHjh265JJLEl00AAAAAEANlhah+9xzz9XmzZs1ZswYFRYWqnPnzvrkk0/8BlcDAAAAACCeMjwejyfRhUi04uJi5ebmqqioSDk5OYkuDgAAAAAgyYWaI1O+TzcAAAAAAMmK0A0AAAAAQIwQugEAAAAAiBFCNwAAAAAAMULoBgAAAAAgRgjdAAAAAADESFrM011d1qxpxcXFCS4JAAAAACAVWPmxqlm4Cd2S/vzzT0lSq1atElwSAAAAAEAq+fPPP5WbmxvwOKFbUqNGjSRJ69atCzqpeawVFxerVatWCS8Hooufa/riZ5u++NmmJ36u6YufbXri55q+0uVna70PK08GQuiWlJOTo6KiIjVq1EgZGRmJLo5ycnJS+sMHd/xc0xc/2/TFzzY98XNNX/xs0xM/1/SV6j/bRo0aVebIYAjdkjIyMlL6hw0AAAAAiK9QcySjlwMAAAAAECOE7iSSnZ2tsWPHKjs7O9FFQRTxc01f/GzTFz/b9MTPNX3xs01P/FzTV0372WZ4qhrfHAAAAAAARISabgAAAAAAYoTQDQAAAABAjBC6AQAAAACIEUI3AAAAAAAxQuhOEhMmTFDbtm1Vt25d9ejRQ998802iiwSHL774QqeeeqpatmypjIwMvffee17HPR6PxowZoxYtWqhevXrq06ePVq5c6XXO1q1bNXjwYOXk5Khx48YaNmyYtm/f7nXO//73Px199NGqW7euWrVqpQcffDDWb61GGzdunLp166ZGjRqpefPmGjhwoFasWOF1zu7duzVy5Eg1bdpUDRs21KBBg7Rx40avc9auXasBAwaofv36at68uW655RaVlZV5nfP555+rS5cuys7OVvv27TVp0qRYv70a7cknn9Rhhx2mnJwc5eTkqKCgQB9//HHlcX6u6eGBBx5QRkaGrr/++sp9/GxT01133aWMjAyvrw4dOlQe5+ea2n777TddeOGFatq0qerVq6dDDz1UCxYsqDzO31Gpp23btn6/sxkZGRo5cqQkfmf9eJBwr7/+uqdOnTqe559/3rN06VLP8OHDPY0bN/Zs3Lgx0UXDXz766CPPnXfe6XnnnXc8kjzvvvuu1/EHHnjAk5ub63nvvfc8ixcv9px22mmedu3aeXbt2lV5zkknneQ5/PDDPfPmzfN8+eWXnvbt23vOP//8yuNFRUWevLw8z+DBgz3ff/+957XXXvPUq1fP8/TTT8frbdY4/fr180ycONHz/fffexYtWuQ5+eSTPa1bt/Zs37698pwrrrjC06pVK8+MGTM8CxYs8PTs2dPzt7/9rfJ4WVmZ55BDDvH06dPH891333k++ugjz9577+0ZNWpU5Tk//fSTp379+p4bb7zRs2zZMs9jjz3mqVWrlueTTz6J6/utST744APPf//7X8+PP/7oWbFiheeOO+7wZGVleb7//nuPx8PPNR188803nrZt23oOO+wwz3XXXVe5n59taho7dqynU6dOng0bNlR+bd68ufI4P9fUtXXrVk+bNm08F198sefrr7/2/PTTT56pU6d6Vq1aVXkOf0elnk2bNnn9vk6fPt0jyTNz5kyPx8PvrC9CdxLo3r27Z+TIkZXb5eXlnpYtW3rGjRuXwFIhEN/QXVFR4cnPz/c89NBDlfu2bdvmyc7O9rz22msej8fjWbZsmUeSZ/78+ZXnfPzxx56MjAzPb7/95vF4PJ4nnnjCs9dee3n27NlTec5tt93mOeigg2L8jmDZtGmTR5Jn1qxZHo/H/ByzsrI8kydPrjxn+fLlHkmeuXPnejwe80AmMzPTU1hYWHnOk08+6cnJyan8Wd56662eTp06eb3Wueee6+nX7//Zu+4wKYq0/5vZvOSw5IxkVJAkiAKKonIGVMR0gnrmnPXuU9TzTg89T70z3HkemBVQECOCZAQEBCSJ5Jxhd9m8M9PfH52qq6uqq3tmNlm/59lne7qrq6orvm+9aUSyP0mBQIMGDbT//ve/ql9rAE6cOKF16tRJmzVrljZkyBCL6VZ9W30xfvx47dRTT2U+U/1avfHoo49qgwcP5j5XdFTNwL333qt17NhRi8Vias4yoNTLKxllZWVYuXIlhg8fbt0Lh8MYPnw4lixZUok1U5DF9u3bceDAAUcf1qtXDwMGDLD6cMmSJahfvz769u1rpRk+fDjC4TCWLVtmpTnrrLOQnp5upRkxYgQ2bdqE48ePV9DX/LaRl5cHAGjYsCEAYOXKlSgvL3f0bdeuXdGmTRtH35588slo2rSplWbEiBHIz8/H+vXrrTRkHmYaNccrBtFoFB9//DEKCwsxcOBA1a81AHfeeSdGjhzpan/Vt9UbmzdvRosWLdChQwdce+212LVrFwDVr9UdM2bMQN++fTF69Gg0adIEvXv3xltvvWU9V3RU9UdZWRnef/993HjjjQiFQmrOMqCY7krGkSNHEI1GHQMOAJo2bYoDBw5UUq0U/MDsJ1EfHjhwAE2aNHE8T01NRcOGDR1pWHmQZSgkD7FYDPfddx/OOOMM9OzZE4De7unp6ahfv74jLd23Xv3GS5Ofn4/i4uJkfI4CgLVr16J27drIyMjAbbfdhmnTpqF79+6qX6s5Pv74Y/z000947rnnXM9U31ZfDBgwAJMmTcK3336LN954A9u3b8eZZ56JEydOqH6t5ti2bRveeOMNdOrUCTNnzsTtt9+Oe+65B++88w4ARUfVBEyfPh25ubkYN24cALUWs5Ba2RVQUFBQqAq48847sW7dOixatKiyq6KQIHTp0gWrV69GXl4epk6dirFjx2L+/PmVXS2FOLB7927ce++9mDVrFjIzMyu7OgoJxAUXXGBdn3LKKRgwYADatm2LyZMnIysrqxJrphAvYrEY+vbti7/+9a8AgN69e2PdunV48803MXbs2EqunUIi8Pbbb+OCCy5AixYtKrsqVRZK0l3JaNy4MVJSUlze/A4ePIhmzZpVUq0U/MDsJ1EfNmvWDIcOHXI8j0QiOHbsmCMNKw+yDIXk4K677sKXX36JuXPnolWrVtb9Zs2aoaysDLm5uY70dN969RsvTd26dRUxmUSkp6fjpJNOQp8+ffDcc8/h1FNPxSuvvKL6tRpj5cqVOHToEE477TSkpqYiNTUV8+fPx6uvvorU1FQ0bdpU9W0NQf369dG5c2ds2bJFzdlqjubNm6N79+6Oe926dbPMBxQdVb2xc+dOzJ49G3/4wx+se2rOuqGY7kpGeno6+vTpg++//966F4vF8P3332PgwIGVWDMFWbRv3x7NmjVz9GF+fj6WLVtm9eHAgQORm5uLlStXWmnmzJmDWCyGAQMGWGkWLFiA8vJyK82sWbPQpUsXNGjQoIK+5rcFTdNw1113Ydq0aZgzZw7at2/veN6nTx+kpaU5+nbTpk3YtWuXo2/Xrl3rIAZmzZqFunXrWkTGwIEDHXmYadQcr1jEYjGUlpaqfq3GOOecc7B27VqsXr3a+uvbty+uvfZa61r1bc1AQUEBtm7diubNm6s5W81xxhlnuMJx/vrrr2jbti0ARUdVd0ycOBFNmjTByJEjrXtqzjJQ2Z7cFPSQYRkZGdqkSZO0DRs2aLfccotWv359hzc/hcrFiRMntFWrVmmrVq3SAGgvvfSStmrVKm3nzp2apumhLurXr699/vnn2s8//6xdcsklzFAXvXv31pYtW6YtWrRI69SpkyPURW5urta0aVPt97//vbZu3Trt448/1rKzs1WoiyTi9ttv1+rVq6fNmzfPEfaiqKjISnPbbbdpbdq00ebMmaOtWLFCGzhwoDZw4EDruRny4rzzztNWr16tffvtt1pOTg4z5MXDDz+sbdy4UXvttdeqbciL6oLHHntMmz9/vrZ9+3bt559/1h577DEtFApp3333naZpql9rEkjv5Zqm+ra64sEHH9TmzZunbd++XVu8eLE2fPhwrXHjxtqhQ4c0TVP9Wp3x448/aqmpqdpf/vIXbfPmzdoHH3ygZWdna++//76VRtFR1RPRaFRr06aN9uijj7qeqTnrhGK6qwj++c9/am3atNHS09O1/v37a0uXLq3sKikQmDt3rgbA9Td27FhN0/RwF0888YTWtGlTLSMjQzvnnHO0TZs2OfI4evSodvXVV2u1a9fW6tatq91www3aiRMnHGnWrFmjDR48WMvIyNBatmypPf/88xX1ib9JsPoUgDZx4kQrTXFxsXbHHXdoDRo00LKzs7VRo0Zp+/fvd+SzY8cO7YILLtCysrK0xo0baw8++KBWXl7uSDN37lytV69eWnp6utahQwdHGQqJx4033qi1bdtWS09P13JycrRzzjnHYrg1TfVrTQLNdKu+rZ4YM2aM1rx5cy09PV1r2bKlNmbMGEccZ9Wv1RtffPGF1rNnTy0jI0Pr2rWr9p///MfxXNFR1RMzZ87UALj6StPUnKUR0jRNqxQRu4KCgoKCgoKCgoKCgoJCDYey6VZQUFBQUFBQUFBQUFBQSBIU062goKCgoKCgoKCgoKCgkCQopltBQUFBQUFBQUFBQUFBIUlQTLeCgoKCgoKCgoKCgoKCQpKgmG4FBQUFBQUFBQUFBQUFhSRBMd0KCgoKCgoKCgoKCgoKCkmCYroVFBQUFBQUFBQUFBQUFJIExXQrKCgoKCgoKCgoKCgoKCQJiulWUFBQUFBQUFBQUFBQUEgSFNOtoKCgoKCgoKCgoKCgoJAkKKZbQUFBQUFBQUFBQUFBQSFJUEy3goKCgoKCgoKCgoKCgkKSoJhuBQUFBQUFBQUFBQUFBYUkQTHdCgoKCgoKCgoKCgoKCgpJgmK6FRQUFBQUFBQUFBQUFBSSBMV0KygoKCgoKCgoKCgoKCgkCYrpVlBQUFBQUFBQUFBQUFBIEhTTraCgoKBQZTFv3jyEQiHMmzcvofmGQiE89dRTCc1TgY127drhd7/7XWVXw4GhQ4di6NChlVL27t27kZmZicWLF1dK+VdddRWuvPLKSilbQUFB4bcKxXQrKCgoKCQEkyZNQigUsv5SU1PRsmVLjBs3Dnv37q3w+nz99ddVjrEuKCjA+PHj0bNnT9SqVQuNGjVCr169cO+992Lfvn1WuqpYdxE2bNiAp556Cjt27Eh43qFQCHfddVfC860sPPPMMxgwYADOOOMM6964ceMccycjIwOdO3fGk08+iZKSElcesuPoqaeeQigUwpEjR6x7jz76KD799FOsWbMmuR+qoKCgoGAhtbIroKCgoKBQs/DMM8+gffv2KCkpwdKlSzFp0iQsWrQI69atQ2ZmZoXV4+uvv8Zrr73GZF6Li4uRmlqxW2B5eTnOOuss/PLLLxg7dizuvvtuFBQUYP369fjwww8xatQotGjRwrPuVREbNmzA008/jaFDh6Jdu3aVXZ0qi8OHD+Odd97BO++843qWkZGB//73vwCAvLw8fP755/jzn/+MrVu34oMPPrDS+RlHLPTu3Rt9+/bF3//+d7z77ruJ/0gFBQUFBRcU062goKCgkFBccMEF6Nu3LwDgD3/4Axo3boy//e1vmDFjRpVRa61I5t/E9OnTsWrVKnzwwQe45pprHM9KSkpQVlYWKN9IJIJYLIb09PREVFMhiXj//feRmpqKiy66yPUsNTUV1113nfX7jjvuwKBBg/DRRx/hpZdeQtOmTQEkZhxdeeWVGD9+PF5//XXUrl07zq9SUFBQUPCCUi9XUFBQUEgqzjzzTADA1q1bHfd/+eUXXHHFFWjYsCEyMzPRt29fzJgxwzO/hQsXYvTo0WjTpg0yMjLQunVr3H///SguLrbSjBs3Dq+99hoAONR2TZA23VOnTkUoFML8+fNdZf373/9GKBTCunXr4q63+f2kWrGJzMxM1K1b17PuO3bsQCgUwosvvoiXX34ZHTt2REZGBjZs2CBdN9MMYPHixXjggQeQk5ODWrVqYdSoUTh8+LAjbSwWw1NPPYUWLVogOzsbw4YNw4YNG9CuXTuMGzfOym/06NEAgGHDhln1pe3wFy1ahP79+yMzMxMdOnQILGU17fwnT56Mv/zlL2jVqhUyMzNxzjnnYMuWLa70//nPf9CxY0dkZWWhf//+WLhwITPf0tJSjB8/HieddJI1rh555BGUlpZaacaOHYvMzExs3LjR8e6IESPQoEEDh2o3C9OnT8eAAQOkGN1QKITBgwdD0zRs27bNui87jkQ499xzUVhYiFmzZnmmVVBQUFCIH0rSraCgoKCQVJh2vg0aNLDurV+/HmeccQZatmyJxx57DLVq1cLkyZNx6aWX4tNPP8WoUaO4+U2ZMgVFRUW4/fbb0ahRI/z444/45z//iT179mDKlCkAgFtvvRX79u3DrFmz8N577wnrN3LkSNSuXRuTJ0/GkCFDHM8++eQT9OjRAz179oy73m3btgUAvPvuu/i///s/xyEACZm6T5w4ESUlJbjllluQkZGBhg0b+q7b3XffjQYNGmD8+PHYsWMHXn75Zdx111345JNPrDSPP/44JkyYgIsuuggjRozAmjVrMGLECIed8VlnnYV77rkHr776Kv74xz+iW7duAGD9B4AtW7bgiiuuwE033YSxY8fif//7H8aNG4c+ffqgR48e3DYT4fnnn0c4HMZDDz2EvLw8TJgwAddeey2WLVtmpXn77bdx6623YtCgQbjvvvuwbds2XHzxxWjYsCFat25tpYvFYrj44ouxaNEi3HLLLejWrRvWrl2Lf/zjH/j1118xffp0AMArr7yCOXPmYOzYsViyZAlSUlLw73//G9999x3ee+89oVp3eXk5li9fjttvv136G1lzR3YcidC9e3dkZWVh8eLFwjGroKCgoJAgaAoKCgoKCgnAxIkTNQDa7NmztcOHD2u7d+/Wpk6dquXk5GgZGRna7t27rbTnnHOOdvLJJ2slJSXWvVgspg0aNEjr1KmTdW/u3LkaAG3u3LnWvaKiIlfZzz33nBYKhbSdO3da9+68806Nt80B0MaPH2/9vvrqq7UmTZpokUjEurd//34tHA5rzzzzjO96s1BUVKR16dJFA6C1bdtWGzdunPb2229rBw8edKXl1X379u0aAK1u3braoUOHHM9k62b20/Dhw7VYLGbdv//++7WUlBQtNzdX0zRNO3DggJaamqpdeumljnKeeuopDYA2duxY696UKVNc/WSibdu2GgBtwYIF1r1Dhw5pGRkZ2oMPPshpLRsAtDvvvNP6bY6Jbt26aaWlpdb9V155RQOgrV27VtM0TSsrK9OaNGmi9erVy5HuP//5jwZAGzJkiHXvvffe08LhsLZw4UJH2W+++aYGQFu8eLF1b+bMmRoA7dlnn9W2bdum1a5d29VGLGzZskUDoP3zn/90PRs7dqxWq1Yt7fDhw9rhw4e1LVu2aC+++KIWCoW0nj17OvrJzzgaP368BkA7fPiw61nnzp21Cy64wLPeCgoKCgrxQ6mXKygoKCgkFMOHD0dOTg5at26NK664ArVq1cKMGTPQqlUrAMCxY8cwZ84cXHnllThx4gSOHDmCI0eO4OjRoxgxYgQ2b94s9HaelZVlXRcWFuLIkSMYNGgQNE3DqlWrAtV5zJgxOHTokEMleurUqYjFYhgzZkzC6r1s2TI8/PDDAHS17JtuugnNmzfH3Xff7VBj9sLll1+OnJwc63eQut1yyy0OKemZZ56JaDSKnTt3AgC+//57RCIR3HHHHY737r77bul6mujevbtlZgAAOTk56NKli0Nt2i9uuOEGhx27mb+Z54oVK3Do0CHcdtttjnTjxo1DvXr1HHlNmTIF3bp1Q9euXa22O3LkCM4++2wAwNy5c6205513Hm699VY888wzuOyyy5CZmYl///vfnvU9evQoAKfUmkRhYSFycnKQk5ODk046CQ899BDOOOMMfP75545+StQ4atCggcOruYKCgoJC8qCYbgUFBQWFhOK1117DrFmzMHXqVFx44YU4cuQIMjIyrOdbtmyBpml44oknLCbD/Bs/fjwA4NChQ9z8d+3ahXHjxqFhw4aoXbs2cnJyLLXwvLy8QHU+//zzUa9ePYdq9SeffIJevXqhc+fOCak3ANSrVw8TJkzAjh07sGPHDrz99tvo0qUL/vWvf+HPf/6zdH3bt2/v+B2kbm3atHH8NpnB48ePA4DFfJ900kmOdA0bNuQyjjzQZZnlmWUFgWz9O3Xq5EiXlpaGDh06OO5t3rwZ69evd7Wd2fd027344oto2LAhVq9ejVdffRVNmjSRrremacz7mZmZmDVrFmbNmoWJEyeiW7duOHTokOOQyUQixpGmaYFU0xUUFBQU/EPZdCsoKCgoJBT9+/e3vJdfeumlGDx4MK655hps2rQJtWvXRiwWAwA89NBDGDFiBDMPmtEzEY1Gce655+LYsWN49NFH0bVrV9SqVQt79+7FuHHjrLz9IiMjA5deeimmTZuG119/HQcPHsTixYvx17/+1UoTT71ZaNu2LW688UaMGjUKHTp0wAcffIBnn31W6l2aEQtSt5SUFGY6HlMYD5JRViLzjMViOPnkk/HSSy8xn5P23wCwatUqixFfu3Ytrr76as8yGjVqBADcg4aUlBQMHz7c+j1ixAh07doVt956q9BRX9BxdPz4cdeBhIKCgoJCcqCYbgUFBQWFpCElJQXPPfcchg0bhn/961947LHHLCljWlqag8mQwdq1a/Hrr7/inXfewfXXX2/dZ3lh9ivFGzNmDN555x18//332LhxIzRNs1TLAcRVbxEaNGiAjh07Ojyk+617MupmOuzasmWLQ7J+9OhRF+NYFSWmZv03b95sqYkDukOz7du349RTT7XudezYEWvWrME555zj+S2FhYW44YYb0L17dwwaNAgTJkzAqFGj0K9fP+F7bdq0QVZWFrZv3y5V/+bNm+P+++/H008/jaVLl+L0008XpmeNIx4ikQh2796Niy++WKouCgoKCgrxQamXKygoKCgkFUOHDkX//v3x8ssvo6SkBE2aNMHQoUPx73//G/v373elp8NWkTClm6Q0U9M0vPLKK660tWrVAgDk5uZK1XP48OFo2LAhPvnkE3zyySfo37+/g9mMp94AsGbNGqYN7c6dO7FhwwZ06dIlcN3jrRsL55xzDlJTU/HGG2847v/rX/9ypfVb34pA3759kZOTgzfffNMRu3rSpEmuel555ZXYu3cv3nrrLVc+xcXFKCwstH4/+uij2LVrF9555x289NJLaNeuHcaOHetpS52Wloa+fftixYoV0t9w9913Izs7G88//7x1z8844mHDhg0oKSnBoEGDpOuioKCgoBAcStKtoKCgoJB0PPzwwxg9ejQmTZqE2267Da+99hoGDx6Mk08+GTfffDM6dOiAgwcPYsmSJdizZw/WrFnDzKdr167o2LEjHnroIezduxd169bFp59+ylTZ7dOnDwDgnnvuwYgRI5CSkoKrrrqKW8e0tDRcdtll+Pjjj1FYWIgXX3zRlSZovQFdGj9+/HhcfPHFOP3001G7dm1s27YN//vf/1BaWmrFDQ9S93jrxkLTpk1x77334u9//zsuvvhinH/++VizZg2++eYbNG7c2CER7tWrF1JSUvC3v/0NeXl5yMjIwNlnn+3L1jnRSEtLw7PPPotbb70VZ599NsaMGYPt27dj4sSJLpvu3//+95g8eTJuu+02zJ07F2eccQai0Sh++eUXTJ48GTNnzkTfvn0xZ84cvP766xg/fjxOO+00AHr4tqFDh+KJJ57AhAkThHW65JJL8Kc//Qn5+flS8bQbNWqEG264Aa+//jo2btyIbt26+RpHPMyaNQvZ2dk499xzPdMqKCgoKCQAleM0XUFBQUGhpsEMRbV8+XLXs2g0qnXs2FHr2LGjFZZr69at2vXXX681a9ZMS0tL01q2bKn97ne/06ZOnWq9xwoZtmHDBm348OFa7dq1tcaNG2s333yztmbNGg2ANnHiRCtdJBLR7r77bi0nJ0cLhUKOEFygQoaZmDVrlgZAC4VCjhBnJGTqzcK2bdu0J598Ujv99NO1Jk2aaKmpqVpOTo42cuRIbc6cOY60vLqbIcNeeOGFwHXj9ROrrSORiPbEE09ozZo107KysrSzzz5b27hxo9aoUSPttttuc7z/1ltvaR06dNBSUlIc+bRt21YbOXKkq65DhgxxhO3iAZyQYVOmTHGkM9uGHAOapmmvv/661r59ey0jI0Pr27evtmDBAmbZZWVl2t/+9jetR48eWkZGhtagQQOtT58+2tNPP63l5eVp+fn5Wtu2bbXTTjtNKy8vd7x7//33a+FwWFuyZInwWw4ePKilpqZq7733nuO+GTKMha1bt2opKSlWiDY/44gXMmzAgAHaddddJ6yrgoKCgkLiENK0JHhMUVBQUFBQUKiRyM3NRYMGDfDss8/iT3/6U2VXp9rhpptuwq+//oqFCxdWSvmrV6/Gaaedhp9++gm9evWqlDooKCgo/NagbLoVFBQUFBQUmCguLnbde/nllwHotvoK/jF+/HgsX74cixcvrpTyn3/+eVxxxRWK4VZQUFCoQChJt4KCgoKCggITkyZNwqRJk3DhhReidu3aWLRoET766COcd955mDlzZmVXT0FBQUFBoVpAOVJTUFBQUFBQYOKUU05BamoqJkyYgPz8fMu5mmw8cQUFBQUFBQUl6VZQUFBQUFBQUFBQUFBQSBqUTbeCgoKCgoKCgoKCgoKCQpKgmG4FBQUFBQUFBQUFBQUFhSRBMd0KCgoKCgoKCgoKCgoKCkmCcqQGIBaLYd++fahTpw5CoVBlV0dBQUFBQUFBQUFBQUGhikPTNJw4cQItWrRAOMyXZyumG8C+ffvQunXryq6GgoKCgoKCgoKCgoKCQjXD7t270apVK+7zSmW6FyxYgBdeeAErV67E/v37MW3aNFx66aXWc03TMH78eLz11lvIzc3FGWecgTfeeAOdOnWy0hw7dgx33303vvjiC4TDYVx++eV45ZVXULt2bel61KlTB4DeWHXr1k3Y9ykoKCgoKCgoKCgoKCjUTOTn56N169YWP8lDpTLdhYWFOPXUU3HjjTfisssucz2fMGECXn31Vbzzzjto3749nnjiCYwYMQIbNmxAZmYmAODaa6/F/v37MWvWLJSXl+OGG27ALbfcgg8//FC6HqZKed26dRXTraCgoKCgoKCgoKCgoCANLxPlKhOnOxQKOSTdmqahRYsWePDBB/HQQw8BAPLy8tC0aVNMmjQJV111FTZu3Iju3btj+fLl6Nu3LwDg22+/xYUXXog9e/agRYsWUmXn5+ejXr16yMvLU0y3goKCgoKCgoKCgoKCgidk+cgq6718+/btOHDgAIYPH27dq1evHgYMGIAlS5YAAJYsWYL69etbDDcADB8+HOFwGMuWLePmXVpaivz8fMefgoKCgoKCgoKCgoKCgkKiUWWZ7gMHDgAAmjZt6rjftGlT69mBAwfQpEkTx/PU1FQ0bNjQSsPCc889h3r16ll/yomagoKCgoKCgoKCgoKCQjJQZZnuZOLxxx9HXl6e9bd79+7KrpKCgoICkL8ZODivsmvhjaI9wJfdgXV/qeyaKCgoKCgoKChUeVRZprtZs2YAgIMHDzruHzx40HrWrFkzHDp0yPE8Eong2LFjVhoWMjIyLKdpynmagoJClcGXnYHvhwG56yq7JmLs+xrI3wj8/H+VXRMFBQUFBQUFhSqPKst0t2/fHs2aNcP3339v3cvPz8eyZcswcOBAAMDAgQORm5uLlStXWmnmzJmDWCyGAQMGVHidFRQUFBKC42squwZilJ+o7BooJANFe4BIUWXXQkFBQUFBocahUkOGFRQUYMuWLdbv7du3Y/Xq1WjYsCHatGmD++67D88++yw6depkhQxr0aKF5eG8W7duOP/883HzzTfjzTffRHl5Oe666y5cddVV0p7LFRQUFKocPMJOuFB2HPjlFaDdtUDdTsmpkwNVIuiFQiJRsA2Y0RHIbAJcdtA7vYKCgoKCgoI0KpXpXrFiBYYNG2b9fuCBBwAAY8eOxaRJk/DII4+gsLAQt9xyC3JzczF48GB8++23VoxuAPjggw9w11134ZxzzkE4HMbll1+OV199tcK/RUFBQaHSsPxOYOdHwIbngatKkl8eGWlS0/wfEihUPeyfqf8vOSROp6CgoKCQWMQiQChF7aU1HJXKdA8dOhSiMOGhUAjPPPMMnnnmGW6ahg0b4sMPP0xG9RQUFBSqBw4v1v/HSiu+bC2mEwsKCgoKCgoKThTs0P2gdLgBSM1yP48UA190BOqfAgz7tsKrp1BxqFSmW0FBQeE3g/xNQFZLIK22ROKqftpNHpbGACimW0FBQUGBgUixLsFNyfROWxPxVXcgWgwU7gB6T3A/PzgHKN6v/ynUaFRZR2oKCgoKlY6y405V6qA4sgz4siswpQ5wYHb8+VU6SPXyWOVVQ0FBQUGh6iIW0ZnOGScBUY4m1oE5wJwRul+Jmohosf7/4JzKrUd1wJxzgS+7JYbuqoJQTLeCgoICC3u+AKY2BL7tE39eu6fa1/MvkXihiku6tRrIdO/4ENg5ubJrUXmooUSOgoJCJaI8X5fwFu/lM9VzzgEOfAcsvrZCq1Z1oNZeAEDRXl0okf8LkFvFI7gEhGK6qxvK82vuaaCCQlXCqof0/8dXASVH4syMWGrD6XHmVdVQA5jusuPAD9cCi8cA0QpwRKegoKDwW4DjUNbjMLmkmqpXR0slaYQqfphe2SjPt69r6D6smO7qhu8G6Wo6eRsruyYKCtUDeRt0e2q/OPGrfV12PL46hIiltn4PifRVfHPe9LJ9XRMk3ZFC+5qnAqmgoKCg4BPk/lBDJbrfDQSmt5Swya7i+3plg9yHa6jmlWK6qxvy1gPQgMMLK7smCgpVH5FC4Kseuj11rDx4PuG0+OoRK7Ovs9tIvFDFN+cSIo5zTWC6He1dMzd7hSqCwl3Alv+qwx2F3wY0P0x3Fd/3WCg9qmvDxcqAYz9Vdm2qN0zbdwA1QoOOAcV0VycU7ravQ3EyAQrBEA/jplDxKD1qX8ejrhSv5DkWsa/T68eXFwuVKhmvAptj6VGg+KB3Oh5ITYQacYgQAGTYt3jaUkGMmf2AH28GNhBejI+t1J0H7fmi8uqloJAMkOup59paDZnufEIjzmtvr+oabJUNkulWkm6FSsfnhIQsxYj1p2nAwsuBJeMqpUq/Kez9CphcB9g2qbJroiALkpGI58BEi8ZXj3rdE5cXCxW9QdVqW3ll09A04NPGwLRmTvW0wPlFvNPURJAEY7So0qpR41FySP+/72v73oJRuvOgBRdXTp0UFFgoPgAcXR5nJn6Y7iqK4gPAzNOBrRPdzzSCrmDtheTBv4IYDsFINR0rHlBMd3VF2GAmCncCuz8Dtr+j1NUSCdbiOf93QKwUWHpDxddHIX7E4pgfsTgZ5eW3EXnVAKauVnv7urIJKZJBPLElWB7kN9SE/gkC8rsru09rKkiikiTWIwUVXxcFBS9MbwnM7B+fDyHHWuKxrlRVSfCaPwJHlwHLbnQ/c+wXjO9b8yfiRxX9vqoCx/qoJN0KVQkswvC3KqFJNLZOBKa1UPY5NQGkdPv4z8HziUc6TR+GyeTll/iocGLFByGVbJQTDEtQbQayT36r66ijDZKgjaHg9O2Q1dK+JjVyFBSqCkyG+cjS+PMAJBipKsqUluXyn2keh5Vb/k38qKLfV1WgbLoVqixM4jKc6r6nEB+W3QiUHACWjmM/T61VodVRiAOkFPTHW4LnEw8TQobBACSZuiq+OTsYtEreHI+vsq+D1sVBGP5GGU4H8fgbbYNkgxxndU6yrxXTrVCVEYqHVahCB7SBQdS7aI9T6JVoDaFkS3jXPw/88nJyy/ALLQYcXQGUn3Deq4FQTHd1hUkgOWxWy9hpqzI0DVj7DLDx75VdE3mkN6rsGijIYst/7OuiXfLv0RtfPEwIPS8rajPRtOQ5xIpVIaZ7+R32dWApdUD18uKDwIHZNUMVTkm6+YgUAT/eDuybGWdGvHFSxQ/ZSKx6GJh1JhCthvSGQkDEsb7VBEdq5Po+vTUw5xzimYd6ee0O9rWURloS95LiA8Cax4Gf7q9a83fdn3UHkyvvJm7WgD2VAcV0V1dsnOC+F4+ke88M4PDi4O8HxaH5wNrxwKqH4vMunQyEMzgPKpHJKNqre7it6kR+eX7VqGPR3oAv0kx3HCrHLgZGpl0SQHysfVp3Lvbra/HnRcPxTUmcD1oMWHApsPpxfpomZ9nXm18PVk7Mh3r5oUXA5+11x4ozOgBzzgV2fxqs3IpCwTbgpwfF88FLTfK3jM2vA1veBOadH18+3HatJu2dvwnY+CJweBGwV3larzBs+Bvw422Vt6fGU64fpruq2nTT9T60gHjmsW6S4UZDqe7ngLN9tZi+H/FU2kuP6b6c/KJwl67BaaEKrTnrn3Pfq6F7kGK6qyvyN+n/HQ6AAp5cFewAFlwCzBocd7V8o/SwfV3VHMGF09n3K3Mx+KKz7uF2xweVVwcvHF4CTKkHzGgPbH27cuvS+vJg79F9HI/kz5VXBY2fdU/r/1fclfi8K4pBO7QA2PM5sOF5fpqsFva1n3kRKQZy1xoED0kYejDdc4YDhTt0x4qm+QLpiboqYs65wC8v6QcYPBTtsa+TLeku2qMfBFQXlB5JTD68uVJdCMzNhH2qMmerOKx+TLcNPrai4sokGcF4okKY3vqB6ivpZjGox9fo9A05D1jfR4b3rd3e/dwFDZhzNjC1AZC/2f3400bA5+2c7eqFgu3A522Bb3qL61ppYBzqVAWhTRKgmO5qD2JgBt0Ei4NKAxMBYpGtaurxPDumylysqgORv3a8/r9wJ7DsD+yNo6IQ5pwseyGRTLdrw5bYTOI98TcP5ZKFirLpltF+8auFsHuaHqLpi07A16fo0R/8qFazvOBXKQKGAZPBFRHt6/9qXyeT6dY0XUVzRke3v4OqiGiZfkCTEJASLUq6VR3gx0RHIfFIREhEaRDj06H26xOzzyR+EOM8WuY2f6oukm4A+KaXTt/s/JhM6E5Hqpdnt5Yry5Skb3/X+ayYkFTnrvPOy8SB79nlVBUw61KF6pdAKKa7uiMRku7KHAYkcVfVmG4uqsBiUJWlDKSDIMCpzVDRCOxYK+r+XbBD//MLOtxYIje7WIR9Inx8deLKYCEe9fKNfwc+7wAU7vb3Hi9sm98QX8tuAvZMtw8bt/0vASHDasCpfHYr+zqpBBnRVkHUJCsai8cAv76amLy44ZOq4PiJFAIntjrvaVW8zjUeFdjmyVgDyDy/7aObP+X/mvhyRNg1FVh+p891XtDuB+cQyViSboK+lqLbiLLoQ4gfb2Xn6wVm2ipAx1pQkm6FaoMESLrJCem10K64V/9L1IQg61xdmO6qcEJYlcMaZTZz/o7L82mcCCyxo/o4UqSry89oH8D3QABJtwwihcD0VmyVYZ7tmAzKC7y1E+KRdK96CCjcTsUvlcCO9zh18TkXyo5T78ec31O43SMDhjSmKqwJ8aLJMPs6qZJu8oCjCh8emtgzPXF58exbqyKB+UUn4IuTqAO8GjDOWTi6XHfIWHq0smsiRkWOk6SsaUT98wxJrcMfRgVIuheN1n00JMoPh9deSN4rkXBs6siDop3yiXjp8TLdFbFnxaLAtnfdh3fuyrBeTkaNKh2K6a7uSISk28F0C4itSJF+4v/rq0CB1ySSBEkwVzkCjLMBVAXPvoEdhFUA0upQNyqT6U5ACCkAKDtGXOfFl5cU4SRBfOz7Wt/E985w3i/Liy882lc9gC876zZrPCRCvVyGWSa1JI4uZ6eJd93QYs5vWH6nOD1LBbImMN0x4jApWWvcz+OB6UR8alPapGm6g6AaD837OtlaKrIo3q//30OsLzxtExkc/xn4siuw+Jr46pUMzOwPbH5DPxCsTtA0YPHVwPIk+O1IBtNTlWy6I0XeaaRA0jceTLcMjU6mp/caknbwFWaQxXRXAB279b/A0rH64Z0IXocVNQiK6a72SLSkWzARyWe0tCgoSBWfXZONe+XAvJFsj4YVCZ59UVVYDI5xGJCqANoBXWVKuoMSDkLnZxymueQQsPV/7s3cNacSNX5C7OtVDzoPCfxA02y7zX3fCNIlgOmWGRdHf7SvefZwcds5UpJuT3MIVr2roKTSLxz7R5LWuHXPUI6VjPX/h+t0B0GHFiW2vOM/Ax+GgKU3JDbfoOBKuol9MI+QZlUJkLbn5ez7XijcBXxzqu5rYudHAU04KgBV5cCDC6rNC7bpNsWbX0t8myZDqs7cK3ww2iWHEhcGk+coNx542SZLaWUJ2t1BS/iRdFfSQfGh+XG8XAP2VAYU011dYYYhSLRNt/D0i+MEJh6Qm/iGv+n/d03VpXhr/piYMhKNqsB0V2XQY6MynaMEPc1l2XR7YdEY3V54BSUpTZak25mpfUkyqn5BqtKmNxAUl4iQYRLfWP8U+5r0Ug7oxNeScXy1c1nQkm7SthnQPTbv/syWxDIPC2oAgVAZcbpNRn/nh/p/kZf6IPjmVP3/tkmJzTcwOEw3eeARTZQELkEgQxcFjTAy60znb4fzKQ72fqWHuatIBj2rlXeaqgRyLUp4yFVifAaNAiLKkwURrRAtBT5rqtuBJ2JMJIouiZywr70ktjLrqiMPqo6k6ZMvYUYlqZcnKr57DYJiuqsr6vXU/2sVKenmqcbFAcfiaSww0UR5ipVA3gZg/sXAsZ8YD3mS7qqmBk9gx8fAzslyabVYkmzE6DxrgHq5zAn1oXn6fxeBHyBkmBRBwEnDIkjoMjdMAH552Z1ux4f2Nc10F++3w0oFlXQ7pHgS38hytLjyPl1FdfFVwPZ35Mvm4eAcZzntfm9fF+8Hlt8GLLxcl8QemFN59nHJhl/i0ES0RF8/g6wl9FpaE9pRBEcbcQ7MN7+p+1WoKtj0sr0/kp77/fQ37fXcPGAXYf7v9DB3FRl2MuxHZbeCIKK7whn2daIPaxxqzgnaw5eMc98LcTS2aBz5wb4mGd3ASIYwwEu93KekW9TufvokNZtxM6YfJO/4OH4TrV2f6mEpSe/qQJzreQ04yGZAMd3VFRYT4Fd1hQFZppt3Sh8tBXZP92/rCjgnu7X4VqBkdM5wYO8XwOyh8u8k/EQ5QSgvAH64Wve2W7RPnDZSrDvKWTQ68fWgF9qq4kgtI8fHi9Q3eMXilK2DfsPf+zxwiRXWxk/UoeQQsPpR4Kf73aGQSEcvKVnE+zFgWgs91FOk0Ek8+GkPUhVcRkLNYro3vaKrqJqHHAkBx46OVl1f92ew16caQCDIHKRoMbdp0ZzzdE/EQZgjFxFaA9pRCM4eSuLYCuDHmyumOrL49Z/6/0Q5Oy3z4bAsUf5jpFAFQ1aJHO6Ra1Wi6ZJkHIDFE56WDHsV9Fsd7eejr2UPmFjpHOuqBI0uknST8ENXkXu5VU5UP0j+4WrgK0OIV7QX2PCCf/PRRVcAB2YDqx6myohjDJlh02oYFNNdXWFO5IRIuonT3a968j0NFpKn1cRkWvMnYOEoYP5I/2WTi1Cj0436kBtJQHU2WZjOYpgnp1VwAxaBZBC8iJr9M3V7sER58HSAJgyqiKTbz/ygNwsHsemX6Q4g6Y5n7DFV3IiNn7Q5p4kAUp0bnLYr2uPM78gS+brRdnRemzvNdCdLEkqe0DuIJHospyAp3suPrdJ9WEQrMYKDjKR7/sXA1Ia6rbSJwwv1/1v+rf8vPaarBZNpuGVGqDGQRKa7KngIl43NLaN+XaEwtdAC7Mes7/TDNFWXqCZJg0DS7RhPiTYJSdBam1rbI4GkpJscR4GdoCV5DfC06farXi4A6dQwfxPw00NOfxleeZL3Thhh22YPBVY/omuTBYHrUCWO9qbNvGoIFNNdnZBCqIjEWJLuBKg9F+8Dlt/OfkaqhJGL/fZ39f+HF/svjyT6W11iXBALL6lSVNE4tiK+90uPAl+dDKxPsJ0iD2T/0xJMV1pK8mkePiSmItTvJB9erLxfV1tjEtXE/CjPld+s6c2RJPz8Ejf0hmducK50fjcoH47+ZOtcpxP7HYdmS4nz2fLb5PIGbF8UrHxZIMv56X6gJEkx3w98xy6TJjxDKRw1zjiJuW9P031YbHo5vnziggRxuO8r/f/mN/jZrLhLVws27amFRZYD654lyk0m0x2AiUh0fVgOGcsToSorQPkJYM8XcUpCjbXGDPMEyK8prMPOZsP56Y8uB/Z9S7xfgUx3pTr95EDWCWCimW5ZiasXaAeYonkoNKsi3pvZL1hdRJ7BE4Kg6uWcgxXheCTbYwDwy991m3fWYSdrbLD6oWCL/p+MPe4HB+fShQTLB0jCIVLVQBVcYRT4YKiSk8xSUEk3Ldk+MIvtEdi056TrkpLhSiqNGMsbquTJZ7IRIezqghBfv7ykEylrHk9cnURwOOPxsosn+u+zprrqsBejLgtXWyWZkN70sm7be2KL+zkd4mbjC/L5OvIh1cv9Mt1Ueq66ZDxMt4cEjet9nZ5fPMkJeSq+JY4N0ec30uVMa8ZOFy9Icwyeh2mAH6YlURJ4UZi2ZMOXIzVBP/o5rIwU6o4zLSTRpjuQ+VWi1y7G2OJJp0Q4ukL3RyKDRVcCCy7WtQ+Cgun9WLI9WUxzvR789DP7A/MuIMqpSA0FAb2RtwH4+hTdfjUodk8DprX056V/x/v2tWhvTbQWkEzEDinQml702iJJ45HfXnY82LhIts+IwI7UeP0oKfkvJ0w7WYedTKZbsMZnNOY/84N42tusX8khXSsziPlqFYRiuqsTWKpEpJQgKNP90/3ue9tZ9pYc26J4Qi+wbEMr09s1D0GYjGSf0NOnpg5pLIcgMvuNtRh6hkqSBZX37unAvpnxZXl4MbDqUffBgMO8gtXeVF2kw/EI1Mu9YtXSp9OyG09QlS4XBJLuWMSD+Cbbk/hOUkqmRYIz3S6v8B6EU0Wddu/7klMmw1Si+fnu9xNFzCVK0lZ6FFj7Z6Bwp+55XQYOIi4O6avIHpxGyUGnk63ctcHL9UKQ/THRDB/5fUH3u9KjuqTvKwHjSmK/ITXe8h9/5TjAqKNse7LWZfPbNQ3Y8ZG43yuTHohFdC2BkiPAD9fq9Vx0RfD8Fl6maxPOY6whgZBE9XKRmY2vfBhMNzc/SUk3EOwQzdFGSRhX9LeWHLbNbwB+nQ/Mtq/JcLD02K9/Mr8sIbwO4ulniVr34sjHpD9+fgKY0RHY9GpiqlTJUEx3tQJJEBuTl1QpDupIjSUVZS3gR5ezn8fDdLPifpIT/td/Bc87kQiyoYVS7WvawURgEItw/ibnIy9nX2W5uvO0nx5iP08UwU8v2Guf1IkML2ZVhFmDgY0TgI0v0oVxrs1bNPMsqWJJv+dgOj2ITZc0VHJzNJ0V6ZnIvcOCSL18x/vAnmnEA4G9OTnmN0xg5wcAWS3t69x1wJ4Zgrr5dCrnd941Octfeq8yWZJuZii1RDnHS6CX4LVP6qGaFkqG+yG/e9kfvBLr//I3i/Pxuh+jbIRLEhSDl1l+FZB0b3qF+BHwoKZod7D34mJe45B0s0yXzLGw/zvgh2t0CbKfspMGqqxf/6VrCcwaBJTnJ66YRPmqkfUREASOQ5V4JJbUHIpFnHUlxyVJM3nmE0TIlGRJN53/wlHUY86cIenc+Rfxsw8aYYKZVsR0JyhMX1zMu1E/s59p07RqCsV0VyswTjVDxEAMKumWZcDisWvlgekFmahPUhx9BUAgpptgvlzMYkCQqvxhaoPSWG1J4NfXdNXmX/7O+Z5ELQe8hdZcRKPAj7cD29/npBPAdNbEKkvGljmoTff6v9jXX/XwkATSku4gY0eC0CTTeHmeNp8XUgS7UF2RyHP/N+z8AKBOR/v665OBBZc4D+h477F+0/B7UEP6vfCDTEJtXaRerkXYjoESJRngqa/7hWmj7odBc9geSjIFuZL2gwCb4Ey2o0yv8j3hs18PLdAltzy0IojwwOEMNfZ1RUO2PZdc775nfvvxVRIZJJnpFtn5mloiJxiHS77L4YSL85cJ/3fCJd0kPcEZZ/mbGXa8NFiSbs7YER06BgnjKcqD7mtNAxZfDay4l/Wi//wBt58jv31E7weO/H2MIb9+XuINIWYXEserpnaeyXQLDmSqEao8092uXTuEQiHX35133gkAGDp0qOvZbbf5cOxTneAgBo0FpyXhMTzwRGEx3R4DPFFqOiyb7qroQMG14EssJokioB3lCuwuvRZk0gFUUm2beBu04UBsz2fAljeBJb/3n7Uw5IiEpFs2lqlX+5DhS2hkNPSXFxCQeCaZbo8TcOueh709bwzRYWsc3tAZ/h/y1jPqCzcT7TXXE+EcUgYO/w0CR2r7vubM6yqmXs4bc6I1KVHrLle9nMV0V2D4xRObvNPQ8LNOajFg9hBdcluwjZ3G0b8sHyZSBXGuk4iDc4Hc9VQYQcm5yWKs/Yy1IBL6oj1AwXa5tKI+Tq1FVsR/PUiQ+13g/Ve0fida0k3OV07eX3YGvj9bHKmAqV7OY7pFNFMCJN2ids/boEcN+DUeNWYvzS2fBwWpdfj5+1qbGPNN5BPCT9uKIm4kwqbbrEtISborBMuXL8f+/futv1mzZgEARo+24wvffPPNjjQTJkzgZVfNwVAvJx0eBJZ0MyakF8OYMAKNIZ1NtrOLIKAXS5nvTzrTLXBQ4hmmxefJpx/w+u9rIxZk6bHElANQzKqH93IAaDZCMl+PMciKe2mCVqeUYrrjbHuvAxdeHUTq+rzxdGSxN9PNdTgmOihiwDdTFpAJ4TnKY2oBsVRtEyXpThRhwamPUH2T+NZ63f0XeWwFsPHvcI2/8gLdpwPLYVhFeqY+vtr/OzyNDRZI9ePyAnYa0n+K19hnzSv9Rfk8aMQiwJwRwKpH/L1XsEVfv0lTtECaA9bL+j8phtons6vFgOmtgRkdgGIJcwXHmkSTxBxnlYcW6CZPfsbUjg/k0/IgWme+7Rt//o6yPDTnSLA0XnjvunyCkOrlokNB2lQsyPgTOCkjTc+COoP1E41DBmkU0y3SwhKWy0gr4hf8HHYfWykqWD4f16tRZ12UennFICcnB82aNbP+vvzyS3Ts2BFDhgyx0mRnZzvS1K1btxJrnESwHKk51LMDMt0sFU4viYvfxaPkMNs7toOZrcKS7m0Tnb9lFjw/6jCxKFAkkuLCkDCKVF89FmRyrDBjsXO+KXcdsP0DH4yFR7qELp4+1culYz96Md0+/BjIjGfXBiizNHPUy1nMDU/STarNA+w1Rq+gfUn7WWAy3Zyx71e9XFb9uIMRVico80uuQ6VHiPvUOGjQi1NGPMQF8W5Wi+D5OPLkjF/R3CM94Nbv5ZE/53tXPeQ+dJp/ke7T4YuTGPnEudYX7QPmng/s/ZL9vI19OI86nf3nf3SZfFpyfZVZ+732kA2cSAueB408hHR11wPf6VEc4j0oikcF1ZfZiF+mm8h7jiA0GSu9rFR99hC9Leec669uiUYy43Tn/0Lk7TFW/UiotSifYRbSnVQ+B+f6H8Miz+AxwWEr6ehMOn/Wc58HBSL18nhtukVrlJ8DDVG0ikQ44DPropjuikdZWRnef/993HjjjQgRi+MHH3yAxo0bo2fPnnj88cdRVCRWIS0tLUV+fr7jr3qAXGAjzv9AgiXdqXpYhiM/sieOn3iHxQeAz5roYaloOCRMRjkOla5Khvmde7+iHkgw3X4k3QsuBaa30h3LeNWFVweRWizglCqxPJXzFvGvTwaWXGfH6PWC10KbLKZbRr2c/MaifcCiq4BDC+GC14b2/dm6R1upKkqMFdrDtMzYIeedl+d583tYYdW4KuVEG4iIZJbKPm9D923TLSnpDpu+DoIy3UQ99ky3DxLo9qrVHr49wXqWTbx74Ds5hqQ8HzhGqO1qMXs8xqLwLek+scUZPz6ekGE0Ds0TZBMno7DiTmD/TL7zIXIeBVJH9UF8+rYxNfuds39y7YjjkHSTTk+5knRJxOVsyUe9/aqXk/sPGVecm15kKqcJnsF5QFchCCiBDYINfyOK8WK6w0DBDn0/PfKj8xlLQs0Stpj58EDn88PVurmPHwg9dgtM96Th0U5+pfMuWiqBkm4R++dHgCe06efUMVrm7V/HpV6ubLorHNOnT0dubi7GjRtn3bvmmmvw/vvvY+7cuXj88cfx3nvv4brrrhPm89xzz6FevXrWX+vWrZNc8wSAxzyQkqDAhB/jvUPzgakNge8GsE/5/CxKh+br/8tzGUUz7IYykxSLNwisiV/Gvi8Ci3EqOQLsnOyW4JkhixzebTl14f6m7G5pbHnTvmZ5YvUi9oVqRJx6sECq0G5/H5g5gIoBT+cnICx4ToU0TZfmuzY5om4/3grs+gSYfRYjX4m5tFHWjMVUpRQstyWUdDBRtr0mtKiuabKD4bzO4SCREzKs/Dg/b5N4J9MnTL1cUtJttV+CiFCT2abDKcbKOOMxHpMYIr/Di4DNr3m/8k1v4NvT7LV54WXAZznA4R+An+7jv0cfhmz8u67FQoeTkmWo4g3ntPl19z0/5ifFB8TPHc7hfKqyx6Jux4Mi5BPhCKVMSrzGPkMzDIhD0g3K+WKc/hJkx4jLLhX2t0tJwvyOMZ9zUZrp5kBWCpoQeDDd8YTmzF0HbHvX7hOHxpRHO4RS9IP5XZ/oNKMDDNqV3JcPLXDmwwWjDrKCACsLhl8ksl4WAq7niVYvl/W54pkNy8+LYP76OaBkORa1yiAPwAjNic/bApNrs7VfrXdN9XJT0q2Y7grH22+/jQsuuAAtWtgS01tuuQUjRozAySefjGuvvRbvvvsupk2bhq1bWeqzOh5//HHk5eVZf7t3BwzBUZFwxWQ2JkXxPuJmAqQ8Jrb+175mqe75WjwEm6bGkHRXlHMYwPv0bL/uQ8Dlzddc/HZ+Amx+E0yw8v5+KLB4DLD2KV6F9H9Fe4Btk5xOKrwYFj+bBtP7dqI2DI/+I1Wzl/weOPqjO3Y0+d17BSGoeJLuLf/W1VnXPU0lJ76xkOPsiE7Hg+zGZLZbRo7+n2kPTi3FUky3D2JUizrjIZNwMCNEG25/174uPcrPO1qiMyhkPjzbZN+Sbkmm25xrCfPmbLQtzajFyiClUeEH9Ls7PvR+x3TUtXOy/n/P5/r/Ta+IwyySWibb39PVwZdcx4gtX4kmPhEfMcJJJnLPDPe65iCyfTKZCy6WOwAB9PH//dnscrnwGKtNz+Y8iMN7ueNQLc6wQLLr30m3MOoRJ/0glFjGwXQHOUSKR8X88BLgwxDweTs5+3MadP+vvCd4Xb4+GVg61o4YU0g4omOablESalId3ZGOZdNNjL0y4pAtbyO48CutZeZB9PW6P/OfBY4skGD1chHT7WsOeZgbup75WCvTREw3UYYZDlLTgJIDADT+mAEIptsUWiTBR1IloNow3Tt37sTs2bPxhz+I44cOGKCfsm3ZwlCjNJCRkYG6des6/qo8XJPVsO9NhGt/r8mbXk/8jsgLIiDeyFiSbnJhyW4FlOWx1WJNrH/ebf8WKeTYLdN1o21mqEXODJVES9zM7198FbD8dra3WpYatenVeefH4np92xdYegOw4TnipsCGm37utfizpD6enqQTxHSz4rqTxPLSG4BPMoCfx+u/vcaXVSxR7tqnOWnIdhEtfxKbbkqmXF3MMs3xIOOcS2qD8UEgrrhHj9POguNgh6jbMR9OpKLFzjGVKPVynrSPRkuOenG8oL+Dx3QfnBNHIfR4iEd67CWRIr5n1cPEfWq8xcuQVRiItlpwCbDwCuo5Ken2uVf6UV098gO/XB48nTVmcB4E9VgdohiLeJnuON73w9S4wnhNB6bUsw+a4skboL6DEUYqmZg1SP9fuJMRDpMB17eJJKEBcXAe46aXv5Qw+OsWw6abHHthYpznDBJUjNEXvg9JiO9wRdgIytASSLSk25U+qHo5S9ItqIuftUG0DpD7N81EA+L+s9KZ/6sNuypEtfmKiRMnokmTJhg5cqQw3erVqwEAzZs3r4BaVSBYkyBGeYEM7ETIYyFIYxxKmO8sGStRgGhisWJBEt9RtEe3df6iE5DPCPlSegxY8ziw+hEn4/ZFF13SSdo9MqsmioMI23uyS72cSlfCsKkVegrmtbnRVuap4J7p/HdkvZf/cB3wHbWZscYTnf/x1cBa4jRYdpH3GocsKSjZD9sm6f/XPSNTGPuat5g7pBqC5U/K0U9Ij8nLklCQnvh/vNVIbn43ox3TqTBjMowXGebKCwe+A1bcxX7Gk3T7gRalpNKcthURESzwCGsa1kFOoryIG+1Pj9VYeWIIWxL0fPFDSPolOsk1qYQct34l3UlkRmLl8nsZ/f1mfHITWhxMtx/wNKFEsCQ4vLWKk0c8cbpJO3ERsSyTr6zmgF+C3wWqfRaO0te+BZdy0sejXi74btJ3RYPe/sqQASnxtarjk6kOajLg0IBg+NHw8n4dEjDdLJtuUohCxrLObCqoYyIk3bI23QGZ26iHnwS/B1VLrqecJSfQppumAUmax89aSeZDOwIl7bZpdXEAYt6AlnRXG3ZViGrxFbFYDBMnTsTYsWORmmoTDVu3bsWf//xnrFy5Ejt27MCMGTNw/fXX46yzzsIpp5xSiTVOAliTtWg3nBtMUILZY/KGGRI9LaYv1KQKKhciSTepXs6QdAM2c8GynSIZBvLajOdMMq3MqtFMN0UMmBJulk23Y6NiLVKCdpVd1EhnN3Td9lP2W6wFORbRQ5UcWeJdPt3u3/QG1j7Jf86FaGPTgJ+fcN8PuqCyJMqA8/TckZ48ZY1T0r1xgh6T97uBjHKM+brvW9vJmSk1ZbVjNuVXQoaZMpl5WfC8jMY4km4SXl7ftagc8+5X0i0CS2MiYcyg0f5tKMkpT9IdF6g29zUXfDLdPK/7rnXQgzhMpgTwyy66GU4iQO6biQ5Ppmm6n4vyE+5DOt48Ig+wg6qi7ppM/PDJYC67kchftAdJ9K8sA8Gc43FIuj3Li4Pppt/Nbmlfk175XYfzkmYwIoTTdUeqhYQZkKfzVKqfgmgfaBqlIi+pzq9RTDePpmEJB+YSoTtlDmv1F923/NINorHh8F4ekAFd8yeP8jn9U6sd/51dU4j3JW26XYc1jDlIf9fc8/j5ieA4FCDX2yiQu8b+bUq9yTRCx3mK6a40zJ49G7t27cKNN97ouJ+eno7Zs2fjvPPOQ9euXfHggw/i8ssvxxdffFFJNU0iWJN11yfUJKxAW2gt6mFrS0CoQsLyYukzDIr1eoBQPq6JTJ/Kmkw3tUBpMedCxjwQCKC+Q7eVQ1JD5eeyV2bYdJNhgBx1YzHdXgxQAiTdhxex1ZYD2+swVC1LjwKFOzjpyW+QUG0SeVo324u0fbOeGf1L+lwwmUSZ0GYyTA3LMWEQOIgeRrmRQrGjO0Cvv8OpI2cs+WW6U7L5z8z27PMKrL5MFDNo9lG9ns77XEdqAGYPczsk81OWhZBexrKbgV8ZNsWkOYDIxIEFUnIvihJxYBZbs8gv/DhFM6HFdOdKstomwryIdS7Rku69M3QzoJn93ev5xhd1LTAXwyFJNAP8ubHpZSJNHONdKOmWkdTHwXTzQhgmAn77mYyfTX837/CWrncixlbBVp0Z/byt3a+ejiepejAPIj0QKwMOfu+RiNFPDkl3Cv9Qi2XTzYMf7+X6C/z0TFCmi478OYcviVw3eHO6YR/+O459XkAPOsrxMkWEux+CmkiRa2zJId38o/gAcHiBM12Z4YxVZM5BwvIjU7OY7mrhDu68886DxthcWrdujfnz5yeuoMJCIIVB/KekAJmZznQ8hMNAVlawtEVF/E20mHIQUwqgOAoUlQCmNlBRqV5eKARkE8RqcTEQk2SYyuCmBYpK9HxLAJjNoEWB3XPtsk2Q31vLJOpCdr50exQa9c+AvTCUlLrzJb8vO9tmTsvK7LSFBUDUaE/zXpT4mLIyoJxaQEs0wLwVIxjpiPFXWKj/FVN1ipQB6TE77YqngY6EjSQAFBbp76TDPt4y842WA7t/AI4uBU662c47QvR/xKif2WbF+c46kPxgJGKXZ5ZdWAgU5+r3UmHP9ij0sUa3cUEBkFEIpKcDmqEWFIPed4DeV3T/paXp6QEgGgVKStxtZSIV9kJK5gsAO2YBfYy86frGYs78yDqUF+j9lwZ97mgaMO0UdvkAUEoWGiLay8iz/ASwdSKQ2USvX3a6vemKoleVUA9P5On9Xlhgv5edpl+HjXqaY7iw0Nl3AFBYrN8XrRF0fULQ55H1reDTtGTaWJm9RhRRfXdsNzC9jT3vAXsuh8L2nC04oduMm2uENZdL9HFhfVehM3+SGKDTAkC0NlBijMUM2Ht0OYDyiD6Wiw3V9hIAxRH3GlFaqs8PqxyqLVjzs+AEkF4IFBVT877EvUaY2DVP/2t+rf47M9PeT1hrj4nyAr09rToYYzjXCHfUcpwz/ZaX7OtYmrNNiyPuNcLc0qIASqL2WG96FbD1bf26qEz/FnKNmNoVGEOZMFjrlNFv0RL3XCaxc7YzX1FawDnvy3KBqOBQIY1YAB3rFLE+FBrjIgX2PNY0fR6ZyNuo+5Ho8Ueg1cVAaiqQYUwODfo8ImHmv2GSXmb+LzZBaLbPr5/o/3MuA5obsaJTUpxEd1G5MfeL3WMyDCdxSn6TY504AUTTxXSEmT4FejtZ0fUifJojWqZ/N7me0LSBuceYqEUc4pA0hzmHGg8EmpwBbHjROe9p2sC1zhKEeUkJfy8AgKK1wCxD86gc+jjm0WDmGrHmcTttcZkzfRFnDz/wszOvwhNAmlHPrCx93Qac855FK5HzPm+Xneb4HiCjoT6/zHvpsMdEebmeN72eZtfX72Vk6OOYTMtDmBjgUQDF5e58zbGanm7Pu+1TCdqzRN87zKHkSKs55+eJE+62MOd9KGzTETR2fu+mDTSIaWySPonFdBrHzLrd5dS8ouyPzWcH5rjrmwKb/iLXiMb93XM1DL3vAL3/WPUtLnenNd836V4AKI7ZZdFtRP4syHdqNRVTaUsBFBQy5hrcdISILwmFnOtUGYBZo4D0+sCgd535zxsHdBhrr8Nl0Ne+NE499kzT/2sxPW1RGb+vybWHRUeQENEG8aSV5bE0BS0vL08DoOXZZLvz78ILnS9kZ7PTAZo2ZIgzbePG/LR9+zrTtm3LT9u1k6Z9AE37KEP/35KTDtDzIdG3Lz9t48aa9nkHPc8PoGndBPlmwE73yz81rZcgLTm0dk3TtP4ead+Gpq15Uk9/aR9x2kOH7LxvvUGc9qs77bQPPSROu26dppXl6d93mUd9F3yhaZFiPe3VHmn/ZLRZLKZpYz3SPjdAr+sH0LRbPNLeQ7Tx5MnitLcQffeQR77/+pem7f1GT/snj7QTJth1+PFHcdrLoGm7p+v5/s0j35FGXTVN02Y+Ik473Eh7cIE+NkRpzyfmxnSPcdYfmjalgd1uorQXXmin+wDiNaIbNC0aSfwa0RLOOojWiMZEuqMrxGtEHSpfmTVi1zS9vhdeKG63w0vsb7viCnHat4k6nOnRH+Qacccd4rQvE/mO9Mj3n601bdFVcmvEjz/adZgwQZz2T0Qd7jpJnPbP3ey0z1wsTnsPke89HvX1s0Y8eLq9TnmtEVcT+T7jkfYyIu3K+eK0Dz2kad+dqad92SPf4dC0DS/odfZaI8aOtb/tbY98+xt13TdTbo0w9+8PoGmZYX7abtC09cTamow14tgaTevenZ+WXCM+gKZ1EHxb48bOOpx1Fj9tBjRt8bV6unV/9aYjfnpEfo34pJ3/NeIDY3yI0r4M+TVi3Tq7vuPHi9M+Q+R7cwdx2j9B0z4M6/n+61/itF9+addh4kRx2vffkl8jJk6085WhIzRN0z6pI79GrLhfjo4w6ztlnDjtQw/Z9d2+XZz29yPsfHeuFac9k6iD7BrxATTtYwFdAOhzgZxzGYK0A7ra3/YB9H2al7ZHK2e+jQVpzTXChGiNaNtW0+ZfKrdG1DHyLNovT0domqZ9O0Ce15BZIwoK7LRjx4rT+qAj8n7+WQOg5eXlaSLUDHn9bwl+Y9Wd2OodhL5ZAFsO0iGLF2TVQszT76Mr/deHn6nP5JI2ppoGKRW8IHnLglZ9TSSSFhMxzri+Qkj0deFO4ofEuBSpl9NIq+ejLgl2xkWCGZJMgKhI9BgQ0vOoEkNTBYIWrM6JsPk04YiHXoO3cE1iPvux9y3Pl0tXcliubEc9ZPc4P2PHZx38It443SIUe5mjJMmm22+/VTck2okjkFwHg3oB8kl3vO8z7wSuf0GdlPkqI5FRIfyM9STOC79+BEw1c1kkqy8qCSFNq+mrlDfy8/NRr1495O3bxw4fVhXUy09sBeacqhP22S2BQxuAIV8COz8Cths2Sd0eBE552qle/qGh2j1yk/5e7npg5gDdBudKw9533X12XG6WejkAdHsA2PI2kGK80/EmYOPb7rSkOqKp8rHnC2D2xXpaWl1x1lnAsZ90dZaefwJOfRZ4J6SrOdHocg/Q669OlY+8PcCnhhOqi7cCWYb3y0+M2IG9HgNOM8JusVQ8P21mO2obFwXKjwOfNrZVR3v8Eej5R2DVY874t5dvBrKbAlPq2mnpb9v4EvDzk7Zq2phS4IMMp0oqALQdo8f7BoB2FwFnz9D7LQIguzNwwU/6s4KdwFc97PdOfgjoZ4RKi0SALZ/onsoBoN/rQIfr9XHz9alu9XLWPjtspq7+l54OHF8KzD7LqRZ20i1An5ec77DUy39+Atj4D3f+qdC/bcHFbDVTs/0+qW3X9xoNWPtXYDnhoGTUbiC9gX5dlgvMaKWrep0zD2hyFjBRsBGnABhrzLGZg4C9S5xlfzcQOL5Wvw4DqNfSdsonUi+/phj4qpWtPn/2GqBOR2Dbu8DyO5xpwwB+X2KHBCostMeriaFfAU2HuNeIg+uArOa6LS89Jk21sNRauh22rHr5OfOAuv119aifn9THLQ2WenlqLX1DjBYDI9fp3oRPbNHTDp4MtBntVvXa9E9g9eP277M/BNpdrV/TaQu2A1+dbP+m1cvNpP1e0x1U/fB7oPEg4JzvxGphn7VwMmAs9fJh3wJNBgNb3gJW3m+nbdAWaNwH2P2ZW73chDmWSPXyZfcB61/Rr0fnOg+1So8CX7e169DwLGAfYQ93xRGn7fbcM4H8Vfp1t6eBzg/a46f1KGD3NDstrV6e1RnI/9V4VseO+NDjj8Cmv7rXCHpNM8vpPBYYPElfp0Qq40O/BhZdGEy9/OJdQIj26k8gLQ1YcB5waL4zX7LOs4foh7gpALrcAJz+P32PJdXLZ51pR7k4eTyw4Wmg+516jG4NbvXykeuA1Y8Ce7+y1UGHfac7IqLXiAFv2eM7JQWYVssmIuucCZz9DVC4G/iym/O9MIB+zwE9HtN/W+YvBcBnzex0l2zX9yERHWH2WWot3buyOe/PWwpkn8ymOcpPANOai9XLAeDcxUDDU/VrUsVz3lh97QOAtlfpITJPeVZf81Y9DHQeAwz+GFj/HLD8jzZtoGnA5DrOMk57DOhl7OElJcCMbkDBDv23i57oCRQZz8w1gk5jwlwjPgzZadPrA6OIA4PF1+nOWFlrBIlLd+nq4ABbvTxWDkxp4HxnTAEwrbadb4Mzgf0L9etzFwINe+vr1GeGR2izDtdotsp43i+6XwETne8Aek/wp15evhf4uot+HQXQ4irg9P/qceeP/Kjfb9QPGD7XqV7+XsimI874CFh8tfPbzLSfZAPlxYBWV/+eIZ8D8y9x1oGc92Miej+XHQemUQ5G6bRNzwfKYkDP8fY4JEGrl+9fqftgAIBOtwKn/d1Ou/sT4Keb9OuLdwChxu592QRPvbz5ecBZn9npPqntVBkPpQAXM/zsLBrjXE9MlADo8zJwkhEqmdy7BrwB9LhNv/4w5Fx7Ot8F9H7e/v3Li8Cmp+zfpQB6PGHHKif3ApM2uDqmzw8v9fJllwP7v9V/k2vEOfPcDjFv1HQadccHetqhs4Ccgex2zoQ+1r/tCxxYCQz+TG9fFqqAenl+eTnqNWiAvLw8YRjqamHTXWGoVcvZeaJ0fvKUBWmHTSNizPBwqh72JQNAdgaQmWITxFlp7PLSAUR3A7U6A7sWGumjdlrypJPnhyMtor9nJt36Njst73vNtJGdQL3u9v0MjbATN2ZrGpz2yiZ2vgqc8QqVb5r9fnYmkG2Ub96LEcRVerq9AJvIDNkbaDhsSyLMhT0jpn9TZsjJeIRDdn3NtPS3Z6U439Gizg3DRHaGnS6VYBhTAWSl2vlGqDqQ+aSm6vbH9FiIZjjfAfQNg+W3LL0MKN0EZPe2HZuFYb+fGRaP55QUo63S3GWaMBcwMl8T5gJH3w9T97LSgUyjHmllxFjR2O/zECb6x/yuWnUAMjQ06ZhGlG9mpnNj2v4SMHCSPiZZ75ESr1q13GlqZbnb+vBi4PvBQMN+wPk/useXCbPveD6AaMRKbaI9M9W7/cwmSUvVvyMCfQz3vB1Y9aCRp/F9mVRm6VFn/ivvtpkSOm1UMI7INSI7C0gz2jn1BLD/A6D15UBGI/15RoZtowvoaw7Pb585P835k5XurEMoZp/ss+YywJ4jJdvtfA59BnS8wX6WUuQU2KRRfZCVBqQReYYJzmfjeODUPxLzXtB/KdDXMYv+PmG3Q3a681vMNaJWLX1cm/OWtU6x5rKJWpnOfEVpaYQgv3+S+ZLvpMfs+2aItFDImaZWbcDcJjY/rY+rza/ZdaDru/pG4OiP1H1j7tNpM1PssmjtqCyzHlmcNiHWEzOPcmr+lKwHGrZ1vkbSESWH7PRpKc7DVi3CpznKIu71g7nfM9ap0qPAvnftcg9+rF/XytKZ7kzA4UjNzNcca17rbGaKvWfTZZNS8TQATfvJjSFrPckFClfqh7eAvv/T9WHu4Vn2nkTCpDkiRe58sjKd875sD0XLZAPlZez2SEvT/yLU2MlMdX+vmZaHE0QlUgCUbtTzyACx94fc+ZJ0RBa1VpNptZgxPzOBknydjhD1sUlHHJzivVYcNJi9pcv0w0wRwmF9PeLRM44m0tj7MgvkGkHOd8D9vhZ1MnJWOs5engknXU/uXWtut5luuqzC5dQ6SAkiMuCkH1JjQP3OwIlf7TQfhYGrysV8CeCU3pNrRHY6Z+zWs9Pu+Q/Qbji/nc01Mx16PWTmMk1HiEDTBvGkzZfTpKrBumk1DObADqXaqmyxKKWuJlBaMDf7VQ/x8xYhVian5sE6ESNV774+hcrXQQV45+8ukLg0HRwRXNOvr8q/T+ZhworTTXsvj8Jx7F//ZLggiqNNwqGaSKvSEb+P/STO3+HN0njmR/Vn/kXAt32AfV+D3Reyaj6idAJVwcgJ9n263Rwhrsj+96uGxKhLKrXB8EIsMUHUxfIEStSpEyHxDqIyteMj/b/p/Z2bh89lXRTqq2E//nuhFJvB16KUN2xO3ei1xvJQyoA59zwRg9WXuWv1UGoLRnmk94BVT3p9iPHnsSyKdjl/s7yXk6DV/+k2PPKDfNk8iQXv/uHFusRzx4f0C/GVJ/VuIryXk+FsOPn5Ncco2MYohzOmSCKWNZaEYLQd/Q3zfyeOZb/uWeIHtS7EygWmJZLrE8tbtqNMApECIkoFL3/WeIlDjbZ2O3HyMobUce+X9rW06rVHe5mabCRo9X4yCoYWBeYM16XNIrjmF/U7Ughsf1+s0svzLu5H3Vo4V406mZ7gpUP3UXNbFMmCF6XFVRXiO2jayFGvGHBwnlyezkycPxsNYNSB1VYStDsrfxN1u7Hv75mh74fRYvczOlxv7fbuNHPP59fLyodDY/L4ikb9iTQea7xG8Dg1xJSqZnzFbwExgum2ui1GLYyyE5cCGTJDCCL/Br05SViTKMR/7iCKAjAirAWJDNME6CpYgOE5kiJ4vQghM5wSvYBoVNub6s6ONHRbcL5PGC6LaLsl17nrwMvfinkegEHY+TF7LMn2j5DQFhDJOz/m5Ecz3byDGp/jJ4VxaknHpA8JJAQ0HHHCGcSoI/wMVVeSIQfYbZhGqV3y+sPv5iSK053RmP8ezXQ7Qq5wxh19P6u5XL1E2DbJLTk4vJCfXmYcxyjCs05n80H8TLeLAKLqQ3+LI6QbGMSMn/4mxhU5Tnh2s/Mv1iXEP1xLZSPLCMVjjyfxrpe9b0yG6ZaQjAzy2CN5Y8oRjoou32hD7kEII0/WvS1v8utFjrVQCDiJkIytuAv4JEM3CaEhFa4NYPYRK4QioNfdHHN+5pDXoZTwXY9yTNMy3j1Zu3ev+UDGRwd0JknE0Bfv1w9uj6/2Ktj589d/AisfsH//eBuw5Pe66Q83C94BaZSfpizX+Vu0VlvhN409cdnNQPux/PQW6PCpkn1Rlsv3oUF+x57PgC86A0eW6b/J/ohF3UIOGciMVWYIPRHtLugHE7w43wsu0cNYbniOkS9Fe7Py9gwlB8Z+ZN7n0QBE+laXivOOldv1Uky3QoXCHKjhVILQpSZKrFSX8LBiuybEcZMEoeXXUUQyJN00IbbgYv3//Iv1GJj7Zgqyk5R0n9jkjF18iIpJyMqLSwAIJN1+4layFucgjju0GNhSFtm8BP0oIpJ5G6XwRJosVgN+Hi+uGgCs/bNuU0Y6PuMRQH4cqbEYGnIzDROHK3TfpQtsV1n5Awh2iMOAw8EUVYbIoZ6Q6ebUje7LNL7tkzRhHimEP0I8gKTb/M5oSbA5RY77fd9QZdH9SkskqfFOM0TkGPUi/snn5IESr03Kjonz84I08+bz3YLtep3LOdoxVh6kNIeTn8MBIgekSRS7IPbtot3EWkyv1+ZvH9oH8Rz4hMLOA4a89fr/r1laWkQ558wDandg58laN7nzS3PSLq7HmuRhL/G7eD+nLK+6EHUSvSMtlfVJX2W1EPeldD8z6r+J8KdiOiZj0SfcPEKMOtBMN7UubH5dkL/xriltLzsm1nCyqkEfPkqsu2XHgakNgBmc8Up+R+lR3SHwd6cbj8qd6QIxeUFpZHrfJekOGY0DTh+yYM5BR3tymG7A9p/Agx9Jt6bJHc5bz8thfb9iuhUqFKSk2yLoKanLjg90px8r7nK/nwgPgOSGyGNSWJuUkHFkSLp5UnR2Bu736QXH9LS+3yB2N71MvKM5r3lSVfp7F1wKfNPLo2oi9W8CQomTiJngEXHEtV/Pkla+jM1DVt03qKRbizrfNQldevF2ENJkWRqw7hnv+q19Etg7A9j9KZEnR53YD9NN1qXJEHd+IYKB9dSCYBGDtFYGp51LDwsqycBSwr6YzlNEdDoOADmS7sNL9ENAM1/6xD1/E7D5TWDN/7nzl12zTv0r/HnF90EYmfU2Dx/Kjtvxs4Mil4rx6ynpptXLqbXIV6QBcjymsK8TCVnpVGYzxk1O///6uk5Us/Y5V/kSkm7T+aYIjkMxiblJwoyYQJd/ZIlHoZKSblmtg9KjutM5Gqx13TrATtUdOnbmtHUsAuRtcOYR4o1Hgun2w6zT90sO2dekY1Heu8d+0h04yrYdmS4icITrlY8wfSRBTHcCICXppvdFSjskd61E/gwBiRD0mi7RxqbUmtZ2dNWFAdJzuha1Haj6AZ1/qTFWTyFMLmTUy7kHon7MMjhoPMh4hV4bOXmLzFfofEiw6F0tCvzyMlWuAKSku4awqzXjK34LcEi6SRUtcoMg1KIilApjQtzuk4smZ6Ltmsq4KSCIHUyhkX/Dvsyk7CqRjKY5gT0YV65al4DpDiQxlpR0iwhekWRYaDMeh3o5b6x4hZ6jy2ZC8D2ZTamyOaqIPBvkRNiP7vvKeT+U4uOElTQ3MIl0UtItkCwGIrISMac98hQx3Q5JN3UAuMbwNj9rkM4c0e1qotHpwPLbgfV/AY6vcT6TbZPaHeXSWfn6UC+3+o8YtyUH/JXnuz60TTelAeLS/PAzdkimmygnWUy3rKSw3xvue7x+WvNH/f/mN+BJbEqZL0kc2LDMRRwQjCmRdFd/wLkta+IjagPq2fFVgrTka+Yhv1F32vzFxO4pOuM7e5h9r/FATp6EJNv0duwA57A3ckL37MzSOis7rpuXrH7coHkYPlq+7QOsvAfY/h6nTLqexnwqOQIcW8n+FlE+W/8HHBKYtwCGx33BgZQsvZGQ4EOcA1+RpNvLLM+kFRyaNeQaI1PvAOFFSf8MzEMWwVpJzg0tBmx80X/5ZJnFB23/D/VPse+b6/ehhXr0nuM/Mw41OLQC94DEw7afBOvgi6deDnjvw1z1cpakOwbkb7R/k9qiLCj1coVKA7kJWoOPmigkcVa0h5qIAqJAxqZNrwSRHWeiyTq0sLIk8tnyHyNfQV1d5bIk3RRoaaXGYPTN913MEEfSLQNZm25Hujjs1Vj2/UHVy1mbuXnqr2niuMMiQkB0iJCS6fwmy2GgSNJNtmkCmG4aJGPpmQc5P0rd98h8AjHdHoROIuCSdAvGvUu9nKgPzZia2iY0SEdHtLMf2e9LSfe27SXzlJkTLkdqiSBuuYU5f9LEhdfhnZ94y7y5afZzVgv5vGQgGwM+nO627+fOCaKvvTR5ZNTLZYg5x9yVZYath+LyeX3C8rXi1wnTAQmbzIwcRpbEIT/g9n9hOm761VArPrrUuz6hsFvS7tA0i7Lf3fpf3WHcJ1k6XUP7OFh6A7DheWDD3xjfQfQLSxrLbHvjne2TGM84MPM5/AOw7CY93KYX9kzjP5PWUEvAusQzexCqAXuYOi0Z607nmEOc76vVlkjvgxYy5zBJyzI1ODjzlD5cCby3Et9LjnXy0M789tln6b5H5l0AV3s6mG6Bs2Rr/PqoryW0o/qApQUjk7c5Vjvf7bz/M0N7jc5r7VMeeSumW6Gy4FAv50iXSLurlAy5EzIASDdC6/R/S1wHR348G1iGRECoXk7UP1Kgxx0W1ZVW92JJuunFmmaaeIwE3Z5k2kASY0lJ95Z/CzKpDEk3h/hJr6//X3478Ekmn6CLykrE6XKp9uc53SH7b9cU4v04VPK0iB4Dl0Yo7EMKSLSZdShB9lHIeWBGwiWtZBFT1D3Sy27CQJUhMikQ2XS7wFkDRGuUbH+mN4L0YRWtrcFzQGOut5ZDtSSqe/q1OxWZW3gXRlwyNJekzSkkiX1ZSXcoDLfjJEa7lB4DynPl85dRL5caO2QaibnpeGR+h0/V8AKGgzO/eRTu4D8zQTtoBOz1iKsqbtSDtdZzJV8e41yG0Znemv8sfwPjJpEnkw4RHKD4kiLH9Hm49wv71qGFurpzEUfVmXcf8LHeJIPpZngvpw/ZvUyddk9150G2P2/Nqn0S8cMHe5JpHNiRTDfLNIA3xr6ltCuDrvdk/uRBFenPJVLg9EVQvA/ug1dy3gn2SFMFnm7/7Jbs+tXuwBdm8BApBLZ/oGuUsGCOF1p4x3IC6Pcwg7TpriHsas34it8CSBsrS+02xp/kNOMkGuzmpGnUDzjpVlEl7Eveoml5+SUgVJGmFrfDi8R1dXn+lfxGEkd+YDNYLM/EFtPtkTeLMXNtZkFUqojfLS+intF1YizOQSTd+ovuW2ZICfOQYM5wnQimsfW/gmw9JEJkfc02NZl9EyShTUpQt74tyNsDWlQPreFCWEB4ujKxL806OpjpELgq8ywvuq7sqT5JtJoz4O4fVqgRE36Ybt4aQPb3ejrUkOR8TqsNeaabamfegYpZr9WP6P/zWAR9guAipGhinNY+EGj7eBdGZkTcNg91JZluWYaElkryEEqBm+lmjKevKIdmXky3jPdymbFDjl9W+CUZSTfTxpGjUs3Nyq96uUyerHpR6uU08jfx8+MS84x6ku3K07CSRsjtoMtLi4ypgiw4JOFBi+mH0Ruet+/NPkt30jWdwwCJ8q9I9XKXk9jNcPm3cTGwEurM5Seo9pVguh2HJJx5eUWu+x5rnDIP/yX7VMZrNxOkORkhgCLX1cM/uOeIqx+JeqbW5aSBfggVi7rr2/Rsp+8DEyc/Ay4NwsPap/TIOUtv0E0uAN0Hy+ft9ENs81vCjGgwNGTLTKuv/y/YYY8hJelWqFDwbLrJRY0M40A/Ey7wJkMvUqXVwJSMmDBV1ByxeiXAIiCFTDcleXNssjzpLmPx3jjBeEQwVGXHBUy3l10Lx2mE84Y4D4AhpSd+m21rqmG66kqqg8Xc92QRCrEXeNZGKSK+WPBkusn6GuO8bhcqGYcgEanredYrCuykYxHDn6Tb4fWWIekm86LbYSulZZIQW70goCXdHkx3OE5JNzmmDs6lnjHy48VqlVVFpMcwr2/3fa2f7icDLht02u52NfWYYafq+O2HOeD0UcyvpFsSPKY4Z7DzN9N3AuO7Sg7K5W89T5B6uef6L9pfRUycT0bTr3q5VJ4C21dfTvoM8OLGd75T/yPLNX0/AIjfR0XIfajGk7TaCdy3TFrG1xqsiQ996zEcvgkdqVWgevl3jFjS+RvFTDdPJZ1EtBTc+vGYbscewFnTw+m6LxAmiPL8SLpprHpYLp0of5IJJfentDoMe3H6QJ1gmC16j1P3rf9h398wwX2PdH4axGQyYkSLWP8X3UHkvJEEb+Ll9wL+9ipA93RvausopluhQiHjvZyUkNBO1lgbyNIbgS3/JZjuVMHADgEiSbcVdoW1yEqqlwNAyWEIN1+aCZjZ352XzMQuNqSEYZrp5qi4ypzQearHBtggvskAeQAAl8RJREFUWeq3JlFQTBGgjnaLR9JN9bWVJcsxht+F24M4ZaqXc5gOLQZs+59csb0YGxArTxp+bLrJNjMPwOjvIeeub1QAI85ziMOCSNLd4kIqbZgd3km48TPaiMtcM+5vfw/I2+i8R8e6ZxHDgO7Znk6bKMgQrM4Ezp91Ogmee4wRrl2xBOEU5CCI1b/9/wOcuxBoebF9j6VeLnNgWLRb/DxRjtRYds/OggSPBDbdmiZ+15Xep3q5VJ4iSXcApns/IyRnKEVnHrLb2Pf2Uc7U/Er9WXD5b6HMe2iw2s4y04tXA4GAqa3V8Wa5d4IwRH6Qt1EPncnU+DPK92XTzdJiCFOHHqRWg8T38db6UIrTFwhZPtOxLpks3oMdDziYbtKOOwo0NZwNbpsI/Poq/aI7LysCioepIMvMT9PYY8hBgwShDal6Hppnl5PC2Tuank28LrGmh8JAI0Pdn9QcSZazzwpGgBVVoVLAitONGITOuVxOSihsm6j/pRo2XSIGI0Qz3RHGc7A3MV/q5QuB4wwbMxMk0811ACKzsGq6t2RSVZAVMsz6LZFnLOJceBKhXn58lS5NrtuFYLoNG/woffrMkHQHsk3iMN2sRdovcSA83afb32wLzmHG1rfl1LIB3TO6CDyVSFlJd/kJZ1uYdqf09/BsumVQIdJvWtLtwXSTTqLIbzX9RFhpQ8CS6915CD34Gvk17Ae0uUL3ALtoND89DbO8a4w6Fu52xqvt+SSQc0Z8GhLSIOZ14XbnI09bV6pP2o4Bjv/Eft8VjozOi+gjUmvIIpwEKoJBCFaWerl5QFuHsN8MpTD2iQQQyFI23RIIhfSIBLy45cK2Ee1Lfm0ckyHpZq3rHurlfmEy72R+pG0+ED/TzdLQYh3iOiDqE4m6pNbRpX9ea7N5QF6LOHRICNMdsL1MM429MzjZ0ppLdF3pduaZPRD3SU/VUvbEHGFNKMx/5unHKMlMNzdaSdSeA6wQXEy6mT6gF9D6ono48kyJj+mm27RuV5uG5h3Yku2w82Pns4b9WC8AqbX1S9LBnZJ0K1QoSEk3z6abhEvSLaFeHhZJ9agNzXVSaRJMPjcB1sSPMCRiJhyEIm0Xw5F0M51KaMCCUdS9GGMB88G8ejpOC7hBWjGMjbqYaku0Z2DWhhPkxDycyt4EEsJ0exCnXGkQ+dtIQzJQXvBasLn9K8l00+FoWIceJLFAS/FMb8B2Bt5lJgVGuaYpg6ykO0aZs7jGShjYM92dh0g92LLlSgG6PwK0OB98qaSHtDJSCHzexnnvlKflVOJM0NL7hMGrr6k5QxPK5DooiioA8Me55QyHo77vqofk+GR5L7fmIh2yTMKRmh/Q+yN3jkt+i9AhqGh/FUm6fTKarHJIszIane8JlqfDh4wP8EwyzLYjHUolur8RgtDPiayk28/hvUMAIoLxnHQ2RZtKOJJL7qvxHsQeW8HJl9qLPbVzWO1ImziSz+KUdLueadR/Vh0hb25nhfz0Ca7juKgHHSHQEPUUoHDGMKv9SKa7PF9QH15RVJtmNrP3Dp5NN2nPTntIP7ackZ5guh2oGexqzfiK3wI0lnq5wI7SteAZE5PlrdehXi5gumUk3fGql3vBIenm2TZSC0PzEey8yminKzG3HZC5SCeC6Q5KVFhaBNTGfXSp06adtUmKbHIB4Ipj7jBBPKlwLAIcpBZNL+KADAFC1osFWtJthaHhSLplnTQBEqekvJPhsJzDskxK/ZRJuIXsAyU6Xq7UPCDy2vct0KC3xDs+YdbX3EBFp+GhFDicspDfsPMjYPObRFoJm25XXcx1iXiXS4h5MN3HVrHv+zo9j2O7lLL55T2nxubhxdRzog3beGgC8CRMlqQ7i/0cYO8nXmDNUXOPcfQry3t5HJJpgH8o64Is0+2XaLYqYiRhMbcxu3/TGwBdH/CoBCMPWnNCul5mEpF6Oeebm53Lvs81yQgx8mM4j4rXkZqIOfTtvdxjXpKaPp5mDua6Shzy7Xifnz7Zkm4vbJxA+UMIoLVHO/MlIfo+izEWrfUSkm6hFoMHWo8CWvxOLq2zAsQlpWkqWj9YY42WdHNpfVYb8/onbJhwAjgwm53EUmtnFub8GS0m/IHwJN2k2arEuOEx3UrSrVChYDpS85J0M9TLWY5ymDHAKdBELUmM55wBa4H0o14eSF2R3AgkJd2sxar4gLuuv/7TdrDmlScLMpJuT0dFjLayVOCN+pKn5Zv+SWTPkOqImO46nXVCr25X5/30hmAujloE+H4oddOjXS7Z4c6DC4akuyyX359k2A0vpNUVP+cREbLqlbQTMJYvAHJuLR7DTk/Wp3AXsPha4OgK3bHKplfs5/MuYHsnJTHoI9t0RBqMMUaCHL/kelFywP0Ny28n0nLWFUd8X7oqhKTbzoiT2IPp5vajjy0w6KYfLeGrcQLwJgQ9CBVSWyBVJKkGn3AzYxiL3mc5OfQCa/3hSbpde4xJbGpiaS4LsahbldEX0cpAMiTdtCT2tL+L68DKww+RLJunlyO1jjd550vCbDu/jIevMjy8kzP3Xlb7SGqJhcJAeZ5+PYdzCEHXQ9ZRoayvlGSZHO2a4qa1HFJimXFF0adNhtrXQqbbXM9Yktqw879VFsumm3PIJYNYBMhq5rzXsC87LTd/oo2aDhOPfZbGF22Kxl2/iDKFvpWg14Hn6NDEIIEDUXq8RYvh6Q+E1M6VyRMh/6GHqxFqxlf8FsCK0y2y6Xape5rXrI3JlCj5cRpFIkTky5rsHIJYNk4gCZG6oBkjk15YWeVECt1q7FvfBvJ/pcrzI+mmDwEYp8OyIXlIHJitSw1pSTcAxAh1e5YNlojpNgmqoz+6nzG9l7Mcqfnc9IXqxJoenoJE+Qm4xlQsCUw3bx7JLvSb33D+Nvtq+7v8vH4hmGjW+Fo0RveoPrMf8Ms/3M/NGJ08tLsK/m1GjbbmqooRRHgoxVZPXHaTxxyR9C7uqAtD0p1optvPRi5knAXYw3jPIQXxmkNeTDdJwAY0ozD7URT2xRHOT7I/WXHeLUm3l3q5Uddf/wlMbeDPm/zW/wJLx1L58eaC5BwR7o2iPBgMgYnig/DsX0dWjDxEB2vSEkkKDnM2BnwTwAxJt8tsyKeqPa8MR57EtzEFDix1/eN6DG0vTSo/plXWIYakOYtsfPtkmiHRjP/8kf7KpbUtyTEjOnwv2OZOb+XBWDuchRKXcTDd0RJ32laXAmd+6vEiS7u0LZCa5cF0s8YSLemWWL9MTVZeWhn6Xhj6i8qXlHTz/IGIhHmAeyyQzt6cFRPUq/qgZnzFbwE8STfPRoWnXi4iloTq5SKEPNTLOQikPihQcd/4gvnAu5xD89jZd7mX/W6ibLq92pfXP8tvJ07LGVJInv2iMOSTQVCRYVwAQ+1I0qbb76YvJCY0YNskxm2qP01nRiyCngsvZkSgXh4IhqokGUecLuOn+4hnjPGV/0vAsslqBPQuz9tAaUk3iU0v87MN0o6WpJt4lw41ZeXvxXSLojJIwI/GwI+3A9/0se2rWfNG6KSITutD0k32CW3awasLCVGIKKaTQw9sfp1VCPUfbPVys11WGmuyH2/y+79x3zNDz9CQPjj0I60hnwkkVTveg9TeTOfluCfamyQlkq57Xo7UfM5nGUl3IkKGubIk5wZrbDPaZ/1f9djapOOvuMFQLxcmp+YpyQgFlW7zPJVz60DtHaRXelnNP573eNG+tOIOQaaMtUMvzF2veBypxUrdaUMpQOvLxO+xDlMtJ4KCOSOSdPtRL7cEMnHQMyJtDJeku9Rb0u3gWRj1ctFxHKZbSboVKhQOb6KEHaXQo6HHqR+NMJG3CyJmnZB0+7EvCcJ0k98R4zBdMurlPKQZtiTW4iVp38UqJwjTLcyfwxCVnwA+bwesfdKdNiLBdO/72nn/8EJIM91+VQJFTLd5wk2XSZexwjgk8GPT7RlvVmADFQS0IxqAr7INsMeKAwEkxYA3k+VK70O93FcMX6od63SWqAuhgWPi9P8B3R8FGvbxUTb4885rI89orP/v87J8WVve1L2Lm5o3LJDzwHMO+ZB0h0J2yKNBHzGy8lgLhdIYhqQ7u5U4P1EZtKSbZjplnR6xwGNMiln+GRJh0y0h6TbTpDfgFcB4lVSxP87uP2FEiAD7FnmPN8cTIel2lRmnpJt1aEEeOjMl3YLyvNRw/cBqY8l2o5lS2hO2/YP9fulRd4hGUxU+IZA9zCHTkQITAdNdeoxfBssfhAMMm+7yfODDEDDzdB+S7lJ3Wpkx74j2QWmXCsc+J7wXmY+MTwrTJ0c85nL0PGk8kPhB09YRYq0QSbrNcll0JfVdPEm3YroVKhRMR2oeNt1MpxIBJd2eqqNBJN0eDEHPJxk3iW9iSUUBBtPtg/GwpGsGsRGPpNu1QGmU91YWRMyVmR8pIUrV1VdpRy6WpFvgfdokqEx7TrquruJZ7eiX6RZstuuecd+LloI7prycxJHw3GwSLOnWYu5x12GcO13BDiM9S5WarEdQppvRP7XaAj3+KE7P0qYA3OrlsqDr3/V+iZcY4z0zB+j1PFCnC12AR/m8dvXoX5M5DnJYZs0XD7XXRDLdpDNCVp2lnENxQHueBWwv937AsumGQNIdCDwHTqxDv2TbdFNEMy1xFTF+5hha9TAwtSGw5d+sRPz3g9p0e4UM87su8mxxSWz4G/BZc3/5Ogtx3yL3RaYET9B2ln1sAmC1sayklRqnjpjPZBg8Tv9+2hiYQplUmeMuETHAZc0WeBEtRAcAluNYxrhkrh2ALelmCJrW/En/f3SZ+yCChxhDvVxmzJ/YDJzYql8fXqT/LzY0JkRrqyjKg1kPXr+R9bQEMkGZ7pB7faLjjZMo3scom87Sw6bb5ZSZtRfA/5pTRVEzvuK3AJaHcZY0zZGe4UhNyHSn8JlCIePqoV7OW6C9GNna7RnveDlGgXux9CVRN21a05zvmv8738V/9egK/UT1y676IhpI0i2KaW5+F9Ge6/9iS+cdaU0P34INVrgJMBhav5Lu099x35O2VTNQvIdfhh/1cs+QYZwxKuv4xoWYczNpdSnbSdUMY4y7CHLa3tGn1K/X3/jPcgYDp/4FaHs146FRLu9AQ6ReLgTV/iIv2VZVzAMwRjk0Ex9UvdxrXJgq4oE2fAmVY690ZlpL+sOAY04Re4LnAZ9PkDHSSQmsX7AYMJEjtWRDtpzATsAo1VeXXbPZhsb3n/mZ/fyE4WPkF8PB2raJwcoWQei9nKfNwpgPrMNbE6z5SftU2fy6OFxoEDj2CEadReM3o5H+PyuegwADfqKgAG7Jp19JNzNP473F18i/w4PMgTepiRkKsxlLJiSYbno9Lt6vOx3N/Zko3yj713/Z92TpD5akW5Zd2vSq/n/1Y0Zexhj0K+kmNVp/egj4nDAXOuXP7HdNDTUtBjbj6mXeyJAyOw55BOOX60iNtOmOQ9JdQ9jVmvEVvwWwbLrhQ9JtMQCCRVrkSM3T6ZkxwYsPAgtHU+EIgqqXszZJ4psym7mfA3CdJvtx2EZLuunNUqQivNCI+52/Sbd/SpZ6Ob0gsQgjmbAnohis5bnue0xHaoz8TfXJRv0YefhkuqMlCD5+CHjGm00w002H0BLls/dLtnSSJFRz1/srP82wQe7Eso8zxo9py2+qUAOw24F3Ui6QdAulntQ4kbFtFEr/aYIioCaA13vxSLoLtjlD+pEgxwYpLWBh1cPAp42AnZOBnxnaP34k3Z6QJOJZB4CysOol6UgtCGQPekuPyq9JfpwBOZ5RazFXemx8f4sL7HtLb/Cul4zndL95eKqXM+bN16cICmC03QbBwWAQeB6MsdpJ0D6maRbpdTsozPEhKz2nI1OQ66VjHw6gWbh7qvw7PJiHQMLySPo0BNTrKkxugwqR6ngkUC/f+SGw8h7iRsxtsia7pvBsumXAPeAN6L1ciznbOyUb6Pl/Nk1BHiyF47TpDoXd9STHm8jkJ6hNt2vtDIO5XvgyZ6u68PUV+fn5Uunq1q3rnUjBHxzeRI1rmrAn4VLtMdOJmG6BGohosSJtun+6Dyg9oi/s13ipRXoww8wFgvVNFDxtq0XgSbo91G5pRAoYhIwM0x1jL0yhMKxvd9mzik4PBX0gWsTKGXNd1pGa5UCE0X9+VdtEJhR+4NXuXG+fARd6Wr1cxGTOv8hdHj0G9n0ZrB6nvaTH1DUPhABCWmC0CRkTM2KYI/Dss0SS7rS67jj3Jn5+gp8PD0ImxSfTHdibqzmWqXTNzwf2fyt+9ef/0/8GfSiuz4JLxfmYnsXpMHMmeJLuIEy3NJNmrotxSLpJJ4NMCUsy1MuN9adwl1NyJAORY0PhXmZKuhmHSOn14aorueZ4hQUk8xWV7YXjq5z7ipd6uW9Haoz5yXNsFxgB1gDRGDOluaFUoEEv4PjqoBWz94J6PeXS0/4g/KqXM+sQxyEWDZFWg6M8ghbo/SLfJJBEIPVyVvkx3Qs9iRKWTwcGWN7LzbIzm4nz8ct055wJ5G9w3zfXdXpPdezf5U6m29ORmpekm6VxJCnp5qmXk47R9kxzP6bbMhRit2FQWqyKwdfKWb9+fTRo0ID7Zz5XSAJ43svz1nHS0+rlJqMuknwyTrkc+XFftMsqPcJ6mf2al4SBNfE8vVMy7sdj0124HSg5IifpJhFOCybp5jmT0WJAyUG7bqR0knl6KCGJMr/xtJcE75P3OJLu3PVUHF1KXZKEX0l3wphur6Uu0ZJuSr1cdsOIRxOChZQMp+QMYBAuxLebm+Kx5ez8HO1BO74SzLPCnVQ+cUq6TQ/20oizf+l+CWx2YCKBqtMuSbeHRFWIgJLujn/QJTAyMOvlUP3VkFBJNwmHlNBoK9MjeqIgiqssknTX7kCs36ywWhKHlPGqlwPuvuPZn5vwbW5RBZQqmeNJ0D4m0x1OBUb8CFwmcQDCzcsY6+EUoNHp/t93qJcHXDuChGh15eEzTJpV17Curl+nk7/3aXg6UiPfj7nT0SFJeRA5UmsyRPwuV5OFc//wQrZGlHnwsvoRdj7mmCL99ljCooDq5ax5GpNkunnhcEV8BWAf9DvqwKp7zWC6fX3F3Llzk1UPBS844nQbE4Pl7dkET71cyHSHgjPdpC2NiaI9undbVjzOUNi2Z+XCi+nmSbrjsOm2JNrE1Fj7FMF0S9iiAno/0eUuv83NfLDK5/VRnnEa6pIKCSTdopNwcxHreBPw0wPs90mwNu0jS4Elv9evr4roRAWpUubKwyfTDc4hxPb3/GUTSgFaXsT3KH18Dec9vwu9cQBFS7plHaE57HCDqkxT79Jzmma6/UhLSE2PvZ87n/k53BIdXpUcAmYNtiWhrDVp31fO317ty5V0+2C6e/8dWPWg/jtepjuRUieepDsIoyNN0FNMd4cbga4PAl91k3jXqBe5lsbK4R7vCZJ0Z+TohzTRYpuJ5an9B4VXKESAfYi08l6g28PGD5PplgytZCcSFC3rJI5a5zb9Q/9/bCUnfUBHaslEkDVA1D6kpDucpjtxTK1j2533/RewQuDjhVvPAG3hOIjx4Q8is6l9WJ+INWfuCKDjzUCehLkTSYPKONKzIJB0c0OGscpnMN1eaDoMODiXo15u5MXU5iIET4lyPsgDnX/+JncZohCo3R4BNk6QyxuQl3QLIx0Ivp32D8Cz6f4tqpcPGeJxwqOQPDgcmxiLEqme50pPOLEA9HAjgDdRRU+6jByg9LBYtYq32R1aCLRjOGuKRYAUCUmXp6SbtwAk0JEaoNs388J18cCSdB9eLFG8wGTABH1yyDrw8KNezpJQiZzrkCAZr71fAK0vtctk9Z+0MxWzTM4hxJLr5fNo2Ec/Ye/6AJ/pJmOQkvDLXIVTdUK5cDvVXkZb9HlFLGXjOVKLB66N1CSAKEl3GeFRttlwyi+DAdJuO57DLdHJ9+rH3arH3hmKH/PWPT+SbjLutSyz7rc+vmAe8CRQ0n1wjlw62pGa6MCWhpmOXEtjZe595MhS/7GFWQin6vtY0S57/YlbU4HC1rf5z6y+ZvRL0W7KDpWCzCGlOe9+eQXIbELtubLrCKkVp9nMNk+jJGjIsKQipK/zPLqIOecE8zBijD2yv4Z+Dcw+0y7PL1KyAzLdBiOixeCss0f/mgw34O9QlIeDc/U/GTjqKhE2y0SDU433RY7UZNo+Bv9mEEb9YixJt/Gsfk+3uVcoBKFZHfm+LGp3BAq2MvIRfZNHFKFQCnDqswKmm0VzSzLdonDDojrTkm5uyLCawXT7GpGRSASlpc7YuAcPHsTTTz+NRx55BIsWLUpo5Z566imEQiHHX9eutjOGkpIS3HnnnWjUqBFq166Nyy+/HAcPHhTkWI3BUi8vEXyrFnWedpWZJ/teTDc1JFqbzsE2SleVyMysDFU3SRUl1sQjmTxZSTePoRK965jgIULSLalejlAwwnrPNL7JgAXq5JC2lwXgkkSxYH4jc6GVlHST6Sw7cIIQpyFzQu4sAPKEIwNdHwBGLAc3DIVVDGdM+l3oSWaMPBE32zgjx+P9BKuXA3D4XCDrQs/PNY/baTrezM6L5YHdhB/1RdEmTJuosNrEpaYYlOmWVfvneVQNiIRIuo1+cxDBxCFVkPrSoQe5RdPrS0jeWzpL6lWnE1x9+MtLwLIb5fJ01Y9YM0JphNqlMc8TwYCQEGmdiSTdJFjrpQzTHYvo0q6f7gN+oD1TB3CkxgszaR641ekMKdKR9PpdIeF+PPZc5kGyoH1MQQW5RpBmXUHCOGY1C9gWxJ7vCDdYATbd3R7xTsMrz3UAKDNuWtrv0/CTjxbz30ek6jbPe3mPPwHdHwfOJ7VA6PCHgrxFIA8DO3LWPjofU9296dlw7emsd0U0DVNQQvB8Qkm3QMIvGvOu9aZmO1LzNftvvvlm3HOPfSp74sQJ9OvXD6+99hpmzpyJYcOG4euvv05oBXv06IH9+/dbfyRjf//99+OLL77AlClTMH/+fOzbtw+XXXZZQsuvMmCpl4sYGFrSLaNeDrgntIxEh2fLxwsjJmsXxJqou6bY1zx1MdZ9lmMwJhiSbpLplnWk5lDz9IlZZ4mfe9nIAHbZok3ZWsQEcYSzWuin+wCbMY0xVKhF6uUHv9f/txjJr5ejHnHadGuaXS/Rwl+0l33fr0Qsi/Co78hT8qQ/YZJuOqQW6RWdkhaYY4R0FGV6oKchsttNlKTb9e2MfutAeXX2JK44Y0j2oEAU2SEIEhkOi1QBdngvTyKj49KkCSDpJpGajcRKQ4n2Dafa89jcexJh3yoLae/ljPsye6UWtRlE17MAkm5eP5y3BGh7DTD0K++x1fUB98F1shHyYLojhcZ+Qn6rxDzkRmwIKEUN0hbknu9HvZxE0IOmul2CvUdq7dHOO73eI/+T8KOmHkS93GK6BTbdabWBXn8FGp5GPnSn4+UtLD+Nfc2qR4Ne+n/zMCy9of1M5DiU3itrdxTXkXR4KBxDIkm34NuPrqCSh9n7eTIEEpUAXyNy8eLFuPzyy63f7777LqLRKDZv3ow1a9bggQcewAsvvJDQCqampqJZs2bWX+PG+kljXl4e3n77bbz00ks4++yz0adPH0ycOBE//PADli5dmtA6VAmQkm4pz420Tbd5wu+T6ZY5XerzMi8z9m1pybPH8GRKY8s43yi50bEk3aEQrM1ZVr1ci4Pp5kka7Ap5522FdhDZ8JuSbhbTbbxXu73t3ZopKSDvUYcsog3PjIHqBZc6nV8Q74rqc+QH9n2/ku6CbbatKukoKiTLdBvPiyW9rMqCSSxS/eWQDlL1TG8AdL6HcoAm8HLqCUFf0IwC6+DD1ZcBJd2ZlOZBXU5YG0esUb9gEcYJZLpdZcWhXk4SYMJiTEaSCC0Vd0idJDFm4TQG0+3DIZRJ3AYGJen2IwmT2UO0iDPPzf8mnsmOM41zTaD+ycAZHwB1TvKeC+EMKtIBkd7LEZUMWl7MuOmxL657GvimFzB7iL3GmOkzm/LfI2kgUprne7xKHP5yXyWkhSymu243YKSHFpnMQVP//zDK9rkHWkw6qXUj4QDNijFt1JMVnsrKpwLUy2Ml1DPJvPw6UiNBjrXyPHYaMx9zL7YEcqRGm8CmmwZJ03p9o9CRGm9d40mujfqb/iPI9Eq9XMfevXvRqZOt1vf999/j8ssvR7169QAAY8eOxfr1ftVHxdi8eTNatGiBDh064Nprr8WuXbsAACtXrkR5eTmGDx9upe3atSvatGmDJUuWCPMsLS1Ffn6+46/KgwzhIXXKR6mX7/xQjoFxSbo9BnrrK3TGjAVTNY4momVVGENhPdxOu2vZz5lMN8MBhp5YrkyLYYxTvTxRXrdZCIWBYo5k1gJlc8nMR9C3VtsSp5Skww5XOgCH5lNlCjZG2Q3MJZnwCU1CgiNCOM3pbbZeD+93TMcg+0itH+N7vQ6xCrfr/3+8OYCHbgGY8b/pDVrAdA/6COj7ivM+/S1eDELtk4z/HdgEiKWOSjPdLP8PfglXzhiiY4t3fZCdLpRClRmnWmfBDvn3/YBcd4IQ97KHYeb64tDAikPSrT+QLFsC9AGSRaCae5KPA6KBPp02uuoiK+kOGp4w6mQGl99GaD9IjtMThO0ouW/xDqG8+ioUFki6E9DPTKaLOBznIXet7i2aPjRKbwh0f5RTFtG26Q3ta154RB6s+RiE6SbpPsY3hkL2+sqDzAFOen3n75TsAIcLhBq8S9ItYrqNw+qYQNLt25GaX/VyIl+XTxNRmZRmDTNvGUm3jCNVSmvAQauR2musccKoA1eTg4FYBFh6k/t+s+GCvuXYdPPCkrLUy0+6JXmHshUMX7M/MzMTxcW2p7mlS5diwIABjucFBQlwfGJgwIABmDRpEr799lu88cYb2L59O84880ycOHECBw4cQHp6OurXr+94p2nTpjhwQCwleu6551CvXj3rr3Xr1gmrc9LgcKQmyXTTk+7EFglJN5W3l3pttIT/zFJLoTb+hv3EedqV0Z3CDHqf/Zi1KLPUgnhpaaTWst8NU5Ju3zbdcUi6vSB76KJf8NOIbDBJFXEp5hzA1v8aEiRKvfxchq8HaSlcBUm6eQinAtkt7N80USLCljfdZSdcRSoEXMbw7XD0RyoZQ9JNq5dz08MeKw7m3afqfX0jRm23R9h9wQtzxyQUEiTpBoCcwfZ1O9omlqiDywZZEiyp6pxz2Gl7x6spRqiXIywXms0BnxpBDl8jgrFNeioXEWdJAcEAWqqrPphukRRUCqZU1dzD41A/ZSEWcb9baB5sSzLdC0jJMfEOzwzIay2lTaDI9Mkye/BSLydBqzCHUvjrGbn/kes/7XXZu4LGvyDjnLTpJp3JkuYdXmugxJin9/qWv/N36N3sXCcz6Mem21wjrHqymEZq7xKBdWBfiyMgsvIX2TvL0EuCPKRU64n68tZuWmvAsa4QBzObXpGrg4PG95ib+74Ctv3Pfb92R/444Umuec6UWXG6SV8K1Ry+Vr9evXrhvff0U9+FCxfi4MGDOPvss63nW7duRYsWLXiv+8YFF1yA0aNH45RTTsGIESPw9ddfIzc3F5MnT44r38cffxx5eXnW3+7dkpLXyoRDjS+Aerl5T+R8DWAQ216EdQBJ6sq7gTUs518CmGqPzUcQN43va3WJfYvpAANymzEZ25xeiCxm3Id6uadDtKCIh+kmbY8kmWmRdJZmKEgNC3PhzDmD8aLHN5gSFnLjNNXc/cCxEQSRMFDj/6Tb/OehZ2T889h4L1zrM9uw7rGYBk1gMQlggaSbluKwxopfxyZmmC/eJmwRwtRcNf0AOCtE/YyD6W5tmEyl1XPnayKzqbMNZTQeTPhRZfYj7ewwTv/fgLAtdEi6U+RjZ/uF2VcxycPgWm3sa4sop9Ymab8bMiAl3QQRR9dbBjLjXEiQG3WZd6H+v2A7O92JX+Xr5Mg/CnfbM0xGpPOLsa8d8FpL6TmeYEk3EyH5wxR6rRFpEPLmJEv9WVi9eCTdxCHGwbnAjI7A/u9gj/OQd76//EP8HGCMY599dcozxPwmBA88SXdaXfvaYrpFNt0+HKmxDuy9nPg26G1f035NpNXLAzLdba6EU2LuYdNtHcKYY56WdIveJe/5kHSX5XLyTQGXF+D5IBKGVhP4pKnm8DX7n3zySbzyyivo2LEjRowYgXHjxqF5c9tD5bRp0zBo0KCEV9JE/fr10blzZ2zZsgXNmjVDWVkZcnNzHWkOHjyIZs2asTMwkJGRgbp16zr+qjxkiRsTJANpQkTUmDZSftXLRUy3KQWnF4DctcD6Zz3ypfJuf71xQXy7uellNrUZMp56uYzUORYhNmHSHi2ApPv4av/qZ7KQdSICuNvewXxJMNNeDqSYRA7DkZoVi9Z85CUpMcskHOOJbCu5+cUr6U5ztmG7a4HOd/vPxyI6POZTnZOA09/xkS+nb2i16bAE002GcyvexylHgijgwRxTB+ew682TdLMIfz+Sbp6qnYnOd+nq8yPX88dIWl1KWueDCPDDdPshcs01yhEyLAar/ZLqSI0h6RZpzsg4oCo9lJCquUEQfSKCngc/zp+YoMZeea582SZEUQ80hqTbfui/LIctqQ/inX7Ok24na1xqUfn46y5JN+cgEOC3rW9NtgTZdP94i+47ZO4IuA6XRNgzXaIcmv4Lw9cYIg8vSG1Lpk13SHe4Z4KWdCfCkRq9d3itxV0fsEND0mmTbdNNaloC3mrqZn2swx8Zm26WpJtkugPOTRHTzVMvL+Gt96y5mMS9rILh60uGDBmCFStW4J577sHEiRPx1ltvOZ736tULt99+e0IrSKKgoABbt25F8+bN0adPH6SlpeH7720pyKZNm7Br1y4MHDgwaXWoNJDq5TKSbpKBtO4JFpy9M4z8AzhS4yEaL9PJsDHd/w2QZ4QvI1XDTGcQpcfccf8AwQSH7QnZIen2YdNNMziAvzBlfhGPejn5rlCCbRyYpGSIGUV6YywvsMcd2Va0qpQM0QbA4YdAVr2LRM5ZRJ4BvcbShI0ZR9REFqHdwz3lllQvZ3kX9UrvNx3PeznJHLgk5aZ6LnmIETDWcdEedv/zPO4znRfSbSRiuj38K4RTgXZXAdkt+fmE09xMd5Oz2Gld5fuRdPvYks35S4aVIssKKh2QcnRFMd1eh8EOXwCcesUjlSclZnrFiLIJvxRBTH7ideDDkjp5qbnSEGlWaFHGmsHQXpHFL6RaahxMt0OrKsGSblabRork+5elXs47UOftk37HkkwUDe67PO0g84CNZLjiAD3WQ2FjXZREON051yyGkMEs034yfEm6ZdXLaUm3QBMiuzWQmmWXEZTpNueMuY6azum8aOlQmKqvxyGQ1c6EIzUZ7+Wuez6Ybh5t4qo79cwPq8ka679VSTcAdO/eHffeey/GjBmDcNh+vbS0FCdOnMCoUaMSVrmHHnoI8+fPx44dO/DDDz9g1KhRSElJwdVXX4169erhpptuwgMPPIC5c+di5cqVuOGGGzBw4ECcfvrp3plXNzi8l0syXa4FR4L4cw12L4JDsPhZkl7Oxt30bPZ9Ew77FqIe+74xnhMbpqn2/d0ARqxSAEtv5JdjfTMhVXU5UhOol2cyNCuSuUj4Ybp5YS8Acd+a9mrhDH8HL6S9D2nH6WK6vdqH2DwswiIA8dt2jP93SORLqHySfg0G/JeTyAfT7QeydoVS3suJsUJL1ljhavyMCzpmrx9JNytMX5MzqfqJmO5yMdMtk084DY51N5QCaSJXJtayla8f4sRkuol1nTxwDCq1OGcOMHy+OI3ZnqxQliyQWlY8tVxpJ24M9CP8J2gaXGYlNNPt62ArXqabMfb6veEzE8H4jUXcTKjlnTsA0x05QeTD6SsZTSVHGuL6wHf+6yQDr3lGOkEzv+uI4XQ3lCI4MOX1fwzo/2/OMxboddcHCndx2tyHTbcMXAdiYaApx/8EC1nNqbkmsOnWIs5vSqWYbqb3cr+SbioPkVlJrNRZVxeDLrme/nQ/HKFrzXHnuY6E4dTME6lfE//NeofT4NrTXe8yDi0cB/Je9AeP6U7RDy2YttccSTe3CAaTnkytrQqGry8pLS3F448/jr59+2LQoEGYPn06AGDixIlo3749Xn75Zdx///0Jq9yePXtw9dVXo0uXLrjyyivRqFEjLF26FDk5OkH4j3/8A7/73e9w+eWX46yzzkKzZs3w2WefJaz8KgVZ4sYES708KtiUTLvARKqXlxeI0/ixF2fanZgLVJjNDJMOko4tF5RDLCRmOzuYRMI5EUvqRjKXVpbJXCR8qJeLYh6LmKaIwcylZPhjBCOEI0WHpJvua1n1cklJNzefOCUsx1fBre4sCGnFs/k36yFz2p0Mm0empJs4bHL8B9DifOf7Vr2pOTlMUqMjWkpWBsz+5xH4LAlUw9P0uMGX7vEue/Mb8kw3V7qQxiBOJPtJtO66yvFLnIBiuk84nzfzQTCT73lpMWgx4MhSSDtSIxmitDrsNL6dvpHvEvXVYsChefbveCXd5tgf9GHAyjH2P7+mGSLmWYswyvCQdLP8QLjeBZBWn5NGRtJNpMnfKE7vG4zvIsfY+Svcz8l3zHGw/q/6//yNbA05QCzpPukWpx2wCPFIugt3eOx/dESKgHBJun0y82QUA6ZNN22rS9IjxjofE6mXs9TUeRCol9ft5k5OO32jy5dqfwPHV8GmW4y6es35UNh2XFi3q0CqTDHOEUJAYr5zfDWnEJbGQQJMP0Ip+jy5dC8wcgP1jHPIzoWSdFt48skn8cYbb6Bdu3bYsWMHRo8ejVtuuQX/+Mc/8NJLL2HHjh149FFO2IUA+Pjjj7Fv3z6UlpZiz549+Pjjj9GxY0freWZmJl577TUcO3YMhYWF+OyzzzztuastHMSNxCJYvN8dckikWmOGoPLtSE0AL8m6pzMbTggjl9SC4wQlnMZmiGmQ75oxstMIp12OzYPRHkymO5mSbklHeoCbWJOVdJvq5eF0f5Keej2J/Il6stTLf/cLcPpEdj6kmpT5DSKG1eFgj4cAUp+ULOfhDQtSKvsSjtSSGYeyiGBOaZtuTdMlkSSRQY9zlno5QkDz8+x8RKDXImY7cA6KmOrlABqfbqs+lp9gpwGAg/PcefIgknTTqpHp9eTy9KNeLks01+1qpyWZ7nLi0CuUoqs2nvIsMORLH3WAN3OqRYHvCDMu+jA4uw31AvEsi7dHxxEakNxLyFBFAFC0171nSEuACSlN7Q7eyUkbVas+jAMfWS0RS21ecGjE0mqzH3Jui5h44ln3h/nphAjLM2vNhnunkUGMONjLYDmXjLKvAX39a3MFO1+uTTfDd4kQPqS0ovcddSDVy+PJ2wDTpltUJXqfCNlRawp3OGk0/QV+/rSkWxgyTFK93OVIzVgnWHsKfUBAQ9QW9OFmtJhg4s1+lzhwH/Bf4LR/6NpG3ANg4/6BWfr/gi36/3CGrhFhPmOFkHOFC4WzHE+61UOCnpLOMLcMIulWjtQAAFOmTMG7776LqVOn4rvvvkM0GkUkEsGaNWtw1VVXISWl5jRMlQMp6ZbxmrlxAvA9pb4tYrp5MUS9iAPh5s1x5mU99+PMhqhHmCKgwilAwVbGOx5OwOwM7UvztDuFXDg0fvsA9mbhKDvJku6mw8RJuDbdko7UTJXpsE9Jt8kANOzjvO/anFOAul1sD8w0HOrMLJV/Ap3uYNuh9npepsZi1G4PdLlXVwf9nRGnXERMem3YQqbbh72aF4RMBUW4lB0DptRzno5zT5oTILXj2ify1iCJiAFea5u0pNsH093nFTkpVzLUy0lJu8ORGtkOYSCjIdDzT0B2K/k6AHxptFUObbZC2WdKfbOHBokfOCJFsBzvUeYRgZwiSdSPJa0/thz4sjuVL2POXLDGvm5rmEi1uVL/79AUgfMgUIvA/c2UyQhp3uEHLlt5Sfix4wzqG4KGOeZ4MePpgxkavOgYvH0nqE13UKdQQvVy82ccYUozmzHazaOuLsFJ2HbC+dMDDMaTzo/47ceRmsxcFDlSY81TEY3nKJuBcAbQfiyZmChbUtKNsB6Srut9+nwVOaZkISXDGemDperN0jjgmYGwIGNuwvTf42fMM5j036p6+Z49e9Cnj05M9+zZExkZGbj//vsRqiFBy6s0SIc1myRCP7Ag9NxoLGI0sZTCcBLGeo/5yFx0OASvV3gPh003Q9Ido09RaXCIexrk+DUl3eRpHamqz8qPKU1P4pwIhYG63cVpzFNQEdMtOlCJEpJuP7a7poScJqSCOlIjDzx49ej3GnsMdKe1bgL0iRbTN8tOtwF1OxvZeGye9U9h3DQlEQHjgJqQjhMvAE/Vz5GGehZmSbrNOeH3sJVz8m1u6FmU4x4ZtWMhU+3hvdxRNUabWIcEJGGRonu5veAn7zx9eS+XZVQISSKZP3lNtrGfEGeA21mgC1R7hilJt8vXgAxDHQfTLZJikqrv5rM6neXyJce2zKEAa36vfcqtXk2vZW2vARoQ60Z9o7+0GFB8ADhGqUtnNAaGLzTSRN11OzjPrLT+76RbqUoxvmX3NP4zGl7MHe9gjcbA9/jxekUgw+SZMGkX+oDMhGiMAPz68vYdP2Hn9AKMfwFpAy+b7ngQSgXO+8E9fr36kPbDQH8bLekWMVO0IzWWM1qWbxEuWIetptYci+mWoCd5SMkAdn9KVtR94CCjXu68wU5nznVamyic7vTezzr4NMOg8fYJr/7mjXmW+Zp9wyfTHBMc+ld/+GK6o9Eo0tPtwZqamoratQPEzlXwD4cjtYAQEX/mAkGHufIr8XA8iwJHVwB7OaqN5iLHVdvzYdPNgrQtCUksml67CUbasUCxvD9K3ksUZAkawE2MkWq+Qkm36ZzDp3p5lHTqQcAl6fZiusnN1QxpVcpN7pvoaHMlWxWURqP+jHdHO3/TbczSQvAj6RYRZaQzIBGEhF0A+z+RpJv3TSN+BM5b6pEfAd7hisxBg4gJ2PeVHtWAhEv9WQDzkIV18CeDpDhSI1TwYhxJt+wBWxC4JN2UdLHLPfQLMpkGr0/9k4lsRJJuv9JJn+u4rNaHa02lD0fNQ64osOoRxvthm+GJMSTdm1833ucwGazvWngZuy4seLYjQ0WUhdTsYLb8LAm8uT/wJN2eTDdPwilwpAbIM9HW3Kbm+Cky4VPB+aYEMd2n/kXX6qKlq17rUYsLqRs0001rlgiiTqRQNt3HGQeaXt65XWVz0rG0p7yYblE/5wx2+rMJheyy/aiXi37bFdX/0XQIXW9632l1CSc/H+rlXEk38R5No/i16Y6V+WiL6gdfO7GmaRg3bhwyMvQBW1JSgttuuw21ajmloTXWmVllwlIvj4OZk5F0t7kSWPJ7+7aL6Q7BuSmLvKqWAzP7CZ4b33TyU8DR5XropTWPu+sEUCdpDJtuFmQnOzmhzYWKJPS9mG4WoZXUkzlJgiZaBiEBJXR8ZB4+pPtfMAE3ke/Xe7nDpttUkRT4a/ArPTh9ok7w/fKSOJ0ZTo5EahZwdVQnUut0Ara/bz9r2A84tIhRPz/q5QKwwtOxIJLKcQkgAZg23eYzTr0zm3LmBu/QyPA6TRMnaRK2015E2M9POH8P+9Y7TxPWN5DECVHHnMHAYUafm/DDdMv2CSnpJqXKPAlGosFkuom6Nx0GrPuzzzzjYLqbE47/WISheZi88yNda0Xam73PNpQ93PB0qEjscYcWsJ+TjDm37TiRH0S+TmT6wUtLLSQp3QqnI5B6eSikv0vOLXLvYUq6abt/lokEqyyeTXcC4nSfM8/H/iqQdMerbWqOD1ddjHzbXw9sf1c3CSs5BJQdNx6HdTOu1Y/Zv0lsm+jM1+WcTCDpZtaTFrgIIDIrYh3kWqFOOaELWfPiwrXAge+Bznfq6vR2RYOpl5PgjguOhhn9m9Y28gpnSl437OvWrgEEfUNqgaXqh2JWxAqfku5YOVz74G9V0j127Fg0adIE9erVQ7169XDdddehRYsW1m/zTyEJINXLebZHnnlISLpT0oFBH9j3U6kTZZp5EhEv5bke9TEmcFpdoO+rQNOh1HMPSbeMOpDUZCcmuKkiRC7KBdvsa6bTtCQ5wKrbhX2fJLhFiBSI+0e0kAVWLyfs6hxl+fRebj0nJN1CKa9fokMyPc+uKhQGzpoO9H4BjoONWq05fWNuvIK2TJWIUzx4incaL8iolwPOk3GRWh99yt1qFND2Kj2ECGuM1WovIGRj7rEjNf48iLCiXc7f9Rjea3kwiSXaptuEqbLHrVoS4nSznM0AFDNEPe98t3e+MmMQEBPPrLLlMg3wjgHSMVLpEfdzM0yVxcDKMt0+iT1ZBtIzndEWO953hluzECZ8m0SAvPXifOjvkHEwKqyeB8O5+zO5PYqOCiANxjzxUi8noUWBNX+i6uJT0u3XkRrLrpn0rC9Ct4c9vsnHfGNpYplrLE+9vL0hiAmnU8wnHYmCqsfOj4zbpkkgpa3mm+k2D+Nl1goR083yEyJxuE+jfk+g673uPar0sP4HEP3uU9LtpV7ul+nmMf2sfe28H4BR+xhlcw7baDoplRDW+dHMBAwaQEm6AeihwRQqCZbTsFSgz6vAshv95yFL/JGMNa3GlZLhXDhFTJ1XeV6eLStD0s0qjwTL/oy1mHlJAmTQ9hrdO/OyP1B1C3PshinEPCTdpv068xnpvTyAIzWXZMWvTTfB5Ek5P/JJ5Jt59X0NWHGnv3e9UHLYfc/c5EUbrxUbm/MttTtI2NpKwEvS3eVe/X+PPwF7PtevLaLCg+kOpwFnkZpOjD7r/qhAmsAguHhpvd5LFLyY7mbDgb1f8N83mYF6PSmHXxRaXuyDuOAx3YQHXprpacTQOmrYT3dCaZqdZLeWKz53jfN3IElbHEw2DVJd9GuJOSIt6fbrSC2opJvK27KvBlCex6hX2F5LIoXA0nHsciwCnRpX8TLdXvbMh+YDOWd655OSHmzshEJwjX9SvZwb6sxA7s/ABsrRJm+fE4UM8wWWWY8k093zCWDjC6xKMPL0AIth5Uq6KZV40tzLLJfrlIuRjyt8IovpFo0tsx4SbS+SdAdRL/ezXs2/yL4OatPtpV7uxXQXU0wz76CP5UgtnMZ2vnhgNicPkVkCfTDjBc2d/rcq6VaoRJDey2VVTF15SKiX06AnnotpMBY1FrHm6SiNUpmnFxmHpJtc2GmmW2DTLTPEWe+b6lMAUKej/p8X25S1mJltLUN48BBOA7P+oTDlKZMHDWKmW2AjHSNsswMx3fQizPBeLgLLkZqIsPBLuJn5Z+aI0/nJywRL6mRqTohUpT3bOVHLtYekO72Ruz7WnCPGU/9/89NZRTG+KbW27lWbiZiboOrxODspCWnv5LA9QsvCHLu87+x0BzDwfXBhzomWv2M/N8dE7xfhy5EaHYaNLIuZD+NeOBVodq79uzeLsE8SXMS/JFHb919uXwFkf0SLvAncZDHdMpLutLrufZRuCzLeOs+PgpSGFYdAr8MIJwTozkllnO55ecM/+WlnmEIek0964fcFxjtm6CTa1IEFcn+3suTREQKtHD9ghvUKyXmp5tYhyMEVKwKFh6Tbak+NYbtMfU9DxuGetX9QNCFL0n1gNv+70usbF5Lq5Svu8MiHSg8g4WyRxXT7ten2GHdeTDcNbvkM9XLfEBwY8CTdvDCWmsZIX3NY1ZrzJTUdjjjdAU99ZBypAc5FlY5FS5dtEsinT2KU58V0054t6e/iLKy0qmsyJN1aDDjpNqMaHvb0LALPeoeRd6tR3nUCDCkza4pKbtRkjGsWTGm26BnPkVrPJzllmiE56M3bp4MWliO1UBgYsZz3gjg/XvpEmAZkUuporG8zGVlRbGdmDE2PfIPAS9LNeh5iSLqbn2c8S2Gkg/sZfY9UQTOhMZhu2kMuC14EsBnCrlZbYNCH3vmRKN5rXHAk3eFUoP21ug07C6TJhek0klRJd6ztPlRVt/7XfT//F3f9WHW27qUC/d8ATn4GuHgr/2BRFmaYmoanOe+ztD/8Mi1kGfTBs8trslfeybLpTuObBdmJ5G26AfaBtuzexlNF7fMq0PIid/pYqa5dBYg9vNftDAyerEtgWcgZBBRuJ+pB0ALkoReTwJZByK2qbELGmZ0f3xT0mnbyU/pcP3m8XRcpUFJjgMG0cuAp9fQj6WZ9u/GNXEdqxv+8DdT6TNvrhvSQV678SUk5eZ/hSA0Atk1iVt3qW5nDhqLdQOFO9rM2Y3Q/EKf82RZgdH/cWVcXgtrNmwcXPm26ueUZ3779XSp5itj01I96uV9wNSQA8LQ56nblZKbB9e1K0q1Q4SBtugMz3SKHPsQiVp9SzyO9JLqYbmMRZUmuRDbkgFtSLZJ0O6TeibbpZkmTic2EJ721Xmepl5vvsKRLknZ/4TQwF15pIsVL0k2H9SGfedh0s+JiAwSD4XEK68l0E5s0Kelu1NfpUfzU5+xnnmCowfmNMc3MVuLEud21/Gf2ix7lVBTTLcmwsZ7JtIUZ194hzTMQKwO2vMkviwcvdUPTZKZ2R7kDKxaCEifknOhnfBvJSJFaTLJbcqRAfGDEXHc4/ZreADj5CXcUiVH7BIdcHFy6Bxid5zZLYmo9UWuTrNQulOKctyc/xcjag6kOJOmWQDgVGL5AP4RuNICTZ9ibACf7lhfeSkqVnaNentUUGDLDnTxWZrdNrbbirNuMBk55hvOQKo88gHetuUHVy3lF+2gXmXrQ+Z08Hhi1H6jlIwICYNfZUXdJ9XLuuuBHvZyQVrseeThS47V3ySFn2aTZgyMbimYzQc5DUhvCy3xS5pCBZZZhlZUBDPsG6Pl/wIC3dM2ZU/7srKsLAc1hkqVeTh5qAUa9RQ5UZZjugDSGaN9nSbrbXy/+PlmpfzWEYrqrC075CzDgbf0UnR6AXqpeJlgqVSbIxa9hb+Ds74GLDHUtx6KaAnR7iHjPnOSMoeRl001LkOmJlt2C/V6ibbqbcFTALcaPYrov2clORyJi2Euz1OqkmW6epFty2rrsr6AzHSZEdn0k0w0AdSnHU7xNL8pzpOZzESW9lNI23WS9zdNx33aBAkk3y97LV9bUt/Z8krBpF9XTg8Ax24TuC9/wUC8nVfutVyTji8vMN5F5jGlDbuUnqYnQ4gLxc6tecXj5Dcx0E9ofLOKTNLORJXpy17qdWpJgHaix6izq16zm+iGXF5oNt69TMtjhnFhwMZM+mG5yXDCl8x55BWG6ZQ4FThjaAh3G8sd5ONXbptvBdHOkslKh9Dz8YbT7vfN3tFTSh4YH6LWF7CPH/hdQ0i16RyYEGasvyfdIKT+TiQyyjjCEC9KOEznrjZ/ICKYWijnWGvR258/dtzn13DvDfYjAWlOsfKixTB7GyIxnEzIRLUT0J+2HpPEA+1Ay6Liv151TFke9vOVFQIdx7nQmeFpH5tg96VaqHA9Jt5e9vZlHEPi16e7/H3D34sKdPg4gqh9qzpfUdLS+FOh4o04I0QP8TMkQbaWHBA+pTajZ2bYtM01sOhY8wQbtqV5Oq20TedQ/FWgylF0/MlSK430K4QzvReSsGYxYk4BjoaAPB2q1ATreZCdlOXrK36j/ZxFefiTdTCdvxj1T/Z0HpiORkO7IKqsl0J0R/9V+2aiDQYi4iAyeZ02eTbdPGx2HOhp1sOPYnD1Usrn5G+lZfSGjzuzMzPlTFIpGRKx5EXJmmwybKV81UT6JknSTJ+6mXaUJvw6bSo86f8tGasho5DEfzP6Ow5zA7+GCCVLSTTPdmgaHk0w/xIVfLQ2eenm86PgH9n0zFvqZn7Kfu9YmP5Just5BGKAkSbpLDni/y7THpr6d1EpganGEgbAMk8JRL7ceU3t0pIAoLx7ykHp34LvsZCxVUikI3sld6/066yAjnAKMOqBra5ChUj0PiIm6XLAG6HKfO4YyAGboQYTscHbCMjh9schQ1T+6zDsPcs0BKMaTI+l22XQzK0dchjiHFJRJIF0nQJLpNsqS2VeETLdgbPOeeR3mcPcfjnr5kBlOfxr0nGl6Dic/o/+aj6CKSeXbSQPAtv/Z1yRdSkulg0DEJNOS7tTa+uGsqCw6AoWSdCtUKmSdotAoETDdwpN/StJNphU5M/N0pCaw6T75SYEkzrjvdSJ/dJn3ItLqIk4aQr1cYzgnIhd90WLMkvrIhpUJp4M5Rc16tbrYIwNCvbxBL70ugz7Q42peulsuNEaYJ6Hl9E0sQTbdpLdUq58ZGy7PDvrs791ZssIhJYLpKNjq/E1LH6Q3DC/i02iTWiwbTx+bkjTTzQnZ5wd+N/E91AHiGT7sr0lCmQZpnhMUfiTdYwh/CaRHfxfTTayloSQz3UxTlQSMf14eF64Bzlsi8GERVL2cUmENQiiyYl/zyrIg40hNZoxIqIZ7qpen6Eyi5xgQaKIB7rXqi5Ns1d64JN3Uu6SdO9nPdbsFLCcOjRUA3EOXrKaGTTtRJz8HdQ1OAfr8g5AqE7AYW0oyLBPpJN443IC91rB84ch6L6fRqD+cfcFjuslDdLJOfpluMz+JPhFqAYiYbqoNOt0JtL7MHdLW/SLntkC9XMTwhkJuU08A3IgEoRRdM4kXwpI83CHb/cRmIlGy1MtZ3ykY0y7P6zWHVa05X/JbAm2bJ6NOBYiZ7nbXCV4kJkd5HhzEh8iZmSzTzVK7olV8HeqYmvMej7g58Wt8DA9t0+2QPhBtULSbn20mI+yCLLEcSuNstmZ7eXwb6Uit0x3AFceBxoY9NJ3vsJlAjz8COYOpojhMN48I4IUME6mXNx7ozsfB+FGEo6P9OCrZzc5251m3ix4O69S/2PfoQ5HWl3vbB9OgvUjTJ+y+x2AAR2ojfgSaC1Ssz5pO/JBVLyfvVdBJ8+HF9nWv573VxmXh5QxRCuT65JFPSoatEXTkB7tsF9NN2rqmwhcz4ZfpZpkXycblFtaDQwCn1wcan84fZ6KDXi8fAg6m22ef8sLe+K0HExJMN1PSTachmW7GPmoR8oK9n1z/eWuHiDGJi9ANAR1uJH4TeZFrblYzBGKg42VC6TV68BQqfwZD6gssesKYrwfnEvdCQONBAfIPAGvNYdBN5hx2HZZ7mDzRMZVDITFzKWK6ZelYVj1ZCDy2qWf9/qVr6/i1yabvezLdsuY/nIM0nokAC6QT3aNEJIhkqZfvIyXwDHrfBaVerlCVQA9wWRvUUoYHWROisDzkgC87Rkm6BWEW6I2NtlERhQyjF2BHXpJMN8AO38QEbfvcgWC6Gc7BSPUc0ts7DZb0TXYTT0lnE4ghSabbwbDSXkYpND9PZ0bpuln9QEt5eEx3AEdqDoaQes6K0x1iMN2yNpp9XtYPF0zQquQnPy12MCcDWUl3Vku58DxWPkSb0fVueBow7Gv+u7XaEfl4MfeMzdsivipQzevYSn/pRWOA51XfD/zadNPzjQy/Z65dK+9x5umHuJDVmDHBIkJP/au/PFiQUedljjWBerlQ/ZNSL5eJ407i2E/yacl+bthXZxhZ0icrvSTTTRPgtJSfdGrHCu0ow3QXbIOtXs5pT57HfdE7MgiFdemg9Ztoi55PAjlnAP3fiqOcBDPdba5w/k4ltam81gxWXRj3zDFbesyZTtaxY+vL5dJxEQNW3A0cM5wjOsYqR9JdYJoOcfqo4x/cDDlzjTXfFzDdfg430ht6pwnKdAcd96S/HBKW+RAx51mOVZmH3QKmm0djyRzGtr1a/+9Qb+fUQQYi88FQ2Lk3W+NdZGpHfduhhcHqVQWhmO7qCC+Ghgde+ATAY6KKbFZFNt3UxkYS/oAtfWI5sLDC9Jhlkqf9pvdG43t433/aP9j3ZdDuajtflvfy7o/q3mn7/FPc/iyiyI+kmykFNhkgzvQ1JWwOSYckkcJiFPTM6ITs93nq5a6lhvid2UQPP+PI3mjTwh2EnTjDDtsyNZBQ0WOB7ru02t5ee71Qni8uw0TX+4CR64h0HlIFss1ojQQvMCWDHpLu+qfozl5Ihy2n/UPvr14T/JUfBHu/8JdexHTzNDBkUNsw3/G06aadYVFjPiXDXuu0KLD6j8CW/xDpfXgvByBtl2yCNWb8emBmgVYFZIE1poXq5B4EGdmPMtJ6lodzGThsEbOAyw4DFwiYdlmm27V2U21B1pcVGkuGwC7LhePQlQUr+gMLcUq6eQxFZmPg3EXASX+w03Kz4bWhRN3qdOI/8zpYPfyDdx1EYI1385CMtX/JoOkw//UgoUWBX/9FlC2hXm5qR7LqOXgqcNItcPWfL+/lUXcaIYyyWDbzNEQ23SKbcLIesk4hATuEJi8/8pC0y73uslhjmnWAIVIvB+T2uP7/1v0s8Oguv6DfM0NX6g+pxKYwixPyj5Vf4Y5g9aqCUEx3dYSL6U6AvY9w46OGCenAQWRXTTNCrtN9WlJN5EGHWyFPETVNP/0/vsqZDw0vGyERwREK24tb7s9UPaGHSBuxFOhylwfTzSCKUgjNBIezOApaBKjXk5Wpuz4mTvuH3RcOJ2QBme4sQz2eJpC56uWSkm76dJ+O2Whu9tvfJWJ2CtTLvZz28eBqw5CuatjyIuA8Cec0LPR+waMMzn0vm1aybzztX2nHTCShZ27OXpLukO7spT8RwqtuZ93ZUPeHPcr3CZOxJeE7jrOgTeJhui1bTIZkSPyi+zdJfG6g1h+/Nt1+x3w9htf7hNh0yxBqjO/qaKgfN+yn/9d8SLpJTSNuvFcCprPMWm0h7bDNLItECi+ihAkJW2AZySYrBKezYsY/AdNdtItoU2Kudye02jIZtsdWEXFKuj0PqSTK4caNF+xnppmN6EDCy3kZyRAE0o4RSLpZ+5eJFiMFWcZJroscfFprHPWtlnYk43saDzD2EBmm26RJBEy3H3OZeNXLsziRcQBnO3e+W75OvP3UdCgZZhx8O9qKJelmtYkH083Tfun9on2dVgdo/3vdBMiRtd89lyrbBDl/QmGnTwez3jzbczKNCZa2TzWFYrqrI1gbWLxqn6IF3WQ6TTQZDLQ0nHj1fY3/vosopNJYTHmY+g33okiGpYEGlJ+wf/LU5r3U7kWhiwBg+yQ6Q3Y6EeHK2kjIQwuReiArdAJg32P1ef2TiXcI9XLpDZvaOKw2oglVno2gpE23632q3KJdjKqJJN0e4el4cNUrpG8QQ2bY9u9+0Z7yjyByqOQAEY+cBb9OnRxFkRu+eS0hUWfWIxGHfHSRjHki2pRZoAm6ut1se0lXpAQBzl/hNHkwiSZWnHcRWNJMs+1ZDHMoDH6fMBBUu8NRZgL6suv9wcpp+Ttg5Ebg3AXGDXJMS6iXn/uDbmtJEnTcd8iDSB/wu6+2u9r7XSktCUlGT8SoLLwcOGg4lCTHokwYOPodvwiFnX0uzEswBrmmA4J3Wpyv/xdqvvgItZUw9XKjr4TSzYDaHzKg10cZ9XLrEJ3VfxzNLNb4Nh0Xumy6iTXMix6jYZpY8UJoBvVenogQWiSyDBMOB91ilEE6s5WVdPtRLyfT8NTfSZiCLL/wmt+ktpzFdNcHGp3OeYX6NjK0WjWHYrqrI/wy3Z3vksmU/4g1EYd8rnvobTrEuCEh6aYXZ1rSTS6SKRTDHAoRE1Rz5kWrrVvveCyYXqeltOM5X0SUWQaDqSZVxoVELyeGqYjpzmgMqy8dIcMCSrqtfpWUdMuGDGMxuySYYdzM706gpNvlsCMAYSN0Qgi+ZItuo6M/ivPxJemm3/WjXl5RdttE+ay52O91f9nRBF3fV22ihmv2wEDDPkCrS4hqstpDYpyIHNIxPVKH3E75RBARlXHbf/pAtow5Bqe96nUlNJJkJd1GH+YMdNoNC8GRtHnBcw+hmF4yVm+Q/cJPGlb5/Awl0zkyD/AOp7ygkm6uc6oQkJEjLlskHfMzDvyOGYC9j4Q40mQS3G8CEs90syTdtPaV+Y7oYEGiXuW5Rn4Cm25eeMieTxBFEmWdt1Q38ztzKvs94cGKoM7kfh3vXkj6jyHpFnMMkJJmWZtuL/VyM1wt4KQ/ZWgbPx7kWWUzn4WpepB+Mvqw36H36YaSB4XVAIrpro7wLemW6eYACzrJGDPVy6lFnlbpom2lHc4WGMyqJdXUnExH26tsxxAkSAKIBb8LaiDbLhZRFGZfd33AmUyLgd0vYeq/gbR6QINTib6gHKlJgcOEupg8nzbdno7VqPxYjlIs50GMGL1BpX6yTmxEyGaE8CLh2y6R07YnyBjYcUjsPNXLE7wtMA9Q4JyzLOKCpXIuBEtaaB7KxKFeHuIcPHnCJ9MN2JJJGdD22Dln2tdNzhK/2+oSYPh8+bJEkJpDEuuPI8ySiCjmMJqigwZyj/F7YCWCyzaUlO7KarhA3nzHlZWsf5AA+3vcIcMSIOnmPgsBIzcAZ3zi3vstB6gl7tdM+NkvooJ8uBBIusn9y1wHBryta/ORkTVcWSZ4XWbadFP1tqI+iKSw9AGLqD+pfYs8LOcx3T3+j32/zkl6hAue0EVoM1xRkm7yYJmYqyZ969DGlGS6vbyXk3D4Lqgkphshap0i25fXD15CmuqLmvMlvyX4DekTyQcanOaRZ5ynqDKTgueN2Kx7vW66V9NWozj5mXXU4Fi8w6lAn1eAttc4k3up0XkR4J3vcf7mEpcCIo4ZJoIj4WtH1b/tVZy+Djv/mzjlz2YCo1oJcKTGZTj82nT7lHSLpIukhK/0iHEvQZLuIIdP3R/WfRCc9jL7eTwSLxIlB+3rXhP0DZuUAohQmZJunppn1/uIMhlz0a8tJdNm0fjGkgPB8tQzMvLX3PeErwVgulmOE3kYTEl4HNpBHvU77SVvxtzEBav5z7wOnKzqSOwPA9/T59FZM8TrFW98DnxXonzSz4UECraJn9PqzzKO1BoIvJ+LwJLqy4ZZcjgiCqr15AM8KZzfcriS7rBuj972SrcjPfOdpufo/7NbuR1i+dkvGg/wTuOuIOMWw6bbrEfHG4GzZxkxwn3kSaP+ydI1lPI/IDJ5SjUis7iYW0E9RerlrEgvXR/Q/SiIwGMUhYclkmMuWUy3pQruYQIpVC/3McfouvAQ2Kbboz0d9IdH+7Yf6y2UqcZQTHd1x0hDlUQ06LdNApqd45FRvIM6ARt0KKx7NT3rM046gummJQOZOcAZHxDVkZAAeC1SpIqpniknoYjpZm0YRFuTRCtdn4xGbJs2q704jGo8km6eejnZ3pfu5i+CXJtuuq29mG7BYcOv/7TvbZto1C+oI7UEMN3pDXSnel3vZT/nSdbi2dDr9wCuLABOeUYuvUOq4aEW6Df+syc4308SS8z+9lsPmukO8+eIH5iED+ncKr2e93tBmG46hIsIdTsDDXrbvx0qfJy16rKDwMj1zpBUXhAxiYlUg67bWZ9HrS6CcD/htZ2oDJ4jJy+wYpuTcHlOlyDYez3PuMmYIy0vcv52aLqYhLfkHPF7YAQgfvVyshxBXqLQgDLaQDwtrL7/1J1HnfuDHp6RhNd+QdoXex0+yDIEpulIiCHploGoHNOE0A/TJKNGbZkAMtrAXL9de72gnvRhB/mbRSvJeA/n9Y8olKuXo0bWdbxgHXyTB6UsvzSsNY3lHBGwQ8GZzm9d5XO+uQvhk4NUTfcDP5JuL4/toRAjP8V0K1QqiG6zJpjXxpCAUzDh63G8L3ta75A4eTgIE9k7mvBSpZE9SRSpK7IW/lBI95ze/VHnyTRLBbtuJ6DLfVQGZr14jKpJYAbwXs5VFSO+MbMpPz+epNtLXUiqrX1s5rKoiBPVTI6dHv3NJoEhrVrqQ2rLSstVL/cpDRZJQgE+IciyzSfhl/l3qegSkm4rTQD7TDMEXzgNuOK4/ickhkwwDnS8mG7fRB5RpmMd5fRtZhNvsxs/kJWG+jblETHdnLkulKaS6uUBxgAPQkk3Zx7JhiGi9yfWd1dp9XLyt6BvDs0TZCTBdPP2kvT6QLcHgVqt3eV77RfxmiAwbbrNQ3GS6fazbwn6w9TK87VmEvnxHNaJfMKY39j+et1jfJ9/8tNa+ZXzf4dCephKXh298qYh8lAvmg+kb5W4HRQT5ZAMtukEzjN/Vp8bYzO7lfN24zP0/y1pYZFVGfZth5PigPDSZHHYs3uol2taQI206gHFdFdH1Oum2+81PYcg1L2Y7gSd1vIQzyZFO03jgpR0+3QQxizXI76rNOEg+PbcNcCA/7rv93jMkHiIbACN8vtQ8cZ5cbrN35Z0JgHq5UxHagwJogmuTbdXW/qQdLNQmZJuL/AOleg28CKY6nQOXgcmA8CTdPvc8LykpjymO8xROQtaDxczRdmVAkDBdvn82l2r/+9GhEdLr+8Os8ID/U1tx0gw3T63ZI3DdFeUDZwsUer3IEdUfx7DJPT+Tki6WQ62/GgYkKBtumVUU5kqpYw9xLU+MNaRZDpSi2sMJcgmk/ceqXLsmo8S5neeBy8+6Bkz5B2JX15y37O8lxP183UAJNKoM+ZXvzfkszOdmwH80GymtoWo/1KzgGFf6+FT9cT8tA5nudlA98f0/+ahAemXwqtcL5TnB3vvwCyi/ARKusNpwAWrgBHLbVX6QHS7MQ5oG/ja7fX/ne/k5MXplxYXiOsgA09JN2+v53xf++vjr1MVRc09TgiAwrJCpJS5B09KOAWZqZmOdDyEQ2FkpWUFSltUXgSNw7yGQiFkpxlMYjgNRUO+0adeeZF+Twtb2pUhANnEWC5uci5i0SjX91KtsPkWUFxejBhNJBM/a2XUt65LIiWIxoxNo6zQlX8tog4lMSCamg1EitwViESQrWkIGYtCaaQUERZhFYsBMSBbiyFkLDylMSBCtjFZh7JCZGlA2FhryjSgnGxeLaTX23gvK0SkjZahvLzUmV9Ms9JnpmYixVDPKotFUM7T6mo9BpkNeyNl2R8A6OWXkfWNlttllJcgQwNSjTqUx6Ioi5S4v6u8GAgVIiMWtSZwRANKI+V6/cwxcXgZEI0AMSA9FoNJnkViEZRGOE5GYjGka0CaUYeopqGkrBCIEOOnvBgoLwFierp0Ky1QYrZZNGq3LQBESpGm2WljAIodz4sd35gW02CSVTENKNaMtqLHWTSG1EgpMgymW9OAIg3OsgmkhlORkZphpNVQVFZMjZkiIEV/18+8d6XNbA0U7Tbaq8RRn3AMyAoDyBmsp0W6riFQv5/Rf/a4C8NICwAdxnqvEcRvR9pIif2dZcUIlRchm9iEi2NEM0QirvarlW6rW7rWCC3kXCOI90oiJYgaY9CCmXekzE4bCulrBFloeamjHtlp2eI1otzuy+wQEDLUy0tjgJWy+LDr27LSshA2CIGyaBnKowZh2OdN4NQX9INN4x1uWkAfqFYbFyJTA8zdpKz1lSjXwta8ob4UmSEjbShFXyNYXXz6JGDpOGSEyDVCQ5lZJlm+MVcyUjOQahA8wnkPID0lHWkpaey0Z0wDFo6y04aMNSIURjQWRUmEbz+ZlpKGdKMOUQ36eiJKm5IOIGTPexoptYGyQiItENNiKC4v1vdBmpGJakiNliMDALQYtGgxiuj1OpRutV0qgAyTR281CkWs+hppU3KGINNU6wRQWFYMpBjlR2OOcZ8CIDMlbBGghY51zDnnwqEwsghCtjAGIGbv8TDX+rICez0xUBRjsGcRfZ8JAY55X1RexFdEicUc6wmTNgCsOpH7fXG0FDFiPqK8xEH0k+uJa9478tac64mZNhqz24toZ33eM9aIGJxrUKQE2WYQlMym7vUkFnPMZeG87/ZHIJwFtLrUTmu+StIcsZC9fxl5Z0bL7DXCzLf3y8DK+5ztUFaIzGjESutaI8y1su7JQAzONYK3npTkEmmJNYJsp57PGnuS3pfWvIdgPTH2GjKtNe8JOhXnzQfSmwCX7EVaWra+34fT9LRmfc15EbN/p0XL3POerHMobB30kvSJYz1hzGknbWDQEVH3XuhOq6HIpLno6REpR0qkxKYNGvTS6Qhr7JYRc6TUmRZAITkOTRi0VTgWBXnkVxgx6AzGO2EAWaDmPUlHEOlD5UU2rwHOemKmhclr6CPeWiMcc60MQCoQM9YIY10rLi9GjKQNstsCRTuBNtcCWpiiI8oQFewbjvWE5EsY8KQjAqZlro0MhDQeBfcbQn5+PurVqwc8BoChcXxhpwvx1TVfWb9r/bWWPckoDGk7BPPGzbN+57yQgyNFR5hp+7boi+U32xt2u5fbYWfeTmba7jndsf6O9dbvHq/3wIbDG5hp26YCO9rbv/sd64AVR9kOYRqnAIc7ALjsMJDZGEMnDcX8nfOZabNDQOENnwGtdeJr5Icj8fXmr5lpAUDrZF+P3g9MFZjYFDxeYE2ccdPH4Z0173DTHrrqLeS0Ph+Y3hp3Hg7j9Vz+YN/eDmhncJsPHwZezOXXYV0boIchhHiqxXg8Pf9pbtof//Aj+rXUT7hf+KAXHtmyhpt27ti5GPrDMADAa7nAXZyw4gDwZQtgZC0AoTAmdXsbN3x+Azft5AtewOgtuhRuygngygP8fCeecRvGDddPwb/69Sv87qPfcdP+Kwe4s75+Pa/PVAz7+Apu2gmNgYcbAKjTGcsP/4r+u/l1GN8QeMrQqlrf4+/oOf1BbtqHugzDC7G5AIAd5UD7Hfx87+h7B15rXA5sfQuHI0ATgTBz7KljMenSSQB0Jrr2cxyPqQCu6H4FpoyeYv0OPc0/wXetEX/JRlGkmJl2SOtBmHfF/6z4wjkTGuJIMdt2tG8GsLyN8aPbQ2g3f4p4jahvrAkn3YoeKxby14h6bbHjjtXA1AYAgH67gBUcfqxxdmMcftgetMI1IiUVhf9nE6TSa0TOYIz+eVHi1oj2QM5Fa4ANz+PO5R/h9Tx+vtvv3Y529dsBAB7+7mG8uORFbtp1t69DjyY9AABPzXtKvEZ0aYN+sV0AgBdwGh7Z/BM37dyWwNA/aEDxQbw2sZncGnGNhknvtsYN2/dw006+YjJG9xgNAJiyfgqunHolN+3ESyZiXK9xAHysEfW6Y16P1zDsnWHctBOGT8DDWAXs/AjLyzPRfwefQR8/ZDyeGvoU8FkzrM87iJ67uEnx0MCH8MJ5LwAAduTuQPtX2nPT3nHqdXit6H0gJRuHW12DJrMZ2kcGxtYBJhmR5gqbX4TaC77gpr2i3UBMSVti/Q5t5tf3wmzgq06tgUv1j6r1TEgn7BkY0nYI5nVpC2x/FwCQsw04wqEjHWsEgHbbgZ0c2rB7OrD+958DrS4G4EFHZNbGjkdPWL/7vdUPK/atYKa16AgDQ4v6Yf7e5cy02WnZKPyjTUCP/HsGvi7gh3fyRUd0BGoN/B/Q8Qa5NSIVQO2TcGfKeXh9BT9Eoe81YnZPAMBTR4Gnj/Hr++Olr6DfqbqU94XFL+CR2Y9w084d/gCG7tQl6NJ0BIBJ+cANB/lpJzcDRt9UCKRme68RTYFxdQGc+ld8lXaKPB1RBAzby6/DhOET8PAZDwOrHsbyVS+K6QhzjQCw/tB69HyjJzftQ/WBFwzrLik6YuRrwIehqkNH/DkVRRwGckibMzEvY6H1O2dPQxwpZg+2vhnA8uu/sWLYS/MaH4bQYyewgTM9LV7j7FlAs+Fya0S9nsDItWI6Ii0bhWNeBQxh1cjIMHy9fS67EgC08fZCOnrKaEzdwAkjB590xEOHkFNLH0B3fnWncI34+YafcUrbU5CXl4e6dfkmREq9vCZC2kaagKz6MR2mpjKw94tg6uykc5SqDplTM18mAUHVpmXV0v2qYSXY3IHlhKQyIap/OM1iuPW0km2X8PPRClSl90SC69LqYqBej8Tn6wfkGJBWw/Y5j4oFJ20VgUIBV0yi3+tAz/G6h3IpJLjfrNCHUXEoIf8Z+0vuxwwm0VEE/EIUcssLfppF1lxDuuxqRNam+KBJgnqWloHfNku4s02zHkr51gnBRPJtEppE+aqftUp2rLUZHawuVRxK0g1b0r3v8D7mCUWVUy9npf2iM1C8T087ag+yP7edLBT3n4hY4Q5grSGVaXw6cPZsYPd0YMl1usrH6HwgrQ5bhWyyfYpX68KfgIa9ATDUOCY7T/tc6uXhNLaDsysL5NQ4jPyzG/REaPAU4KtuKA1lIHL5UXcd2v0e6P8GsvZOQ3jJ7wEAZZktUX72POBL4+j8gtV6rEfjPYd6+ZhSlB/6AfiekOC0uBAYPBkApV6+4AqU7/rUXV8AuHg7Mmu3RsrH+mZSrgFlo4mj+u3vActv169HrkPG1z1ttbAxZSiLljm/C9A9EKfWQkbBFqR+2wuAoV7e9z9A+2uAeb/TndP0/y+wfSJweDHSB3+ItHZ6PFOhmumSsUjf86mtFnbpPpSk1gW+7GarS19ZAOSuBb4baKtv1euBaO56lKQ3BEqP6V5jO91m51u0F2lfdbFVvc74BMXNR9rPjfxMpPV5BemrdG/gllpYn1eAjjc509Zqj9SLNiLjxz8AO9631cKuZItDmGphZNtevN1yfBaXenlJriVFxpnTgOa2zajnGrHnC+AHva8c6uWd70bRqc+L14gpBhF30q0o6v2SM635nQP+h1C7McjWyqw6OtTLh34DNHHa1gnVyym4VL1+fgbY8JydwOyb0qOo9UVb/TpnMEoOLnKqmY46AKTZfeO5RpQcAn68GWg/DtkdrtXTLhiF0l3TbfXyhv2A4c4Tc6HqKAVh2s/b2SHsrixA5nf9kGJ4gy3rcBPKT3tFtzOc1sKVb2YISLlWA0qPoXxqI10d9PRJQFYzYMn1QK8XgDaXA5Nr26qj12go/yBkq462uxbYYURw6Pc60P76xKmXF+4CvrIdsDlUR6+KeKuXG+qgUqroKenAtJaIFe1zq5f3fwsw1jGmevm05kD5Cec7tdoh9ZzZyPjyJCCUAi0WdUuYW1wI7NM1Mhzq5S0vQdHAD8BDyr5vkfmDrQlUePkJmxj++UmHbW8KgMysHODyQ3ra9wmiucUFwGBbGhYOhZH10z3AVl0iXxiDHuLt0AI9Qac7gN4TgK96Ily4w1u9vNdzwOrHdXXQkauABr30tOVF0PJ/Bb7p7fq2EIDs6+ycuPPeWFcc6uXn/4xY0R5g3oX6DWo9dqwRG19BlFanNtHgNNTKszVELPXys2c5w+vt+wZYNFpXLx/4DtDheucaMdktidRV0QHUPgmlF65zridTG9i0ypUF/teIjwzagFQvbzYcOGs6sOwmYOcnAIDMq8uRkpLKzvfzNvpeWq8HMGIZMrf9Dyk/6VJxl8r4JTtt51w7P0HG5leRmruGndZE3a5A/i/6enJ1GRBO0+f9hwRDbfZbwVbg61PteX/aS4h0vpu9nuStA2ae7lYvH81XUbDm8ponEF33rK1efupfgC732v3X9iqkDXrHPe83vQqs+aOexlRThkC9nEEfWLTBhyGbjuj3mh7CipcWlHo5Pc5GLENKg1P4dISmAVMM++7eLyCly13OtIuus9d0ExmNgEt2IowQsqba86jwgo2608DCPcBXXR2vhAFkDfsKaKnPRxf/YNa7xQUInTnV5jU+DOnrSVZToJhSl2h9OUK7P9XVy8+ZBzQdYq8RZDsM+ghIrwvMG6mvEQ16Axf8pKf9+Slg4wQ9HTmGAdQKRYEp9QAAJSM3IUpHICBQFdTLy4vL0aB+A09JtzpWIlArvZaj80Tp/OQpC5Kp9p32/9s78zgriqvv/+4++85sMAzDIjsDsgwDsigji7hA0PAoCrjEFzMYffSjgkkkPkZRfJ+8bgSyKMRoJDERYoyCiICasAQCImBGFBRUBlCEGYZltnr/6LtU963e7r19tznfz+d+5k533arqru6qOnVOneNwBpSH6Z1l+1pSnW7AmRI473QD7nTA1sYdk+rJCwN++IUpbnWN7xwAAO4M1TANKXYANgZc+jdgsyIUiuIeeZweeCBwNtP9JuDz30ud+t/7Smntdnj43/vq6vJeY07A9Mhtd8DtyQikSS0IlK1YfHM73HC70+XHnZ6gukr52uFWW7zzZEmhOXIqgVMfwpU/FC4+DxfXLu5M2cKmy+HyT4Jl9XBnSs5LHIHB0WkDnO40qX5Ot5Te5Qbsduk7tzLttDvhdKu8+k63rA4Ou0t6hmX1TJc+sufCDocNSEerdNxXFx9t8muzQ/Fu+OrM/+9LawPSbQBcqVKenuxAWoddahevBsnmS2vgvbPZbFId7Db4p6nuDNXfmnvvM7lnMUWzPkH58veap73ZRB/BgtPy9XGlARcC5u/8pB2eTM36CvsIFVKcKcCA+4H/PI7APfbmbeMGxtTOUh/h46IfAelFqvkK+wh3BVDzjvzYl2vgsSOQ0unSvDa3w+2f0OkRlNZuk78j3Oq/2+EJ9CeitvU7WXLA5ZusulKAzpOAa7nJjuK3Lm5iK3tufO8Kh+Z7ryAobUuGuN6QFpyMvhuG09rsgfeeR3BdgCSkprvTpXFQOd9y2KXnHQBYW6CPKPsecOQ1bxqn8Pr8fYQaLvkYmO7hJpuu1OA8OU13+rTPgNd7BMpXlsNp/dLtkPeRvue49zxg9wLZz9JE7eRKl96NpsN+gRvwziPyBwNZPSTBimeI3IRa9b0XlJfqSpPuOf8+qJDSdTqw6+7gEza7bBwAEOgjPNnyPPmyvP2MrI/QVK4xQX/Sqlp3U30EJ/Th+DtSXpUPA437gb73S+2ulu/E94GPnwT6/8Tbn3CXy7/3gPx+9LpF+vzBJk7rw864+yJ9cdqdcMrmGt483Yr33+ZQ709kbSHhsBkcP+1OKa2/T0uVzzUcTpkTPf9732MO8JFX6O52LfCf/w3Oms9Xpy7+PsKVZiAt10fw110wCug0Iih90H3w99lp0jydT+t0BT+7dpuwTuke79ylVa2vDiyYqc4N7I5AX+lLaweQVgJc4MahXncAZTOAr7zKJu9Y5+8jhjwKfPhj6bsnU3Ic5yvDu3iV6kqVP4PKeUdzYE9YilN7DsUTJJdooCprhJC24XyDoXzi2g5n8eLFGD58ODIzM1FYWIhp06ahrq5Olmb8+PGw2Wyyz7x581RyTGJMeSf3pm3jVtwMmxdppdMzd2kHOqvvAdLFUyAoUu+6FTEBeSc7Ss+zenmrmdBohR/x/Wb8G8CAnwJjX1cm0M9ftV6K+qWXy8+zNuDC8eByDOXt+9/7O1eO/HiQB2Dv79TidCvrqnR2pPxfdC/OeveuikzbQg0ZBijMgCNk1hpWuB2VOvjCsYWNz6O9igAWaRM/dw4wcJF2OUXj5ef6/Hdk6+Av00pzc4U6SRQ+Su0d95/nfiOLy2wEu8r3CBB1k12VdtJrP9VnV1B/I2EldeH7DgPjBd9P8V7/RdYrrQqNPZ+fP73BdrE5gOIJQI+bVc4L8ul8tbG8hfnZZAveunUTYocslrTslELo5fP4Sn0PvhiRGthCA9Cs3sAVe4CKG7XTZfcDRq4AMr0LM1qezg1HgOHgtYG677fivdPzVh0qQe+vMi8DeZdMDL18JeFs8Ri+1KKyuGezcBx33NuGam1pyKhZy2Uax9Cn5ceUdc+p5M45FXM2rn4HlouPJzFxfZWbN29GbW0ttm7divXr16OlpQUTJ05EU5PcHPMHP/gBjh496v8sWbIkRjWOIcoXjX/BGINwcqAVx1C1HK09JjqPk79OIXbKwoFFLS/fcX7ia5cLLnpxuo2GPWnT2PvmC5WQ1gUY9D9AmtK01KbyXQNfPfi2yBkEFF7iPe7tAL/bDTR4F6kMC2zKwdVbljJ8E5/fxG2BdL79kkHxr5XPp9K9prJtBffCa/4p3DccasgwKUPtckPBCuHOlNBtoHx3tvh4tGJkyuLVKhddrBqarBS6lUVx18BpssVpBUL3d+qO1/zwMZ9lQn4Ur9MK+Gvp+X9M/E7t/gqeJyP7UvXSaIW/EfVJZvoppVmpaEHB6Hui9043CjzA+cIahYTdawZ7GOC3f4lQuwabXb09leMFn0eZwPFntPcKX/kfwJkpbQOIFFp7unXnMqL8eKFbbzHL4FxIOhl8iLOu0EQv1KhqkbwZneCddamb+wbB30uzQve4gBM0uPPM/dbotfLPwfHN3O+99yCU0LY+guKkq2B3KZQVGguOdpe8Tfi0/MKiMg9+vq8Mj5bAxLXQvXbtWsydOxf9+/dHZWUlVq5cicOHD2Pnzp2ydGlpaSguLvZ/tOzpkxcTK5V+QSoUp0danbNOx53t3RMY6oRQWF8doVvWAdmB9G5STNayawFnhOJ0azmc0eu0Q5ooCxYULrozOM+6pwPHzmu4L1Wrj6wsRd14LVH+8MB1+gYE5SQn6D4oJhA5AxXpBffCN4jxz4GvDfuqe33VJe4c76g8B6L4wqpoDLB6K95WTFCdggm8XUPojqUDtIjBC906mm7RedFEwxc3t+tM6W+nsYFzyr4ukvDvSHb/yOYtLjDwdcRyyVQTNv2YssL7axNPxG3cMYUPA2Ea4Xm7+DsAYRuoCt0GJsQiyyzDQkkIGjszgkpQed56pZcBHh3hQ2uhRO2c0rybvw8+Py081b9TL1/UH4brKCyrN/D9BqB8Znj5yFARuksmhZadmXFPaemm9TyJxu5L1L1Jy3+rYyGnBj8nEM0ThzxpLB9A8oWjWh8deEfDZucVan2XEtXxW8UC0v87jUWbyTukbQwDfqJRQY26BSlZFEI3fx8vqCzCBQndKZIPpVEv6/chCUS8zTY1OX1asvHPy5M3wMsvv4yCggIMGDAACxcuxNmz4nBePi5cuICGhgbZJ+HResFTSxSrUt4XosetkgA69NnIlKPnQXrsGm+6EL1wijTdqqvkAqGbtUnHL3sbGPOq+HcAMOgRcd5qA02vWvW8gjS4QRXl6mfwvog03bLJn8is0aApZdD99JkiK4VuTutqs+nfqyBNt1KzadM+D0iOgwD5oOrbd9ipWnqeQ8IC83K1/MOh06jI5KOHFUJ3r3mSI6Ghz3DlcM+Esr0jZkqvJEaabpEmW5bW+77wWhblRBcARr0EjP4jUOWbGHITMCs13aklUtsNXx7YxmIlyvt0+fvA95sAd67274QaXSbWBNrdwJWfSNfU+y5g+lFJM/k9fg+9zrugJXSL2jqcbTA+M2MZBqdwRjWNPHrbrzQx8/ypXYNN/VyQptsh/u5D81oEQsyEjdLi0oR3NX5ngE4qizmhoGZerrcwJCK/Cuh2g/H0ygUYzTIFbZ/ezVg5QYv1KtvdlHjyJT8gve8GPIXB51O7BC/sq5HGOewyu1ilNw/T/G0I5uWislXn6BoLe3lDgcpHghVRpV5nt8LtXiaEbn4R64zatilBvbteZ+45TQASxpFae3s77r77bowePRoDBgT2Ct1www0oLy9HaWkp9uzZgwceeAB1dXV47bXXVPNavHgxHn744WhUO3qoCUsAUHQp8N0u7pw3rTNdEkDNFaR+KvMiRTnK84IV6Mv/YbxooQCrZ17O0aQReNFHTiW32qe4p8c2iH/TdYb4eOWj+pNf2Xmj+8gE2me9zt5wSC2lcN2mclyZn+JeBZmJKeoUysJLmtcjP9+Bp5YEvouEFCPI3p140LCq1MGMma0WqcXa560wL3emSR6H1VAKI5wX04gSTbNrkdDt+67UePLnK2ZL8Zl7/yg4T1cWUM7F0ZW9Rxbu6QaA3l5rmq/eiHzeQQi2uTgNCIFGzZEBaRE3q5f0AaT3QrkPU1fjqXHPhZNftT7eQN9/0Xxg/xMGyhCQN9RYOh9j/xreu2JGy6e2b1u5HUz2Gw1Nt+gZMLuQ2Gk0MHWvud+IiGR/ozZmKvf+G2HSVmDfY8bT22ySUPuJd9FUs3/mrtmdJ2ni1dpYSajm5QAwzGvZd+ZzQZXsJkJuhuBnR5hNFITu9IrAvNZvwarWZ4Xgp2DsGsnBYlZvKYoGjxnzciMLQ3FncWgNCXOVtbW12Lt3L1atWiU7fvvtt2PSpEkYOHAgZs2ahRdffBGrV6/GZ599ppITsHDhQpw+fdr/OXLkiNXVtx6RkzEfNhtUBTQjjFnNZ6aervpFoPwGacA2SlqZ8bQisyG9QU02aBsYAJWO13jOHVX/XYpAkOn/oH55/CtoWNPt0+Lzv1XRePloM6g5VK6m+/f9Ku5d3sWKOik7XZ3BU+9aRfFLfYMJ/xzIhLUQnd/I4vbGg9AtuI6MHvrbIfQY8xow8GGg6DLtdLGIlcragKoXpO/Dl0c+dq+faLavwLwcEE+u+PMjVwIzz6loNpVw75FW3xVJojE5CrUMVVNlQbvnDzeQn85kUdauBszLw8G36MhjRVtM2SXFuQ8HU/VSS2sH2s6JTymt3vQ03bGOeR4J1MbMaPXXvEm/p5N6Ov5dG/8WMPoPxsvQmzcYQbiVxA7D84NwtNWyeVgYWvLAwcDX4cukv6P/GDg29P8F/15t/3Moig67UxK4eUShu5TXalcsMhtZyCehO36YP38+3njjDWzcuBFduggGHo6qqioAwKefqnt+9Xg8yMrKkn0SnpErpBi0Y3zxopWagjCE7oKRxn6bMwAY/bJYo+1Scdqktk9JhBFHar4OIneIN3tOoDKyh72N25pg6j5x19FvoTTYGMEWgtAd+HHg60nOz4HQvNzgfmBe6L7qAOcASnGfU4uBaz4Hrj3pPa9nXq7UdAtM5SZsBEqmAFd/BuEA6cuDH1R5jaHhlWwF/H2PCwdUFnnOLZsODHxI/xqj5UiNh7VJnpVvYECvCGn0AaBksvz/oU+L00WCfg9If7teJ/1V03SL3kWZJtxm3DGS7Nm10Lycp+kL6/L2E2L9zQggXQ3st9V1pKbiIEj0vxah9l38fUrram7BWzXLUN//EJyCAhoLJXYpvjgQHCs5aCzX03RrtYWFnsp5MnuF93s183K1/nr619JfkWM5IIRnjruHmts8wphrBs3xQhG6BfO8TpeY374HmBec+b7drHM7vbJ6zQP+qxko5cY02bYJbtvhpO1S9IGrDwXaKkseuztkOo2W/rZw4YHNmJerkhDiaNjEtXk5Ywx33nknVq9ejU2bNqGiokL3N7t37wYAlJSUaCdMNjJ7ApO3cweUHWoYJjN8+lC8ZALq+2ncJsxIRSaCyk595IuSiXuP26T/zTr9aeX9AZiYOPAd+mCTZluBTIz/TolsIi/SdKtoDJTwA7vMCkG0T4vb26lsh6CJgLJOggGwaHwgdNSJfwafF+2LDWePZLQw6wREOBmKpll0LIRui9qx6jfAGu9z3PtuILdSM3lY9LlX8pHhdxjJa7p1Jh2h+iNQE7qtnMC0ntFPEy5G+yslvrCCPHrO67Rw6sSGVQuFA4S/8JE/Evh2q3Yavs173CZpqDuNAU68H3q5Zt9/m0MaNzqNAk78I7heergypIWqwwo/Kza75Afi2u+k74c4Z2hKC4RIaSetxBGmpVLzKfHxMyrb5lJLpEVMwB+zOyxk80AtBUYYPlKUyhlVx64aKPvai37ktRKLgnl5C2fqb7a9jZSlvDY1C8f84cA47wLcpW8Dzd8ZD+Gnh2/MOXOQO6hU8vGWJ2RezhPXV1lbW4uXXnoJf/jDH5CZmYn6+nrU19fj3DlpQP7ss8/wyCOPYOfOnfj888/x+uuvY/bs2Rg7diwGDTLo+r7DEMbqoyy2dQgDhzsvYBqjxGUiFIAR7+UFIyRNmW8PEb9yakTby8dONaWp0IihqQlXf7MOinhBJYNbkBJtNehzj8E8uUm8KQ+uZh2p6a06CwZIvi3TywHYgFz+PY/E5CmCwu3I3wEDFhkzY5URoqPBSBEToduiaxaZ5FqFzSYJ9b73pvkkd07lnrpygPFrgX4LQixUzbzcwkWaaIRvCXUrhXB/q8q90JrkVj4qLZ70vU+7PFkoHGU5ZsZZQd814leB71W/VZz0ObgUOHKL1OTaKFd8JFl5DOfqa7YfveRP0tYXHt/1uHMQ7DNES7MmaleNsUEvXna45EvWl+hxS3j5+CxolDR+EmKGJsdLowsbsvfA5FxT2bdEwrzcv8UwBPNyo3vRffiUS8qQWkbI6ht87BsTPo/U7lX+MKDkcnN10cQXoYa30lT6KAlB0x0XVobWE9ea7mXLJEFt/PjxsuMrVqzA3Llz4Xa78c477+Cpp55CU1MTysrKMGPGDPzkJ2bc3icpZTOAI38Bcr17b8PpCFMKvRpjm0GtHe9IIxeYcSIyq1hC7+URelEnbgP+8wtg8ONc3oo6l2t4UQxZaFAshqSVAWcN+hjgtby8B3VRfFU+lIUW/KAnu369MFN6e7oVg1eejiDKr+CWTA5eNLjqgOTMjZ+cd58D1D0F5A3TzluTCHb83WfrpxERLc2LGjExL4/CQoNV2nQ1Tu/nylZZlPPkAaUhhvwB5A4No6XpjoY57qhXgC03AZUmrIbUUBsjtBaX+j9ozCcHvxAcinm5r78vEzjj5BeklRpAf7sLBKFQvFnLMzeXPLuvNG6eMxiWUo2BD0lekl/1bfczoSgIRdOd5a23cgtKpLnsHeC7f0smzuHQqToy9fFhdpyRLeppjRFhaLqDhLMImJf7zKsNXy9XZtNhc2V78oDp9foWMjxTdgPnvgZyBFaZDXU6P+avKUo6VCYSupXRaHih25lUcbbDJa6FbqbzkpSVlWHz5s1Rqk2CUfU8UDyB288ThqbbZpc6BghCQ+n+1hE5sxFT3stNUjACuGSV4qCi3hUaQlSomm7loGRGu8wLEXwnH879FgnsAPCNnpmjzh5u/jrtLul+a8K9+5cK9seLVk9zB0v72LScCuoRF6utgkmv0T35kSBWjtSSoQzVslUE/nAdPMmiCAi0nolK3pDIeI8GEJKm2yia5uU6jpEAaVz97t8qzg01BEmf+b1I0x1u20dkASzEhRl+/NGMga5Az5GaCHdu+A7jjODKAArHWl+OafQW0jXGdMNjhMlnMWj+o3gWjfjlUdatn9daxehzzfv1Mev1HwBSi8ylz61U3/bU/0HjXuajNXfxjaOybX6KaDZK83J+O4Jv62cHJcFHZkIVdzbQ6w4gxedlMswwCHaneVMbtbLy9QQuFUSabiNCqk8gHfWKufKUA33Dx+ppQ56oKMrwmaIZgXeiIbvPYbzWaoOpXtxk3T3dHHres4HQ72dqiUmzeCVxIHSLFhuNWj9o5SFC5HU/FpruaJjUx1LoDgqx5zsepvadF+ZlfYCVz3EcvCNmUI2NHuF9rka8lyvTePKkfcuiOsqcnyreSZ9TJKGGN8zrCnkBmdd8RcIagjfz5cb+kinaZQtDZooccybYcxwxfNet00ZBSg5+4VxjjLCFoelWWmmcVISgNeJTSFmmP5SowWfy/PHAdyt9gBjBqaIE8RNDTTc/dqVq+NBSzsf4LZwdEBK6OwrRHGBcnDd40QAYqkMR0SqnEeFs+lHgqk+Bbv9lrrwgQVJLmAtRaFC2y8BF0qr4ZYqY4P0WBv82swfQ/8fAxb9QDHRhaHDUrrFAz7RNZ0+3/KSZGllPerfA91gKZv46CJ4lPXP8UOk+V/rLe6NNpj3dQMCss3uYeyrDQU3oDtVhmA81oc9STXeMtz+YxsL+RuZ13ogjNTN1EfTpk/4FDPwZ0Odu7wmRpjvM680OdU84X24E3mc14U1oNaJnXh5j55SRgh+rfJg1j/ct1ustjAQpOVT8RwQRxlZG5fxDKWTzc0uj2AwuMvjwOXNVhsqKBWbe5WhZN/nG6k6jAsfSOovTAMFtykdD6oDEtXk5EUH4yZ2at8tIwb+Aeiv4ZhAJ3ee+1v+dK1PdbFq7QPm/3bT2dIcorKWWyv/P6g3UCLZMqIUbqfx58LFwOl81gatyMbBhPJCj4qBQb0+3/KSBikRxYp9SBDR9Ln03sxfLMgTXnlJoLguj79jAh4GCUZJFzNvehZVYxLS1crFjwruS9kI5MYgHzteH9/sRvwE2XQEMehg4x+cVJYHC5zMkrrFS6NYyaw5z7BNpb/OHSR+tNOFOvkOxaAPkApFmSCmDqPUJer4ZjPZfibgFY9K/JI/2m68KHCuuMZeHM1U/DaCtVY7Wnm7fAkHlY8AXq4C+95rLj8ew9VchMOPbEOeMkUbn/ql5L7cS33uZOxiYuFUR5cafKPDV96xc8zlw+j9A0aWBc5584MK3FlU0PiGhu6NwgfekG83BJoITHiP7eSIJf586X6U9kQhVU5c/XNJUR9LkJpz2VTMbKxoHTN2v7mFdL0637FycCd088TAREz1LZk2+jU4wHG6gy1WSJjatTPIUnGxCt90VnwJ3JMgdBEz3hsnatzhwPFrP8YR3o1NOWFjYl8jCKCksuIRtYKZdDJjzipzneToJk1qOww1c8wUAFnpoUR7ezJdHr68Q9V/C9z8BNd0pBUDnK4FBPwf2eB0GZ/Y0l4d/W5pJ83J+TDFqXh62pts75+u/UPqEhYl+wGyYT8vQe0b5a4rc89ze3o7mZsWWQrd37pcxGDh/3vvda37v+99Hc3sgfXMb0HoecBQBeUXytIOeAz5cIM4jznC5XHA4wp8bkdDdUeBXh9ui+HBHcvIndKRmJRp76pQ4M4GWU6EV0+e/DSQyMWCEJXRrmNBnC0JaqJUZ7r7gaHrwjgeTchkCodtqk2+7C7j6oNSOsdjrGGuP7VYTDSE4aublHO5s/TTRJLs/cHqf/JieP4pwkAndivFJaOVlol0MeeQWhDe6aL7k+PK73UCTxVZtSoxGyQgHoR8EXrMmuFe5g4HhvwS+2RaI9x0PC6yhwltkdTbpDG7I/3q/mDUvF2gvhUTSe3mYY1HhOC6rBGxv3TrzbRKZcbu5uRmHDh1Ce7tiHtJnNdDaJCmfDun0K+12oNty6fsXGv5o2vsH0unlGQfk5OSguLgYtjDuNQndHQVee2blJCSIcPe1ccRS063HpWuBrXMlrXXMCWNwyTC5aq5WZth7uqMohIUaE9gqRAJoOB7ZjRILB2r9HwQ+e0GK85vM9Pqh9WVEzZFaHDPmNeANxV7MNgs9//PvjHJ8MuK9XBMDfjpEvjycacDY14BPfgnsqBX/LpEJ1by81x2SFYBP6E6Wd8SIAHDFXmkRpuTywFYlvYVOLSWHVXu6g8LdhdlGGT0C39O7AWcOhpdf1InuM8oYw9GjR+FwOFBWVga7PcS5JGsDTrVIz2ZOhXba1i7S8+SI8vzeBIwxnD17FsePS9Y3JSUajuN0IKG7oyDT5kVTqxTBTkP0UlbMiVz+SswI3QVVwJUa3s2jSTgrul2vBRoeNudFXVRmIu3pHv4r4P1pklO6uIC79urfAwdfkMwJk5HKR6VrS2ZPwhk9JbNQH8U1QP07kS+HnyRbqdVp/MS6vMNFZEas5YsjXGTxaJVCSpiabiOWVlqx2XvcBny7HSgJIw58PCLcyqWj6RaeS+I+R0lOf0EcaJ0xNk/hr4G/71r9dTjeyyO98Msv0FQ9D/xjJtAnjH3h0abTaO3zEbYQa21txdmzZ1FaWoq0tDCVEZ7BUvvrbleLwFaUKJCaKm3LOH78OAoLC0M2NSehu6MQK6E7oublAqHbyv2ncWWOFCXzcpsdGPhQaL+T/R/unu4okt0HuPI/sa4FB9fWFTdKn2Qm3p6HSKN8N8asBl61wEmPzBrCwnsaze1JZuE1ZcOXS1q90issLI8XupWabkEbmBmvzJqXK9M43ED1SuPlxQ02aI93gnMsBKE7rsZ3k4i8mEeKSduBQy9Jzhl5LnxjMANe6A5X0x0m/Lw3oxswaVtk87eagipgwkYgQ01bHNm5fFubdL/c7ghonWMSetRafAsRLS0tIQvdCdzrEKbgVymjun/SYkdqlg6cfN4x3nPaZZp0rYXj9dPGYn+scqKj2eEaeCZ041MmMVaGzyKiT1Dc2AxryknhHGglskARDvyeUFcWUDZdsDcVBkIgGsSmYV4uml5php0Mypz7qhZrPAb7+K2mu9d6zRfqT4lwfOtgmu4u1wAD/wcYvzaMTFTmCfnDgWFPS041ZcdHGMzXpvLdAKbeDwMI9/8nGEXj1R3YWkQ4e5aTmUjcl+RbiiDEyDTdUZzUhx2rlP9ZlB9XfoBubYpu2Uo8+cD3m4w5k2s5Lf8/KgKsmT3dBuh6LXDkL0CnMeHlk5AkuVOxjkJ+FfDttujFB3dyIZusFMBSS4BzR63LPxxk8Zw1HCRGKu69lqZbJECY8UtiMyt0xyDqgBUMew4oqgFKp4jPi+L88g7cNE2fk0TTbbMBA38aXh5mF+dDeb7M3mPlOxOuRl9v/z9BRBkSujsM/H6caA7OggGw6YvQsop2DGVeI6UWviSaGA3D8u2/5P9f83nEqxKEmT3dRiaedhcw5s/h1SlRIU13cnDZeuld5D3oWok9Slq8/JHAl6utyz9SKN+j1M7Aua+k723nIlMG3+8pfY6I+jlTQrcRLXYSarqd6UDFrODjU/cDh18VR/tw5wJT9+mPke28Uz3S5pnCcPzzCGm60yuA8u+b+72SuItMEmlogT7RSJJemtCF73y04k1HGtGqc/GE0PKyO4FpR6TB1U+UOp1E6ryVpkjRiDnZdlb+v9YA7Y8TSoihgTQpcGUCxZcphGEvaV0sKJAfzkmgCLLoGvRI4HvZ9MgUwY9vQZpu7v8etwbXQT9zPjOVJBHSdHefK/3tF24sZAvJ7iv5G3GpWG5l9wMyumvncfbLyNcrUckZZC59arGxdHy8+vYWc2Xwi/WDHg5/ISkZzMu1SPZQmwaZO3cubDYbbDYbXC4XKioqcP/99+M8F/t78+bNuOyyy5CXl4e0tDT06tULc+bM8ccj37RpE2w2G06dOmVpXUnT3VHghUZXThQLFkz+1AZNI6R1AVojpKUwQ2Nd9MsMlcqfS4NV0+fWOhHiaVDcHy1Nt2iPJRGANN3JT8VsYN9jUvzgSCEznbXSwWSCCPTKhdKKG4GjayVT5JLJkS9PKXQ7OUupEb8GBjxkMo61SfPycPqNEb8BetUCuUNCzyMRqJgN7JgvfW/+LrZ1iTXl3weaTxr3b1B0mbQokzNAO507G+h2I3D2sIYDMBVsBhaazGDJ4mY8QUK3j8mTJ2PFihVoaWnBzp07MWfOHNhsNjzxxBPYv38/Jk+ejDvvvBPPPPMMUlNTceDAAfzlL3/xO4+LFiR0dxT4Abnn7daXV3oF8PWbQLkgXEvx5cDH/zf0vPkJZbRW+syu2MYSTz4wfGl0yzy9T/6/SLvnPxdhZynJBgndyc+ARZKAU3Rp5PKM1v7eRHk+lUK33QVc8kfrylP62yiukcbB7AFS25gSuGHQvJwTUr56Heh2vbkyfNidQP6w0H6bSPALId9ujV094gGbHbjohybS24DBjxlLO+r3odVJWV6oXPo2cOhF4/VNVIxuOewAeDweFBdL1hhlZWWoqanB+vXr8cQTT+Dtt99GcXExlixZ4k/fo0cPTJ5sweKrDiR0dxT4CUjnq6wvr+q3wLc7gM5XBp8rmQhcug7I6hNa3rzQZjiMBRFVDHuQJYKh1eukx+GWnAVGEl4w01r0Cpd4F7pTCiUfHMWXR7fcIPNyBzD+72FkaEDr13Qo8D1vaBhldRASxUqDQFia7pLLpU+yUzxRms9H0mKKh7HgrYPRwpEW8vu6d+9e/POf/0R5ubTVsri4GEePHsV7772HsWPHRrKWpiGhu6PAC93RGHhSS4AuGsJ9ycTQ8+br33wy9HzMkNU3OuUkC5pCN3U7msS7UEPEKdHSdMe5f4urD0mmw2mdo1uuGSdpRjDivbyNcwzWW+BgjCASFVeWfpqOjt0BjHvduvzbzgJ/sijEpR7fP2PKefIbb7yBjIwMtLa24sKFC7Db7XjuuecAANdddx3WrVuHcePGobi4GCNHjsSECRMwe/ZsZGVF9zkjR2odhWSdyLc0RqecbgJvqkSASxSexrU6S9J060CabiIEZIKZhUN7vI8lzrToC9xAsPfysDFgXt4WcBRkqXUDQUSLi38BdLsJKI2+6S+RuFx66aXYvXs3tm3bhjlz5uDmm2/GjBkzAAAOhwMrVqzAl19+iSVLlqBz58547LHH0L9/fxw9Gt3wl6Ry6ijEu3bCLEUTgGMbgB63WVvOuL8BX78F9L3P2nISna4zAt8ze2mnJaFbG/JISoRCtBypKb2CExKWOq9TEbqT3lEU0eEQhYQjYoMjTdI4x6psE6Snp6Nnz54AgBdeeAGVlZV4/vnnceutt/rTdO7cGTfddBNuuukmPPLII7jooouwfPlyPPzwwxGtuhYkdHcUkk3oHvdX4OS/gYJR1pbT+UrxvnTCPIXjgeObgO43x7omcQ4J3UQIRMuRWkZPAOusyz/R8MX/Lp0a4Yz5fkBF6C6/Hmj4OHqx4AmC6DjYbKZMvOMFu92OBx98EPfccw9uuOEGpKYGh6nNzc1FSUkJmpqaolo3Ero7CskmdDvTgcIxsa4FYYbL3gFaTkcnbngiE+/mu0R8Ei2hu/LnQHuzFIKLAK74EGj8FMgfEdl8HamSIN/aBKSXi9PYHUDlo5EtN9nxLZL0uFU/LUEQCcl1112H++67D0uXLkVmZiZ2796N6dOno0ePHjh//jxefPFF7Nu3D88++2xU60VCd0eh733AV38Dul4X65oQHRW7gwRuQ0RC6CZteccjSt7L3TlA1a+tyz/R8ORLn0hjswHj34h8vh2daUckB6xWtBlBEHGB0+nE/PnzsWTJEqxevRoffPAB5s2bh6+//hoZGRno378/1qxZg3HjomslREJ3R6FwDPC9EzTQENZDe5LDg+4fEQrR0nQTRCJjs9E8iCCSiJUrVwqPL1iwAAsWLAAAjB49WjOP8ePHg0Vh7kVCd0cipSDWNSA6AhQLNUzIvJwIAV7odgTvYSMIgiAIInaQ0E0QRGRR87RLGIM03UQopBQDZTMATwGQUhjr2hAEQRAEwUFCN0EQkeX8iVjXIMEhTTcRAjYbMObPsa4FQRAEQRACSCVFEERkaT4Z6xokNqTpJgiCIAiCSCpI6CYIgiAIgiAIgiAIiyChmyAIIp7odQeQVgb0/u/Q83BmRK4+BEEQBEF0CKLhxTsRaW8Pf+tf0uzpXrp0KZ588knU19ejsrISzz77LEaMGBHrahFExyGlGDhfD7iyY12TxMaTB1zzRWhe4Ef8Cjj4O2DATyJfL4IgCIIgkhKXywWbzYYTJ06gU6dOsFEkGgDSIkRzczNOnDgBu90Ot9sdcl42lgRLGn/84x8xe/ZsLF++HFVVVXjqqafw6quvoq6uDoWF+l5cGxoakJ2djdOnTyMrKysKNSaIJOTUPmDPT4CBi4DcwbGuDUEQBEEQBGGQM2fO4MsvvyRtt4C0tDSUlJQIhW6jcmRSCN1VVVUYPnw4nnvuOQCSCUBZWRnuvPNOf2B0LUjoJgiCIAiCIAiiI9PW1oaWlpZYVyOucDgccDqdqtp/o3JkwpuXNzc3Y+fOnVi4cKH/mN1uR01NDbZs2SL8zYULF3DhwgX//w0NDZbXkyAIgiAIgiAIIl5xOBxwOByxrkZSkvCO1L755hu0tbWhqKhIdryoqAj19fXC3yxevBjZ2dn+T1lZWTSqShAEQRAEQRAEQXQwEl7oDoWFCxfi9OnT/s+RI0diXSWCIAiCIAiCIAgiCUl48/KCggI4HA4cO3ZMdvzYsWMoLi4W/sbj8cDj8USjegRBEARBEARBEEQHJuGFbrfbjaFDh2LDhg2YNm0aAMmR2oYNGzB//nxDefh8ydHeboIgCIIgCIIgCMIIPvlRzzd5wgvdAHDPPfdgzpw5GDZsGEaMGIGnnnoKTU1NuPnmmw39vrGxEQBobzdBEARBEARBEARhisbGRmRnZ6ueTwqhe+bMmThx4gQeeugh1NfXY/DgwVi7dm2QczU1SktLceTIEWRmZsY0GHxDQwPKyspw5MgRCl2WRFC7Ji/UtskLtW1yQu2avFDbJifUrslLsrQtYwyNjY0oLS3VTJcUcbqTBYoXnpxQuyYv1LbJC7VtckLtmrxQ2yYn1K7JS0dr2w7pvZwgCIIgCIIgCIIgogEJ3QRBEARBEARBEARhESR0xxEejweLFi2icGZJBrVr8kJtm7xQ2yYn1K7JC7VtckLtmrx0tLalPd0EQRAEQRAEQRAEYRGk6SYIgiAIgiAIgiAIiyChmyAIgiAIgiAIgiAsgoRugiAIgiAIgiAIgrAIEroJgiAIgiAIgiAIwiJI6I4Tli5dim7duiElJQVVVVXYvn17rKtEcLz33nu46qqrUFpaCpvNhjVr1sjOM8bw0EMPoaSkBKmpqaipqcGBAwdkaU6ePIlZs2YhKysLOTk5uPXWW3HmzBlZmj179mDMmDFISUlBWVkZlixZYvWldWgWL16M4cOHIzMzE4WFhZg2bRrq6upkac6fP4/a2lrk5+cjIyMDM2bMwLFjx2RpDh8+jKlTpyItLQ2FhYW477770NraKkuzadMmXHzxxfB4POjZsydWrlxp9eV1aJYtW4ZBgwYhKysLWVlZqK6uxltvveU/T+2aHDz++OOw2Wy4++67/ceobROTn/3sZ7DZbLJPnz59/OepXRObr776CjfeeCPy8/ORmpqKgQMHYseOHf7zNI9KPLp16xb0ztpsNtTW1gKgdzYIRsScVatWMbfbzV544QW2b98+9oMf/IDl5OSwY8eOxbpqhJc333yT/fjHP2avvfYaA8BWr14tO//444+z7OxstmbNGvbhhx+yq6++mlVUVLBz587500yePJlVVlayrVu3svfff5/17NmTXX/99f7zp0+fZkVFRWzWrFls79697JVXXmGpqansV7/6VbQus8MxadIktmLFCrZ37162e/dudsUVV7CuXbuyM2fO+NPMmzePlZWVsQ0bNrAdO3awkSNHslGjRvnPt7a2sgEDBrCamhq2a9cu9uabb7KCggK2cOFCf5qDBw+ytLQ0ds8997D9+/ezZ599ljkcDrZ27dqoXm9H4vXXX2d///vf2SeffMLq6urYgw8+yFwuF9u7dy9jjNo1Gdi+fTvr1q0bGzRoELvrrrv8x6ltE5NFixax/v37s6NHj/o/J06c8J+ndk1cTp48ycrLy9ncuXPZtm3b2MGDB9m6devYp59+6k9D86jE4/jx47L3df369QwA27hxI2OM3lklJHTHASNGjGC1tbX+/9va2lhpaSlbvHhxDGtFqKEUutvb21lxcTF78skn/cdOnTrFPB4Pe+WVVxhjjO3fv58BYP/617/8ad566y1ms9nYV199xRhj7Je//CXLzc1lFy5c8Kd54IEHWO/evS2+IsLH8ePHGQC2efNmxpjUji6Xi7366qv+NB9//DEDwLZs2cIYkxZk7HY7q6+v96dZtmwZy8rK8rfl/fffz/r37y8ra+bMmWzSpElWXxLBkZuby377299SuyYBjY2NrFevXmz9+vVs3LhxfqGb2jZxWbRoEausrBSeo3ZNbB544AF2ySWXqJ6neVRycNddd7EePXqw9vZ2emcFkHl5jGlubsbOnTtRU1PjP2a321FTU4MtW7bEsGaEUQ4dOoT6+npZG2ZnZ6Oqqsrfhlu2bEFOTg6GDRvmT1NTUwO73Y5t27b504wdOxZut9ufZtKkSairq8N3330Xpavp2Jw+fRoAkJeXBwDYuXMnWlpaZG3bp08fdO3aVda2AwcORFFRkT/NpEmT0NDQgH379vnT8Hn40tA7Hh3a2tqwatUqNDU1obq6mto1CaitrcXUqVOD7j+1bWJz4MABlJaWonv37pg1axYOHz4MgNo10Xn99dcxbNgwXHfddSgsLMSQIUPwm9/8xn+e5lGJT3NzM1566SXccsstsNls9M4KIKE7xnzzzTdoa2uTPXAAUFRUhPr6+hjVijCDr5202rC+vh6FhYWy806nE3l5ebI0ojz4MgjraG9vx913343Ro0djwIABAKT77na7kZOTI0urbFu9dlNL09DQgHPnzllxOQSAjz76CBkZGfB4PJg3bx5Wr16Nfv36UbsmOKtWrcK///1vLF68OOgctW3iUlVVhZUrV2Lt2rVYtmwZDh06hDFjxqCxsZHaNcE5ePAgli1bhl69emHdunW444478KMf/Qi/+93vANA8KhlYs2YNTp06hblz5wKgvliEM9YVIAiCiAdqa2uxd+9efPDBB7GuChEhevfujd27d+P06dP485//jDlz5mDz5s2xrhYRBkeOHMFdd92F9evXIyUlJdbVISLIlClT/N8HDRqEqqoqlJeX409/+hNSU1NjWDMiXNrb2zFs2DA89thjAIAhQ4Zg7969WL58OebMmRPj2hGR4Pnnn8eUKVNQWloa66rELaTpjjEFBQVwOBxB3vyOHTuG4uLiGNWKMIOvnbTasLi4GMePH5edb21txcmTJ2VpRHnwZRDWMH/+fLzxxhvYuHEjunTp4j9eXFyM5uZmnDp1SpZe2bZ67aaWJisriyaTFuJ2u9GzZ08MHToUixcvRmVlJZ5++mlq1wRm586dOH78OC6++GI4nU44nU5s3rwZzzzzDJxOJ4qKiqhtk4ScnBxcdNFF+PTTT+mdTXBKSkrQr18/2bG+ffv6tw/QPCqx+eKLL/DOO+/gtttu8x+jdzYYErpjjNvtxtChQ7Fhwwb/sfb2dmzYsAHV1dUxrBlhlIqKChQXF8vasKGhAdu2bfO3YXV1NU6dOoWdO3f607z77rtob29HVVWVP817772HlpYWf5r169ejd+/eyM3NjdLVdCwYY5g/fz5Wr16Nd999FxUVFbLzQ4cOhcvlkrVtXV0dDh8+LGvbjz76SDYZWL9+PbKysvyTjOrqalkevjT0jkeX9vZ2XLhwgdo1gZkwYQI++ugj7N692/8ZNmwYZs2a5f9ObZscnDlzBp999hlKSkronU1wRo8eHRSO85NPPkF5eTkAmkclOitWrEBhYSGmTp3qP0bvrIBYe3IjpJBhHo+HrVy5ku3fv5/dfvvtLCcnR+bNj4gtjY2NbNeuXWzXrl0MAPvFL37Bdu3axb744gvGmBTqIicnh/31r39le/bsYddcc40w1MWQIUPYtm3b2AcffMB69eolC3Vx6tQpVlRUxG666Sa2d+9etmrVKpaWlkahLizkjjvuYNnZ2WzTpk2ysBdnz571p5k3bx7r2rUre/fdd9mOHTtYdXU1q66u9p/3hbyYOHEi2717N1u7di3r1KmTMOTFfffdxz7++GO2dOnShA15kSgsWLCAbd68mR06dIjt2bOHLViwgNlsNvb2228zxqhdkwneezlj1LaJyr333ss2bdrEDh06xP7xj3+wmpoaVlBQwI4fP84Yo3ZNZLZv386cTid79NFH2YEDB9jLL7/M0tLS2EsvveRPQ/OoxKStrY117dqVPfDAA0Hn6J2VQ0J3nPDss8+yrl27MrfbzUaMGMG2bt0a6yoRHBs3bmQAgj5z5sxhjEnhLn7605+yoqIi5vF42IQJE1hdXZ0sj2+//ZZdf/31LCMjg2VlZbGbb76ZNTY2ytJ8+OGH7JJLLmEej4d17tyZPf7449G6xA6JqE0BsBUrVvjTnDt3jv3whz9kubm5LC0tjU2fPp0dPXpUls/nn3/OpkyZwlJTU1lBQQG79957WUtLiyzNxo0b2eDBg5nb7Wbdu3eXlUFEnltuuYWVl5czt9vNOnXqxCZMmOAXuBmjdk0mlEI3tW1iMnPmTFZSUsLcbjfr3LkzmzlzpiyOM7VrYvO3v/2NDRgwgHk8HtanTx/261//Wnae5lGJybp16xiAoLZijN5ZJTbGGIuJip0gCIIgCIIgCIIgkhza000QBEEQBEEQBEEQFkFCN0EQBEEQBEEQBEFYBAndBEEQBEEQBEEQBGERJHQTBEEQBEEQBEEQhEWQ0E0QBEEQBEEQBEEQFkFCN0EQBEEQBEEQBEFYBAndBEEQBEEQBEEQBGERJHQTBEEQBEEQBEEQhEWQ0E0QBEEQBEEQBEEQFkFCN0EQBEEQBEEQBEFYBAndBEEQBEEQBEEQBGERJHQTBEEQBEEQBEEQhEX8f6rVb/kGURYiAAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Create subplots\n", + "import matplotlib.pyplot as plt\n", + "fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8), gridspec_kw={'height_ratios': [3, 1]})\n", + "\n", + "# price graph\n", + "ax1.plot(df['Close'], label='Close Price', color='blue')\n", + "ax1.set_title('Stock Price')\n", + "ax1.set_ylabel('Price')\n", + "ax1.legend()\n", + "\n", + "# rsi graph\n", + "ax2.plot(df['RSI'], label='RSI', color='orange')\n", + "ax2.axhline(70, color='red', linestyle='--') # Overbought line\n", + "ax2.axhline(30, color='green', linestyle='--') # Oversold line\n", + "ax2.set_title('Relative Strength Index (RSI)')\n", + "ax2.set_ylabel('RSI')\n", + "ax2.legend()\n", + "\n", + "plt.tight_layout()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    OpenHighLowCloseVolumeSMA_10SMA_50RSI
    6221.70097922.03121221.70097921.81420114674821.021.63304621.56747140.418486
    6321.81420123.11626121.85666122.17745815454878.021.59200221.66295545.076147
    6422.31426622.40862122.03121222.21048021249133.021.59483321.75494851.133774
    6521.70097922.92755521.70097922.80961640137428.021.71560421.84665957.684634
    6623.12097723.87107722.51712423.53140853712115.021.96752321.94893659.348024
    \n", + "
    " + ], + "text/plain": [ + " Open High Low Close Volume SMA_10 \\\n", + "62 21.700979 22.031212 21.700979 21.814201 14674821.0 21.633046 \n", + "63 21.814201 23.116261 21.856661 22.177458 15454878.0 21.592002 \n", + "64 22.314266 22.408621 22.031212 22.210480 21249133.0 21.594833 \n", + "65 21.700979 22.927555 21.700979 22.809616 40137428.0 21.715604 \n", + "66 23.120977 23.871077 22.517124 23.531408 53712115.0 21.967523 \n", + "\n", + " SMA_50 RSI \n", + "62 21.567471 40.418486 \n", + "63 21.662955 45.076147 \n", + "64 21.754948 51.133774 \n", + "65 21.846659 57.684634 \n", + "66 21.948936 59.348024 " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Correlations" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "corr = df.corr()\n", + "corr" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "plt.figure(figsize=(10,8))\n", + "sns.heatmap(corr, annot=True, linewidths=0.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 17, +>>>>>>> upstream/main + "metadata": { + "id": "OQ3cGqgTMBwt" + }, + "outputs": [], + "source": [ + "# Select features and target variable\n", + "X = df[['Open', 'High', 'Low', 'Volume']]\n", + "y = df['Close']" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 11, +======= + "execution_count": 18, +>>>>>>> upstream/main + "metadata": { + "id": "9Oz-bwJOMEWD" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 12, +======= + "execution_count": 19, +>>>>>>> upstream/main + "metadata": { + "id": "ugapDyXODtn3" + }, + "outputs": [], + "source": [ + "# Scale the features using Min-Max scaling\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 13, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "997ZEgibCZIO", + "outputId": "879af72c-3e7c-4b8c-ba28-452fa8ba3cd6" + }, +<<<<<<< HEAD + "outputs": [ + { + "data": { + "text/plain": [ + "(5659, 4)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 14, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "bmtt76RuCeyG", + "outputId": "855f34ec-4914-4e1f-c9b1-6f8753612100" + }, +<<<<<<< HEAD + "outputs": [ + { + "data": { + "text/plain": [ + "(1415, 4)" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "X_test.shape" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 15, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "CeJkUJ92Ciqd", + "outputId": "21c5949c-e787-40df-b816-7cc9e830e401" + }, +<<<<<<< HEAD + "outputs": [ + { + "data": { + "text/plain": [ + "(5659,)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "y_train.shape" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 16, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7HGC7VuTCjWc", + "outputId": "cbda22d6-bec9-45d7-80ac-c74ad14b7c0d" + }, +<<<<<<< HEAD + "outputs": [ + { + "data": { + "text/plain": [ + "(1415,)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "y_test.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "c6Ek8jRlO2_I" + }, + "source": [ + "## 1. LINEAR REGRESSION" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 17, +======= + "execution_count": 24, +>>>>>>> upstream/main + "metadata": { + "id": "RdZ1SpzdMHAJ" + }, + "outputs": [], + "source": [ + "# Create a linear regression model\n", + "model1 = LinearRegression()" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 18, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 241 + }, + "id": "mPM035IzMY04", + "outputId": "084d9520-1d31-4287-a9d1-6f9eeea60f9b" + }, +<<<<<<< HEAD + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    Close
    5286257.350006
    3408129.464996
    5477279.350006
    6906588.500000
    53021.644367
    \n", + "

    " + ], + "text/plain": [ + "5286 257.350006\n", + "3408 129.464996\n", + "5477 279.350006\n", + "6906 588.500000\n", + "530 21.644367\n", + "Name: Close, dtype: float64" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "y_train.head()" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 19, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "qBhQ9HbYMI3d", + "outputId": "daac2bc7-a480-4013-8e06-717bb8c1fa65" + }, +<<<<<<< HEAD + "outputs": [ + { + "data": { + "text/html": [ + "
    " + ], + "text/plain": [ + "LinearRegression()" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "# Train the model\n", + "model1.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 20, +======= + "execution_count": 27, +>>>>>>> upstream/main + "metadata": { + "id": "X269co2kMS4z" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred1 = model1.predict(X_test)" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 21, +======= + "execution_count": 28, +>>>>>>> upstream/main + "metadata": { + "id": "QK8GvDYPOd0Y" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse1 = np.sqrt(mean_squared_error(y_test, pred1))\n", + "mae1 = mean_absolute_error(y_test, pred1)\n", + "mape1 = mean_absolute_percentage_error(y_test, pred1)\n", + "accuracy1 = accuracy_score(y_test > pred1, y_test > pred1.round())\n", + "precision1 = precision_score(y_test > pred1, y_test > pred1.round())\n", + "confusion1 = confusion_matrix(y_test > pred1, y_test > pred1.round())\n", + "recall1 = recall_score(y_test > pred1, y_test > pred1.round())\n", + "f11 = f1_score(y_test > pred1, y_test > pred1.round())" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 22, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dEi49xtEOtne", + "outputId": "60b53406-81c4-4531-cbb0-77b9ffde8890" + }, +<<<<<<< HEAD + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 1.6881364643681482\n", + "MAE: 0.9433353485344729\n", + "MAPE: 0.006085435990853812\n", + "Accuracy: 0.8296819787985866\n", + "Precision: 0.8623595505617978\n", + "Confusion Matrix:\n", + " [[560 98]\n", + " [143 614]]\n", + "Recall: 0.8110964332892999\n", + "F1 Score: 0.8359428182437032\n" + ] + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse1)\n", + "print(\"MAE:\", mae1)\n", + "print(\"MAPE:\", mape1)\n", + "print(\"Accuracy:\", accuracy1)\n", + "print(\"Precision:\", precision1)\n", + "print(\"Confusion Matrix:\\n\", confusion1)\n", + "print(\"Recall:\", recall1)\n", + "print(\"F1 Score:\", f11)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GxtMzlg-gR2P" + }, + "source": [ + "## 2. SVR" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "id": "o7K9r7EXWRjQ" + }, + "outputs": [], + "source": [ + "from sklearn.svm import SVR\n", + "from sklearn.model_selection import GridSearchCV" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "id": "0xQewd7QWTtq" + }, + "outputs": [], + "source": [ + "# Create an SVR model\n", + "model2 = SVR()\n", + "param_grid = {'C':[0.1, 1], 'epsilon':[0.01, 0.1, 0.5], 'kernel':['sigmoid']}\n", + "GV_SVR = GridSearchCV(model2, param_grid = param_grid, scoring = 'accuracy', n_jobs = -1)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "id": "DuNes3s6U2IV" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 26, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 191 + }, + "id": "22SaCsQmfhgP", + "outputId": "7867aa8e-a7dc-49e4-d0aa-310423e9c696" + }, +<<<<<<< HEAD + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.10/dist-packages/sklearn/model_selection/_search.py:1103: UserWarning: One or more of the test scores are non-finite: [nan nan nan nan nan nan]\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "text/html": [ + "
    GridSearchCV(estimator=SVR(), n_jobs=-1,\n",
    +              "             param_grid={'C': [0.1, 1], 'epsilon': [0.01, 0.1, 0.5],\n",
    +              "                         'kernel': ['sigmoid']},\n",
    +              "             scoring='accuracy')
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "GridSearchCV(estimator=SVR(), n_jobs=-1,\n", + " param_grid={'C': [0.1, 1], 'epsilon': [0.01, 0.1, 0.5],\n", + " 'kernel': ['sigmoid']},\n", + " scoring='accuracy')" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "# Train the model\n", + "GV_SVR.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "id": "OQ1nL4oYfkAC" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred2 = GV_SVR.predict(X_test)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "U6-EppR68Jsu", + "outputId": "cfa67a46-ab8c-478d-c13e-fe884ef7ebae" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'C': 0.1, 'epsilon': 0.01, 'kernel': 'sigmoid'}" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "GV_SVR.best_params_" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "id": "nRYTwydsfpjb" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics with grid search\n", + "rmse2 = np.sqrt(mean_squared_error(y_test, pred2))\n", + "mae2 = mean_absolute_error(y_test, pred2)\n", + "mape2 = mean_absolute_percentage_error(y_test, pred2)\n", + "accuracy2 = accuracy_score(y_test > pred2, y_test > pred2.round())\n", + "precision2 = precision_score(y_test > pred2, y_test > pred2.round())\n", + "confusion2 = confusion_matrix(y_test > pred2, y_test > pred2.round())\n", + "recall2 = recall_score(y_test > pred2, y_test > pred2.round())\n", + "f12 = f1_score(y_test > pred2, y_test > pred2.round())" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 30, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "656J5oz5fzq6", + "outputId": "c62c2076-2a10-43da-935d-c593c2d7be79" + }, +<<<<<<< HEAD + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 158.5191296342117\n", + "MAE: 127.61818666535594\n", + "MAPE: 2.6724681150799072\n", + "Accuracy: 0.9985865724381625\n", + "Precision: 0.9970457902511078\n", + "Confusion Matrix:\n", + " [[738 2]\n", + " [ 0 675]]\n", + "Recall: 1.0\n", + "F1 Score: 0.9985207100591716\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics with grid search\n", + "print(\"RMSE:\", rmse2)\n", + "print(\"MAE:\", mae2)\n", + "print(\"MAPE:\", mape2)\n", + "print(\"Accuracy:\", accuracy2)\n", + "print(\"Precision:\", precision2)\n", + "print(\"Confusion Matrix:\\n\", confusion2)\n", + "print(\"Recall:\", recall2)\n", + "print(\"F1 Score:\", f12)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "tIlc-wCE8Jsv", + "outputId": "fc6a39f5-b546-444e-a522-8bbcf889be14" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    SVR()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "SVR()" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#fitting without grid search\n", + "model2.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "id": "f3u1h6Dk8Jsv" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred2_1 = model2.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "id": "F-NgJx2d8Jsv" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics without grid search\n", + "rmse2_1 = np.sqrt(mean_squared_error(y_test, pred2_1))\n", + "mae2_1 = mean_absolute_error(y_test, pred2_1)\n", + "mape2_1 = mean_absolute_percentage_error(y_test, pred2_1)\n", + "accuracy2_1 = accuracy_score(y_test > pred2_1, y_test > pred2_1.round())\n", + "precision2_1 = precision_score(y_test > pred2_1, y_test > pred2_1.round())\n", + "confusion2_1 = confusion_matrix(y_test > pred2_1, y_test > pred2_1.round())\n", + "recall2_1 = recall_score(y_test > pred2_1, y_test > pred2_1.round())\n", + "f12_1 = f1_score(y_test > pred2_1, y_test > pred2_1.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "_BB1EERE8Jsv", + "outputId": "11c94daf-d2db-4447-a5b9-b753e648b56c" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 147.71103599153602\n", + "MAE: 110.99419106508152\n", + "MAPE: 1.9715076513294716\n", + "Accuracy: 0.9992932862190813\n", + "Precision: 1.0\n", + "Confusion Matrix:\n", + " [[727 0]\n", + " [ 1 687]]\n", + "Recall: 0.998546511627907\n", + "F1 Score: 0.9992727272727273\n" + ] + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "# Print the evaluation metrics without grid search\n", + "print(\"RMSE:\", rmse2_1)\n", + "print(\"MAE:\", mae2_1)\n", + "print(\"MAPE:\", mape2_1)\n", + "print(\"Accuracy:\", accuracy2_1)\n", + "print(\"Precision:\", precision2_1)\n", + "print(\"Confusion Matrix:\\n\", confusion2_1)\n", + "print(\"Recall:\", recall2_1)\n", + "print(\"F1 Score:\", f12_1)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hcIfVMWdgcKt" + }, + "source": [ + "## 3. Random Forest" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "id": "f7raXT_hf2ij" + }, + "outputs": [], + "source": [ + "from sklearn.ensemble import RandomForestRegressor\n", + "# Create a Random Forest model\n", + "model3 = RandomForestRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "id": "TadNM7MEU7fh" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 37, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "fF002Yepgk55", + "outputId": "4ff3a76e-04be-452e-8927-a7739bc306fb" + }, +<<<<<<< HEAD + "outputs": [ + { + "data": { + "text/html": [ + "
    RandomForestRegressor()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "RandomForestRegressor()" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "# Train the model\n", + "model3.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "id": "8nRU_pzEgnCt" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred3 = model3.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "id": "4aKEXGVUgsry" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse3 = np.sqrt(mean_squared_error(y_test, pred3))\n", + "mae3 = mean_absolute_error(y_test, pred3)\n", + "mape3 = mean_absolute_percentage_error(y_test, pred3)\n", + "accuracy3 = accuracy_score(y_test > pred3, y_test > pred3.round())\n", + "precision3 = precision_score(y_test > pred3, y_test > pred3.round())\n", + "confusion3 = confusion_matrix(y_test > pred3, y_test > pred3.round())\n", + "recall3 = recall_score(y_test > pred3, y_test > pred3.round())\n", + "f13 = f1_score(y_test > pred3, y_test > pred3.round())" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 40, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8pPzsCY1g305", + "outputId": "bc5eeab1-5d75-4be3-b26f-70c4fe533a47" + }, +<<<<<<< HEAD + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 2.2227552163641375\n", + "MAE: 1.2618627107561857\n", + "MAPE: 0.008011786688180922\n", + "Accuracy: 0.8537102473498234\n", + "Precision: 0.8575624082232012\n", + "Confusion Matrix:\n", + " [[624 97]\n", + " [110 584]]\n", + "Recall: 0.8414985590778098\n", + "F1 Score: 0.8494545454545455\n" + ] + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse3)\n", + "print(\"MAE:\", mae3)\n", + "print(\"MAPE:\", mape3)\n", + "print(\"Accuracy:\", accuracy3)\n", + "print(\"Precision:\", precision3)\n", + "print(\"Confusion Matrix:\\n\", confusion3)\n", + "print(\"Recall:\", recall3)\n", + "print(\"F1 Score:\", f13)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mZsLwLivhLGH" + }, + "source": [ + "## 4. Gradient Boosting Models (GBM)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "id": "TI8idoxOg6jF" + }, + "outputs": [], + "source": [ + "import xgboost as xgb\n", + "# Create an XGBoost model\n", + "model4 = xgb.XGBRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "id": "7r9xJDtOVBEA" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 43, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 254 + }, + "id": "2gpbDxshhexj", + "outputId": "2cdbacc9-909a-43c9-cf04-cc4f70015e43" + }, +<<<<<<< HEAD + "outputs": [ + { + "data": { + "text/html": [ + "
    XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
    +              "             colsample_bylevel=None, colsample_bynode=None,\n",
    +              "             colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
    +              "             enable_categorical=False, eval_metric=None, feature_types=None,\n",
    +              "             gamma=None, grow_policy=None, importance_type=None,\n",
    +              "             interaction_constraints=None, learning_rate=None, max_bin=None,\n",
    +              "             max_cat_threshold=None, max_cat_to_onehot=None,\n",
    +              "             max_delta_step=None, max_depth=None, max_leaves=None,\n",
    +              "             min_child_weight=None, missing=nan, monotone_constraints=None,\n",
    +              "             multi_strategy=None, n_estimators=None, n_jobs=None,\n",
    +              "             num_parallel_tree=None, random_state=None, ...)
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + " colsample_bylevel=None, colsample_bynode=None,\n", + " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", + " enable_categorical=False, eval_metric=None, feature_types=None,\n", + " gamma=None, grow_policy=None, importance_type=None,\n", + " interaction_constraints=None, learning_rate=None, max_bin=None,\n", + " max_cat_threshold=None, max_cat_to_onehot=None,\n", + " max_delta_step=None, max_depth=None, max_leaves=None,\n", + " min_child_weight=None, missing=nan, monotone_constraints=None,\n", + " multi_strategy=None, n_estimators=None, n_jobs=None,\n", + " num_parallel_tree=None, random_state=None, ...)" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "# Train the model\n", + "model4.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "id": "Jj9DXdUPhh9V" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred4 = model4.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "id": "TdH60Sllhn5O" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse4 = np.sqrt(mean_squared_error(y_test, pred4))\n", + "mae4 = mean_absolute_error(y_test, pred4)\n", + "mape4 = mean_absolute_percentage_error(y_test, pred4)\n", + "accuracy4 = accuracy_score(y_test > pred4, y_test > pred4.round())\n", + "precision4 = precision_score(y_test > pred4, y_test > pred4.round())\n", + "confusion4 = confusion_matrix(y_test > pred4, y_test > pred4.round())\n", + "recall4 = recall_score(y_test > pred4, y_test > pred4.round())\n", + "f14 = f1_score(y_test > pred4, y_test > pred4.round())" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 46, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "qpnLeFyZhwB3", + "outputId": "1637d31a-e785-4414-dfe5-f7fa4fd282e9" + }, +<<<<<<< HEAD + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 2.733930065274145\n", + "MAE: 1.502457380471909\n", + "MAPE: 0.010026410639661481\n", + "Accuracy: 0.8840989399293286\n", + "Precision: 0.8948106591865358\n", + "Confusion Matrix:\n", + " [[613 75]\n", + " [ 89 638]]\n", + "Recall: 0.8775790921595599\n", + "F1 Score: 0.8861111111111111\n" + ] + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse4)\n", + "print(\"MAE:\", mae4)\n", + "print(\"MAPE:\", mape4)\n", + "print(\"Accuracy:\", accuracy4)\n", + "print(\"Precision:\", precision4)\n", + "print(\"Confusion Matrix:\\n\", confusion4)\n", + "print(\"Recall:\", recall4)\n", + "print(\"F1 Score:\", f14)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "d8nSGoyuh9dx" + }, + "source": [ + "## 5. Extreme Gradient Boosting (XGBoost)" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "id": "DyhhdlZAhx94" + }, + "outputs": [], + "source": [ + "import xgboost as xgb\n", + "# Create an XGBoost model\n", + "model5 = xgb.XGBRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "id": "Z_AD0lVOVHwB" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 49, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 254 + }, + "id": "RAIwxIp5iH9Z", + "outputId": "cc66ca33-11cc-4e5d-e7e1-f39b41466c28" + }, +<<<<<<< HEAD + "outputs": [ + { + "data": { + "text/html": [ + "
    XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
    +              "             colsample_bylevel=None, colsample_bynode=None,\n",
    +              "             colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
    +              "             enable_categorical=False, eval_metric=None, feature_types=None,\n",
    +              "             gamma=None, grow_policy=None, importance_type=None,\n",
    +              "             interaction_constraints=None, learning_rate=None, max_bin=None,\n",
    +              "             max_cat_threshold=None, max_cat_to_onehot=None,\n",
    +              "             max_delta_step=None, max_depth=None, max_leaves=None,\n",
    +              "             min_child_weight=None, missing=nan, monotone_constraints=None,\n",
    +              "             multi_strategy=None, n_estimators=None, n_jobs=None,\n",
    +              "             num_parallel_tree=None, random_state=None, ...)
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + " colsample_bylevel=None, colsample_bynode=None,\n", + " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", + " enable_categorical=False, eval_metric=None, feature_types=None,\n", + " gamma=None, grow_policy=None, importance_type=None,\n", + " interaction_constraints=None, learning_rate=None, max_bin=None,\n", + " max_cat_threshold=None, max_cat_to_onehot=None,\n", + " max_delta_step=None, max_depth=None, max_leaves=None,\n", + " min_child_weight=None, missing=nan, monotone_constraints=None,\n", + " multi_strategy=None, n_estimators=None, n_jobs=None,\n", + " num_parallel_tree=None, random_state=None, ...)" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "# Train the model\n", + "model5.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "id": "XmJds5fYiKT3" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred5 = model5.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": { + "id": "lZ1A0-L8iNCM" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse5 = np.sqrt(mean_squared_error(y_test, pred5))\n", + "mae5 = mean_absolute_error(y_test, pred5)\n", + "mape5 = mean_absolute_percentage_error(y_test, pred5)\n", + "accuracy5 = accuracy_score(y_test > pred5, y_test > pred5.round())\n", + "precision5 = precision_score(y_test > pred5, y_test > pred5.round())\n", + "confusion5 = confusion_matrix(y_test > pred5, y_test > pred5.round())\n", + "recall5 = recall_score(y_test > pred5, y_test > pred5.round())\n", + "f15 = f1_score(y_test > pred5, y_test > pred5.round())" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 52, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7IkE-RAmiWNo", + "outputId": "d69e485e-0462-409a-f9aa-59e5ca7c4bef" + }, +<<<<<<< HEAD + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 2.733930065274145\n", + "MAE: 1.502457380471909\n", + "MAPE: 0.010026410639661481\n", + "Accuracy: 0.8840989399293286\n", + "Precision: 0.8948106591865358\n", + "Confusion Matrix:\n", + " [[613 75]\n", + " [ 89 638]]\n", + "Recall: 0.8775790921595599\n", + "F1 Score: 0.8861111111111111\n" + ] + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse5)\n", + "print(\"MAE:\", mae5)\n", + "print(\"MAPE:\", mape5)\n", + "print(\"Accuracy:\", accuracy5)\n", + "print(\"Precision:\", precision5)\n", + "print(\"Confusion Matrix:\\n\", confusion5)\n", + "print(\"Recall:\", recall5)\n", + "print(\"F1 Score:\", f15)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "A_J776rtiovq" + }, + "source": [ + "## 6. AdaBoostRegressor" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": { + "id": "HNq66cXRiYPJ" + }, + "outputs": [], + "source": [ + "from sklearn.ensemble import AdaBoostRegressor\n", + "# Create an AdaBoost model\n", + "model6 = AdaBoostRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": { + "id": "qPHH6rG0VW4V" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 55, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "P0oB5wjQivBr", + "outputId": "827e151d-e13e-4924-ef50-c5e1d13f6161" + }, +<<<<<<< HEAD + "outputs": [ + { + "data": { + "text/html": [ + "
    AdaBoostRegressor()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "AdaBoostRegressor()" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "# Train the model\n", + "model6.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": { + "id": "Bf1m5ukOi2VM" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred6 = model6.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": { + "id": "oFWSqC4ai6gd" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse6 = np.sqrt(mean_squared_error(y_test, pred6))\n", + "mae6 = mean_absolute_error(y_test, pred6)\n", + "mape6 = mean_absolute_percentage_error(y_test, pred6)\n", + "accuracy6 = accuracy_score(y_test > pred6, y_test > pred6.round())\n", + "precision6 = precision_score(y_test > pred6, y_test > pred6.round())\n", + "confusion6 = confusion_matrix(y_test > pred6, y_test > pred6.round())\n", + "recall6 = recall_score(y_test > pred6, y_test > pred6.round())\n", + "f16 = f1_score(y_test > pred6, y_test > pred6.round())" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 58, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "BsajWJGBjC80", + "outputId": "076cff01-ff0a-449b-d86c-df9f1363fecd" + }, +<<<<<<< HEAD + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 10.504089217159294\n", + "MAE: 8.746118088217727\n", + "MAPE: 0.20512996006219347\n", + "Accuracy: 0.9943462897526502\n", + "Precision: 0.9939879759519038\n", + "Confusion Matrix:\n", + " [[911 3]\n", + " [ 5 496]]\n", + "Recall: 0.9900199600798403\n", + "F1 Score: 0.992\n" + ] + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse6)\n", + "print(\"MAE:\", mae6)\n", + "print(\"MAPE:\", mape6)\n", + "print(\"Accuracy:\", accuracy6)\n", + "print(\"Precision:\", precision6)\n", + "print(\"Confusion Matrix:\\n\", confusion6)\n", + "print(\"Recall:\", recall6)\n", + "print(\"F1 Score:\", f16)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Q9DzOt3CkWFX" + }, + "source": [ + "## 7. Decision Tree" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "id": "23DZ2biSjF9a" + }, + "outputs": [], + "source": [ + "from sklearn.tree import DecisionTreeRegressor\n", + "# Create a Decision Tree model\n", + "model7 = DecisionTreeRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": { + "id": "Ajo2RAVAVb7H" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 61, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "6mQEQf-ykc9F", + "outputId": "78dc7661-96e4-46af-b65a-c705018c58a3" + }, +<<<<<<< HEAD + "outputs": [ + { + "data": { + "text/html": [ + "
    DecisionTreeRegressor()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "DecisionTreeRegressor()" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "# Train the model\n", + "model7.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": { + "id": "BFJ9q_tvkgRC" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred7 = model7.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": { + "id": "9IxfYZbYkjv1" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse7 = np.sqrt(mean_squared_error(y_test, pred7))\n", + "mae7 = mean_absolute_error(y_test, pred7)\n", + "mape7 = mean_absolute_percentage_error(y_test, pred7)\n", + "accuracy7 = accuracy_score(y_test > pred7, y_test > pred7.round())\n", + "precision7 = precision_score(y_test > pred7, y_test > pred7.round())\n", + "confusion7 = confusion_matrix(y_test > pred7, y_test > pred7.round())\n", + "recall7 = recall_score(y_test > pred7, y_test > pred7.round())\n", + "f17 = f1_score(y_test > pred7, y_test > pred7.round())\n" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 64, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AnZXMYb8kooV", + "outputId": "93527d46-9366-49ce-b895-7a12ae87f742" + }, +<<<<<<< HEAD + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 3.136698143876249\n", + "MAE: 1.6416165234385407\n", + "MAPE: 0.010224639636659394\n", + "Accuracy: 0.8600706713780919\n", + "Precision: 0.8687845303867403\n", + "Confusion Matrix:\n", + " [[588 95]\n", + " [103 629]]\n", + "Recall: 0.8592896174863388\n", + "F1 Score: 0.864010989010989\n" + ] + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse7)\n", + "print(\"MAE:\", mae7)\n", + "print(\"MAPE:\", mape7)\n", + "print(\"Accuracy:\", accuracy7)\n", + "print(\"Precision:\", precision7)\n", + "print(\"Confusion Matrix:\\n\", confusion7)\n", + "print(\"Recall:\", recall7)\n", + "print(\"F1 Score:\", f17)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LH-B-Xd6k5UD" + }, + "source": [ + "## 8. KNeighborsRegressor(KNN)" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": { + "id": "JVDSed7yktFY" + }, + "outputs": [], + "source": [ + "from sklearn.neighbors import KNeighborsRegressor\n", + "from sklearn.model_selection import GridSearchCV\n", + "# Create a KNN model\n", + "model8 = KNeighborsRegressor()\n", + "param_grid = {'n_neighbors':[3, 5, 7, 9, 11, 15, 20, 23, 25, 30, 60, 70, 150]}\n", + "GV_KNN = GridSearchCV(model8, param_grid, cv=5, scoring='neg_mean_squared_error')" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": { + "id": "XJHb5SxrVgVp" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 67, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "9fn64o-ZlBka", + "outputId": "bc388b6b-cf36-4a91-eb52-8fe7a861308b" + }, +<<<<<<< HEAD + "outputs": [ + { + "data": { + "text/html": [ + "
    KNeighborsRegressor()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "KNeighborsRegressor()" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "# Train the model\n", + "model8.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "id": "hbfbbjcSlDn7" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred8 = model8.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "id": "hnWyNv3blHdL" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse8 = np.sqrt(mean_squared_error(y_test, pred8))\n", + "mae8 = mean_absolute_error(y_test, pred8)\n", + "mape8 = mean_absolute_percentage_error(y_test, pred8)\n", + "accuracy8 = accuracy_score(y_test > pred8, y_test > pred8.round())\n", + "precision8 = precision_score(y_test > pred8, y_test > pred8.round())\n", + "confusion8 = confusion_matrix(y_test > pred8, y_test > pred8.round())\n", + "recall8 = recall_score(y_test > pred8, y_test > pred8.round())\n", + "f18 = f1_score(y_test > pred8, y_test > pred8.round())" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 70, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IPoDRkcMlMAr", + "outputId": "5aee40b5-c7c1-4fad-f419-37d08a504146" + }, +<<<<<<< HEAD + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 148.73183825029315\n", + "MAE: 109.35229571264969\n", + "MAPE: 1.75024316976612\n", + "Accuracy: 0.9908127208480565\n", + "Precision: 0.9887820512820513\n", + "Confusion Matrix:\n", + " [[785 7]\n", + " [ 6 617]]\n", + "Recall: 0.9903691813804173\n", + "F1 Score: 0.9895749799518845\n" + ] + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse8)\n", + "print(\"MAE:\", mae8)\n", + "print(\"MAPE:\", mape8)\n", + "print(\"Accuracy:\", accuracy8)\n", + "print(\"Precision:\", precision8)\n", + "print(\"Confusion Matrix:\\n\", confusion8)\n", + "print(\"Recall:\", recall8)\n", + "print(\"F1 Score:\", f18)" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "5qW5X1Xe8Js7", + "outputId": "6abf26c0-873e-42e2-9aab-c2bd93a5ae84" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    KNeighborsRegressor(n_neighbors=150)
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "KNeighborsRegressor(n_neighbors=150)" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "GV_KNN.fit(X_train, y_train)\n", + "pred8_1 = GV_KNN.predict(X_test)\n", + "GV_KNN.best_estimator_" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": { + "id": "voNSUlHk8Js7" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics with grid search\n", + "rmse8_1 = np.sqrt(mean_squared_error(y_test, pred8_1))\n", + "mae8_1 = mean_absolute_error(y_test, pred8_1)\n", + "mape8_1 = mean_absolute_percentage_error(y_test, pred8_1)\n", + "accuracy8_1 = accuracy_score(y_test > pred8_1, y_test > pred8_1.round())\n", + "precision8_1 = precision_score(y_test > pred8_1, y_test > pred8_1.round())\n", + "confusion8_1 = confusion_matrix(y_test > pred8_1, y_test > pred8_1.round())\n", + "recall8_1 = recall_score(y_test > pred8_1, y_test > pred8_1.round())\n", + "f18_1 = f1_score(y_test > pred8_1, y_test > pred8_1.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VMnot_fX8Js8", + "outputId": "71c354e6-71e6-4d31-ee2f-2a03f65d24fe" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 137.20694663964096\n", + "MAE: 101.08872313712585\n", + "MAPE: 1.7323302969000884\n", + "Accuracy: 0.9985865724381625\n", + "Precision: 1.0\n", + "Confusion Matrix:\n", + " [[865 0]\n", + " [ 2 548]]\n", + "Recall: 0.9963636363636363\n", + "F1 Score: 0.9981785063752276\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics with grid search\n", + "print(\"RMSE:\", rmse8_1)\n", + "print(\"MAE:\", mae8_1)\n", + "print(\"MAPE:\", mape8_1)\n", + "print(\"Accuracy:\", accuracy8_1)\n", + "print(\"Precision:\", precision8_1)\n", + "print(\"Confusion Matrix:\\n\", confusion8_1)\n", + "print(\"Recall:\", recall8_1)\n", + "print(\"F1 Score:\", f18_1)" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 524 + }, + "id": "Swebseye8Js8", + "outputId": "c501acf3-094c-4ba6-f0d7-1a0901cdb2e0" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1AAAAH7CAYAAADCX341AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVWElEQVR4nO3de3iU9Z3//9fMJDM5TjBASJAgEa2agihHU/uluqWEGq2stqtWLZ7qwgYU2FW0VSn2W7G6rWhRaO1e4G+Rou631AI1bsrJWoJRECFEUCEFNBkSjMmEkOPM/fsDZsiQBCaQ5L5n8nxc11wy9/3Jnfd8QoFXPyebYRiGAAAAAABnZDe7AAAAAACIFAQoAAAAAAgTAQoAAAAAwkSAAgAAAIAwEaAAAAAAIEwEKAAAAAAIEwEKAAAAAMJEgAIAAACAMBGgAAAAACBMMWYXYCa/36/y8nIlJyfLZrOZXQ4AAAAAkxiGobq6Og0ePFh2+2nGmYwueOqpp4yxY8caSUlJxsCBA40bb7zR2LNnT0ibb33rW4akkNe//uu/hrQ5cOCAcd111xnx8fHGwIEDjf/4j/8wWlpaQtps3LjRuPLKKw2n02kMHz7cWLZsWbt6Fi9ebFxwwQWGy+Uyxo8fb7z33ntd+TjGoUOH2tXKixcvXrx48eLFixevvvs6dOjQaTNEl0agNm/erPz8fI0bN06tra36yU9+osmTJ6u0tFSJiYnBdj/+8Y/15JNPBt8nJCQEf+3z+ZSXl6f09HRt2bJFFRUV+tGPfqTY2Fg99dRTkqSysjLl5eVp+vTpevXVV7V+/Xrdd999ysjIUG5uriTptdde09y5c7V06VJNmDBBixYtUm5urvbu3au0tLSwPk9ycrIk6dChQ3K73V3pCgAAAABRxOv1KjMzM5gROmMzDMM4229SVVWltLQ0bd68WRMnTpQkXXPNNbriiiu0aNGiDr/mrbfe0vXXX6/y8nINGjRIkrR06VLNmzdPVVVVcjqdmjdvntatW6eSkpLg1916662qqalRQUGBJGnChAkaN26cFi9eLOn4dLzMzEzNmjVLjzzySFj1e71epaSkqLa2lgAFAAAA9GHhZoNz2kSitrZWkpSamhpy/dVXX9WAAQM0YsQIPfroozp27FjwXlFRkUaOHBkMT5KUm5srr9er3bt3B9tMmjQp5Jm5ubkqKiqSJDU3N2vbtm0hbex2uyZNmhRs05GmpiZ5vd6QFwAAAACE66w3kfD7/Zo9e7auvvpqjRgxInj9hz/8oS644AINHjxYO3fu1Lx587R371798Y9/lCR5PJ6Q8CQp+N7j8Zy2jdfrVUNDg7766iv5fL4O2+zZs6fTmhcuXKgFCxac7UcGAAAA0MeddYDKz89XSUmJ3n333ZDr999/f/DXI0eOVEZGhr797W9r3759Gj58+NlX2g0effRRzZ07N/g+MM8RAAAAAMJxVgFq5syZWrt2rd555x0NGTLktG0nTJggSfrss880fPhwpaenq7i4OKTN4cOHJUnp6enB/wautW3jdrsVHx8vh8Mhh8PRYZvAMzricrnkcrnC+5AAAAAAcIourYEyDEMzZ87U6tWrtWHDBmVlZZ3xa3bs2CFJysjIkCTl5ORo165dqqysDLYpLCyU2+1WdnZ2sM369etDnlNYWKicnBxJktPp1JgxY0La+P1+rV+/PtgGAAAAALpbl0ag8vPztXLlSr355ptKTk4OrllKSUlRfHy89u3bp5UrV+q6665T//79tXPnTs2ZM0cTJ07U5ZdfLkmaPHmysrOzdeedd+qZZ56Rx+PRY489pvz8/ODo0PTp07V48WI9/PDDuueee7Rhwwa9/vrrWrduXbCWuXPnatq0aRo7dqzGjx+vRYsWqb6+XnfffXd39Q0AAAAAhOjSNuY2m63D68uWLdNdd92lQ4cO6Y477lBJSYnq6+uVmZmpf/7nf9Zjjz0WshXggQMHNGPGDG3atEmJiYmaNm2ann76acXEnMxzmzZt0pw5c1RaWqohQ4bo8ccf11133RXyfRcvXqxnn31WHo9HV1xxhV544YXglMFwsI05AAAAACn8bHBO50BFOgIUAAAAAKmXzoECAAAAgL6EAAUAAAAAYSJAAQAAAECYCFAAAAAAECYCFAAAAACEqUvnQKFn+PyGisuqVVnXqLTkOI3PSpXD3vGW8QAAAADMQ4AyWUFJhRasKVVFbWPwWkZKnObfkK0pIzJMrAwAAADAqZjCZ6KCkgrNWLE9JDxJkqe2UTNWbFdBSYVJlQEAAADoCAHKJD6/oQVrStXRKcaBawvWlMrn77PnHAMAAACWQ4AySXFZdbuRp7YMSRW1jSouq+69ogAAAACcFgHKJJV1nYens2kHAAAAoOcRoEySlhzXre0AAAAA9DwClEnGZ6UqIyVOnW1WbtPx3fjGZ6X2ZlkAAAAAToMAZRKH3ab5N2RLUrsQFXg//4ZszoMCAAAALIQAZaIpIzK05I7RSk8JnaaXnhKnJXeM5hwoAAAAwGI4SNdkU0Zk6DvZ6Zr8683ad6Re/zH5a5pxzUWMPAEAAAAWxAiUBTjsNg0+L16SdP558YQnAAAAwKIIUBaRHHd8MNDb0GpyJQAAAAA6Q4CyiGRXrCSprrHF5EoAAAAAdIYAZRGBEai6RkagAAAAAKsiQFmEO/74CJSXAAUAAABYFgHKIk6OQDGFDwAAALAqApRFJMcxAgUAAABYHQHKIhiBAgAAAKyPAGURbCIBAAAAWB8ByiLccWxjDgAAAFgdAcoiAgGKg3QBAAAA6yJAWURgCl9Di08tPr/J1QAAAADoCAHKIpJOBChJOso6KAAAAMCSCFAWEeuwK8HpkMRGEgAAAIBVEaAsJDCNz8tGEgAAAIAlEaAs5ORhugQoAAAAwIoIUBbCWVAAAACAtRGgLCQ5eBYUAQoAAACwIgKUhbiDI1BM4QMAAACsiABlIckcpgsAAABYGgHKQhiBAgAAAKyNAGUhbCIBAAAAWBsBykLc8Sc2kWhiBAoAAACwIgKUhTACBQAAAFgbAcpCkl2BTSQYgQIAAACsiABlIYxAAQAAANZGgLKQ4DbmBCgAAADAkghQFuKOZxtzAAAAwMoIUBYSGIFqavWrqdVncjUAAAAATkWAspAkV0zw16yDAgAAAKyHAGUhDrstGKIIUAAAAID1EKAsxh3HOigAAADAqghQFhNYB8UIFAAAAGA9BCiLCZwFxWG6AAAAgPUQoCyGw3QBAAAA6yJAWczJw3QZgQIAAACshgBlMScP02UECgAAALAaApTFMAIFAAAAWBcBymJYAwUAAABYFwHKYk5uY84IFAAAAGA1BCiLcTMCBQAAAFgWAcpi3BykCwAAAFgWAcpiggfpMoUPAAAAsBwClMUkMwIFAAAAWFaXAtTChQs1btw4JScnKy0tTVOnTtXevXs7bGsYhr773e/KZrPpT3/6U8i9gwcPKi8vTwkJCUpLS9NDDz2k1tbQwLBp0yaNHj1aLpdLF110kZYvX97ue7z44osaNmyY4uLiNGHCBBUXF3fl41jSyV34WmQYhsnVAAAAAGirSwFq8+bNys/P19atW1VYWKiWlhZNnjxZ9fX17douWrRINput3XWfz6e8vDw1Nzdry5YteuWVV7R8+XI98cQTwTZlZWXKy8vTtddeqx07dmj27Nm677779PbbbwfbvPbaa5o7d67mz5+v7du3a9SoUcrNzVVlZWVXPpLluOOPj0C1+Aw1tfpNrgYAAABAWzbjHIY5qqqqlJaWps2bN2vixInB6zt27ND111+vDz74QBkZGVq9erWmTp0qSXrrrbd0/fXXq7y8XIMGDZIkLV26VPPmzVNVVZWcTqfmzZundevWqaSkJPjMW2+9VTU1NSooKJAkTZgwQePGjdPixYslSX6/X5mZmZo1a5YeeeSRsOr3er1KSUlRbW2t3G732XZDtzIMQ8N/8hf5Dan4p99WWnKc2SUBAAAAUS/cbHBOa6Bqa2slSampqcFrx44d0w9/+EO9+OKLSk9Pb/c1RUVFGjlyZDA8SVJubq68Xq92794dbDNp0qSQr8vNzVVRUZEkqbm5Wdu2bQtpY7fbNWnSpGCbjjQ1Ncnr9Ya8rMZmsynJdWIjiQbWQQEAAABWctYByu/3a/bs2br66qs1YsSI4PU5c+boG9/4hm688cYOv87j8YSEJ0nB9x6P57RtvF6vGhoadOTIEfl8vg7bBJ7RkYULFyolJSX4yszMDP8D9yIO0wUAAACs6awDVH5+vkpKSrRq1argtT//+c/asGGDFi1a1B21dbtHH31UtbW1wdehQ4fMLqlDgXVQ7MQHAAAAWMtZBaiZM2dq7dq12rhxo4YMGRK8vmHDBu3bt0/9+vVTTEyMYmKOT0W7+eabdc0110iS0tPTdfjw4ZDnBd4Hpvx11sbtdis+Pl4DBgyQw+HosE1H0wYDXC6X3G53yMuKTu7ER4ACAAAArKRLAcowDM2cOVOrV6/Whg0blJWVFXL/kUce0c6dO7Vjx47gS5Kee+45LVu2TJKUk5OjXbt2heyWV1hYKLfbrezs7GCb9evXhzy7sLBQOTk5kiSn06kxY8aEtPH7/Vq/fn2wTSRzc5guAAAAYEkxXWmcn5+vlStX6s0331RycnJwvVFKSori4+OVnp7e4QjQ0KFDg2Fr8uTJys7O1p133qlnnnlGHo9Hjz32mPLz8+VyuSRJ06dP1+LFi/Xwww/rnnvu0YYNG/T6669r3bp1wWfOnTtX06ZN09ixYzV+/HgtWrRI9fX1uvvuu8+6M6yCNVAAAACANXUpQC1ZskSSgtPxApYtW6a77rorrGc4HA6tXbtWM2bMUE5OjhITEzVt2jQ9+eSTwTZZWVlat26d5syZo+eff15DhgzR73//e+Xm5gbb3HLLLaqqqtITTzwhj8ejK664QgUFBe02lohETOEDAAAArOmczoGKdFY8B0qS/vPtvVq88TPd9Y1h+tn3vm52OQAAAEDU65VzoNAzklkDBQAAAFgSAcqCAmugOEgXAAAAsBYClAWdXAPFCBQAAABgJQQoC+IgXQAAAMCaCFAWFByBamIECgAAALASApQFBQ/SZQ0UAAAAYCkEKAsKbCJxtKlVfXiXeQAAAMByCFAWFJjC5/MbOtbsM7kaAAAAAAEEKAuKj3Uoxm6TxEYSAAAAgJUQoCzIZrOxlTkAAABgQQQoiwoepkuAAgAAACyDAGVRgREoL1P4AAAAAMsgQFmUO47DdAEAAACrIUBZFGugAAAAAOshQFlUcA0Uh+kCAAAAlkGAsihGoAAAAADrIUBZlDsYoBiBAgAAAKyCAGVR7vjAJhKMQAEAAABWQYCyqGRGoAAAAADLIUBZFAfpAgAAANZDgLIoRqAAAAAA6yFAWRQH6QIAAADWQ4CyqMAIFFP4AAAAAOsgQFlUYA3U0aZW+f2GydUAAAAAkAhQlhUYgTIM6Wgz0/gAAAAAKyBAWVRcrENOx/EfD+ugAAAAAGsgQFmYOz6wEx/roAAAAAArIEBZWDI78QEAAACWQoCysOBOfA2MQAEAAABWQICyMA7TBQAAAKyFAGVhJw/TZQQKAAAAsAIClIWdPEyXESgAAADACghQFhbYRMLLCBQAAABgCQQoC2MNFAAAAGAtBCgLYxtzAAAAwFoIUBbmjuMgXQAAAMBKCFAWxggUAAAAYC0EKAtzc5AuAAAAYCkEKAtjBAoAAACwFgKUhbnjWQMFAAAAWAkBysICI1D1zT61+vwmVwMAAACAAGVhgXOgJOloE9P4AAAAALMRoCws1mFXXOzxHxHroAAAAADzEaAsLjCNz8s6KAAAAMB0BCiLO3mYLiNQAAAAgNkIUBbHVuYAAACAdRCgLC6Zw3QBAAAAyyBAWZw7OAJFgAIAAADMRoCyuJOH6TKFDwAAADAbAcrigmugOAcKAAAAMB0ByuKSXYERKKbwAQAAAGYjQFncyU0kGIECAAAAzEaAsjgO0gUAAACsgwBlce54zoECAAAArIIAZXGBKXysgQIAAADMR4CyuOAaKEagAAAAANMRoCyOg3QBAAAA6yBAWVwgQDW2+NXi85tcDQAAANC3EaAsLunEFD6JjSQAAAAAsxGgLM5htynR6ZDEND4AAADAbASoCBA8C4rDdAEAAABTdSlALVy4UOPGjVNycrLS0tI0depU7d27N6TNv/7rv2r48OGKj4/XwIEDdeONN2rPnj0hbQ4ePKi8vDwlJCQoLS1NDz30kFpbQ8PBpk2bNHr0aLlcLl100UVavnx5u3pefPFFDRs2THFxcZowYYKKi4u78nEiBluZAwAAANbQpQC1efNm5efna+vWrSosLFRLS4smT56s+vr6YJsxY8Zo2bJl+vjjj/X222/LMAxNnjxZPp9PkuTz+ZSXl6fm5mZt2bJFr7zyipYvX64nnngi+IyysjLl5eXp2muv1Y4dOzR79mzdd999evvtt4NtXnvtNc2dO1fz58/X9u3bNWrUKOXm5qqysvJc+8RyAofpspU5AAAAYC6bYRjG2X5xVVWV0tLStHnzZk2cOLHDNjt37tSoUaP02Wefafjw4Xrrrbd0/fXXq7y8XIMGDZIkLV26VPPmzVNVVZWcTqfmzZundevWqaSkJPicW2+9VTU1NSooKJAkTZgwQePGjdPixYslSX6/X5mZmZo1a5YeeeSRDmtpampSU1NT8L3X61VmZqZqa2vldrvPtht63F3LirVpb5We/f7l+sHYTLPLAQAAAKKO1+tVSkrKGbPBOa2Bqq2tlSSlpqZ2eL++vl7Lli1TVlaWMjOP/8O/qKhII0eODIYnScrNzZXX69Xu3buDbSZNmhTyrNzcXBUVFUmSmpubtW3btpA2drtdkyZNCrbpyMKFC5WSkhJ8BWqyuuAaKEagAAAAAFOddYDy+/2aPXu2rr76ao0YMSLk3ksvvaSkpCQlJSXprbfeUmFhoZxOpyTJ4/GEhCdJwfcej+e0bbxerxoaGnTkyBH5fL4O2wSe0ZFHH31UtbW1wdehQ4fO7sP3MtZAAQAAANZw1gEqPz9fJSUlWrVqVbt7t99+uz788ENt3rxZX/va1/Qv//IvamxsPKdCu4PL5ZLb7Q55RYLAYbqcAwUAAACY66wC1MyZM7V27Vpt3LhRQ4YMaXc/JSVFF198sSZOnKj/+Z//0Z49e7R69WpJUnp6ug4fPhzSPvA+PT39tG3cbrfi4+M1YMAAORyODtsEnhFNGIECAAAArKFLAcowDM2cOVOrV6/Whg0blJWVFdbXGIYR3LwhJydHu3btCtktr7CwUG63W9nZ2cE269evD3lOYWGhcnJyJElOp1NjxowJaeP3+7V+/fpgm2jiDgYoRqAAAAAAM3UpQOXn52vFihVauXKlkpOT5fF45PF41NDQIEnav3+/Fi5cqG3btungwYPasmWLfvCDHyg+Pl7XXXedJGny5MnKzs7WnXfeqY8++khvv/22HnvsMeXn58vlckmSpk+frv379+vhhx/Wnj179NJLL+n111/XnDlzgrXMnTtXL7/8sl555RV9/PHHmjFjhurr63X33Xd3V99YxslNJBiBAgAAAMwU05XGS5YskSRdc801IdeXLVumu+66S3Fxcfrb3/6mRYsW6auvvtKgQYM0ceJEbdmyRWlpaZIkh8OhtWvXasaMGcrJyVFiYqKmTZumJ598Mvi8rKwsrVu3TnPmzNHzzz+vIUOG6Pe//71yc3ODbW655RZVVVXpiSeekMfj0RVXXKGCgoJ2G0tEg2RGoAAAAABLOKdzoCJduHu9m+39f1TrB0uLlDUgURv/4xqzywEAAACiTq+cA4XewSYSAAAAgDUQoCJAcA1UA1P4AAAAADMRoCJAYASq2edXY4vP5GoAAACAvosAFQGSnDGy2Y7/mo0kAAAAAPMQoCKA3W5Tkot1UAAAAIDZCFARwn1iHRQjUAAAAIB5CFARIrAOisN0AQAAAPMQoCIEh+kCAAAA5iNARYiTU/gYgQIAAADMQoCKEIxAAQAAAOYjQEWIk4fpMgIFAAAAmIUAFSFObiLBCBQAAABgFgJUhHDHs405AAAAYDYCVIQ4uQaKKXwAAACAWQhQESKZg3QBAAAA0xGgIgQH6QIAAADmI0BFCDfbmAMAAACmI0BFCA7SBQAAAMxHgIoQbddAGYZhcjUAAABA30SAihCBNVCtfkMNLT6TqwEAAAD6JgJUhEhwOuSw2ySxDgoAAAAwCwEqQthsNs6CAgAAAExGgIogJ7cyZwQKAAAAMAMBKoIkuzhMFwAAADATASqCJLkckqQNHx9W0b4v5fOzGx8AAADQm2LMLgDhKSip0Eef10qSXik6oFeKDigjJU7zb8jWlBEZJlcHAAAA9A2MQEWAgpIKzVixXU2t/pDrntpGzVixXQUlFSZVBgAAAPQtBCiL8/kNLVhTqo4m6wWuLVhTynQ+AAAAoBcQoCyuuKxaFbWNnd43JFXUNqq4rLr3igIAAAD6KAKUxVXWdR6ezqYdAAAAgLNHgLK4tOS4bm0HAAAA4OwRoCxufFaqMlLiZOvkvk1SRkqcxmel9mZZAAAAQJ9EgLI4h92m+TdkS1K7EBV4P/+GbDnsnUUsAAAAAN2FABUBpozI0JI7Ris9JXSaXnpKnJbcMZpzoAAAAIBeQoCKEFNGZOjdef+kb1+WJkmaesVgvTvvnwhPAAAAQC8iQEUQh92mbwwfIElqavUzbQ8AAADoZQSoCHPhwERJ0v6qepMrAQAAAPoeAlSEuWhgkiSp7Ei9fH7D5GoAAACAvoUAFWEG94uXK8auZp9fn391zOxyAAAAgD6FABVhHHabsgYcn8a3r+qoydUAAAAAfQsBKgINPzGNj3VQAAAAQO8iQEWg4QMZgQIAAADMQICKQMPTjo9A7atkBAoAAADoTQSoCHThgBNT+I4wAgUAAAD0JgJUBAqcBXXkaLNqjjWbXA0AAADQdxCgIlCiK0YZKXGSpH1sJAEAAAD0GgJUhAqMQu1nIwkAAACg1xCgIlRgK3NGoAAAAIDeQ4CKUCcDFCNQAAAAQG8hQEUoAhQAAADQ+whQESqwBurgl8fU4vObXA0AAADQNxCgIlS6O04JToda/YYOVh8zuxwAAACgTyBARSi73RYchdpXyTQ+AAAAoDcQoCLYhQOOr4Paf4Sd+AAAAIDeQICKYMGNJBiBAgAAAHoFASqCDU87MYWPnfgAAACAXkGAimCBKXz7quplGIbJ1QAAAADRjwAVwbIGJMpmk2obWlRd32x2OQAAAEDUI0BFsHinQ+f3i5d0fBQKAAAAQM8iQEW44EYSrIMCAAAAelyXAtTChQs1btw4JScnKy0tTVOnTtXevXuD96urqzVr1ixdcsklio+P19ChQ/XAAw+otrY25DkHDx5UXl6eEhISlJaWpoceekitra0hbTZt2qTRo0fL5XLpoosu0vLly9vV8+KLL2rYsGGKi4vThAkTVFxc3JWPExUCZ0HtJ0ABAAAAPa5LAWrz5s3Kz8/X1q1bVVhYqJaWFk2ePFn19cenj5WXl6u8vFz/+Z//qZKSEi1fvlwFBQW69957g8/w+XzKy8tTc3OztmzZoldeeUXLly/XE088EWxTVlamvLw8XXvttdqxY4dmz56t++67T2+//XawzWuvvaa5c+dq/vz52r59u0aNGqXc3FxVVlaea59ElJMjUEzhAwAAAHqazTiH7duqqqqUlpamzZs3a+LEiR22eeONN3THHXeovr5eMTExeuutt3T99dervLxcgwYNkiQtXbpU8+bNU1VVlZxOp+bNm6d169appKQk+Jxbb71VNTU1KigokCRNmDBB48aN0+LFiyVJfr9fmZmZmjVrlh555JGw6vd6vUpJSVFtba3cbvfZdoOpivZ9qdte3qoL+ido80PXml0OAAAAEJHCzQbntAYqMDUvNTX1tG3cbrdiYmIkSUVFRRo5cmQwPElSbm6uvF6vdu/eHWwzadKkkOfk5uaqqKhIktTc3Kxt27aFtLHb7Zo0aVKwTUeamprk9XpDXpFu+IkpfIeqj6mp1WdyNQAAAEB0O+sA5ff7NXv2bF199dUaMWJEh22OHDmin//857r//vuD1zweT0h4khR87/F4TtvG6/WqoaFBR44ckc/n67BN4BkdWbhwoVJSUoKvzMzM8D+wRQ1MdinZFSO/IR348pjZ5QAAAABR7awDVH5+vkpKSrRq1aoO73u9XuXl5Sk7O1s/+9nPzvbbdKtHH31UtbW1wdehQ4fMLumc2Ww2XZh2Yh1UJRtJAAAAAD0p5my+aObMmVq7dq3eeecdDRkypN39uro6TZkyRcnJyVq9erViY2OD99LT09vtlnf48OHgvcB/A9fatnG73YqPj5fD4ZDD4eiwTeAZHXG5XHK5XF37sBFg+MBEfXSohq3MAQAAgB7WpREowzA0c+ZMrV69Whs2bFBWVla7Nl6vV5MnT5bT6dSf//xnxcXFhdzPycnRrl27QnbLKywslNvtVnZ2drDN+vXrQ76usLBQOTk5kiSn06kxY8aEtPH7/Vq/fn2wTV8S2IlvPzvxAQAAAD2qSwEqPz9fK1as0MqVK5WcnCyPxyOPx6OGhgZJJ8NTfX29/uu//kterzfYxuc7vsHB5MmTlZ2drTvvvFMfffSR3n77bT322GPKz88Pjg5Nnz5d+/fv18MPP6w9e/bopZde0uuvv645c+YEa5k7d65efvllvfLKK/r44481Y8YM1dfX6+677+6uvokYgY0kGIECAAAAelaXpvAtWbJEknTNNdeEXF+2bJnuuusubd++Xe+9954k6aKLLgppU1ZWpmHDhsnhcGjt2rWaMWOGcnJylJiYqGnTpunJJ58Mts3KytK6des0Z84cPf/88xoyZIh+//vfKzc3N9jmlltuUVVVlZ544gl5PB5dccUVKigoaLexRF/Q9iwowzBks9lMrggAAACITud0DlSki4ZzoCSpqdWnyx4vkN+Qin/ybaW54878RQAAAACCeuUcKFiDK8ahoakJkqTPmMYHAAAA9BgCVJRoO40PAAAAQM8gQEWJC09sJLGfESgAAACgxxCgogQjUAAAAEDPI0BFieFpJwJUJSNQAAAAQE8hQEWJwAjUFzUNamj2mVwNAAAAEJ0IUFEiNdGpfgmxkqSyI0zjAwAAAHoCASqKnFwHxTQ+AAAAoCcQoKLI8BM78RGgAAAAgJ5BgIoiF54YgdrPTnwAAABAjyBARRGm8AEAAAA9iwAVRYYHD9Otl99vmFwNAAAAEH0IUFEkMzVBMXabGlp88ngbzS4HAAAAiDoEqCgS67Drgv4JkpjGBwAAAPQEAlSUuXDA8Wl8f/rwCxXt+1I+pvIBAAAA3SbG7ALQfQpKKrRl/5eSpP+3/Qv9v+1fKCMlTvNvyNaUERkmVwcAAABEPkagokRBSYVmrNiu+iZfyHVPbaNmrNiugpIKkyoDAAAAogcBKgr4/IYWrClVR5P1AtcWrCllOh8AAABwjghQUaC4rFoVtZ3vumdIqqhtVHFZde8VBQAAAEQhAlQUqKwLb8vycNsBAAAA6BgBKgqkJcd1azsAAAAAHSNARYHxWanKSImTrZP7NkkZKXEan5Xam2UBAAAAUYcAFQUcdpvm35AtSe1CVOD9/Buy5bB3FrEAAAAAhIMAFSWmjMjQkjtGKz0ldJreILdLS+4YzTlQAAAAQDfgIN0oMmVEhr6Tna7ismr926vb9NWxFv3n90fpm18baHZpAAAAQFRgBCrKOOw25Qzvr5zh/SVJu8q9JlcEAAAARA8CVJQaNaSfJGnn5zWm1gEAAABEEwJUlLo8GKBqzS0EAAAAiCIEqCg1ckiKbDbpi5oGHTnaZHY5AAAAQFQgQEWpJFeMhg9MksQ0PgAAAKC7EKCi2OVDUiRJHx1iGh8AAADQHQhQUYyNJAAAAIDuRYCKYoERqJ2f18owDJOrAQAAACIfASqKXZbhVozdpi/rm/VFTYPZ5QAAAAARjwAVxeJiHbo0I1kS25kDAAAA3YEAFeUC50F9dKjG1DoAAACAaECAinKjAjvxsZEEAAAAcM4IUFEuMAJV8oVXfj8bSQAAAADnggAV5S5OS1JcrF1Hm1q1/8hRs8sBAAAAIhoBKsrFOOwaMZgDdQEAAIDuQIDqAy7nQF0AAACgWxCg+oBRmYGNJBiBAgAAAM4FAaoPGHViBKq0wqvmVr+5xQAAAAARjADVB1zQP0Ep8bFqbvXrk8N1ZpcDAAAARCwCVB9gs9l0OedBAQAAAOeMANVHBALUTnbiAwAAAM4aAaqPCOzExwgUAAAAcPYIUH1EYCOJTyuPqqHZZ24xAAAAQIQiQPUR6SlxSkt2yec3tLucaXwAAADA2SBA9SEnp/ERoAAAAICzQYDqQ0YFNpJgHRQAAABwVghQfcjlmf0kSTsZgQIAAADOCgGqD7n8/OMjUGVH6lV7rMXkagAAAIDIQ4DqQ85LdGpoaoIkaecXNeYWAwAAAEQgAlQfEzxQl2l8AAAAQJcRoPqYwHlQHx2qMbUOAAAAIBIRoPqYUWwkAQAAAJw1AlQfM+J8t+w2yeNtVKW30exyAAAAgIhCgOpjEpwxujgtWRIH6gIAAABdRYDqgy7nQF0AAADgrHQpQC1cuFDjxo1TcnKy0tLSNHXqVO3duzekze9+9ztdc801crvdstlsqqmpafec6upq3X777XK73erXr5/uvfdeHT16NKTNzp079X/+z/9RXFycMjMz9cwzz7R7zhtvvKFLL71UcXFxGjlypP7yl7905eP0WYEDdRmBAgAAALqmSwFq8+bNys/P19atW1VYWKiWlhZNnjxZ9fX1wTbHjh3TlClT9JOf/KTT59x+++3avXu3CgsLtXbtWr3zzju6//77g/e9Xq8mT56sCy64QNu2bdOzzz6rn/3sZ/rd734XbLNlyxbddtttuvfee/Xhhx9q6tSpmjp1qkpKSrrykfqkUSdGoLYdqNabH36hon1fyuc3TK4KAAAAsD6bYRhn/S/nqqoqpaWlafPmzZo4cWLIvU2bNunaa6/VV199pX79+gWvf/zxx8rOztb777+vsWPHSpIKCgp03XXX6fPPP9fgwYO1ZMkS/fSnP5XH45HT6ZQkPfLII/rTn/6kPXv2SJJuueUW1dfXa+3atcFnX3XVVbriiiu0dOnSsOr3er1KSUlRbW2t3G732XZDxFnzUblm/eHDkGsZKXGaf0O2pozIMKkqAAAAwDzhZoNzWgNVW3t8ClhqamrYX1NUVKR+/foFw5MkTZo0SXa7Xe+9916wzcSJE4PhSZJyc3O1d+9effXVV8E2kyZNCnl2bm6uioqKOv3eTU1N8nq9Ia++pqCkQg+cEp4kyVPbqBkrtqugpMKEqgAAAIDIcNYByu/3a/bs2br66qs1YsSIsL/O4/EoLS0t5FpMTIxSU1Pl8XiCbQYNGhTSJvD+TG0C9zuycOFCpaSkBF+ZmZlh1x0NfH5DC9aUqqMhx8C1BWtKmc4HAAAAdOKsA1R+fr5KSkq0atWq7qynRz366KOqra0Nvg4dOmR2Sb2quKxaFbWdn/1kSKqobVRxWXXvFQUAAABEkJiz+aKZM2cGN38YMmRIl742PT1dlZWVIddaW1tVXV2t9PT0YJvDhw+HtAm8P1ObwP2OuFwuuVyuLtUbTSrrwjs4N9x2AAAAQF/TpREowzA0c+ZMrV69Whs2bFBWVlaXv2FOTo5qamq0bdu24LUNGzbI7/drwoQJwTbvvPOOWlpagm0KCwt1ySWX6Lzzzgu2Wb9+fcizCwsLlZOT0+Wa+oq05LhubQcAAAD0NV0KUPn5+VqxYoVWrlyp5ORkeTweeTweNTQ0BNt4PB7t2LFDn332mSRp165d2rFjh6qrj08Lu+yyyzRlyhT9+Mc/VnFxsf7+979r5syZuvXWWzV48GBJ0g9/+EM5nU7de++92r17t1577TU9//zzmjt3bvD7PPjggyooKNCvfvUr7dmzRz/72c/0wQcfaObMmefcKdFqfFaqMlLiZOvkvk3Hd+MbnxX+piAAAABAX9Klbcxtto7/6b1s2TLdddddkqSf/exnWrBgwWnbVFdXa+bMmVqzZo3sdrtuvvlmvfDCC0pKSgq237lzp/Lz8/X+++9rwIABmjVrlubNmxfyzDfeeEOPPfaY/vGPf+jiiy/WM888o+uuuy7cj9MntzEvKKnQjBXbJandZhI2SUvuGM1W5gAAAOhzws0G53QOVKTriwFKOh6iFqwpDdlQItZh029uu5LwBAAAgD4p3GxwVptIILJNGZGh72Snq7isWmVHjuqJN3erxWfo/H4JZpcGAAAAWNo5HaSLyOWw25QzvL9+OOECXTfy+KjTyuKDJlcFAAAAWBsBCrpt/FBJ0p93fKGjTa0mVwMAAABYFwEKuurCVF04IFH1zT6t+ajc7HIAAAAAyyJAQTabLTgKtfI9pvEBAAAAnSFAQZJ085ghcjrs2vVFrXZ9Xmt2OQAAAIAlEaAgSUpNdGrKiHRJ0h/eZxQKAAAA6AgBCkGBaXxvfshmEgAAAEBHCFAIYjMJAAAA4PQIUAhqu5nEHzgTCgAAAGiHAIUQgc0kdn5eq5Iv2EwCAAAAaIsAhRBtN5NYySgUAAAAEIIAhXbabiZRz2YSAAAAQBABCu203Uziz2wmAQAAAAQRoNBO280kXn5nv97c8YWK9n0pn98wuTIAAADAXDFmFwBr6pcQK0naf6ReD67aIUnKSInT/BuyNWVEhomVAQAAAOZhBArtFJRU6OH/2dnuuqe2UTNWbFdBSYUJVQEAAADmI0AhhM9vaMGaUnU0WS9wbcGaUqbzAQAAoE8iQCFEcVm1KmobO71vSKqobVRxWXXvFQUAAABYBAEKISrrOg9PZ9MOAAAAiCYEKIRIS47r1nYAAABANCFAIcT4rFRlpMTJdpo26W6Xxmel9lpNAAAAgFUQoBDCYbdp/g3ZktRpiMpIiZf9dAkLAAAAiFIEKLQzZUSGltwxWukpodP0BiQ55bBLHx6q0X+9W2ZSdQAAAIB5OEgXHZoyIkPfyU5XcVm1KusalZYcp/FZqVr53gE9/uZuLXxrjy4f0o+pfAAAAOhTGIFCpxx2m3KG99eNV5yvnOH95bDbdMdVF2jqFYPl8xvKX7ldlV524wMAAEDfQYBCl9hsNj1100hdMihZVXVNmrnyQ7X4/GaXBQAAAPQKAhS6LMEZoyV3jFaSK0bF/6jWMwV7zC4JAAAA6BUEKJyVCwcm6T9/cLkk6eW/lekvuypMrggAAADoeQQonLUpIzL0rxMvlCQ9/D87ta/qqMkVAQAAAD2LAIVz8lDuJRqflaqjTa2asWKbjjW3ml0SAAAA0GMIUDgnMQ67Fv/wSqUlu/TJ4aN65P/tkmEYZpcFAAAA9AgCFM5ZWnKcXrx9tBx2m/78Ubn+e+sBs0sCAAAAegQBCt1i3LBUPfrdSyVJP19bqu0HvzK5IgAAAKD7EaDQbe79ZpbyRmaoxWfo31Zs15dHm8wuCQAAAOhWBCh0G5vNpl9+/3JdODBRHm+jHlj1oXx+1kMBAAAgehCg0K2SXDH67R1jlOB06O+ffalfF+41uyQAAACg2xCg0O0uHpSsp28+fsjuixv36a+lh02uCAAAAOgeBCj0iO+NGqy7vjFMkjTn9R3aX3VURfu+1Js7vlDRvi+Z2gcAAICIFGN2AYheP7nuMu38vEbbD9Zo8nPvqLVNaMpIidP8G7I1ZUSGiRUCAAAAXcMIFHqMM8auH4zNlKSQ8CRJntpGzVixXQUlFWaUBgAAAJwVAhR6jM9v6IX1n3Z4LxCnFqwpZTofAAAAIgYBCj2muKxaFbWNnd43JFXUNqq4rLr3igIAAADOAQEKPaayrvPwdDbtAAAAALMRoNBj0pLjurUdAAAAYDYCFHrM+KxUZaTEyXaaNv0TnRqfldprNQEAAADnggCFHuOw2zT/hmxJ6jRE1Ta06O+fHem9ogAAAIBzQIBCj5oyIkNL7hit9JTQaXrpKXEaeb5brX5D9/1/H2jjnkqTKgQAAADCZzMMo8/uIe31epWSkqLa2lq53W6zy4lqPr+h4rJqVdY1Ki05TuOzUuXzG5r1h+16e/dhOR12vXj7aH0ne5DZpQIAAKAPCjcbEKAIUKZq8fk1e9UOrdtVoRi7TYt/eKWmjMgwuywAAAD0MeFmA6bwwVSxDruev/UK3XjFYLX6DeWv/FBrPio3uywAAACgQwQomC7GYdev/+UK3TT6fPn8hh5c9aH+9OEXZpcFAAAAtEOAgiU47DY9+/1RumVspvyGNOf1HfqfbZ+bXRYAAAAQggAFy3DYbVp400jdPmGoDEN66H8+0qrig2aXBQAAAAQRoGApdrtN/3fqCN31jWEyDOmRP+7Sf289YHZZAAAAgCQCFCzIZjt+AO9938ySJD3+pxIt+3uZyVUBAAAABChYlM1m00/zLtP0bw2XJC1YU6qX39lvclUAAADo6whQsCybzaZ5Uy7RA/90kSTpF3/5WC9u/MzkqgAAANCXEaBgaTabTXMnX6K53/maJOnZt/fq+b9+anJVAAAA6KsIUIgID3z7Yj085RJJ0nN//US/+t+9MgzD5KoAAADQ13QpQC1cuFDjxo1TcnKy0tLSNHXqVO3duzekTWNjo/Lz89W/f38lJSXp5ptv1uHDh0PaHDx4UHl5eUpISFBaWpoeeughtba2hrTZtGmTRo8eLZfLpYsuukjLly9vV8+LL76oYcOGKS4uThMmTFBxcXFXPg4izL9dc5F+et1lkqTfbPhMTxfsIUQBAACgV3UpQG3evFn5+fnaunWrCgsL1dLSosmTJ6u+vj7YZs6cOVqzZo3eeOMNbd68WeXl5brpppuC930+n/Ly8tTc3KwtW7bolVde0fLly/XEE08E25SVlSkvL0/XXnutduzYodmzZ+u+++7T22+/HWzz2muvae7cuZo/f762b9+uUaNGKTc3V5WVlefSH7C4H0+8UPNvyJYk/Xbzfv3fdR8TogAAANBrbMY5/OuzqqpKaWlp2rx5syZOnKja2loNHDhQK1eu1Pe//31J0p49e3TZZZepqKhIV111ld566y1df/31Ki8v16BBgyRJS5cu1bx581RVVSWn06l58+Zp3bp1KikpCX6vW2+9VTU1NSooKJAkTZgwQePGjdPixYslSX6/X5mZmZo1a5YeeeSRsOr3er1KSUlRbW2t3G732XYDTPDfWw/o8T8d//0xLecCPX59tt7/x1eqrGtUWnKcxmelymG3mVwlAAAAIkW42eCc1kDV1tZKklJTUyVJ27ZtU0tLiyZNmhRsc+mll2ro0KEqKiqSJBUVFWnkyJHB8CRJubm58nq92r17d7BN22cE2gSe0dzcrG3btoW0sdvtmjRpUrBNR5qamuT1ekNeiEx3XnWBnr5ppGw26ZWiA7p8wf/qtpe36sFVO3Tby1v1zV9uUEFJhdllAgAAIMqcdYDy+/2aPXu2rr76ao0YMUKS5PF45HQ61a9fv5C2gwYNksfjCbZpG54C9wP3TtfG6/WqoaFBR44ckc/n67BN4BkdWbhwoVJSUoKvzMzMrn9wWMat44fqR1ddIEk61uwLueepbdSMFdsJUQAAAOhWZx2g8vPzVVJSolWrVnVnPT3q0UcfVW1tbfB16NAhs0vCOfD5Df1v6eEO7wXmpS5YUyqfnzVSAAAA6B5nFaBmzpyptWvXauPGjRoyZEjwenp6upqbm1VTUxPS/vDhw0pPTw+2OXVXvsD7M7Vxu92Kj4/XgAED5HA4OmwTeEZHXC6X3G53yAuRq7isWhW1jZ3eNyRV1DaquKy694oCAABAVOtSgDIMQzNnztTq1au1YcMGZWVlhdwfM2aMYmNjtX79+uC1vXv36uDBg8rJyZEk5eTkaNeuXSG75RUWFsrtdis7OzvYpu0zAm0Cz3A6nRozZkxIG7/fr/Xr1wfbIPpV1nUens6mHQAAAHAmMV1pnJ+fr5UrV+rNN99UcnJycL1RSkqK4uPjlZKSonvvvVdz585Vamqq3G63Zs2apZycHF111VWSpMmTJys7O1t33nmnnnnmGXk8Hj322GPKz8+Xy+WSJE2fPl2LFy/Www8/rHvuuUcbNmzQ66+/rnXr1gVrmTt3rqZNm6axY8dq/PjxWrRokerr63X33Xd3V9/A4tKS47q1HQAAAHAmXQpQS5YskSRdc801IdeXLVumu+66S5L03HPPyW636+abb1ZTU5Nyc3P10ksvBds6HA6tXbtWM2bMUE5OjhITEzVt2jQ9+eSTwTZZWVlat26d5syZo+eff15DhgzR73//e+Xm5gbb3HLLLaqqqtITTzwhj8ejK664QgUFBe02lkD0Gp+VqoyUOHlqG9XZKiebJJ/P35tlAQAAIIqd0zlQkY5zoCJfQUmFZqzYLkkhIcrW5n2M3aanb75c3x8z5NQvBwAAACT10jlQgNmmjMjQkjtGKz0ldJpeekqcXrj1Ct0warBa/Yb+442P9OvCT9SH//8CAAAAdANGoBiBigo+v6HismpV1jUqLTlO47NS5bDb5Pcb+lXhXr24cZ8k6aYrz9fCm0fKFeMwuWIAAABYSbjZoEtroACrcthtyhnev911u92mh3IvVeZ5Cfrpn0r0xw+/UHltg357x1ilJMSaUCkAAAAiGVP40CfcOn6olt01TkmuGG3dX62blvxdh6qPSTo+elW070u9ueMLFe37koN3AQAA0Cmm8DGFr0/Z4/Hq7mXvq6K2UQOSnLrn6iz999YDIQfyZqTEaf4N2ZoyIsPESgEAANCbws0GBCgCVJ9z2Nuoe5a/r93l3g7v2078d8kdowlRAAAAfQS78AGdGOSO0x9+fJVcMR3/9g/8PwoL1pQynQ8AAAAhCFDok3aXe9XU2vkBu4akitpGFZdV915RAAAAsDwCFPqkyrrGMzfqQjsAAAD0DQQo9ElpyXFnbtSFdgAAAOgbCFDok8ZnpSojJS64YURH+sXHanxWaq/VBAAAAOsjQKFPcthtmn9DtiR1GqJqGlr0f9eVqsXn56woAAAASGIbc7Yx7+MKSiq0YE1pu3Ogrhx6nv6yq0KS9LVBSao51qLKuqaQNpwVBQAAED04ByoMBChIks9vqLisWpV1jUpLjtP4rFQ57DYVlHj04KoPO9ytj7OiAAAAoku42SCmF2sCLMlhtylneP9217+TPUjJcTFqOtrc7p6h4yFqwZpSfSc7XQ776VZTAQAAIFqwBgroRHFZtY50EJ4COCsKAACg7yFAAZ3grCgAAACcigAFdCLcM6BWbD2gjyu8PVwNAAAArIAABXQinLOiJOn9f3yl7z7/N/3bq9u011PXK7UBAADAHAQooBOnOyvKduI1/4Zs3TBqsGw26S+7PJry/DuauXK7PqskSAEAAEQjtjFnG3OcQWdnRbU9B2qvp07Pr/9Ef9nlkSTZbNKNowbrgW9frAsHJplSNwAAAMLHOVBhIEAhXJ2dFXWq0nKvFv31E/1v6WFJkt0mTb3yfD3wTxdr2IDE3i4bAAAAYSJAhYEAhZ5S8kWtFv31E/3140pJx6cD3jz6fM36p4uVmZpgcnUAAAA4FQEqDAQo9LSPDtXoub9+ok17qyRJMXabfjB2iPKvvUhDzjsZpMId4QIAAEDPIECFgQCF3rL94Fd6rvAT/e3TI5KkWIdNt4zLVP61F+mjQzVnXGMFAACAnkWACgMBCr3tg39U67m/fqK/f/alpOMjUq3+9v8TDIw9LbljNCEKAACgF4SbDdjGHOhFY4el6tX7rtKq+6/SuGHndRieJClwdcGaUvk6aQMAAIDeR4ACTHDVhf019ztfO20bQ1JFbaM27a3snaIAAABwRjFmFwD0VZV1TWG1u/eVDzQ0NUHZGW5lD3YH/5uREiebjY0mAAAAehMBCjBJWnJc2G0PVh/TwepjKtjtCV7rlxB7PEwFgtVgt4YPTFKsg4FlAACAnkKAAkwyPitVGSlx8tQ2qqNVTjZJ6SlxWjvrm9p7uE6l5V6VVnhVWu7VZ5VHVXOsRVv2fakt+74Mfo3TYdfX0pPaBKsUXZaRrOS42F77XAAAANGMXfjYhQ8mKiip0IwV2yUpJESdaRe+plafPj18NBioAuHqaFNrh9+n7RTAr58YrUp3MwUQAAAggG3Mw0CAghUUlFR0yzlQfr+hz79qUGlFbchoVXmb57Z1XkJsyJqq7IwUXTgwkSmAAACgTyJAhYEABavw+Q0Vl1Wrsq5RaclxGp+VKoe9e0aHvqpv1scVJwNVaYVXn1Ye7XB7dGeMXZcMSg5ZV3VpOlMAAQBA9CNAhYEAhb6qscWnzyqPBgPV7vJafVxR1+kUwAv6J7TbsIIpgAAAIJoQoMJAgAJO8vsNHfrqWMj0v9IKb8jUwrZSE53ttla/cECiYpgCCAAAIhABKgwEKODMqgNTANvuAljV+RTAS9OTQ4LVpRluJbnY8BMAAFgbASoMBCjg7DS2BHYBDN2wor7Z12H7Yf0T2m1YMcjtYgogAACwDAJUGAhQQPfx+w0drD4WMv2vtNwrj/f0UwAD26pnZ7iVxRRAAABgEgJUGAhQQM/78miTPq6oCxmt2ldV3+EUQFdgCmCb0apL091KZAogAADoYQSoMBCgAHM0tvj0yeG6kJGqjys6ngJos0nD+ie227AiLZkpgAAAoPsQoMJAgAKsIzAFcHe5N2S06rC3qcP2/ROdIYHq64PdyhqQ1G3nZwEAgL6FABUGAhRgfUeONrXbBXBf1VF1MANQcbF2XZLuDt0FMD2ZKYAAAOCMCFBhIEABkamxxae9nrqQDSs+rvDqWCdTALP6J+qytqNVGW4NZAogAABogwAVBgIUED38fkMHqo8fBLy7vDYYrirrOp4COCDJqcvajFQxBRAAgL6NABUGAhQQ/arqTkwBbDNatf80UwAvTXefsgtgshKcTAEEACDaEaDCQIAC+qaGZp/2BncBrD2xC2CdGlo6mQI4oKNdAONMqBwAAPQUAlQYCFAAAnx+Qwe+rA+OVO0+MVpV1ekUQFdIoAocBMwUQAAAIhMBKgwEKABnUlnXePwg4OAugLXaf6ReHf3J2XYK4NeDuwC6Fe909H7hAACgSwhQYSBAATgbx5pb2+0CuKeTKYD2wBTAwSkho1UDk10mVA4AADpDgAoDAQpAd/H5Df3jy/qQ86p2l3t15GjHUwAHJrvarasa1v/spgD6/IaKy6pVWdeotOQ4jc9KjaiphJFePwAgOhCgwkCAAtDTKusaQ0JVaYVXZZ1MAYyPdejSjORTDgI+/RTAgpIKLVhTqoraxuC1jJQ4zb8hW1NGZPTER+pWkV4/ACB6EKDCQIACYIZjza3a46kLCVZ7PF41tvjbtbXbpAsHJrUbrRqQ5FJBSYVmrNiuU/8QD4zdLLljtKVDSKTXDwCILgSoMBCgAFiFz2+o7Eh9yEhVaXmtjhxt7rD9wCSnvI2tamptH7qk4yEkPSVO7877J0tOh/P5DX3zlxtCRp7asnr9AIDoQ4AKAwEKgNVV1jUe31L9RKj6uNyrsi87ngLYGZvteCCx2Wwn/nviuo7fsAXb2NrcO9k+0EaBa6c8T8Fntr138nu0bR/Q1OrrNBy2NemyNA1PS1KiM0aJrhgluRxKdMUE3ye6HEpyxSjBGaMkV4ziYu0h3wcAgHARoMJAgAIQieqbWvXy3/Zr0V8/NbsUy7Hb1CZgHQ9XicGA5TgRwo6/b3s/0eVoE9JilHDiXnysg0AGAH1EuNkgphdrAgB0g0RXjCZk9Zd05gC19I7RGn3BeZIhGZIMQzJOrDoygteMkBGtQJu296WTX68299q1P+X5p94PPGfX5zV6/M3dZ6z/5tHn67wEp+qbW3W0yadjTa062tSq+uZW1Tf5VN/UevzVfHwLeb8h1TW2qq6x9YzPDofdJiU6jweqQLgKhLNEV5vA5WwbxmKU6HR0eC/BSSADgEhHgAKACDQ+K1UZKXHy1Da224RBOrmG6DvZ6ZZcQzTy/BS9tGnfGet/5vujwqrf7zd0rKVNwGry6WhTq441n3xfHwxex8NYfaf3fapvbpVhnAhkTa2qa2qV1PGW9F1hs0kJsW3C2BnC1+lGxxJdMUqIdchuwZ8vAEQzAhQARCCH3ab5N2RrxortskkhISTwz+n5N2RbMjxJ3V+/3W5T0omAkdYN9fn9hhpafCEjXScDWZuRrxNh62jb922CWtv3/hMjdPXNPtU3+1RZd+6BTJISQgKXI7geLLBmLOE068faBrPA11r19wwAWAVroFgDBSCCRfo5SpFef7gMw1Bjiz8YtI6HsZPBLDANsf6U+yeD2cn7gWv+HvrbOz44QtY2jIWGr0AYSwj82hkYHWsT1E60J5ABiBRsIhEGAhSAaODzGyouq1ZlXaPSkuM0Pis1ov7RGun1m8EwDDW1tg9kIYErMHJ2YjTs2IlpjW3XkwUDWbNPvh5KZHGx9g438+hwuqLzNGvLTqw9i3HYe6ROAOixAPXOO+/o2Wef1bZt21RRUaHVq1dr6tSpwfuHDx/WvHnz9L//+7+qqanRxIkT9Zvf/EYXX3xxsE1jY6P+/d//XatWrVJTU5Nyc3P10ksvadCgQcE2Bw8e1IwZM7Rx40YlJSVp2rRpWrhwoWJiTs463LRpk+bOnavdu3crMzNTjz32mO66666wPwsBCgCAk4EsELzCWT/WdppioH3g1/VNrWrtoUDmirEH14IlOsNYK9Z2ymIHYS2WQAbghB7bha++vl6jRo3SPffco5tuuinknmEYmjp1qmJjY/Xmm2/K7Xbr17/+tSZNmqTS0lIlJiZKkubMmaN169bpjTfeUEpKimbOnKmbbrpJf//73yVJPp9PeXl5Sk9P15YtW1RRUaEf/ehHio2N1VNPPSVJKisrU15enqZPn65XX31V69ev13333aeMjAzl5uZ29WMBANBn2Ww2xcU6FBfrUP+k7nlmU6uv8/DVZlri0abWE5t/dBzM6puPj541+/wnnutXU2uzvqzvnjqdgUB22s08Tre2LDS8OWMIZEC0O6cpfDabLWQE6pNPPtEll1yikpISff3rX5ck+f1+paen66mnntJ9992n2tpaDRw4UCtXrtT3v/99SdKePXt02WWXqaioSFdddZXeeustXX/99SovLw+OSi1dulTz5s1TVVWVnE6n5s2bp3Xr1qmkpCRYz6233qqamhoVFBR0WG9TU5Oamk4u2vV6vcrMzGQECgAAi2s+MUIWzvqwtvc7W2/W3OrvkTqdDvspo2Pt148lBLfEbzOdsZONPlwxjh6pE0B7ppwDFQgncXFxwWt2u10ul0vvvvuu7rvvPm3btk0tLS2aNGlSsM2ll16qoUOHBgNUUVGRRo4cGTKlLzc3VzNmzNDu3bt15ZVXqqioKOQZgTazZ8/utL6FCxdqwYIF3fRpAQBAb3HG2OWMceq8RGe3PK/Fd5pAdtrdFduEseaTa8uaTgSyZp9fzcf8qjnW0i11xjpsnWzmEXow9Kmbd4QcFN2mvSvGzllkwDnq1gAVCEKPPvqofvvb3yoxMVHPPfecPv/8c1VUVEiSPB6PnE6n+vXrF/K1gwYNksfjCbZpG54C9wP3TtfG6/WqoaFB8fHx7ep79NFHNXfu3OD7wAgUAADoW2IddvVLcKpfQvcFsmNNvjbTFU8GsZO7K/rarC0LvX/q2WSNLf4TzzVU29Ci2obuCWQxdlvo4c7tdlI8EcxOWTvW0cYeSQQy9FHdGqBiY2P1xz/+Uffee69SU1PlcDg0adIkffe735UVNvtzuVxyuVxmlwEAAKJMrMOulAS7UhJiu+V5rT6/6pt9JzbnOGX9WJvzyNquHzva3Hpid8WT68cCI2YNLb7jz/Ub8ja2ytvY2i11Ok4JZKfdSbGDnRdPDWRxsQQyWF+3H6Q7ZswY7dixQ7W1tWpubtbAgQM1YcIEjR07VpKUnp6u5uZm1dTUhIxCHT58WOnp6cE2xcXFIc89fPhw8F7gv4Frbdu43e4OR58AAAAiRYzDrpR4u1LiuyeQ+fxGyJTDztaPne48slN/HXhuXWOr6ropkNltCq4BO+1Ois5TR8dCN/oIbOyR4HQQyNDtuj1ABaSkpEiSPv30U33wwQf6+c9/Lul4wIqNjdX69et18803S5L27t2rgwcPKicnR5KUk5OjX/ziF6qsrFRa2vEz5QsLC+V2u5WdnR1s85e//CXkexYWFgafAQAAgOMcdpvccbFyx3VPIPP7DR1rOSV8tVkrdrTplLB2mvVjgeAmSX5DqmtqVV1T9wQyWzCQOUKCWGDtWGebd5xcW9bmvStGCbEO2Tmnrs/rcoA6evSoPvvss+D7srIy7dixQ6mpqRo6dKjeeOMNDRw4UEOHDtWuXbv04IMPaurUqZo8ebKk48Hq3nvv1dy5c5Wamiq3261Zs2YpJydHV111lSRp8uTJys7O1p133qlnnnlGHo9Hjz32mPLz84NT8KZPn67Fixfr4Ycf1j333KMNGzbo9ddf17p167qjXwAAANAJu92mpBOjQYPO3PyM/H5DDSGBrP16srbrxwLryTpeb3b814YhGYZ09EQbqemMdZyJzSYlxLbdPbHt+rGT68lOHTFL6GxjD2dMnw1kkXyIepe3Md+0aZOuvfbadtenTZum5cuX64UXXtCzzz6rw4cPKyMjQz/60Y/0+OOPy+k8uUgzcJDuH/7wh5CDdAPT8yTpwIEDmjFjhjZt2qTExERNmzZNTz/9dLuDdOfMmaPS0lINGTJEjz/+OAfpAgAA9HGGcTyQhRwGfcr6sVN3XOzsPLLA+x46G1oJTkcHOyl2fPBzp2vL2oyiRUIIKSip0II1paqobQxey0iJ0/wbsjVlRIZpdYWbDc7pHKhIR4ACAADAmRiGocYWf6dTEo+dGsya22zm0cHasvqmngtk8bGOkEB1pt0VTxfWEp0OxTi693DogpIKzVixXad+/EDsW3LHaNNClCnnQAEAAADRxmazKd7pULzToYHJ576js2EYamr169Qt7YObdLQJX0dPrBdru36s7aja0RMBzXcikTW0+NTQ4tORo83nXKckuWLsp9lJMXTzjsBmHm3vB0fOnMd3WVywprRdeJIkQ8dD1II1pfpOdrqlR9IIUAAAAEAvstlsiot1KC7WoQFJ3RfI2p8v1v48slN3Xgw9SPpk2xbf8ZjT1OpXU2uzvqzvnkB22s8hqaK2UcVl1coZ3r/Hv9/ZIkABAAAAEaxtIOuf1D3PbGr1hawBC27e0em29+3XjwWmN9Y3+dTs84f9vSvrGs/cyEQEKAAAAAAhXDEOuWIcSk10nrlxGJpb/dq8t1I//u9tZ2yblhzXLd+zp3TvqjAAAAAAOIUzxq5/umyQMlLi1NnqJpuO78Y3Piu1N0vrMgIUAAAAgB7nsNs0/4ZsSWoXogLv59+QbekNJCQCFAAAAIBeMmVEhpbcMVrpKaHT9NJT4kzdwrwrWAMFAAAAoNdMGZGh72Snq7isWpV1jUpLPj5tz+ojTwEEKAAAAAC9ymG3WXqr8tNhCh8AAAAAhIkABQAAAABhIkABAAAAQJgIUAAAAAAQJgIUAAAAAISJAAUAAAAAYSJAAQAAAECYCFAAAAAAECYCFAAAAACEiQAFAAAAAGEiQAEAAABAmAhQAAAAABAmAhQAAAAAhCnG7ALMZBiGJMnr9ZpcCQAAAAAzBTJBICN0pk8HqLq6OklSZmamyZUAAAAAsIK6ujqlpKR0et9mnCliRTG/36/y8nIlJyfLZrN1yzO9Xq8yMzN16NAhud3ubnkmwkPfm4v+Nxf9by7631z0v7nof3PR/93HMAzV1dVp8ODBsts7X+nUp0eg7Ha7hgwZ0iPPdrvd/CY2CX1vLvrfXPS/ueh/c9H/5qL/zUX/d4/TjTwFsIkEAAAAAISJAAUAAAAAYSJAdTOXy6X58+fL5XKZXUqfQ9+bi/43F/1vLvrfXPS/ueh/c9H/va9PbyIBAAAAAF3BCBQAAAAAhIkABQAAAABhIkABAAAAQJgIUAAAAAAQJgIUAAAAAISJANWNXnzxRQ0bNkxxcXGaMGGCiouLzS4pKi1cuFDjxo1TcnKy0tLSNHXqVO3duzekTWNjo/Lz89W/f38lJSXp5ptv1uHDh02qOHo9/fTTstlsmj17dvAafd+zvvjiC91xxx3q37+/4uPjNXLkSH3wwQfB+4Zh6IknnlBGRobi4+M1adIkffrppyZWHD18Pp8ef/xxZWVlKT4+XsOHD9fPf/5ztd3Mlv7vPu+8845uuOEGDR48WDabTX/6059C7ofT19XV1br99tvldrvVr18/3XvvvTp69GgvforIdbr+b2lp0bx58zRy5EglJiZq8ODB+tGPfqTy8vKQZ9D/Z+9Mv//bmj59umw2mxYtWhRynf7vOQSobvLaa69p7ty5mj9/vrZv365Ro0YpNzdXlZWVZpcWdTZv3qz8/Hxt3bpVhYWFamlp0eTJk1VfXx9sM2fOHK1Zs0ZvvPGGNm/erPLyct10000mVh193n//ff32t7/V5ZdfHnKdvu85X331la6++mrFxsbqrbfeUmlpqX71q1/pvPPOC7Z55pln9MILL2jp0qV67733lJiYqNzcXDU2NppYeXT45S9/qSVLlmjx4sX6+OOP9ctf/lLPPPOMfvOb3wTb0P/dp76+XqNGjdKLL77Y4f1w+vr222/X7t27VVhYqLVr1+qdd97R/fff31sfIaKdrv+PHTum7du36/HHH9f27dv1xz/+UXv37tX3vve9kHb0/9k70+//gNWrV2vr1q0aPHhwu3v0fw8y0C3Gjx9v5OfnB9/7fD5j8ODBxsKFC02sqm+orKw0JBmbN282DMMwampqjNjYWOONN94Itvn4448NSUZRUZFZZUaVuro64+KLLzYKCwuNb33rW8aDDz5oGAZ939PmzZtnfPOb3+z0vt/vN9LT041nn302eK2mpsZwuVzGH/7wh94oMarl5eUZ99xzT8i1m266ybj99tsNw6D/e5IkY/Xq1cH34fR1aWmpIcl4//33g23eeustw2azGV988UWv1R4NTu3/jhQXFxuSjAMHDhiGQf93p876//PPPzfOP/98o6SkxLjggguM5557LniP/u9ZjEB1g+bmZm3btk2TJk0KXrPb7Zo0aZKKiopMrKxvqK2tlSSlpqZKkrZt26aWlpaQn8ell16qoUOH8vPoJvn5+crLywvpY4m+72l//vOfNXbsWP3gBz9QWlqarrzySr388svB+2VlZfJ4PCH9n5KSogkTJtD/3eAb3/iG1q9fr08++USS9NFHH+ndd9/Vd7/7XUn0f28Kp6+LiorUr18/jR07Nthm0qRJstvteu+993q95mhXW1srm82mfv36SaL/e5rf79edd96phx56SF//+tfb3af/e1aM2QVEgyNHjsjn82nQoEEh1wcNGqQ9e/aYVFXf4Pf7NXv2bF199dUaMWKEJMnj8cjpdAb/EA8YNGiQPB6PCVVGl1WrVmn79u16//33292j73vW/v37tWTJEs2dO1c/+clP9P777+uBBx6Q0+nUtGnTgn3c0Z9F9P+5e+SRR+T1enXppZfK4XDI5/PpF7/4hW6//XZJov97UTh97fF4lJaWFnI/JiZGqamp/Dy6WWNjo+bNm6fbbrtNbrdbEv3f0375y18qJiZGDzzwQIf36f+eRYBCRMvPz1dJSYneffdds0vpEw4dOqQHH3xQhYWFiouLM7ucPsfv92vs2LF66qmnJElXXnmlSkpKtHTpUk2bNs3k6qLf66+/rldffVUrV67U17/+de3YsUOzZ8/W4MGD6X/0WS0tLfqXf/kXGYahJUuWmF1On7Bt2zY9//zz2r59u2w2m9nl9ElM4esGAwYMkMPhaLfT2OHDh5Wenm5SVdFv5syZWrt2rTZu3KghQ4YEr6enp6u5uVk1NTUh7fl5nLtt27apsrJSo0ePVkxMjGJiYrR582a98MILiomJ0aBBg+j7HpSRkaHs7OyQa5dddpkOHjwoScE+5s+invHQQw/pkUce0a233qqRI0fqzjvv1Jw5c7Rw4UJJ9H9vCqev09PT223k1Nraqurqan4e3SQQng4cOKDCwsLg6JNE//ekv/3tb6qsrNTQoUODfxcfOHBA//7v/65hw4ZJov97GgGqGzidTo0ZM0br168PXvP7/Vq/fr1ycnJMrCw6GYahmTNnavXq1dqwYYOysrJC7o8ZM0axsbEhP4+9e/fq4MGD/DzO0be//W3t2rVLO3bsCL7Gjh2r22+/Pfhr+r7nXH311e227P/kk090wQUXSJKysrKUnp4e0v9er1fvvfce/d8Njh07Jrs99K9Nh8Mhv98vif7vTeH0dU5OjmpqarRt27Zgmw0bNsjv92vChAm9XnO0CYSnTz/9VH/961/Vv3//kPv0f8+58847tXPnzpC/iwcPHqyHHnpIb7/9tiT6v8eZvYtFtFi1apXhcrmM5cuXG6Wlpcb9999v9OvXz/B4PGaXFnVmzJhhpKSkGJs2bTIqKiqCr2PHjgXbTJ8+3Rg6dKixYcMG44MPPjBycnKMnJwcE6uOXm134TMM+r4nFRcXGzExMcYvfvEL49NPPzVeffVVIyEhwVixYkWwzdNPP23069fPePPNN42dO3caN954o5GVlWU0NDSYWHl0mDZtmnH++ecba9euNcrKyow//vGPxoABA4yHH3442Ib+7z51dXXGhx9+aHz44YeGJOPXv/618eGHHwZ3eQunr6dMmWJceeWVxnvvvWe8++67xsUXX2zcdtttZn2kiHK6/m9ubja+973vGUOGDDF27NgR8ndxU1NT8Bn0/9k70+//U526C59h0P89iQDVjX7zm98YQ4cONZxOpzF+/Hhj69atZpcUlSR1+Fq2bFmwTUNDg/Fv//ZvxnnnnWckJCQY//zP/2xUVFSYV3QUOzVA0fc9a82aNcaIESMMl8tlXHrppcbvfve7kPt+v994/PHHjUGDBhkul8v49re/bezdu9ekaqOL1+s1HnzwQWPo0KFGXFycceGFFxo//elPQ/7BSP93n40bN3b4Z/20adMMwwivr7/88kvjtttuM5KSkgy3223cfffdRl1dnQmfJvKcrv/Lyso6/bt448aNwWfQ/2fvTL//T9VRgKL/e47NMNocoQ4AAAAA6BRroAAAAAAgTAQoAAAAAAgTAQoAAAAAwkSAAgAAAIAwEaAAAAAAIEwEKAAAAAAIEwEKAAAAAMJEgAIAAACAMBGgAAAAACBMBCgAAAAACBMBCgAAAADC9P8D/+8PbuAfWTAAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "results = GV_KNN.cv_results_\n", + "mse = -results['mean_test_score']\n", + "k_values = results['param_n_neighbors'].data\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(k_values, mse, marker='o', linestyle='-')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3aOBO56I8Js8" + }, + "source": [ + "The code shows that the elboq point occurs around n=30." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "X5XtlzMXljps" + }, + "source": [ + "## 9. Artificial Neural Networks (ANN)" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": { + "id": "bJk1-9VhlRL6" + }, + "outputs": [], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": { + "id": "sZVPMR9Wlo7-" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vd1fDjQiltP4", + "outputId": "54545c64-073b-41c5-d03a-cc9cbff204f2" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" + ] + } + ], + "source": [ + "# Create an ANN model\n", + "model9 = Sequential()\n", + "model9.add(Dense(32, activation='relu', input_shape=(X_train.shape[1],)))\n", + "model9.add(Dense(16, activation='relu'))\n", + "model9.add(Dense(1, activation='linear'))" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": { + "id": "ZIf94WLMlv04" + }, + "outputs": [], + "source": [ + "# Compile the model\n", + "model9.compile(loss='mean_squared_error', optimizer='adam')" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 79, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "FX5DTKqslxWf", + "outputId": "d2353bcd-1508-469b-e4a4-9344af25a2cc" + }, +<<<<<<< HEAD + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "# Train the model\n", + "model9.fit(X_train_scaled, y_train, epochs=100, batch_size=32, verbose=0)" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 80, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OVW2qpNsmGVq", + "outputId": "36e4620e-9823-4b12-d6d2-509c0bcf2a88" + }, +<<<<<<< HEAD + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m45/45\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step\n" + ] + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "# Make predictions on the test set\n", + "pred9 = model9.predict(X_test_scaled).flatten()" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": { + "id": "CqRmjMj2maJY" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse9 = np.sqrt(mean_squared_error(y_test, pred9))\n", + "mae9 = mean_absolute_error(y_test, pred9)\n", + "mape9 = mean_absolute_percentage_error(y_test, pred9)\n", + "accuracy9 = accuracy_score(y_test > pred9, y_test > pred9.round())\n", + "precision9 = precision_score(y_test > pred9, y_test > pred9.round())\n", + "confusion9 = confusion_matrix(y_test > pred9, y_test > pred9.round())\n", + "recall9 = recall_score(y_test > pred9, y_test > pred9.round())\n", + "f19 = f1_score(y_test > pred9, y_test > pred9.round())\n" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 82, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5zuwkC1emmh3", + "outputId": "3154af15-1dba-4edc-9b4e-f012f6ff6886" + }, +<<<<<<< HEAD + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 2.7525331773064208\n", + "MAE: 1.7070852219826735\n", + "MAPE: 0.011166669166884299\n", + "Accuracy: 0.901060070671378\n", + "Precision: 0.9446640316205533\n", + "Confusion Matrix:\n", + " [[558 42]\n", + " [ 98 717]]\n", + "Recall: 0.8797546012269939\n", + "F1 Score: 0.9110546378653113\n" + ] + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse9)\n", + "print(\"MAE:\", mae9)\n", + "print(\"MAPE:\", mape9)\n", + "print(\"Accuracy:\", accuracy9)\n", + "print(\"Precision:\", precision9)\n", + "print(\"Confusion Matrix:\\n\", confusion9)\n", + "print(\"Recall:\", recall9)\n", + "print(\"F1 Score:\", f19)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vjSMQNcOnFPJ" + }, + "source": [ + "## 10. LSTM(Long Short term Memory)" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": { + "id": "nCoyUanhnDKw" + }, + "outputs": [], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import LSTM, Dense" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": { + "id": "ThcXESVEVv0U" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": { + "id": "uACvajfImrbB" + }, + "outputs": [], + "source": [ + "# Reshape the input data for LSTM\n", + "n_features = X_train_scaled.shape[1]\n", + "n_steps = 10\n", + "n_samples_train = X_train_scaled.shape[0] - n_steps + 1\n", + "n_samples_test = X_test_scaled.shape[0] - n_steps + 1\n", + "\n", + "# Reshape the input data\n", + "X_train_reshaped = np.array([X_train_scaled[i:i+n_steps, :] for i in range(n_samples_train)])\n", + "X_test_reshaped = np.array([X_test_scaled[i:i+n_steps, :] for i in range(n_samples_test)])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "r066pVYpnXH5", + "outputId": "faddb972-58cc-43a7-eb04-4829ec65f019" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/layers/rnn/rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(**kwargs)\n" + ] + } + ], + "source": [ + "# Create an LSTM model\n", + "model = Sequential()\n", + "model.add(LSTM(64, activation='relu', input_shape=(n_steps, n_features)))\n", + "model.add(Dense(1))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": { + "id": "YpSfHu6gov35" + }, + "outputs": [], + "source": [ + "# Compile the model\n", + "model.compile(loss='mean_squared_error', optimizer='adam')\n" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 88, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0vHjcluaoxzP", + "outputId": "8ca3e888-84d1-4c79-e045-cfa9d3e76d5f" + }, +<<<<<<< HEAD + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 88, + "metadata": {}, + "output_type": "execute_result" + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "# Train the model\n", + "model.fit(X_train_reshaped, y_train[n_steps-1:], epochs=100, batch_size=32, verbose=0)" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 89, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "gEE06_TjozYv", + "outputId": "5a39a4df-0a56-45f5-ac4b-c2b00f0f15d0" + }, +<<<<<<< HEAD + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m44/44\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 9ms/step\n" + ] + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "# Make predictions on the test set\n", + "y_pred = model.predict(X_test_reshaped).flatten()" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": { + "id": "7k6C8DrxpB_Q" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse10 = np.sqrt(mean_squared_error(y_test[n_steps-1:], y_pred))\n", + "mae10 = mean_absolute_error(y_test[n_steps-1:], y_pred)\n", + "mape10 = mean_absolute_percentage_error(y_test[n_steps-1:], y_pred)\n", + "accuracy10 = accuracy_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "precision10 = precision_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "recall10 = recall_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "f110 = f1_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "confusion10 = confusion_matrix(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 91, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "i_6-UUDhpi0c", + "outputId": "af51da10-aedc-479d-80ca-96880408422c" + }, +<<<<<<< HEAD + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 11.43451426022395\n", + "MAE: 9.387460991819042\n", + "MAPE: 0.1689158970124316\n", + "Accuracy: 0.9957325746799431\n", + "Precision: 0.9965277777777778\n", + "Recall: 0.9930795847750865\n", + "F1 Score: 0.9948006932409013\n", + "Confusion Matrix:\n", + " [[826 2]\n", + " [ 4 574]]\n" + ] + } + ], +======= + "outputs": [], +>>>>>>> upstream/main + "source": [ + "# Print evaluation metrics\n", + "print(\"RMSE:\", rmse10)\n", + "print(\"MAE:\", mae10)\n", + "print(\"MAPE:\", mape10)\n", + "print(\"Accuracy:\", accuracy10)\n", + "print(\"Precision:\", precision10)\n", + "print(\"Recall:\", recall10)\n", + "print(\"F1 Score:\", f110)\n", + "print(\"Confusion Matrix:\\n\", confusion10)" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 92, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "qpWPtph9CGip", +<<<<<<< HEAD + "outputId": "746d4c8b-bd76-4873-d9b3-b21e078b15bd" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABE9klEQVR4nO3deXhM9+LH8c8kZBFJrNmKiKWiqP0GRauClqqtiqvXllu9FbXVbWmLul2Utm6L4rYlVENUieqGNIq217XH0qo1liJBySIIkvP7w2N+HQkyMjGT0/freeZ5mu85c84nyan55DvnnLEYhmEIAADApNycHQAAAKAoUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAOM2rr74qi8WiM2fOFPm+Vq5cqQYNGsjLy0sWi0VpaWlFvs/ibN68ebJYLDp8+LCzowCFRtkBisD1F4o/PgICAtSmTRt9++23dz3Pl19+qc6dOyswMFAeHh4qV66cWrdurXfffVcZGRl3Pc/d9vvvv+vJJ5+Ut7e3PvjgAy1YsEA+Pj63fd7MmTNlsVgUERFxF1ICKColnB0AMLN//etfCgsLk2EYSk1N1bx589SxY0d9+eWXeuyxx4p8/7m5uYqKitK8efNUr149DRkyRJUrV1ZmZqY2bNigV155Rd98840SExOLPIszbd68WZmZmXrttdcUGRlZ4OfFxsaqatWq2rRpkw4cOKAaNWoUYUrX8re//U29e/eWp6ens6MAhUbZAYrQo48+qiZNmli/joqKUmBgoBYtWuSQspObm6vLly/Ly8sr3+VTpkzRvHnzNHLkSL377ruyWCzWZcOHD9fJkyf1ySefFGofxcGpU6ckSWXKlCnwc5KTk/Xf//5Xy5Yt0zPPPKPY2FhNmDChiBIWTlZWVoFmquzh7u4ud3d3h24TcBbexgLuojJlysjb21slStj+nfHOO++oRYsWKl++vLy9vdW4cWN9/vnneZ5vsVg0dOhQxcbGqk6dOvL09NTKlSvz3deFCxc0efJk1alTR2+//bZN0bkuODhYL774YoH3cSc5a9WqJS8vLzVu3Fjr16/PN2taWpoGDBigMmXKyN/fXwMHDtSFCxfy/yHeYMmSJWrcuLG8vb1VoUIFPfXUUzp+/Lh1+UMPPaT+/ftLkpo2bSqLxaIBAwbcdruxsbEqW7asOnXqpCeeeEKxsbE3zT5y5EhVrVpVnp6eqlSpkvr162dzHtKlS5f06quv6t5775WXl5eCg4PVvXt3HTx4UJK0du1aWSwWrV271mbbhw8flsVi0bx586xjAwYMUOnSpXXw4EF17NhRvr6+6tu3ryTphx9+UM+ePVWlShV5enqqcuXKGjlypC5evJgn96+//qonn3xSFStWlLe3t2rVqqWXX37Zuvxm5+x8++23atWqlXx8fOTr66tOnTrp559/tlknJSVFAwcOVKVKleTp6ang4GB16dKF83/gNMzsAEUoPT1dZ86ckWEYOnXqlKZPn67z58/rqaeeslnv/fff1+OPP66+ffvq8uXLiouLU8+ePfXVV1+pU6dONuuuWbNGn332mYYOHaoKFSqoatWq+e77xx9/VFpamkaPHm33X+g324c9OdetW6fFixdr2LBh8vT01MyZM/XII49o06ZNqlu3rs26Tz75pMLCwjRp0iRt27ZNH3/8sQICAjR58uRb5pw3b54GDhyopk2batKkSUpNTdX777+vn376Sdu3b1eZMmX08ssvq1atWvrwww+tbytWr179tj+D2NhYde/eXR4eHurTp49mzZqlzZs3q2nTptZ1zp8/r1atWmnPnj0aNGiQGjVqpDNnzmjFihX67bffVKFCBeXk5Oixxx5TYmKievfureHDhyszM1MJCQnavXt3gbLc6OrVq+rQoYNatmypd955R6VKlZJ0rfhduHBBzz77rMqXL69NmzZp+vTp+u2337RkyRLr83fu3KlWrVqpZMmSGjx4sKpWraqDBw/qyy+/1BtvvHHT/S5YsED9+/dXhw4dNHnyZF24cEGzZs1Sy5YttX37dutx0qNHD/3888967rnnVLVqVZ06dUoJCQk6evToTY9XoEgZABwuJibGkJTn4enpacybNy/P+hcuXLD5+vLly0bdunWNhx9+2GZckuHm5mb8/PPPt83w/vvvG5KM5cuX24xfvXrVOH36tM0jNze3QPuwJ6ckY8uWLdaxI0eOGF5eXka3bt2sYxMmTDAkGYMGDbJ5frdu3Yzy5cvf8vu7fPmyERAQYNStW9e4ePGidfyrr74yJBnjx4+3jl3/fWzevPmW27xuy5YthiQjISHBMAzDyM3NNSpVqmQMHz7cZr3x48cbkoxly5bl2cb1n+ncuXMNScbUqVNvus73339vSDK+//57m+XJycmGJCMmJsY61r9/f0OSMWbMmDzbu/H3YxiGMWnSJMNisRhHjhyxjrVu3drw9fW1GftjHsP4/59ZcnKyYRiGkZmZaZQpU8Z4+umnbZ6TkpJi+Pv7W8fPnTtnSDLefvvtPFkAZ+FtLKAIffDBB0pISFBCQoI+/fRTtWnTRn//+9+1bNkym/W8vb2t/33u3Dmlp6erVatW2rZtW55tPvjgg7rvvvtuu+/rV1mVLl3aZnzXrl2qWLGizeP3338v0D7sydm8eXM1btzY+nWVKlXUpUsXrVq1Sjk5OTbr/uMf/7D5ulWrVvr9999veaXYli1bdOrUKQ0ZMsTmfKJOnTopPDxcX3/99U2fezuxsbEKDAxUmzZtJF17W65Xr16Ki4uzyb506VLVr19f3bp1y7ON628bLl26VBUqVNBzzz1303XuxLPPPptn7I+/n6ysLJ05c0YtWrSQYRjavn27JOn06dNav369Bg0apCpVqhQ4T0JCgtLS0tSnTx+dOXPG+nB3d1dERIS+//57awYPDw+tXbtW586du+PvD3Ak3sYCitBf/vIXmxOU+/Tpo4YNG2ro0KF67LHH5OHhIUn66quv9PrrryspKUnZ2dnW9fN78QkLCyvQvn19fSVde6vlj2rUqKGEhARJ0ieffKIFCxYUeB/25KxZs2aesXvvvVcXLlzQ6dOnFRQUZB2/8UW3bNmykq4VKj8/v3yzHDlyRJJUq1atPMvCw8P1448/5vu828nJyVFcXJzatGmj5ORk63hERITeffddJSYmqn379pKkgwcPqkePHrfc3sGDB1WrVq0852kVRokSJVSpUqU840ePHtX48eO1YsWKPEUjPT1dknTo0CFJyvNW4u3s379fkvTwww/nu/z678nT01OTJ0/W888/r8DAQDVr1kyPPfaY+vXrZ/M7B+4myg5wF7m5ualNmzZ6//33tX//ftWpU0c//PCDHn/8cbVu3VozZ85UcHCwSpYsqZiYGC1cuDDPNv741/uthIeHS5J2796tLl26WMdLly5tvfz6ZoUgv33Ym9MeNzunyDCMQm33TqxZs0YnT55UXFyc4uLi8iyPjY21lh1HudmMyo0zYNd5enrKzc0tz7rt2rXT2bNn9eKLLyo8PFw+Pj46fvy4BgwYoNzc3EJlvP78BQsW5Fta/ljmRowYoc6dO2v58uVatWqVxo0bp0mTJmnNmjVq2LBhoXIAd4KyA9xlV69elfT/My5Lly6Vl5eXVq1aZXNPk5iYmELtp1WrVvL391dcXJzGjh2b58XRXvbmvD4T8Ef79u1TqVKlVLFixUJlkaTQ0FBJ0t69e/PMNuzdu9e63F6xsbEKCAjQBx98kGfZsmXLFB8fr9mzZ8vb21vVq1fX7t27b7m96tWra+PGjbpy5YpKliyZ7zrXZ7JuvKvz9dmrgti1a5f27dun+fPnq1+/ftbx67N411WrVk2Sbpv7RtdPpA4ICCjQvYqqV6+u559/Xs8//7z279+vBg0a6N1339Wnn35q134BR+CcHeAuunLlilavXi0PDw/Vrl1b0rVZDYvFYvNX/OHDh7V8+fJC7atUqVJ64YUXtHv3bo0ZMybfWRJ7Zk7szblhwwabc3mOHTumL774Qu3bt3fI/VuaNGmigIAAzZ492+YttW+//VZ79uzJc3VYQVy8eFHLli3TY489pieeeCLPY+jQocrMzNSKFSskXbvqaMeOHYqPj8+zres/2x49eujMmTOaMWPGTdcJDQ2Vu7t7nkvzZ86cWeDs13+mf/ydGoah999/32a9ihUrqnXr1po7d66OHj2ab578dOjQQX5+fnrzzTd15cqVPMtPnz4t6dotDy5dumSzrHr16vL19bX5PQF3EzM7QBH69ttv9euvv0q6dmO7hQsXav/+/RozZoz1HIdOnTpp6tSpeuSRR/TXv/5Vp06d0gcffKAaNWpo586dhdr/mDFjtGfPHr399ttavXq1evTooUqVKuncuXPatm2blixZooCAgALdMNDenHXr1lWHDh1sLj2XpIkTJxbqe7quZMmSmjx5sgYOHKgHH3xQffr0sV56XrVqVY0cOdLuba5YsUKZmZl6/PHH813erFkzVaxYUbGxserVq5f++c9/6vPPP1fPnj01aNAgNW7cWGfPntWKFSs0e/Zs1a9fX/369dMnn3yiUaNGadOmTWrVqpWysrL03XffaciQIerSpYv8/f3Vs2dPTZ8+XRaLRdWrV9dXX31lvRliQYSHh6t69eoaPXq0jh8/Lj8/Py1dujTfk4SnTZumli1bqlGjRho8eLDCwsJ0+PBhff3110pKSsp3+35+fpo1a5b+9re/qVGjRurdu7cqVqyoo0eP6uuvv9YDDzygGTNmaN++fWrbtq2efPJJ3XfffSpRooTi4+OVmpqq3r17F/j7ARzKadeBASaW36XnXl5eRoMGDYxZs2bZXOJrGIYxZ84co2bNmoanp6cRHh5uxMTEWC/L/iNJRnR0tN154uPjjY4dOxoVK1Y0SpQoYZQpU8Zo2bKl8fbbbxtpaWkF3oe9OT/99FPr+g0bNsxzafX1554+fdpm/MbLnm9l8eLFRsOGDQ1PT0+jXLlyRt++fY3ffvst3+3d7tLzzp07G15eXkZWVtZN1xkwYIBRsmRJ48yZM4ZhGMbvv/9uDB061LjnnnsMDw8Po1KlSkb//v2tyw3j2iXhL7/8shEWFmaULFnSCAoKMp544gnj4MGD1nVOnz5t9OjRwyhVqpRRtmxZ45lnnjF2796d76XnPj4++Wb75ZdfjMjISKN06dJGhQoVjKefftrYsWNHnm0YhmHs3r3b6Natm1GmTBnDy8vLqFWrljFu3Lg8P7Mbfwfff/+90aFDB8Pf39/w8vIyqlevbgwYMMB6m4EzZ84Y0dHRRnh4uOHj42P4+/sbERERxmeffXbLnz1QlCyG4YQzAAGYmsViUXR0dL5v3QDA3cY5OwAAwNQoOwAAwNQoOwAAwNS4GguAw3EqIABXwswOAAAwNcoOAAAwNd7G0rXPfDlx4oR8fX0L9SnEAADg7jEMQ5mZmQoJCbnlR+JQdiSdOHFClStXdnYMAABwB44dO6ZKlSrddDllR5Kvr6+kaz+s67fwBwAAri0jI0OVK1e2vo7fDGVHsr515efnR9kBAKCYud0pKJygDAAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATM2pZWf9+vXq3LmzQkJCZLFYtHz5cpvlhmFo/PjxCg4Olre3tyIjI7V//36bdc6ePau+ffvKz89PZcqUUVRUlM6fP38XvwsAAODKnFp2srKyVL9+fX3wwQf5Lp8yZYqmTZum2bNna+PGjfLx8VGHDh106dIl6zp9+/bVzz//rISEBH311Vdav369Bg8efLe+BQAA4OIshmEYzg4hXfsQr/j4eHXt2lXStVmdkJAQPf/88xo9erQkKT09XYGBgZo3b5569+6tPXv26L777tPmzZvVpEkTSdLKlSvVsWNH/fbbbwoJCSnQvjMyMuTv76/09HQ+CBQAgGKioK/fLnvOTnJyslJSUhQZGWkd8/f3V0REhDZs2CBJ2rBhg8qUKWMtOpIUGRkpNzc3bdy48abbzs7OVkZGhs0DAACYk8uWnZSUFElSYGCgzXhgYKB1WUpKigICAmyWlyhRQuXKlbOuk59JkybJ39/f+qhcubKD0wMAAFfhsmWnKI0dO1bp6enWx7Fjx5wd6a6zWJz3cNVsAIoXV/53DK6lhLMD3ExQUJAkKTU1VcHBwdbx1NRUNWjQwLrOqVOnbJ539epVnT171vr8/Hh6esrT09PxoQG4PGe+ULnGGZL4M3PW8e/sY99lZ3bCwsIUFBSkxMRE61hGRoY2btyo5s2bS5KaN2+utLQ0bd261brOmjVrlJubq4iIiLueGQAAuB6nzuycP39eBw4csH6dnJyspKQklStXTlWqVNGIESP0+uuvq2bNmgoLC9O4ceMUEhJivWKrdu3aeuSRR/T0009r9uzZunLlioYOHarevXsX+EosAMCt/VlnA2AeTi07W7ZsUZs2baxfjxo1SpLUv39/zZs3Ty+88IKysrI0ePBgpaWlqWXLllq5cqW8vLysz4mNjdXQoUPVtm1bubm5qUePHpo2bdpd/14AAIBrcpn77DjTn/E+O6583gJ/RaIoufKx76pc9f9Jfpf2c9Xf5Z0q9vfZAQAAcATKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMLUSzg4AAICZWCzO27dhOG/froyZHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGpcjQUUc6565Yer5gLw58PMDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDVuKggALsJZN2LkJowwO2Z2AACAqTGzAxQQf3UDQPHEzA4AADA1yg4AADA1yg4AADA1yg4AADA1yg4AADA1yg4AADA1yg4AADA17rNTxJx1bxaJ+7MAACAxswMAAEyOsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEzNpctOTk6Oxo0bp7CwMHl7e6t69ep67bXXZPzhmmrDMDR+/HgFBwfL29tbkZGR2r9/vxNTAwAAV+LSZWfy5MmaNWuWZsyYoT179mjy5MmaMmWKpk+fbl1nypQpmjZtmmbPnq2NGzfKx8dHHTp00KVLl5yYHAAAuAqXvqngf//7X3Xp0kWdOnWSJFWtWlWLFi3Spk2bJF2b1Xnvvff0yiuvqEuXLpKkTz75RIGBgVq+fLl69+7ttOwAAMA1uPTMTosWLZSYmKh9+/ZJknbs2KEff/xRjz76qCQpOTlZKSkpioyMtD7H399fERER2rBhw023m52drYyMDJsHAAAwJ5ee2RkzZowyMjIUHh4ud3d35eTk6I033lDfvn0lSSkpKZKkwMBAm+cFBgZal+Vn0qRJmjhxYtEFBwAALsOlZ3Y+++wzxcbGauHChdq2bZvmz5+vd955R/Pnzy/UdseOHav09HTr49ixYw5KDAAAXI1Lz+z885//1JgxY6zn3tSrV09HjhzRpEmT1L9/fwUFBUmSUlNTFRwcbH1eamqqGjRocNPtenp6ytPTs0izAwAA1+DSMzsXLlyQm5ttRHd3d+Xm5kqSwsLCFBQUpMTEROvyjIwMbdy4Uc2bN7+rWQEAgGty6Zmdzp0764033lCVKlVUp04dbd++XVOnTtWgQYMkSRaLRSNGjNDrr7+umjVrKiwsTOPGjVNISIi6du3q3PAAAMAluHTZmT59usaNG6chQ4bo1KlTCgkJ0TPPPKPx48db13nhhReUlZWlwYMHKy0tTS1bttTKlSvl5eXlxOQAAMBVWIw/3o74TyojI0P+/v5KT0+Xn5+fQ7dtsTh0c3a51W/WVXNJzstGLvsVx2PMVXNJHGM3ctVcEseYvYqqaRT09dulz9kBAAAoLMoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNbvLzsWLF3XhwgXr10eOHNF7772n1atXOzQYAACAI9hddrp06aJPPvlEkpSWlqaIiAi9++676tKli2bNmuXwgAAAAIVhd9nZtm2bWrVqJUn6/PPPFRgYqCNHjuiTTz7RtGnTHB4QAACgMOwuOxcuXJCvr68kafXq1erevbvc3NzUrFkzHTlyxOEBAQAACsPuslOjRg0tX75cx44d06pVq9S+fXtJ0qlTp+Tn5+fwgAAAAIVhd9kZP368Ro8erapVq+ovf/mLmjdvLunaLE/Dhg0dHhAAAKAwLIZhGPY+KSUlRSdPnlT9+vXl5natL23atEl+fn4KDw93eMiilpGRIX9/f6Wnpzt8dspicejm7HKr36yr5pKcl41c9iuOx5ir5pI4xm7kqrkkjjF72d80Cqagr993dJ+doKAg+fr6KiEhQRcvXpQkNW3atFgWHQAAYG52l53ff/9dbdu21b333quOHTvq5MmTkqSoqCg9//zzDg8IAABQGHaXnZEjR6pkyZI6evSoSpUqZR3v1auXVq5c6dBwAAAAhVXC3iesXr1aq1atUqVKlWzGa9asyaXnAADA5dg9s5OVlWUzo3Pd2bNn5enp6ZBQAAAAjmJ32WnVqpX14yIkyWKxKDc3V1OmTFGbNm0cGg4AAKCw7H4ba8qUKWrbtq22bNmiy5cv64UXXtDPP/+ss2fP6qeffiqKjAAAAHfM7pmdunXrat++fWrZsqW6dOmirKwsde/eXdu3b1f16tWLIiMAAMAdu6ObCpoNNxW8u4rrTa/IlVdxPMZcNZfEMXYjV80lcYzZy9k3FbT7baz169ffcnnr1q3t3SQAAECRsbvsPPTQQ3nGLH+oijk5OYUKBAAA4Eh2n7Nz7tw5m8epU6e0cuVKNW3aVKtXry6KjAAAAHfM7pkdf3//PGPt2rWTh4eHRo0apa1btzokGAAAgCPc0QeB5icwMFB79+511OYAAAAcwu6ZnZ07d9p8bRiGTp48qbfeeksNGjRwVC4AAACHsLvsNGjQQBaLRTdesd6sWTPNnTvXYcEAAAAcwe6yk5ycbPO1m5ubKlasKC8vL4eFAgAAcBS7z9kJDQ21eVSuXLlIi87x48f11FNPqXz58vL29la9evW0ZcsW63LDMDR+/HgFBwfL29tbkZGR2r9/f5HlAQAAxUuBZnamTZtW4A0OGzbsjsPc6Ny5c3rggQfUpk0bffvtt6pYsaL279+vsmXLWteZMmWKpk2bpvnz5yssLEzjxo1Thw4d9MsvvzDbBAAACvZxEWFhYQXbmMWiQ4cOFTrUdWPGjNFPP/2kH374Id/lhmEoJCREzz//vEaPHi1JSk9PV2BgoObNm6fevXsXaD98XMTdVVxvZ06uvIrjMeaquSSOsRu5ai6JY8xexeLjIm48T+duWbFihTp06KCePXtq3bp1uueeezRkyBA9/fTT1lwpKSmKjIy0Psff318RERHasGHDTctOdna2srOzrV9nZGQU7TcCAACcxmH32SkKhw4d0qxZs1SzZk2tWrVKzz77rIYNG6b58+dLklJSUiRdu8fPHwUGBlqX5WfSpEny9/e3PipXrlx03wQAAHAqu6/GkqTffvtNK1as0NGjR3X58mWbZVOnTnVIMEnKzc1VkyZN9Oabb0qSGjZsqN27d2v27Nnq37//HW937NixGjVqlPXrjIwMCg8AACZld9lJTEzU448/rmrVqunXX39V3bp1dfjwYRmGoUaNGjk0XHBwsO677z6bsdq1a2vp0qWSpKCgIElSamqqgoODreukpqbe8gaHnp6e8vT0dGhWAADgmux+G2vs2LEaPXq0du3aJS8vLy1dulTHjh3Tgw8+qJ49ezo03AMPPJDnIyj27dun0NBQSddOnA4KClJiYqJ1eUZGhjZu3KjmzZs7NAsAACimDDuVLl3aOHDggGEYhlGmTBlj9+7dhmEYRlJSkhEaGmrv5m5p06ZNRokSJYw33njD2L9/vxEbG2uUKlXK+PTTT63rvPXWW0aZMmWML774wti5c6fRpUsXIywszLh48WKB95Oenm5IMtLT0x2a3zAM49o56M55FMdczsxGrj/HMeaquTjGik8ujjHH57pTBX39tvttLB8fH+t5OsHBwTp48KDq1KkjSTpz5owje5iaNm2q+Ph4jR07Vv/6178UFham9957T3379rWu88ILLygrK0uDBw9WWlqaWrZsqZUrV3KPHQAAIKmA99n5o65du6pTp056+umnNXr0aH3xxRcaMGCAli1bprJly+q7774rqqxFhvvs3F23O+Jc9T4Q5MqrOB5jrppL4hi7kavmkjjG7GVf0yg4h95nR5LOnj2rcuXKaerUqTp//rwkaeLEiTp//rwWL16smjVrOvRKLAAAAEcocNkJCQlR165dFRUVpXbt2km69pbW7NmziywcAABAYRX4aqyPPvpIp0+f1iOPPKKqVavq1Vdf1eHDh4swGgAAQOEVuOz87W9/U2Jiog4cOKD+/ftr/vz5qlGjhtq1a6fFixfnubkgAACAK7D7PjthYWGaOHGikpOTtXLlSgUEBGjQoEEKDg526CeeAwAAOILdV2PlZ+nSpdZLv3NychyR667iaqy7q7heLUCuvIrjMeaquSSOsRu5ai6JY8xexeZqrBsdOXJEMTExmj9/vo4dO6Y2bdooKirqTjcHAABQJOwqO9nZ2Vq6dKnmzp2rtWvX6p577tGAAQM0cOBAVa1atYgiAgAA3LkCl50hQ4YoLi5OFy5cUJcuXfTNN9+oXbt2sjhzvg4AAOA2Clx2fvzxR02YMEFPPfWUypcvX5SZAAAAHKbAZWfnzp1FmQMAAKBI2H3pOQAAQHFC2QEAAKZG2QEAAKZG2QEAAKZmd9mpWrWq/vWvf+no0aNFkQcAAMCh7C47I0aM0LJly1StWjW1a9dOcXFxys7OLopsAAAAhXZHZScpKUmbNm1S7dq19dxzzyk4OFhDhw7Vtm3biiIjAADAHbvjc3YaNWqkadOm6cSJE5owYYI+/vhjNW3aVA0aNNDcuXPlgM8XBQAAKLQ7/iDQK1euKD4+XjExMUpISFCzZs0UFRWl3377TS+99JK+++47LVy40JFZAQAA7GZ32dm2bZtiYmK0aNEiubm5qV+/fvr3v/+t8PBw6zrdunVT06ZNHRoUAADgTthddpo2bap27dpp1qxZ6tq1q0qWLJlnnbCwMPXu3dshAQEAAArD7rJz6NAhhYaG3nIdHx8fxcTE3HEoAAAAR7H7BOVTp05p48aNecY3btyoLVu2OCQUAACAo9hddqKjo3Xs2LE848ePH1d0dLRDQgEAADiK3WXnl19+UaNGjfKMN2zYUL/88otDQgEAADiK3WXH09NTqampecZPnjypEiXu+Ep2AACAImF32Wnfvr3Gjh2r9PR061haWppeeukltWvXzqHhAAAACsvuqZh33nlHrVu3VmhoqBo2bChJSkpKUmBgoBYsWODwgAAAAIVhd9m55557tHPnTsXGxmrHjh3y9vbWwIED1adPn3zvuQMAAOBMd3SSjY+PjwYPHuzoLAAAAA53x2cU//LLLzp69KguX75sM/74448XOhQAAICj3NEdlLt166Zdu3bJYrFYP93cYrFIknJychybEAAAoBDsvhpr+PDhCgsL06lTp1SqVCn9/PPPWr9+vZo0aaK1a9cWQUQAAIA7Z/fMzoYNG7RmzRpVqFBBbm5ucnNzU8uWLTVp0iQNGzZM27dvL4qcAAAAd8TumZ2cnBz5+vpKkipUqKATJ05IkkJDQ7V3717HpgMAACgku2d26tatqx07digsLEwRERGaMmWKPDw89OGHH6patWpFkREAAOCO2V12XnnlFWVlZUmS/vWvf+mxxx5Tq1atVL58eS1evNjhAQEAAArDYly/nKoQzp49q7Jly1qvyCpuMjIy5O/vr/T0dPn5+Tl02878kdzqN+uquSTnZSOX/YrjMeaquSSOsRu5ai6JY8xehW8a+Svo67dd5+xcuXJFJUqU0O7du23Gy5UrV2yLDgAAMDe7yk7JkiVVpUoV7qUDAACKDbuvxnr55Zf10ksv6ezZs0WRBwAAwKHsPkF5xowZOnDggEJCQhQaGiofHx+b5du2bXNYOAAAgMKyu+x07dq1CGIAAAAUDbvLzoQJE4oiBwAAQJGw+5wdAACA4sTumR03N7dbXmbOlVoAAMCV2F124uPjbb6+cuWKtm/frvnz52vixIkOCwYAAOAIDrmDsiQtXLhQixcv1hdffOGIzd1V3EH57iqud/gkV17F8Rhz1VwSx9iNXDWXxDFmr2J1B+VbadasmRITEx21OQAAAIdwSNm5ePGipk2bpnvuuccRmwMAAHAYu8/ZufEDPw3DUGZmpkqVKqVPP/3UoeEAAAAKy+6y8+9//9um7Li5ualixYqKiIhQ2bJlHRoOAACgsOwuOwMGDCiCGAAAAEXD7nN2YmJitGTJkjzjS5Ys0fz58x0SCgAAwFHsLjuTJk1ShQoV8owHBATozTffdEgoAAAAR7G77Bw9elRhYWF5xkNDQ3X06FGHhAIAAHAUu8tOQECAdu7cmWd8x44dKl++vENCAQAAOIrdZadPnz4aNmyYvv/+e+Xk5CgnJ0dr1qzR8OHD1bt376LICAAAcMfsvhrrtdde0+HDh9W2bVuVKHHt6bm5uerXrx/n7AAAAJdj98yOh4eHFi9erL179yo2NlbLli3TwYMHNXfuXHl4eBRFRqu33npLFotFI0aMsI5dunRJ0dHRKl++vEqXLq0ePXooNTW1SHMAAIDiw+6Znetq1qypmjVrOjLLLW3evFn/+c9/dP/999uMjxw5Ul9//bWWLFkif39/DR06VN27d9dPP/1017IBAADXZffMTo8ePTR58uQ841OmTFHPnj0dEupG58+fV9++ffXRRx/Z3KU5PT1dc+bM0dSpU/Xwww+rcePGiomJ0X//+1/973//K5IsAACgeLG77Kxfv14dO3bMM/7oo49q/fr1Dgl1o+joaHXq1EmRkZE241u3btWVK1dsxsPDw1WlShVt2LDhptvLzs5WRkaGzQMAAJiT3W9jnT9/Pt9zc0qWLFkkpSEuLk7btm3T5s2b8yxLSUmRh4eHypQpYzMeGBiolJSUm25z0qRJmjhxoqOjAgAAF2T3zE69evW0ePHiPONxcXG67777HBLqumPHjmn48OGKjY2Vl5eXw7Y7duxYpaenWx/Hjh1z2LYBAIBrsXtmZ9y4cerevbsOHjyohx9+WJKUmJioRYsW5fuZWYWxdetWnTp1So0aNbKO5eTkaP369ZoxY4ZWrVqly5cvKy0tzWZ2JzU1VUFBQTfdrqenpzw9PR2aFQAAuCa7y07nzp21fPlyvfnmm/r888/l7e2t+++/X999950efPBBh4Zr27atdu3aZTM2cOBAhYeH68UXX1TlypVVsmRJJSYmqkePHpKkvXv36ujRo2revLlDswAAgOLpji4979Spkzp16pRnfPfu3apbt26hQ13n6+ubZ3s+Pj4qX768dTwqKkqjRo1SuXLl5Ofnp+eee07NmzdXs2bNHJYDAAAUX3d8n53rMjMztWjRIn388cfaunWrcnJyHJGrwP7973/Lzc1NPXr0UHZ2tjp06KCZM2fe1QwAAMB1WQzDMO7kievXr9fHH3+sZcuWKSQkRN27d1ePHj3UtGlTR2cschkZGfL391d6err8/Pwcum2LxaGbs8utfrOumktyXjZy2a84HmOumkviGLuRq+aSOMbsdWdN4/YK+vpt18xOSkqK5s2bpzlz5igjI0NPPvmksrOztXz5codfiQUAAOAIBb70vHPnzqpVq5Z27typ9957TydOnND06dOLMhsAAEChFXhm59tvv9WwYcP07LPP3tXPxAIAACiMAs/s/Pjjj8rMzFTjxo0VERGhGTNm6MyZM0WZDQAAoNAKXHaaNWumjz76SCdPntQzzzyjuLg4hYSEKDc3VwkJCcrMzCzKnAAAAHfkjq/Gkq7dwG/OnDlasGCB0tLS1K5dO61YscKR+e4Krsa6u4rr1QLkyqs4HmOumkviGLuRq+aSOMbs5eyrsez+bKw/qlWrlqZMmaLffvtNixYtKsymAAAAikShZnbMgpmdu6u4/uVBrryK4zHmqrkkjrEbuWouiWPMXsV6ZgcAAMDVUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpuXTZmTRpkpo2bSpfX18FBASoa9eu2rt3r806ly5dUnR0tMqXL6/SpUurR48eSk1NdVJiAADgaly67Kxbt07R0dH63//+p4SEBF25ckXt27dXVlaWdZ2RI0fqyy+/1JIlS7Ru3TqdOHFC3bt3d2JqAADgSiyGYRjODlFQp0+fVkBAgNatW6fWrVsrPT1dFStW1MKFC/XEE09Ikn799VfVrl1bGzZsULNmzQq03YyMDPn7+ys9PV1+fn4OzWyxOHRzdrnVb9ZVc0nOy0Yu+xXHY8xVc0kcYzdy1VwSx5i9iqppFPT126Vndm6Unp4uSSpXrpwkaevWrbpy5YoiIyOt64SHh6tKlSrasGHDTbeTnZ2tjIwMmwcAADCnYlN2cnNzNWLECD3wwAOqW7euJCklJUUeHh4qU6aMzbqBgYFKSUm56bYmTZokf39/66Ny5cpFGR0AADhRsSk70dHR2r17t+Li4gq9rbFjxyo9Pd36OHbsmAMSAgAAV1TC2QEKYujQofrqq6+0fv16VapUyToeFBSky5cvKy0tzWZ2JzU1VUFBQTfdnqenpzw9PYsyMgAAcBEuPbNjGIaGDh2q+Ph4rVmzRmFhYTbLGzdurJIlSyoxMdE6tnfvXh09elTNmze/23EBAIALcumZnejoaC1cuFBffPGFfH19refh+Pv7y9vbW/7+/oqKitKoUaNUrlw5+fn56bnnnlPz5s0LfCUWAAAwN5cuO7NmzZIkPfTQQzbjMTExGjBggCTp3//+t9zc3NSjRw9lZ2erQ4cOmjlz5l1OCgAAXFWxus9OUeE+O3dXcb0PBLnyKo7HmKvmkjjGbuSquSSOMXtxnx0AAIAiRNkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmZpqy88EHH6hq1ary8vJSRESENm3a5OxIAADABZii7CxevFijRo3ShAkTtG3bNtWvX18dOnTQqVOnnB0NAAA4mSnKztSpU/X0009r4MCBuu+++zR79myVKlVKc+fOdXY0AADgZMW+7Fy+fFlbt25VZGSkdczNzU2RkZHasGGDE5MBAABXUMLZAQrrzJkzysnJUWBgoM14YGCgfv3113yfk52drezsbOvX6enpkqSMjIyiC+oErvrtkMs+rppLct1s5LIPueznqtn+bLmuv24bhnHL9Yp92bkTkyZN0sSJE/OMV65c2Qlpio6/v7MT5I9c9nHVXJLrZiOXfchlP1fN9mfNlZmZKf9b7KTYl50KFSrI3d1dqampNuOpqakKCgrK9zljx47VqFGjrF/n5ubq7NmzKl++vCwWS5HmLaiMjAxVrlxZx44dk5+fn7Pj2HDVbOSyj6vmklw3G7nsQy77uWo2V81lGIYyMzMVEhJyy/WKfdnx8PBQ48aNlZiYqK5du0q6Vl4SExM1dOjQfJ/j6ekpT09Pm7EyZcoUcdI74+fn51IH1h+5ajZy2cdVc0mum41c9iGX/Vw1myvmutWMznXFvuxI0qhRo9S/f381adJEf/nLX/Tee+8pKytLAwcOdHY0AADgZKYoO7169dLp06c1fvx4paSkqEGDBlq5cmWek5YBAMCfjynKjiQNHTr0pm9bFUeenp6aMGFCnrfbXIGrZiOXfVw1l+S62chlH3LZz1WzuWqugrIYt7teCwAAoBgr9jcVBAAAuBXKDgAAMDXKDgAAMDXKDgAAMDXKjgtav369OnfurJCQEFksFi1fvtzZkTRp0iQ1bdpUvr6+CggIUNeuXbV3795ise8PP/xQDz30kPz8/GSxWJSWllZ0Yf9g1qxZuv/++6034WrevLm+/fbbu7Jve7z11luyWCwaMWKEU3O8+uqrslgsNo/w8HCnZrru+PHjeuqpp1S+fHl5e3urXr162rJli7NjqWrVqnl+ZhaLRdHR0U7NlZOTo3HjxiksLEze3t6qXr26Xnvttdt+fpGz97ts2TK1b9/eejf9pKSkIs37R5mZmRoxYoRCQ0Pl7e2tFi1aaPPmzXdt/9fd7vXHMAyNHz9ewcHB8vb2VmRkpPbv33/Xc9qLsuOCsrKyVL9+fX3wwQfOjmK1bt06RUdH63//+58SEhJ05coVtW/fXllZWS6/7wsXLuiRRx7RSy+9VMRJbVWqVElvvfWWtm7dqi1btujhhx9Wly5d9PPPP9/VHLeyefNm/ec//9H999/v7CiSpDp16ujkyZPWx48//ujsSDp37pweeOABlSxZUt9++61++eUXvfvuuypbtqyzo2nz5s02P6+EhARJUs+ePZ2aa/LkyZo1a5ZmzJihPXv2aPLkyZoyZYqmT5/u0vvNyspSy5YtNXny5CLNmZ+///3vSkhI0IIFC7Rr1y61b99ekZGROn78+F3NcbvXnylTpmjatGmaPXu2Nm7cKB8fH3Xo0EGXLl26qzntZsClSTLi4+OdHSOPU6dOGZKMdevWFZt9f//994Yk49y5c0UTrADKli1rfPzxx07b/x9lZmYaNWvWNBISEowHH3zQGD58uFPzTJgwwahfv75TM+TnxRdfNFq2bOnsGAUyfPhwo3r16kZubq5Tc3Tq1MkYNGiQzVj37t2Nvn37Fov9JicnG5KM7du3OzDdzV24cMFwd3c3vvrqK5vxRo0aGS+//PJdyZCfG19/cnNzjaCgIOPtt9+2jqWlpRmenp7GokWLnJCw4JjZwR1JT0+XJJUrV+5Pte87lZOTo7i4OGVlZal58+bOjiNJio6OVqdOnRQZGensKFb79+9XSEiIqlWrpr59++ro0aPOjqQVK1aoSZMm6tmzpwICAtSwYUN99NFHzo6Vx+XLl/Xpp59q0KBBTv9A4xYtWigxMVH79u2TJO3YsUM//vijHn30UVPut7CuXr2qnJwceXl52Yx7e3u7xOzmdcnJyUpJSbH5N8Pf318RERHasGGDE5PdnmnuoIy7Jzc3VyNGjNADDzygunXr/mn2fSd27dql5s2b69KlSypdurTi4+N13333OTuW4uLitG3bNqecE3AzERERmjdvnmrVqqWTJ09q4sSJatWqlXbv3i1fX1+n5Tp06JBmzZqlUaNG6aWXXtLmzZs1bNgweXh4qH///k7LdaPly5crLS1NAwYMcHYUjRkzRhkZGQoPD5e7u7tycnL0xhtvqG/fvqbcb2H5+vqqefPmeu2111S7dm0FBgZq0aJF2rBhg2rUqOHseFYpKSmSlOejmAIDA63LXBVlB3aLjo7W7t27nfIXhzP3fSdq1aqlpKQkpaen6/PPP1f//v21bt06pxaeY8eOafjw4UpISMjzl6Qz/fGv7/vvv18REREKDQ3VZ599pqioKKflys3NVZMmTfTmm29Kkho2bKjdu3dr9uzZLlV25syZo0cffVQhISHOjqLPPvtMsbGxWrhwoerUqaOkpCSNGDFCISEhRfozc9Z+HWHBggUaNGiQ7rnnHrm7u6tRo0bq06ePtm7d6uxo5uDs99Fwa3Kxc3aio6ONSpUqGYcOHSp2+3aFc3batm1rDB482Gn7NwzDiI+PNyQZ7u7u1ockw2KxGO7u7sbVq1edmu+PmjRpYowZM8apGapUqWJERUXZjM2cOdMICQlxUqK8Dh8+bLi5uRnLly93dhTDMAyjUqVKxowZM2zGXnvtNaNWrVrFYr93+5ydPzp//rxx4sQJwzAM48knnzQ6dux41zNcd+Prz8GDB/P9ubRu3doYNmzY3Q1nJ87ZQYEYhqGhQ4cqPj5ea9asUVhY2J9i346Wm5ur7Oxsp2Zo27atdu3apaSkJOujSZMm6tu3r5KSkuTu7u7UfNedP39eBw8eVHBwsFNzPPDAA3ludbBv3z6FhoY6KVFeMTExCggIUKdOnZwdRdK1KyDd3GxfXtzd3ZWbm2vK/TqSj4+PgoODde7cOa1atUpdunRxdiSrsLAwBQUFKTEx0TqWkZGhjRs3usy5iDfD21gu6Pz58zpw4ID16+TkZCUlJalcuXKqUqWKUzJFR0dr4cKF+uKLL+Tr62t9f9bf31/e3t4uve+UlBSlpKRYf6a7du2Sr6+vqlSpUqQnOY8dO1aPPvqoqlSposzMTC1cuFBr167VqlWrimyfBeHr65vnfCcfHx+VL1/eqedBjR49Wp07d1ZoaKhOnDihCRMmyN3dXX369HFaJkkaOXKkWrRooTfffFNPPvmkNm3apA8//FAffvihU3Ndl5ubq5iYGPXv318lSrjGP+mdO3fWG2+8oSpVqqhOnTravn27pk6dqkGDBrn0fs+ePaujR4/qxIkTkmQtuUFBQQoKCiqy3JK0atUqGYahWrVq6cCBA/rnP/+p8PBwDRw4sEj3e6Pbvf6MGDFCr7/+umrWrKmwsDCNGzdOISEh6tq1613NaTcnzywhH9ffbrnx0b9/f6dlyi+PJCMmJsbl9z1hwgSnZB80aJARGhpqeHh4GBUrVjTatm1rrF69ukj3eadc4dLzXr16GcHBwYaHh4dxzz33GL169TIOHDjg1EzXffnll0bdunUNT09PIzw83Pjwww+dHclq1apVhiRj7969zo5ilZGRYQwfPtyoUqWK4eXlZVSrVs14+eWXjezsbJfeb0xMTL7/VkyYMKFIcxuGYSxevNioVq2a4eHhYQQFBRnR0dFGWlpake/3Rrd7/cnNzTXGjRtnBAYGGp6enkbbtm1d6ti7GYthFPEtLQEAAJyIc3YAAICpUXZQrMXGxqp06dL5PurUqePseABcxA8//HDTfytKly7t7HgoYryNhWItMzNTqamp+S4rWbKkS10xA8B5Ll68eMvPmXKlm/fB8Sg7AADA1HgbCwAAmBplBwAAmBplBwAAmBplBwAc4PDhw7JYLEpKSirwcwYMGHDbO88+9NBDGjFiRKGyAX92lB3gT2LDhg1yd3d3mc9PcoZ69erpH//4R77LFixYIE9PT505c+aOtl25cmWdPHnSqR+5ASB/lB3gT2LOnDl67rnntH79eutn/zjL5cuXnbLfqKgoxcXF6eLFi3mWxcTE6PHHH1eFChXs3u7ly5fl7u6uoKAgl/l8KgD/j7ID/AmcP39eixcv1rPPPqtOnTpp3rx5edb58ssv1bRpU3l5ealChQrq1q2bdVl2drZefPFFVa5cWZ6enqpRo4bmzJkjSZo3b57KlCljs63ly5fLYrFYv3711VfVoEEDffzxxwoLC5OXl5ckaeXKlWrZsqXKlCmj8uXL67HHHtPBgwdttvXbb7+pT58+KleunHx8fNSkSRNt3LhRhw8flpubm7Zs2WKz/nvvvafQ0NB8P+n6qaee0sWLF7V06VKb8eTkZK1du1ZRUVE6ePCgunTposDAQJUuXVpNmzbVd999Z7N+1apV9dprr6lfv37y8/PT4MGD87yNlZOTo6ioKIWFhcnb21u1atXS+++/n89vR5o4caIqVqwoPz8//eMf/7hlGczOztbo0aN1zz33yMfHRxEREVq7dq11+ZEjR9S5c2eVLVtWPj4+qlOnjr755pubbg/4M6DsAH8Cn332mcLDw1WrVi099dRTmjt3rv54i62vv/5a3bp1U8eOHbV9+3YlJibqL3/5i3V5v379tGjRIk2bNk179uzRf/7zH7vvOnvgwAEtXbpUy5YtsxaCrKwsjRo1Slu2bFFiYqLc3NzUrVs3a1E5f/68HnzwQR0/flwrVqzQjh079MILLyg3N1dVq1ZVZGSkYmJibPYTExOjAQMGyM0t7z9vFSpUUJcuXTR37lyb8Xnz5qlSpUpq3769zp8/r44dOyoxMVHbt2/XI488os6dO+vo0aM2z3nnnXdUv359bd++XePGjcuzr9zcXFWqVElLlizRL7/8ovHjx+ull17SZ599ZrNeYmKi9uzZo7Vr12rRokVatmyZJk6ceNOf49ChQ7VhwwbFxcVp586d6tmzpx555BHt379fkhQdHa3s7GytX79eu3bt0uTJk7lDMODEDyEFcJe0aNHCeO+99wzDMIwrV64YFSpUML7//nvr8ubNmxt9+/bN97l79+41JBkJCQn5Lo+JiTH8/f1txuLj440//vMyYcIEo2TJksapU6dumfP06dOGJGPXrl2GYRjGf/7zH8PX19f4/fff811/8eLFRtmyZY1Lly4ZhmEYW7duNSwWi5GcnHzTfaxcudKwWCzGoUOHDMO49inOoaGhxiuvvHLT59SpU8eYPn269evQ0FCja9euNuskJycbkozt27ffdDvR0dFGjx49rF/379/fKFeunJGVlWUdmzVrllG6dGkjJyfHMAzbT6Q/cuSI4e7ubhw/ftxmu23btjXGjh1rGIZh1KtXz3j11VdvmgH4M2JmBzC5vXv3atOmTerTp48kqUSJEurVq5f1bShJSkpKUtu2bfN9flJSktzd3fXggw8WKkdoaKgqVqxoM7Z//3716dNH1apVk5+fn6pWrSpJ1lmUpKQkNWzYUOXKlct3m127dpW7u7vi4+MlXZuhadOmjXU7+WnXrp0qVapknRFKTEzU0aNHNXDgQEnXZpNGjx6t2rVrq0yZMipdurT27NmTZ2anSZMmt/2eP/jgAzVu3FgVK1ZU6dKl9eGHH+bZTv369VWqVCnr182bN9f58+d17NixPNvbtWuXcnJydO+999p8rtO6deusb/8NGzZMr7/+uh544AFNmDBBO3fuvG1OwOwoO4DJzZkzR1evXlVISIhKlCihEiVKaNasWVq6dKnS09MlSd7e3jd9/q2WSZKbm5vNW2KSdOXKlTzr+fj45Bnr3Lmzzp49q48++kgbN27Uxo0bJf3/Ccy327eHh4f69eunmJgYXb58WQsXLtSgQYNum3fAgAGaP3++cnNzFRMTozZt2qhatWqSpNGjRys+Pl5vvvmmfvjhByUlJalevXp5zqPJ7/v5o7i4OI0ePVpRUVFavXq1kpKSNHDgwEKdnH3+/Hm5u7tr69atSkpKsj727NljPR/o73//uw4dOqS//e1v2rVrl5o0aaLp06ff8T4BM6DsACZ29epVffLJJ3r33XdtXhx37NihkJAQLVq0SJJ0//33KzExMd9t1KtXT7m5uVq3bl2+yytWrKjMzExlZWVZxwpyr5nff/9de/fu1SuvvKK2bduqdu3aOnfunM06999/v5KSknT27Nmbbufvf/+7vvvuO82cOVNXr15V9+7db7vvgQMH6tixY1q2bJni4+MVFRVlXfbTTz9pwIAB6tatm+rVq6egoCAdPnz4ttu80U8//aQWLVpoyJAhatiwoWrUqJHn5GtJ2rFjh83VYf/73/9UunRpVa5cOc+6DRs2VE5Ojk6dOqUaNWrYPIKCgqzrVa5cWf/4xz+0bNkyPf/88/roo4/szg+YCWUHMLGvvvpK586dU1RUlOrWrWvz6NGjh/WtrAkTJmjRokWaMGGC9uzZYz2xVbp25VH//v01aNAgLV++3Hrl0vUTbSMiIlSqVCm99NJLOnjwoBYuXJjv1V43Klu2rMqXL68PP/xQBw4c0Jo1azRq1Cibdfr06aOgoCB17dpVP/30kw4dOqSlS5dqw4YN1nVq166tZs2a6cUXX1SfPn1uOxskSWFhYXr44Yc1ePBgeXp62hSkmjVrWk+i3rFjh/7617/me2XX7dSsWVNbtmzRqlWrtG/fPo0bN06bN2/Os97ly5cVFRWlX375Rd98840mTJigoUOH5nuC9b333qu+ffuqX79+WrZsmZKTk7Vp0yZNmjRJX3/9tSRpxIgRWrVqlZKTk7Vt2zZ9//33ql27tt35ATOh7AAmNmfOHEVGRsrf3z/Psh49emjLli3auXOnHnroIS1ZskQrVqxQgwYN9PDDD2vTpk3WdWfNmqUnnnhCQ4YMUXh4uJ5++mnrTE65cuX06aef6ptvvlG9evW0aNEivfrqq7fN5ubmpri4OG3dulV169bVyJEj9fbbb9us4+HhodWrVysgIEAdO3ZUvXr19NZbb8nd3d1mvaioKF2+fPm2b2Hd+Jxz587pr3/9q/VSeEmaOnWqypYtqxYtWqhz587q0KGDGjVqVODtXvfMM8+oe/fu6tWrlyIiIvT7779ryJAhedZr27atatasqdatW6tXr156/PHHb/nzi4mJUb9+/fT888+rVq1a6tq1qzZv3qwqVapIunbJe3R0tGrXrq1HHnlE9957r2bOnGl3fsBMLMaNb7YDQDHz2muvacmSJZyMCyBfzOwAKLbOnz+v3bt3a8aMGXruueecHQeAi6LsACi2hg4dqsaNG+uhhx6y6y0sAH8uvI0FAABMjZkdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgav8H/GzqtXu8YtUAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], +======= + "outputId": "c099cb8d-96af-4223-f499-743040aecdf1" + }, + "outputs": [], +>>>>>>> upstream/main + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of accuracies from accuracy1 to accuracy10\n", + "accuracies = [accuracy1*100, accuracy2*100, accuracy2_1*100, accuracy3*100, accuracy4*100, accuracy5*100, accuracy6*100, accuracy7*100, accuracy8*100, accuracy8_1*100, accuracy9*100, accuracy10*100]\n", + "\n", + "# List of corresponding labels for each accuracy\n", + "labels = ['1', '2', '2_1', '3', '4', '5', '6', '7', '8', '8_1', '9', '10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, accuracies, color='blue')\n", + "plt.xlabel('Accuracy Variables')\n", + "plt.ylabel('Accuracy Values')\n", + "plt.title('Bar Graph of Accuracies')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 93, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "RFaaCNH6Cfoa", +<<<<<<< HEAD + "outputId": "e624dad4-1663-4a68-90ec-b569e5b0b46a" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIKElEQVR4nO3dfVxUZf7/8fdwN+ANICh3BUpmqWlKoGZZ3lHepWmYeZPhzdpWWqmblbumZW2k3Wi5pNaWZGm2Vpq1SZqpVOIdhltmZqlpJmipIBoocP3+8Mv8HEEDBWY4vZ6Px3k8mutcc53PnDkO785cZ47NGGMEAABgUR6uLgAAAKAqEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAWM7jjz8um82mX3/9tcq3lZqaqtatW8vX11c2m01Hjx6t8m0CqBjCDlCDpKSkyGazOS0hISHq3Lmzli9fXu31fPjhh+rdu7dCQ0Pl4+OjoKAg3XjjjXr++eeVm5tb7fVUt99++00DBgyQn5+fkpOT9eabb6p27dpl9j37vfPy8tIll1yiYcOGaf/+/aX6d+rUSTabTU2aNClzvJUrVzrGevfdd53Wff311+rfv78aNmwoX19fXXLJJbrppps0a9Ysp36NGjUqdTyVLN27d7/AvQK4Hy9XFwCg4qZOnaro6GgZY5Sdna2UlBT17NlTH374oW655ZYq335xcbFGjhyplJQUtWzZUvfdd58iIyN17Ngxpaena9KkSfr444+1atWqKq/FlTZt2qRjx47pySefVHx8fLmeU/Le5efna/369UpJSdEXX3yhb775Rr6+vk59fX199cMPP2jjxo1q27at07oFCxbI19dX+fn5Tu3r1q1T586dFRUVpVGjRiksLEz79u3T+vXr9eKLL+r+++936t+6dWv97W9/K1VnREREuV4PUBMQdoAaqEePHoqLi3M8HjlypEJDQ/X2229XStgpLi7WyZMnS/3xLTF9+nSlpKRo3Lhxev7552Wz2RzrHnzwQR04cEDz58+/qG3UBAcPHpQkBQYGlvs5Z753f/nLX1S/fn1NmzZNy5Yt04ABA5z6Nm7cWIWFhXr77bedwk5+fr6WLFmiXr166b333nN6zj//+U8FBARo06ZNpeoqqfdMl1xyie68885y1w/URHyNBVhAYGCg/Pz85OXl/P8vzz33nK677joFBwfLz89PsbGxpb7ykCSbzaYxY8ZowYIFuuqqq2S325Wamlrmtk6cOKFp06bpqquu0rPPPusUdEqEh4frkUceKfc2LqTOK6+8Ur6+voqNjVVaWlqZtR49elTDhg1TYGCgAgICNHz4cJ04caLsnXiWxYsXKzY2Vn5+fqpfv77uvPNOp6+bOnXqpMTERElSmzZtZLPZNGzYsHKNfaYbbrhBkvTjjz+WuX7QoEF65513VFxc7Gj78MMPdeLEiVLhqGScq666qswAFhISUuH6ACsg7AA1UE5Ojn799VcdOnRI27Zt07333qu8vLxS/4f+4osvKiYmRlOnTtXTTz8tLy8v3X777frvf/9baszPPvtM48aN0x133KEXX3xRjRo1KnPbX3zxhY4ePapBgwbJ09OzQnWfaxsVqXPt2rUaO3as7rzzTk2dOlW//fabunfvrm+++aZU3wEDBujYsWNKSkrSgAEDlJKSoieeeOIP60xJSdGAAQPk6emppKQkjRo1Su+//746dOjgmID8j3/8Q3fffbek019Nvfnmm/rrX/9aof0hSXv27JEk1atXr8z1gwcP1oEDB7RmzRpH28KFC9W1a9cyw0vDhg2VkZFR5v4oy6lTp/Trr7+WWn7//fcKvxbAbRkANca8efOMpFKL3W43KSkppfqfOHHC6fHJkydNixYtTJcuXZzaJRkPDw+zbdu2P6zhxRdfNJLM0qVLndoLCwvNoUOHnJbi4uJybaMidUoymzdvdrT99NNPxtfX1/Tr18/RNmXKFCPJjBgxwun5/fr1M8HBwed9fSdPnjQhISGmRYsW5vfff3e0f/TRR0aSmTx5sqOt5P3YtGnTecc8s++nn35qDh06ZPbt22feffdd06BBA2O3282+ffuc+nfs2NFcddVVxhhj4uLizMiRI40xxhw5csT4+PiYN954w6xevdpIMosXL3Y8b8WKFcbT09N4enqa9u3bm4cffth88skn5uTJk6VqatiwYZnHkySTlJT0h68JqCk4swPUQMnJyVq5cqVWrlypt956S507d9Zf/vIXvf/++079/Pz8HP995MgR5eTk6IYbbtCWLVtKjdmxY0c1b978D7ddcpVVnTp1nNq//vprNWjQwGn57bffyrWNitTZvn17xcbGOh5HRUXp1ltv1SeffKKioiKnvvfcc4/T4xtuuEG//fbbea8U27x5sw4ePKj77rvPaT5Rr1691LRp0zLPNlVEfHy8GjRooMjISPXv31+1a9fWsmXLdOmll57zOYMHD9b777+vkydP6t1335Wnp6f69etXZt+bbrpJ6enp6tOnj7Zu3arp06erW7duuuSSS7Rs2bJS/du1a+c4ls5cBg0adFGvE3AnTFAGaqC2bds6TVAeNGiQYmJiNGbMGN1yyy3y8fGRJH300Ud66qmnlJmZqYKCAkf/subZREdHl2vbdevWlSTl5eU5tV9++eVauXKlJGn+/Pl68803y72NitRZ1qXYV1xxhU6cOKFDhw4pLCzM0R4VFeXUr+SroiNHjsjf37/MWn766SdJ0pVXXllqXdOmTfXFF1+U+bzySk5O1hVXXKGcnBy9/vrrSktLk91uP+9zBg4cqIceekjLly/XggULdMsttzjeh7K0adPGEY62bt2qJUuWaMaMGerfv78yMzOdAmf9+vXLfSUZUFNxZgewAA8PD3Xu3FkHDhzQzp07JUmff/65+vTpI19fX7388sv6+OOPtXLlSg0ePFjGmFJjnHl25XyaNm0qSaXmhNSpU0fx8fGKj4/XZZddVuZzy9pGReusiHPNKbrYcS9G27ZtFR8fr4SEBC1btkwtWrTQ4MGDS4XHM4WHh6tTp056/vnnlZaWpsGDB5drWz4+PmrTpo2efvppzZ49W6dOndLixYsr66UANQZhB7CIwsJCSf//jMt7770nX19fffLJJxoxYoR69OhRKf8Hf8MNNyggIECLFi1yukLoQlW0zpIwd6bvv/9etWrVUoMGDS66noYNG0qSduzYUWrdjh07HOsrQ8kE6F9++UX/+te/ztt38ODB+vzzz+Xv76+ePXtWeFslZwIPHDhwQbUCNRlhB7CAU6dOacWKFfLx8VGzZs0knf5DarPZnOax7NmzR0uXLr2obdWqVUsPP/ywvvnmGz366KNlniWpyJmTitaZnp7uNJdn3759+uCDD3TzzTdX+OqwssTFxSkkJERz5sxx+kpt+fLl2r59u3r16nXR2zhTp06d1LZtW82cObPUDwSeqX///poyZYpefvllx9eUZVm9enWZ+//jjz+WVPbXc4DVMWcHqIGWL1+u7777TtLpH4pbuHChdu7cqUcffdQxF6VXr1564YUX1L17dw0ePFgHDx5UcnKyLr/8cv3vf/+7qO0/+uij2r59u5599lmtWLFCCQkJuvTSS3XkyBFt2bJFixcvVkhISLl+MLCidbZo0ULdunXTAw88ILvdrpdfflmSynVJeXl4e3tr2rRpGj58uDp27KhBgwYpOzvbcan8uHHjKmU7Z5owYYJuv/12paSklJpUXSIgIECPP/74H451//3368SJE+rXr5+aNm2qkydPat26dXrnnXfUqFEjDR8+3Kn//v379dZbb5Uap06dOurbt++FvBzA/bjyUjAAFVPWpee+vr6mdevWZvbs2U6XehtjzGuvvWaaNGli7Ha7adq0qZk3b57jsuwzSTKjR4+ucD1LliwxPXv2NA0aNDBeXl4mMDDQdOjQwTz77LPm6NGj5d5GRet86623HP1jYmLM6tWrnfqVPPfQoUNO7SX7b/fu3X/42t555x0TExNj7Ha7CQoKMkOGDDE///xzmeNV5NLzsvoWFRWZxo0bm8aNG5vCwkJjjPOl5+dS1qXny5cvNyNGjDBNmzY1derUMT4+Pubyyy83999/v8nOznZ6/vkuPW/YsOEfviagprAZ48KZegBQATabTaNHj/7D+S0AcCbm7AAAAEsj7AAAAEsj7AAAAEvjaiwANQZTDAFcCM7sAAAASyPsAAAAS+NrLEnFxcX65ZdfVLdu3TJvPAgAANyPMUbHjh1TRESEPDzOff6GsCPpl19+UWRkpKvLAAAAF2Dfvn269NJLz7mesCOpbt26kk7vrJKf2gcAAO4tNzdXkZGRjr/j50LYkRxfXfn7+xN2AACoYf5oCgoTlAEAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKW5NOykpaWpd+/eioiIkM1m09KlS0v12b59u/r06aOAgADVrl1bbdq00d69ex3r8/PzNXr0aAUHB6tOnTpKSEhQdnZ2Nb4KAADgzlwado4fP65WrVopOTm5zPU//vijOnTooKZNm2rNmjX63//+p8cee0y+vr6OPuPGjdOHH36oxYsXa+3atfrll1902223VddLAAAAbs5mjDGuLkI6/euHS5YsUd++fR1tAwcOlLe3t958880yn5OTk6MGDRpo4cKF6t+/vyTpu+++U7NmzZSenq5rr722XNvOzc1VQECAcnJy+AVlAABqiPL+/XbbOTvFxcX673//qyuuuELdunVTSEiI2rVr5/RVV0ZGhk6dOqX4+HhHW9OmTRUVFaX09PRzjl1QUKDc3FynBQAAWJPbhp2DBw8qLy9PzzzzjLp3764VK1aoX79+uu2227R27VpJUlZWlnx8fBQYGOj03NDQUGVlZZ1z7KSkJAUEBDgW7ngOAIB1uW3YKS4uliTdeuutGjdunFq3bq1HH31Ut9xyi+bMmXNRY0+cOFE5OTmOZd++fZVRMgAAcENue9fz+vXry8vLS82bN3dqb9asmb744gtJUlhYmE6ePKmjR486nd3Jzs5WWFjYOce22+2y2+1VUjcAAHAvbntmx8fHR23atNGOHTuc2r///ns1bNhQkhQbGytvb2+tWrXKsX7Hjh3au3ev2rdvX631AgAA9+TSMzt5eXn64YcfHI93796tzMxMBQUFKSoqShMmTNAdd9yhG2+8UZ07d1Zqaqo+/PBDrVmzRpIUEBCgkSNHavz48QoKCpK/v7/uv/9+tW/fvtxXYv2Z2Z6wuWS7ZopbXAAIAPiTcGnY2bx5szp37ux4PH78eElSYmKiUlJS1K9fP82ZM0dJSUl64IEHdOWVV+q9995Thw4dHM+ZMWOGPDw8lJCQoIKCAnXr1k0vv/xytb8WAADgntzmd3Zc6c/6Ozuc2QEA1GQ1/nd2AAAAKgNhBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWJqXqwsAALg32xM2l23bTDEu2zasgzM7AADA0gg7AADA0vgaC27HVafMOV0OANbEmR0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBpLg07aWlp6t27tyIiImSz2bR06dJz9r3nnntks9k0c+ZMp/bDhw9ryJAh8vf3V2BgoEaOHKm8vLyqLRwAANQYLg07x48fV6tWrZScnHzefkuWLNH69esVERFRat2QIUO0bds2rVy5Uh999JHS0tJ09913V1XJAACghvFy5cZ79OihHj16nLfP/v37df/99+uTTz5Rr169nNZt375dqamp2rRpk+Li4iRJs2bNUs+ePfXcc8+VGY4AAMCfi1vP2SkuLtbQoUM1YcIEXXXVVaXWp6enKzAw0BF0JCk+Pl4eHh7asGHDOcctKChQbm6u0wIAAKzJrcPOtGnT5OXlpQceeKDM9VlZWQoJCXFq8/LyUlBQkLKyss45blJSkgICAhxLZGRkpdYNAADch9uGnYyMDL344otKSUmRzWar1LEnTpyonJwcx7Jv375KHR8AALgPtw07n3/+uQ4ePKioqCh5eXnJy8tLP/30k/72t7+pUaNGkqSwsDAdPHjQ6XmFhYU6fPiwwsLCzjm23W6Xv7+/0wIAAKzJpROUz2fo0KGKj493auvWrZuGDh2q4cOHS5Lat2+vo0ePKiMjQ7GxsZKkzz77TMXFxWrXrl211wwAANyPS8NOXl6efvjhB8fj3bt3KzMzU0FBQYqKilJwcLBTf29vb4WFhenKK6+UJDVr1kzdu3fXqFGjNGfOHJ06dUpjxozRwIEDuRILAABIcvHXWJs3b1ZMTIxiYmIkSePHj1dMTIwmT55c7jEWLFigpk2bqmvXrurZs6c6dOigV155papKBgAANYxLz+x06tRJxphy99+zZ0+ptqCgIC1cuLASqwIA1AS2Jyr34pWKMFPK/7cLrue2E5QBAAAqA2EHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYmkvDTlpamnr37q2IiAjZbDYtXbrUse7UqVN65JFH1LJlS9WuXVsRERG666679MsvvziNcfjwYQ0ZMkT+/v4KDAzUyJEjlZeXV82vBAAAuCuXhp3jx4+rVatWSk5OLrXuxIkT2rJlix577DFt2bJF77//vnbs2KE+ffo49RsyZIi2bdumlStX6qOPPlJaWpruvvvu6noJAADAzXm5cuM9evRQjx49ylwXEBCglStXOrX961//Utu2bbV3715FRUVp+/btSk1N1aZNmxQXFydJmjVrlnr27KnnnntOERERVf4aAACAe6tRc3ZycnJks9kUGBgoSUpPT1dgYKAj6EhSfHy8PDw8tGHDhnOOU1BQoNzcXKcFAABYU40JO/n5+XrkkUc0aNAg+fv7S5KysrIUEhLi1M/Ly0tBQUHKyso651hJSUkKCAhwLJGRkVVaOwAAcJ0aEXZOnTqlAQMGyBij2bNnX/R4EydOVE5OjmPZt29fJVQJAADckUvn7JRHSdD56aef9NlnnznO6khSWFiYDh486NS/sLBQhw8fVlhY2DnHtNvtstvtVVYzAABwH259Zqck6OzcuVOffvqpgoODnda3b99eR48eVUZGhqPts88+U3Fxsdq1a1fd5QIAADfk0jM7eXl5+uGHHxyPd+/erczMTAUFBSk8PFz9+/fXli1b9NFHH6moqMgxDycoKEg+Pj5q1qyZunfvrlGjRmnOnDk6deqUxowZo4EDB3IlFgAAkOTisLN582Z17tzZ8Xj8+PGSpMTERD3++ONatmyZJKl169ZOz1u9erU6deokSVqwYIHGjBmjrl27ysPDQwkJCXrppZeqpX4AAOD+XBp2OnXqJGPMOdefb12JoKAgLVy4sDLLAgAAFuLWc3YAAAAuFmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYWqWEnaNHj1bGMAAAAJWuwmFn2rRpeueddxyPBwwYoODgYF1yySXaunVrhcZKS0tT7969FRERIZvNpqVLlzqtN8Zo8uTJCg8Pl5+fn+Lj47Vz506nPocPH9aQIUPk7++vwMBAjRw5Unl5eRV9WQAAwKIqHHbmzJmjyMhISdLKlSu1cuVKLV++XD169NCECRMqNNbx48fVqlUrJScnl7l++vTpeumllzRnzhxt2LBBtWvXVrdu3ZSfn+/oM2TIEG3btk0rV67URx99pLS0NN19990VfVkAAMCivCr6hKysLEfY+eijjzRgwADdfPPNatSokdq1a1ehsXr06KEePXqUuc4Yo5kzZ2rSpEm69dZbJUnz589XaGioli5dqoEDB2r79u1KTU3Vpk2bFBcXJ0maNWuWevbsqeeee04REREVfXkAAMBiKnxmp169etq3b58kKTU1VfHx8ZJOh5OioqJKK2z37t3KyspyjC9JAQEBateundLT0yVJ6enpCgwMdAQdSYqPj5eHh4c2bNhQabUAAICaq8Jndm677TYNHjxYTZo00W+//eY4M/PVV1/p8ssvr7TCsrKyJEmhoaFO7aGhoY51WVlZCgkJcVrv5eWloKAgR5+yFBQUqKCgwPE4Nze3ssoGAABupsJndmbMmKExY8aoefPmWrlyperUqSNJOnDggO67775KL7AqJCUlKSAgwLGUfC0HAACsp8Jndry9vfXQQw+Vah83blylFFQiLCxMkpSdna3w8HBHe3Z2tlq3bu3oc/DgQafnFRYW6vDhw47nl2XixIkaP36843Fubi6BBwAAi7qg39l588031aFDB0VEROinn36SJM2cOVMffPBBpRUWHR2tsLAwrVq1ytGWm5urDRs2qH379pKk9u3b6+jRo8rIyHD0+eyzz1RcXHzeydJ2u13+/v5OCwAAsKYKh53Zs2dr/Pjx6tGjh44ePeqYlBwYGKiZM2dWaKy8vDxlZmYqMzNT0ulJyZmZmdq7d69sNpvGjh2rp556SsuWLdPXX3+tu+66SxEREerbt68kqVmzZurevbtGjRqljRs36ssvv9SYMWM0cOBArsQCAACSLiDszJo1S6+++qr+8Y9/yNPT09EeFxenr7/+ukJjbd68WTExMYqJiZEkjR8/XjExMZo8ebIk6eGHH9b999+vu+++W23atFFeXp5SU1Pl6+vrGGPBggVq2rSpunbtqp49e6pDhw565ZVXKvqyAACARVV4zs7u3bsd4eRMdrtdx48fr9BYnTp1kjHmnOttNpumTp2qqVOnnrNPUFCQFi5cWKHtAgCAP48Kn9mJjo52fO10ptTUVDVr1qwyagIAAKg0FT6zM378eI0ePVr5+fkyxmjjxo16++23lZSUpH//+99VUSMAAMAFq3DY+ctf/iI/Pz9NmjRJJ06c0ODBgxUREaEXX3xRAwcOrIoaAQAALliFw450+uabQ4YM0YkTJ5SXl1fqV4wBAADcxQWFnRK1atVSrVq1KqsWAACASlfhsBMdHS2bzXbO9bt27bqoggAAACpThcPO2LFjnR6fOnVKX331lVJTUzVhwoTKqgsAAKBSVDjsPPjgg2W2Jycna/PmzRddEAAAQGW6oHtjlaVHjx567733Kms4AACASlFpYefdd99VUFBQZQ0HAABQKSr8NVZMTIzTBGVjjLKysnTo0CG9/PLLlVocAADAxapw2Cm543gJDw8PNWjQQJ06dVLTpk0rqy4AAIBKUeGwM2XKlKqoAwAAoEqUK+zk5uaWe0B/f/8LLgYAAKCylSvsBAYGnveHBKXTc3dsNpuKiooqpTAAAIDKUK6ws3r16qquAwAAoEqUK+x07NixqusAAACoEhd8I9ATJ05o7969OnnypFP71VdffdFFAQAAVJYKh51Dhw5p+PDhWr58eZnrmbMDAADcSYV/QXns2LE6evSoNmzYID8/P6WmpuqNN95QkyZNtGzZsqqoEQAA4IJV+MzOZ599pg8++EBxcXHy8PBQw4YNddNNN8nf319JSUnq1atXVdQJAABwQSp8Zuf48eMKCQmRJNWrV0+HDh2SJLVs2VJbtmyp3OoAAAAuUoXDzpVXXqkdO3ZIklq1aqW5c+dq//79mjNnjsLDwyu9QAAAgItR4a+xHnzwQR04cEDS6VtHdO/eXQsWLJCPj49SUlIquz4AAICLUu6w079/f/3lL3/RkCFDHL+mHBsbq59++knfffedoqKiVL9+/SorFAAA4EKU+2usI0eOqFevXoqKitLkyZO1a9cuSVKtWrV0zTXXEHQAAIBbKnfYWbVqlXbt2qWRI0fqrbfeUpMmTdSlSxctXLhQBQUFVVkjAADABavQBOWGDRvq8ccf165du7Ry5UpFRERo1KhRCg8P1+jRo5WRkVFVdQIAAFyQCl+NVaJLly566623lJWVpaSkJC1atEjt2rWrzNoAAAAu2gXfG0uSdu/erZSUFKWkpCgnJ0fx8fGVVRcAAEClqPCZnfz8fL311lvq0qWLmjRpovnz52vkyJHavXu3UlNTq6JGAACAC1buMzsbN27U66+/rnfeeUf5+fnq16+fUlNT1bVrV8el6AAAAO6m3GHn2muvVatWrfTkk09qyJAhqlevXlXWBQAAUCnKHXY2b96sa665piprAQAAqHTlnrPjiqBTVFSkxx57TNHR0fLz81Pjxo315JNPyhjj6GOM0eTJkxUeHi4/Pz/Fx8dr586d1V4rAABwTxd86Xl1mDZtmmbPnq1//etf2r59u6ZNm6bp06dr1qxZjj7Tp0/XSy+9pDlz5mjDhg2qXbu2unXrpvz8fBdWDgAA3MVFXXpe1datW6dbb71VvXr1kiQ1atRIb7/9tjZu3Cjp9FmdmTNnatKkSbr11lslSfPnz1doaKiWLl2qgQMHuqx2AADgHtz6zM51112nVatW6fvvv5ckbd26VV988YV69Ogh6fTv/GRlZTn9vk9AQIDatWun9PT0c45bUFCg3NxcpwUAAFhTucPOwYMHz7u+sLDQccalsjz66KMaOHCgmjZtKm9vb8XExGjs2LEaMmSIJCkrK0uSFBoa6vS80NBQx7qyJCUlKSAgwLFERkZWat0AAMB9lDvshIeHOwWeli1bat++fY7Hv/32m9q3b1+pxf3nP//RggULtHDhQm3ZskVvvPGGnnvuOb3xxhsXNe7EiROVk5PjWM58HQAAwFrKPWfnzCugJGnPnj06derUeftcrAkTJjjO7kinA9ZPP/2kpKQkJSYmKiwsTJKUnZ2t8PBwx/Oys7PVunXrc45rt9tlt9srtVYAAOCeKnXOTmX/kvKJEyfk4eFcoqenp4qLiyVJ0dHRCgsL06pVqxzrc3NztWHDhko/ywQAAGomt74aq3fv3vrnP/+pqKgoXXXVVfrqq6/0wgsvaMSIEZJOh6uxY8fqqaeeUpMmTRQdHa3HHntMERER6tu3r2uLBwAAbqHcYcdms+nYsWPy9fWVMUY2m015eXmOK5mq4oqmWbNm6bHHHtN9992ngwcPKiIiQn/96181efJkR5+HH35Yx48f1913362jR4+qQ4cOSk1Nla+vb6XXAwAAah6bKedEGw8PD6evqUoCz9mPi4qKKr/KKpabm6uAgADl5OTI39/f1eVUG9sTrrmBq5ly/kPOXesC/qxc9W9SOv+/S3etC9WnvH+/y31mZ/Xq1ZVSGAAAQHUqd9jp2LFjVdYBAABQJcoddgoLC1VUVOR0yXZ2drbmzJmj48ePq0+fPurQoUOVFAkAAHChyh12Ro0aJR8fH82dO1eSdOzYMbVp00b5+fkKDw/XjBkz9MEHH6hnz55VViwAAEBFlft3dr788kslJCQ4Hs+fP19FRUXauXOntm7dqvHjx+vZZ5+tkiIBAAAuVLnDzv79+9WkSRPH41WrVikhIUEBAQGSpMTERG3btq3yKwQAALgI5Q47vr6++v333x2P169fr3bt2jmtz8vLq9zqAAAALlK5w07r1q315ptvSpI+//xzZWdnq0uXLo71P/74oyIiIiq/QgAAgItQ7gnKkydPVo8ePfSf//xHBw4c0LBhw5xuvrlkyRJdf/31VVIkAADAharQ7+xkZGRoxYoVCgsL0+233+60vnXr1mrbtm2lFwgAAHAxKnQj0GbNmqlZs2Zlrrv77rsrpSAAAIDKVO6wk5aWVq5+N9544wUXAwAAUNnKHXY6derkuPHnue4dWlNvBAoAAKyr3GGnXr16qlu3roYNG6ahQ4eqfv36VVkXAABApSj3pecHDhzQtGnTlJ6erpYtW2rkyJFat26d/P39FRAQ4FgAAADcSbnDjo+Pj+644w598skn+u6773T11VdrzJgxioyM1D/+8Q8VFhZWZZ0AAAAXpNxh50xRUVGaPHmyPv30U11xxRV65plnlJubW9m1AQAAXLQKh52CggItXLhQ8fHxatGiherXr6///ve/CgoKqor6AAAALkq5Jyhv3LhR8+bN06JFi9SoUSMNHz5c//nPfwg5AADArZU77Fx77bWKiorSAw88oNjYWEnSF198Uapfnz59Kq86AACAi1ShX1Deu3evnnzyyXOu53d2AACAuyl32CkuLq7KOgAAAKrEBV2NdS6///57ZQ4HAABw0Sol7BQUFOj5559XdHR0ZQwHAABQacoddgoKCjRx4kTFxcXpuuuu09KlSyVJ8+bNU3R0tGbOnKlx48ZVVZ0AAAAXpNxzdiZPnqy5c+cqPj5e69at0+23367hw4dr/fr1euGFF3T77bfL09OzKmsFAACosHKHncWLF2v+/Pnq06ePvvnmG1199dUqLCzU1q1bHXdDBwAAcDfl/hrr559/dvy+TosWLWS32zVu3DiCDgAAcGvlDjtFRUXy8fFxPPby8lKdOnWqpCgAAIDKUu6vsYwxGjZsmOx2uyQpPz9f99xzj2rXru3U7/3336/cCgEAAC5CucNOYmKi0+M777yz0osBAACobOUOO/PmzavKOgAAAKpEpf6CMgAAgLtx+7Czf/9+3XnnnQoODpafn59atmypzZs3O9YbYzR58mSFh4fLz89P8fHx2rlzpwsrBgAA7sStw86RI0d0/fXXy9vbW8uXL9e3336r559/XvXq1XP0mT59ul566SXNmTNHGzZsUO3atdWtWzfl5+e7sHIAAOAuyj1nxxWmTZumyMhIp/lCZ95/yxijmTNnatKkSbr11lslSfPnz1doaKiWLl2qgQMHVnvNAADAvbj1mZ1ly5YpLi5Ot99+u0JCQhQTE6NXX33VsX737t3KyspSfHy8oy0gIEDt2rVTenr6OcctKChQbm6u0wIAAKzJrcPOrl27NHv2bDVp0kSffPKJ7r33Xj3wwAN64403JElZWVmSpNDQUKfnhYaGOtaVJSkpSQEBAY4lMjKy6l4EAABwKbcOO8XFxbrmmmv09NNPKyYmRnfffbdGjRqlOXPmXNS4EydOVE5OjmPZt29fJVUMAADcjVuHnfDwcDVv3typrVmzZtq7d68kKSwsTJKUnZ3t1Cc7O9uxrix2u13+/v5OCwAAsCa3DjvXX3+9duzY4dT2/fffq2HDhpJOT1YOCwvTqlWrHOtzc3O1YcMGtW/fvlprBQAA7smtr8YaN26crrvuOj399NMaMGCANm7cqFdeeUWvvPKKJMlms2ns2LF66qmn1KRJE0VHR+uxxx5TRESE+vbt69riAQCAW3DrsNOmTRstWbJEEydO1NSpUxUdHa2ZM2dqyJAhjj4PP/ywjh8/rrvvvltHjx5Vhw4dlJqaKl9fXxdWDgAA3IVbhx1JuuWWW3TLLbecc73NZtPUqVM1derUaqwKAADUFG49ZwcAAOBiEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAICl1aiw88wzz8hms2ns2LGOtvz8fI0ePVrBwcGqU6eOEhISlJ2d7boiAQCAW6kxYWfTpk2aO3eurr76aqf2cePG6cMPP9TixYu1du1a/fLLL7rttttcVCUAAHA3NSLs5OXlaciQIXr11VdVr149R3tOTo5ee+01vfDCC+rSpYtiY2M1b948rVu3TuvXr3dhxQAAwF3UiLAzevRo9erVS/Hx8U7tGRkZOnXqlFN706ZNFRUVpfT09HOOV1BQoNzcXKcFAABYk5erC/gjixYt0pYtW7Rp06ZS67KysuTj46PAwECn9tDQUGVlZZ1zzKSkJD3xxBOVXSoAAHBDbn1mZ9++fXrwwQe1YMEC+fr6Vtq4EydOVE5OjmPZt29fpY0NAADci1uHnYyMDB08eFDXXHONvLy85OXlpbVr1+qll16Sl5eXQkNDdfLkSR09etTpednZ2QoLCzvnuHa7Xf7+/k4LAACwJrf+Gqtr1676+uuvndqGDx+upk2b6pFHHlFkZKS8vb21atUqJSQkSJJ27NihvXv3qn379q4oGQAAuBm3Djt169ZVixYtnNpq166t4OBgR/vIkSM1fvx4BQUFyd/fX/fff7/at2+va6+91hUlAwAAN+PWYac8ZsyYIQ8PDyUkJKigoEDdunXTyy+/7OqyAACAm6hxYWfNmjVOj319fZWcnKzk5GTXFAQAANyaW09QBgAAuFiEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGluH3aSkpLUpk0b1a1bVyEhIerbt6927Njh1Cc/P1+jR49WcHCw6tSpo4SEBGVnZ7uoYgAA4E7cPuysXbtWo0eP1vr167Vy5UqdOnVKN998s44fP+7oM27cOH344YdavHix1q5dq19++UW33XabC6sGAADuwsvVBfyR1NRUp8cpKSkKCQlRRkaGbrzxRuXk5Oi1117TwoUL1aVLF0nSvHnz1KxZM61fv17XXnutK8oGAABuwu3P7JwtJydHkhQUFCRJysjI0KlTpxQfH+/o07RpU0VFRSk9Pb3MMQoKCpSbm+u0AAAAa6pRYae4uFhjx47V9ddfrxYtWkiSsrKy5OPjo8DAQKe+oaGhysrKKnOcpKQkBQQEOJbIyMiqLh0AALhIjQo7o0eP1jfffKNFixZd1DgTJ05UTk6OY9m3b18lVQgAANyN28/ZKTFmzBh99NFHSktL06WXXupoDwsL08mTJ3X06FGnszvZ2dkKCwsrcyy73S673V7VJQMAADfg9md2jDEaM2aMlixZos8++0zR0dFO62NjY+Xt7a1Vq1Y52nbs2KG9e/eqffv21V0uAABwM25/Zmf06NFauHChPvjgA9WtW9cxDycgIEB+fn4KCAjQyJEjNX78eAUFBcnf31/333+/2rdvz5VYAADA/cPO7NmzJUmdOnVyap83b56GDRsmSZoxY4Y8PDyUkJCggoICdevWTS+//HI1VwoAANyR24cdY8wf9vH19VVycrKSk5OroSIAAFCTuP2cHQAAgItB2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJbm9jcCBQAAlcP2hM0l2zVT/vim3lWJMzsAAMDSOLMD4E/nz/p/t8CfFWd2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApXm5ugAAwGm2J2wu2a6ZYlyyXaC6EHaAGs5VfyCl8/+RdNe6gKrGse9+LBN2kpOT9eyzzyorK0utWrXSrFmz1LZtW1eXBQvhAwwAaiZLhJ133nlH48eP15w5c9SuXTvNnDlT3bp1044dOxQSEuLS2vgDCQCAa1ligvILL7ygUaNGafjw4WrevLnmzJmjWrVq6fXXX3d1aQAAwMVqfNg5efKkMjIyFB8f72jz8PBQfHy80tPTXVgZAABwBzX+a6xff/1VRUVFCg0NdWoPDQ3Vd999V+ZzCgoKVFBQ4Hick5MjScrNza38AvMrf8jy+sPX46LaqKvizlsbdZXiru8ldVVcjTzG3LUuyX2PsYsc15g/mLZharj9+/cbSWbdunVO7RMmTDBt27Yt8zlTpkwxklhYWFhYWFgssOzbt++8WaHGn9mpX7++PD09lZ2d7dSenZ2tsLCwMp8zceJEjR8/3vG4uLhYhw8fVnBwsGw2100oPltubq4iIyO1b98++fv7u7ocB+qqGOqqOHetjboqxl3rkty3NuqqGGOMjh07poiIiPP2q/Fhx8fHR7GxsVq1apX69u0r6XR4WbVqlcaMGVPmc+x2u+x2u1NbYGBgFVd64fz9/d3q4CpBXRVDXRXnrrVRV8W4a12S+9ZGXeUXEBDwh31qfNiRpPHjxysxMVFxcXFq27atZs6cqePHj2v48OGuLg0AALiYJcLOHXfcoUOHDmny5MnKyspS69atlZqaWmrSMgAA+POxRNiRpDFjxpzza6uaym63a8qUKaW+cnM16qoY6qo4d62NuirGXeuS3Lc26qoaNmP+6HotAACAmqvG/6ggAADA+RB2AACApRF2AACApRF2AACApRF2KsGwYcNks9lks9nk7e2t6OhoPfzww8rP//83ISlZv379eqfnFhQUOH65ec2aNY72tWvXqkuXLgoKClKtWrXUpEkTJSYm6uTJk5KkNWvWOMY8e8nKypIk9e3b16k9ODjYpXWNHj1a+fn5evXVV3XDDTc42tu0aaONGzdWyz4p2Xa9evVUr149xcfHO237j97L999/32nczMzMaqm7c+fOTu12u129evVy+TF25v7y8vKSzWZTkyZNXF5Xhw4dSq3z8vJyeV2SNHjwYKd13t7e6t+/v8trCwsLK3N99+7dXVLXnj17Sm3XbrcrMjJS48aNU35+fpW/VzNnztSVV14pPz8/p+1Kf/xZkZaW5jTu0qVLq3R/nVlHhw4dFB0dLV9fX7Vq1colx9O2bduUkJCgRo0ayWazaebMmSpLcnKyGjVqJF9fX7Vr187p87gyEXYqSffu3XXgwAHt2rVLM2bM0Ny5czVlyhSnPpGRkZo3b55T25IlS1SnTh2ntm+//Vbdu3dXXFyc0tLS9PXXX2vWrFny8fFRUVGRU98dO3bowIEDTktISIgkqbCwUI0aNdLs2bPVoEED9e3bt9rq6tevnzp37qytW7dq8+bNev311/XWW29pypQpWrNmjQYNGiRJCg8PV25urm6++Wbt37+/yvdJybZXr16t9PR0RUZGOm1bOv97efz4cUlSUFCQzlaVddvtdsXExGjt2rVKS0vTnXfeqY8//lh33XVXlb+X56urZH9t3LhR9evXV7NmzbRnzx6XH/uS5Onp6XT81apVy+V1nTx5UitWrFCDBg30wQcf6Msvv9SUKVP0ySefuLy2zp07O/2bffHFFyVJHh7Ofyaqoq4bbrjB6b2qW7euXn75ZUnSwoULJUnBwcFKSEjQa6+9pnfeeUd///vfq3R/LFy4UI8++qimTJmi7du3O223RHk+K+rXr6+zVWbdAwYMUOfOnbV//37t2rVLMTExWrdunWJjY/Xtt9/qnnvukXQ6zFbn8XTixAlddtlleuaZZ85566Z33nlH48eP15QpU7Rlyxa1atVK3bp108GDB8vsf1Eq53acf26JiYnm1ltvdWq77bbbTExMjOOxJDNp0iTj7+9vTpw44Wi/6aabzGOPPWYkmdWrVxtjjJkxY4Zp1KjRebe5evVqI8kcOXKkXHU1bNjQzJgxo9rqGjRoUIX2SZ06dcwbb7xR5fvkbIWFhaZu3bqObZf3vRwzZoyRZNLT0x3t1fVelggICDBhYWFOdbniGOvTp4+57rrrzL///W+TmJhowsPDXX7sX3/99cbLy8upzR3+Tc6ePdvUqVPH9O7d2+1qO/sYmzFjhvHy8jKtWrWq8rp69uzp1H7m/hg9enSp7Y4fP95cf/31Vbo/Ro8ebbp06eLUVrJdYyr2uS/JLFq0yNFemXWfXUd4eLhp1apVqTpatGhRrcfTmUr+/pytbdu2ZvTo0Y7HRUVFJiIiwiQlJZVr3IrgzE4V+Oabb7Ru3Tr5+Pg4tcfGxqpRo0Z67733JEl79+5VWlqahg4d6tQvLCxMBw4cUFpaWqXWdeDAAZfVdb59EhUVpYKCAgUFBVX7Pjlx4oROnTpV5pma89XdsmVLSdKqVaskVe97aYzRv//9b+Xk5JS6p5srjrEdO3YoJCREI0eO1JEjR3T48GG3OPYLCwvVsGFDRUZGqnPnzkpLS3N5XcuWLVNISIj+97//KTQ0VC1atNCDDz7olp8XycnJ8vb2lq+vb7XWdfa/ueuuu07S6XsylZyp/vjjj3XddddV6f647rrrlJGR4fhaZdeuXfr444/Vs2fPctVdIjY2VpKUnp4uqerfx+PHj2vPnj2l6sjOznbp8XS2kydPKiMjQ/Hx8Y42Dw8PxcfHO/ZVpar0+PQnlJiYaDw9PU3t2rWN3W43koyHh4d59913HX0kmSVLlpiZM2eazp07G2OMeeKJJ0y/fv3MkSNHnJJ1YWGhGTZsmJFkwsLCTN++fc2sWbNMTk6OY7ySZF27dm2npXnz5mXWJala6/Ly8nJs84+2ff311xtfX1/z+++/V/k+Odu9995rLrvsMvP7779X6L2cO3eukWTatGlTre/lmfvTZrO5/Bjr3r27kWRq1arl2F+SXF5Xz549jYeHh/Hz8zPe3t6OuubOnevSuq688krj4eFhbDabU23u8F6eeez7+PhU6+dFWcvZ2/X09DQeHh5Gkrnnnnuq5bPixRdfNN7e3o7Ps3vuuafM/fVHn/v6vzMrVfE+ltR2Zh2SzKxZs0xRUZFZsWKF4zO5Oo+nM5V1Zmf//v1Gklm3bp1T+4QJE0zbtm3LHOdiEHYqQWJioomPjzc7d+40mZmZJjEx0YwcOdKpT8lB/+uvvxpfX1/z448/mujoaPPhhx+WOthK/Pzzz2b+/Plm9OjRJjw83Fx66aXml19+Mcb8/4Nty5YtZufOnY5lz549ZdYVHh5u2rRpU2119e7d21x33XXm008/NcuWLTMJCQllbvvOO+80AQEBxm63V8s+OVNSUpKpV6+e2bp1a4Xfy5KwU111JyYmmq5du5pPP/3ULFq0yMTFxRlvb2+n7VT3MZabm2tq165tWrdu7dhfjRs3NlFRUaX2lyuP/czMTDN06FBTt25dM2nSJJfW1aRJE1OrVi3TtWtXR21xcXHGz8/PrfZZQkKCCQwMrLbPi3bt2jk+K/r162fuuOMOx/NL+tx3330mLS3N+Pj4mPDwcFOvXr0q3R+rV682oaGh5tVXXzX/+9//zPvvv28iIyPN1KlTyzzGzve5L8n4+PhUyfvYr18/06FDB0cdd9xxh4mKijIeHh7G09PTXHHFFUaS8fb2rtbj6UyEHYs4+zvToqIi06JFC/Pvf//b0VZy0BtjTP/+/U2nTp1MeHi4KSwsPOfBdqbDhw+b+vXrm8mTJxtjLmzOzvPPP19tdZ09Z+dc+6RWrVpm06ZN1bZPSjz77LMmICDAbNq06Zz77Hx1l4Sd+Pj4an8vS+qqV6+e0/9JVfcx9tVXXzn+L9LT09PpzJPNZjM//PCDS+o61/7y9/d3nIlzVV033nijCQ8Pd6rto48+MpLMnDlzXFpbyT7Ly8sz/v7+5oUXXqi2z4sz5+yc/W+uQ4cOpbbbrFkzI8mcPHmyyvZHhw4dzEMPPeTU9uabbxo/Pz9TVFRUoc99SaZ9+/ZV8j6eq47Zs2ebn3/+2RQXFxtJ5tJLL3Xsv+r8rDWm7LBTUFBgPD09He9ribvuusv06dOnXONWBHN2qoCHh4f+/ve/a9KkSfr9999LrR8xYoTWrFmju+66S56enuUas169egoPD3fM8K9pdZ297enTp0uSJk+erLi4uGrdJ9OnT9eTTz6p1NRUxcXFVajus916660uey+vvvpq/fDDDy47xpo2bao+ffqoc+fOyszMVGZmpm699VY1b95cwcHBZV6F4qpj3xij2rVra9u2bS79N3n99dcrNzdXxhhH2w8//KDAwEA9/vjjbvF5sXjxYhUUFOiuu+5yyefF2f/mTpw4UWq727dvl5eXV6krxS5mu2c7ceJEqfFLXueZ79+56j5b165dq+V9LKnjiSeeUFBQkAoLCyVJ7dq1k+S6f4Nn8/HxUWxsrGPeoyQVFxdr1apVat++faVtp4Rl7nrubm6//XZNmDBBycnJeuihh5zWde/eXYcOHZK/v3+Zz507d64yMzPVr18/NW7cWPn5+Zo/f762bdumWbNmOfU9ePCg0+9zSKcv0fT29lZxcbFycnKUmZmpkydPav/+/erQoYOMMVVeV35+vvLz851+s6Jv376aMGGC+vfvr08//VSSFBISoqysLLVu3Vq7d+9WREREle6TadOmafLkyVq4cKEaNWrkqK9OnTqlLsEsceZ7OWLECEnSvn37JJ2+rPSzzz5T48aNq7Tur7/+Wna7Xbt27VJBQYE+/vhjffHFF6pbt67LjjFfX1/Vq1dPNptNLVq0kCQFBgaqcePGysnJ0auvvuqyY3/r1q3y8/PTrl27dPToUT377LM6fPiwAgMDXfpv8t5779Wzzz6rr7/+Wt9//7127typp59+WuPGjdMrr7zi0tpKvPbaa+rbt6+Cg4Or7XOsoKDA6bPihhtukKenp5KTk9W7d29t2bJFn3/+uVq1aiVPT081atRIsbGxZf6xrqz90bt3b73wwguKiYlRu3bt9MMPP+ixxx5T7969zxkSztxfJZd87969W9LpwPDZZ58pMjLyovfXmXX//vvvys/P16lTp+Tt7a0NGzbIy+v0n/a//e1v2rFjh6TTPwciVd/xdPLkSX377beS5Pj7k5mZqTp16ujyyy+XJI0fP16JiYmKi4tT27ZtNXPmTB0/flzDhw8vs7aLUunniv6EyroE0ZjTc0IaNGhg8vLynE7Dnu3s04hbtmwxd955p4mOjjZ2u90EBwebG2+80SxbtszxnPNN7Cu5HDohIaHM9dHR0S6rKykpyTHJ8OxlypQpVb5PGjZseN5t/9F7OWfOnPM+v6rqvvrqq03t2rWNr6+vqVevnmnfvr1ZtGiRy4+xs/dXyWNX19WsWTPj5+dnfHx8TGhoqOnZs6fZsmWLy+sy5vTk6Xr16hm73W4uu+wy889//tMUFha6vLaSeWGSzIoVKxzPdVVd9957r2nQoIE5evSokU5PlvX19TWRkZHmvvvuc3yFUlX749SpU+bxxx83jRs3LnO7f/RZ8fHHH5c5fmJiYpXWvWbNGtOsWTPj6elpbDabGThwoEuOp927d5e5vmPHjk7bnzVrlomKijI+Pj6mbdu2Zv369WXWebFsxpRxPg4AAMAimLMDAAAsjbAD/J/PP//cMXenrAUApNM/yHe+z4q9e/e6ukScha+xgP/z+++/O90j62wlk+oA/LkVFhY63aj0bI0aNXJMEoZ7IOwAAABL42ssAABgaYQdAABgaYQdAABgaYQdACjD448/rtatW1foOTabTUuXLj3n+j179shmsykzM/OiagNQMYQdAE6GDRsmm80mm80mb29vRUdH6+GHHy71s/AlfdavX+/UXlBQoODgYNlsNq1Zs8bRvnbtWnXp0kVBQUGqVauWmjRposTERJ08eVKStGbNGseYZy9n3kqgREZGRpnbL9G1a1fddtttF7wfHnroIaf79gCouQg7AErp3r27Dhw4oF27dmnGjBmaO3eupkyZUqpfZGSk5s2b59S2ZMmSUr9L9O2336p79+6Ki4tTWlqavv76a82aNUs+Pj4qKipy6rtjxw4dOHDAaQkJCSm17djYWLVq1Uqvv/56qXV79uzR6tWrNXLkyAq/dmOMCgsLVadOHQUHB1f4+QDcD2EHQCl2u11hYWGKjIxU3759FR8fr5UrV5bql5iYqEWLFjnd5fn1119XYmKiU78VK1YoLCxM06dPV4sWLdS4cWN1795dr776qvz8/Jz6hoSEKCwszGk5192tR44cqXfeeafUnbFTUlIUHh6u7t27680331RcXJzq1q2rsLAwDR48WAcPHnT0LTmjtHz5csXGxsput+uLL74o9TXWpk2bdNNNN6l+/foKCAhQx44dtWXLllI1HThwQD169JCfn58uu+wyvfvuu+fe0ZK++eYb9ejRQ3Xq1FFoaKiGDh2qX3/91bH+3XffVcuWLeXn56fg4GDFx8dX6t2ngT8Dwg6A8/rmm2+0bt06+fj4lFoXGxurRo0a6b333pN0+pdl09LSNHToUKd+YWFhOnDggNLS0iq1tiFDhqigoMApUBhj9MYbb2jYsGHy9PTUqVOn9OSTT2rr1q1aunSp9uzZo2HDhpUa69FHH9Uzzzyj7du36+qrry61/tixY0pMTNQXX3yh9evXq0mTJurZs6eOHTvm1O+xxx5TQkKCtm7dqiFDhmjgwIHavn17mfUfPXpUXbp0UUxMjDZv3qzU1FRlZ2drwIABkk4Hp0GDBmnEiBHavn271qxZo9tuu038PBpQQVVye1EANVZiYqLx9PQ0tWvXNna73UgyHh4e5t1333Xqp/+7k/LMmTNN586djTHGPPHEE6Zfv36l7qRcWFhohg0b5rh7dd++fc2sWbNMTk6OY7ySOynXrl3baWnevPl56x04cKDTnZRXrVplJJmdO3eW2X/Tpk1Gkjl27JjTdpcuXerUb8qUKaZVq1bn3G5RUZGpW7eu+fDDD532yT333OPUr127dubee+81xvz/O0F/9dVXxhhjnnzySXPzzTc79d+3b5+RZHbs2GEyMjKMJLNnz57z7gMA58eZHQCldO7cWZmZmdqwYYMSExM1fPhwJSQklNn3zjvvVHp6unbt2qWUlBSNGDGiVB9PT0/NmzdPP//8s6ZPn65LLrlETz/9tK666iodOHDAqe/nn3+uzMxMx/Lxxx+ft9YRI0YoLS1NP/74o6TTX6N17NjRcXuPjIwM9e7dW1FRUapbt646duwoSaXuXxQXF3fe7WRnZ2vUqFFq0qSJAgIC5O/vr7y8vFLjtG/fvtTjc53Z2bp1q1avXu10X6WmTZtKkn788Ue1atVKXbt2VcuWLXX77bfr1Vdf1ZEjR85bJ4DSCDsASqldu7Yuv/xyxwTgDRs26LXXXiuzb3BwsG655RaNHDlS+fn56tGjxznHveSSSzR06FD961//0rZt25Sfn685c+Y49YmOjtbll1/uWBo2bHjeWrt27aqoqCilpKQoNzdX77//vmNi8vHjx9WtWzf5+/trwYIF2rRpk5YsWSJJjqvAznzN55OYmKjMzEy9+OKLWrdunTIzMxUcHFxqnIrIy8tT7969ncJdZmamdu7cqRtvvFGenp5auXKlli9frubNm2vWrFm68sortXv37gveJvBnRNgBcF4eHh76+9//rkmTJjlNRD7TiBEjtGbNGt11113y9PQs17j16tVTeHj4RU+29fDw0PDhw/XGG29o4cKF8vHxUf/+/SVJ3333nX777Tc988wzuuGGG9S0aVOnyckV8eWXX+qBBx5Qz549ddVVV8lutztNJC5x9qXw69evV7Nmzcoc85prrtG2bdvUqFEjp4B3+eWXO8KXzWbT9ddfryeeeEJfffWVfHx8HIENQPkQdgD8odtvv12enp5KTk4uc3337t116NAhTZ06tcz1c+fO1b333qsVK1boxx9/1LZt2/TII49o27Zt6t27t1PfgwcPKisry2k5derUeesbPny49u/fr7///e8aNGiQ4wqvqKgo+fj4aNasWdq1a5eWLVumJ5988gL2gNSkSRO9+eab2r59uzZs2KAhQ4aUupJMkhYvXqzXX39d33//vaZMmaKNGzdqzJgxZY45evRoHT58WIMGDdKmTZv0448/6pNPPtHw4cNVVFSkDRs26Omnn9bmzZu1d+9evf/++zp06NA5wxOAshF2APwhLy8vjRkzRtOnTy/zTIzNZlP9+vXLvGJLktq2bau8vDzdc889uuqqq9SxY0etX79eS5cudcyhKXHllVcqPDzcacnIyDhvfVFRUYqPj9eRI0ec5gw1aNBAKSkpWrx4sZo3b65nnnlGzz333AXsAem1117TkSNHdM0112jo0KF64IEHyvz9nyeeeEKLFi3S1Vdfrfnz5+vtt99W8+bNyxwzIiJCX375pYqKinTzzTerZcuWGjt2rAIDA+Xh4SF/f3+lpaWpZ8+euuKKKzRp0iQ9//zz5/2qEEBpNmO4hhEAAFgXZ3YAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAICl/T/87OzQb65QZQAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], +======= + "outputId": "67a8f358-e3ce-4ad2-9c78-ebc75902beb4" + }, + "outputs": [], +>>>>>>> upstream/main + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of RMSE values from rmse1 to rmse10\n", + "rmse_values = [rmse1, rmse2, rmse2_1, rmse3, rmse4, rmse5, rmse6, rmse7, rmse8, rmse8_1, rmse9, rmse10]\n", + "\n", + "# List of corresponding labels for each RMSE value\n", + "labels = ['RMSE1', 'RMSE2', 'RMSE2_1', 'RMSE3', 'RMSE4', 'RMSE5', 'RMSE6', 'RMSE7', 'RMSE8', 'RMSE8_1', 'RMSE9', 'RMSE10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, rmse_values, color='green')\n", + "plt.xlabel('RMSE Variables')\n", + "plt.ylabel('RMSE Values')\n", + "plt.title('Bar Graph of RMSE')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 94, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "nrZu-K-KDCJ2", +<<<<<<< HEAD + "outputId": "d0dd5f18-77bd-41f4-c21b-09e71322b318" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/MUlEQVR4nO3deVxUZf//8fcACogCorIlKuW+pOYWmbdLFK6pueR2h2JqqZl5l+l9m2V5Z1qZS6RZKFmCS6mlpUWYW+GuZUmuuAuWKYomopzfH36dX3MDCjoww+n1fDzO4+Fc5zrn+swMMm/Ouc4Zi2EYhgAAAEzKxdEFAAAAFCbCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDoC/hVdeeUUWi0W///57oY+1evVqNWjQQB4eHrJYLDp37lyhjwkgb4QdoJiLjY2VxWKxWfz9/dW6dWutWrWqyOtZsWKFOnXqpICAAJUsWVJ+fn76xz/+obffflvnz58v8nqK2pkzZ9SzZ095enoqOjpaH3/8sby8vHLt+9f3buPGjTnWG4ahkJAQWSwWdezYMdd9nDt3zhqqkpOTc+3Tv3//HD8jNxYPD4/bf7JAMeHm6AIA2Merr76q0NBQGYahtLQ0xcbGqn379lqxYkWeH5T2lJ2drYEDByo2Nlb16tXT0KFDFRISogsXLigpKUnjxo3TV199pcTExEKvxZG2bt2qCxcu6LXXXlN4eHi+tvHw8FBcXJwefPBBm/Z169bp+PHjcnd3z3PbJUuWyGKxKDAwUAsWLNDEiRNz7efu7q4PP/wwR7urq2u+agSKM8IOYBLt2rVT48aNrY8HDhyogIAAxcfH2yXsZGdn68qVK3keCZgyZYpiY2P13HPP6e2335bFYrGue/bZZ3Xq1CnNnz//jsYoDk6fPi1J8vX1zfc27du315IlSzRjxgy5uf3/X8txcXFq1KjRTU+9ffLJJ2rfvr0qV66suLi4PMOOm5ub+vXrl++aADPhNBZgUr6+vvL09LT58JSkt956Sw888IDKlSsnT09PNWrUSJ9++mmO7S0Wi4YPH64FCxaoTp06cnd31+rVq3Md69KlS5o8ebLq1KmjN9980ybo3BAUFKQXX3wx32PcTp01atSQh4eHGjVqpPXr1+da67lz59S/f3/5+vrKx8dHAwYM0KVLl3J/Ef/HkiVL1KhRI3l6eqp8+fLq16+fTpw4YV3fqlUrRUZGSpKaNGkii8Wi/v3733K/vXv31pkzZ5SQkGBtu3Llij799FP16dMnz+2OHj2qDRs2qFevXurVq5dSUlL0ww8/5Ou5AH8nHNkBTCI9PV2///67DMPQ6dOnNXPmTGVkZOT4a3769Ol69NFH1bdvX125ckULFy5Ujx49tHLlSnXo0MGm75o1a7R48WINHz5c5cuXV5UqVXIde+PGjTp37pyef/75Ap8WyWuMgtS5bt06LVq0SCNGjJC7u7vee+89tW3bVlu2bFHdunVt+vbs2VOhoaGaNGmSduzYoQ8//FD+/v6aPHnyTeuMjY3VgAED1KRJE02aNElpaWmaPn26vv/+e+3cuVO+vr76z3/+oxo1amjOnDnW04r33HPPLV+DKlWqKCwsTPHx8WrXrp0kadWqVUpPT1evXr00Y8aMXLeLj4+Xl5eXOnbsKE9PT91zzz1asGCBHnjggVz753aEqGTJkvL29r5ljUCxZgAo1ubNm2dIyrG4u7sbsbGxOfpfunTJ5vGVK1eMunXrGm3atLFpl2S4uLgYv/zyyy1rmD59uiHJWL58uU371atXjd9++81myc7OztcYBalTkrFt2zZr25EjRwwPDw+ja9eu1raXX37ZkGRERUXZbN+1a1ejXLlyN31+V65cMfz9/Y26desaf/75p7V95cqVhiRj/Pjx1rYb78fWrVtvus//7fvuu+8aZcqUsT7vHj16GK1btzYMwzAqV65sdOjQIcf29erVM/r27Wt9/O9//9soX768kZWVZdMvMjIy158RSUZERMQt6wSKO05jASYRHR2thIQEJSQk6JNPPlHr1q315JNPaunSpTb9PD09rf8+e/as0tPT1aJFC+3YsSPHPlu2bKnatWvfcuwbV1mVLl3apn337t2qUKGCzXLmzJl8jVGQOsPCwtSoUSPr40qVKqlz5876+uuvde3aNZu+Tz31lM3jFi1a6MyZMze9Umzbtm06ffq0hg4dajOfqEOHDqpZs6a+/PLLPLfNr549e+rPP//UypUrdeHCBa1cufKmp7B++ukn7d69W71797a29e7dW7///ru+/vrrHP09PDysPx9/Xd544407rh1wdpzGAkyiadOmNhOUe/furYYNG2r48OHq2LGjSpYsKUlauXKlJk6cqF27dikzM9PaP7d5NqGhofkau0yZMpKkjIwMm/aqVata56HMnz9fH3/8cb7HKEid1apVy9FWvXp1Xbp0Sb/99psCAwOt7ZUqVbLpV7ZsWUnXA1Vep3OOHDkiSapRo0aOdTVr1sz1svGCqlChgsLDwxUXF6dLly7p2rVr6t69e579P/nkE3l5eenuu+/WgQMHJF0PNFWqVNGCBQtynOpzdXXN99VhgNlwZAcwKRcXF7Vu3VqnTp3S/v37JUkbNmzQo48+Kg8PD7333nv66quvlJCQoD59+sgwjBz7+OvRlZupWbOmJOnnn3+2aS9durTCw8MVHh6uu+++O9dtcxujoHUWRF5ziu50v/bQp08frVq1SrNnz1a7du3yvKLLMAzFx8fr4sWLql27tqpVq2ZdDh8+rM8//zxH8AT+zjiyA5jY1atXJf3/Iy6fffaZPDw89PXXX9vcu2XevHl3NE6LFi3k4+OjhQsXauzYsXJxubO/owpa540w91f79u1TqVKlVKFChTuqRZIqV64sSdq7d6/atGljs27v3r3W9Xeqa9euGjJkiDZt2qRFixbl2e/G/XdeffVV1apVy2bd2bNnNXjwYC1fvpxLzYH/w5EdwKSysrL0zTffqGTJktYPRFdXV1ksFpt5LIcPH9by5cvvaKxSpUpp9OjR+vnnnzVmzJhcj5IU5MhJQetMSkqymctz7Ngxff7553rkkUfsctO8xo0by9/fX7Nnz7Y5pbZq1SolJyfnOGV0u0qXLq1Zs2bplVdeUadOnfLsd+MU1gsvvKDu3bvbLIMGDVK1atW0YMECu9QEmAFHdgCTWLVqlX799VdJ129sFxcXp/3792vMmDHWuSgdOnTQ1KlT1bZtW/Xp00enT59WdHS0qlatqp9++umOxh8zZoySk5P15ptv6ptvvlG3bt1UsWJFnT17Vjt27NCSJUvk7++frxsGFrTOunXrKiIiwubSc0maMGHCHT2nG0qUKKHJkydrwIABatmypXr37m299LxKlSp67rnn7DKOJOt9evKSmZmpzz77TA8//HCer+Wjjz6q6dOn6/Tp0/L395d0/SjfJ598kmv/rl275vmVFoAZEHYAkxg/frz13x4eHqpZs6ZmzZqlIUOGWNvbtGmjmJgYvfHGGxo5cqRCQ0M1efJkHT58+I7DjouLiz7++GN169ZNH3zwgWbOnKmzZ8+qdOnSqlu3rv773/9q0KBBOa7Yyk1B62zZsqXCwsI0YcIEHT16VLVr11ZsbKzuvffeO3pOf9W/f3+VKlVKb7zxhl588UV5eXmpa9eumjx5coHulnynvvzyS507d+6mR346deqkt99+WwsXLtSIESMkXQ9J//znP3Ptn5KSQtiBqVkMZ5iVBwC3yWKxaNiwYXr33XcdXQoAJ8WcHQAAYGqEHQAAYGqEHQAAYGpMUAZQrDHtEMCtcGQHAACYGmEHAACYGqexJGVnZ+vkyZMqU6ZMrl8yCAAAnI9hGLpw4YKCg4Nv+jU1hB1JJ0+eVEhIiKPLAAAAt+HYsWOqWLFinusJO5LKlCkj6fqLdeO2+gAAwLmdP39eISEh1s/xvBB2JOupK29vb8IOAADFzK2moDBBGQAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmJqbowuAg8RZHDd2H8NxYwMA/nY4sgMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEzNoWFn/fr16tSpk4KDg2WxWLR8+XLruqysLL344ouqV6+evLy8FBwcrCeeeEInT5602ccff/yhvn37ytvbW76+vho4cKAyMjKK+JkAAABn5dCwc/HiRdWvX1/R0dE51l26dEk7duzQSy+9pB07dmjp0qXau3evHn30UZt+ffv21S+//KKEhAStXLlS69ev1+DBg4vqKQAAACdnMQzDcHQRkmSxWLRs2TJ16dIlzz5bt25V06ZNdeTIEVWqVEnJycmqXbu2tm7dqsaNG0uSVq9erfbt2+v48eMKDg7O19jnz5+Xj4+P0tPT5e3tbY+n4/ziLI4bu49T/MgBAIq5/H5+F6s5O+np6bJYLPL19ZUkJSUlydfX1xp0JCk8PFwuLi7avHmzg6oEAADOxM3RBeTX5cuX9eKLL6p3797W9Jaamip/f3+bfm5ubvLz81Nqamqe+8rMzFRmZqb18fnz5wunaAAA4HDF4shOVlaWevbsKcMwNGvWrDve36RJk+Tj42NdQkJC7FAlAABwRk4fdm4EnSNHjighIcHmnFxgYKBOnz5t0//q1av6448/FBgYmOc+x44dq/T0dOty7NixQqsfAAA4llOfxroRdPbv36/vvvtO5cqVs1kfFhamc+fOafv27WrUqJEkac2aNcrOzlazZs3y3K+7u7vc3d0LtXYAAOAcHBp2MjIydODAAevjlJQU7dq1S35+fgoKClL37t21Y8cOrVy5UteuXbPOw/Hz81PJkiVVq1YttW3bVoMGDdLs2bOVlZWl4cOHq1evXvm+EgsAAJibQy89X7t2rVq3bp2jPTIyUq+88opCQ0Nz3e67775Tq1atJF2/qeDw4cO1YsUKubi4qFu3bpoxY4ZKly6d7zq49LyIcek5AMAO8vv57dAjO61atdLNslZ+cpifn5/i4uLsWRYAADARp5+gDAAAcCcIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNTcHF0AkEOcxTHj9jEcMy4AoFBxZAcAAJgaYQcAAJgaYQcAAJgac3YAADfHPDoUcxzZAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApubQsLN+/Xp16tRJwcHBslgsWr58uc16wzA0fvx4BQUFydPTU+Hh4dq/f79Nnz/++EN9+/aVt7e3fH19NXDgQGVkZBThswAAAM7MzZGDX7x4UfXr11dUVJQee+yxHOunTJmiGTNm6KOPPlJoaKheeuklRUREaM+ePfLw8JAk9e3bV6dOnVJCQoKysrI0YMAADR48WHFxcUX9dAAARSnO4rix+xiOGxsF5tCw065dO7Vr1y7XdYZhaNq0aRo3bpw6d+4sSZo/f74CAgK0fPly9erVS8nJyVq9erW2bt2qxo0bS5Jmzpyp9u3b66233lJwcHCRPRcAAOCcnHbOTkpKilJTUxUeHm5t8/HxUbNmzZSUlCRJSkpKkq+vrzXoSFJ4eLhcXFy0efPmPPedmZmp8+fP2ywAAMCcnDbspKamSpICAgJs2gMCAqzrUlNT5e/vb7Pezc1Nfn5+1j65mTRpknx8fKxLSEiInasHAADOwmnDTmEaO3as0tPTrcuxY8ccXRIAACgkTht2AgMDJUlpaWk27WlpadZ1gYGBOn36tM36q1ev6o8//rD2yY27u7u8vb1tFgAAYE5OG3ZCQ0MVGBioxMREa9v58+e1efNmhYWFSZLCwsJ07tw5bd++3dpnzZo1ys7OVrNmzYq8ZgAA4HwcejVWRkaGDhw4YH2ckpKiXbt2yc/PT5UqVdLIkSM1ceJEVatWzXrpeXBwsLp06SJJqlWrltq2batBgwZp9uzZysrK0vDhw9WrVy+uxAIAAJIcHHa2bdum1q1bWx+PGjVKkhQZGanY2FiNHj1aFy9e1ODBg3Xu3Dk9+OCDWr16tfUeO5K0YMECDR8+XA899JBcXFzUrVs3zZgxo8ifCwAAcE4WwzD+9ndGOn/+vHx8fJSenv73mb/jzDfjclRt3CQMyJ2z/p905t9jKBL5/fx22jk7AAAA9kDYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApubUYefatWt66aWXFBoaKk9PT91zzz167bXXZBiGtY9hGBo/fryCgoLk6emp8PBw7d+/34FVAwAAZ3LHYefatWvatWuXzp49a496bEyePFmzZs3Su+++q+TkZE2ePFlTpkzRzJkzrX2mTJmiGTNmaPbs2dq8ebO8vLwUERGhy5cv270eAABQ/BQ47IwcOVIxMTGSrgedli1b6r777lNISIjWrl1r1+J++OEHde7cWR06dFCVKlXUvXt3PfLII9qyZYuk60d1pk2bpnHjxqlz58669957NX/+fJ08eVLLly+3ay0AAKB4KnDY+fTTT1W/fn1J0ooVK5SSkqJff/1Vzz33nP7zn//YtbgHHnhAiYmJ2rdvnyTpxx9/1MaNG9WuXTtJUkpKilJTUxUeHm7dxsfHR82aNVNSUlKe+83MzNT58+dtFgAAYE4FDju///67AgMDJUlfffWVevTooerVqysqKkq7d++2a3FjxoxRr169VLNmTZUoUUINGzbUyJEj1bdvX0lSamqqJCkgIMBmu4CAAOu63EyaNEk+Pj7WJSQkxK51AwAA51HgsBMQEKA9e/bo2rVrWr16tR5++GFJ0qVLl+Tq6mrX4hYvXqwFCxYoLi5OO3bs0EcffaS33npLH3300R3td+zYsUpPT7cux44ds1PFAADA2bgVdIMBAwaoZ8+eCgoKksVisZ5C2rx5s2rWrGnX4l544QXr0R1Jqlevno4cOaJJkyYpMjLSeoQpLS1NQUFB1u3S0tLUoEGDPPfr7u4ud3d3u9YKAACcU4HDziuvvKK6devq2LFj6tGjhzU0uLq6asyYMXYt7tKlS3JxsT345OrqquzsbElSaGioAgMDlZiYaA0358+f1+bNm/X000/btRYAAFA8FTjsSFL37t0lyeby7sjISPtU9BedOnXSf//7X1WqVEl16tTRzp07NXXqVEVFRUmSLBaLRo4cqYkTJ6patWoKDQ3VSy+9pODgYHXp0sXu9QAAgOKnwHN2rl27ptdee0133XWXSpcurUOHDkmSXnrpJesl6fYyc+ZMde/eXUOHDlWtWrX0/PPPa8iQIXrttdesfUaPHq1nnnlGgwcPVpMmTZSRkaHVq1fLw8PDrrUAAIDiqcBh57///a9iY2M1ZcoUlSxZ0tpet25dffjhh3YtrkyZMpo2bZqOHDmiP//8UwcPHtTEiRNtxrVYLHr11VeVmpqqy5cv69tvv1X16tXtWgcAACi+Chx25s+frzlz5qhv3742V1/Vr19fv/76q12LAwAAuFMFDjsnTpxQ1apVc7RnZ2crKyvLLkUBAADYS4HDTu3atbVhw4Yc7Z9++qkaNmxol6IAAADspcBXY40fP16RkZE6ceKEsrOztXTpUu3du1fz58/XypUrC6NGAACA21bgIzudO3fWihUr9O2338rLy0vjx49XcnKyVqxYYb2bMgAAgLO4rfvstGjRQgkJCfauBQAAwO4KfGQHAACgOCnwkR0XFxdZLJY811+7du2OCgIAALCnAoedZcuW2TzOysrSzp079dFHH2nChAl2KwwAAMAeChx2OnfunKOte/fuqlOnjhYtWqSBAwfapTAAAAB7sNucnfvvv1+JiYn22h0AAIBd2CXs/Pnnn5oxY4buuusue+wOAADAbgp8Gqts2bI2E5QNw9CFCxdUqlQpffLJJ3YtDgAA4E4VOOy88847NmHHxcVFFSpUULNmzVS2bFm7FgcAAHCnChx2+vfvXwhlAAAAFI58hZ2ffvop3zu89957b7sYAAAAe8tX2GnQoIEsFosMw7hpP4vFwk0FAQCAU8lX2ElJSSnsOgAAAApFvsJO5cqVC7sOAACAQnFb33ouSXv27NHRo0d15coVm/ZHH330josCAACwlwKHnUOHDqlr167avXu3zTyeG5ejM2cHAAA4kwLfQfnZZ59VaGioTp8+rVKlSumXX37R+vXr1bhxY61du7YQSgQAALh9BT6yk5SUpDVr1qh8+fJycXGRi4uLHnzwQU2aNEkjRozQzp07C6NOAACA21LgIzvXrl1TmTJlJEnly5fXyZMnJV2fxLx37177VgcAAHCHCnxkp27duvrxxx8VGhqqZs2aacqUKSpZsqTmzJmju+++uzBqBAAAuG0FDjvjxo3TxYsXJUmvvvqqOnbsqBYtWqhcuXJatGiR3QsEAAC4E/kOO40bN9aTTz6pPn36yNvbW5JUtWpV/frrr/rjjz9yfBs6AACAM8j3nJ369etr9OjRCgoK0hNPPGFz5ZWfnx9BBwAAOKV8h52YmBilpqYqOjpaR48e1UMPPaSqVavq9ddf14kTJwqzRgAAgNtWoKuxSpUqpf79+2vt2rXat2+fevXqpffff19VqlRRhw4dtHTp0sKqEwAA4LYU+NLzG+655x5NnDhRhw8fVnx8vDZt2qQePXrYszYAAIA7dtvfjSVJa9eu1bx58/TZZ5/Jzc1NgwYNslddAAAAdlHgsHP8+HHFxsYqNjZWhw4dUosWLfTee++pR48e8vT0LIwaAQAAblu+w87ixYs1d+5cJSYmyt/fX5GRkYqKilLVqlULsz4AAIA7ku+w069fP3Xo0EHLli1T+/bt5eJy29N9AAAAiky+w87x48fl7+9fmLUAAADYXb4PzxB0AABAccS5KAAAYGqEHQAAYGqEHQAAYGr5DjtbtmzRtWvX8lyfmZmpxYsX26UoAAAAe8l32AkLC9OZM2esj729vXXo0CHr43Pnzql37972rQ4AAOAO5TvsGIZx08d5tQEAADiSXefsWCwWe+4OAADgjjn9BOUTJ06oX79+KleunDw9PVWvXj1t27bNut4wDI0fP15BQUHy9PRUeHi49u/f78CKAQCAMynQF4Hu2bNHqampkq6HjF9//VUZGRmSpN9//93uxZ09e1bNmzdX69attWrVKlWoUEH79+9X2bJlrX2mTJmiGTNm6KOPPlJoaKheeuklRUREaM+ePfLw8LB7TQAAoHgpUNh56KGHbObldOzYUdL101eGYdj9NNbkyZMVEhKiefPmWdtCQ0Ot/zYMQ9OmTdO4cePUuXNnSdL8+fMVEBCg5cuXq1evXnatBwAAFD/5DjspKSmFWUeuvvjiC0VERKhHjx5at26d7rrrLg0dOlSDBg2y1pSamqrw8HDrNj4+PmrWrJmSkpLyDDuZmZnKzMy0Pj5//nzhPhEAAOAw+Q47lStXvmWfn3/++Y6K+V+HDh3SrFmzNGrUKP373//W1q1bNWLECJUsWVKRkZHWU2oBAQE22wUEBFjX5WbSpEmaMGGCXWsFAADO6Y4nKF+4cEFz5sxR06ZNVb9+fXvUZJWdna377rtPr7/+uho2bKjBgwdr0KBBmj179h3td+zYsUpPT7cux44ds1PFAADA2dx22Fm/fr0iIyMVFBSkt956S23atNGmTZvsWZuCgoJUu3Ztm7ZatWrp6NGjkqTAwEBJUlpamk2ftLQ067rcuLu7y9vb22YBAADmVKCwk5qaqjfeeEPVqlVTjx495O3trczMTC1fvlxvvPGGmjRpYtfimjdvrr1799q07du3z3pKLTQ0VIGBgUpMTLSuP3/+vDZv3qywsDC71gIAAIqnfIedTp06qUaNGvrpp580bdo0nTx5UjNnzizM2vTcc89p06ZNev3113XgwAHFxcVpzpw5GjZsmKTrV4GNHDlSEydO1BdffKHdu3friSeeUHBwsLp06VKotQEAgOIh3xOUV61apREjRujpp59WtWrVCrMmqyZNmmjZsmUaO3asXn31VYWGhmratGnq27evtc/o0aN18eJFDR48WOfOndODDz6o1atXc48dAAAgqQBhZ+PGjYqJiVGjRo1Uq1Yt/fOf/yyS+9h07NjRej+f3FgsFr366qt69dVXC70WAABQ/OT7NNb999+vDz74QKdOndKQIUO0cOFCBQcHKzs7WwkJCbpw4UJh1gkAAHBbCnw1lpeXl6KiorRx40bt3r1b//rXv/TGG2/I399fjz76aGHUCAAAcNvu6D47NWrU0JQpU3T8+HHFx8fbqyYAAAC7scu3nru6uqpLly764osv7LE7AAAAu8n3BOWoqKhb9rFYLIqJibmjggAAAOwp32EnNjZWlStXVsOGDW2++RwAAMCZ5TvsPP3004qPj1dKSooGDBigfv36yc/PrzBrAwAAuGP5nrMTHR2tU6dOafTo0VqxYoVCQkLUs2dPff311xzpAQAATqtAE5Td3d3Vu3dvJSQkaM+ePapTp46GDh2qKlWqKCMjo7BqBAAAuG23fTWWi4uLLBaLDMPQtWvX7FkTAACA3RQo7GRmZio+Pl4PP/ywqlevrt27d+vdd9/V0aNHVbp06cKqEQAA4Lble4Ly0KFDtXDhQoWEhCgqKkrx8fEqX758YdYGAABwx/IddmbPnq1KlSrp7rvv1rp167Ru3bpc+y1dutRuxQEAANypfIedJ554QhaLpTBrAQAAsLsC3VQQAACguLHLd2MBAAA4K8IOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwtWIVdt544w1ZLBaNHDnS2nb58mUNGzZM5cqVU+nSpdWtWzelpaU5rkgAAOBUik3Y2bp1q95//33de++9Nu3PPfecVqxYoSVLlmjdunU6efKkHnvsMQdVCQAAnE2xCDsZGRnq27evPvjgA5UtW9banp6erpiYGE2dOlVt2rRRo0aNNG/ePP3www/atGmTAysGAADOoliEnWHDhqlDhw4KDw+3ad++fbuysrJs2mvWrKlKlSopKSkpz/1lZmbq/PnzNgsAADAnN0cXcCsLFy7Ujh07tHXr1hzrUlNTVbJkSfn6+tq0BwQEKDU1Nc99Tpo0SRMmTLB3qQAAwAk59ZGdY8eO6dlnn9WCBQvk4eFht/2OHTtW6enp1uXYsWN22zcAAHAuTh12tm/frtOnT+u+++6Tm5ub3NzctG7dOs2YMUNubm4KCAjQlStXdO7cOZvt0tLSFBgYmOd+3d3d5e3tbbMAAABzcurTWA899JB2795t0zZgwADVrFlTL774okJCQlSiRAklJiaqW7dukqS9e/fq6NGjCgsLc0TJAADAyTh12ClTpozq1q1r0+bl5aVy5cpZ2wcOHKhRo0bJz89P3t7eeuaZZxQWFqb777/fESUDAAAn49RhJz/eeecdubi4qFu3bsrMzFRERITee+89R5cFAACcRLELO2vXrrV57OHhoejoaEVHRzumIAAA4NSceoIyAADAnSLsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAU3PqsDNp0iQ1adJEZcqUkb+/v7p06aK9e/fa9Ll8+bKGDRumcuXKqXTp0urWrZvS0tIcVDEAAHA2Th121q1bp2HDhmnTpk1KSEhQVlaWHnnkEV28eNHa57nnntOKFSu0ZMkSrVu3TidPntRjjz3mwKoBAIAzcXN0ATezevVqm8exsbHy9/fX9u3b9Y9//EPp6emKiYlRXFyc2rRpI0maN2+eatWqpU2bNun+++93RNkAAMCJOPWRnf+Vnp4uSfLz85Mkbd++XVlZWQoPD7f2qVmzpipVqqSkpCSH1AgAAJyLUx/Z+avs7GyNHDlSzZs3V926dSVJqampKlmypHx9fW36BgQEKDU1Nc99ZWZmKjMz0/r4/PnzhVIzAABwvGJzZGfYsGH6+eeftXDhwjve16RJk+Tj42NdQkJC7FAhAABwRsUi7AwfPlwrV67Ud999p4oVK1rbAwMDdeXKFZ07d86mf1pamgIDA/Pc39ixY5Wenm5djh07VlilAwAAB3PqsGMYhoYPH65ly5ZpzZo1Cg0NtVnfqFEjlShRQomJida2vXv36ujRowoLC8tzv+7u7vL29rZZAACAOTn1nJ1hw4YpLi5On3/+ucqUKWOdh+Pj4yNPT0/5+Pho4MCBGjVqlPz8/OTt7a1nnnlGYWFhXIkFAAAkOXnYmTVrliSpVatWNu3z5s1T//79JUnvvPOOXFxc1K1bN2VmZioiIkLvvfdeEVcKAACclVOHHcMwbtnHw8ND0dHRio6OLoKKAABAcePUc3YAAADuFGEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYmpujCwAAAEUkzuKYcfsYjhn3/3BkBwAAmBpHdgD8vTjqL1vJ4X/dAn9XHNkBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACm5uboAuwlOjpab775plJTU1W/fn3NnDlTTZs2dXRZAJB/cRbHjNvHcMy4ZuWo91HivcyDKcLOokWLNGrUKM2ePVvNmjXTtGnTFBERob1798rf39/R5cEsnPWDyFl/sTprXQD+dkwRdqZOnapBgwZpwIABkqTZs2fryy+/1Ny5czVmzBjHFscvfAAAHKrYz9m5cuWKtm/frvDwcGubi4uLwsPDlZSU5MDKAACAMyj2R3Z+//13Xbt2TQEBATbtAQEB+vXXX3PdJjMzU5mZmdbH6enpkqTz58/bv8BL9t9lvt3s+ThrXZLjaqOugiuOP2POWpfEz9j/cta6JH7GCqowPl/1/z+3DeMWZzKMYu7EiROGJOOHH36waX/hhReMpk2b5rrNyy+/bEhiYWFhYWFhMcFy7Nixm2aFYn9kp3z58nJ1dVVaWppNe1pamgIDA3PdZuzYsRo1apT1cXZ2tv744w+VK1dOFosD59j8xfnz5xUSEqJjx47J29vb0eXYcNbaqKtgnLUuyXlro66Coa6Cc9banLUuwzB04cIFBQcH37RfsQ87JUuWVKNGjZSYmKguXbpIuh5eEhMTNXz48Fy3cXd3l7u7u02br69vIVd6e7y9vZ3qB+uvnLU26ioYZ61Lct7aqKtgqKvgnLU2Z6zLx8fnln2KfdiRpFGjRikyMlKNGzdW06ZNNW3aNF28eNF6dRYAAPj7MkXYefzxx/Xbb79p/PjxSk1NVYMGDbR69eock5YBAMDfjynCjiQNHz48z9NWxZG7u7tefvnlHKfbnIGz1kZdBeOsdUnOWxt1FQx1FZyz1uasdeWXxTBudb0WAABA8VXsbyoIAABwM4QdAABgaoQdAABgaoQdAABgaoSdQtC/f39ZLBY99dRTOdYNGzZMFotF/fv3t2lPSkqSq6urOnTokGObw4cPy2Kx5Lps2rRJknTq1Cn16dNH1atXl4uLi0aOHOk0tS1dulTBwcGyWCwqWbKkwsLC9PXXXxfJuA8//LAqVKggb2/vHOPeyvr16xUSEmLd7/Lly4vk9dq4caOaN2+ucuXKydPTUzVr1tQ777xjsx9HvI9/9f3338vNzU0NGjRweF1r167NdX1qaqrDa5Oufxfff/7zH1WuXFnu7u6qUqWK5s6d69C6boz5v0udOnUc/nr94x//kMVikZubm4KCghQVFaUzZ84U+rgLFixQ/fr1VapUqRzj3sovv/yiypUrW/c7bdq0Inu9oqOjVatWLXl6eqpGjRpq0aKF037+LFmyRDVr1pSHh4fq1aunr776Ktd+hYGwU0hCQkK0cOFC/fnnn9a2y5cvKy4uTpUqVcrRPyYmRs8884zWr1+vkydP5rrPb7/9VqdOnbJZGjVqJOn6L9QKFSpo3Lhxql+/vlPVtn79egUHBysgIEAeHh568MEH1alTJ+3cubPQx3344Yf11Vdfafv27WrdurV13Py4ePGi/Pz8VL58eUmy+fLYwqzby8tLw4cP1/r165WcnKxx48Zp3LhxmjNnjs0+ivp9vOHcuXN64okn9NBDD+W6D0fVtXfvXpv1/v7+TlFbz549lZiYqJiYGO3du1fx8fGqUaOGQ+uaPn26TfuxY8fk5+enHj16OLSu77//Xhs2bJCvr69KlSqlTz75RFu2bNGgQYMKfdwnnnhCAwcO1C+//KIlS5ZYx82PS5cuqUyZMtavHLpy5UqRvF6zZs3S2LFj9corr+iXX37RhAkTtGnTJpUvX97pPn9++OEH9e7dWwMHDtTOnTvVpUsXdenSRT///HMer6p9meY+O87mvvvu08GDB7V06VL17dtX0vUjDZUqVVJoaKhN34yMDC1atEjbtm1TamqqYmNj9e9//zvHPsuVK5fn931VqVJF06dPlySbvxqdobZp06apf//+qlixog4ePKgGDRqoWrVqWrFihZKTkwt13L96/fXX9fnnn2vFihVq2LBhnq/PDe3atdOiRYsUGhqqzz//XJs2bdLjjz8uqXBfr4YNG9rUV6VKFS1dulQbNmzQ4MGDre1F/T7e8NRTT6lPnz5ydXXNcbTLkXX5+/vf8mtfirq21atXa926dTp06JD8/PwkXX8/HV2Xj4+PzS32ly9frrNnz+a463xR15WUlKTSpUurZcuWOnjwoFJTUzVkyBBNnjy50MetUqWKRowYIUkKDQ21jpsfTZo0UePGjXXu3Dl99dVX2r17t3VdYdb98ccfa8iQIdbfS3fffbdee+01paamKiQkxKk+f6ZPn662bdvqhRdekCS99tprSkhI0LvvvqvZs2fnuo09cWSnEEVFRWnevHnWx3Pnzs31KywWL16smjVrqkaNGurXr5/mzp1766+rL6a13Rj3woUL8vPzK9LXJDs72zru7VizZo3130VZ986dO/XDDz+oZcuWOdYV9fs4b948HTp0SC+//PJN+zni56tBgwYKCgrSww8/rO+//94pavviiy/UuHFjTZkyRXfddZeqV6+u559/3uYvbkfU9b9iYmIUHh6uypUrO7SusLAwXbx4UWlpaRowYIDef/99ffrpp2rfvn2hj3vs2DF99dVXMgxDaWlp1nELqnTp0tq8ebP1cWHWnZmZKQ8PD5s2Nzc3nT17VpGRkU71+ZOUlKTw8HCbtoiICCUlJdl9rNwQdgpRv379tHHjRh05ckRHjhzR999/r379+uXoFxMTY21v27at0tPTtW7duhz9HnjgAZUuXdpmKW619evXT+vWrVN6errCwsKK9DV56623lJGRoZ49e+bZ52aSk5OL9PWqWLGi3N3d1bhxYw0bNkxPPvlkjj5F+T7u379fY8aM0SeffCI3t5sfFC7KuoKCgjR79mx99tln+uyzzxQSEqJWrVppx44dDq/t0KFD2rhxo37++WctW7ZM06ZN06effqqhQ4c6tK6/OnnypFatWpXrz1dR19W8eXP94x//0NatWzV69Ght2LBBJUqU0OjRowt93AULFujxxx9XyZIlFRgYKB8fH0VHR+f6mtyMl5eXUlJSiuT1ioiI0Icffqjt27fLMAxt27ZN+/btk2EYatu2rVN9/qSmpub4CqeAgIAcc+sKC6exClGFChXUoUMHxcbGyjAMdejQwTr/44a9e/dqy5YtWrZsmaTrqfzxxx9XTEyMWrVqZdN30aJFqlWrVrGuLSEhQYZhqEuXLlqxYkWRjRsXF6cJEybo888/z3UuR340atSoSF+vDRs2KCMjQ5s2bdKYMWNUtWpV9e7d26ZPUb2P165dU58+fTRhwgRVr179pnUXZV2SVKNGDZs5MA888IAOHjyod955Rx9//LFDa8vOzpbFYtGCBQusp42mTp2q7t2767333pOnp6dD6vqrjz76SL6+vurSpUuu64uyrj179mjLli2qWbOm4uLiNHToUO3evVs9evQo9HGfffZZjR8/XhERETp16pReeOEFPfXUU4qJicl1m7y4urqqdu3aRfJ6vfTSS0pNTdX9998vwzAUEBCgqlWr6ueff3bqzx9HIOwUsqioKOt3duX2V0JMTIyuXr2q4OBga5thGHJ3d9e7775rc149JCREVatWLba1nThxQk8++aTGjRunjz76SOvXry+ScRcuXKgnn3xSS5YsyXEYtSAeeughxcbGSiqa1+vGufV69eopLS1Nr7zySo6wIxXN+3jhwgVt27ZNO3futI6VnZ0twzDk5uamb775Rm3atCnyuvLStGlTbdy4Mc/1RVVbUFCQ7rrrLpv+tWrVkmEYOn78uKpVq+aQuv667dy5c/XPf/5TJUuWzLNfUdU1adIk+fv7q2rVqrr33ns1duxYDRo0SLt27dK//vWvQh23efPm1vkk9957r7y8vNSiRQtNnDhRQUFBeb42uWnatGmR/K7w9PTU3Llz9f777ystLU1BQUF68MEH5ebmpgoVKjjV509gYKDS0tJs2tLS0m45F89eOI1VyNq2basrV64oKytLERERNuuuXr2q+fPn6+2339auXbusy48//qjg4GDFx8ebpraUlBTt2LFD8fHxeumll4ps3Pj4eA0YMEDx8fG5XlZZEA0bNnTYe5mdnW1zNdhfFcX76O3trd27d9vs46mnnlKNGjW0a9cuNWvWzCF15WXXrl03/YAqqtqaN2+ukydPKiMjw9q2b98+ubi4qGLFig6r64Z169bpwIEDGjhw4E37FVVdly5dksVisRk3KytLknLMWbP3uC4uth+Hrq6uknRb81dq1apVpO9jiRIlVLFiRbm6uiolJUUBAQFycXFxqs+fsLAwJSYm2rQlJCQoLCzMruPkhSM7hczV1VXJycnWf//VypUrdfbsWQ0cONAmQUtSt27dFBMTY3OvhDNnzuQ4v+nr62udoLZr1y5J12fX//bbb9q1a5dKliyp2rVrO7S2uLg4bdiwQfXq1VOzZs3022+/ae3atfLw8Cj0cSMjIzV9+nQ1a9bM2s/T0zPHvnOTkZGhP/74QxcuXJAkHT16VIsWLVLZsmULte7o6GhVqlRJNWvWlHT9Evq33nrLeqXI/yqq97Fu3bo27f7+/rm2F3Vd06ZNU2hoqOrUqaPLly/rww8/1Jo1a/TNN9/kWldR1tanTx+99tprGjBggCZMmKDff/9dL7zwgqKiomxOYRV1XTfExMSoWbNmeb6HRV1Xp06dtGzZMnl7e+vQoUM6deqUQkJCVLlyZYWEhBTquIMGDdKsWbOsp7FGjhyppk2b2hz1yMuVK1esvyuuXLmiU6dOadGiRfLy8irU12vfvn3asmWLmjVrprNnz2rq1Kk6e/asNRg60+fPs88+q5YtW+rtt99Whw4dtHDhQm3bti3HLTUKjQG7i4yMNDp37pzn+s6dOxuRkZFGx44djfbt2+faZ/PmzYYk48cffzRSUlIMSbku8fHx1m1yW1+5cmWH19ayZctc10dGRjp83Jv57rvvHFL3jBkzjDp16hilSpUyvL29jYYNGxrvvfeece3aNes+HfUz9lcvv/yyUb9+fZs2R9Q1efJk45577jE8PDwMPz8/o1WrVsaaNWty7NdRr1lycrIRHh5ueHp6GhUrVjRGjRplXLp0yeF1nTt3zvD09DTmzJmT6z4dVVfTpk2NMmXKGJ6enkZQUJDRt29f4/jx44U+7owZM4zatWvnOe7N5DVGy5YtC7XuPXv2GA0aNDA8PT0Nb29vo3PnzkaXLl2c9vNn8eLFRvXq1Y2SJUsaderUMb788st8vb72YPm/IgEAAEyJOTsAAMDUCDv4Wzp69GiOe0b8dTl69KijSwTgJG72u2LDhg2OLg/5wGks/C1dvXpVhw8fznN9lSpVbnnjPAB/DwcOHMhz3V133ZXrZHM4F8IOAAAwNU5jAQAAUyPsAAAAUyPsAAAAUyPsAICk2NhY+fr6FmibKlWqaNq0aTftY7FYtHz58tuuC8CdI+wAuKX+/fvLYrHY3D7+hmHDhslisah///451iUlJcnV1TXX7yU7fPiwLBZLrsumTZty9E9LS1OJEiW0cOHCXGscOHCg7rvvvoI/uf/z+OOPa9++fbe9PQDnRdgBkC8hISFauHCh/vzzT2vb5cuXFRcXp0qVKuW6TUxMjJ555hmtX79eJ0+ezLXPt99+q1OnTtksjRo1ytEvICBAHTp00Ny5c3Osu3jxohYvXnzLL7TMS1ZWljw9PeXv739b2wNwboQdAPly3333KSQkREuXLrW2LV26VJUqVVLDhg1z9M/IyNCiRYv09NNPq0OHDoqNjc11v+XKlVNgYKDNUqJEiVz7Dhw4UImJiTlu+rhkyRJdvXpVffv21erVq/Xggw/K19dX5cqVU8eOHXXw4EFr3xtHlBYtWqSWLVvKw8NDCxYsyHEa6+DBg+rcubMCAgJUunRpNWnSRN9++22Omi5cuKDevXvLy8tLd911l6Kjo2/2MurYsWPq2bOnfH195efnp86dO9vc82nt2rVq2rSpvLy85Ovrq+bNm+vIkSM33SeAmyPsAMi3qKgozZs3z/p47ty5GjBgQK59Fy9erJo1a6pGjRrq16+f5s6dqzu9rVf79u0VEBCQIzjNmzdPjz32mHx9fXXx4kWNGjVK27ZtU2JiolxcXNS1a1dlZ2fbbDNmzBg9++yzSk5OVkRERI6xMjIy1L59eyUmJmrnzp1q27atOnXqlCNovfnmm6pfv7527txp3WdCQkKu9WdlZSkiIkJlypTRhg0b9P3336t06dJq27atrly5oqtXr6pLly5q2bKlfvrpJyUlJWnw4MGyWCx39LoBf3tF9pWjAIqtG9+Affr0acPd3d04fPiwcfjwYcPDw8P47bffrN+k/FcPPPCAMW3aNMMwDCMrK8soX7688d1331nX3/g2ZU9PT8PLy8tmuZkxY8YYoaGhRnZ2tmEYhnHgwAHDYrEY3377ba79f/vtN0OSsXv3bptxb9R2w7x58wwfH5+bjl2nTh1j5syZ1seVK1c22rZta9Pn8ccfN9q1a2d9LMlYtmyZYRiG8fHHHxs1atSw1m4YhpGZmWl4enoaX3/9tXHmzBlDkrF27dqb1gGgYDiyAyDfKlSoYD0lNW/ePHXo0EHly5fP0W/v3r3asmWLevfuLUlyc3PT448/rpiYmBx9Fy1apF27dtksNxMVFaWUlBR99913kq4f1alSpYratGkjSdq/f7969+6tu+++W97e3qpSpYok5Tgi07hx45uOk5GRoeeff161atWSr6+vSpcureTk5Bz7CQsLy/E4OTk5133++OOPOnDggMqUKWP9biU/Pz9dvnxZBw8elJ+fn/r376+IiAh16tRJ06dP16lTp25aJ4Bb48t/ABRIVFSUhg8fLkl5zk+JiYnR1atXFRwcbG0zDEPu7u5699135ePjY20PCQlR1apV8z1+tWrV1KJFC82bN0+tWrXS/PnzNWjQIOupnk6dOqly5cr64IMPFBwcrOzsbNWtW1dXrlyx2Y+Xl9dNx3n++eeVkJCgt956S1WrVpWnp6e6d++eYz8FkZGRoUaNGmnBggU51lWoUEHS9fA2YsQIrV69WosWLdK4ceOUkJCg+++//7bHBf7uCDsACuTG/BKLxZLrXJerV69q/vz5evvtt/XII4/YrOvSpYvi4+NzvYS9IAYOHKinn35ajz76qE6cOGG97P3MmTPau3evPvjgA7Vo0UKStHHjxtsa4/vvv1f//v3VtWtXSdeDSm5fHvu/l8lv2rRJtWrVynWf9913nxYtWiR/f395e3vnOXbDhg3VsGFDjR07VmFhYYqLiyPsAHeA01gACsTV1VXJycnas2ePXF1dc6xfuXKlzp49q4EDB6pu3bo2S7du3XKcyjpz5oxSU1NtlsuXL9+0hh49eqhEiRIaMmSIHnnkEYWEhEiSypYtq3LlymnOnDk6cOCA1qxZo1GjRt3W86xWrZqWLl2qXbt26ccff1SfPn1yTHKWroeiKVOmaN++fYqOjtaSJUv07LPP5rrPvn37qnz58urcubM2bNiglJQUrV27ViNGjNDx48eVkpKisWPHKikpSUeOHNE333yj/fv35xmeAOQPYQdAgXl7e+d5ZCImJkbh4eE2p6pu6Natm7Zt26affvrJ2hYeHq6goCCb5VZ3HC5VqpR69eqls2fPKioqytru4uKihQsXavv27apbt66ee+45vfnmm7f1HKdOnaqyZcvqgQceUKdOnRQREZHrTQv/9a9/adu2bWrYsKEmTpyoqVOn5nrE60bd69evV6VKlfTYY4+pVq1aGjhwoC5fvixvb2+VKlVKv/76q7p166bq1atr8ODBGjZsmIYMGXJbzwHAdRbDuMNrQQEAAJwYR3YAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICp/T+WRF7HOqAsCAAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], +======= + "outputId": "69165581-da05-4554-a464-a606eb87a734" + }, + "outputs": [], +>>>>>>> upstream/main + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of MAE values from mae1 to mae10\n", + "mae_values = [mae1, mae2, mae2_1, mae3, mae4, mae5, mae6, mae7, mae8, mae8_1, mae9, mae10]\n", + "\n", + "# List of corresponding labels for each MAE value\n", + "labels = ['MAE1', 'MAE2', 'MAE2_1', 'MAE3', 'MAE4', 'MAE5', 'MAE6', 'MAE7', 'MAE8', 'MAE8_1', 'MAE9', 'MAE10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, mae_values, color='orange')\n", + "plt.xlabel('MAE Variables')\n", + "plt.ylabel('MAE Values')\n", + "plt.title('Bar Graph of MAE')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 100, +======= + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "_c4Pe76fDNM-", + "outputId": "0e3d2f74-9042-4e2d-92c6-5ce61e967bd4" + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of MAPE values from mape1 to mape10\n", + "mape_values = [mape1, mape2, mape3, mape4, mape5, mape6, mape7, mape8, mape9, mape10]\n", + "\n", + "# List of corresponding labels for each MAPE value\n", + "labels = ['MAPE1', 'MAPE2', 'MAPE3', 'MAPE4', 'MAPE5', 'MAPE6', 'MAPE7', 'MAPE8', 'MAPE9', 'MAPE10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, mape_values, color='purple')\n", + "plt.xlabel('MAPE Variables')\n", + "plt.ylabel('MAPE Values')\n", + "plt.title('Bar Graph of MAPE')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, +<<<<<<< HEAD + "id": "_c4Pe76fDNM-", + "outputId": "c1784b34-6746-42fd-9f66-b7c1cfd50a21" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA930lEQVR4nO3deVwV9f7H8fcB9QAKuCDigopLmrtiFtxSLBMRt25XDTM3sjK9pXazbNGWX6GVqaVplso1U9zSyjXSXErKXFMzywpxAbVUEE1AmN8fPjzXIwflKHgO0+v5eMzj4XznOzOfMwfl7cx3ZiyGYRgCAAAwCQ9XFwAAAFCUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcASryXXnpJFotFf/zxR7Hva/Xq1WrRooW8vLxksVh0+vTpYt8nAOcQbgA3Fh8fL4vFYjcFBgaqffv2WrVq1U2v5/PPP1fXrl1VpUoVlSlTRhUrVlTbtm01YcIEZWRk3PR6brY///xTvXr1kre3t6ZOnaqPPvpIZcuWddj38u/u66+/zrfcMAwFBwfLYrGoS5cuDrdx+vRpW4jat2+fwz4DBgyw+/nw8/NT8+bNNWHCBGVlZdn6XQqABU1paWnXcUQA91TK1QUAuLZXXnlFISEhMgxDx44dU3x8vDp37qzPP/+8wF+MRSkvL0+xsbGKj49X06ZN9fjjjys4OFhnzpxRUlKSXnjhBa1cuVJr164t9lpc6fvvv9eZM2f06quvqkOHDoVax8vLS/PmzdOdd95p175hwwYdPnxYVqu1wHUXLVoki8WioKAgffzxx/q///s/h/2sVqs+/PBDSRcD0ZIlS/Sf//xH33//vRISEuz6Tps2TeXKlcu3jfLlyxfq8wAlAeEGKAGioqLUunVr23xsbKyqVKmi+fPnF0m4ycvLU3Z2try8vBwuf+ONNxQfH68RI0ZowoQJslgstmVPPvmkUlNTNWfOnBvaR0lw/PhxSc4Fgc6dO2vRokV65513VKrU//7JnTdvnkJDQ696KW3u3Lnq3LmzatWqpXnz5hUYbkqVKqW+ffva5h9//HHdfvvtWrBggd5++21Vq1bNtuxf//qXAgICCl0/UBJxWQoogcqXLy9vb2+7X5aS9NZbbyk8PFyVKlWSt7e3QkNDtXjx4nzrWywWDRs2TB9//LEaN24sq9Wq1atXO9zXuXPnNH78eDVu3FhvvvmmXbC5pGrVqnrmmWcKvY/rqbNBgwby8vJSaGioNm7c6LDW06dPa8CAASpfvrz8/f01cOBAnTt3zvFBvMKiRYsUGhoqb29vBQQEqG/fvjpy5IhteUREhPr37y9Juu2222SxWDRgwIBrbjcmJkZ//vmnEhMTbW3Z2dlavHix+vTpU+B6KSkp2rRpkx544AE98MAD+v3337V58+ZCfRYPDw9FRERIkpKTkwu1DmAmnLkBSoD09HT98ccfMgxDx48f17vvvqvMzEy7/61L0uTJk9WtWzc9+OCDys7OVkJCgnr27Knly5crOjraru+6deu0cOFCDRs2TAEBAapdu7bDfX/99dc6ffq0/vOf/8jT09OpugvahzN1btiwQQsWLNATTzwhq9Wq9957T506ddKWLVvUpEkTu769evVSSEiI4uLitH37dn344YcKDAzU+PHjr1pnfHy8Bg4cqNtuu01xcXE6duyYJk+erG+++UY7duxQ+fLl9fzzz6tBgwaaMWOG7TJh3bp1r3kMateurbCwMM2fP19RUVGSpFWrVik9PV0PPPCA3nnnHYfrzZ8/X2XLllWXLl3k7e2tunXr6uOPP1Z4ePg19ylJv/76qySpUqVKdu0nT57M17dUqVJcloK5GADc1uzZsw1J+Sar1WrEx8fn63/u3Dm7+ezsbKNJkybG3XffbdcuyfDw8DD27t17zRomT55sSDKWLVtm137hwgXjxIkTdlNeXl6h9uFMnZKMrVu32toOHjxoeHl5Gffdd5+tbezYsYYkY9CgQXbr33fffUalSpWu+vmys7ONwMBAo0mTJsZff/1la1++fLkhyRgzZoyt7dL38f333191m1f2nTJliuHr62v73D179jTat29vGIZh1KpVy4iOjs63ftOmTY0HH3zQNv/cc88ZAQEBRk5Ojl2//v37G2XLlrV9BwcOHDBef/11w2KxGM2aNbP1u3SMHE0NGjS45ucBShIuSwElwNSpU5WYmKjExETNnTtX7du318MPP6xPPvnErp+3t7ftz6dOnVJ6erruuusubd++Pd8227Vrp0aNGl1z35fugrpyEOru3btVuXJlu+nPP/8s1D6cqTMsLEyhoaG2+Zo1a6p79+5as2aNcnNz7fo+9thjdvN33XWX/vzzz6veybV161YdP35cjz/+uN14oOjoaDVs2FArVqwocN3C6tWrl/766y8tX75cZ86c0fLly696SeqHH37Q7t27FRMTY2uLiYnRH3/8oTVr1uTrf/bsWdt3UK9ePT333HMKCwvT0qVL8/VdsmSJ7Wfp0jR79uwb/oyAO+GyFFACtGnTxm5AcUxMjFq2bKlhw4apS5cuKlOmjCRp+fLl+r//+z/t3LnT7jZgR+NkQkJCCrVvX19fSVJmZqZde7169WzjSObMmaOPPvqo0Ptwps769evna7vlllt07tw5nThxQkFBQbb2mjVr2vWrUKGCpIsBys/Pz2EtBw8elCQ1aNAg37KGDRs6vI3bWZUrV1aHDh00b948nTt3Trm5ufrXv/5VYP+5c+eqbNmyqlOnjg4cOCDp4l1XtWvX1scff5zv0p2Xl5c+//xzSRfvnAoJCVGNGjUcbrtt27YMKIbpEW6AEsjDw0Pt27fX5MmT9csvv6hx48batGmTunXrprZt2+q9995T1apVVbp0ac2ePVvz5s3Lt43Lz55cTcOGDSVJe/bsUffu3W3t5cqVs90OXVAAcLQPZ+t0RkFjggzDuKHtFoU+ffpo8ODBSktLU1RUVIFjXAzD0Pz583X27FmHZ72OHz+uzMxMuzNpnp6ehb41Hfg7INwAJdSFCxck/e+MypIlS+Tl5aU1a9bYPTvlRi853HXXXfL391dCQoJGjx4tD48bu5rtbJ2//PJLvraff/5ZPj4+qly58g3VIkm1atWSJO3fv19333233bL9+/fblt+o++67T48++qi+/fZbLViwoMB+l55/88orr+jWW2+1W3bq1Ck98sgjWrZsWb7B5AD+hzE3QAmUk5OjL774QmXKlLH9AvT09JTFYrEbh5KcnKxly5bd0L58fHw0atQo7dmzR88++6zDsyDOnBlxts6kpCS7sTiHDh3Sp59+qo4dOzp995YjrVu3VmBgoKZPn253iWzVqlXat29fvktA16tcuXKaNm2aXnrpJXXt2rXAfpcuST399NP617/+ZTcNHjxY9evX18cff1wkNQFmxZkboARYtWqVfvrpJ0kXL0vMmzdPv/zyi5599lnbWJLo6Gi9/fbb6tSpk/r06aPjx49r6tSpqlevnn744Ycb2v+zzz6rffv26c0339QXX3yh+++/XzVq1NCpU6e0fft2LVq0SIGBgYV6QJ+zdTZp0kSRkZF2t4JL0ssvv3xDn+mS0qVLa/z48Ro4cKDatWunmJgY263gtWvX1ogRI4pkP5Jsz8kpSFZWlpYsWaJ77723wGPZrVs3TZ48WcePH1dgYKDTNSxevNjhE4rvvfdeValSxentAe6IcAOUAGPGjLH92cvLSw0bNtS0adP06KOP2trvvvtuzZw5U+PGjdPw4cMVEhKi8ePHKzk5+YbDjYeHhz766CPdf//9+uCDD/Tuu+/q1KlTKleunJo0aaLXXntNgwcPdvhL80rO1tmuXTuFhYXp5ZdfVkpKiho1aqT4+Hg1a9bshj7T5QYMGCAfHx+NGzdOzzzzjMqWLav77rtP48ePv6nPf1mxYoVOnz591TM7Xbt21YQJE5SQkKAnnnjC6X0MGTLEYftXX31FuIFpWAx3GGkHAA5YLBYNHTpUU6ZMcXUpAEoQxtwAAABTIdwAAABTIdwAAABTYUAxALfFkEAA14MzNwAAwFQINwAAwFT+dpel8vLydPToUfn6+jp8SR8AAHA/hmHozJkzqlat2jVfA/O3CzdHjx5VcHCwq8sAAADX4dChQwW+9f6Sv1248fX1lXTx4Fx6bD0AAHBvGRkZCg4Otv0ev5q/Xbi5dCnKz8+PcAMAQAlTmCElDCgGAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmUsrVBcA1aj+7wtUlKHlctKtLAACYEGduAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqbg03MTFxem2226Tr6+vAgMD1aNHD+3fv/+q68THx8tisdhNXl5eN6liAADg7lwabjZs2KChQ4fq22+/VWJionJyctSxY0edPXv2quv5+fkpNTXVNh08ePAmVQwAANxdKVfufPXq1Xbz8fHxCgwM1LZt29S2bdsC17NYLAoKCiru8gAAQAnkVmNu0tPTJUkVK1a8ar/MzEzVqlVLwcHB6t69u/bu3Vtg36ysLGVkZNhNAADAvNwm3OTl5Wn48OH6xz/+oSZNmhTYr0GDBpo1a5Y+/fRTzZ07V3l5eQoPD9fhw4cd9o+Li5O/v79tCg4OLq6PAAAA3IDFMAzD1UVI0pAhQ7Rq1Sp9/fXXqlGjRqHXy8nJ0a233qqYmBi9+uqr+ZZnZWUpKyvLNp+RkaHg4GClp6fLz8+vSGoviWo/u8LVJSh5XLSrSwAAlBAZGRny9/cv1O9vl465uWTYsGFavny5Nm7c6FSwkaTSpUurZcuWOnDggMPlVqtVVqu1KMoEAAAlgEsvSxmGoWHDhmnp0qVat26dQkJCnN5Gbm6udu/erapVqxZDhQAAoKRx6ZmboUOHat68efr000/l6+urtLQ0SZK/v7+8vb0lSf369VP16tUVFxcnSXrllVd0xx13qF69ejp9+rTefPNNHTx4UA8//LDLPgcAAHAfLg0306ZNkyRFRETYtc+ePVsDBgyQJKWkpMjD438nmE6dOqXBgwcrLS1NFSpUUGhoqDZv3qxGjRrdrLIBAIAbc5sBxTeLMwOSzIwBxQCAksSZ399ucys4AABAUSDcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAU3FpuImLi9Ntt90mX19fBQYGqkePHtq/f/8111u0aJEaNmwoLy8vNW3aVCtXrrwJ1QIAgJLApeFmw4YNGjp0qL799lslJiYqJydHHTt21NmzZwtcZ/PmzYqJiVFsbKx27NihHj16qEePHtqzZ89NrBwAALgri2EYhquLuOTEiRMKDAzUhg0b1LZtW4d9evfurbNnz2r58uW2tjvuuEMtWrTQ9OnTr7mPjIwM+fv7Kz09XX5+fkVWe0lT+9kVri5ByeOiXV0CAKCEcOb3t1uNuUlPT5ckVaxYscA+SUlJ6tChg11bZGSkkpKSHPbPyspSRkaG3QQAAMzLbcJNXl6ehg8frn/84x9q0qRJgf3S0tJUpUoVu7YqVaooLS3NYf+4uDj5+/vbpuDg4CKtGwAAuBe3CTdDhw7Vnj17lJCQUKTbHT16tNLT023ToUOHinT7AADAvZRydQGSNGzYMC1fvlwbN25UjRo1rto3KChIx44ds2s7duyYgoKCHPa3Wq2yWq1FVisAAHBvLj1zYxiGhg0bpqVLl2rdunUKCQm55jphYWFau3atXVtiYqLCwsKKq0wAAFCCuPTMzdChQzVv3jx9+umn8vX1tY2b8ff3l7e3tySpX79+ql69uuLi4iRJTz75pNq1a6cJEyYoOjpaCQkJ2rp1q2bMmOGyz4Hi4Q53dEnc1QUAJY1Lz9xMmzZN6enpioiIUNWqVW3TggULbH1SUlKUmppqmw8PD9e8efM0Y8YMNW/eXIsXL9ayZcuuOggZAAD8fbj0zE1hHrGzfv36fG09e/ZUz549i6EiAABQ0rnN3VIAAABFgXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMpZSrCwAA/L3VfnaFq0tQ8rhoV5eAIsSZGwAAYCqEGwAAYCpOh5tDhw7p8OHDtvktW7Zo+PDhmjFjRpEWBgAAcD2cDjd9+vTRV199JUlKS0vTvffeqy1btuj555/XK6+8UuQFAgAAOMPpcLNnzx61adNGkrRw4UI1adJEmzdv1scff6z4+Piirg8AAMApToebnJwcWa1WSdKXX36pbt26SZIaNmyo1NTUoq0OAADASU6Hm8aNG2v69OnatGmTEhMT1alTJ0nS0aNHValSpSIvEAAAwBlOh5vx48fr/fffV0REhGJiYtS8eXNJ0meffWa7XAUAAOAqTj/ELyIiQn/88YcyMjJUoUIFW/sjjzwiHx+fIi0OAADAWdf1nBvDMLRt2za9//77OnPmjCSpTJkyhBsAAOByTp+5OXjwoDp16qSUlBRlZWXp3nvvla+vr8aPH6+srCxNnz69OOoEAAAoFKfP3Dz55JNq3bq1Tp06JW9vb1v7fffdp7Vr1xZpcQAAAM5y+szNpk2btHnzZpUpU8auvXbt2jpy5EiRFQYAAHA9nD5zk5eXp9zc3Hzthw8flq+vb5EUBQAAcL2cDjcdO3bUpEmTbPMWi0WZmZkaO3asOnfuXJS1AQAAOM3py1ITJkxQZGSkGjVqpPPnz6tPnz765ZdfFBAQoPnz5xdHjQAAAIXmdLipUaOGdu3apYSEBP3www/KzMxUbGysHnzwQbsBxgAAAK7gdLiRpFKlSqlv375FXQsAAMANczrczJkz56rL+/Xrd93FAAAA3Cinw82TTz5pN5+Tk6Nz587ZnlBMuAEAAK7k9N1Sp06dspsyMzO1f/9+3XnnnQwoBgAALndd75a6Uv369TVu3Lh8Z3UAAAButiIJN9LFQcZHjx4tqs0BAABcF6fH3Hz22Wd284ZhKDU1VVOmTNE//vGPIisMAADgejgdbnr06GE3b7FYVLlyZd19992aMGFCUdUFAABwXZwON3l5ecVRBwAAQJEosjE3AAAA7qBQZ25GjhxZ6A2+/fbb110MAADAjSpUuNmxY0ehNmaxWJza+caNG/Xmm29q27ZtSk1N1dKlS/ON6bnc+vXr1b59+3ztqampCgoKcmrfAADAnAoVbr766qti2fnZs2fVvHlzDRo0SP/85z8Lvd7+/fvl5+dnmw8MDCyO8gAAQAl0XS/OLCpRUVGKiopyer3AwECVL1++6AsCAAAl3nWFm61bt2rhwoVKSUlRdna23bJPPvmkSAq7mhYtWigrK0tNmjTRSy+9dNXn62RlZSkrK8s2n5GRUez1AQAA13H6bqmEhASFh4dr3759Wrp0qXJycrR3716tW7dO/v7+xVGjTdWqVTV9+nQtWbJES5YsUXBwsCIiIrR9+/YC14mLi5O/v79tCg4OLtYaAQCAazl95ub111/XxIkTNXToUPn6+mry5MkKCQnRo48+qqpVqxZHjTYNGjRQgwYNbPPh4eH69ddfNXHiRH300UcO1xk9erTd3V4ZGRkEHAAATMzpMze//vqroqOjJUllypTR2bNnZbFYNGLECM2YMaPIC7yWNm3a6MCBAwUut1qt8vPzs5sAAIB5OR1uKlSooDNnzkiSqlevrj179kiSTp8+rXPnzhVtdYWwc+fOYj9jBAAASg6nL0u1bdtWiYmJatq0qXr27Kknn3xS69atU2Jiou655x6ntpWZmWl31uX333/Xzp07VbFiRdWsWVOjR4/WkSNHNGfOHEnSpEmTFBISosaNG+v8+fP68MMPtW7dOn3xxRfOfgwAAGBShQ43e/bsUZMmTTRlyhSdP39ekvT888+rdOnS2rx5s+6//3698MILTu1869atdg/luzQ2pn///oqPj1dqaqpSUlJsy7Ozs/XUU0/pyJEj8vHxUbNmzfTll186fLAfAAD4eyp0uGnWrJluu+02Pfzww3rggQckSR4eHnr22Weve+cREREyDKPA5fHx8Xbzo0aN0qhRo657fwAAwPwKPeZmw4YNaty4sZ566ilVrVpV/fv316ZNm4qzNgAAAKcVOtzcddddmjVrllJTU/Xuu+8qOTlZ7dq10y233KLx48crLS2tOOsEAAAoFKfvlipbtqwGDhyoDRs26Oeff1bPnj01depU1axZU926dSuOGgEAAArN6XBzuXr16um5557TCy+8IF9fX61YsaKo6gIAALgu1/3izI0bN2rWrFlasmSJPDw81KtXL8XGxhZlbQAAAE5zKtwcPXpU8fHxio+P14EDBxQeHq533nlHvXr1UtmyZYurRgAAgEIrdLiJiorSl19+qYCAAPXr10+DBg2ye88TAACAOyh0uCldurQWL16sLl26yNPTszhrAgAAuG6FDjefffZZcdYBAABQJG7obikAAAB3Q7gBAACmQrgBAACmQrgBAACmUuhw8/jjjyszM9M2P3/+fJ09e9Y2f/r0aXXu3LloqwMAAHBSocPN+++/r3PnztnmH330UR07dsw2n5WVpTVr1hRtdQAAAE4qdLgxDOOq8wAAAO6AMTcAAMBUCDcAAMBUnHpx5pgxY+Tj4yNJys7O1muvvSZ/f39JshuPAwAA4CqFDjdt27bV/v37bfPh4eH67bff8vUBAABwpUKHm/Xr1xdjGQAAAEXDqctSGRkZ+u6775Sdna02bdqocuXKxVUXAADAdSl0uNm5c6c6d+6stLQ0SZKvr68WLlyoyMjIYisOAADAWYW+W+qZZ55RSEiIvvnmG23btk333HOPhg0bVpy1AQAAOK3QZ262bdumL774Qq1atZIkzZo1SxUrVlRGRob8/PyKrUAAAABnFPrMzcmTJ1WjRg3bfPny5VW2bFn9+eefxVIYAADA9XBqQPGPP/5oG3MjXXwFw759+3TmzBlbW7NmzYquOgAAACc5FW7uueeefO+U6tKliywWiwzDkMViUW5ubpEWCAAA4IxCh5vff/+9OOsAAAAoEoUON7Vq1bpmnz179txQMQAAADfqhl+ceebMGc2YMUNt2rRR8+bNi6ImAACA63bd4Wbjxo3q37+/qlatqrfeekt33323vv3226KsDQAAwGlODShOS0tTfHy8Zs6cqYyMDPXq1UtZWVlatmyZGjVqVFw1AgAAFFqhz9x07dpVDRo00A8//KBJkybp6NGjevfdd4uzNgAAAKcV+szNqlWr9MQTT2jIkCGqX79+cdYEAABw3Qp95ubrr7/WmTNnFBoaqttvv11TpkzRH3/8UZy1AQAAOK3Q4eaOO+7QBx98oNTUVD366KNKSEhQtWrVlJeXp8TERLunFAMAALiK03dLlS1bVoMGDdLXX3+t3bt366mnntK4ceMUGBiobt26FUeNAAAAhXZDz7lp0KCB3njjDR0+fFjz588vqpoAAACu2w0/xE+SPD091aNHD3322WdFsTkAAIDrVui7pQYNGnTNPhaLRTNnzryhggAAAG5EocNNfHy8atWqpZYtW+Z7MzgAAIC7KHS4GTJkiObPn6/ff/9dAwcOVN++fVWxYsXirA0AAMBphR5zM3XqVKWmpmrUqFH6/PPPFRwcrF69emnNmjWcyQEAAG7DqQHFVqtVMTExSkxM1I8//qjGjRvr8ccfV+3atZWZmVlcNQIAABTadd8t5eHhIYvFIsMwlJubW5Q1AQAAXDenwk1WVpbmz5+ve++9V7fccot2796tKVOmKCUlReXKlSuuGgEAAAqt0AOKH3/8cSUkJCg4OFiDBg3S/PnzFRAQUJy1AQAAOK3Q4Wb69OmqWbOm6tSpow0bNmjDhg0O+33yySdFVhwAAICzCh1u+vXrJ4vFUpy1AAAA3DCnHuIHAADg7ork3VIAAADugnADAABMhXADAABMhXADAABMxaXhZuPGjeratauqVasmi8WiZcuWXXOd9evXq1WrVrJarapXrx4DnQEAgB2XhpuzZ8+qefPmmjp1aqH6//7774qOjlb79u21c+dODR8+XA8//LDWrFlTzJUCAICSotC3gheHqKgoRUVFFbr/9OnTFRISogkTJkiSbr31Vn399deaOHGiIiMji6tMAABQgpSoMTdJSUnq0KGDXVtkZKSSkpIKXCcrK0sZGRl2EwAAMK8SFW7S0tJUpUoVu7YqVaooIyNDf/31l8N14uLi5O/vb5uCg4NvRqkAAMBFSlS4uR6jR49Wenq6bTp06JCrSwIAAMXIpWNunBUUFKRjx47ZtR07dkx+fn7y9vZ2uI7VapXVar0Z5QEAADdQos7chIWFae3atXZtiYmJCgsLc1FFAADA3bg03GRmZmrnzp3auXOnpIu3eu/cuVMpKSmSLl5S6tevn63/Y489pt9++02jRo3STz/9pPfee08LFy7UiBEjXFE+AABwQy4NN1u3blXLli3VsmVLSdLIkSPVsmVLjRkzRpKUmppqCzqSFBISohUrVigxMVHNmzfXhAkT9OGHH3IbOAAAsHHpmJuIiAgZhlHgckdPH46IiNCOHTuKsSoAAFCSlagxNwAAANdCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKbiFuFm6tSpql27try8vHT77bdry5YtBfaNj4+XxWKxm7y8vG5itQAAwJ25PNwsWLBAI0eO1NixY7V9+3Y1b95ckZGROn78eIHr+Pn5KTU11TYdPHjwJlYMAADcmcvDzdtvv63Bgwdr4MCBatSokaZPny4fHx/NmjWrwHUsFouCgoJsU5UqVW5ixQAAwJ25NNxkZ2dr27Zt6tChg63Nw8NDHTp0UFJSUoHrZWZmqlatWgoODlb37t21d+/eAvtmZWUpIyPDbgIAAObl0nDzxx9/KDc3N9+ZlypVqigtLc3hOg0aNNCsWbP06aefau7cucrLy1N4eLgOHz7ssH9cXJz8/f1tU3BwcJF/DgAA4D5cflnKWWFhYerXr59atGihdu3a6ZNPPlHlypX1/vvvO+w/evRopaen26ZDhw7d5IoBAMDNVMqVOw8ICJCnp6eOHTtm137s2DEFBQUVahulS5dWy5YtdeDAAYfLrVarrFbrDdcKAABKBpeeuSlTpoxCQ0O1du1aW1teXp7Wrl2rsLCwQm0jNzdXu3fvVtWqVYurTAAAUIK49MyNJI0cOVL9+/dX69at1aZNG02aNElnz57VwIEDJUn9+vVT9erVFRcXJ0l65ZVXdMcdd6hevXo6ffq03nzzTR08eFAPP/ywKz8GAABwEy4PN71799aJEyc0ZswYpaWlqUWLFlq9erVtkHFKSoo8PP53gunUqVMaPHiw0tLSVKFCBYWGhmrz5s1q1KiRqz4CAABwIy4PN5I0bNgwDRs2zOGy9evX281PnDhREydOvAlVAQCAkqjE3S0FAABwNYQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKqVcXQAAlDS1n13h6hIkScnjol1dAuCWOHMDAABMhXADAABMhXADAABMhTE3AACYBOPBLuLMDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBW3CDdTp05V7dq15eXlpdtvv11btmy5av9FixapYcOG8vLyUtOmTbVy5cqbVCkAAHB3Lg83CxYs0MiRIzV27Fht375dzZs3V2RkpI4fP+6w/+bNmxUTE6PY2Fjt2LFDPXr0UI8ePbRnz56bXDkAAHBHLg83b7/9tgYPHqyBAweqUaNGmj59unx8fDRr1iyH/SdPnqxOnTrp6aef1q233qpXX31VrVq10pQpU25y5QAAwB2VcuXOs7OztW3bNo0ePdrW5uHhoQ4dOigpKcnhOklJSRo5cqRdW2RkpJYtW1acpQIlXu1nV7i6BCWPi75mn5JSZ0nAsSxaHM+Sw6Xh5o8//lBubq6qVKli116lShX99NNPDtdJS0tz2D8tLc1h/6ysLGVlZdnm09PTJUkZGRk3UnqBmoxdUyzbdcaelyOv2Scv69xNqOTqrvUduEON0rXr5DsvvML8vSsJdbpDjVLJqNMs37lUMup0hxql4vkde2mbhmFcs69Lw83NEBcXp5dffjlfe3BwsAuquTn8J7m6gsKhzqJTEmqUqLOolYQ6S0KNEnUWteKs88yZM/L3979qH5eGm4CAAHl6eurYsWN27ceOHVNQUJDDdYKCgpzqP3r0aLvLWHl5eTp58qQqVaoki8Vyg5+g6GVkZCg4OFiHDh2Sn5+fq8txqCTUKFFnUSsJdZaEGiXqLGoloc6SUKPk3nUahqEzZ86oWrVq1+zr0nBTpkwZhYaGau3aterRo4eki+Fj7dq1GjZsmMN1wsLCtHbtWg0fPtzWlpiYqLCwMIf9rVarrFarXVv58uWLovxi5efn53Y/WFcqCTVK1FnUSkKdJaFGiTqLWkmosyTUKLlvndc6Y3OJyy9LjRw5Uv3791fr1q3Vpk0bTZo0SWfPntXAgQMlSf369VP16tUVFxcnSXryySfVrl07TZgwQdHR0UpISNDWrVs1Y8YMV34MAADgJlwebnr37q0TJ05ozJgxSktLU4sWLbR69WrboOGUlBR5ePzvjvXw8HDNmzdPL7zwgp577jnVr19fy5YtU5MmTVz1EQAAgBtxebiRpGHDhhV4GWr9+vX52nr27KmePXsWc1WuYbVaNXbs2HyX0txJSahRos6iVhLqLAk1StRZ1EpCnSWhRqnk1HktFqMw91QBAACUEC5/QjEAAEBRItwAAABTIdwAAABTIdwAAABTIdxcpwEDBshiseixxx7Lt2zo0KGyWCwaMGCAXXtSUpI8PT0VHZ3/xWfJycmyWCy2qVKlSurYsaN27Nhh6xMREWHX59J0eQ2vvfaawsPD5ePjo/Lly7tVnZfqSE5OVmxsrEJCQuTt7S1/f39ZLBb169fvph6vK+uoW7euxo4dq+zs7Hz7k/J/5+fPn9eAAQPUtGlTeXh4uOw779atm2rWrCkvLy9VrVpVdevWdZvv3FENWVlZatGixVX7uLLO2rVrF/qzuPp4rlixQrfffrs8PT1lsVgUEhLiNjWuX7++wH8H/vnPf7pNnZL0888/q3v37goICJCfn5+qVKnidt/5pX9/atSoofLly6tSpUp65JFHlJmZ6Va/cxxJSUlRdHS0fHx8FBgYqKeffloXLlxw2LeoEG5uQHBwsBISEvTXX3/Z2s6fP6958+apZs2a+frPnDlT//73v7Vx40YdPXrU4Ta//PJLpaamas2aNcrMzFRUVJROnz5tWz548GClpqbaTW+88YZteXZ2tnr27KkhQ4a4VZ29evVSjRo1lJCQoF27dikvL0/vv/++tm/frtzcXHl4eGj79u039Xj99NNPtjr27t2riRMnavr06Xruuecc7uvKY5mbmytvb28NGTJEnp6e8vb2vinH8srvvH379lq4cKH279+vJUuW6MyZMypTpozLv/Mr67xk1KhRtsenBwUFuWWdr7zyisOfXXeqc8mSJXrooYc0cOBAde/eXUFBQTp+/Ljb1BgeHp5vWf369eXp6al169a5TZ2S1KVLF124cEHr1q3Ttm3bVKFCBVksFs2fP99t6jx37pwsFotOnDihDRs2aPXq1dq7d68eeught/udc7nc3FxFR0crOztbmzdv1n//+1/Fx8drzJgxDvsXGQPXpX///kb37t2NJk2aGHPnzrW1f/zxx0azZs2M7t27G/3797e1nzlzxihXrpzx008/Gb179zZee+01u+39/vvvhiRjx44dtrZvvvnGkGSsXr3aMAzDaNeunfHkk08Wqr7Zs2cb/v7+blPntepo3LixUa5cOZcdr0veeOMNIyQkxOGyq32GChUqGEFBQS79zi+5++67DUlG48aN3e5nc+XKlUbDhg2NvXv3GpKMiIgIl/9sXqlWrVrGxIkTbfPu8nfocjk5OUb16tWNDz/80G1rvFJ2drZhtVqNhg0bulWdJ06cMCQZGzdutLX16dPHkGTUrl3bbeoMCwszypQpY3fsfvjhB0OS0bBhQ5d/x5d+51xp5cqVhoeHh5GWlmZrmzZtmuHn52dkZWUVatvXgzM3N2jQoEGaPXu2bX7WrFm2V0dcbuHChWrYsKEaNGigvn37atasWdd8bfulMwEFXSYpiXUWVEdOTo7dQ6NcdbzS09NVsWJFpz9DvXr18vVzxWc4efKkfvvtN1WsWFGxsbFu8Z1fcuzYMQ0ePFgfffSRfHx8bO3u8rN5uXHjxqlSpUpq2bKl9uzZI8Mw3KrO7du368iRI/Lw8FDLli21YMECJSUlKSoqym1qvNJnn32mrKws1axZ062OZaVKldSgQQPNmTNHZ8+e1YULF7R//36VKVNGDz/8sNvUeekM9+XH7tI2WrZs6ZKaCiMpKUlNmza1vXVAkiIjI5WRkaG9e/cW2X7yKbbYZHKX/qd0/Phxw2q1GsnJyUZycrLh5eVlnDhxIl+KDg8PNyZNmmQYxsX/dQUEBBhfffWVbfmVKfrUqVPGfffdZ5QrV86WeNu1a2eULl3aKFu2rN10+f8sLrnyzI2r6yxVqpQRGhrqsI7vvvvOKFWqlBEWFuay42UYhvHLL78Yfn5+xowZMxwuv9qx7N27d74zNzfzM4waNcrw8fExJBkBAQFGVFSUy7/zy+vMy8szOnXqZLz66qt224yIiHCrOg3DMCZMmGB89dVXxq5du4xp06YZpUuXNurWretWdc6fP9+QZNSsWdNYvHix0aVLF6N69epGhQoV3KbGK0VFRRnVq1d3i3+Prqzz0KFDRmhoqGGxWAxPT0/D29vb7X42u3fvblgsFmPMmDGG1Wo1du3aZXTq1MmQZDz//PMu/44LOnMzePBgo2PHjnZtZ8+eNSQZK1euzNe/qLjF6xdKssqVKys6Olrx8fEyDEPR0dEKCAiw67N//35t2bJFS5culSSVKlVKvXv31syZMxUREWHXNzw8XB4eHjp79qzq1KmjBQsW2CXeBx98UM8//7zdOpcvd9c6R40apezs7Hx13H333erTp4+qVaumW265xWXH68iRI+rUqZN69uypwYMHO30svby8btqxdPQZnn76acXGxurgwYPq27evtm/froCAALf52Xz33Xd15swZjR49ulDH05V/h0aOHGn7c7NmzfTRRx8pKSlJfn5+blNnXl6eJOn555/X/fffr88//1ytWrVSUlKSGjVq5BY1Xu7w4cNas2aN2rZtK8m9vnPDMDR06FAFBgZq06ZN8vb2Vp8+ffTtt9/qwoULblNn+fLl1apVK73//vvKyspSq1at1KZNG1mtVvn6+rqkJndGuCkCgwYNsr0ba+rUqfmWz5w5UxcuXLANopQu/oWyWq2aMmWK3SvcFyxYoEaNGqlSpUoOR577+/s7vATi7nX6+fnZBqldqiM3N1e5ubm65557lJ6eflPqcOTo0aNq3769wsPDC/12+SuP5cKFC+2W3+zPEBAQoICAAN1yyy1q27atFi9erG+//dZtfjbXrVunpKSkfO+rWb9+vfr37+82dTpSuXJlGYah5ORkt6mzatWqkqRGjRrZ2jw8PFSnTh3Vrl1b8fHxLq/xcrNnz1alSpUUHBysjIwMSe7z7+a6deu0fPlynTp1Sn5+fpKkO+64Q4cPH9Z///tft6lTkmrUqKGtW7dq7ty5euGFF3T06FFlZ2erTp06SkpKcklN1xIUFKQtW7bYtR07dsy2rLgw5qYIdOrUSdnZ2crJyVFkZKTdsgsXLmjOnDmaMGGCdu7caZt27dqlatWqaf78+Xb9g4ODVbdu3QJvqTNDnZ06ddJff/2l1NRU3XnnnZo9e7YsFstNr0O6eMYmIiJCoaGhmj17tt0b6K/1GdzhWF5NVlaW29T5zjvvaNeuXbZ9rFy5UpJ022236bXXXnObOh05efKkJCkwMNBt6gwNDZXVatX+/fttbXl5eUpOTlb79u3dosZLDMPQ7Nmz1a9fP7u/X+5yLM+dOydJDv/u5+XluU2dl4uJiVFOTo4yMjLk5eWle++91+U1FSQsLEy7d+/W8ePHbW2JiYny8/OzC+dFjTM3RcDT01P79u2z/flyl/5HEBsba5eWJen+++/XzJkzHT5LoSDnzp1TWlqaXZvValWFChUkXXyewMmTJ5WSkqLc3FydPHlSZ86cUWZmpsqVK+eyOv/66y/l5ORIktLS0lS2bFk1bNhQb7/9tk6cOKHz58/rr7/+uqnH61KwqVWrlt566y2dOHHC1uda/6O49J3/9NNP2r17t06ePKmcnBydPHlS77777k37DN99952+//573XnnnapQoYJ+/fVXbdiwQT4+PgoLC3Obn80rb1MtV66cJKls2bKqUaOGJLlFnUlJSfruu+/Uvn17+fr6KikpSVu2bFFwcLDt75g71Onn56fHHntMY8eOVXBwsNLT07Vr1y5JUu/evdWnTx+X13jJunXr9Pvvv+vhhx/WuHHjbO3u8rMZFhamChUqqH///hozZoy8vb21detWnTt3TtHR0W5TpyT99ttv2r59u8qVK6cRI0boxRdf1Pjx4+2Ciat/5+zcuVOSVK9ePZUrV04dO3ZUo0aN9NBDD+mNN95QWlqaXnjhBQ0dOrR43zxebKN5TO7S4NKCXBrc1aVLF6Nz584O+3z33XeGJGPXrl0Ob8u7Urt27QxJ+abIyEi7uhz1uXwgmavqDAwMNAzj4sAzR8sl3dTjdbU6HHH0ndeqVcvh+jfrM/zwww9G+/btjYoVKxpWq9WoXbu2ccstt9j9TFzJVT+bl7t8QLE71blt2zbj9ttvN/z9/Q0vLy/j1ltvNVq1amV07drVreo0jIu3Vj/11FNGYGCgUapUKaNy5crGnj173KpGwzCMmJgYIzw83DAM9/138/vvvzc6duxoVKxY0fD19TUCAgKMO+64w63q7N+/v1GjRg2jYsWKRpkyZYxmzZoZc+bMcfmxK8zvnOTkZCMqKsrw9vY2AgICjKeeesrIyckpcL9FwWIY17g3DAAAoARhzA0AADAVwg1QgKioKJUrV87h9Prrr7u6PABAAbgsBRTgyJEjdu+VuVzFihWv+SRjAIBrEG4AAICpcFkKAACYCuEGAACYCuEGAACYCuEGACRZLBYtW7as0P1feukltWjR4qp9BgwYoB49etxQXQCcR7gB/uYGDBggi8Xi8JHsQ4cOlcVi0YABA/ItS0pKkqenp6Kjo/MtS05OlsVisU2VKlVSx44dtWPHDlufiIgIuz6XpoIeDd+1a1d16tTJ4bJNmzbJYrHohx9+KOSnzi81NVVRUVHXvT4A90G4AaDg4GAlJCTY3fp+/vx5zZs3L997oS6ZOXOm/v3vf2vjxo06evSowz5ffvmlUlNTtWbNGmVmZioqKsr2dnhJGjx4sFJTU+2mN954w+G2YmNjlZiYqMOHD+dbNnv2bLVu3VrNmjVz4lNflJ2dLeni+8SK9V03AG4awg0AtWrVSsHBwfrkk09sbZ988olq1qypli1b5uufmZmpBQsWaMiQIYqOjlZ8fLzD7VaqVElBQUFq3bq13nrrLR07dkzfffedbbmPj4+CgoLsJj8/P4fb6tKliypXrpxvX5mZmVq0aJFiY2P1559/KiYmRtWrV5ePj4+aNm2a7y3IERERGjZsmIYPH66AgADbm56vvCz1zDPP6JZbbpGPj4/q1KmjF1980fby18u9//77Cg4Olo+Pj3r16qX09HSH9UsX3zIdFxenkJAQeXt7q3nz5lq8eLFt+alTp/Tggw+qcuXK8vb2Vv369TV79uwCtwfAMcINAEnSoEGD7H6Rzpo1SwMHDnTYd+HChWrYsKEaNGigvn37atasWbrWI7O8vb0l/e9MibNKlSqlfv36KT4+3m5fixYtUm5urmJiYnT+/HmFhoZqxYoV2rNnjx555BE99NBD2rJli922/vvf/6pMmTL65ptvNH36dIf78/X1VXx8vH788UdNnjxZH3zwgSZOnGjX58CBA1q4cKE+//xzrV69Wjt27NDjjz9e4GeIi4vTnDlzNH36dO3du1cjRoxQ3759tWHDBknSiy++qB9//FGrVq3Svn37NG3aNAUEBFzX8QL+1or1tZwA3N6lNzUfP37csFqtRnJyspGcnGx4eXkZJ06csL1t+HLh4eHGpEmTDMMwjJycHCMgIMDuLcBXvnH41KlTxn333WeUK1fOSEtLMwzj4huHS5cubZQtW9Zumjt3boG17tu3L98bh++66y6jb9++Ba4THR1tPPXUU7b5du3aGS1btszXT5KxdOnSArfz5ptvGqGhobb5sWPHGp6ensbhw4dtbatWrTI8PDyM1NRUwzDs34J9/vx5w8fHx9i8ebPddmNjY42YmBjDMAyja9euxsCBAwusAUDhlHJxtgLgJipXrmy7xGQYhqKjox2eNdi/f7+2bNmipUuXSrp4RqV3796aOXOmIiIi7PqGh4fLw8NDZ8+eVZ06dbRgwQJVqVLFtvzBBx/U888/b7fO5cuv1LBhQ4WHh2vWrFmKiIjQgQMHtGnTJr3yyiuSpNzcXL3++utauHChjhw5ouzsbGVlZcnHx8duO6Ghodc8HgsWLNA777yjX3/9VZmZmbpw4UK+S2Y1a9ZU9erVbfNhYWHKy8vT/v37FRQUZNf3wIEDOnfunO6991679uzsbNulvyFDhuj+++/X9u3b1bFjR/Xo0UPh4eHXrBWAPcINAJtBgwZp2LBhkqSpU6c67DNz5kxduHBB1apVs7UZhiGr1aopU6bI39/f1r5gwQI1atRIlSpVUvny5fNty9/fX/Xq1XOqxtjYWP373//W1KlTNXv2bNWtW1ft2rWTJL355puaPHmyJk2apKZNm6ps2bIaPnx4vkthZcuWveo+kpKS9OCDD+rll19WZGSk/P39lZCQoAkTJjhV6+UyMzMlSStWrLALRJJsA5mjoqJ08OBBrVy5UomJibrnnns0dOhQvfXWW9e9X+DviDE3AGw6deqk7Oxs5eTk2AbaXu7ChQuaM2eOJkyYoJ07d9qmXbt2qVq1avkG7wYHB6tu3boOg8316tWrlzw8PDRv3jzNmTNHgwYNksVikSR988036t69u/r27avmzZurTp06+vnnn53ex+bNm1WrVi09//zzat26terXr6+DBw/m65eSkmJ3p9i3334rDw8PNWjQIF/fRo0ayWq1KiUlRfXq1bObgoODbf0qV66s/v37a+7cuZo0aZJmzJjhdP3A3x1nbgDYeHp6at++fbY/X2n58uU6deqUYmNj7c7QSNL999+vmTNnFvicGkfOnTuntLQ0uzar1aoKFSoUuE65cuXUu3dvjR49WhkZGXbP4Klfv74WL16szZs3q0KFCnr77bd17NgxNWrUqNA1XdpOSkqKEhISdNttt2nFihW2y3CX8/LyUv/+/fXWW28pIyNDTzzxhHr16pXvkpR0cYDyf/7zH40YMUJ5eXm68847lZ6erm+++UZ+fn7q37+/xowZo9DQUDVu3FhZWVlavny5br31VqdqB8CZGwBX8PPzK/B27JkzZ6pDhw75go10Mdxs3brVqQfpffDBB6patardFBMTc831YmNjderUKUVGRtpdHnvhhRfUqlUrRUZGKiIiQkFBQdf1hOBu3bppxIgRGjZsmFq0aKHNmzfrxRdfzNevXr16+uc//6nOnTurY8eOatasmd57770Ct/vqq6/qxRdfVFxcnG699VZ16tRJK1asUEhIiCSpTJkyGj16tJo1a6a2bdvK09NTCQkJTtcP/N1ZDOMa928CAACUIJy5AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApvL/s2EKz3IU2acAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of MAPE values from mape1 to mape10\n", + "mape_values = [mape1, mape2, mape2_1, mape3, mape4, mape5, mape6, mape7, mape8, mape8_1, mape9, mape10]\n", + "\n", + "# List of corresponding labels for each MAPE value\n", + "labels = ['MAPE1', 'MAPE2', 'MAPE2_1', 'MAPE3', 'MAPE4', 'MAPE5', 'MAPE6', 'MAPE7', 'MAPE8', 'MAPE2_1', 'MAPE9', 'MAPE10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, mape_values)\n", + "plt.xlabel('MAPE Variables')\n", + "plt.ylabel('MAPE Values')\n", + "plt.title('Bar Graph of MAPE')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "bCF5ZehcARcw", + "outputId": "ed3103b5-2636-48c5-82ba-60f8b3dfd729" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Length of labels: 12\n", + "Length of mape_values: 10\n" + ] + } + ], + "source": [ + "print(\"Length of labels:\", len(labels))\n", + "print(\"Length of mape_values:\", len(mape_values))" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "ZDPV0M5rDTi6", + "outputId": "2b5b43fb-f025-41ff-dc55-6193541132e0" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAHHCAYAAABdm0mZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQuUlEQVR4nO3deXhMZ/8G8Hsmy0wiO9mQCKJ2QWyhKEJQKdqSl5BQpWqpSjdqSdBKVW2trRRRr1YssdcSabRoWkopbUWoilYSQSUiss7z+8Mv583IhJmYmMlxf65rrsucOct3nvPkzO2sCiGEABEREZHMKE1dABEREVFlYMghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEisxEVFQWFQoEbN25U+rL279+Pli1bQq1WQ6FQ4Pbt25W+TGMYMWIEfHx8DJrm8OHDUCgUOHz4cKXURGSuGHKInoCYmBgoFAqtl5ubG7p164Z9+/Y98Xp2796N4OBguLu7w9raGi4uLujSpQsWLFiA7OzsJ17Pk3bz5k0MHjwYNjY2WLZsGTZs2IBq1arpHPfBdadWq/HMM89gwoQJyMjIeMKVE5EhLE1dANHTZPbs2ahbty6EEMjIyEBMTAz69u2L3bt3o1+/fpW+fI1Gg1GjRiEmJgbNmzfHuHHj4OXlhTt37iApKQnTp0/HN998g4SEhEqvxZROnDiBO3fuYM6cOQgMDNRrmpJ1l5eXh6NHj2LFihX45ptvcO7cOdja2lZyxf+zevVqaDQag6bp0qUL7t27B2tr60qqisg8MeQQPUF9+vRBmzZtpPejRo2Cu7s7vv76a6OEHI1Gg4KCAqjVap2ff/zxx4iJicHkyZOxYMECKBQK6bNJkyYhLS0NX3755WMtoyq4fv06AMDJyUnvaUqvu1dffRXVq1fHwoULsXPnTgwZMkTnNHfv3i13D1FFWVlZGTyNUqms0uuLqKJ4uIrIhJycnGBjYwNLS+3/b3zyySfo2LEjqlevDhsbG/j7+2Pr1q1lplcoFJgwYQI2btyIpk2bQqVSYf/+/TqXlZubi3nz5qFp06aYP3++VsAp4enpiffee0/vZVSkzoYNG0KtVsPf3x/ff/+9zlpv376NESNGwMnJCY6Ojhg5ciRyc3N1N+IDtmzZAn9/f9jY2KBGjRoYNmwY/vnnH+nz5557DuHh4QCAtm3bQqFQYMSIEXrNu7Tu3bsDAC5fvgzg/rkydnZ2uHTpEvr27Qt7e3uEhoYCuB8MFy9ejKZNm0KtVsPd3R2vvfYa/v333zLz3bdvH7p27Qp7e3s4ODigbdu2+Oqrr6TPdZ2Ts2nTJvj7+0vTNG/eHEuWLJE+L++cnEe1Venv9c8//2DAgAGws7ODq6sr3n77bRQXFxvcbkRPEkMO0ROUlZWFGzduIDMzE7/99htef/115OTkYNiwYVrjLVmyBK1atcLs2bMxd+5cWFpaYtCgQdi7d2+ZeX777beYPHkyQkJCsGTJknJPSj169Chu376NIUOGwMLCwqC6y1uGIXV+9913ePPNNzFs2DDMnj0bN2/eRO/evXHu3Lky4w4ePBh37txBdHQ0Bg8ejJiYGMyaNeuRdcbExGDw4MGwsLBAdHQ0Ro8ejbi4ODz77LPSicXTpk3DmDFjANw/BLVhwwa89tprBrUHAFy6dAkAUL16dWlYUVERgoKC4Obmhk8++QQvvfQSAOC1117DO++8g06dOmHJkiUYOXIkNm7ciKCgIBQWFmrV//zzz+PWrVuYOnUqPvroI7Rs2bLc4AoA8fHxGDJkCJydnTFv3jx89NFHeO6553Ds2LHHbqsSxcXFCAoKQvXq1fHJJ5+ga9euWLBgAVatWmVosxE9WYKIKt26desEgDIvlUolYmJiyoyfm5ur9b6goEA0a9ZMdO/eXWs4AKFUKsVvv/32yBqWLFkiAIgdO3ZoDS8qKhKZmZlaL41Go9cyDKkTgPj555+lYVeuXBFqtVoMHDhQGhYZGSkAiFdeeUVr+oEDB4rq1as/9PsVFBQINzc30axZM3Hv3j1p+J49ewQAMXPmTGlYyfo4ceLEQ+dZetxDhw6JzMxMcfXqVbFp0yZRvXp1YWNjI/7++28hhBDh4eECgJgyZYrW9EeOHBEAxMaNG7WG79+/X2v47du3hb29vWjfvr1W/UIIrfURHh4u6tSpI72fNGmScHBwEEVFReV+h8TERAFAJCYmGtxWJd9r9uzZWvNs1aqV8Pf3L3eZROaAe3KInqBly5YhPj4e8fHx+O9//4tu3brh1VdfRVxcnNZ4NjY20r///fdfZGVloXPnzjh16lSZeXbt2hVNmjR55LJLrpqys7PTGn727Fm4urpqvW7evKnXMgypMyAgAP7+/tJ7b29v9O/fHwcOHChz2GPs2LFa7zt37oybN28+9Mqvn3/+GdevX8e4ceO0zj95/vnn0ahRI517lwwRGBgIV1dXeHl54T//+Q/s7Oywfft21KpVS2u8119/Xev9li1b4OjoiJ49e+LGjRvSy9/fH3Z2dkhMTARwf4/MnTt3MGXKlDLnz+g6tFjCyckJd+/eRXx8vN7fpSJtpWud/Pnnn3ovk8gUeOIx0RPUrl07rROPhwwZglatWmHChAno16+fdPXLnj178MEHH+D06dPIz8+Xxtf1Y1e3bl29lm1vbw8AyMnJ0Rru6+sr/UB++eWX2LBhg97LMKTOBg0alBn2zDPPIDc3F5mZmfDw8JCGe3t7a43n7OwM4H6QcnBw0FnLlStXAAANGzYs81mjRo1w9OhRndPpa9myZXjmmWdgaWkJd3d3NGzYEEql9v8TLS0tUbt2ba1hKSkpyMrKgpubm875lpwEXXL4q1mzZgbVNW7cOGzevBl9+vRBrVq10KtXLwwePBi9e/cudxpD20qtVsPV1VVrmLOzs85ziojMCUMOkQkplUp069YNS5YsQUpKCpo2bYojR47ghRdeQJcuXbB8+XJ4enrCysoK69at0zoBtUTpvSkP06hRIwDAuXPn0L9/f2m4nZ2ddBl1eUFA1zIMrdMQ5Z0zJIR4rPk+jgcDqi4qlapM8NFoNHBzc8PGjRt1TvNgeDCUm5sbTp8+jQMHDmDfvn3Yt28f1q1bh7CwMKxfv/6x5l3C0HO4iMwFQw6RiRUVFQH43x6Wbdu2Qa1W48CBA1CpVNJ469ate6zldO7cGY6Ojti0aROmTp1a5sfYUIbWmZKSUmbYhQsXYGtr+9g/9ABQp04dAEBycrJ05VOJ5ORk6fMnrX79+jh06BA6der00EBav359APdDqK+vr0HLsLa2RnBwMIKDg6HRaDBu3Dh8/vnnmDFjhs55mWtbERkbz8khMqHCwkIcPHgQ1tbWaNy4MYD7/2tWKBRa56n89ddf2LFjx2Mty9bWFu+++y7OnTuHKVOm6NwrYsieEkPrTEpK0jpX5+rVq9i5cyd69epllD0Fbdq0gZubG1auXKl16Gzfvn34448/8Pzzzz/2Mipi8ODBKC4uxpw5c8p8VlRUJF3J1KtXL9jb2yM6Ohp5eXla4z1svTx4/pRSqUSLFi0AQKsdSjPXtiIyNu7JIXqC9u3bh/PnzwO4fy7GV199hZSUFEyZMkU61+T555/HwoUL0bt3bwwdOhTXr1/HsmXL4Ovri19//fWxlj9lyhT88ccfmD9/Pg4ePIiXXnoJtWvXxr///otTp05hy5YtcHNz0+vGcYbW2axZMwQFBeGNN96ASqXC8uXLAUCvS8P1YWVlhXnz5mHkyJHo2rUrhgwZgoyMDOmS98mTJxtlOYbq2rUrXnvtNURHR+P06dPo1asXrKyskJKSgi1btmDJkiV4+eWX4eDggEWLFuHVV19F27ZtMXToUDg7O+PMmTPIzc0t99DTq6++ilu3bqF79+6oXbs2rly5gs8++wwtW7aUgvODzLWtiIzOtBd3ET0ddF1CrlarRcuWLcWKFSu0LhEWQog1a9aIBg0aCJVKJRo1aiTWrVsnXV5dGgAxfvx4g+vZvn276Nu3r3B1dRWWlpbCyclJPPvss2L+/Pni9u3bei/D0Dr/+9//SuO3atVKuqS5RMm0mZmZWsNL2u/y5cuP/G6xsbGiVatWQqVSCRcXFxEaGipd5v3g/Ay5hPxR44aHh4tq1aqV+/mqVauEv7+/sLGxEfb29qJ58+bi3XffFdeuXdMab9euXaJjx47CxsZGODg4iHbt2omvv/5aazmlLyHfunWr6NWrl3BzcxPW1tbC29tbvPbaayItLU0a58FLyEvo01blfS9d65nI3CiEMOGZfET0VFAoFBg/fjyWLl1q6lKI6CnCc3KIiIhIlhhyiIiISJYYcoiIiEiWeHUVEVU6nvpHRKbAPTlEREQkSww5REREJEtP3eEqjUaDa9euwd7e/qFP9iUiIiLzIYTAnTt3ULNmTb0fS/PUhZxr167By8vL1GUQERFRBVy9ehW1a9fWa9ynLuTY29sDuN9IJbfRJyIiIvOWnZ0NLy8v6XdcH09dyCk5ROXg4MCQQ0REVMUYcqoJTzwmIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWTJpyPn+++8RHByMmjVrQqFQYMeOHY+c5vDhw2jdujVUKhV8fX0RExNT6XUSERFR1WPSkHP37l34+flh2bJleo1/+fJlPP/88+jWrRtOnz6NN998E6+++ioOHDhQyZUSERFRVWPSB3T26dMHffr00Xv8lStXom7duliwYAEAoHHjxjh69CgWLVqEoKCgyiqTiIiIqqAqdU5OUlISAgMDtYYFBQUhKSnJRBURERGRuTLpnhxDpaenw93dXWuYu7s7srOzce/ePdjY2JSZJj8/H/n5+dL77OzsSq+TiIiITK9K7cmpiOjoaDg6OkovLy8vU5dEpSkUpnsRUdXCbQUZqEqFHA8PD2RkZGgNy8jIgIODg869OAAwdepUZGVlSa+rV68+iVLND8MEEdHThdv9qnW4KiAgAN98843WsPj4eAQEBJQ7jUqlgkqlquzSiMhcmXKDK4Tplk1Ept2Tk5OTg9OnT+P06dMA7l8ifvr0aaSmpgK4vxcmLCxMGn/s2LH4888/8e677+L8+fNYvnw5Nm/ejMmTJ5uifCIiIjJjJt2T8/PPP6Nbt27S+4iICABAeHg4YmJikJaWJgUeAKhbty727t2LyZMnY8mSJahduza++OILXj5ORGRMptr7xT1fZGQKIZ6uXpWdnQ1HR0dkZWXBwcHB1OU8Oea6y95c6yL5YB8znLmGHHOty1zJrO9X5Pe7Sp14TERERKQvhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlS1MXQEREVKXJ7GnfcsI9OURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkS5amLoCIDKRQmGa5Qjz8c3Oti4ieWtyTQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJsBEhGZgqlungjwBor01OCeHCIiIpIl7skxNt7anoiIyCxwTw4RERHJEvfkEOnC8yWIiKo87skhIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZMnnIWbZsGXx8fKBWq9G+fXscP378oeMvXrwYDRs2hI2NDby8vDB58mTk5eU9oWqJiIioqjBpyImNjUVERAQiIyNx6tQp+Pn5ISgoCNevX9c5/ldffYUpU6YgMjISf/zxB9asWYPY2Fi8//77T7hyIiIiMncmDTkLFy7E6NGjMXLkSDRp0gQrV66Era0t1q5dq3P8H374AZ06dcLQoUPh4+ODXr16YciQIY/c+0NERERPH5OFnIKCApw8eRKBgYH/K0apRGBgIJKSknRO07FjR5w8eVIKNX/++Se++eYb9O3bt9zl5OfnIzs7W+tFRERE8mdpqgXfuHEDxcXFcHd31xru7u6O8+fP65xm6NChuHHjBp599lkIIVBUVISxY8c+9HBVdHQ0Zs2aZdTaiYiIyPyZ/MRjQxw+fBhz587F8uXLcerUKcTFxWHv3r2YM2dOudNMnToVWVlZ0uvq1atPsGIiIiIyFZPtyalRowYsLCyQkZGhNTwjIwMeHh46p5kxYwaGDx+OV199FQDQvHlz3L17F2PGjMG0adOgVJbNbCqVCiqVyvhfgIiIiMyayfbkWFtbw9/fHwkJCdIwjUaDhIQEBAQE6JwmNze3TJCxsLAAAAghKq9YIiIiqnJMticHACIiIhAeHo42bdqgXbt2WLx4Me7evYuRI0cCAMLCwlCrVi1ER0cDAIKDg7Fw4UK0atUK7du3x8WLFzFjxgwEBwdLYYeIiIgIMHHICQkJQWZmJmbOnIn09HS0bNkS+/fvl05GTk1N1dpzM336dCgUCkyfPh3//PMPXF1dERwcjA8//NBUX4GIiIjMlEI8Zcd5srOz4ejoiKysLDg4OBh/AQqF8eepj0etRlPVBTy8NtZVlrmuS9ZlOPYxw7Auw1XVPlYBFfn9rlJXVxERERHpiyGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGTJ4JCzf/9+HD16VHq/bNkytGzZEkOHDsW///5r1OKIiIiIKsrgkPPOO+8gOzsbAHD27Fm89dZb6Nu3Ly5fvoyIiAijF0hERERUEZaGTnD58mU0adIEALBt2zb069cPc+fOxalTp9C3b1+jF0hERERUEQbvybG2tkZubi4A4NChQ+jVqxcAwMXFRdrDQ0RERGRqBu/JefbZZxEREYFOnTrh+PHjiI2NBQBcuHABtWvXNnqBRERERBVh8J6cpUuXwtLSElu3bsWKFStQq1YtAMC+ffvQu3dvoxdIREREVBEKIYQwdRFPUnZ2NhwdHZGVlQUHBwfjL0ChMP489fGo1WiquoCH18a6yjLXdcm6DMc+ZhjWZbiq2scqoCK/3xW6T86lS5cwffp0DBkyBNevXwdwf0/Ob7/9VpHZERERERmdwSHnu+++Q/PmzfHTTz8hLi4OOTk5AIAzZ84gMjLS6AUSERERVYTBIWfKlCn44IMPEB8fD2tra2l49+7d8eOPPxq1OCIiIqKKMjjknD17FgMHDiwz3M3NDTdu3DBKUURERESPy+CQ4+TkhLS0tDLDf/nlF+lKKyIiIiJTMzjk/Oc//8F7772H9PR0KBQKaDQaHDt2DG+//TbCwsIqo0YiIiIigxkccubOnYtGjRrBy8sLOTk5aNKkCbp06YKOHTti+vTplVEjERERkcEqfJ+c1NRUnDt3Djk5OWjVqhUaNGhg7NoqBe+TYwJV8T4O5loXwD72IHOtC2AfMxTrMlxV7WMVUJHfb4Mf61DC29sb3t7eFZ2ciIiIqFIZHHJeeeWVh36+du3aChdDREREZCwGh5x///1X631hYSHOnTuH27dvo3v37kYrjIiIiOhxGBxytm/fXmaYRqPB66+/jvr16xulKCIiIqLHVaFnV5WZiVKJiIgILFq0yBizIyIiInpsRgk5wP2HdhYVFRlrdkRERESPxeDDVREREVrvhRBIS0vD3r17ER4ebrTCiIiIiB6HwSHnl19+0XqvVCrh6uqKBQsWPPLKKyIiIqInxeCQk5iYaNQCli1bhvnz5yM9PR1+fn747LPP0K5du3LHv337NqZNm4a4uDjcunULderUweLFi9G3b1+j1kVERERVW4VvBmgMsbGxiIiIwMqVK9G+fXssXrwYQUFBSE5OhpubW5nxCwoK0LNnT7i5uWHr1q2oVasWrly5AicnpydfPBEREZk1vR7r0KpVKyj0vD30qVOn9F54+/bt0bZtWyxduhTA/UvRvby8MHHiREyZMqXM+CtXrsT8+fNx/vx5WFlZ6b2c0vhYBxOoircdN9e6APaxB5lrXQD7mKFYl+Gqah+rgEp7rMOAAQMepy6dCgoKcPLkSUydOlUaplQqERgYiKSkJJ3T7Nq1CwEBARg/fjx27twJV1dXDB06FO+99x4sLCx0TpOfn4/8/HzpfXZ2tnG/CBEREZklvUJOZGSk0Rd848YNFBcXw93dXWu4u7s7zp8/r3OaP//8E99++y1CQ0PxzTff4OLFixg3bhwKCwvLrTE6OhqzZs0yev1ERERk3ox2n5wnQaPRwM3NDatWrYK/vz9CQkIwbdo0rFy5stxppk6diqysLOl19erVJ1gxERERmYrBJx4XFxdj0aJF2Lx5M1JTU1FQUKD1+a1bt/SaT40aNWBhYYGMjAyt4RkZGfDw8NA5jaenJ6ysrLQOTTVu3Bjp6ekoKCiAtbV1mWlUKhVUKpVeNREREZF8GLwnZ9asWVi4cCFCQkKQlZWFiIgIvPjii1AqlYiKitJ7PtbW1vD390dCQoI0TKPRICEhAQEBATqn6dSpEy5evAiNRiMNu3DhAjw9PXUGHCIiInqKCQPVq1dP7NmzRwghhJ2dnbh48aIQQoglS5aIIUOGGDSvTZs2CZVKJWJiYsTvv/8uxowZI5ycnER6eroQQojhw4eLKVOmSOOnpqYKe3t7MWHCBJGcnCz27Nkj3NzcxAcffKD3MrOysgQAkZWVZVCtert/TvmTf5lrXY+qjXVVnXXJutjHWJd51VWV+1gFVOT32+DDVenp6WjevDkAwM7ODllZWQCAfv36YcaMGQbNKyQkBJmZmZg5cybS09PRsmVL7N+/XzoZOTU1FUrl/3Y2eXl54cCBA5g8eTJatGiBWrVqYdKkSXjvvfcM/RpEREQkcwaHnNq1ayMtLQ3e3t6oX78+Dh48iNatW+PEiRMVOvdlwoQJmDBhgs7PDh8+XGZYQEAAfvzxR4OXQ0RERE8Xg8/JGThwoHQezcSJEzFjxgw0aNAAYWFhfHYVERERmQ297ngMAEuXLsWwYcPKPEIhKSkJSUlJaNCgAYKDgyujRqPiHY9N4GG1sa6yzHVdsi7DsY8ZhnUZrqr2sQqoyO+33iHH0dERhYWFGDhwIEaNGoXu3bs/VrGmwpBjAlXxj9Bc6wLYxx5krnUB7GOGYl2Gq6p9rAIq8vut9+Gq9PR0rFy5EteuXUPPnj1Rt25dzJkzhzfXIyIiIrOkd8ixsbFBWFgYEhMTkZKSguHDh2PNmjWoW7cuevfujS1btqCwsLAyayUiIiLSW4Ue61CvXj3Mnj0bly9fxr59+1C9enWMGDECtWrVMnZ9RERERBXyWM+uUigUsLS0hEKhgBCCe3KIiIjIbFQo5Fy9ehWzZ89GvXr10LNnT1y7dg2rV69GWlqasesjIiIiqhC9bwZYUFCAuLg4rF27Ft9++y08PT0RHh6OV155BfXq1avMGomIiIgMpnfI8fDwQG5uLvr164fdu3cjKChI65ELREREROZE75Azffp0DB8+HK6urpVZDxEREZFR6B1yIiIiKrMOIiIiIqPi8SYiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJb1PPC5RXFyMmJgYJCQk4Pr169BoNFqff/vtt0YrjoiIiKiiDA45kyZNQkxMDJ5//nk0a9YMClM+yp2IiIioHAaHnE2bNmHz5s3o27dvZdRDREREZBQGn5NjbW0NX1/fyqiFiIiIyGgMDjlvvfUWlixZAiFEZdRDREREZBQGH646evQoEhMTsW/fPjRt2hRWVlZan8fFxRmtOCIiIqKKMjjkODk5YeDAgZVRCxEREZHRGBxy1q1bVxl1EBERERmVwSGnRGZmJpKTkwEADRs25NPJiYiIyKwYfOLx3bt38corr8DT0xNdunRBly5dULNmTYwaNQq5ubmVUSMRERGRwQwOOREREfjuu++we/du3L59G7dv38bOnTvx3Xff4a233qqMGomIiIgMphAGXgteo0YNbN26Fc8995zW8MTERAwePBiZmZnGrM/osrOz4ejoiKysLDg4OBh/Aaa6A/SjVqMp70z9sNpYV1nmui5Zl+HYxwzDugxXVftYBVTk99vgPTm5ublwd3cvM9zNzY2Hq4iIiMhsGBxyAgICEBkZiby8PGnYvXv3MGvWLAQEBBi1OCIiIqKKMvjqqiVLliAoKAi1a9eGn58fAODMmTNQq9U4cOCA0QskIiIiqgiDQ06zZs2QkpKCjRs34vz58wCAIUOGIDQ0FDY2NkYvkIiIiKgiKnSfHFtbW4wePdrYtRAREREZjV4hZ9euXejTpw+srKywa9euh477wgsvGKUwIiIioseh1yXkSqUS6enpcHNzg1JZ/rnKCoUCxcXFRi3Q2HgJuQlUxUsczbUugH3sQeZaF8A+ZijWZbiq2scqoCK/33rtydFoNDr/TURERGSuDL6EXJfbt28bYzZERERERmNwyJk3bx5iY2Ol94MGDYKLiwtq1aqFM2fOGLU4IiIioooyOOSsXLkSXl5eAID4+HgcOnQI+/fvR58+ffDOO+8YvUAiIiKiijD4EvL09HQp5OzZsweDBw9Gr1694OPjg/bt2xu9QCIiIqKKMHhPjrOzM65evQoA2L9/PwIDAwEAQgizv7KKiIiInh4G78l58cUXMXToUDRo0AA3b95Enz59AAC//PILfH19jV4gERERUUUYHHIWLVoEHx8fXL16FR9//DHs7OwAAGlpaRg3bpzRCyQiIiKqCL1uBignvBmgCVTFm1WZa10A+9iDzLUugH3MUKzLcFW1j1VApd0MkI91ICIioqqGj3UwNv5Po6yq+D8Nc60LYB97kLnWBbCPGYp1Ga6q9rEK4GMdiIiIiP6fUR7rQERERGRuDA45b7zxBj799NMyw5cuXYo333zTGDURERERPTaDQ862bdvQqVOnMsM7duyIrVu3GqUoIiIiosdlcMi5efMmHB0dywx3cHDAjRs3jFIUERER0eMyOOT4+vpi//79ZYbv27cP9erVM0pRRERERI/L4DseR0REYMKECcjMzET37t0BAAkJCViwYAEWL15s7PqIiIiIKsTgkPPKK68gPz8fH374IebMmQMA8PHxwYoVKxAWFmb0AomIiIgq4rEe65CZmQkbGxvp+VVVAW8GaAJV8WZV5loXwD72IHOtC2AfMxTrMlxV7WMVUJHf7wrdJ6eoqAiHDh1CXFwcSjLStWvXkJOTU5HZERERERmdwYerrly5gt69eyM1NRX5+fno2bMn7O3tMW/ePOTn52PlypWVUScRERGRQQzekzNp0iS0adMG//77L2xsbKThAwcOREJCglGLIyIiIqoog/fkHDlyBD/88AOsra21hvv4+OCff/4xWmFEREREj8PgPTkajUbnk8b//vtv2NvbG6UoIiIiosdlcMjp1auX1v1wFAoFcnJyEBkZib59+1aoiGXLlsHHxwdqtRrt27fH8ePH9Zpu06ZNUCgUGDBgQIWWS0RERPJlcMj55JNPcOzYMTRp0gR5eXkYOnSodKhq3rx5BhcQGxuLiIgIREZG4tSpU/Dz80NQUBCuX7/+0On++usvvP322+jcubPByyQiIiL5q9B9coqKihAbG4szZ84gJycHrVu3RmhoqNaJyPpq37492rZti6VLlwK4fzjMy8sLEydOxJQpU3ROU1xcjC5duuCVV17BkSNHcPv2bezYsUOv5fE+OSZQFe/jYK51AexjDzLXugD2MUOxLsNV1T5WARX5/TboxOPCwkI0atQIe/bsQWhoKEJDQytUaImCggKcPHkSU6dOlYYplUoEBgYiKSmp3Olmz54NNzc3jBo1CkeOHHnoMvLz85Gfny+9z87OfqyaiYiIqGow6HCVlZUV8vLyjLbwGzduoLi4GO7u7lrD3d3dkZ6ernOao0ePYs2aNVi9erVey4iOjoajo6P08vLyeuy6iYiIyPwZfE7O+PHjMW/ePBQVFVVGPQ91584dDB8+HKtXr0aNGjX0mmbq1KnIysqSXlevXq3kKomIiMgcGHyfnBMnTiAhIQEHDx5E8+bNUa1aNa3P4+Li9J5XjRo1YGFhgYyMDK3hGRkZ8PDwKDP+pUuX8NdffyE4OFgaptFoAACWlpZITk5G/fr1taZRqVRQqVR610RERETyYHDIcXJywksvvWSUhVtbW8Pf3x8JCQnSZeAajQYJCQmYMGFCmfEbNWqEs2fPag2bPn067ty5gyVLlvBQFBEREUkMDjnr1q0zagEREREIDw9HmzZt0K5dOyxevBh3797FyJEjAQBhYWGoVasWoqOjoVar0axZM63pnZycAKDMcCIiInq66R1yNBoN5s+fj127dqGgoAA9evRAZGRkhS4bLy0kJASZmZmYOXMm0tPT0bJlS+zfv186GTk1NRVKZYUelk5ERERPMb3vkzNnzhxERUUhMDAQNjY2OHDgAIYMGYK1a9dWdo1GxfvkmEBVvI+DudYFsI89yFzrAtjHDMW6DFdV+1gFVOT3W+9dJF9++SWWL1+OAwcOYMeOHdi9ezc2btwonfhLREREZE70Djmpqalaz6YKDAyEQqHAtWvXKqUwIiIiosehd8gpKiqCWq3WGmZlZYXCwkKjF0VERET0uPQ+8VgIgREjRmjdcyYvLw9jx47VuleOIffJISIiIqoseoec8PDwMsOGDRtm1GKIiIiIjEXvkGPs++MQERERVSbegIaIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZMksQs6yZcvg4+MDtVqN9u3b4/jx4+WOu3r1anTu3BnOzs5wdnZGYGDgQ8cnIiKip5PJQ05sbCwiIiIQGRmJU6dOwc/PD0FBQbh+/brO8Q8fPowhQ4YgMTERSUlJ8PLyQq9evfDPP/884cqJiIjInCmEEMKUBbRv3x5t27bF0qVLAQAajQZeXl6YOHEipkyZ8sjpi4uL4ezsjKVLlyIsLOyR42dnZ8PR0RFZWVlwcHB47PrLUCiMP099PGo1mqou4OG1sa6yzHVdsi7DsY8ZhnUZrqr2sQqoyO+3SffkFBQU4OTJkwgMDJSGKZVKBAYGIikpSa955ObmorCwEC4uLjo/z8/PR3Z2ttaLiIiI5M+kIefGjRsoLi6Gu7u71nB3d3ekp6frNY/33nsPNWvW1ApKpUVHR8PR0VF6eXl5PXbdREREZP5Mfk7O4/joo4+wadMmbN++HWq1Wuc4U6dORVZWlvS6evXqE66SiIiITMHSlAuvUaMGLCwskJGRoTU8IyMDHh4eD532k08+wUcffYRDhw6hRYsW5Y6nUqmgUqmMUi8RERFVHSbdk2NtbQ1/f38kJCRIwzQaDRISEhAQEFDudB9//DHmzJmD/fv3o02bNk+iVCIiIqpiTLonBwAiIiIQHh6ONm3aoF27dli8eDHu3r2LkSNHAgDCwsJQq1YtREdHAwDmzZuHmTNn4quvvoKPj4907o6dnR3s7OxM9j2IiIjIvJg85ISEhCAzMxMzZ85Eeno6WrZsif3790snI6empkKp/N8OpxUrVqCgoAAvv/yy1nwiIyMRFRX1JEsnIiIiM2by++Q8abxPjglUxfs4mGtdAPvYg8y1LoB9zFCsy3BVtY9VQJW7Tw4RERFRZWHIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlkyi5CzbNky+Pj4QK1Wo3379jh+/PhDx9+yZQsaNWoEtVqN5s2b45tvvnlClRIREVFVYfKQExsbi4iICERGRuLUqVPw8/NDUFAQrl+/rnP8H374AUOGDMGoUaPwyy+/YMCAARgwYADOnTv3hCsnIiIic6YQQghTFtC+fXu0bdsWS5cuBQBoNBp4eXlh4sSJmDJlSpnxQ0JCcPfuXezZs0ca1qFDB7Rs2RIrV6585PKys7Ph6OiIrKwsODg4GO+LlFAojD9PfTxqNZqqLuDhtbGussx1XbIuw7GPGYZ1Ga6q9rEKqMjvt0n35BQUFODkyZMIDAyUhimVSgQGBiIpKUnnNElJSVrjA0BQUFC54xMREdHTydKUC79x4waKi4vh7u6uNdzd3R3nz5/XOU16errO8dPT03WOn5+fj/z8fOl9VlYWgPuJUFbM+fuYa22syzCsy3DmWhvrMoy51gWYb22VUFfJ77YhB6BMGnKehOjoaMyaNavMcC8vLxNUU4kcHU1dQfnMtTbWZRjWZThzrY11GcZc6wLMt7ZKrOvOnTtw1HP+Jg05NWrUgIWFBTIyMrSGZ2RkwMPDQ+c0Hh4eBo0/depURERESO81Gg1u3bqF6tWrQ2HK45UPyM7OhpeXF65evVo55wpVkLnWBZhvbazLMKzLcOZaG+syDOsyjBACd+7cQc2aNfWexqQhx9raGv7+/khISMCAAQMA3A8hCQkJmDBhgs5pAgICkJCQgDfffFMaFh8fj4CAAJ3jq1QqqFQqrWFOTk7GKL9SODg4mFWnKmGudQHmWxvrMgzrMpy51sa6DMO69KfvHpwSJj9cFRERgfDwcLRp0wbt2rXD4sWLcffuXYwcORIAEBYWhlq1aiE6OhoAMGnSJHTt2hULFizA888/j02bNuHnn3/GqlWrTPk1iIiIyMyYPOSEhIQgMzMTM2fORHp6Olq2bIn9+/dLJxenpqZCqfzfRWAdO3bEV199henTp+P9999HgwYNsGPHDjRr1sxUX4GIiIjMkMlDDgBMmDCh3MNThw8fLjNs0KBBGDRoUCVX9WSpVCpERkaWObRmauZaF2C+tbEuw7Auw5lrbazLMKyr8pn8ZoBERERElcHkj3UgIiIiqgwMOURERCRLDDlEREQkSww5JqJQKLBjxw6jj/u4TFmXubbJo5hr3azLMOZal6HLexrazFzb41HMpW5zqeOJECTCw8MFAAFAWFlZifr164tZs2aJwsLCSltmWlqayMvLM1ld27ZtEz179hQuLi4CgPjll1+06tJn2fp8B0OkpqaKiIgI0axZM2Frays8PT3F8OHDxT///FNm3PKWXdE2KygoEO+++65eyy6vlg8++EAEBAQIGxsb4ejoaJS69BEZGSkaNmwobG1thZOTk+jRo4f48ccfTd7HSnvttdcEALFo0SKT11V63iWvoKAgvftzZdb2+++/i+DgYOHg4CBsbW1FmzZtxJUrV0zeZg+2V8lrxowZYtiwYXot15jbi5J53blzR4wfP17UqlVLqNVq0bhxY7FixQq9lvs47aXPch9W9+effy66du0q7O3ttdqzdB1Xr1416vZVCCHS09NFeHi4cHNzE2q1WgQFBYkLFy7oVbMxlff7U9q9e/fEuHHjhIuLi6hWrZp48cUXRXp6usHLYsgR9zt77969RVpamvjrr7/E8uXLhUKhEHPnzi0zbn5+vizq+vLLL8WsWbPE6tWrdXYyU7TJ7du3RWBgoIiNjRXnz58XSUlJol27dsLf31/veVS0bmMse+bMmWLhwoUiIiJCZ8iprPbcuHGjiI+PF5cuXRLnzp0To0aNEg4ODuL69euPnPZJrOe4uDjh5+cnatasKRYtWqTXNJVZV+l5l7xu3bpVoemNWdvFixeFi4uLeOedd8SpU6fExYsXxc6dO0VGRoZJ6xJCaLVVWlqaWLt2rVAoFOLSpUsm3X6OHj1a1K9fXyQmJorLly+Lzz//XFhYWIidO3c+ctrHqftxliuEEIsWLRLR0dEiOjpaABA9evSo9PbTaDSiQ4cOonPnzuL48ePi/PnzYsyYMcLb21vk5ORUeL4V8ajfHyGEGDt2rPDy8hIJCQni559/Fh06dBAdO3Y0eFkMOeJ+Z+/fv7/WsJ49e4oOHTpIn33wwQfC09NT+Pj4CCHu73UYNGiQcHR0FM7OzuKFF14Qly9f1prHmjVrRJMmTYS1tbXw8PAQ48ePlz4DILZv3y6EuN9xx48fLzw8PIRKpRLe3t5i7ty50rJLj9uzZ0/RokUL4eHhIZRKpbCxsRG2traiTp06Ul116tQRlpaWwsbGRqhUKuHo6CjGjRsnCgoKytTl6uqq1clKlhUeHi6Cg4O16lKr1cLLy0urLmdnZ6lNDh48KM1PoVCIOnXqiHPnzmm1c8uWLYW7u7s0TrNmzaS6dLVJ9erVBQBRq1YtrT/60uMKIcSvv/4qunXrJpRKpbCyshKjR48Wd+7ckdrM1dVVeHl5iaZNmwo7OzuhUCiEvb29KCgoKHddHj9+XAAQV65cMWhddu/eXSgUiie+LkvqysrKkv5naA59TKlUiiFDhog6deqIRYsWmbwuR0dHoVQqK/Q3WdKPH+x/AQEBwsHBQep/bdq0ER4eHtLfxssvvyxq1qwp1Gq1UCgUwsrKSgwbNkyqSwgh2rZtKxwdHc16e1FSV//+/UX37t0FANGtWzfRv39/rboUCoWwtrYWrVu3lrafAISbm5u03F69eglLS0tpD8Z//vMf6W9WCCE6duwo7O3thYWFhVAqlUKlUkl1lXzHpk2bipkzZ2q1h7W1tXjuued0tp0QxtlWlLRl6e1+69atxbRp0wzaVgwYMEAAEEqlUquP9ezZU6ttP/jgA+Hq6irUarVQq9XC0dFR1K1bV2ub9dJLL4n+/fuL+fPnCw8PD1GtWjXh7Ows1REaGioAiHPnzkl1FBcXixo1aohu3brp7OsPaz+1Wi1cXFy02q/k76N0HS4uLlr9qbTLly/rDDm3b98WVlZWYsuWLdKwP/74QwAQSUlJZebzMDwnpxw2NjYoKCgAACQkJCA5ORnx8fHYs2cPCgsLERQUBHt7exw5cgTHjh2DnZ0devfuLU2zYsUKjB8/HmPGjMHZs2exa9cu+Pr66lzWp59+il27dmHz5s1ITk7Gxo0b4ePjo3Nca2tr/P7777C2toZarcazzz4LZ2dn+Pn5SXVZWVlBpVLhhRdeQM+ePWFnZ4d169YhJiamTF2rV68utw3+/PNPrbratGkDCwsLqU0AICoqCnv27MHt27fRt29f2NraYtu2bVizZg1u3LiBjh07Sm1y/vx5nD59GvXr18c333yDTz75BMnJyYiJiSm3TaZNmwYAWLNmTbltcvfuXQQFBcHZ2Rn9+vVD27ZtcejQIekGkzY2NiguLkZ6ejouXLiA7t2747PPPkNhYSG++OKLctfljRs3oFAosHXrVoPW5enTp2Fra/vE1+WuXbvg4+ODVatWlXm+iyn62OjRo9GqVSu8+eabaNeuXbnt9aTreuaZZ2Bra4u8vDxs3rwZr7/+Om7evFnhuu7evYtTp05BqVSiX79+sLS0xPnz59GuXTtpexEfH4/MzEwEBwdj9+7d6NixIzZu3IgvvvgCALBs2TKcOHECHTt2RNu2bZGXl4fdu3frPBfClNuLXbt2wd3dHXv37sWoUaPKratHjx7w8fGBnZ2dtP0EgGnTpqGwsBA9e/bEkSNH0LVrV+zcuRNdunTBtm3b8PrrrwO4v/386aefUFBQgEGDBmHTpk0YPnw4YmJitLYXHTt2xNq1a7F9+3bExsZi3bp1sLCwQOfOnctdV8bYVgwcOBD16tWDUqlE7969cfDgQVy4cAG5ubkGbSt++OEHAEDXrl211qONjY00XkJCAn777TcIIfDss8/ihx9+gKOjIzIzM9G1a1dpmxUfH49vv/0Wly5dwpgxY1BYWIicnBzMmDEDu3btkh5qqVarpXkrlUoUFhbi+PHjevf1kvY7ceIEtmzZotV+JRITE3Hp0iUkJiZi/fr1Zdbbo5w8eRKFhYUIDAyUhjVq1Aje3t5ISkrSez4AeE6OENp7cjQajYiPjxcqlUq8/fbbIjw8XLi7u2vtJtywYYNo2LCh0Gg00rD8/HxhY2MjDhw4IIQQombNmmLatGnlLhOl0vHEiRNF9+7dteZXui4AIi4uTsTHxwtLS0uhUqlEaGioVNfevXuFUqkUS5cuFQ0bNhRhYWGiTp06oqioSKqrc+fOIiQkpExdDybpkrrCw8NF3bp1Rffu3UVxcbHONin9HV555RWhVCq1Ev2OHTsEALFp0yYhhBA2NjbCwcFBFBUVSeMMGjRIhISE6GyT5557TrRq1UoMHTr0oe23atUq4ezsLHJycqQ227t3r1AoFGLz5s1CpVKJpk2bimrVqmmty0GDBon27duXuy59fX3F0KFDDV6XjRs3Fg4ODk90Xe7evVtUq1ZNKBQKUbNmTWkvlCn72Ny5c0XPnj2lZerak2OKur7++muxc+dO8euvv4rt27eLxo0bi7Zt2+pVV0ltJeNqNBrx5ptvCgBi0qRJ0t/Gjh07hFKpFOnp6WLDhg3CwcFBeHt7S30/Pz9fWFhYiK5duwohhPDw8BAAhK2trVi4cKH45ZdfRHR0tFAoFOLw4cMmb7PS5s2bJ5ydncW9e/e09jZMnDhRdOvWTRw8eFDn9rPkO2zYsEG4u7sLJycn6TBJfn6+UKlUQqFQiPT0dFGzZk3RvHlzqa4SJduLknnl5eWJRo0aCQDCwsJCWFtbi/Xr15f792msbUVeXp4ICwuT9phaWlqK9evXG7ytaNWqlQAg+vbtK4TQ/v0paVt3d3exfPlyqe6S3589e/ZIfaykP7m5uYmioiKpjtLb14KCAuHt7S0GDRokAIjNmzeLjz76SAAQLi4uOvv6w9qvREl/KjlfJjw8vNz19qDy9uRs3LhRWFtblxm/bdu24t133y23fXUxi8c6mIM9e/bAzs4OhYWF0Gg0GDp0KKKiojB+/Hg0b94c1tbW0rhnzpzBxYsXYW9vrzWPvLw8XLp0CdevX8e1a9fQo0cPvZY9YsQI9OzZEw0bNkTv3r3Rr18/9OrVS6oLAAYPHgwAaNCgAWrUqAFLS0uprk6dOkGj0eDo0aO4ePEiLl26BCGE9L/5vLw8WFhY4O+//zaortTUVFy+fBmWlpZQKBTo3r27VptkZGRotYlGo4GHh0eZ+fz000/o1q0b7t27hxYtWkh7gwDA09MTZ8+eLTPNsGHD8Oyzz0KpVKJdu3Y4ePCg1CYP+uOPP+Dn54dq1apJbXbo0CEIITBkyBCEhoaiqKgIt2/fRuPGjaV16enpiR9//BHXrl0rsy7v3buHvLw8zJ49G76+vgaty7Vr1+LevXt44403nti67NatG06fPo0bN25g9erV0jJK1/Uk+5iXlxciIyNx6tQpKBSKh7bXk+773bp1k5bfvHlztGjRAvXr19e7rhJDhgyBRqNBUVER3N3d8eGHH0p/G8899xw0Gg2Sk5Nx5swZ3LlzB3fv3tXaw1ZcXIy0tDRcv34d6enpAID+/ftj8uTJAICWLVvihx9+wMqVK03eZqWtXbsWoaGhWnsE9uzZA2tra9y7dw+JiYlo1KgROnfujLi4OJ3bz+vXr0OhUEjPKASAgoICCCGkv8lmzZrBy8vroduLzz77DLm5ubC3t4ezszPq1q2L1157DTVr1tTaC1DCWNuKwsJCFBYWQq1WIz8/Hy+++CJef/115ObmGrStWL9+PQBg3759sLGxgUajkX5/vvzySwD3+2hKSopUd8nvT0hICDQaDerWrQulUoni4mK4urri5s2b0nq7c+eO1F5WVlaIi4uT9sD95z//Qc+ePdGxY0ecOHHioX29vPYDIPWn5ORkaX02bdpUr+38k8DDVf+v5EciJSUF9+7dw/r166UVWXqFAkBOTg78/f1x+vRprdeFCxcwdOhQrV2N+mjdujUuX76MOXPm4N69exg8eDBefvllqS4AWL58Oe7du4fevXtLnefBunJzc+Hv74/g4GA899xzWnU1atSoQm1y6tQpfPbZZxgxYgROnDiB8PBwncsuLCyEvb29VnscOXIEABAYGCi1SemOD9y/PFGj0ZSZV3R0NJ555hksXboUxcXFWm2iT90lyz548CDWr18PKysrKJVKrboVCgWKioq01uWJEycQEBCAhg0b4vvvv4ebm5sBLXZ/Xc6fPx8qleqJrstq1arB19cXHTp0wJo1a2Bpqf3/lyfdx3799Vdcv34d3t7esLS0hKWlJa5cuYK33nrLpHXpUq9ePdSoUUPvukosXLgQKSkpmDhxIho3bvzQ7UX16tW16jp9+jTCw8Ph6uoq/W0olUo0adJEa9rGjRsjNTXVbNrsyJEjSE5Oxquvvqo1vFu3bvj1119x7tw5bNy4Ec8++yzCwsJw+PBhne3h7u6ONm3aaLXHyZMnAUDreUlWVlZa05beXuTn5+P999/H8uXL8ffff+Pjjz9GgwYNoNFoMGzYMJ31P6gi24off/wRGo0Gn3/+Oc6ePYsLFy5g1apVeOmll/RaZonWrVvjq6++AgB4eHjA0tISPXr0kH5/SpT3+1NS9xdffIHTp09j4MCBqFOnjtbvz4Pb15JtHXA/rO7fvx9FRUUIDw9/aF831MPWmz48PDxQUFCA27dvaw3PyMjQ+R/ph2HI+X8lPxIlG+WHad26NVJSUuDm5gZfX1+tl6OjI+zt7eHj4yOdt6IPBwcHhISEYPXq1YiNjcW2bduQn58vdXBXV1dYWlqicePGOHPmDIqKiqRpjx07BqVSiS5duiAlJQVqtRp2dnZadalUKlhaWhpUV7Vq1dCqVSuMHz8ea9as0arrQX5+fsjJyZHa0dfXF2lpaVAqlfD394e9vT3s7Oxw48aNhy6zqKgIgwcPRkpKChITE/Hqq69qtcmtW7fKTFPSJnfv3pXqLll206ZNH7o8e3t7aV3WqVMH77//PtLS0nDkyBHUrVu3QuvSxsYG1tbWJl2XujYoT7KPqdVq/Prrr1o/YjVr1sQ777xj0rp0tdfff/9d5pyc8uoq3f88PT3h7e2Npk2bavW/0nU1bNgQrVu3RnZ2NlQqlVZdTk5OsLS0lPqYp6endO5KiQsXLqBOnTpm02Zr1qyBv78//Pz8tOop+btv2rQphg4dKtV15coV6Zy8EiXtceHCBXh6epbZXrRq1Qo+Pj5IS0sr871LKy4uRmFhIZRKpVZ79OjRAxkZGZW2rXByckJRURFq166ttd23sbGBWq02aFtRsr5atWqFrVu3Yt++fcjOzn5o3SW/P5cuXYJSqUSPHj3g6+sLBwcHWFlZ6b3NcnR0REpKCn7++WcMGjTooX1dVx0lSvd1Y/H394eVlZXWd0hOTkZqaioCAgIMmhcPV1VAaGgo5s+fj/79+2P27NmoXbs2rly5gri4OLz77ruoXbs2oqKiMHbsWLi5uaFPnz64c+cOjh07hokTJ5aZ38KFC+Hp6YlWrVpBqVRiy5Yt8PDwkHb/PrjsyMhIHD16FPXq1UNiYiImTpyI4cOH4/XXX8fnn3+OxMRE+Pr64vLly1JdJZ2ypK5q1aqhSZMmuHLlCgCU2bgCwMWLF/H111/rVdfChQvx1Vdfwc/PD/Pnz4eVlRXefvttPPPMMygsLARwPwglJSXh008/ldqk5H8VJT7++GOkpaUhJCQEW7duRbNmzaBUKhEbGwsPDw84OTnpXB+RkZEIDw9HYWEhbt68KbVJ6d3huri5uUEIgRdeeAFFRUW4dOkS5syZg6lTp2LcuHGoWbMmpk+fjgkTJjxyXaampmLJkiVITU1FYWEhdu7ciZiYGLi7u1fquvzpp58wZswY2Nra4vDhw7h58yb++eefMuvnSfexOnXqaLWXlZVVmf+FmaKupKQkjB07FjY2Nti/fz+SkpLg6+uLlJSUR9ZVkf4XGhqKt99+G8ePH8eRI0ek7cXhw4el/3VHRUVhzJgx+Oqrr9CwYUM0b94c//3vf7F7924cPnwYX3/9tUnbzM3NDZ07d0ZsbCxeeOGFMm1QXl1qtbrM/+pDQ0Px8ccfIzU1Fc8//zymTJmCP/74A1FRUXjxxRfh7u6OqKgojBo1CkIIpKSkSH2oNFtbW3Tt2hUjR47E6NGj0bVrV/z88884ePAgHBwcKm1bMXz4cPj5+WHSpElITk7G6dOn0aJFC3z55ZcYPHgwFixY8MhtRXp6OubPny8FmoyMDKxcuRLu7u6PrPu9995DtWrVMHz4cPTq1Qu5ubk4fPgwfvrpJ3h7e2utt/bt2yM3NxenTp3CsWPH4OHhAVdXVwD3TyN488030bRpU9y8eRPnz583qK9HRUUhMzNT7/Yr7datW0hNTcW1a9cA/O/3x8PDAx4eHnB0dMSoUaMQEREBFxcXODg4YOLEiQgICECHDh30Xg4AnngshO5LyB/1WVpamggLCxM1atQQKpVK1KtXT4wePVpkZWVJ46xcuVI0bNhQWFlZCU9PTzFx4kTpMzxwMlfLli1FtWrVhIODg+jRo4c4deqUzktChbh/CV/JJaEPXsKXlpYm6tevL6ytrbXqGjt2rHSS48qVK6UTHXW9Sk489vPzM6iub7/9Vmu+9vb2YsSIEVKblMyzdJv4+flJdZVXDwDRunVrcerUKZ3tV9Im5V0WWrJsLy8vrXU5adIk0bVrV5GWliZefPHFcpedmJio17rUdZM5AGLVqlWVti4/++wzYWdnJy3L1tZWvPDCC2VOPDZFH3uwvXSdePyk6/r000+Fra2tVh8dPXq0SE9P16uukr5kaP8bPHiw8PLy0tpeNGvWTHTq1Eka58G/yxo1aogdO3aU6e+mWpcWFhYCgBgzZoxW3y858VhXXcHBwdLfXOm60tLSRHBwsLCyspIuoW7UqJHWzTc7dOgg7OzstPpQyd9sybzS0tJEx44dpUvRlUqlaNCggTh58qRWjcbcVoSFhQkXFxehVCqFhYWFsLCwEL6+vmLBggVCo9Hota2IjIzUua2IiorS2bal61ar1cLJyUk0aNBAVK9eXVpvDRo0kE5gLllvzs7OQqFQSHUsWbJE1K5dW+pf06dPF8uXLy+3rz+s/R51CXlpJe1XYt26dTq/f2RkpDROyc0AnZ2dha2trRg4cKBIS0sThlL8/5cgIiIikhWek0NERESyxJBDpIe5c+fCzs5O56tPnz6mLo+IzMTGjRvL3VY86uRmMj4eriLSw61bt3RebQDcv5qqVq1aT7giIjJHd+7c0bqHWGlWVlY6r5ajysOQQ0RERLLEw1VEREQkSww5REREJEsMOURERCRLDDlEZBQKhQI7duww+rjm6LnnnsObb76p9/iHDx+GQqEo8yye0mJiYnTeZZaIKo4hh0hmRowYAYVCAYVCAWtra/j6+mL27Nlazy+qDGlpaXpfTm/IuBWxYMECODs7Iy8vr8xnubm5cHBwwKefflrh+cfFxWHOnDmPUyIRPQEMOUQy1Lt3b6SlpSElJQVvvfUWoqKiMH/+fJ3jPvgAxYry8PDQeoK0scatiOHDh+Pu3buIi4sr89nWrVtRUFCg95OqSytpKxcXF9jb2z92nURUuRhyiGRIpVLBw8MDderUweuvv47AwEDs2rULwP09PQMGDMCHH36ImjVrSk8Pvnr1KgYPHgwnJye4uLigf//++Ouvv7Tmu3btWjRt2hQqlQqenp6YMGGC9FnpQ1AFBQWYMGECPD09oVarUadOHURHR+scFwDOnj2L7t27w8bGBtWrV8eYMWOQk5MjfV5S8yeffAJPT09Ur14d48ePlx7++iA3NzcEBwdj7dq1ZT5bu3YtBgwYABcXF7z33nt45plnYGtri3r16mHGjBla84yKikLLli3xxRdfoG7dulCr1QDKHq7asGED2rRpA3t7e3h4eGDo0KG4fv16mWUfO3YMLVq0gFqtRocOHXDu3Dmd9ZfYuXMnWrduDbVajXr16mHWrFnSHjkhBKKiouDt7Q2VSoWaNWvijTfeeOj8iJ42DDlETwEbGxutPTYJCQlITk5GfHw89uzZg8LCQgQFBcHe3h5HjhzBsWPHYGdnh969e0vTrVixAuPHj8eYMWNw9uxZ7Nq1C76+vjqX9+mnn2LXrl3YvHkzkpOTsXHjRvj4+Ogc9+7duwgKCoKzszNOnDiBLVu24NChQ1oBCgASExNx6dIlJCYmYv369YiJiUFMTEy533nUqFH49ttvceXKFWnYn3/+ie+//x6jRo0CANjb2yMmJga///47lixZgtWrV2PRokVa87l48SK2bduGuLg4nD59WueyCgsLMWfOHJw5cwY7duzAX3/9hREjRpQZ75133sGCBQtw4sQJuLq6Ijg4uNygduTIEYSFhWHSpEn4/fff8fnnnyMmJgYffvghAGDbtm1YtGgRPv/8c6SkpGDHjh1o3rx5ue1B9FQy+JGeRGTWSj8FWKPRiPj4eKFSqcTbb78tfe7u7i7y8/OlaTZs2CAaNmwoNBqNNCw/P1/Y2NiIAwcOCCGEqFmzppg2bVq5y0WppxVPnDhRdO/eXWt+5Y27atUq4ezsLHJycqTP9+7dK5RKpUhPT5dqrlOnjigqKpLGGTRokAgJCSm3nqKiIlGrVi2tJxvPmDFDeHt7i+LiYp3TzJ8/X/j7+0vvIyMjhZWVlbh+/brWeF27dhWTJk0qd9knTpwQAKSnMycmJgoAYtOmTdI4N2/eFDY2NiI2NlYIcf/JzI6OjtLnPXr0EHPnztWa74YNG4Snp6cQQogFCxaIZ555RhQUFJRbB9HTjntyiGRoz549sLOzg1qtRp8+fRASEoKoqCjp8+bNm8Pa2lp6f+bMGVy8eBH29vbSc3ZcXFyQl5eHS5cu4fr167h27Rp69Oih1/JHjBiB06dPo2HDhnjjjTdw8ODBcsf9448/4Ofnh2rVqknDOnXqBI1Gg+TkZGlY06ZNYWFhIb339PTUeUiohIWFBcLDwxETEwMhBDQaDdavX4+RI0dCqby/6YuNjUWnTp3g4eEBOzs7TJ8+HampqVrzqVOnDlxdXR/6fU+ePIng4GB4e3vD3t4eXbt2BYAy8woICJD+7eLigoYNG+KPP/7QOc8zZ85g9uzZWs8+Gj16NNLS0pCbm4tBgwbh3r17qFevHkaPHo3t27dX+snlRFWNpakLICLj69atG1asWAFra2vUrFkTlpbaf+qlAwUA5OTkwN/fHxs3biwzL1dXVykU6Kt169a4fPky9u3bh0OHDmHw4MEIDAzE1q1bDf8y/8/KykrrvUKhgEajeeg0r7zyCqKjo/Htt99Co9Hg6tWrGDlyJAAgKSkJoaGhmDVrFoKCguDo6IhNmzZhwYIFWvN4sK0eVHK4LSgoCBs3boSrqytSU1MRFBT0WCd15+TkYNasWXjxxRfLfKZWq+Hl5YXk5GQcOnQI8fHxGDduHObPn4/vvvuuTFsRPa0YcohkqFq1auWeL6NL69atERsbCzc3Nzg4OOgcx8fHBwkJCejWrZte83RwcEBISAhCQkLw8ssvo3fv3rh16xZcXFy0xmvcuDFiYmJw9+5dKVAcO3YMSqVSOim6ourXr4+uXbti7dq1EEIgMDBQekDiDz/8gDp16mDatGnS+KXP39HX+fPncfPmTXz00Ufw8vICAPz88886x/3xxx/h7e0NAPj3339x4cIFNG7cWOe4rVu3RnJy8kPXo42NDYKDgxEcHIzx48ejUaNGOHv2LFq3bm3w9yCSI4YcIkJoaCjmz5+P/v37Y/bs2ahduzauXLmCuLg4vPvuu6hduzaioqIwduxYuLm5oU+fPrhz5w6OHTuGiRMnlpnfwoUL4enpiVatWkGpVGLLli3w8PDQebO70NBQREZGIjw8HFFRUcjMzMTEiRMxfPhwuLu7P/Z3GzVqFEaPHg0AWicqN2jQAKmpqdi0aRPatm2LvXv3Yvv27QbP39vbG9bW1vjss88wduxYnDt3rtx76MyePRvVq1eHu7s7pk2bhho1amDAgAE6x505cyb69esHb29vvPzyy1AqlThz5gzOnTuHDz74ADExMSguLkb79u1ha2uL//73v7CxseFTrolK4Tk5RARbW1t8//338Pb2xosvvojGjRtj1KhRyMvLk/bshIeHY/HixVi+fDmaNm2Kfv36ISUlRef87O3t8fHHH6NNmzZo27Yt/vrrL3zzzTc6D3vZ2triwIEDuHXrFtq2bYuXX34ZPXr0wNKlS43y3V566SWoVCrY2tpqBYoXXngBkydPxoQJE9CyZUv88MMPmDFjhsHzd3V1RUxMDLZs2YImTZrgo48+wieffKJz3I8++giTJk2Cv78/0tPTsXv3bq1zo0oLCgrCnj17cPDgQbRt2xYdOnTAokWLpBDj5OSE1atXo1OnTmjRogUOHTqE3bt3o3r16gZ/ByK5UgghhKmLICIiIjI27skhIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZ+j+kAJmILEPk8AAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], +======= + "id": "ZDPV0M5rDTi6", + "outputId": "9db63164-3f42-47be-d302-d80d381d9b91" + }, + "outputs": [], +>>>>>>> upstream/main + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of precision values from precision1 to precision10\n", + "precision_values = [precision1, precision2, precision2_1, precision3, precision4, precision5, precision6, precision7, precision8, precision8_1, precision9, precision10]\n", + "\n", + "# List of corresponding labels for each precision value\n", + "labels = ['Precision1', 'Precision2', 'Precision2_1', 'Precision3', 'Precision4', 'Precision5', 'Precision6', 'Precision7', 'Precision8', 'Precision8_1', 'Precision9', 'Precision10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, precision_values, color='red')\n", + "plt.xlabel('Precision Variables')\n", + "plt.ylabel('Precision Values')\n", + "plt.title('Bar Graph of Precision')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 98, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "39LBleNeDeuw", +<<<<<<< HEAD + "outputId": "66c1cd08-96bb-46bb-afd3-7792e2b71345" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFVUlEQVR4nO3df3zO9eL/8ee1za7NMD83msUwSjKaH01Gq62hRDkSObZZOYo4dnxEYeQci/Krg/TD73OKQh3FEc1RiSizQsjv0WHzc2Njy/b+/uG767hs2DWba3t73G+363Zr773f1+u59/V2Xc/evy6LYRiGAAAATMLF2QEAAABKEuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGQLk1btw4WSwWnTp1qtTHWrNmjVq0aCEPDw9ZLBadO3eu1McsLRaLRePGjbP9vGDBAlksFh0+fNhpmYCSRLkByqD8D5urHz4+PgoLC9O///3v257n888/V9euXeXr6yt3d3dVr15dHTp00JQpU5SRkXHb89xup0+f1jPPPCNPT0/NmjVLixcvlpeXV6HzXvvaubm5yc/PT9HR0frtt99uc3LgzuTm7AAAru/1119XQECADMNQamqqFixYoC5duujzzz/XE088Uerj5+XlKTY2VgsWLND999+vl156Sf7+/jp//rw2b96s0aNHa/Xq1UpMTCz1LM70ww8/6Pz585owYYLCw8OLtEz+a3fp0iV9//33WrBggTZu3KidO3fKw8OjlBMDdzbKDVCGde7cWa1atbL9HBsbK19fX3300UclUm7y8vKUk5Nz3Q/byZMna8GCBRo2bJimTJkii8Vi+93QoUN1/PhxLVq06JbGKA/S0tIkSVWrVi3yMle/ds8//7xq1qypSZMmaeXKlXrmmWdKIyaA/4/DUkA5UrVqVXl6esrNzf7/S9566y21a9dONWrUkKenp4KDg7Vs2bICy1ssFg0ePFj//Oc/dd9998lqtWrNmjWFjpWVlaVJkybpvvvu05tvvmlXbPLVqVNHr7zySpHHKE7OJk2ayMPDQ8HBwfrmm28KzXru3DlFR0eratWq8vb2VkxMjLKysgpfidf45JNPFBwcLE9PT9WsWVN9+/a1O3z08MMPKyoqSpLUunVrWSwWRUdHF+m5rxYaGipJOnDggN30PXv26A9/+IOqV68uDw8PtWrVSitXriz0bxw2bJjq168vq9WqunXrql+/frbzjXJycjR27FgFBwfL29tbXl5eCg0N1X/+8x+HswLlHXtugDIsPT1dp06dkmEYSktL09///ndduHBBffv2tZtvxowZevLJJ/Xcc88pJydHS5YsUc+ePfXFF1/o8ccft5t3/fr1+vjjjzV48GDVrFlT9evXL3TsjRs36ty5cxo+fLhcXV0dyn29MRzJ+fXXX2vp0qUaMmSIrFarZs+erU6dOmnr1q1q1qyZ3bzPPPOMAgIClJCQoKSkJH3wwQfy8fHRpEmTbphzwYIFiomJUevWrZWQkKDU1FTNmDFD3333nbZv366qVavqtddeU5MmTfTee+/ZDjU1bNjQofUhyXaybrVq1WzTdu3apYceekh+fn4aOXKkvLy89PHHH6t79+5avny5nnrqKUnShQsXFBoaqt27d6t///564IEHdOrUKa1cuVLHjh1TzZo1lZGRoQ8++EC9e/fWCy+8oPPnz2vu3LmKjIzU1q1b1aJFC4czA+WWAaDMmT9/viGpwMNqtRoLFiwoMH9WVpbdzzk5OUazZs2MRx55xG66JMPFxcXYtWvXTTPMmDHDkGR89tlndtMvX75snDx50u6Rl5dXpDEcySnJ+PHHH23Tjhw5Ynh4eBhPPfWUbVp8fLwhyejfv7/d8k899ZRRo0aNG/59OTk5ho+Pj9GsWTPj4sWLtulffPGFIckYO3asbVr+6/HDDz/c8Dmvnverr74yTp48aRw9etRYtmyZUatWLcNqtRpHjx61zfvoo48a999/v3Hp0iXbtLy8PKNdu3ZGYGCgbdrYsWMNScaKFSsKjJe/7i9fvmxkZ2fb/e7s2bOGr69vgfUjyYiPjy+Q+dChQzf9+4DygMNSQBk2a9YsrVu3TuvWrdM//vEPhYWF6fnnn9eKFSvs5vP09LT999mzZ5Wenq7Q0FAlJSUVeM6OHTuqadOmNx07/yqoSpUq2U3fsWOHatWqZfc4ffp0kcZwJGdISIiCg4NtP999993q1q2bvvzyS+Xm5trNO3DgQLufQ0NDdfr06RteyfXjjz8qLS1NL730kt35QI8//rjuuecerVq16rrLFkV4eLhq1aolf39//eEPf5CXl5dWrlypunXrSpLOnDmj9evX65lnntH58+d16tQpnTp1SqdPn1ZkZKT27dtnOzy2fPlyBQUF2fbkXC3/cKGrq6vc3d0lXTnP6cyZM7p8+bJatWpV6PoFzIzDUkAZ1qZNG7sTinv37q2WLVtq8ODBeuKJJ2wfZl988YX++te/Kjk5WdnZ2bb5CztPJiAgoEhjV65cWdKVQyJXa9SokdatWydJWrRokRYvXlzkMRzJGRgYWGBa48aNlZWVpZMnT6p27dq26XfffbfdfPmHfs6ePasqVaoUmuXIkSOSpCZNmhT43T333KONGzcWulxRzZo1S40bN1Z6errmzZunb775Rlar1fb7/fv3yzAMjRkzRmPGjCn0OdLS0uTn56cDBw6oR48eNx1z4cKFmjJlivbs2aPff//dNr2orzlgFpQboBxxcXFRWFiYZsyYoX379um+++7Tt99+qyeffFIdOnTQ7NmzVadOHVWoUEHz58/Xhx9+WOA5rt57ciP33HOPJGnnzp3q1q2bbXqlSpVsl0NfrwAUNoajOR1xvXOCDMO4pee9FVcX0+7du6t9+/bq06eP9u7dq0qVKikvL0+SNHz4cEVGRhb6HI0aNSryeP/4xz8UHR2t7t276//+7//k4+MjV1dXJSQkFDiJGTA7yg1Qzly+fFnS//aoLF++XB4eHvryyy/t9gzMnz//lsYJDQ2Vt7e3lixZolGjRsnF5daOYjuac9++fQWm/frrr6pYsaJq1ap1S1kkqV69epKkvXv36pFHHrH73d69e22/Lwn5JSMsLEwzZ87UyJEj1aBBA0lShQoVbnrvnIYNG2rnzp03nGfZsmVq0KCBVqxYYbcnLD4+/tb/AKCc4ZwboBz5/ffftXbtWrm7u+vee++VdOWD02Kx2J2HcvjwYX322We3NFbFihU1YsQI7dy5UyNHjix0L4gje0Yczbl582a7c0WOHj2qf/3rX3rsscccvnqrMK1atZKPj4/mzJljd4js3//+t3bv3l3g6q1b9fDDD6tNmzaaPn26Ll26JB8fHz388MN69913dfz48QLznzx50vbfPXr00E8//aRPP/20wHz5r0H+Orn6NdmyZYs2b95con8HUB6w5wYow/79739rz549kq6cf/Hhhx9q3759GjlypO1ckscff1xTp05Vp06d1KdPH6WlpWnWrFlq1KiRfv7551saf+TIkdq9e7fefPNNrV27Vj169FDdunV19uxZJSUl6ZNPPpGPj0+RbtDnaM5mzZopMjLS7lJwSRo/fvwt/U35KlSooEmTJikmJkYdO3ZU7969bZeC169fX8OGDSuRca72f//3f+rZs6cWLFiggQMHatasWWrfvr3uv/9+vfDCC2rQoIFSU1O1efNmHTt2TD/99JNtuWXLlqlnz57q37+/goODdebMGa1cuVJz5sxRUFCQnnjiCa1YsUJPPfWUHn/8cR06dEhz5sxR06ZNC5w3BZieMy/VAlC4wi4F9/DwMFq0aGG88847dpdeG4ZhzJ071wgMDDSsVqtxzz33GPPnz7ddJn01ScagQYMczvPpp58aXbp0MWrVqmW4ubkZVatWNdq3b2+8+eabxrlz54o8hqM5//GPf9jmb9mypfGf//zHbr78ZU+ePGk33ZFLm5cuXWq0bNnSsFqtRvXq1Y3nnnvOOHbsWKHP58il4IXNm5ubazRs2NBo2LChcfnyZcMwDOPAgQNGv379jNq1axsVKlQw/Pz8jCeeeMJYtmyZ3bKnT582Bg8ebPj5+Rnu7u5G3bp1jaioKOPUqVOGYVy5JHzixIlGvXr1bOvriy++MKKioox69erZPZe4FBwmZzEMJ55xBwCFsFgsGjRokGbOnOnsKADKIc65AQAApkK5AQAApkK5AQAApsLVUgDKHE4FBHAr2HMDAABMhXIDAABM5Y47LJWXl6f//ve/qly5cqFf1gcAAMoewzB0/vx53XXXXTf9Opg7rtz897//lb+/v7NjAACAYjh69Kjq1q17w3nuuHJTuXJlSVdWTv7t6wEAQNmWkZEhf39/2+f4jdxx5Sb/UFSVKlUoNwAAlDNFOaWEE4oBAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpOLXcfPPNN+ratavuuusuWSwWffbZZzddZsOGDXrggQdktVrVqFEjLViwoNRzAgCA8sOp5SYzM1NBQUGaNWtWkeY/dOiQHn/8cYWFhSk5OVl//vOf9fzzz+vLL78s5aQAAKC8cOoXZ3bu3FmdO3cu8vxz5sxRQECApkyZIkm69957tXHjRk2bNk2RkZGlFRMAAJQj5eqcm82bNys8PNxuWmRkpDZv3uykRAAAoKxx6p4bR504cUK+vr5203x9fZWRkaGLFy/K09OzwDLZ2dnKzs62/ZyRkVHqOQEAgPOUqz03xZGQkCBvb2/bw9/f39mRnMLixEd5zAUAKL/KVbmpXbu2UlNT7aalpqaqSpUqhe61kaRRo0YpPT3d9jh69OjtiAoAKGH8jxCKqlwdlgoJCdHq1avtpq1bt04hISHXXcZqtcpqtZZ2NAAAyhRnFjPDiWNLTt5zc+HCBSUnJys5OVnSlUu9k5OTlZKSIunKXpd+/frZ5h84cKAOHjyoESNGaM+ePZo9e7Y+/vhjDRs2zBnxAZQDHPp0HOsL5Z1Ty82PP/6oli1bqmXLlpKkuLg4tWzZUmPHjpUkHT9+3FZ0JCkgIECrVq3SunXrFBQUpClTpuiDDz7gMnAAAGBjMQzD2XuPbquMjAx5e3srPT1dVapUcXac26as7p4sq7lgHmxjjnPWOrvZ+iqrucoqs237jnx+l6sTigEAAG6GcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEzFzdkBAAAozyxOHNtw4thlGeUGKGec9UZ6szfRspoLwJ2Hw1IAAMBUKDcAAMBUKDcAAMBUKDcAAMBUKDcAAMBUuFoKAJyAy4eB0sOeGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCpcLQUUgitZAKD8Ys8NAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFaeXm1mzZql+/fry8PBQ27ZttXXr1hvOP336dDVp0kSenp7y9/fXsGHDdOnSpduU9uYsTnoAAIArnFpuli5dqri4OMXHxyspKUlBQUGKjIxUWlpaofN/+OGHGjlypOLj47V7927NnTtXS5cu1auvvnqbkwMAgLLKqeVm6tSpeuGFFxQTE6OmTZtqzpw5qlixoubNm1fo/Js2bdJDDz2kPn36qH79+nrsscfUu3fvm+7tAQAAdw6nlZucnBxt27ZN4eHh/wvj4qLw8HBt3ry50GXatWunbdu22crMwYMHtXr1anXp0uW642RnZysjI8PuAQAAzMvNWQOfOnVKubm58vX1tZvu6+urPXv2FLpMnz59dOrUKbVv316GYejy5csaOHDgDQ9LJSQkaPz48SWaHQAAlF1OP6HYERs2bNDEiRM1e/ZsJSUlacWKFVq1apUmTJhw3WVGjRql9PR02+Po0aO3MTEAALjdnLbnpmbNmnJ1dVVqaqrd9NTUVNWuXbvQZcaMGaM//vGPev755yVJ999/vzIzMzVgwAC99tprcnEp2NWsVqusVmvJ/wEAAKBMctqeG3d3dwUHBysxMdE2LS8vT4mJiQoJCSl0maysrAIFxtXVVZJkGEbphQUAAOWG0/bcSFJcXJyioqLUqlUrtWnTRtOnT1dmZqZiYmIkSf369ZOfn58SEhIkSV27dtXUqVPVsmVLtW3bVvv379eYMWPUtWtXW8kBAAB3NqeWm169eunkyZMaO3asTpw4oRYtWmjNmjW2k4xTUlLs9tSMHj1aFotFo0eP1m+//aZatWqpa9eu+tvf/uasPwEAAJQxFuMOO56TkZEhb29vpaenq0qVKiX+/M66W/DNXkRn3sX4RtnIVVBZfS3J5Ti2MceQy3HldRsrDkc+v8vV1VIAAAA3Q7kBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACm4nC5uXjxorKysmw/HzlyRNOnT9fatWtLNBgAAEBxOFxuunXrpkWLFkmSzp07p7Zt22rKlCnq1q2b3nnnnRIPCAAA4AiHy01SUpJCQ0MlScuWLZOvr6+OHDmiRYsW6e233y7xgAAAAI5wuNxkZWWpcuXKkqS1a9fq6aeflouLix588EEdOXKkxAMCAAA4wuFy06hRI3322Wc6evSovvzySz322GOSpLS0NFWpUqXEAwIAADjC4XIzduxYDR8+XPXr11ebNm0UEhIi6cpenJYtW5Z4QAAAAEdYDMMwHF3oxIkTOn78uIKCguTicqUfbd26VVWqVNE999xT4iFLUkZGhry9vZWenl4qe5osJf6MRXOzF9FZuaQbZyNXQWX1tSSX49jGHEMux5XXbaw4HPn8LtZ9bmrXrq3KlStr3bp1unjxoiSpdevWZb7YAAAA83O43Jw+fVqPPvqoGjdurC5duuj48eOSpNjYWP3lL38p8YAAAACOcLjcDBs2TBUqVFBKSooqVqxom96rVy+tWbOmRMMBAAA4ys3RBdauXasvv/xSdevWtZseGBjIpeAAAMDpHN5zk5mZabfHJt+ZM2dktVpLJBQAAEBxOVxuQkNDbV+/IEkWi0V5eXmaPHmywsLCSjQcAACAoxwuN5MnT9Z7772nzp07KycnRyNGjFCzZs30zTffaNKkSQ4HmDVrlurXry8PDw+1bdtWW7duveH8586d06BBg1SnTh1ZrVY1btxYq1evdnhcAABgTg6Xm2bNmunXX39V+/bt1a1bN2VmZurpp5/W9u3b1bBhQ4eea+nSpYqLi1N8fLySkpIUFBSkyMhIpaWlFTp/Tk6OIiIidPjwYS1btkx79+7V+++/Lz8/P0f/DAAAYFLFuolfSWnbtq1at26tmTNnSpLy8vLk7++vl19+WSNHjiww/5w5c/Tmm29qz549qlChQrHG5CZ+t195vMlUWc0lsY1dq6zmktjGHEUux5XXbaw4HPn8dvhqqW+++eaGv+/QoUORnicnJ0fbtm3TqFGjbNNcXFwUHh6uzZs3F7rMypUrFRISokGDBulf//qXatWqpT59+uiVV16Rq6troctkZ2crOzvb9nNGRkaR8gEAgPLJ4XLz8MMPF5hmsfyvH+bm5hbpeU6dOqXc3Fz5+vraTff19dWePXsKXebgwYNav369nnvuOa1evVr79+/XSy+9pN9//13x8fGFLpOQkKDx48cXKRMAACj/HD7n5uzZs3aPtLQ0rVmzRq1bt9batWtLI6NNXl6efHx89N577yk4OFi9evXSa6+9pjlz5lx3mVGjRik9Pd32OHr0aKlmBAAAzuXwnhtvb+8C0yIiIuTu7q64uDht27atSM9Ts2ZNubq6KjU11W56amqqateuXegyderUUYUKFewOQd177706ceKEcnJy5O7uXmAZq9XK/XcAALiDFOuLMwvj6+urvXv3Fnl+d3d3BQcHKzEx0TYtLy9PiYmJCgkJKXSZhx56SPv371deXp5t2q+//qo6deoUWmwAAMCdx+E9Nz///LPdz4Zh6Pjx43rjjTfUokULh54rLi5OUVFRatWqldq0aaPp06crMzNTMTExkqR+/frJz89PCQkJkqQXX3xRM2fO1NChQ/Xyyy9r3759mjhxooYMGeLonwEAAEzK4XLTokULWSwWXXsF+YMPPqh58+Y59Fy9evXSyZMnNXbsWJ04cUItWrTQmjVrbCcZp6SkyMXlfzuX/P399eWXX2rYsGFq3ry5/Pz8NHToUL3yyiuO/hkAAMCkHL7PzbVfjuni4qJatWrJw8OjRIOVFu5zc/uVx/swlNVcEtvYtcpqLoltzFHkclx53caKo1Tvc1OvXr1iBwMAAChtRSo3b7/9dpGfkPNfAACAMxXpsFRAQEDRnsxi0cGDB285VGnisNTtVx53m5bVXBLb2LXKai6JbcxR5HJced3GiqPED0sdOnSoRIIBAACUthK7zw0AAEBZ4PAJxZJ07NgxrVy5UikpKcrJybH73dSpU0skGAAAQHE4XG4SExP15JNPqkGDBtqzZ4+aNWumw4cPyzAMPfDAA6WREQAAoMgcPiw1atQoDR8+XDt27JCHh4eWL1+uo0ePqmPHjurZs2dpZAQAACgyh8vN7t271a9fP0mSm5ubLl68qEqVKun111/XpEmTSjwgAACAIxwuN15eXrbzbOrUqaMDBw7Yfnfq1KmSSwYAAFAMDp9z8+CDD2rjxo2699571aVLF/3lL3/Rjh07tGLFCj344IOlkREAAKDIilxuzpw5o+rVq2vq1Km6cOGCJGn8+PG6cOGCli5dqsDAQK6UAgAATlfkL8708PBQ9+7dFRsbq4iIiNLOVWq4Q/HtVx7voFlWc0lsY9cqq7kktjFHkctx5XUbKw5HPr+LfM7N+++/r5MnT6pTp06qX7++xo0bp8OHD99qVgAAgBJV5HLzxz/+UYmJidq/f7+ioqK0cOFCNWrUSBEREVq6dGmBm/kBAAA4g8NXSwUEBGj8+PE6dOiQ1qxZIx8fH/Xv31916tThG8EBAIDTFfmcmxtZvny5BgwYoHPnzik3N7ckcpUazrm5/crjMeGymktiG7tWWc0lsY05ilyOK6/bWHGU+LeCF+bIkSOaP3++Fi5cqKNHjyosLEyxsbHFfToAAIAS4VC5yc7O1vLlyzVv3jxt2LBBfn5+io6OVkxMjOrXr19KEQEAAIquyOXmpZde0pIlS5SVlaVu3bpp9erVioiIkMXizB1fAAAA9opcbjZu3Kj4+Hj17dtXNWrUKM1MAAAAxVbkcvPzzz+XZg4AAIAS4fCl4AAAAGUZ5QYAAJgK5QYAAJgK5QYAAJhKkU4oduRk4ubNmxc7DAAAwK0qUrlp0aKFLBaLrvdNDfm/s1gsZf7rFwAAgLkVqdwcOnSotHMAAACUiCKVm3r16pV2DgAAgBJRpHKzcuXKIj/hk08+WewwAAAAt6pI5aZ79+5FejLOuQEAAM5WpHKTl5dX2jkAAABKBPe5AQAAplLkL868WmZmpr7++mulpKQoJyfH7ndDhgwpkWAAAADF4XC52b59u7p06aKsrCxlZmaqevXqOnXqlCpWrCgfHx/KDQAAcCqHD0sNGzZMXbt21dmzZ+Xp6anvv/9eR44cUXBwsN56663SyAgAAFBkDpeb5ORk/eUvf5GLi4tcXV2VnZ0tf39/TZ48Wa+++mppZAQAACgyh8tNhQoV5OJyZTEfHx+lpKRIkry9vXX06NGSTQcAAOAgh8+5admypX744QcFBgaqY8eOGjt2rE6dOqXFixerWbNmpZERAACgyBzeczNx4kTVqVNHkvS3v/1N1apV04svvqiTJ0/q3XffLfGAAAAAjrAY1/uqb5PKyMiQt7e30tPTVaVKlRJ/fkuJP2PR3OxFdFYu6cbZyFVQWX0tyeU4tjHHkMtx5XUbKw5HPr8d3nNz6NAh7du3r8D0ffv26fDhw44+HQAAQIlyuNxER0dr06ZNBaZv2bJF0dHRJZEJAACg2BwuN9u3b9dDDz1UYPqDDz6o5OTkksgEAABQbA6XG4vFovPnzxeYnp6ezjeCAwAAp3O43HTo0EEJCQl2RSY3N1cJCQlq3759iYYDAABwlMP3uZk0aZI6dOigJk2aKDQ0VJL07bffKiMjQ+vXry/xgAAAAI5weM9N06ZN9fPPP+uZZ55RWlqazp8/r379+mnPnj3cxA8AADgd97kpYdyHoaDyeB+GsppLYhu7VlnNJbGNOYpcjiuv21hxlOp9bqQrh6H69u2rdu3a6bfffpMkLV68WBs3bizO0wEAAJQYh8vN8uXLFRkZKU9PTyUlJSk7O1vSlaulJk6cWOIBAQAAHOFwufnrX/+qOXPm6P3331eFChVs0x966CElJSWVaDgAAABHOVxu9u7dqw4dOhSY7u3trXPnzpVEJgAAgGJzuNzUrl1b+/fvLzB948aNatCgQYmEAgAAKC6Hy80LL7ygoUOHasuWLbJYLPrvf/+rf/7znxo+fLhefPHF0sgIAABQZA7fxG/kyJHKy8vTo48+qqysLHXo0EFWq1XDhw/Xyy+/XBoZAQAAiqzY97nJycnR/v37deHCBTVt2lSVKlXSxYsX5enpWdIZSxT3ubn9yuN9GMpqLolt7FplNZfENuYocjmuvG5jxVHq97mRJHd3dzVt2lRt2rRRhQoVNHXqVAUEBBT36QAAAEpEkctNdna2Ro0apVatWqldu3b67LPPJEnz589XQECApk2bpmHDhpVWTgAAgCIpcrkZO3as3nnnHdWvX1+HDx9Wz549NWDAAE2bNk1Tp07V4cOH9corrxQrxKxZs1S/fn15eHiobdu22rp1a5GWW7JkiSwWi7p3716scQEAgPkUudx88sknWrRokZYtW6a1a9cqNzdXly9f1k8//aRnn31Wrq6uxQqwdOlSxcXFKT4+XklJSQoKClJkZKTS0tJuuNzhw4c1fPhw2zeTAwAASA6Um2PHjik4OFiS1KxZM1mtVg0bNkwWy62dsjR16lS98MILiomJUdOmTTVnzhxVrFhR8+bNu+4yubm5eu655zR+/HjurQMAAOwUudzk5ubK3d3d9rObm5sqVap0S4Pn5ORo27ZtCg8P/18gFxeFh4dr8+bN113u9ddfl4+Pj2JjY286RnZ2tjIyMuweAADAvIp8nxvDMBQdHS2r1SpJunTpkgYOHCgvLy+7+VasWFHkwU+dOqXc3Fz5+vraTff19dWePXsKXWbjxo2aO3eukpOTizRGQkKCxo8fX+RMAACgfCtyuYmKirL7uW/fviUe5mbOnz+vP/7xj3r//fdVs2bNIi0zatQoxcXF2X7OyMiQv79/aUUEAABOVuRyM3/+/BIfvGbNmnJ1dVVqaqrd9NTUVNWuXbvA/AcOHNDhw4fVtWtX27S8vDxJVw6T7d27Vw0bNrRbxmq12vY2AQAA8yv2TfxKgru7u4KDg5WYmGiblpeXp8TERIWEhBSY/5577tGOHTuUnJxsezz55JMKCwtTcnIye2QAAIDj3y1V0uLi4hQVFaVWrVqpTZs2mj59ujIzMxUTEyNJ6tevn/z8/JSQkCAPDw81a9bMbvmqVatKUoHpAADgzuT0ctOrVy+dPHlSY8eO1YkTJ9SiRQutWbPGdpJxSkqKXFycuoMJAACUI8X+4szyii/OvP3K4xe7ldVcEtvYtcpqLoltzFHkclx53caK47Z8cSYAAEBZRLkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmUibKzaxZs1S/fn15eHiobdu22rp163Xnff/99xUaGqpq1aqpWrVqCg8Pv+H8AADgzuL0crN06VLFxcUpPj5eSUlJCgoKUmRkpNLS0gqdf8OGDerdu7f+85//aPPmzfL399djjz2m33777TYnBwAAZZHFMAzDmQHatm2r1q1ba+bMmZKkvLw8+fv76+WXX9bIkSNvunxubq6qVaummTNnql+/fjedPyMjQ97e3kpPT1eVKlVuOf+1LCX+jEVzsxfRWbmkG2cjV0Fl9bUkl+PYxhxDLseV122sOBz5/HbqnpucnBxt27ZN4eHhtmkuLi4KDw/X5s2bi/QcWVlZ+v3331W9evVCf5+dna2MjAy7BwAAMC+nlptTp04pNzdXvr6+dtN9fX114sSJIj3HK6+8orvuusuuIF0tISFB3t7etoe/v/8t5wYAAGWX08+5uRVvvPGGlixZok8//VQeHh6FzjNq1Cilp6fbHkePHr3NKQEAwO3k5szBa9asKVdXV6WmptpNT01NVe3atW+47FtvvaU33nhDX331lZo3b37d+axWq6xWa4nkBQAAZZ9T99y4u7srODhYiYmJtml5eXlKTExUSEjIdZebPHmyJkyYoDVr1qhVq1a3IyoAACgnnLrnRpLi4uIUFRWlVq1aqU2bNpo+fboyMzMVExMjSerXr5/8/PyUkJAgSZo0aZLGjh2rDz/8UPXr17edm1OpUiVVqlTJaX8HAAAoG5xebnr16qWTJ09q7NixOnHihFq0aKE1a9bYTjJOSUmRi8v/djC98847ysnJ0R/+8Ae754mPj9e4ceNuZ3QAAFAGOf0+N7cb97m5/crjfRjKai6JbexaZTWXxDbmKHI5rrxuY8VRbu5zAwAAUNIoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFTKRLmZNWuW6tevLw8PD7Vt21Zbt2694fyffPKJ7rnnHnl4eOj+++/X6tWrb1NSAABQ1jm93CxdulRxcXGKj49XUlKSgoKCFBkZqbS0tELn37Rpk3r37q3Y2Fht375d3bt3V/fu3bVz587bnBwAAJRFFsMwDGcGaNu2rVq3bq2ZM2dKkvLy8uTv76+XX35ZI0eOLDB/r169lJmZqS+++MI27cEHH1SLFi00Z86cm46XkZEhb29vpaenq0qVKiX3h/x/lhJ/xqK52YvorFzSjbORq6Cy+lqSy3FsY44hl+PK6zZWHI58fjt1z01OTo62bdum8PBw2zQXFxeFh4dr8+bNhS6zefNmu/klKTIy8rrzAwCAO4ubMwc/deqUcnNz5evrazfd19dXe/bsKXSZEydOFDr/iRMnCp0/Oztb2dnZtp/T09MlXWmAZlKW/5qymo1cjiGX48pqNnI5pqzmksputtLIlf+5XZQDTk4tN7dDQkKCxo8fX2C6v7+/E9KUHm9nB7iBspqNXI4hl+PKajZyOaas5pLKbrbSzHX+/Hl5e994BKeWm5o1a8rV1VWpqal201NTU1W7du1Cl6ldu7ZD848aNUpxcXG2n/Py8nTmzBnVqFFDFoszj0jay8jIkL+/v44ePVoq5wIVV1nNJZXdbORyDLkcV1azkcsx5HKMYRg6f/687rrrrpvO69Ry4+7uruDgYCUmJqp79+6SrpSPxMREDR48uNBlQkJClJiYqD//+c+2aevWrVNISEih81utVlmtVrtpVatWLYn4paJKlSplamPKV1ZzSWU3G7kcQy7HldVs5HIMuYruZnts8jn9sFRcXJyioqLUqlUrtWnTRtOnT1dmZqZiYmIkSf369ZOfn58SEhIkSUOHDlXHjh01ZcoUPf7441qyZIl+/PFHvffee878MwAAQBnh9HLTq1cvnTx5UmPHjtWJEyfUokULrVmzxnbScEpKilxc/ndRV7t27fThhx9q9OjRevXVVxUYGKjPPvtMzZo1c9afAAAAyhCnlxtJGjx48HUPQ23YsKHAtJ49e6pnz56lnOr2slqtio+PL3AIzdnKai6p7GYjl2PI5biymo1cjiFX6XH6TfwAAABKktO/fgEAAKAkUW4AAICpUG4AAICpUG7KGYvFos8++0ySdPjwYVksFiUnJzs1Uz5nZSvL6+RGympucjmurGYjV9kY91aVldxlJUdRUG4cEB0dLYvFIovFogoVKiggIEAjRozQpUuXnB3NLlv+w8fHp9SzXT2uJP3pT3/SiBEj7L7PS5J++ukn9e7dW/7+/vL09NS9996rGTNmlGq2G41b1Nfy+PHj6tOnjxo3biwXFxe7m0eWhrFjx9pyubi4yM3NTa6urqpbt64GDx7stO9EuzpX/vp6+eWX5efnJ4vFonPnzjkll1T4tp//WLJkidNyXbvOatWqpVq1aslqtcrHx0eDBg1yeq7rPdLS0kp83KK+V0jSDz/8oEcffVRVq1ZVtWrVFBkZqZ9++qnEMxVl3CeffLJI7xWXLl1SdHS07r//frm5udluTFtS3n77bVksFgUEBEiSHn/8cVuOxMREtWvXTpUrV1bt2rX1yiuv6PLlyyU6flEMGTJEwcHBslqtatGiRaHz/PzzzwoNDZWHh4f8/f01efLkUslCuXFQp06ddPz4cR08eFDTpk3Tu+++q/j4eGfHknQlW//+/TVhwgR17NhRp0+fvi3Z8teJJPXv31/vvvuupk2bZjfPtm3b5OPjo3/84x/atWuXXnvtNY0aNUozZ84s1WzXG3f37t1Fei2zs7NVq1YtjR49WkFBQaWaNV+nTp20e/duTZgwQW+88Ya8vLzUvn17ffXVVxo4cOBtyXC9XFevrzlz5pSZS0U7deokSXrrrbc0b948Va5cWYMGDSrxD5ji5Dp+/LhGjhyp3NxcZWZmKjo6Wl999ZUiIyOdmuvgwYP68ccf7dZXZGSkOnbsKB8fn1Ib92bvFRcuXFCnTp109913a8uWLdq4caMqV66syMhI/f7776WS60bjrlu3TpGRkTd9r8jNzZWnp6eGDBmi8PDwUsnYqVMnbd26VZI0fPhwvfvuu3rxxRfVpUsXderUSdu3b9fSpUu1cuVKjRw5slQy3Ez//v3Vq1evQn+XkZGhxx57TPXq1dO2bdv05ptvaty4caVyE17KjYOsVqtq164tf39/de/eXeHh4Vq3bp2kK18dkZCQoICAAHl6eiooKEjLli2zW37Xrl164oknVKVKFVWuXFmhoaE6cOCApCv/1xAREaGaNWvK29tbHTt2VFJSkkPZ5s6dq9GjR+vhhx+2/cMs7Wz560SS2rZtq/DwcG3cuNFu3AkTJui9997TkCFDlJSUpL59+yomJkYrVqwo1XXSv39/zZgxQx07dlSDBg1s46akpBTptQwLC9N7772nKVOmKCcn57a8llarVffcc49ee+01DR8+XBEREfr111/10ksv6ZtvvnHaNnb1+jp+/LiqVq0qV1dXu/XlzG1fkho2bKiYmBhFRERo06ZN8vDwcGq2/K9/mTJlij755BN17txZP/zwg5o3b64nnnjCqbkCAgIUHBxsW1/ffPON1q9fr5iYGKe+VzRp0kRnzpzRli1btGPHDt13332Kj49Xamqqvvrqq1Lbhvbs2aMzZ87o9ddfV5MmTWzjXrp0Sbm5uTd9r2jWrJkWLFigmTNnFtirU1Kvo9VqVa1atSRJYWFhCg8P17///W81b95co0eP1ieffKLo6GgdPHhQU6dO1eLFi0slx/W8/fbbGjRokBo0aFDo7//5z38qJydH8+bN03333adnn31WQ4YM0dSpUx0apygoN7dg586d2rRpk9zd3SVd+QbyRYsWac6cOdq1a5eGDRumvn376uuvv5Yk/fbbb+rQoYOsVqvWr1+vbdu2qX///rbdh+fPn1dUVJQ2btyo77//XoGBgerSpYvOnz/vcLa0tDRlZmaWerZr/0/qyJEj2rRpkypUqCBJmjdv3nXHTU9Pl6en521bJ/nS09ML7HEoymu5e/duHTt27JbWl6O583NJ0ooVK1SzZk2nb2O//PKLxowZY9tNL0lTp051ei5JGjRokKpWrarPP/9c6enpMgzD6f8u161bp7y8PG3ZskX/+te/tHPnTj3zzDMaOXJkmVhn+dtYenq6KlasqEOHDjn1vWLmzJmqWrWqGjdurL59+2rt2rWaO3euGjVqpL59+5ba+mjSpIlq1KihuXPnKicnRxcvXtTcuXPl7e2tihUrFlhfN3qv+Pbbb3Xq1KlSfR3379+vTZs2yWKxyMPDwy7HBx98IMMwFBsb65TPn+vZvHmzOnToYFt3khQZGam9e/fq7NmzJTaOJMlAkUVFRRmurq6Gl5eXYbVaDUmGi4uLsWzZMuPSpUtGxYoVjU2bNtktExsba/Tu3dswDMMYNWqUERAQYOTk5BRpvNzcXKNy5crG559/bpsmyfj0008NwzCMQ4cOGZKM7du3F5pNUqlne+SRR2zj5o/p4uJizJ4925BkeHh4FDpuRESE4ebmZvTq1avU1klhvvvuO8PNzc2IiIhw+LWsXbu20bhx41taXzfL3bVr10JfR0lGly5dnLaNXZ3LYrHY1te4ceMMSWVi23d3dzfc3d0NSYbFYjHc3NyMKVOmOH2d5WfKX2cTJ040wsLCDIvFYnz99ddOy3Xttu/n52cMGDCgTLxX7Nixw2jYsKFtviZNmhgvvfRSqb9X5I/r4uJiuLi4GE2aNDF69Ojh8HtFYGCg4efnd0vr69rcYWFhhqurq1GxYkW79Td69GjDYrEYVqvV+Pbbb41jx44ZoaGhhiTj4Ycfvi3/Bq8VHx9vBAUFFZgeERFhDBgwwG7arl27DEnGL7/8UqRcRVUmvn6hPAkLC9M777yjzMxMTZs2TW5uburRo4d27dqlrKwsRURE2M2fk5Ojli1bSpKSk5MVGhpq+z+Va6Wmpmr06NHasGGD0tLSlJubq6ysLKWkpDicLSoqSkePHi31bJmZmbZxAwMDFRYWpgYNGqhz586Srpxkd+24+ScQxsfHa9OmTaW6Tq62c+dOdevWTfHx8dq/f7/Dr2VWVpaM/39D79J8La/ONXHiROXm5qpfv34aNmyYU7exsLAw+fv767ffflOdOnXk5uamjh072tZNWdn281/Lu+66S5MnT3b6OmvevLmmTp2qiIgI3X333Ro1apTat2+vDh06KDIy0nZo73bnunp9nTlzRp9//rkeffRRvffee05/r7h48aLthPrGjRvr3nvv1aJFi9StW7dS24YuXryo2NhYPfTQQ/roo4+Um5urt956S4mJierYsaPefffdIr9XXLx40fZt2iX5OoaFhem1115TWFiYunbtKh8fH02YMEHZ2dl68803FRoaKkm2PSPffvutgoODSzxHeUC5cZCXl5caNWok6cpu1KCgIM2dO9f2xZ2rVq2Sn5+f3TL5h0A8PT1v+NxRUVE6ffq0ZsyYoXr16slqtSokJKTAuR5FydatWzdNnjy51LPl5eXZjTt48GDFx8dr6dKltmWvHnffvn3q27ev+vTpo9GjR6tHjx6luk7y/fLLL3r00Uc1YMAAjR49WtHR0Q6/ls8995ztd6X5Wl6d66OPPlJQUJBOnjypESNGaODAgVq0aJGaN29ut8zt2Ma8vLyUlJSkHTt2SLpyrsG8efNsv+/Ro4fGjBlz23PlZ7v2tXzkkUeUmpoqyXn/Lr28vGzbzAcffKDHH3/cbhsbNGhQgZPEb1euq9dXzZo15e/vr3r16kly7nvFd999pylTpmjz5s1ycXGR1WqVr6+vKlaseMMP2lvdhj788EMdPnzYNm7+tIoVKyojI8Oh94oRI0YoMzPzltZXYbm9vLxUv359SdK4ceMUFRWluXPnqkePHnrzzTe1bNkyNWnSRMeOHVPnzp318ccfq3Xr1iWeo7hq165t+zeZL//n/HOxSgrl5ha4uLjo1VdfVVxcnH799VdZrValpKTY/m/2Ws2bN9fChQv1+++/F9qev/vuO82ePVtdunSRJB09etR23NZR+ZeCjx49ulSz5V+WmC9/nQwdOlTSlf+DyB93165dio6OVmxsrO3yv9uxTnbt2qVHHnlEUVFR+tvf/lboPEV5LT09PVW5cuXblvvaXPPnz5d05f4STz/9dKHzl3au5cuX6+LFi5Kk1atXa+LEiUpPT5e7u7vatGlj+wC43bmulr/OBgwYoKpVq+rixYtO/Xf50EMPSbpS7PNfy++//96W1dnrLCsrS1lZWcrNzVXTpk2d/l5RuXJlubu7KzAw0HbZ+OXLl+Xi4qI9e/aU2vrIysqSi4uLbcz8jBaLxbbH9urcN3qvqFKlivLy8m5pfd1MYTmysrLUrFkzffzxx/L391e3bt1sewZv57/B6wkJCdFrr71ml2HdunVq0qSJqlWrVqJjcULxLerZs6dcXV317rvvavjw4Ro2bJgWLlyoAwcOKCkpSX//+9+1cOFCSbLdp+TZZ5/Vjz/+qH379mnx4sXau3evJCkwMFCLFy/W7t27tWXLFj333HM3bdvX2r9/v5KTk3XixAlZrVbl5eUpPj5ew4YNu23Z8teJJNvhlL/97W/q0KGDgoOD5e3trbffflsnTpzQs88+W6rrZOfOnQoLC9Njjz2muLg4nThxQidOnCj0/j/Xey0///xzffTRRzp48KC2bNmi5ORkRURElGru1atXa/78+dq5c6dat26t33//XVFRUapbt64mTpzotG2sYcOGatasmZo1a6a4uDjbG9TLL7+s+Ph4p+U6ceKEPvjgA+3cuVP79+/X6dOnlZmZqVatWjn932Xjxo3VrVs3DR06VH5+fsrLy1Pnzp1Vs2ZNzZs3z6nvF5Jse04qVap029/HCnuvyMzM1JkzZ/TMM8/otdde08SJExUTEyMPDw9dvny51NZHRESEzp49q0GDBmn37t3atWuXYmJiZLFYVLNmzUJzX7u+1qxZo48++kjbtm3T3r17lZycrI4dO5ba65ifo3fv3urXr5+GDBmip59+WgkJCRo6dKhmz57ttM+fixcvKjk5WcnJyba9P3369JG7u7tiY2O1a9cuLV26VDNmzFBcXJxD4xRJiZ7BY3JRUVFGt27dCkxPSEgwatWqZVy4cMGYPn260aRJE6NChQpGrVq1jMjISLuTBn/66SfjscceMypWrGhUrlzZCA0NNQ4cOGAYhmEkJSUZrVq1Mjw8PIzAwEDjk08+MerVq2dMmzbNtrxucFJlt27djI4dO9qdhJr/2LVrV6lka926tW2dXJ1txIgRhiRj06ZNxvTp040aNWoUmqtevXqltk4M48qJbYWN6+XlVeTX8nbm7tq1q9GtWzdj/fr1RkhIiOHt7W14eHgYNWrUMCpWrGgcO3bMKdtYfq5rvfDCC4Ykp+XK3/ZDQkKMFi1aGJUqVTK8vLyMoKAgo3v37k79d3n1OktPTzf69+9vVK1a1fD09DTc3d2NPXv2OD2XYRhGSEiI0adPn1J/Hyvqe0WTJk0MNzc3o0KFCoabm5tRqVIl45FHHjE2b95cqu8VhmEYa9euNR566CHD29vbqFatmvHII48YXbp0uaX3CkklkjssLMzo1q1bgdwJCQlGhQoVjCpVqhhubm6Gh4eH4ebmdlv/Dea73ufPoUOH7DK0b9/esFqthp+fn/HGG28UWLclwfL/AwMAAJgCh6UAAICpUG5wR7vvvvtUqVKlQh///Oc/nR0PQBnRuXPn675XTJw40dnxcA0OS+GOduTIket+X42vr6/t6igAd7bffvvNdqXgtapXr67q1avf5kS4EcoNAAAwFQ5LAQAAU6HcAAAAU6HcAAAAU6HcAHA6i8Wizz77TNKVr5ewWCxKTk6+7TmKM3Z0dLS6d+9+w3kefvhh/fnPf76lbACKjnID3MGio6NlsVhksVhUoUIFBQQEaMSIEYV+PUVZcf/99xf4ssl8ixcvltVqLfZ34vj7++v48eO2L0QEUD5RboA7XKdOnXT8+HEdPHhQ06ZN07vvvqv4+Hhnx7qu2NhYLVmypNDLcufPn68nn3yywHcBFUVOTo5cXV1Vu3ZtubnxncJAeUa5Ae5wVqtVtWvXlr+/v7p3767w8HCtW7fO9vu8vDwlJCQoICBAnp6eCgoK0rJly+yeY9euXXriiSdUpUoVVa5cWaGhoTpw4IAk6YcfflBERIRq1qwpb29vdezYUUlJScXO27dvX128eFHLly+3m37o0CFt2LBBsbGxOnDggLp16yZfX19VqlRJrVu31ldffWU3f/369TVhwgT169dPVapU0YABAwoclsrNzVVsbKztb2/SpIlmzJhRaK7x48erVq1aqlKligYOHGj7ssDCZGdna/jw4fLz85OXl5fatm2rDRs22H5/5MgRde3aVdWqVZOXl5fuu+8+rV69ungrDLgDUW4A2OzcuVObNm2Su7u7bVpCQoIWLVqkOXPmaNeuXRo2bJj69u2rr7/+WtKVm5t16NBBVqtV69ev17Zt29S/f39dvnxZknT+/HlFRUVp48aN+v777xUYGKguXbro/PnzxcpYs2ZNdevWTfPmzbObvmDBAtWtW1ePPfaYLly4oC5duigxMVHbt29Xp06d1LVrV6WkpNgt89ZbbykoKEjbt2/XmDFjCoyVl5enunXr6pNPPtEvv/yisWPH6tVXX9XHH39sN19iYqJ2796tDRs26KOPPtKKFSs0fvz46/4NgwcP1ubNm7VkyRL9/PPP6tmzpzp16qR9+/ZJkgYNGqTs7Gx988032rFjhyZNmqRKlSoVa30Bd6RS+TpOAOVCVFSU4erqanh5eRlWq9WQZLi4uBjLli0zDMMwLl26ZFSsWNHYtGmT3XKxsbFG7969DcMwjFGjRhkBAQFGTk5OkcbMzc01KleubHz++ee2abrJtw1fa82aNYbFYjEOHjxoGIZh5OXlGfXq1TNGjx593WXuu+8+4+9//7vt53r16hndu3e3m6coYw8aNMjo0aOH7eeoqCijevXqRmZmpm3aO++8Y1SqVMnIzc01DOPKtyUPHTrUMAzDOHLkiOHq6mr89ttvds/76KOPGqNGjTIMwzDuv/9+Y9y4cdfNAODGOLAM3OHCwsL0zjvvKDMzU9OmTZObm5t69OghSdq/f7+ysrIUERFht0xOTo5atmwpSUpOTlZoaKgqVKhQ6POnpqZq9OjR2rBhg9LS0pSbm6usrKwCe1EcERERobp162r+/Pl6/fXXlZiYqJSUFMXExEiSLly4oHHjxmnVqlU6fvy4Ll++rIsXLxYYs1WrVjcda9asWZo3b55SUlJ08eJF5eTkqEWLFnbzBAUFqWLFirafQ0JCdOHCBR09elT16tWzm3fHjh3Kzc1V48aN7aZnZ2erRo0akqQhQ4boxRdf1Nq1axUeHq4ePXqoefPmRV4/wJ2OcgPc4by8vNSoUSNJ0rx58xQUFKS5c+cqNjZWFy5ckCStWrVKfn5+dstZrVZJkqen5w2fPyoqSqdPn9aMGTNUr149Wa1WhYSE3PCclJtxcXFRdHS0Fi5cqHHjxmn+/PkKCwtTgwYNJEnDhw/XunXr9NZbb6lRo0by9PTUH/7whwJjenl53XCcJUuWaPjw4ZoyZYpCQkJUuXJlvfnmm9qyZUuxs1+4cEGurq7atm2bXF1d7X6Xf+jp+eefV2RkpFatWqW1a9cqISFBU6ZM0csvv1zscYE7CeUGgI2Li4teffVVxcXFqU+fPmratKmsVqtSUlLUsWPHQpdp3ry5Fi5cqN9//73QvTffffedZs+erS5dukiSjh49WuxLta8WExOjv/71r1qxYoU+/fRTffDBB3ZjRkdH66mnnpJ0pVAcPnzY4TG+++47tWvXTi+99JJtWv6J0lf76aefdPHiRVvR+/7771WpUiX5+/sXmLdly5bKzc1VWlqaQkNDrzu2v7+/Bg4cqIEDB2rUqFF6//33KTdAEXFCMQA7PXv2lKurq2bNmqXKlStr+PDhGjZsmBYuXKgDBw4oKSlJf//737Vw4UJJV06OzcjI0LPPPqsff/xR+/bt0+LFi7V3715JUmBgoBYvXqzdu3dry5Yteu655266t6coAgIC9Mgjj2jAgAGyWq16+umnbb8LDAzUihUrlJycrJ9++kl9+vRRXl6ew2MEBgbqxx9/1Jdffqlff/1VY8aM0Q8//FBgvpycHMXGxuqXX37R6tWrFR8fr8GDB8vFpeBbbOPGjfXcc8+pX79+WrFihQ4dOqStW7cqISFBq1atkiT9+c9/1pdffqlDhw4pKSlJ//nPf3Tvvfc6nB+4U1FuANhxc3PT4MGDNXnyZGVmZmrChAkaM2aMEhISdO+996pTp05atWqVAgICJEk1atTQ+vXrdeHCBXXs2FHBwcF6//33bXtx5s6dq7Nnz+qBBx7QH//4Rw0ZMkQ+Pj4lkjU2NlZnz55Vnz595OHhYZs+depUVatWTe3atVPXrl0VGRmpBx54wOHn/9Of/qSnn35avXr1Utu2bXX69Gm7vTj5Hn30UQUGBqpDhw7q1auXnnzySY0bN+66zzt//nz169dPf/nLX9SkSRN1795dP/zwg+6++25JVy5BHzRokG19N27cWLNnz3Y4P3CnshiGYTg7BAAAQElhzw0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADCV/wcuiWwhrgYr0QAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], +======= + "outputId": "3c6c40bc-f1da-44fb-da14-25ec6d6cf278" + }, + "outputs": [], +>>>>>>> upstream/main + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of recall values from recall1 to recall10\n", + "recall_values = [recall1, recall2, recall2_1, recall3, recall4, recall5, recall6, recall7, recall8, recall8_1, recall9, recall10]\n", + "\n", + "# List of corresponding labels for each recall value\n", + "labels = ['Recall1', 'Recall2', 'Recall2_1', 'Recall3', 'Recall4', 'Recall5', 'Recall6', 'Recall7', 'Recall8', 'Recall8_1', 'Recall9', 'Recall10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, recall_values, color='cyan')\n", + "plt.xlabel('Recall Variables')\n", + "plt.ylabel('Recall Values')\n", + "plt.title('Bar Graph of Recall')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", +<<<<<<< HEAD + "execution_count": 98, +======= + "execution_count": null, +>>>>>>> upstream/main + "metadata": { + "id": "13cZXvb0DsvK" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "provenance": [], + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", +<<<<<<< HEAD + "version": "3.12.2" +======= + "version": "3.12.1" +>>>>>>> upstream/main + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Python File/Stock_Price_Prediction_BACKUP_20502.ipynb b/Python File/Stock_Price_Prediction_BACKUP_20502.ipynb new file mode 100644 index 0000000..c542367 --- /dev/null +++ b/Python File/Stock_Price_Prediction_BACKUP_20502.ipynb @@ -0,0 +1,7141 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "qCDSjVhXLr_Z" + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.metrics import mean_squared_error, mean_absolute_error, mean_absolute_percentage_error, accuracy_score, precision_score, confusion_matrix, recall_score, f1_score" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "SOQbXSiB-g5G", + "outputId": "55ee6ec8-9146-4ebf-c2fe-b4b06bc3a5c4" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n" + ] + } + ], + "source": [ + "from google.colab import drive\n", + "drive.mount('/content/drive')\n", + "df = pd.read_csv('drive/My Drive/Colab Notebooks/Stock Price Prediction RNN/SBIN.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "Sc4id6VxL8BS", + "outputId": "78207ea2-5b80-47a2-a1b1-0548765b6455" + }, + "outputs": [ + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "summary": "{\n \"name\": \"df\",\n \"rows\": 7074,\n \"fields\": [\n {\n \"column\": \"Date\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 7074,\n \"samples\": [\n \"11-08-2016\",\n \"30-10-2007\",\n \"17-01-2017\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Open\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 154.7732294451065,\n \"min\": 13.478195,\n \"max\": 703.650024,\n \"num_unique_values\": 4758,\n \"samples\": [\n 174.399994,\n 31.0324,\n 187.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"High\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 156.34507839355788,\n \"min\": 13.935802,\n \"max\": 728.349976,\n \"num_unique_values\": 5403,\n \"samples\": [\n 473.0,\n 495.450012,\n 78.321663\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Low\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 152.98051601861624,\n \"min\": 13.214009,\n \"max\": 694.200012,\n \"num_unique_values\": 5488,\n \"samples\": [\n 60.2957,\n 22.677523,\n 16.983376\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 154.63054905628158,\n \"min\": 13.346102,\n \"max\": 725.25,\n \"num_unique_values\": 5975,\n \"samples\": [\n 633.599976,\n 241.100006,\n 107.834999\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Adj Close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 152.90324918554683,\n \"min\": 9.53141,\n \"max\": 725.25,\n \"num_unique_values\": 6575,\n \"samples\": [\n 12.345289,\n 223.836212,\n 16.758821\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Volume\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 34627439.399630256,\n \"min\": 0.0,\n \"max\": 446948261.0,\n \"num_unique_values\": 6948,\n \"samples\": [\n 29959130.0,\n 1648453.0,\n 14077470.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", + "type": "dataframe", + "variable_name": "df" + }, + "text/html": [ + "\n", + "
    \n", + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    DateOpenHighLowCloseAdj CloseVolume
    001-01-199618.69114718.97892218.54018418.82324012.40993143733533.0
    102-01-199618.89400518.96476717.73819218.22410612.01493156167280.0
    203-01-199618.32789218.56848917.64383917.73819211.69457768296318.0
    304-01-199617.50231217.83254217.22397217.67686311.65414286073880.0
    405-01-199617.73819217.78536617.45985217.57779311.58882776613039.0
    \n", + "
    \n", + "
    \n", + "\n", + "
    \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
    \n", + "\n", + "\n", + "
    \n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
    \n", + "\n", + "
    \n", + "
    \n" + ], + "text/plain": [ + " Date Open High Low Close Adj Close \\\n", + "0 01-01-1996 18.691147 18.978922 18.540184 18.823240 12.409931 \n", + "1 02-01-1996 18.894005 18.964767 17.738192 18.224106 12.014931 \n", + "2 03-01-1996 18.327892 18.568489 17.643839 17.738192 11.694577 \n", + "3 04-01-1996 17.502312 17.832542 17.223972 17.676863 11.654142 \n", + "4 05-01-1996 17.738192 17.785366 17.459852 17.577793 11.588827 \n", + "\n", + " Volume \n", + "0 43733533.0 \n", + "1 56167280.0 \n", + "2 68296318.0 \n", + "3 86073880.0 \n", + "4 76613039.0 " + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Print first 5 rows of dataset\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "7LaYGXsfN-8y" + }, + "outputs": [], + "source": [ + "# Drop the 'Date' and 'Adj Close' columns\n", + "df.drop(['Date', 'Adj Close'], axis=1, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "pqbTBdnBOKJc", + "outputId": "42ed663c-ae0f-43d7-a7bd-18bb37dfef6f" + }, + "outputs": [ + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "summary": "{\n \"name\": \"df\",\n \"rows\": 7074,\n \"fields\": [\n {\n \"column\": \"Open\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 154.7732294451065,\n \"min\": 13.478195,\n \"max\": 703.650024,\n \"num_unique_values\": 4758,\n \"samples\": [\n 174.399994,\n 31.0324,\n 187.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"High\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 156.34507839355788,\n \"min\": 13.935802,\n \"max\": 728.349976,\n \"num_unique_values\": 5403,\n \"samples\": [\n 473.0,\n 495.450012,\n 78.321663\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Low\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 152.98051601861624,\n \"min\": 13.214009,\n \"max\": 694.200012,\n \"num_unique_values\": 5488,\n \"samples\": [\n 60.2957,\n 22.677523,\n 16.983376\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 154.63054905628158,\n \"min\": 13.346102,\n \"max\": 725.25,\n \"num_unique_values\": 5975,\n \"samples\": [\n 633.599976,\n 241.100006,\n 107.834999\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Volume\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 34627439.399630256,\n \"min\": 0.0,\n \"max\": 446948261.0,\n \"num_unique_values\": 6948,\n \"samples\": [\n 29959130.0,\n 1648453.0,\n 14077470.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", + "type": "dataframe", + "variable_name": "df" + }, + "text/html": [ + "\n", + "
    \n", + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    OpenHighLowCloseVolume
    018.69114718.97892218.54018418.82324043733533.0
    118.89400518.96476717.73819218.22410656167280.0
    218.32789218.56848917.64383917.73819268296318.0
    317.50231217.83254217.22397217.67686386073880.0
    417.73819217.78536617.45985217.57779376613039.0
    \n", + "
    \n", + "
    \n", + "\n", + "
    \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
    \n", + "\n", + "\n", + "
    \n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
    \n", + "\n", + "
    \n", + "
    \n" + ], + "text/plain": [ + " Open High Low Close Volume\n", + "0 18.691147 18.978922 18.540184 18.823240 43733533.0\n", + "1 18.894005 18.964767 17.738192 18.224106 56167280.0\n", + "2 18.327892 18.568489 17.643839 17.738192 68296318.0\n", + "3 17.502312 17.832542 17.223972 17.676863 86073880.0\n", + "4 17.738192 17.785366 17.459852 17.577793 76613039.0" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "id": "dydEPoNeM6eN" + }, + "outputs": [], + "source": [ + "# Handle missing values\n", + "from sklearn.impute import SimpleImputer\n", + "imputer = SimpleImputer(strategy='mean')\n", + "df = pd.DataFrame(imputer.fit_transform(df), columns=df.columns)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "OQ3cGqgTMBwt" + }, + "outputs": [], + "source": [ + "# Select features and target variable\n", + "X = df[['Open', 'High', 'Low', 'Volume']]\n", + "y = df['Close']" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "9Oz-bwJOMEWD" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "id": "ugapDyXODtn3" + }, + "outputs": [], + "source": [ + "# Scale the features using Min-Max scaling\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "997ZEgibCZIO", + "outputId": "879af72c-3e7c-4b8c-ba28-452fa8ba3cd6" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(5659, 4)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "bmtt76RuCeyG", + "outputId": "855f34ec-4914-4e1f-c9b1-6f8753612100" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(1415, 4)" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_test.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "CeJkUJ92Ciqd", + "outputId": "21c5949c-e787-40df-b816-7cc9e830e401" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(5659,)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7HGC7VuTCjWc", + "outputId": "cbda22d6-bec9-45d7-80ac-c74ad14b7c0d" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(1415,)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_test.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "c6Ek8jRlO2_I" + }, + "source": [ + "## 1. LINEAR REGRESSION" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "id": "RdZ1SpzdMHAJ" + }, + "outputs": [], + "source": [ + "# Create a linear regression model\n", + "model1 = LinearRegression()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 241 + }, + "id": "mPM035IzMY04", + "outputId": "084d9520-1d31-4287-a9d1-6f9eeea60f9b" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    Close
    5286257.350006
    3408129.464996
    5477279.350006
    6906588.500000
    53021.644367
    \n", + "

    " + ], + "text/plain": [ + "5286 257.350006\n", + "3408 129.464996\n", + "5477 279.350006\n", + "6906 588.500000\n", + "530 21.644367\n", + "Name: Close, dtype: float64" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_train.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "qBhQ9HbYMI3d", + "outputId": "daac2bc7-a480-4013-8e06-717bb8c1fa65" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    LinearRegression()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "LinearRegression()" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model1.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "id": "X269co2kMS4z" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred1 = model1.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "id": "QK8GvDYPOd0Y" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse1 = np.sqrt(mean_squared_error(y_test, pred1))\n", + "mae1 = mean_absolute_error(y_test, pred1)\n", + "mape1 = mean_absolute_percentage_error(y_test, pred1)\n", + "accuracy1 = accuracy_score(y_test > pred1, y_test > pred1.round())\n", + "precision1 = precision_score(y_test > pred1, y_test > pred1.round())\n", + "confusion1 = confusion_matrix(y_test > pred1, y_test > pred1.round())\n", + "recall1 = recall_score(y_test > pred1, y_test > pred1.round())\n", + "f11 = f1_score(y_test > pred1, y_test > pred1.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dEi49xtEOtne", + "outputId": "60b53406-81c4-4531-cbb0-77b9ffde8890" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 1.6881364643681482\n", + "MAE: 0.9433353485344729\n", + "MAPE: 0.006085435990853812\n", + "Accuracy: 0.8296819787985866\n", + "Precision: 0.8623595505617978\n", + "Confusion Matrix:\n", + " [[560 98]\n", + " [143 614]]\n", + "Recall: 0.8110964332892999\n", + "F1 Score: 0.8359428182437032\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse1)\n", + "print(\"MAE:\", mae1)\n", + "print(\"MAPE:\", mape1)\n", + "print(\"Accuracy:\", accuracy1)\n", + "print(\"Precision:\", precision1)\n", + "print(\"Confusion Matrix:\\n\", confusion1)\n", + "print(\"Recall:\", recall1)\n", + "print(\"F1 Score:\", f11)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GxtMzlg-gR2P" + }, + "source": [ + "## 2. SVR" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "id": "o7K9r7EXWRjQ" + }, + "outputs": [], + "source": [ + "from sklearn.svm import SVR\n", + "from sklearn.model_selection import GridSearchCV" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "id": "0xQewd7QWTtq" + }, + "outputs": [], + "source": [ + "# Create an SVR model\n", + "model2 = SVR()\n", + "param_grid = {'C':[0.1, 1], 'epsilon':[0.01, 0.1, 0.5], 'kernel':['sigmoid']}\n", + "GV_SVR = GridSearchCV(model2, param_grid = param_grid, scoring = 'accuracy', n_jobs = -1)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "id": "DuNes3s6U2IV" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 191 + }, + "id": "22SaCsQmfhgP", + "outputId": "7867aa8e-a7dc-49e4-d0aa-310423e9c696" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.10/dist-packages/sklearn/model_selection/_search.py:1103: UserWarning: One or more of the test scores are non-finite: [nan nan nan nan nan nan]\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "text/html": [ + "
    GridSearchCV(estimator=SVR(), n_jobs=-1,\n",
    +              "             param_grid={'C': [0.1, 1], 'epsilon': [0.01, 0.1, 0.5],\n",
    +              "                         'kernel': ['sigmoid']},\n",
    +              "             scoring='accuracy')
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "GridSearchCV(estimator=SVR(), n_jobs=-1,\n", + " param_grid={'C': [0.1, 1], 'epsilon': [0.01, 0.1, 0.5],\n", + " 'kernel': ['sigmoid']},\n", + " scoring='accuracy')" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "GV_SVR.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "id": "OQ1nL4oYfkAC" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred2 = GV_SVR.predict(X_test)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "U6-EppR68Jsu", + "outputId": "cfa67a46-ab8c-478d-c13e-fe884ef7ebae" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'C': 0.1, 'epsilon': 0.01, 'kernel': 'sigmoid'}" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "GV_SVR.best_params_" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "id": "nRYTwydsfpjb" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics with grid search\n", + "rmse2 = np.sqrt(mean_squared_error(y_test, pred2))\n", + "mae2 = mean_absolute_error(y_test, pred2)\n", + "mape2 = mean_absolute_percentage_error(y_test, pred2)\n", + "accuracy2 = accuracy_score(y_test > pred2, y_test > pred2.round())\n", + "precision2 = precision_score(y_test > pred2, y_test > pred2.round())\n", + "confusion2 = confusion_matrix(y_test > pred2, y_test > pred2.round())\n", + "recall2 = recall_score(y_test > pred2, y_test > pred2.round())\n", + "f12 = f1_score(y_test > pred2, y_test > pred2.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "656J5oz5fzq6", + "outputId": "c62c2076-2a10-43da-935d-c593c2d7be79" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 158.5191296342117\n", + "MAE: 127.61818666535594\n", + "MAPE: 2.6724681150799072\n", + "Accuracy: 0.9985865724381625\n", + "Precision: 0.9970457902511078\n", + "Confusion Matrix:\n", + " [[738 2]\n", + " [ 0 675]]\n", + "Recall: 1.0\n", + "F1 Score: 0.9985207100591716\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics with grid search\n", + "print(\"RMSE:\", rmse2)\n", + "print(\"MAE:\", mae2)\n", + "print(\"MAPE:\", mape2)\n", + "print(\"Accuracy:\", accuracy2)\n", + "print(\"Precision:\", precision2)\n", + "print(\"Confusion Matrix:\\n\", confusion2)\n", + "print(\"Recall:\", recall2)\n", + "print(\"F1 Score:\", f12)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "tIlc-wCE8Jsv", + "outputId": "fc6a39f5-b546-444e-a522-8bbcf889be14" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    SVR()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "SVR()" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#fitting without grid search\n", + "model2.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "id": "f3u1h6Dk8Jsv" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred2_1 = model2.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "id": "F-NgJx2d8Jsv" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics without grid search\n", + "rmse2_1 = np.sqrt(mean_squared_error(y_test, pred2_1))\n", + "mae2_1 = mean_absolute_error(y_test, pred2_1)\n", + "mape2_1 = mean_absolute_percentage_error(y_test, pred2_1)\n", + "accuracy2_1 = accuracy_score(y_test > pred2_1, y_test > pred2_1.round())\n", + "precision2_1 = precision_score(y_test > pred2_1, y_test > pred2_1.round())\n", + "confusion2_1 = confusion_matrix(y_test > pred2_1, y_test > pred2_1.round())\n", + "recall2_1 = recall_score(y_test > pred2_1, y_test > pred2_1.round())\n", + "f12_1 = f1_score(y_test > pred2_1, y_test > pred2_1.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "_BB1EERE8Jsv", + "outputId": "11c94daf-d2db-4447-a5b9-b753e648b56c" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 147.71103599153602\n", + "MAE: 110.99419106508152\n", + "MAPE: 1.9715076513294716\n", + "Accuracy: 0.9992932862190813\n", + "Precision: 1.0\n", + "Confusion Matrix:\n", + " [[727 0]\n", + " [ 1 687]]\n", + "Recall: 0.998546511627907\n", + "F1 Score: 0.9992727272727273\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics without grid search\n", + "print(\"RMSE:\", rmse2_1)\n", + "print(\"MAE:\", mae2_1)\n", + "print(\"MAPE:\", mape2_1)\n", + "print(\"Accuracy:\", accuracy2_1)\n", + "print(\"Precision:\", precision2_1)\n", + "print(\"Confusion Matrix:\\n\", confusion2_1)\n", + "print(\"Recall:\", recall2_1)\n", + "print(\"F1 Score:\", f12_1)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hcIfVMWdgcKt" + }, + "source": [ + "## 3. Random Forest" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "id": "f7raXT_hf2ij" + }, + "outputs": [], + "source": [ + "from sklearn.ensemble import RandomForestRegressor\n", + "# Create a Random Forest model\n", + "model3 = RandomForestRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "id": "TadNM7MEU7fh" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "fF002Yepgk55", + "outputId": "4ff3a76e-04be-452e-8927-a7739bc306fb" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    RandomForestRegressor()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "RandomForestRegressor()" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model3.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "id": "8nRU_pzEgnCt" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred3 = model3.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "id": "4aKEXGVUgsry" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse3 = np.sqrt(mean_squared_error(y_test, pred3))\n", + "mae3 = mean_absolute_error(y_test, pred3)\n", + "mape3 = mean_absolute_percentage_error(y_test, pred3)\n", + "accuracy3 = accuracy_score(y_test > pred3, y_test > pred3.round())\n", + "precision3 = precision_score(y_test > pred3, y_test > pred3.round())\n", + "confusion3 = confusion_matrix(y_test > pred3, y_test > pred3.round())\n", + "recall3 = recall_score(y_test > pred3, y_test > pred3.round())\n", + "f13 = f1_score(y_test > pred3, y_test > pred3.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8pPzsCY1g305", + "outputId": "bc5eeab1-5d75-4be3-b26f-70c4fe533a47" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 2.2227552163641375\n", + "MAE: 1.2618627107561857\n", + "MAPE: 0.008011786688180922\n", + "Accuracy: 0.8537102473498234\n", + "Precision: 0.8575624082232012\n", + "Confusion Matrix:\n", + " [[624 97]\n", + " [110 584]]\n", + "Recall: 0.8414985590778098\n", + "F1 Score: 0.8494545454545455\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse3)\n", + "print(\"MAE:\", mae3)\n", + "print(\"MAPE:\", mape3)\n", + "print(\"Accuracy:\", accuracy3)\n", + "print(\"Precision:\", precision3)\n", + "print(\"Confusion Matrix:\\n\", confusion3)\n", + "print(\"Recall:\", recall3)\n", + "print(\"F1 Score:\", f13)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mZsLwLivhLGH" + }, + "source": [ + "## 4. Gradient Boosting Models (GBM)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "id": "TI8idoxOg6jF" + }, + "outputs": [], + "source": [ + "import xgboost as xgb\n", + "# Create an XGBoost model\n", + "model4 = xgb.XGBRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "id": "7r9xJDtOVBEA" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 254 + }, + "id": "2gpbDxshhexj", + "outputId": "2cdbacc9-909a-43c9-cf04-cc4f70015e43" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
    +              "             colsample_bylevel=None, colsample_bynode=None,\n",
    +              "             colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
    +              "             enable_categorical=False, eval_metric=None, feature_types=None,\n",
    +              "             gamma=None, grow_policy=None, importance_type=None,\n",
    +              "             interaction_constraints=None, learning_rate=None, max_bin=None,\n",
    +              "             max_cat_threshold=None, max_cat_to_onehot=None,\n",
    +              "             max_delta_step=None, max_depth=None, max_leaves=None,\n",
    +              "             min_child_weight=None, missing=nan, monotone_constraints=None,\n",
    +              "             multi_strategy=None, n_estimators=None, n_jobs=None,\n",
    +              "             num_parallel_tree=None, random_state=None, ...)
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + " colsample_bylevel=None, colsample_bynode=None,\n", + " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", + " enable_categorical=False, eval_metric=None, feature_types=None,\n", + " gamma=None, grow_policy=None, importance_type=None,\n", + " interaction_constraints=None, learning_rate=None, max_bin=None,\n", + " max_cat_threshold=None, max_cat_to_onehot=None,\n", + " max_delta_step=None, max_depth=None, max_leaves=None,\n", + " min_child_weight=None, missing=nan, monotone_constraints=None,\n", + " multi_strategy=None, n_estimators=None, n_jobs=None,\n", + " num_parallel_tree=None, random_state=None, ...)" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model4.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "id": "Jj9DXdUPhh9V" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred4 = model4.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "id": "TdH60Sllhn5O" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse4 = np.sqrt(mean_squared_error(y_test, pred4))\n", + "mae4 = mean_absolute_error(y_test, pred4)\n", + "mape4 = mean_absolute_percentage_error(y_test, pred4)\n", + "accuracy4 = accuracy_score(y_test > pred4, y_test > pred4.round())\n", + "precision4 = precision_score(y_test > pred4, y_test > pred4.round())\n", + "confusion4 = confusion_matrix(y_test > pred4, y_test > pred4.round())\n", + "recall4 = recall_score(y_test > pred4, y_test > pred4.round())\n", + "f14 = f1_score(y_test > pred4, y_test > pred4.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "qpnLeFyZhwB3", + "outputId": "1637d31a-e785-4414-dfe5-f7fa4fd282e9" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 2.733930065274145\n", + "MAE: 1.502457380471909\n", + "MAPE: 0.010026410639661481\n", + "Accuracy: 0.8840989399293286\n", + "Precision: 0.8948106591865358\n", + "Confusion Matrix:\n", + " [[613 75]\n", + " [ 89 638]]\n", + "Recall: 0.8775790921595599\n", + "F1 Score: 0.8861111111111111\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse4)\n", + "print(\"MAE:\", mae4)\n", + "print(\"MAPE:\", mape4)\n", + "print(\"Accuracy:\", accuracy4)\n", + "print(\"Precision:\", precision4)\n", + "print(\"Confusion Matrix:\\n\", confusion4)\n", + "print(\"Recall:\", recall4)\n", + "print(\"F1 Score:\", f14)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "d8nSGoyuh9dx" + }, + "source": [ + "## 5. Extreme Gradient Boosting (XGBoost)" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "id": "DyhhdlZAhx94" + }, + "outputs": [], + "source": [ + "import xgboost as xgb\n", + "# Create an XGBoost model\n", + "model5 = xgb.XGBRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "id": "Z_AD0lVOVHwB" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 254 + }, + "id": "RAIwxIp5iH9Z", + "outputId": "cc66ca33-11cc-4e5d-e7e1-f39b41466c28" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
    +              "             colsample_bylevel=None, colsample_bynode=None,\n",
    +              "             colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
    +              "             enable_categorical=False, eval_metric=None, feature_types=None,\n",
    +              "             gamma=None, grow_policy=None, importance_type=None,\n",
    +              "             interaction_constraints=None, learning_rate=None, max_bin=None,\n",
    +              "             max_cat_threshold=None, max_cat_to_onehot=None,\n",
    +              "             max_delta_step=None, max_depth=None, max_leaves=None,\n",
    +              "             min_child_weight=None, missing=nan, monotone_constraints=None,\n",
    +              "             multi_strategy=None, n_estimators=None, n_jobs=None,\n",
    +              "             num_parallel_tree=None, random_state=None, ...)
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + " colsample_bylevel=None, colsample_bynode=None,\n", + " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", + " enable_categorical=False, eval_metric=None, feature_types=None,\n", + " gamma=None, grow_policy=None, importance_type=None,\n", + " interaction_constraints=None, learning_rate=None, max_bin=None,\n", + " max_cat_threshold=None, max_cat_to_onehot=None,\n", + " max_delta_step=None, max_depth=None, max_leaves=None,\n", + " min_child_weight=None, missing=nan, monotone_constraints=None,\n", + " multi_strategy=None, n_estimators=None, n_jobs=None,\n", + " num_parallel_tree=None, random_state=None, ...)" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model5.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "id": "XmJds5fYiKT3" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred5 = model5.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": { + "id": "lZ1A0-L8iNCM" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse5 = np.sqrt(mean_squared_error(y_test, pred5))\n", + "mae5 = mean_absolute_error(y_test, pred5)\n", + "mape5 = mean_absolute_percentage_error(y_test, pred5)\n", + "accuracy5 = accuracy_score(y_test > pred5, y_test > pred5.round())\n", + "precision5 = precision_score(y_test > pred5, y_test > pred5.round())\n", + "confusion5 = confusion_matrix(y_test > pred5, y_test > pred5.round())\n", + "recall5 = recall_score(y_test > pred5, y_test > pred5.round())\n", + "f15 = f1_score(y_test > pred5, y_test > pred5.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7IkE-RAmiWNo", + "outputId": "d69e485e-0462-409a-f9aa-59e5ca7c4bef" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 2.733930065274145\n", + "MAE: 1.502457380471909\n", + "MAPE: 0.010026410639661481\n", + "Accuracy: 0.8840989399293286\n", + "Precision: 0.8948106591865358\n", + "Confusion Matrix:\n", + " [[613 75]\n", + " [ 89 638]]\n", + "Recall: 0.8775790921595599\n", + "F1 Score: 0.8861111111111111\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse5)\n", + "print(\"MAE:\", mae5)\n", + "print(\"MAPE:\", mape5)\n", + "print(\"Accuracy:\", accuracy5)\n", + "print(\"Precision:\", precision5)\n", + "print(\"Confusion Matrix:\\n\", confusion5)\n", + "print(\"Recall:\", recall5)\n", + "print(\"F1 Score:\", f15)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "A_J776rtiovq" + }, + "source": [ + "## 6. AdaBoostRegressor" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": { + "id": "HNq66cXRiYPJ" + }, + "outputs": [], + "source": [ + "from sklearn.ensemble import AdaBoostRegressor\n", + "# Create an AdaBoost model\n", + "model6 = AdaBoostRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": { + "id": "qPHH6rG0VW4V" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "P0oB5wjQivBr", + "outputId": "827e151d-e13e-4924-ef50-c5e1d13f6161" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    AdaBoostRegressor()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "AdaBoostRegressor()" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model6.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": { + "id": "Bf1m5ukOi2VM" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred6 = model6.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": { + "id": "oFWSqC4ai6gd" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse6 = np.sqrt(mean_squared_error(y_test, pred6))\n", + "mae6 = mean_absolute_error(y_test, pred6)\n", + "mape6 = mean_absolute_percentage_error(y_test, pred6)\n", + "accuracy6 = accuracy_score(y_test > pred6, y_test > pred6.round())\n", + "precision6 = precision_score(y_test > pred6, y_test > pred6.round())\n", + "confusion6 = confusion_matrix(y_test > pred6, y_test > pred6.round())\n", + "recall6 = recall_score(y_test > pred6, y_test > pred6.round())\n", + "f16 = f1_score(y_test > pred6, y_test > pred6.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "BsajWJGBjC80", + "outputId": "076cff01-ff0a-449b-d86c-df9f1363fecd" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 10.504089217159294\n", + "MAE: 8.746118088217727\n", + "MAPE: 0.20512996006219347\n", + "Accuracy: 0.9943462897526502\n", + "Precision: 0.9939879759519038\n", + "Confusion Matrix:\n", + " [[911 3]\n", + " [ 5 496]]\n", + "Recall: 0.9900199600798403\n", + "F1 Score: 0.992\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse6)\n", + "print(\"MAE:\", mae6)\n", + "print(\"MAPE:\", mape6)\n", + "print(\"Accuracy:\", accuracy6)\n", + "print(\"Precision:\", precision6)\n", + "print(\"Confusion Matrix:\\n\", confusion6)\n", + "print(\"Recall:\", recall6)\n", + "print(\"F1 Score:\", f16)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Q9DzOt3CkWFX" + }, + "source": [ + "## 7. Decision Tree" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "id": "23DZ2biSjF9a" + }, + "outputs": [], + "source": [ + "from sklearn.tree import DecisionTreeRegressor\n", + "# Create a Decision Tree model\n", + "model7 = DecisionTreeRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": { + "id": "Ajo2RAVAVb7H" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "6mQEQf-ykc9F", + "outputId": "78dc7661-96e4-46af-b65a-c705018c58a3" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    DecisionTreeRegressor()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "DecisionTreeRegressor()" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model7.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": { + "id": "BFJ9q_tvkgRC" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred7 = model7.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": { + "id": "9IxfYZbYkjv1" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse7 = np.sqrt(mean_squared_error(y_test, pred7))\n", + "mae7 = mean_absolute_error(y_test, pred7)\n", + "mape7 = mean_absolute_percentage_error(y_test, pred7)\n", + "accuracy7 = accuracy_score(y_test > pred7, y_test > pred7.round())\n", + "precision7 = precision_score(y_test > pred7, y_test > pred7.round())\n", + "confusion7 = confusion_matrix(y_test > pred7, y_test > pred7.round())\n", + "recall7 = recall_score(y_test > pred7, y_test > pred7.round())\n", + "f17 = f1_score(y_test > pred7, y_test > pred7.round())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AnZXMYb8kooV", + "outputId": "93527d46-9366-49ce-b895-7a12ae87f742" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 3.136698143876249\n", + "MAE: 1.6416165234385407\n", + "MAPE: 0.010224639636659394\n", + "Accuracy: 0.8600706713780919\n", + "Precision: 0.8687845303867403\n", + "Confusion Matrix:\n", + " [[588 95]\n", + " [103 629]]\n", + "Recall: 0.8592896174863388\n", + "F1 Score: 0.864010989010989\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse7)\n", + "print(\"MAE:\", mae7)\n", + "print(\"MAPE:\", mape7)\n", + "print(\"Accuracy:\", accuracy7)\n", + "print(\"Precision:\", precision7)\n", + "print(\"Confusion Matrix:\\n\", confusion7)\n", + "print(\"Recall:\", recall7)\n", + "print(\"F1 Score:\", f17)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LH-B-Xd6k5UD" + }, + "source": [ + "## 8. KNeighborsRegressor(KNN)" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": { + "id": "JVDSed7yktFY" + }, + "outputs": [], + "source": [ + "from sklearn.neighbors import KNeighborsRegressor\n", + "from sklearn.model_selection import GridSearchCV\n", + "# Create a KNN model\n", + "model8 = KNeighborsRegressor()\n", + "param_grid = {'n_neighbors':[3, 5, 7, 9, 11, 15, 20, 23, 25, 30, 60, 70, 150]}\n", + "GV_KNN = GridSearchCV(model8, param_grid, cv=5, scoring='neg_mean_squared_error')" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": { + "id": "XJHb5SxrVgVp" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "9fn64o-ZlBka", + "outputId": "bc388b6b-cf36-4a91-eb52-8fe7a861308b" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    KNeighborsRegressor()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "KNeighborsRegressor()" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model8.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "id": "hbfbbjcSlDn7" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred8 = model8.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "id": "hnWyNv3blHdL" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse8 = np.sqrt(mean_squared_error(y_test, pred8))\n", + "mae8 = mean_absolute_error(y_test, pred8)\n", + "mape8 = mean_absolute_percentage_error(y_test, pred8)\n", + "accuracy8 = accuracy_score(y_test > pred8, y_test > pred8.round())\n", + "precision8 = precision_score(y_test > pred8, y_test > pred8.round())\n", + "confusion8 = confusion_matrix(y_test > pred8, y_test > pred8.round())\n", + "recall8 = recall_score(y_test > pred8, y_test > pred8.round())\n", + "f18 = f1_score(y_test > pred8, y_test > pred8.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IPoDRkcMlMAr", + "outputId": "5aee40b5-c7c1-4fad-f419-37d08a504146" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 148.73183825029315\n", + "MAE: 109.35229571264969\n", + "MAPE: 1.75024316976612\n", + "Accuracy: 0.9908127208480565\n", + "Precision: 0.9887820512820513\n", + "Confusion Matrix:\n", + " [[785 7]\n", + " [ 6 617]]\n", + "Recall: 0.9903691813804173\n", + "F1 Score: 0.9895749799518845\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse8)\n", + "print(\"MAE:\", mae8)\n", + "print(\"MAPE:\", mape8)\n", + "print(\"Accuracy:\", accuracy8)\n", + "print(\"Precision:\", precision8)\n", + "print(\"Confusion Matrix:\\n\", confusion8)\n", + "print(\"Recall:\", recall8)\n", + "print(\"F1 Score:\", f18)" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "5qW5X1Xe8Js7", + "outputId": "6abf26c0-873e-42e2-9aab-c2bd93a5ae84" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    KNeighborsRegressor(n_neighbors=150)
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "KNeighborsRegressor(n_neighbors=150)" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "GV_KNN.fit(X_train, y_train)\n", + "pred8_1 = GV_KNN.predict(X_test)\n", + "GV_KNN.best_estimator_" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": { + "id": "voNSUlHk8Js7" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics with grid search\n", + "rmse8_1 = np.sqrt(mean_squared_error(y_test, pred8_1))\n", + "mae8_1 = mean_absolute_error(y_test, pred8_1)\n", + "mape8_1 = mean_absolute_percentage_error(y_test, pred8_1)\n", + "accuracy8_1 = accuracy_score(y_test > pred8_1, y_test > pred8_1.round())\n", + "precision8_1 = precision_score(y_test > pred8_1, y_test > pred8_1.round())\n", + "confusion8_1 = confusion_matrix(y_test > pred8_1, y_test > pred8_1.round())\n", + "recall8_1 = recall_score(y_test > pred8_1, y_test > pred8_1.round())\n", + "f18_1 = f1_score(y_test > pred8_1, y_test > pred8_1.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VMnot_fX8Js8", + "outputId": "71c354e6-71e6-4d31-ee2f-2a03f65d24fe" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 137.20694663964096\n", + "MAE: 101.08872313712585\n", + "MAPE: 1.7323302969000884\n", + "Accuracy: 0.9985865724381625\n", + "Precision: 1.0\n", + "Confusion Matrix:\n", + " [[865 0]\n", + " [ 2 548]]\n", + "Recall: 0.9963636363636363\n", + "F1 Score: 0.9981785063752276\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics with grid search\n", + "print(\"RMSE:\", rmse8_1)\n", + "print(\"MAE:\", mae8_1)\n", + "print(\"MAPE:\", mape8_1)\n", + "print(\"Accuracy:\", accuracy8_1)\n", + "print(\"Precision:\", precision8_1)\n", + "print(\"Confusion Matrix:\\n\", confusion8_1)\n", + "print(\"Recall:\", recall8_1)\n", + "print(\"F1 Score:\", f18_1)" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 524 + }, + "id": "Swebseye8Js8", + "outputId": "c501acf3-094c-4ba6-f0d7-1a0901cdb2e0" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1AAAAH7CAYAAADCX341AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVWElEQVR4nO3de3iU9Z3//9fMJDM5TjBASJAgEa2agihHU/uluqWEGq2stqtWLZ7qwgYU2FW0VSn2W7G6rWhRaO1e4G+Rou631AI1bsrJWoJRECFEUCEFNBkSjMmEkOPM/fsDZsiQBCaQ5L5n8nxc11wy9/3Jnfd8QoFXPyebYRiGAAAAAABnZDe7AAAAAACIFAQoAAAAAAgTAQoAAAAAwkSAAgAAAIAwEaAAAAAAIEwEKAAAAAAIEwEKAAAAAMJEgAIAAACAMBGgAAAAACBMMWYXYCa/36/y8nIlJyfLZrOZXQ4AAAAAkxiGobq6Og0ePFh2+2nGmYwueOqpp4yxY8caSUlJxsCBA40bb7zR2LNnT0ibb33rW4akkNe//uu/hrQ5cOCAcd111xnx8fHGwIEDjf/4j/8wWlpaQtps3LjRuPLKKw2n02kMHz7cWLZsWbt6Fi9ebFxwwQWGy+Uyxo8fb7z33ntd+TjGoUOH2tXKixcvXrx48eLFixevvvs6dOjQaTNEl0agNm/erPz8fI0bN06tra36yU9+osmTJ6u0tFSJiYnBdj/+8Y/15JNPBt8nJCQEf+3z+ZSXl6f09HRt2bJFFRUV+tGPfqTY2Fg99dRTkqSysjLl5eVp+vTpevXVV7V+/Xrdd999ysjIUG5uriTptdde09y5c7V06VJNmDBBixYtUm5urvbu3au0tLSwPk9ycrIk6dChQ3K73V3pCgAAAABRxOv1KjMzM5gROmMzDMM4229SVVWltLQ0bd68WRMnTpQkXXPNNbriiiu0aNGiDr/mrbfe0vXXX6/y8nINGjRIkrR06VLNmzdPVVVVcjqdmjdvntatW6eSkpLg1916662qqalRQUGBJGnChAkaN26cFi9eLOn4dLzMzEzNmjVLjzzySFj1e71epaSkqLa2lgAFAAAA9GHhZoNz2kSitrZWkpSamhpy/dVXX9WAAQM0YsQIPfroozp27FjwXlFRkUaOHBkMT5KUm5srr9er3bt3B9tMmjQp5Jm5ubkqKiqSJDU3N2vbtm0hbex2uyZNmhRs05GmpiZ5vd6QFwAAAACE66w3kfD7/Zo9e7auvvpqjRgxInj9hz/8oS644AINHjxYO3fu1Lx587R371798Y9/lCR5PJ6Q8CQp+N7j8Zy2jdfrVUNDg7766iv5fL4O2+zZs6fTmhcuXKgFCxac7UcGAAAA0MeddYDKz89XSUmJ3n333ZDr999/f/DXI0eOVEZGhr797W9r3759Gj58+NlX2g0effRRzZ07N/g+MM8RAAAAAMJxVgFq5syZWrt2rd555x0NGTLktG0nTJggSfrss880fPhwpaenq7i4OKTN4cOHJUnp6enB/wautW3jdrsVHx8vh8Mhh8PRYZvAMzricrnkcrnC+5AAAAAAcIourYEyDEMzZ87U6tWrtWHDBmVlZZ3xa3bs2CFJysjIkCTl5ORo165dqqysDLYpLCyU2+1WdnZ2sM369etDnlNYWKicnBxJktPp1JgxY0La+P1+rV+/PtgGAAAAALpbl0ag8vPztXLlSr355ptKTk4OrllKSUlRfHy89u3bp5UrV+q6665T//79tXPnTs2ZM0cTJ07U5ZdfLkmaPHmysrOzdeedd+qZZ56Rx+PRY489pvz8/ODo0PTp07V48WI9/PDDuueee7Rhwwa9/vrrWrduXbCWuXPnatq0aRo7dqzGjx+vRYsWqb6+XnfffXd39Q0AAAAAhOjSNuY2m63D68uWLdNdd92lQ4cO6Y477lBJSYnq6+uVmZmpf/7nf9Zjjz0WshXggQMHNGPGDG3atEmJiYmaNm2ann76acXEnMxzmzZt0pw5c1RaWqohQ4bo8ccf11133RXyfRcvXqxnn31WHo9HV1xxhV544YXglMFwsI05AAAAACn8bHBO50BFOgIUAAAAAKmXzoECAAAAgL6EAAUAAAAAYSJAAQAAAECYCFAAAAAAECYCFAAAAACEqUvnQKFn+PyGisuqVVnXqLTkOI3PSpXD3vGW8QAAAADMQ4AyWUFJhRasKVVFbWPwWkZKnObfkK0pIzJMrAwAAADAqZjCZ6KCkgrNWLE9JDxJkqe2UTNWbFdBSYVJlQEAAADoCAHKJD6/oQVrStXRKcaBawvWlMrn77PnHAMAAACWQ4AySXFZdbuRp7YMSRW1jSouq+69ogAAAACcFgHKJJV1nYens2kHAAAAoOcRoEySlhzXre0AAAAA9DwClEnGZ6UqIyVOnW1WbtPx3fjGZ6X2ZlkAAAAAToMAZRKH3ab5N2RLUrsQFXg//4ZszoMCAAAALIQAZaIpIzK05I7RSk8JnaaXnhKnJXeM5hwoAAAAwGI4SNdkU0Zk6DvZ6Zr8683ad6Re/zH5a5pxzUWMPAEAAAAWxAiUBTjsNg0+L16SdP558YQnAAAAwKIIUBaRHHd8MNDb0GpyJQAAAAA6Q4CyiGRXrCSprrHF5EoAAAAAdIYAZRGBEai6RkagAAAAAKsiQFmEO/74CJSXAAUAAABYFgHKIk6OQDGFDwAAALAqApRFJMcxAgUAAABYHQHKIhiBAgAAAKyPAGURbCIBAAAAWB8ByiLccWxjDgAAAFgdAcoiAgGKg3QBAAAA6yJAWURgCl9Di08tPr/J1QAAAADoCAHKIpJOBChJOso6KAAAAMCSCFAWEeuwK8HpkMRGEgAAAIBVEaAsJDCNz8tGEgAAAIAlEaAs5ORhugQoAAAAwIoIUBbCWVAAAACAtRGgLCQ5eBYUAQoAAACwIgKUhbiDI1BM4QMAAACsiABlIckcpgsAAABYGgHKQhiBAgAAAKyNAGUhbCIBAAAAWBsBykLc8Sc2kWhiBAoAAACwIgKUhTACBQAAAFgbAcpCkl2BTSQYgQIAAACsiABlIYxAAQAAANZGgLKQ4DbmBCgAAADAkghQFuKOZxtzAAAAwMoIUBYSGIFqavWrqdVncjUAAAAATkWAspAkV0zw16yDAgAAAKyHAGUhDrstGKIIUAAAAID1EKAsxh3HOigAAADAqghQFhNYB8UIFAAAAGA9BCiLCZwFxWG6AAAAgPUQoCyGw3QBAAAA6yJAWczJw3QZgQIAAACshgBlMScP02UECgAAALAaApTFMAIFAAAAWBcBymJYAwUAAABYFwHKYk5uY84IFAAAAGA1BCiLcTMCBQAAAFgWAcpi3BykCwAAAFgWAcpiggfpMoUPAAAAsBwClMUkMwIFAAAAWFaXAtTChQs1btw4JScnKy0tTVOnTtXevXs7bGsYhr773e/KZrPpT3/6U8i9gwcPKi8vTwkJCUpLS9NDDz2k1tbQwLBp0yaNHj1aLpdLF110kZYvX97ue7z44osaNmyY4uLiNGHCBBUXF3fl41jSyV34WmQYhsnVAAAAAGirSwFq8+bNys/P19atW1VYWKiWlhZNnjxZ9fX17douWrRINput3XWfz6e8vDw1Nzdry5YteuWVV7R8+XI98cQTwTZlZWXKy8vTtddeqx07dmj27Nm677779PbbbwfbvPbaa5o7d67mz5+v7du3a9SoUcrNzVVlZWVXPpLluOOPj0C1+Aw1tfpNrgYAAABAWzbjHIY5qqqqlJaWps2bN2vixInB6zt27ND111+vDz74QBkZGVq9erWmTp0qSXrrrbd0/fXXq7y8XIMGDZIkLV26VPPmzVNVVZWcTqfmzZundevWqaSkJPjMW2+9VTU1NSooKJAkTZgwQePGjdPixYslSX6/X5mZmZo1a5YeeeSRsOr3er1KSUlRbW2t3G732XZDtzIMQ8N/8hf5Dan4p99WWnKc2SUBAAAAUS/cbHBOa6Bqa2slSampqcFrx44d0w9/+EO9+OKLSk9Pb/c1RUVFGjlyZDA8SVJubq68Xq92794dbDNp0qSQr8vNzVVRUZEkqbm5Wdu2bQtpY7fbNWnSpGCbjjQ1Ncnr9Ya8rMZmsynJdWIjiQbWQQEAAABWctYByu/3a/bs2br66qs1YsSI4PU5c+boG9/4hm688cYOv87j8YSEJ0nB9x6P57RtvF6vGhoadOTIEfl8vg7bBJ7RkYULFyolJSX4yszMDP8D9yIO0wUAAACs6awDVH5+vkpKSrRq1argtT//+c/asGGDFi1a1B21dbtHH31UtbW1wdehQ4fMLqlDgXVQ7MQHAAAAWMtZBaiZM2dq7dq12rhxo4YMGRK8vmHDBu3bt0/9+vVTTEyMYmKOT0W7+eabdc0110iS0tPTdfjw4ZDnBd4Hpvx11sbtdis+Pl4DBgyQw+HosE1H0wYDXC6X3G53yMuKTu7ER4ACAAAArKRLAcowDM2cOVOrV6/Whg0blJWVFXL/kUce0c6dO7Vjx47gS5Kee+45LVu2TJKUk5OjXbt2heyWV1hYKLfbrezs7GCb9evXhzy7sLBQOTk5kiSn06kxY8aEtPH7/Vq/fn2wTSRzc5guAAAAYEkxXWmcn5+vlStX6s0331RycnJwvVFKSori4+OVnp7e4QjQ0KFDg2Fr8uTJys7O1p133qlnnnlGHo9Hjz32mPLz8+VyuSRJ06dP1+LFi/Xwww/rnnvu0YYNG/T6669r3bp1wWfOnTtX06ZN09ixYzV+/HgtWrRI9fX1uvvuu8+6M6yCNVAAAACANXUpQC1ZskSSgtPxApYtW6a77rorrGc4HA6tXbtWM2bMUE5OjhITEzVt2jQ9+eSTwTZZWVlat26d5syZo+eff15DhgzR73//e+Xm5gbb3HLLLaqqqtITTzwhj8ejK664QgUFBe02lohETOEDAAAArOmczoGKdFY8B0qS/vPtvVq88TPd9Y1h+tn3vm52OQAAAEDU65VzoNAzklkDBQAAAFgSAcqCAmugOEgXAAAAsBYClAWdXAPFCBQAAABgJQQoC+IgXQAAAMCaCFAWFByBamIECgAAALASApQFBQ/SZQ0UAAAAYCkEKAsKbCJxtKlVfXiXeQAAAMByCFAWFJjC5/MbOtbsM7kaAAAAAAEEKAuKj3Uoxm6TxEYSAAAAgJUQoCzIZrOxlTkAAABgQQQoiwoepkuAAgAAACyDAGVRgREoL1P4AAAAAMsgQFmUO47DdAEAAACrIUBZFGugAAAAAOshQFlUcA0Uh+kCAAAAlkGAsihGoAAAAADrIUBZlDsYoBiBAgAAAKyCAGVR7vjAJhKMQAEAAABWQYCyqGRGoAAAAADLIUBZFAfpAgAAANZDgLIoRqAAAAAA6yFAWRQH6QIAAADWQ4CyqMAIFFP4AAAAAOsgQFlUYA3U0aZW+f2GydUAAAAAkAhQlhUYgTIM6Wgz0/gAAAAAKyBAWVRcrENOx/EfD+ugAAAAAGsgQFmYOz6wEx/roAAAAAArIEBZWDI78QEAAACWQoCysOBOfA2MQAEAAABWQICyMA7TBQAAAKyFAGVhJw/TZQQKAAAAsAIClIWdPEyXESgAAADACghQFhbYRMLLCBQAAABgCQQoC2MNFAAAAGAtBCgLYxtzAAAAwFoIUBbmjuMgXQAAAMBKCFAWxggUAAAAYC0EKAtzc5AuAAAAYCkEKAtjBAoAAACwFgKUhbnjWQMFAAAAWAkBysICI1D1zT61+vwmVwMAAACAAGVhgXOgJOloE9P4AAAAALMRoCws1mFXXOzxHxHroAAAAADzEaAsLjCNz8s6KAAAAMB0BCiLO3mYLiNQAAAAgNkIUBbHVuYAAACAdRCgLC6Zw3QBAAAAyyBAWZw7OAJFgAIAAADMRoCyuJOH6TKFDwAAADAbAcrigmugOAcKAAAAMB0ByuKSXYERKKbwAQAAAGYjQFncyU0kGIECAAAAzEaAsjgO0gUAAACsgwBlce54zoECAAAArIIAZXGBKXysgQIAAADMR4CyuOAaKEagAAAAANMRoCyOg3QBAAAA6yBAWVwgQDW2+NXi85tcDQAAANC3EaAsLunEFD6JjSQAAAAAsxGgLM5htynR6ZDEND4AAADAbASoCBA8C4rDdAEAAABTdSlALVy4UOPGjVNycrLS0tI0depU7d27N6TNv/7rv2r48OGKj4/XwIEDdeONN2rPnj0hbQ4ePKi8vDwlJCQoLS1NDz30kFpbQ8PBpk2bNHr0aLlcLl100UVavnx5u3pefPFFDRs2THFxcZowYYKKi4u78nEiBluZAwAAANbQpQC1efNm5efna+vWrSosLFRLS4smT56s+vr6YJsxY8Zo2bJl+vjjj/X222/LMAxNnjxZPp9PkuTz+ZSXl6fm5mZt2bJFr7zyipYvX64nnngi+IyysjLl5eXp2muv1Y4dOzR79mzdd999evvtt4NtXnvtNc2dO1fz58/X9u3bNWrUKOXm5qqysvJc+8RyAofpspU5AAAAYC6bYRjG2X5xVVWV0tLStHnzZk2cOLHDNjt37tSoUaP02Wefafjw4Xrrrbd0/fXXq7y8XIMGDZIkLV26VPPmzVNVVZWcTqfmzZundevWqaSkJPicW2+9VTU1NSooKJAkTZgwQePGjdPixYslSX6/X5mZmZo1a5YeeeSRDmtpampSU1NT8L3X61VmZqZqa2vldrvPtht63F3LirVpb5We/f7l+sHYTLPLAQAAAKKO1+tVSkrKGbPBOa2Bqq2tlSSlpqZ2eL++vl7Lli1TVlaWMjOP/8O/qKhII0eODIYnScrNzZXX69Xu3buDbSZNmhTyrNzcXBUVFUmSmpubtW3btpA2drtdkyZNCrbpyMKFC5WSkhJ8BWqyuuAaKEagAAAAAFOddYDy+/2aPXu2rr76ao0YMSLk3ksvvaSkpCQlJSXprbfeUmFhoZxOpyTJ4/GEhCdJwfcej+e0bbxerxoaGnTkyBH5fL4O2wSe0ZFHH31UtbW1wdehQ4fO7sP3MtZAAQAAANZw1gEqPz9fJSUlWrVqVbt7t99+uz788ENt3rxZX/va1/Qv//IvamxsPKdCu4PL5ZLb7Q55RYLAYbqcAwUAAACY66wC1MyZM7V27Vpt3LhRQ4YMaXc/JSVFF198sSZOnKj/+Z//0Z49e7R69WpJUnp6ug4fPhzSPvA+PT39tG3cbrfi4+M1YMAAORyODtsEnhFNGIECAAAArKFLAcowDM2cOVOrV6/Whg0blJWVFdbXGIYR3LwhJydHu3btCtktr7CwUG63W9nZ2cE269evD3lOYWGhcnJyJElOp1NjxowJaeP3+7V+/fpgm2jiDgYoRqAAAAAAM3UpQOXn52vFihVauXKlkpOT5fF45PF41NDQIEnav3+/Fi5cqG3btungwYPasmWLfvCDHyg+Pl7XXXedJGny5MnKzs7WnXfeqY8++khvv/22HnvsMeXn58vlckmSpk+frv379+vhhx/Wnj179NJLL+n111/XnDlzgrXMnTtXL7/8sl555RV9/PHHmjFjhurr63X33Xd3V99YxslNJBiBAgAAAMwU05XGS5YskSRdc801IdeXLVumu+66S3Fxcfrb3/6mRYsW6auvvtKgQYM0ceJEbdmyRWlpaZIkh8OhtWvXasaMGcrJyVFiYqKmTZumJ598Mvi8rKwsrVu3TnPmzNHzzz+vIUOG6Pe//71yc3ODbW655RZVVVXpiSeekMfj0RVXXKGCgoJ2G0tEg2RGoAAAAABLOKdzoCJduHu9m+39f1TrB0uLlDUgURv/4xqzywEAAACiTq+cA4XewSYSAAAAgDUQoCJAcA1UA1P4AAAAADMRoCJAYASq2edXY4vP5GoAAACAvosAFQGSnDGy2Y7/mo0kAAAAAPMQoCKA3W5Tkot1UAAAAIDZCFARwn1iHRQjUAAAAIB5CFARIrAOisN0AQAAAPMQoCIEh+kCAAAA5iNARYiTU/gYgQIAAADMQoCKEIxAAQAAAOYjQEWIk4fpMgIFAAAAmIUAFSFObiLBCBQAAABgFgJUhHDHs405AAAAYDYCVIQ4uQaKKXwAAACAWQhQESKZg3QBAAAA0xGgIgQH6QIAAADmI0BFCDfbmAMAAACmI0BFCA7SBQAAAMxHgIoQbddAGYZhcjUAAABA30SAihCBNVCtfkMNLT6TqwEAAAD6JgJUhEhwOuSw2ySxDgoAAAAwCwEqQthsNs6CAgAAAExGgIogJ7cyZwQKAAAAMAMBKoIkuzhMFwAAADATASqCJLkckqQNHx9W0b4v5fOzGx8AAADQm2LMLgDhKSip0Eef10qSXik6oFeKDigjJU7zb8jWlBEZJlcHAAAA9A2MQEWAgpIKzVixXU2t/pDrntpGzVixXQUlFSZVBgAAAPQtBCiL8/kNLVhTqo4m6wWuLVhTynQ+AAAAoBcQoCyuuKxaFbWNnd43JFXUNqq4rLr3igIAAAD6KAKUxVXWdR6ezqYdAAAAgLNHgLK4tOS4bm0HAAAA4OwRoCxufFaqMlLiZOvkvk1SRkqcxmel9mZZAAAAQJ9EgLI4h92m+TdkS1K7EBV4P/+GbDnsnUUsAAAAAN2FABUBpozI0JI7Ris9JXSaXnpKnJbcMZpzoAAAAIBeQoCKEFNGZOjdef+kb1+WJkmaesVgvTvvnwhPAAAAQC8iQEUQh92mbwwfIElqavUzbQ8AAADoZQSoCHPhwERJ0v6qepMrAQAAAPoeAlSEuWhgkiSp7Ei9fH7D5GoAAACAvoUAFWEG94uXK8auZp9fn391zOxyAAAAgD6FABVhHHabsgYcn8a3r+qoydUAAAAAfQsBKgINPzGNj3VQAAAAQO8iQEWg4QMZgQIAAADMQICKQMPTjo9A7atkBAoAAADoTQSoCHThgBNT+I4wAgUAAAD0JgJUBAqcBXXkaLNqjjWbXA0AAADQdxCgIlCiK0YZKXGSpH1sJAEAAAD0GgJUhAqMQu1nIwkAAACg1xCgIlRgK3NGoAAAAIDeQ4CKUCcDFCNQAAAAQG8hQEUoAhQAAADQ+whQESqwBurgl8fU4vObXA0AAADQNxCgIlS6O04JToda/YYOVh8zuxwAAACgTyBARSi73RYchdpXyTQ+AAAAoDcQoCLYhQOOr4Paf4Sd+AAAAIDeQICKYMGNJBiBAgAAAHoFASqCDU87MYWPnfgAAACAXkGAimCBKXz7quplGIbJ1QAAAADRjwAVwbIGJMpmk2obWlRd32x2OQAAAEDUI0BFsHinQ+f3i5d0fBQKAAAAQM8iQEW44EYSrIMCAAAAelyXAtTChQs1btw4JScnKy0tTVOnTtXevXuD96urqzVr1ixdcsklio+P19ChQ/XAAw+otrY25DkHDx5UXl6eEhISlJaWpoceekitra0hbTZt2qTRo0fL5XLpoosu0vLly9vV8+KLL2rYsGGKi4vThAkTVFxc3JWPExUCZ0HtJ0ABAAAAPa5LAWrz5s3Kz8/X1q1bVVhYqJaWFk2ePFn19cenj5WXl6u8vFz/+Z//qZKSEi1fvlwFBQW69957g8/w+XzKy8tTc3OztmzZoldeeUXLly/XE088EWxTVlamvLw8XXvttdqxY4dmz56t++67T2+//XawzWuvvaa5c+dq/vz52r59u0aNGqXc3FxVVlaea59ElJMjUEzhAwAAAHqazTiH7duqqqqUlpamzZs3a+LEiR22eeONN3THHXeovr5eMTExeuutt3T99dervLxcgwYNkiQtXbpU8+bNU1VVlZxOp+bNm6d169appKQk+Jxbb71VNTU1KigokCRNmDBB48aN0+LFiyVJfr9fmZmZmjVrlh555JGw6vd6vUpJSVFtba3cbvfZdoOpivZ9qdte3qoL+ido80PXml0OAAAAEJHCzQbntAYqMDUvNTX1tG3cbrdiYmIkSUVFRRo5cmQwPElSbm6uvF6vdu/eHWwzadKkkOfk5uaqqKhIktTc3Kxt27aFtLHb7Zo0aVKwTUeamprk9XpDXpFu+IkpfIeqj6mp1WdyNQAAAEB0O+sA5ff7NXv2bF199dUaMWJEh22OHDmin//857r//vuD1zweT0h4khR87/F4TtvG6/WqoaFBR44ckc/n67BN4BkdWbhwoVJSUoKvzMzM8D+wRQ1MdinZFSO/IR348pjZ5QAAAABR7awDVH5+vkpKSrRq1aoO73u9XuXl5Sk7O1s/+9nPzvbbdKtHH31UtbW1wdehQ4fMLumc2Ww2XZh2Yh1UJRtJAAAAAD0p5my+aObMmVq7dq3eeecdDRkypN39uro6TZkyRcnJyVq9erViY2OD99LT09vtlnf48OHgvcB/A9fatnG73YqPj5fD4ZDD4eiwTeAZHXG5XHK5XF37sBFg+MBEfXSohq3MAQAAgB7WpREowzA0c+ZMrV69Whs2bFBWVla7Nl6vV5MnT5bT6dSf//xnxcXFhdzPycnRrl27QnbLKywslNvtVnZ2drDN+vXrQ76usLBQOTk5kiSn06kxY8aEtPH7/Vq/fn2wTV8S2IlvPzvxAQAAAD2qSwEqPz9fK1as0MqVK5WcnCyPxyOPx6OGhgZJJ8NTfX29/uu//kterzfYxuc7vsHB5MmTlZ2drTvvvFMfffSR3n77bT322GPKz88Pjg5Nnz5d+/fv18MPP6w9e/bopZde0uuvv645c+YEa5k7d65efvllvfLKK/r44481Y8YM1dfX6+677+6uvokYgY0kGIECAAAAelaXpvAtWbJEknTNNdeEXF+2bJnuuusubd++Xe+9954k6aKLLgppU1ZWpmHDhsnhcGjt2rWaMWOGcnJylJiYqGnTpunJJ58Mts3KytK6des0Z84cPf/88xoyZIh+//vfKzc3N9jmlltuUVVVlZ544gl5PB5dccUVKigoaLexRF/Q9iwowzBks9lMrggAAACITud0DlSki4ZzoCSpqdWnyx4vkN+Qin/ybaW54878RQAAAACCeuUcKFiDK8ahoakJkqTPmMYHAAAA9BgCVJRoO40PAAAAQM8gQEWJC09sJLGfESgAAACgxxCgogQjUAAAAEDPI0BFieFpJwJUJSNQAAAAQE8hQEWJwAjUFzUNamj2mVwNAAAAEJ0IUFEiNdGpfgmxkqSyI0zjAwAAAHoCASqKnFwHxTQ+AAAAoCcQoKLI8BM78RGgAAAAgJ5BgIoiF54YgdrPTnwAAABAjyBARRGm8AEAAAA9iwAVRYYHD9Otl99vmFwNAAAAEH0IUFEkMzVBMXabGlp88ngbzS4HAAAAiDoEqCgS67Drgv4JkpjGBwAAAPQEAlSUuXDA8Wl8f/rwCxXt+1I+pvIBAAAA3SbG7ALQfQpKKrRl/5eSpP+3/Qv9v+1fKCMlTvNvyNaUERkmVwcAAABEPkagokRBSYVmrNiu+iZfyHVPbaNmrNiugpIKkyoDAAAAogcBKgr4/IYWrClVR5P1AtcWrCllOh8AAABwjghQUaC4rFoVtZ3vumdIqqhtVHFZde8VBQAAAEQhAlQUqKwLb8vycNsBAAAA6BgBKgqkJcd1azsAAAAAHSNARYHxWanKSImTrZP7NkkZKXEan5Xam2UBAAAAUYcAFQUcdpvm35AtSe1CVOD9/Buy5bB3FrEAAAAAhIMAFSWmjMjQkjtGKz0ldJreILdLS+4YzTlQAAAAQDfgIN0oMmVEhr6Tna7ismr926vb9NWxFv3n90fpm18baHZpAAAAQFRgBCrKOOw25Qzvr5zh/SVJu8q9JlcEAAAARA8CVJQaNaSfJGnn5zWm1gEAAABEEwJUlLo8GKBqzS0EAAAAiCIEqCg1ckiKbDbpi5oGHTnaZHY5AAAAQFQgQEWpJFeMhg9MksQ0PgAAAKC7EKCi2OVDUiRJHx1iGh8AAADQHQhQUYyNJAAAAIDuRYCKYoERqJ2f18owDJOrAQAAACIfASqKXZbhVozdpi/rm/VFTYPZ5QAAAAARjwAVxeJiHbo0I1kS25kDAAAA3YEAFeUC50F9dKjG1DoAAACAaECAinKjAjvxsZEEAAAAcM4IUFEuMAJV8oVXfj8bSQAAAADnggAV5S5OS1JcrF1Hm1q1/8hRs8sBAAAAIhoBKsrFOOwaMZgDdQEAAIDuQIDqAy7nQF0AAACgWxCg+oBRmYGNJBiBAgAAAM4FAaoPGHViBKq0wqvmVr+5xQAAAAARjADVB1zQP0Ep8bFqbvXrk8N1ZpcDAAAARCwCVB9gs9l0OedBAQAAAOeMANVHBALUTnbiAwAAAM4aAaqPCOzExwgUAAAAcPYIUH1EYCOJTyuPqqHZZ24xAAAAQIQiQPUR6SlxSkt2yec3tLucaXwAAADA2SBA9SEnp/ERoAAAAICzQYDqQ0YFNpJgHRQAAABwVghQfcjlmf0kSTsZgQIAAADOCgGqD7n8/OMjUGVH6lV7rMXkagAAAIDIQ4DqQ85LdGpoaoIkaecXNeYWAwAAAEQgAlQfEzxQl2l8AAAAQJcRoPqYwHlQHx2qMbUOAAAAIBIRoPqYUWwkAQAAAJw1AlQfM+J8t+w2yeNtVKW30exyAAAAgIhCgOpjEpwxujgtWRIH6gIAAABdRYDqgy7nQF0AAADgrHQpQC1cuFDjxo1TcnKy0tLSNHXqVO3duzekze9+9ztdc801crvdstlsqqmpafec6upq3X777XK73erXr5/uvfdeHT16NKTNzp079X/+z/9RXFycMjMz9cwzz7R7zhtvvKFLL71UcXFxGjlypP7yl7905eP0WYEDdRmBAgAAALqmSwFq8+bNys/P19atW1VYWKiWlhZNnjxZ9fX1wTbHjh3TlClT9JOf/KTT59x+++3avXu3CgsLtXbtWr3zzju6//77g/e9Xq8mT56sCy64QNu2bdOzzz6rn/3sZ/rd734XbLNlyxbddtttuvfee/Xhhx9q6tSpmjp1qkpKSrrykfqkUSdGoLYdqNabH36hon1fyuc3TK4KAAAAsD6bYRhn/S/nqqoqpaWlafPmzZo4cWLIvU2bNunaa6/VV199pX79+gWvf/zxx8rOztb777+vsWPHSpIKCgp03XXX6fPPP9fgwYO1ZMkS/fSnP5XH45HT6ZQkPfLII/rTn/6kPXv2SJJuueUW1dfXa+3atcFnX3XVVbriiiu0dOnSsOr3er1KSUlRbW2t3G732XZDxFnzUblm/eHDkGsZKXGaf0O2pozIMKkqAAAAwDzhZoNzWgNVW3t8ClhqamrYX1NUVKR+/foFw5MkTZo0SXa7Xe+9916wzcSJE4PhSZJyc3O1d+9effXVV8E2kyZNCnl2bm6uioqKOv3eTU1N8nq9Ia++pqCkQg+cEp4kyVPbqBkrtqugpMKEqgAAAIDIcNYByu/3a/bs2br66qs1YsSIsL/O4/EoLS0t5FpMTIxSU1Pl8XiCbQYNGhTSJvD+TG0C9zuycOFCpaSkBF+ZmZlh1x0NfH5DC9aUqqMhx8C1BWtKmc4HAAAAdOKsA1R+fr5KSkq0atWq7qynRz366KOqra0Nvg4dOmR2Sb2quKxaFbWdn/1kSKqobVRxWXXvFQUAAABEkJiz+aKZM2cGN38YMmRIl742PT1dlZWVIddaW1tVXV2t9PT0YJvDhw+HtAm8P1ObwP2OuFwuuVyuLtUbTSrrwjs4N9x2AAAAQF/TpREowzA0c+ZMrV69Whs2bFBWVlaXv2FOTo5qamq0bdu24LUNGzbI7/drwoQJwTbvvPOOWlpagm0KCwt1ySWX6Lzzzgu2Wb9+fcizCwsLlZOT0+Wa+oq05LhubQcAAAD0NV0KUPn5+VqxYoVWrlyp5ORkeTweeTweNTQ0BNt4PB7t2LFDn332mSRp165d2rFjh6qrj08Lu+yyyzRlyhT9+Mc/VnFxsf7+979r5syZuvXWWzV48GBJ0g9/+EM5nU7de++92r17t1577TU9//zzmjt3bvD7PPjggyooKNCvfvUr7dmzRz/72c/0wQcfaObMmefcKdFqfFaqMlLiZOvkvk3Hd+MbnxX+piAAAABAX9Klbcxtto7/6b1s2TLdddddkqSf/exnWrBgwWnbVFdXa+bMmVqzZo3sdrtuvvlmvfDCC0pKSgq237lzp/Lz8/X+++9rwIABmjVrlubNmxfyzDfeeEOPPfaY/vGPf+jiiy/WM888o+uuuy7cj9MntzEvKKnQjBXbJandZhI2SUvuGM1W5gAAAOhzws0G53QOVKTriwFKOh6iFqwpDdlQItZh029uu5LwBAAAgD4p3GxwVptIILJNGZGh72Snq7isWmVHjuqJN3erxWfo/H4JZpcGAAAAWNo5HaSLyOWw25QzvL9+OOECXTfy+KjTyuKDJlcFAAAAWBsBCrpt/FBJ0p93fKGjTa0mVwMAAABYFwEKuurCVF04IFH1zT6t+ajc7HIAAAAAyyJAQTabLTgKtfI9pvEBAAAAnSFAQZJ085ghcjrs2vVFrXZ9Xmt2OQAAAIAlEaAgSUpNdGrKiHRJ0h/eZxQKAAAA6AgBCkGBaXxvfshmEgAAAEBHCFAIYjMJAAAA4PQIUAhqu5nEHzgTCgAAAGiHAIUQgc0kdn5eq5Iv2EwCAAAAaIsAhRBtN5NYySgUAAAAEIIAhXbabiZRz2YSAAAAQBABCu203Uziz2wmAQAAAAQRoNBO280kXn5nv97c8YWK9n0pn98wuTIAAADAXDFmFwBr6pcQK0naf6ReD67aIUnKSInT/BuyNWVEhomVAQAAAOZhBArtFJRU6OH/2dnuuqe2UTNWbFdBSYUJVQEAAADmI0AhhM9vaMGaUnU0WS9wbcGaUqbzAQAAoE8iQCFEcVm1KmobO71vSKqobVRxWXXvFQUAAABYBAEKISrrOg9PZ9MOAAAAiCYEKIRIS47r1nYAAABANCFAIcT4rFRlpMTJdpo26W6Xxmel9lpNAAAAgFUQoBDCYbdp/g3ZktRpiMpIiZf9dAkLAAAAiFIEKLQzZUSGltwxWukpodP0BiQ55bBLHx6q0X+9W2ZSdQAAAIB5OEgXHZoyIkPfyU5XcVm1KusalZYcp/FZqVr53gE9/uZuLXxrjy4f0o+pfAAAAOhTGIFCpxx2m3KG99eNV5yvnOH95bDbdMdVF2jqFYPl8xvKX7ldlV524wMAAEDfQYBCl9hsNj1100hdMihZVXVNmrnyQ7X4/GaXBQAAAPQKAhS6LMEZoyV3jFaSK0bF/6jWMwV7zC4JAAAA6BUEKJyVCwcm6T9/cLkk6eW/lekvuypMrggAAADoeQQonLUpIzL0rxMvlCQ9/D87ta/qqMkVAQAAAD2LAIVz8lDuJRqflaqjTa2asWKbjjW3ml0SAAAA0GMIUDgnMQ67Fv/wSqUlu/TJ4aN65P/tkmEYZpcFAAAA9AgCFM5ZWnKcXrx9tBx2m/78Ubn+e+sBs0sCAAAAegQBCt1i3LBUPfrdSyVJP19bqu0HvzK5IgAAAKD7EaDQbe79ZpbyRmaoxWfo31Zs15dHm8wuCQAAAOhWBCh0G5vNpl9+/3JdODBRHm+jHlj1oXx+1kMBAAAgehCg0K2SXDH67R1jlOB06O+ffalfF+41uyQAAACg2xCg0O0uHpSsp28+fsjuixv36a+lh02uCAAAAOgeBCj0iO+NGqy7vjFMkjTn9R3aX3VURfu+1Js7vlDRvi+Z2gcAAICIFGN2AYheP7nuMu38vEbbD9Zo8nPvqLVNaMpIidP8G7I1ZUSGiRUCAAAAXcMIFHqMM8auH4zNlKSQ8CRJntpGzVixXQUlFWaUBgAAAJwVAhR6jM9v6IX1n3Z4LxCnFqwpZTofAAAAIgYBCj2muKxaFbWNnd43JFXUNqq4rLr3igIAAADOAQEKPaayrvPwdDbtAAAAALMRoNBj0pLjurUdAAAAYDYCFHrM+KxUZaTEyXaaNv0TnRqfldprNQEAAADnggCFHuOw2zT/hmxJ6jRE1Ta06O+fHem9ogAAAIBzQIBCj5oyIkNL7hit9JTQaXrpKXEaeb5brX5D9/1/H2jjnkqTKgQAAADCZzMMo8/uIe31epWSkqLa2lq53W6zy4lqPr+h4rJqVdY1Ki05TuOzUuXzG5r1h+16e/dhOR12vXj7aH0ne5DZpQIAAKAPCjcbEKAIUKZq8fk1e9UOrdtVoRi7TYt/eKWmjMgwuywAAAD0MeFmA6bwwVSxDruev/UK3XjFYLX6DeWv/FBrPio3uywAAACgQwQomC7GYdev/+UK3TT6fPn8hh5c9aH+9OEXZpcFAAAAtEOAgiU47DY9+/1RumVspvyGNOf1HfqfbZ+bXRYAAAAQggAFy3DYbVp400jdPmGoDEN66H8+0qrig2aXBQAAAAQRoGApdrtN/3fqCN31jWEyDOmRP+7Sf289YHZZAAAAgCQCFCzIZjt+AO9938ySJD3+pxIt+3uZyVUBAAAABChYlM1m00/zLtP0bw2XJC1YU6qX39lvclUAAADo6whQsCybzaZ5Uy7RA/90kSTpF3/5WC9u/MzkqgAAANCXEaBgaTabTXMnX6K53/maJOnZt/fq+b9+anJVAAAA6KsIUIgID3z7Yj085RJJ0nN//US/+t+9MgzD5KoAAADQ13QpQC1cuFDjxo1TcnKy0tLSNHXqVO3duzekTWNjo/Lz89W/f38lJSXp5ptv1uHDh0PaHDx4UHl5eUpISFBaWpoeeughtba2hrTZtGmTRo8eLZfLpYsuukjLly9vV8+LL76oYcOGKS4uThMmTFBxcXFXPg4izL9dc5F+et1lkqTfbPhMTxfsIUQBAACgV3UpQG3evFn5+fnaunWrCgsL1dLSosmTJ6u+vj7YZs6cOVqzZo3eeOMNbd68WeXl5brpppuC930+n/Ly8tTc3KwtW7bolVde0fLly/XEE08E25SVlSkvL0/XXnutduzYodmzZ+u+++7T22+/HWzz2muvae7cuZo/f762b9+uUaNGKTc3V5WVlefSH7C4H0+8UPNvyJYk/Xbzfv3fdR8TogAAANBrbMY5/OuzqqpKaWlp2rx5syZOnKja2loNHDhQK1eu1Pe//31J0p49e3TZZZepqKhIV111ld566y1df/31Ki8v16BBgyRJS5cu1bx581RVVSWn06l58+Zp3bp1KikpCX6vW2+9VTU1NSooKJAkTZgwQePGjdPixYslSX6/X5mZmZo1a5YeeeSRsOr3er1KSUlRbW2t3G732XYDTPDfWw/o8T8d//0xLecCPX59tt7/x1eqrGtUWnKcxmelymG3mVwlAAAAIkW42eCc1kDV1tZKklJTUyVJ27ZtU0tLiyZNmhRsc+mll2ro0KEqKiqSJBUVFWnkyJHB8CRJubm58nq92r17d7BN22cE2gSe0dzcrG3btoW0sdvtmjRpUrBNR5qamuT1ekNeiEx3XnWBnr5ppGw26ZWiA7p8wf/qtpe36sFVO3Tby1v1zV9uUEFJhdllAgAAIMqcdYDy+/2aPXu2rr76ao0YMUKS5PF45HQ61a9fv5C2gwYNksfjCbZpG54C9wP3TtfG6/WqoaFBR44ckc/n67BN4BkdWbhwoVJSUoKvzMzMrn9wWMat44fqR1ddIEk61uwLueepbdSMFdsJUQAAAOhWZx2g8vPzVVJSolWrVnVnPT3q0UcfVW1tbfB16NAhs0vCOfD5Df1v6eEO7wXmpS5YUyqfnzVSAAAA6B5nFaBmzpyptWvXauPGjRoyZEjwenp6upqbm1VTUxPS/vDhw0pPTw+2OXVXvsD7M7Vxu92Kj4/XgAED5HA4OmwTeEZHXC6X3G53yAuRq7isWhW1jZ3eNyRV1DaquKy694oCAABAVOtSgDIMQzNnztTq1au1YcMGZWVlhdwfM2aMYmNjtX79+uC1vXv36uDBg8rJyZEk5eTkaNeuXSG75RUWFsrtdis7OzvYpu0zAm0Cz3A6nRozZkxIG7/fr/Xr1wfbIPpV1nUens6mHQAAAHAmMV1pnJ+fr5UrV+rNN99UcnJycL1RSkqK4uPjlZKSonvvvVdz585Vamqq3G63Zs2apZycHF111VWSpMmTJys7O1t33nmnnnnmGXk8Hj322GPKz8+Xy+WSJE2fPl2LFy/Www8/rHvuuUcbNmzQ66+/rnXr1gVrmTt3rqZNm6axY8dq/PjxWrRokerr63X33Xd3V9/A4tKS47q1HQAAAHAmXQpQS5YskSRdc801IdeXLVumu+66S5L03HPPyW636+abb1ZTU5Nyc3P10ksvBds6HA6tXbtWM2bMUE5OjhITEzVt2jQ9+eSTwTZZWVlat26d5syZo+eff15DhgzR73//e+Xm5gbb3HLLLaqqqtITTzwhj8ejK664QgUFBe02lkD0Gp+VqoyUOHlqG9XZKiebJJ/P35tlAQAAIIqd0zlQkY5zoCJfQUmFZqzYLkkhIcrW5n2M3aanb75c3x8z5NQvBwAAACT10jlQgNmmjMjQkjtGKz0ldJpeekqcXrj1Ct0warBa/Yb+442P9OvCT9SH//8CAAAAdANGoBiBigo+v6HismpV1jUqLTlO47NS5bDb5Pcb+lXhXr24cZ8k6aYrz9fCm0fKFeMwuWIAAABYSbjZoEtroACrcthtyhnev911u92mh3IvVeZ5Cfrpn0r0xw+/UHltg357x1ilJMSaUCkAAAAiGVP40CfcOn6olt01TkmuGG3dX62blvxdh6qPSTo+elW070u9ueMLFe37koN3AQAA0Cmm8DGFr0/Z4/Hq7mXvq6K2UQOSnLrn6iz999YDIQfyZqTEaf4N2ZoyIsPESgEAANCbws0GBCgCVJ9z2Nuoe5a/r93l3g7v2078d8kdowlRAAAAfQS78AGdGOSO0x9+fJVcMR3/9g/8PwoL1pQynQ8AAAAhCFDok3aXe9XU2vkBu4akitpGFZdV915RAAAAsDwCFPqkyrrGMzfqQjsAAAD0DQQo9ElpyXFnbtSFdgAAAOgbCFDok8ZnpSojJS64YURH+sXHanxWaq/VBAAAAOsjQKFPcthtmn9DtiR1GqJqGlr0f9eVqsXn56woAAAASGIbc7Yx7+MKSiq0YE1pu3Ogrhx6nv6yq0KS9LVBSao51qLKuqaQNpwVBQAAED04ByoMBChIks9vqLisWpV1jUpLjtP4rFQ57DYVlHj04KoPO9ytj7OiAAAAoku42SCmF2sCLMlhtylneP9217+TPUjJcTFqOtrc7p6h4yFqwZpSfSc7XQ776VZTAQAAIFqwBgroRHFZtY50EJ4COCsKAACg7yFAAZ3grCgAAACcigAFdCLcM6BWbD2gjyu8PVwNAAAArIAABXQinLOiJOn9f3yl7z7/N/3bq9u011PXK7UBAADAHAQooBOnOyvKduI1/4Zs3TBqsGw26S+7PJry/DuauXK7PqskSAEAAEQjtjFnG3OcQWdnRbU9B2qvp07Pr/9Ef9nlkSTZbNKNowbrgW9frAsHJplSNwAAAMLHOVBhIEAhXJ2dFXWq0nKvFv31E/1v6WFJkt0mTb3yfD3wTxdr2IDE3i4bAAAAYSJAhYEAhZ5S8kWtFv31E/3140pJx6cD3jz6fM36p4uVmZpgcnUAAAA4FQEqDAQo9LSPDtXoub9+ok17qyRJMXabfjB2iPKvvUhDzjsZpMId4QIAAEDPIECFgQCF3rL94Fd6rvAT/e3TI5KkWIdNt4zLVP61F+mjQzVnXGMFAACAnkWACgMBCr3tg39U67m/fqK/f/alpOMjUq3+9v8TDIw9LbljNCEKAACgF4SbDdjGHOhFY4el6tX7rtKq+6/SuGHndRieJClwdcGaUvk6aQMAAIDeR4ACTHDVhf019ztfO20bQ1JFbaM27a3snaIAAABwRjFmFwD0VZV1TWG1u/eVDzQ0NUHZGW5lD3YH/5uREiebjY0mAAAAehMBCjBJWnJc2G0PVh/TwepjKtjtCV7rlxB7PEwFgtVgt4YPTFKsg4FlAACAnkKAAkwyPitVGSlx8tQ2qqNVTjZJ6SlxWjvrm9p7uE6l5V6VVnhVWu7VZ5VHVXOsRVv2fakt+74Mfo3TYdfX0pPaBKsUXZaRrOS42F77XAAAANGMXfjYhQ8mKiip0IwV2yUpJESdaRe+plafPj18NBioAuHqaFNrh9+n7RTAr58YrUp3MwUQAAAggG3Mw0CAghUUlFR0yzlQfr+hz79qUGlFbchoVXmb57Z1XkJsyJqq7IwUXTgwkSmAAACgTyJAhYEABavw+Q0Vl1Wrsq5RaclxGp+VKoe9e0aHvqpv1scVJwNVaYVXn1Ye7XB7dGeMXZcMSg5ZV3VpOlMAAQBA9CNAhYEAhb6qscWnzyqPBgPV7vJafVxR1+kUwAv6J7TbsIIpgAAAIJoQoMJAgAJO8vsNHfrqWMj0v9IKb8jUwrZSE53ttla/cECiYpgCCAAAIhABKgwEKODMqgNTANvuAljV+RTAS9OTQ4LVpRluJbnY8BMAAFgbASoMBCjg7DS2BHYBDN2wor7Z12H7Yf0T2m1YMcjtYgogAACwDAJUGAhQQPfx+w0drD4WMv2vtNwrj/f0UwAD26pnZ7iVxRRAAABgEgJUGAhQQM/78miTPq6oCxmt2ldV3+EUQFdgCmCb0apL091KZAogAADoYQSoMBCgAHM0tvj0yeG6kJGqjys6ngJos0nD+ie227AiLZkpgAAAoPsQoMJAgAKsIzAFcHe5N2S06rC3qcP2/ROdIYHq64PdyhqQ1G3nZwEAgL6FABUGAhRgfUeONrXbBXBf1VF1MANQcbF2XZLuDt0FMD2ZKYAAAOCMCFBhIEABkamxxae9nrqQDSs+rvDqWCdTALP6J+qytqNVGW4NZAogAABogwAVBgIUED38fkMHqo8fBLy7vDYYrirrOp4COCDJqcvajFQxBRAAgL6NABUGAhQQ/arqTkwBbDNatf80UwAvTXefsgtgshKcTAEEACDaEaDCQIAC+qaGZp/2BncBrD2xC2CdGlo6mQI4oKNdAONMqBwAAPQUAlQYCFAAAnx+Qwe+rA+OVO0+MVpV1ekUQFdIoAocBMwUQAAAIhMBKgwEKABnUlnXePwg4OAugLXaf6ReHf3J2XYK4NeDuwC6Fe909H7hAACgSwhQYSBAATgbx5pb2+0CuKeTKYD2wBTAwSkho1UDk10mVA4AADpDgAoDAQpAd/H5Df3jy/qQ86p2l3t15GjHUwAHJrvarasa1v/spgD6/IaKy6pVWdeotOQ4jc9KjaiphJFePwAgOhCgwkCAAtDTKusaQ0JVaYVXZZ1MAYyPdejSjORTDgI+/RTAgpIKLVhTqoraxuC1jJQ4zb8hW1NGZPTER+pWkV4/ACB6EKDCQIACYIZjza3a46kLCVZ7PF41tvjbtbXbpAsHJrUbrRqQ5FJBSYVmrNiuU/8QD4zdLLljtKVDSKTXDwCILgSoMBCgAFiFz2+o7Eh9yEhVaXmtjhxt7rD9wCSnvI2tamptH7qk4yEkPSVO7877J0tOh/P5DX3zlxtCRp7asnr9AIDoQ4AKAwEKgNVV1jUe31L9RKj6uNyrsi87ngLYGZvteCCx2Wwn/nviuo7fsAXb2NrcO9k+0EaBa6c8T8Fntr138nu0bR/Q1OrrNBy2NemyNA1PS1KiM0aJrhgluRxKdMUE3ye6HEpyxSjBGaMkV4ziYu0h3wcAgHARoMJAgAIQieqbWvXy3/Zr0V8/NbsUy7Hb1CZgHQ9XicGA5TgRwo6/b3s/0eVoE9JilHDiXnysg0AGAH1EuNkgphdrAgB0g0RXjCZk9Zd05gC19I7RGn3BeZIhGZIMQzJOrDoygteMkBGtQJu296WTX68299q1P+X5p94PPGfX5zV6/M3dZ6z/5tHn67wEp+qbW3W0yadjTa062tSq+uZW1Tf5VN/UevzVfHwLeb8h1TW2qq6x9YzPDofdJiU6jweqQLgKhLNEV5vA5WwbxmKU6HR0eC/BSSADgEhHgAKACDQ+K1UZKXHy1Da224RBOrmG6DvZ6ZZcQzTy/BS9tGnfGet/5vujwqrf7zd0rKVNwGry6WhTq441n3xfHwxex8NYfaf3fapvbpVhnAhkTa2qa2qV1PGW9F1hs0kJsW3C2BnC1+lGxxJdMUqIdchuwZ8vAEQzAhQARCCH3ab5N2RrxortskkhISTwz+n5N2RbMjxJ3V+/3W5T0omAkdYN9fn9hhpafCEjXScDWZuRrxNh62jb922CWtv3/hMjdPXNPtU3+1RZd+6BTJISQgKXI7geLLBmLOE068faBrPA11r19wwAWAVroFgDBSCCRfo5SpFef7gMw1Bjiz8YtI6HsZPBLDANsf6U+yeD2cn7gWv+HvrbOz44QtY2jIWGr0AYSwj82hkYHWsT1E60J5ABiBRsIhEGAhSAaODzGyouq1ZlXaPSkuM0Pis1ov7RGun1m8EwDDW1tg9kIYErMHJ2YjTs2IlpjW3XkwUDWbNPvh5KZHGx9g438+hwuqLzNGvLTqw9i3HYe6ROAOixAPXOO+/o2Wef1bZt21RRUaHVq1dr6tSpwfuHDx/WvHnz9L//+7+qqanRxIkT9Zvf/EYXX3xxsE1jY6P+/d//XatWrVJTU5Nyc3P10ksvadCgQcE2Bw8e1IwZM7Rx40YlJSVp2rRpWrhwoWJiTs463LRpk+bOnavdu3crMzNTjz32mO66666wPwsBCgCAk4EsELzCWT/WdppioH3g1/VNrWrtoUDmirEH14IlOsNYK9Z2ymIHYS2WQAbghB7bha++vl6jRo3SPffco5tuuinknmEYmjp1qmJjY/Xmm2/K7Xbr17/+tSZNmqTS0lIlJiZKkubMmaN169bpjTfeUEpKimbOnKmbbrpJf//73yVJPp9PeXl5Sk9P15YtW1RRUaEf/ehHio2N1VNPPSVJKisrU15enqZPn65XX31V69ev13333aeMjAzl5uZ29WMBANBn2Ww2xcU6FBfrUP+k7nlmU6uv8/DVZlri0abWE5t/dBzM6puPj541+/wnnutXU2uzvqzvnjqdgUB22s08Tre2LDS8OWMIZEC0O6cpfDabLWQE6pNPPtEll1yikpISff3rX5ck+f1+paen66mnntJ9992n2tpaDRw4UCtXrtT3v/99SdKePXt02WWXqaioSFdddZXeeustXX/99SovLw+OSi1dulTz5s1TVVWVnE6n5s2bp3Xr1qmkpCRYz6233qqamhoVFBR0WG9TU5Oamk4u2vV6vcrMzGQECgAAi2s+MUIWzvqwtvc7W2/W3OrvkTqdDvspo2Pt148lBLfEbzOdsZONPlwxjh6pE0B7ppwDFQgncXFxwWt2u10ul0vvvvuu7rvvPm3btk0tLS2aNGlSsM2ll16qoUOHBgNUUVGRRo4cGTKlLzc3VzNmzNDu3bt15ZVXqqioKOQZgTazZ8/utL6FCxdqwYIF3fRpAQBAb3HG2OWMceq8RGe3PK/Fd5pAdtrdFduEseaTa8uaTgSyZp9fzcf8qjnW0i11xjpsnWzmEXow9Kmbd4QcFN2mvSvGzllkwDnq1gAVCEKPPvqofvvb3yoxMVHPPfecPv/8c1VUVEiSPB6PnE6n+vXrF/K1gwYNksfjCbZpG54C9wP3TtfG6/WqoaFB8fHx7ep79NFHNXfu3OD7wAgUAADoW2IddvVLcKpfQvcFsmNNvjbTFU8GsZO7K/rarC0LvX/q2WSNLf4TzzVU29Ci2obuCWQxdlvo4c7tdlI8EcxOWTvW0cYeSQQy9FHdGqBiY2P1xz/+Uffee69SU1PlcDg0adIkffe735UVNvtzuVxyuVxmlwEAAKJMrMOulAS7UhJiu+V5rT6/6pt9JzbnOGX9WJvzyNquHzva3Hpid8WT68cCI2YNLb7jz/Ub8ja2ytvY2i11Ok4JZKfdSbGDnRdPDWRxsQQyWF+3H6Q7ZswY7dixQ7W1tWpubtbAgQM1YcIEjR07VpKUnp6u5uZm1dTUhIxCHT58WOnp6cE2xcXFIc89fPhw8F7gv4Frbdu43e4OR58AAAAiRYzDrpR4u1LiuyeQ+fxGyJTDztaPne48slN/HXhuXWOr6ropkNltCq4BO+1Ois5TR8dCN/oIbOyR4HQQyNDtuj1ABaSkpEiSPv30U33wwQf6+c9/Lul4wIqNjdX69et18803S5L27t2rgwcPKicnR5KUk5OjX/ziF6qsrFRa2vEz5QsLC+V2u5WdnR1s85e//CXkexYWFgafAQAAgOMcdpvccbFyx3VPIPP7DR1rOSV8tVkrdrTplLB2mvVjgeAmSX5DqmtqVV1T9wQyWzCQOUKCWGDtWGebd5xcW9bmvStGCbEO2Tmnrs/rcoA6evSoPvvss+D7srIy7dixQ6mpqRo6dKjeeOMNDRw4UEOHDtWuXbv04IMPaurUqZo8ebKk48Hq3nvv1dy5c5Wamiq3261Zs2YpJydHV111lSRp8uTJys7O1p133qlnnnlGHo9Hjz32mPLz84NT8KZPn67Fixfr4Ycf1j333KMNGzbo9ddf17p167qjXwAAANAJu92mpBOjQYPO3PyM/H5DDSGBrP16srbrxwLryTpeb3b814YhGYZ09EQbqemMdZyJzSYlxLbdPbHt+rGT68lOHTFL6GxjD2dMnw1kkXyIepe3Md+0aZOuvfbadtenTZum5cuX64UXXtCzzz6rw4cPKyMjQz/60Y/0+OOPy+k8uUgzcJDuH/7wh5CDdAPT8yTpwIEDmjFjhjZt2qTExERNmzZNTz/9dLuDdOfMmaPS0lINGTJEjz/+OAfpAgAA9HGGcTyQhRwGfcr6sVN3XOzsPLLA+x46G1oJTkcHOyl2fPBzp2vL2oyiRUIIKSip0II1paqobQxey0iJ0/wbsjVlRIZpdYWbDc7pHKhIR4ACAADAmRiGocYWf6dTEo+dGsya22zm0cHasvqmngtk8bGOkEB1pt0VTxfWEp0OxTi693DogpIKzVixXad+/EDsW3LHaNNClCnnQAEAAADRxmazKd7pULzToYHJ576js2EYamr169Qt7YObdLQJX0dPrBdru36s7aja0RMBzXcikTW0+NTQ4tORo83nXKckuWLsp9lJMXTzjsBmHm3vB0fOnMd3WVywprRdeJIkQ8dD1II1pfpOdrqlR9IIUAAAAEAvstlsiot1KC7WoQFJ3RfI2p8v1v48slN3Xgw9SPpk2xbf8ZjT1OpXU2uzvqzvnkB22s8hqaK2UcVl1coZ3r/Hv9/ZIkABAAAAEaxtIOuf1D3PbGr1hawBC27e0em29+3XjwWmN9Y3+dTs84f9vSvrGs/cyEQEKAAAAAAhXDEOuWIcSk10nrlxGJpb/dq8t1I//u9tZ2yblhzXLd+zp3TvqjAAAAAAOIUzxq5/umyQMlLi1NnqJpuO78Y3Piu1N0vrMgIUAAAAgB7nsNs0/4ZsSWoXogLv59+QbekNJCQCFAAAAIBeMmVEhpbcMVrpKaHT9NJT4kzdwrwrWAMFAAAAoNdMGZGh72Snq7isWpV1jUpLPj5tz+ojTwEEKAAAAAC9ymG3WXqr8tNhCh8AAAAAhIkABQAAAABhIkABAAAAQJgIUAAAAAAQJgIUAAAAAISJAAUAAAAAYSJAAQAAAECYCFAAAAAAECYCFAAAAACEiQAFAAAAAGEiQAEAAABAmAhQAAAAABAmAhQAAAAAhCnG7ALMZBiGJMnr9ZpcCQAAAAAzBTJBICN0pk8HqLq6OklSZmamyZUAAAAAsIK6ujqlpKR0et9mnCliRTG/36/y8nIlJyfLZrN1yzO9Xq8yMzN16NAhud3ubnkmwkPfm4v+Nxf9by7631z0v7nof3PR/93HMAzV1dVp8ODBsts7X+nUp0eg7Ha7hgwZ0iPPdrvd/CY2CX1vLvrfXPS/ueh/c9H/5qL/zUX/d4/TjTwFsIkEAAAAAISJAAUAAAAAYSJAdTOXy6X58+fL5XKZXUqfQ9+bi/43F/1vLvrfXPS/ueh/c9H/va9PbyIBAAAAAF3BCBQAAAAAhIkABQAAAABhIkABAAAAQJgIUAAAAAAQJgIUAAAAAISJANWNXnzxRQ0bNkxxcXGaMGGCiouLzS4pKi1cuFDjxo1TcnKy0tLSNHXqVO3duzekTWNjo/Lz89W/f38lJSXp5ptv1uHDh02qOHo9/fTTstlsmj17dvAafd+zvvjiC91xxx3q37+/4uPjNXLkSH3wwQfB+4Zh6IknnlBGRobi4+M1adIkffrppyZWHD18Pp8ef/xxZWVlKT4+XsOHD9fPf/5ztd3Mlv7vPu+8845uuOEGDR48WDabTX/6059C7ofT19XV1br99tvldrvVr18/3XvvvTp69GgvforIdbr+b2lp0bx58zRy5EglJiZq8ODB+tGPfqTy8vKQZ9D/Z+9Mv//bmj59umw2mxYtWhRynf7vOQSobvLaa69p7ty5mj9/vrZv365Ro0YpNzdXlZWVZpcWdTZv3qz8/Hxt3bpVhYWFamlp0eTJk1VfXx9sM2fOHK1Zs0ZvvPGGNm/erPLyct10000mVh193n//ff32t7/V5ZdfHnKdvu85X331la6++mrFxsbqrbfeUmlpqX71q1/pvPPOC7Z55pln9MILL2jp0qV67733lJiYqNzcXDU2NppYeXT45S9/qSVLlmjx4sX6+OOP9ctf/lLPPPOMfvOb3wTb0P/dp76+XqNGjdKLL77Y4f1w+vr222/X7t27VVhYqLVr1+qdd97R/fff31sfIaKdrv+PHTum7du36/HHH9f27dv1xz/+UXv37tX3vve9kHb0/9k70+//gNWrV2vr1q0aPHhwu3v0fw8y0C3Gjx9v5OfnB9/7fD5j8ODBxsKFC02sqm+orKw0JBmbN282DMMwampqjNjYWOONN94Itvn4448NSUZRUZFZZUaVuro64+KLLzYKCwuNb33rW8aDDz5oGAZ939PmzZtnfPOb3+z0vt/vN9LT041nn302eK2mpsZwuVzGH/7wh94oMarl5eUZ99xzT8i1m266ybj99tsNw6D/e5IkY/Xq1cH34fR1aWmpIcl4//33g23eeustw2azGV988UWv1R4NTu3/jhQXFxuSjAMHDhiGQf93p876//PPPzfOP/98o6SkxLjggguM5557LniP/u9ZjEB1g+bmZm3btk2TJk0KXrPb7Zo0aZKKiopMrKxvqK2tlSSlpqZKkrZt26aWlpaQn8ell16qoUOH8vPoJvn5+crLywvpY4m+72l//vOfNXbsWP3gBz9QWlqarrzySr388svB+2VlZfJ4PCH9n5KSogkTJtD/3eAb3/iG1q9fr08++USS9NFHH+ndd9/Vd7/7XUn0f28Kp6+LiorUr18/jR07Nthm0qRJstvteu+993q95mhXW1srm82mfv36SaL/e5rf79edd96phx56SF//+tfb3af/e1aM2QVEgyNHjsjn82nQoEEh1wcNGqQ9e/aYVFXf4Pf7NXv2bF199dUaMWKEJMnj8cjpdAb/EA8YNGiQPB6PCVVGl1WrVmn79u16//33292j73vW/v37tWTJEs2dO1c/+clP9P777+uBBx6Q0+nUtGnTgn3c0Z9F9P+5e+SRR+T1enXppZfK4XDI5/PpF7/4hW6//XZJov97UTh97fF4lJaWFnI/JiZGqamp/Dy6WWNjo+bNm6fbbrtNbrdbEv3f0375y18qJiZGDzzwQIf36f+eRYBCRMvPz1dJSYneffdds0vpEw4dOqQHH3xQhYWFiouLM7ucPsfv92vs2LF66qmnJElXXnmlSkpKtHTpUk2bNs3k6qLf66+/rldffVUrV67U17/+de3YsUOzZ8/W4MGD6X/0WS0tLfqXf/kXGYahJUuWmF1On7Bt2zY9//zz2r59u2w2m9nl9ElM4esGAwYMkMPhaLfT2OHDh5Wenm5SVdFv5syZWrt2rTZu3KghQ4YEr6enp6u5uVk1NTUh7fl5nLtt27apsrJSo0ePVkxMjGJiYrR582a98MILiomJ0aBBg+j7HpSRkaHs7OyQa5dddpkOHjwoScE+5s+invHQQw/pkUce0a233qqRI0fqzjvv1Jw5c7Rw4UJJ9H9vCqev09PT223k1Nraqurqan4e3SQQng4cOKDCwsLg6JNE//ekv/3tb6qsrNTQoUODfxcfOHBA//7v/65hw4ZJov97GgGqGzidTo0ZM0br168PXvP7/Vq/fr1ycnJMrCw6GYahmTNnavXq1dqwYYOysrJC7o8ZM0axsbEhP4+9e/fq4MGD/DzO0be//W3t2rVLO3bsCL7Gjh2r22+/Pfhr+r7nXH311e227P/kk090wQUXSJKysrKUnp4e0v9er1fvvfce/d8Njh07Jrs99K9Nh8Mhv98vif7vTeH0dU5OjmpqarRt27Zgmw0bNsjv92vChAm9XnO0CYSnTz/9VH/961/Vv3//kPv0f8+58847tXPnzpC/iwcPHqyHHnpIb7/9tiT6v8eZvYtFtFi1apXhcrmM5cuXG6Wlpcb9999v9OvXz/B4PGaXFnVmzJhhpKSkGJs2bTIqKiqCr2PHjgXbTJ8+3Rg6dKixYcMG44MPPjBycnKMnJwcE6uOXm134TMM+r4nFRcXGzExMcYvfvEL49NPPzVeffVVIyEhwVixYkWwzdNPP23069fPePPNN42dO3caN954o5GVlWU0NDSYWHl0mDZtmnH++ecba9euNcrKyow//vGPxoABA4yHH3442Ib+7z51dXXGhx9+aHz44YeGJOPXv/618eGHHwZ3eQunr6dMmWJceeWVxnvvvWe8++67xsUXX2zcdtttZn2kiHK6/m9ubja+973vGUOGDDF27NgR8ndxU1NT8Bn0/9k70+//U526C59h0P89iQDVjX7zm98YQ4cONZxOpzF+/Hhj69atZpcUlSR1+Fq2bFmwTUNDg/Fv//ZvxnnnnWckJCQY//zP/2xUVFSYV3QUOzVA0fc9a82aNcaIESMMl8tlXHrppcbvfve7kPt+v994/PHHjUGDBhkul8v49re/bezdu9ekaqOL1+s1HnzwQWPo0KFGXFycceGFFxo//elPQ/7BSP93n40bN3b4Z/20adMMwwivr7/88kvjtttuM5KSkgy3223cfffdRl1dnQmfJvKcrv/Lyso6/bt448aNwWfQ/2fvTL//T9VRgKL/e47NMNocoQ4AAAAA6BRroAAAAAAgTAQoAAAAAAgTAQoAAAAAwkSAAgAAAIAwEaAAAAAAIEwEKAAAAAAIEwEKAAAAAMJEgAIAAACAMBGgAAAAACBMBCgAAAAACBMBCgAAAADC9P8D/+8PbuAfWTAAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "results = GV_KNN.cv_results_\n", + "mse = -results['mean_test_score']\n", + "k_values = results['param_n_neighbors'].data\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(k_values, mse, marker='o', linestyle='-')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3aOBO56I8Js8" + }, + "source": [ + "The code shows that the elboq point occurs around n=30." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "X5XtlzMXljps" + }, + "source": [ + "## 9. Artificial Neural Networks (ANN)" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": { + "id": "bJk1-9VhlRL6" + }, + "outputs": [], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": { + "id": "sZVPMR9Wlo7-" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vd1fDjQiltP4", + "outputId": "54545c64-073b-41c5-d03a-cc9cbff204f2" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" + ] + } + ], + "source": [ + "# Create an ANN model\n", + "model9 = Sequential()\n", + "model9.add(Dense(32, activation='relu', input_shape=(X_train.shape[1],)))\n", + "model9.add(Dense(16, activation='relu'))\n", + "model9.add(Dense(1, activation='linear'))" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": { + "id": "ZIf94WLMlv04" + }, + "outputs": [], + "source": [ + "# Compile the model\n", + "model9.compile(loss='mean_squared_error', optimizer='adam')" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "FX5DTKqslxWf", + "outputId": "d2353bcd-1508-469b-e4a4-9344af25a2cc" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model9.fit(X_train_scaled, y_train, epochs=100, batch_size=32, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OVW2qpNsmGVq", + "outputId": "36e4620e-9823-4b12-d6d2-509c0bcf2a88" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m45/45\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step\n" + ] + } + ], + "source": [ + "# Make predictions on the test set\n", + "pred9 = model9.predict(X_test_scaled).flatten()" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": { + "id": "CqRmjMj2maJY" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse9 = np.sqrt(mean_squared_error(y_test, pred9))\n", + "mae9 = mean_absolute_error(y_test, pred9)\n", + "mape9 = mean_absolute_percentage_error(y_test, pred9)\n", + "accuracy9 = accuracy_score(y_test > pred9, y_test > pred9.round())\n", + "precision9 = precision_score(y_test > pred9, y_test > pred9.round())\n", + "confusion9 = confusion_matrix(y_test > pred9, y_test > pred9.round())\n", + "recall9 = recall_score(y_test > pred9, y_test > pred9.round())\n", + "f19 = f1_score(y_test > pred9, y_test > pred9.round())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5zuwkC1emmh3", + "outputId": "3154af15-1dba-4edc-9b4e-f012f6ff6886" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 2.7525331773064208\n", + "MAE: 1.7070852219826735\n", + "MAPE: 0.011166669166884299\n", + "Accuracy: 0.901060070671378\n", + "Precision: 0.9446640316205533\n", + "Confusion Matrix:\n", + " [[558 42]\n", + " [ 98 717]]\n", + "Recall: 0.8797546012269939\n", + "F1 Score: 0.9110546378653113\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse9)\n", + "print(\"MAE:\", mae9)\n", + "print(\"MAPE:\", mape9)\n", + "print(\"Accuracy:\", accuracy9)\n", + "print(\"Precision:\", precision9)\n", + "print(\"Confusion Matrix:\\n\", confusion9)\n", + "print(\"Recall:\", recall9)\n", + "print(\"F1 Score:\", f19)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vjSMQNcOnFPJ" + }, + "source": [ + "## 10. LSTM(Long Short term Memory)" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": { + "id": "nCoyUanhnDKw" + }, + "outputs": [], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import LSTM, Dense" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": { + "id": "ThcXESVEVv0U" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": { + "id": "uACvajfImrbB" + }, + "outputs": [], + "source": [ + "# Reshape the input data for LSTM\n", + "n_features = X_train_scaled.shape[1]\n", + "n_steps = 10\n", + "n_samples_train = X_train_scaled.shape[0] - n_steps + 1\n", + "n_samples_test = X_test_scaled.shape[0] - n_steps + 1\n", + "\n", + "# Reshape the input data\n", + "X_train_reshaped = np.array([X_train_scaled[i:i+n_steps, :] for i in range(n_samples_train)])\n", + "X_test_reshaped = np.array([X_test_scaled[i:i+n_steps, :] for i in range(n_samples_test)])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "r066pVYpnXH5", + "outputId": "faddb972-58cc-43a7-eb04-4829ec65f019" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/layers/rnn/rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(**kwargs)\n" + ] + } + ], + "source": [ + "# Create an LSTM model\n", + "model = Sequential()\n", + "model.add(LSTM(64, activation='relu', input_shape=(n_steps, n_features)))\n", + "model.add(Dense(1))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": { + "id": "YpSfHu6gov35" + }, + "outputs": [], + "source": [ + "# Compile the model\n", + "model.compile(loss='mean_squared_error', optimizer='adam')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0vHjcluaoxzP", + "outputId": "8ca3e888-84d1-4c79-e045-cfa9d3e76d5f" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 88, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model.fit(X_train_reshaped, y_train[n_steps-1:], epochs=100, batch_size=32, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "gEE06_TjozYv", + "outputId": "5a39a4df-0a56-45f5-ac4b-c2b00f0f15d0" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m44/44\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 9ms/step\n" + ] + } + ], + "source": [ + "# Make predictions on the test set\n", + "y_pred = model.predict(X_test_reshaped).flatten()" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": { + "id": "7k6C8DrxpB_Q" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse10 = np.sqrt(mean_squared_error(y_test[n_steps-1:], y_pred))\n", + "mae10 = mean_absolute_error(y_test[n_steps-1:], y_pred)\n", + "mape10 = mean_absolute_percentage_error(y_test[n_steps-1:], y_pred)\n", + "accuracy10 = accuracy_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "precision10 = precision_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "recall10 = recall_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "f110 = f1_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "confusion10 = confusion_matrix(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "i_6-UUDhpi0c", + "outputId": "af51da10-aedc-479d-80ca-96880408422c" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 11.43451426022395\n", + "MAE: 9.387460991819042\n", + "MAPE: 0.1689158970124316\n", + "Accuracy: 0.9957325746799431\n", + "Precision: 0.9965277777777778\n", + "Recall: 0.9930795847750865\n", + "F1 Score: 0.9948006932409013\n", + "Confusion Matrix:\n", + " [[826 2]\n", + " [ 4 574]]\n" + ] + } + ], + "source": [ + "# Print evaluation metrics\n", + "print(\"RMSE:\", rmse10)\n", + "print(\"MAE:\", mae10)\n", + "print(\"MAPE:\", mape10)\n", + "print(\"Accuracy:\", accuracy10)\n", + "print(\"Precision:\", precision10)\n", + "print(\"Recall:\", recall10)\n", + "print(\"F1 Score:\", f110)\n", + "print(\"Confusion Matrix:\\n\", confusion10)" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "qpWPtph9CGip", + "outputId": "746d4c8b-bd76-4873-d9b3-b21e078b15bd" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABE9klEQVR4nO3deXhM9+LH8c8kZBFJrNmKiKWiqP0GRauClqqtiqvXllu9FbXVbWmLul2Utm6L4rYlVENUieqGNIq217XH0qo1liJBySIIkvP7w2N+HQkyMjGT0/freeZ5mu85c84nyan55DvnnLEYhmEIAADApNycHQAAAKAoUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAOM2rr74qi8WiM2fOFPm+Vq5cqQYNGsjLy0sWi0VpaWlFvs/ibN68ebJYLDp8+LCzowCFRtkBisD1F4o/PgICAtSmTRt9++23dz3Pl19+qc6dOyswMFAeHh4qV66cWrdurXfffVcZGRl3Pc/d9vvvv+vJJ5+Ut7e3PvjgAy1YsEA+Pj63fd7MmTNlsVgUERFxF1ICKColnB0AMLN//etfCgsLk2EYSk1N1bx589SxY0d9+eWXeuyxx4p8/7m5uYqKitK8efNUr149DRkyRJUrV1ZmZqY2bNigV155Rd98840SExOLPIszbd68WZmZmXrttdcUGRlZ4OfFxsaqatWq2rRpkw4cOKAaNWoUYUrX8re//U29e/eWp6ens6MAhUbZAYrQo48+qiZNmli/joqKUmBgoBYtWuSQspObm6vLly/Ly8sr3+VTpkzRvHnzNHLkSL377ruyWCzWZcOHD9fJkyf1ySefFGofxcGpU6ckSWXKlCnwc5KTk/Xf//5Xy5Yt0zPPPKPY2FhNmDChiBIWTlZWVoFmquzh7u4ud3d3h24TcBbexgLuojJlysjb21slStj+nfHOO++oRYsWKl++vLy9vdW4cWN9/vnneZ5vsVg0dOhQxcbGqk6dOvL09NTKlSvz3deFCxc0efJk1alTR2+//bZN0bkuODhYL774YoH3cSc5a9WqJS8vLzVu3Fjr16/PN2taWpoGDBigMmXKyN/fXwMHDtSFCxfy/yHeYMmSJWrcuLG8vb1VoUIFPfXUUzp+/Lh1+UMPPaT+/ftLkpo2bSqLxaIBAwbcdruxsbEqW7asOnXqpCeeeEKxsbE3zT5y5EhVrVpVnp6eqlSpkvr162dzHtKlS5f06quv6t5775WXl5eCg4PVvXt3HTx4UJK0du1aWSwWrV271mbbhw8flsVi0bx586xjAwYMUOnSpXXw4EF17NhRvr6+6tu3ryTphx9+UM+ePVWlShV5enqqcuXKGjlypC5evJgn96+//qonn3xSFStWlLe3t2rVqqWXX37Zuvxm5+x8++23atWqlXx8fOTr66tOnTrp559/tlknJSVFAwcOVKVKleTp6ang4GB16dKF83/gNMzsAEUoPT1dZ86ckWEYOnXqlKZPn67z58/rqaeeslnv/fff1+OPP66+ffvq8uXLiouLU8+ePfXVV1+pU6dONuuuWbNGn332mYYOHaoKFSqoatWq+e77xx9/VFpamkaPHm33X+g324c9OdetW6fFixdr2LBh8vT01MyZM/XII49o06ZNqlu3rs26Tz75pMLCwjRp0iRt27ZNH3/8sQICAjR58uRb5pw3b54GDhyopk2batKkSUpNTdX777+vn376Sdu3b1eZMmX08ssvq1atWvrwww+tbytWr179tj+D2NhYde/eXR4eHurTp49mzZqlzZs3q2nTptZ1zp8/r1atWmnPnj0aNGiQGjVqpDNnzmjFihX67bffVKFCBeXk5Oixxx5TYmKievfureHDhyszM1MJCQnavXt3gbLc6OrVq+rQoYNatmypd955R6VKlZJ0rfhduHBBzz77rMqXL69NmzZp+vTp+u2337RkyRLr83fu3KlWrVqpZMmSGjx4sKpWraqDBw/qyy+/1BtvvHHT/S5YsED9+/dXhw4dNHnyZF24cEGzZs1Sy5YttX37dutx0qNHD/3888967rnnVLVqVZ06dUoJCQk6evToTY9XoEgZABwuJibGkJTn4enpacybNy/P+hcuXLD5+vLly0bdunWNhx9+2GZckuHm5mb8/PPPt83w/vvvG5KM5cuX24xfvXrVOH36tM0jNze3QPuwJ6ckY8uWLdaxI0eOGF5eXka3bt2sYxMmTDAkGYMGDbJ5frdu3Yzy5cvf8vu7fPmyERAQYNStW9e4ePGidfyrr74yJBnjx4+3jl3/fWzevPmW27xuy5YthiQjISHBMAzDyM3NNSpVqmQMHz7cZr3x48cbkoxly5bl2cb1n+ncuXMNScbUqVNvus73339vSDK+//57m+XJycmGJCMmJsY61r9/f0OSMWbMmDzbu/H3YxiGMWnSJMNisRhHjhyxjrVu3drw9fW1GftjHsP4/59ZcnKyYRiGkZmZaZQpU8Z4+umnbZ6TkpJi+Pv7W8fPnTtnSDLefvvtPFkAZ+FtLKAIffDBB0pISFBCQoI+/fRTtWnTRn//+9+1bNkym/W8vb2t/33u3Dmlp6erVatW2rZtW55tPvjgg7rvvvtuu+/rV1mVLl3aZnzXrl2qWLGizeP3338v0D7sydm8eXM1btzY+nWVKlXUpUsXrVq1Sjk5OTbr/uMf/7D5ulWrVvr9999veaXYli1bdOrUKQ0ZMsTmfKJOnTopPDxcX3/99U2fezuxsbEKDAxUmzZtJF17W65Xr16Ki4uzyb506VLVr19f3bp1y7ON628bLl26VBUqVNBzzz1303XuxLPPPptn7I+/n6ysLJ05c0YtWrSQYRjavn27JOn06dNav369Bg0apCpVqhQ4T0JCgtLS0tSnTx+dOXPG+nB3d1dERIS+//57awYPDw+tXbtW586du+PvD3Ak3sYCitBf/vIXmxOU+/Tpo4YNG2ro0KF67LHH5OHhIUn66quv9PrrryspKUnZ2dnW9fN78QkLCyvQvn19fSVde6vlj2rUqKGEhARJ0ieffKIFCxYUeB/25KxZs2aesXvvvVcXLlzQ6dOnFRQUZB2/8UW3bNmykq4VKj8/v3yzHDlyRJJUq1atPMvCw8P1448/5vu828nJyVFcXJzatGmj5ORk63hERITeffddJSYmqn379pKkgwcPqkePHrfc3sGDB1WrVq0852kVRokSJVSpUqU840ePHtX48eO1YsWKPEUjPT1dknTo0CFJyvNW4u3s379fkvTwww/nu/z678nT01OTJ0/W888/r8DAQDVr1kyPPfaY+vXrZ/M7B+4myg5wF7m5ualNmzZ6//33tX//ftWpU0c//PCDHn/8cbVu3VozZ85UcHCwSpYsqZiYGC1cuDDPNv741/uthIeHS5J2796tLl26WMdLly5tvfz6ZoUgv33Ym9MeNzunyDCMQm33TqxZs0YnT55UXFyc4uLi8iyPjY21lh1HudmMyo0zYNd5enrKzc0tz7rt2rXT2bNn9eKLLyo8PFw+Pj46fvy4BgwYoNzc3EJlvP78BQsW5Fta/ljmRowYoc6dO2v58uVatWqVxo0bp0mTJmnNmjVq2LBhoXIAd4KyA9xlV69elfT/My5Lly6Vl5eXVq1aZXNPk5iYmELtp1WrVvL391dcXJzGjh2b58XRXvbmvD4T8Ef79u1TqVKlVLFixUJlkaTQ0FBJ0t69e/PMNuzdu9e63F6xsbEKCAjQBx98kGfZsmXLFB8fr9mzZ8vb21vVq1fX7t27b7m96tWra+PGjbpy5YpKliyZ7zrXZ7JuvKvz9dmrgti1a5f27dun+fPnq1+/ftbx67N411WrVk2Sbpv7RtdPpA4ICCjQvYqqV6+u559/Xs8//7z279+vBg0a6N1339Wnn35q134BR+CcHeAuunLlilavXi0PDw/Vrl1b0rVZDYvFYvNX/OHDh7V8+fJC7atUqVJ64YUXtHv3bo0ZMybfWRJ7Zk7szblhwwabc3mOHTumL774Qu3bt3fI/VuaNGmigIAAzZ492+YttW+//VZ79uzJc3VYQVy8eFHLli3TY489pieeeCLPY+jQocrMzNSKFSskXbvqaMeOHYqPj8+zres/2x49eujMmTOaMWPGTdcJDQ2Vu7t7nkvzZ86cWeDs13+mf/ydGoah999/32a9ihUrqnXr1po7d66OHj2ab578dOjQQX5+fnrzzTd15cqVPMtPnz4t6dotDy5dumSzrHr16vL19bX5PQF3EzM7QBH69ttv9euvv0q6dmO7hQsXav/+/RozZoz1HIdOnTpp6tSpeuSRR/TXv/5Vp06d0gcffKAaNWpo586dhdr/mDFjtGfPHr399ttavXq1evTooUqVKuncuXPatm2blixZooCAgALdMNDenHXr1lWHDh1sLj2XpIkTJxbqe7quZMmSmjx5sgYOHKgHH3xQffr0sV56XrVqVY0cOdLuba5YsUKZmZl6/PHH813erFkzVaxYUbGxserVq5f++c9/6vPPP1fPnj01aNAgNW7cWGfPntWKFSs0e/Zs1a9fX/369dMnn3yiUaNGadOmTWrVqpWysrL03XffaciQIerSpYv8/f3Vs2dPTZ8+XRaLRdWrV9dXX31lvRliQYSHh6t69eoaPXq0jh8/Lj8/Py1dujTfk4SnTZumli1bqlGjRho8eLDCwsJ0+PBhff3110pKSsp3+35+fpo1a5b+9re/qVGjRurdu7cqVqyoo0eP6uuvv9YDDzygGTNmaN++fWrbtq2efPJJ3XfffSpRooTi4+OVmpqq3r17F/j7ARzKadeBASaW36XnXl5eRoMGDYxZs2bZXOJrGIYxZ84co2bNmoanp6cRHh5uxMTEWC/L/iNJRnR0tN154uPjjY4dOxoVK1Y0SpQoYZQpU8Zo2bKl8fbbbxtpaWkF3oe9OT/99FPr+g0bNsxzafX1554+fdpm/MbLnm9l8eLFRsOGDQ1PT0+jXLlyRt++fY3ffvst3+3d7tLzzp07G15eXkZWVtZN1xkwYIBRsmRJ48yZM4ZhGMbvv/9uDB061LjnnnsMDw8Po1KlSkb//v2tyw3j2iXhL7/8shEWFmaULFnSCAoKMp544gnj4MGD1nVOnz5t9OjRwyhVqpRRtmxZ45lnnjF2796d76XnPj4++Wb75ZdfjMjISKN06dJGhQoVjKefftrYsWNHnm0YhmHs3r3b6Natm1GmTBnDy8vLqFWrljFu3Lg8P7Mbfwfff/+90aFDB8Pf39/w8vIyqlevbgwYMMB6m4EzZ84Y0dHRRnh4uOHj42P4+/sbERERxmeffXbLnz1QlCyG4YQzAAGYmsViUXR0dL5v3QDA3cY5OwAAwNQoOwAAwNQoOwAAwNS4GguAw3EqIABXwswOAAAwNcoOAAAwNd7G0rXPfDlx4oR8fX0L9SnEAADg7jEMQ5mZmQoJCbnlR+JQdiSdOHFClStXdnYMAABwB44dO6ZKlSrddDllR5Kvr6+kaz+s67fwBwAAri0jI0OVK1e2vo7fDGVHsr515efnR9kBAKCYud0pKJygDAAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATM2pZWf9+vXq3LmzQkJCZLFYtHz5cpvlhmFo/PjxCg4Olre3tyIjI7V//36bdc6ePau+ffvKz89PZcqUUVRUlM6fP38XvwsAAODKnFp2srKyVL9+fX3wwQf5Lp8yZYqmTZum2bNna+PGjfLx8VGHDh106dIl6zp9+/bVzz//rISEBH311Vdav369Bg8efLe+BQAA4OIshmEYzg4hXfsQr/j4eHXt2lXStVmdkJAQPf/88xo9erQkKT09XYGBgZo3b5569+6tPXv26L777tPmzZvVpEkTSdLKlSvVsWNH/fbbbwoJCSnQvjMyMuTv76/09HQ+CBQAgGKioK/fLnvOTnJyslJSUhQZGWkd8/f3V0REhDZs2CBJ2rBhg8qUKWMtOpIUGRkpNzc3bdy48abbzs7OVkZGhs0DAACYk8uWnZSUFElSYGCgzXhgYKB1WUpKigICAmyWlyhRQuXKlbOuk59JkybJ39/f+qhcubKD0wMAAFfhsmWnKI0dO1bp6enWx7Fjx5wd6a6zWJz3cNVsAIoXV/53DK6lhLMD3ExQUJAkKTU1VcHBwdbx1NRUNWjQwLrOqVOnbJ539epVnT171vr8/Hh6esrT09PxoQG4PGe+ULnGGZL4M3PW8e/sY99lZ3bCwsIUFBSkxMRE61hGRoY2btyo5s2bS5KaN2+utLQ0bd261brOmjVrlJubq4iIiLueGQAAuB6nzuycP39eBw4csH6dnJyspKQklStXTlWqVNGIESP0+uuvq2bNmgoLC9O4ceMUEhJivWKrdu3aeuSRR/T0009r9uzZunLlioYOHarevXsX+EosAMCt/VlnA2AeTi07W7ZsUZs2baxfjxo1SpLUv39/zZs3Ty+88IKysrI0ePBgpaWlqWXLllq5cqW8vLysz4mNjdXQoUPVtm1bubm5qUePHpo2bdpd/14AAIBrcpn77DjTn/E+O6583gJ/RaIoufKx76pc9f9Jfpf2c9Xf5Z0q9vfZAQAAcATKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMLUSzg4AAICZWCzO27dhOG/froyZHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGpcjQUUc6565Yer5gLw58PMDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDVuKggALsJZN2LkJowwO2Z2AACAqTGzAxQQf3UDQPHEzA4AADA1yg4AADA1yg4AADA1yg4AADA1yg4AADA1yg4AADA1yg4AADA17rNTxJx1bxaJ+7MAACAxswMAAEyOsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEzNpctOTk6Oxo0bp7CwMHl7e6t69ep67bXXZPzhmmrDMDR+/HgFBwfL29tbkZGR2r9/vxNTAwAAV+LSZWfy5MmaNWuWZsyYoT179mjy5MmaMmWKpk+fbl1nypQpmjZtmmbPnq2NGzfKx8dHHTp00KVLl5yYHAAAuAqXvqngf//7X3Xp0kWdOnWSJFWtWlWLFi3Spk2bJF2b1Xnvvff0yiuvqEuXLpKkTz75RIGBgVq+fLl69+7ttOwAAMA1uPTMTosWLZSYmKh9+/ZJknbs2KEff/xRjz76qCQpOTlZKSkpioyMtD7H399fERER2rBhw023m52drYyMDJsHAAAwJ5ee2RkzZowyMjIUHh4ud3d35eTk6I033lDfvn0lSSkpKZKkwMBAm+cFBgZal+Vn0qRJmjhxYtEFBwAALsOlZ3Y+++wzxcbGauHChdq2bZvmz5+vd955R/Pnzy/UdseOHav09HTr49ixYw5KDAAAXI1Lz+z885//1JgxY6zn3tSrV09HjhzRpEmT1L9/fwUFBUmSUlNTFRwcbH1eamqqGjRocNPtenp6ytPTs0izAwAA1+DSMzsXLlyQm5ttRHd3d+Xm5kqSwsLCFBQUpMTEROvyjIwMbdy4Uc2bN7+rWQEAgGty6Zmdzp0764033lCVKlVUp04dbd++XVOnTtWgQYMkSRaLRSNGjNDrr7+umjVrKiwsTOPGjVNISIi6du3q3PAAAMAluHTZmT59usaNG6chQ4bo1KlTCgkJ0TPPPKPx48db13nhhReUlZWlwYMHKy0tTS1bttTKlSvl5eXlxOQAAMBVWIw/3o74TyojI0P+/v5KT0+Xn5+fQ7dtsTh0c3a51W/WVXNJzstGLvsVx2PMVXNJHGM3ctVcEseYvYqqaRT09dulz9kBAAAoLMoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNbvLzsWLF3XhwgXr10eOHNF7772n1atXOzQYAACAI9hddrp06aJPPvlEkpSWlqaIiAi9++676tKli2bNmuXwgAAAAIVhd9nZtm2bWrVqJUn6/PPPFRgYqCNHjuiTTz7RtGnTHB4QAACgMOwuOxcuXJCvr68kafXq1erevbvc3NzUrFkzHTlyxOEBAQAACsPuslOjRg0tX75cx44d06pVq9S+fXtJ0qlTp+Tn5+fwgAAAAIVhd9kZP368Ro8erapVq+ovf/mLmjdvLunaLE/Dhg0dHhAAAKAwLIZhGPY+KSUlRSdPnlT9+vXl5natL23atEl+fn4KDw93eMiilpGRIX9/f6Wnpzt8dspicejm7HKr36yr5pKcl41c9iuOx5ir5pI4xm7kqrkkjjF72d80Cqagr993dJ+doKAg+fr6KiEhQRcvXpQkNW3atFgWHQAAYG52l53ff/9dbdu21b333quOHTvq5MmTkqSoqCg9//zzDg8IAABQGHaXnZEjR6pkyZI6evSoSpUqZR3v1auXVq5c6dBwAAAAhVXC3iesXr1aq1atUqVKlWzGa9asyaXnAADA5dg9s5OVlWUzo3Pd2bNn5enp6ZBQAAAAjmJ32WnVqpX14yIkyWKxKDc3V1OmTFGbNm0cGg4AAKCw7H4ba8qUKWrbtq22bNmiy5cv64UXXtDPP/+ss2fP6qeffiqKjAAAAHfM7pmdunXrat++fWrZsqW6dOmirKwsde/eXdu3b1f16tWLIiMAAMAdu6ObCpoNNxW8u4rrTa/IlVdxPMZcNZfEMXYjV80lcYzZy9k3FbT7baz169ffcnnr1q3t3SQAAECRsbvsPPTQQ3nGLH+oijk5OYUKBAAA4Eh2n7Nz7tw5m8epU6e0cuVKNW3aVKtXry6KjAAAAHfM7pkdf3//PGPt2rWTh4eHRo0apa1btzokGAAAgCPc0QeB5icwMFB79+511OYAAAAcwu6ZnZ07d9p8bRiGTp48qbfeeksNGjRwVC4AAACHsLvsNGjQQBaLRTdesd6sWTPNnTvXYcEAAAAcwe6yk5ycbPO1m5ubKlasKC8vL4eFAgAAcBS7z9kJDQ21eVSuXLlIi87x48f11FNPqXz58vL29la9evW0ZcsW63LDMDR+/HgFBwfL29tbkZGR2r9/f5HlAQAAxUuBZnamTZtW4A0OGzbsjsPc6Ny5c3rggQfUpk0bffvtt6pYsaL279+vsmXLWteZMmWKpk2bpvnz5yssLEzjxo1Thw4d9MsvvzDbBAAACvZxEWFhYQXbmMWiQ4cOFTrUdWPGjNFPP/2kH374Id/lhmEoJCREzz//vEaPHi1JSk9PV2BgoObNm6fevXsXaD98XMTdVVxvZ06uvIrjMeaquSSOsRu5ai6JY8xexeLjIm48T+duWbFihTp06KCePXtq3bp1uueeezRkyBA9/fTT1lwpKSmKjIy0Psff318RERHasGHDTctOdna2srOzrV9nZGQU7TcCAACcxmH32SkKhw4d0qxZs1SzZk2tWrVKzz77rIYNG6b58+dLklJSUiRdu8fPHwUGBlqX5WfSpEny9/e3PipXrlx03wQAAHAqu6/GkqTffvtNK1as0NGjR3X58mWbZVOnTnVIMEnKzc1VkyZN9Oabb0qSGjZsqN27d2v27Nnq37//HW937NixGjVqlPXrjIwMCg8AACZld9lJTEzU448/rmrVqunXX39V3bp1dfjwYRmGoUaNGjk0XHBwsO677z6bsdq1a2vp0qWSpKCgIElSamqqgoODreukpqbe8gaHnp6e8vT0dGhWAADgmux+G2vs2LEaPXq0du3aJS8vLy1dulTHjh3Tgw8+qJ49ezo03AMPPJDnIyj27dun0NBQSddOnA4KClJiYqJ1eUZGhjZu3KjmzZs7NAsAACimDDuVLl3aOHDggGEYhlGmTBlj9+7dhmEYRlJSkhEaGmrv5m5p06ZNRokSJYw33njD2L9/vxEbG2uUKlXK+PTTT63rvPXWW0aZMmWML774wti5c6fRpUsXIywszLh48WKB95Oenm5IMtLT0x2a3zAM49o56M55FMdczsxGrj/HMeaquTjGik8ujjHH57pTBX39tvttLB8fH+t5OsHBwTp48KDq1KkjSTpz5owje5iaNm2q+Ph4jR07Vv/6178UFham9957T3379rWu88ILLygrK0uDBw9WWlqaWrZsqZUrV3KPHQAAIKmA99n5o65du6pTp056+umnNXr0aH3xxRcaMGCAli1bprJly+q7774rqqxFhvvs3F23O+Jc9T4Q5MqrOB5jrppL4hi7kavmkjjG7GVf0yg4h95nR5LOnj2rcuXKaerUqTp//rwkaeLEiTp//rwWL16smjVrOvRKLAAAAEcocNkJCQlR165dFRUVpXbt2km69pbW7NmziywcAABAYRX4aqyPPvpIp0+f1iOPPKKqVavq1Vdf1eHDh4swGgAAQOEVuOz87W9/U2Jiog4cOKD+/ftr/vz5qlGjhtq1a6fFixfnubkgAACAK7D7PjthYWGaOHGikpOTtXLlSgUEBGjQoEEKDg526CeeAwAAOILdV2PlZ+nSpdZLv3NychyR667iaqy7q7heLUCuvIrjMeaquSSOsRu5ai6JY8xexeZqrBsdOXJEMTExmj9/vo4dO6Y2bdooKirqTjcHAABQJOwqO9nZ2Vq6dKnmzp2rtWvX6p577tGAAQM0cOBAVa1atYgiAgAA3LkCl50hQ4YoLi5OFy5cUJcuXfTNN9+oXbt2sjhzvg4AAOA2Clx2fvzxR02YMEFPPfWUypcvX5SZAAAAHKbAZWfnzp1FmQMAAKBI2H3pOQAAQHFC2QEAAKZG2QEAAKZG2QEAAKZmd9mpWrWq/vWvf+no0aNFkQcAAMCh7C47I0aM0LJly1StWjW1a9dOcXFxys7OLopsAAAAhXZHZScpKUmbNm1S7dq19dxzzyk4OFhDhw7Vtm3biiIjAADAHbvjc3YaNWqkadOm6cSJE5owYYI+/vhjNW3aVA0aNNDcuXPlgM8XBQAAKLQ7/iDQK1euKD4+XjExMUpISFCzZs0UFRWl3377TS+99JK+++47LVy40JFZAQAA7GZ32dm2bZtiYmK0aNEiubm5qV+/fvr3v/+t8PBw6zrdunVT06ZNHRoUAADgTthddpo2bap27dpp1qxZ6tq1q0qWLJlnnbCwMPXu3dshAQEAAArD7rJz6NAhhYaG3nIdHx8fxcTE3HEoAAAAR7H7BOVTp05p48aNecY3btyoLVu2OCQUAACAo9hddqKjo3Xs2LE848ePH1d0dLRDQgEAADiK3WXnl19+UaNGjfKMN2zYUL/88otDQgEAADiK3WXH09NTqampecZPnjypEiXu+Ep2AACAImF32Wnfvr3Gjh2r9PR061haWppeeukltWvXzqHhAAAACsvuqZh33nlHrVu3VmhoqBo2bChJSkpKUmBgoBYsWODwgAAAAIVhd9m55557tHPnTsXGxmrHjh3y9vbWwIED1adPn3zvuQMAAOBMd3SSjY+PjwYPHuzoLAAAAA53x2cU//LLLzp69KguX75sM/74448XOhQAAICj3NEdlLt166Zdu3bJYrFYP93cYrFIknJychybEAAAoBDsvhpr+PDhCgsL06lTp1SqVCn9/PPPWr9+vZo0aaK1a9cWQUQAAIA7Z/fMzoYNG7RmzRpVqFBBbm5ucnNzU8uWLTVp0iQNGzZM27dvL4qcAAAAd8TumZ2cnBz5+vpKkipUqKATJ05IkkJDQ7V3717HpgMAACgku2d26tatqx07digsLEwRERGaMmWKPDw89OGHH6patWpFkREAAOCO2V12XnnlFWVlZUmS/vWvf+mxxx5Tq1atVL58eS1evNjhAQEAAArDYly/nKoQzp49q7Jly1qvyCpuMjIy5O/vr/T0dPn5+Tl02878kdzqN+uquSTnZSOX/YrjMeaquSSOsRu5ai6JY8xehW8a+Svo67dd5+xcuXJFJUqU0O7du23Gy5UrV2yLDgAAMDe7yk7JkiVVpUoV7qUDAACKDbuvxnr55Zf10ksv6ezZs0WRBwAAwKHsPkF5xowZOnDggEJCQhQaGiofHx+b5du2bXNYOAAAgMKyu+x07dq1CGIAAAAUDbvLzoQJE4oiBwAAQJGw+5wdAACA4sTumR03N7dbXmbOlVoAAMCV2F124uPjbb6+cuWKtm/frvnz52vixIkOCwYAAOAIDrmDsiQtXLhQixcv1hdffOGIzd1V3EH57iqud/gkV17F8Rhz1VwSx9iNXDWXxDFmr2J1B+VbadasmRITEx21OQAAAIdwSNm5ePGipk2bpnvuuccRmwMAAHAYu8/ZufEDPw3DUGZmpkqVKqVPP/3UoeEAAAAKy+6y8+9//9um7Li5ualixYqKiIhQ2bJlHRoOAACgsOwuOwMGDCiCGAAAAEXD7nN2YmJitGTJkjzjS5Ys0fz58x0SCgAAwFHsLjuTJk1ShQoV8owHBATozTffdEgoAAAAR7G77Bw9elRhYWF5xkNDQ3X06FGHhAIAAHAUu8tOQECAdu7cmWd8x44dKl++vENCAQAAOIrdZadPnz4aNmyYvv/+e+Xk5CgnJ0dr1qzR8OHD1bt376LICAAAcMfsvhrrtdde0+HDh9W2bVuVKHHt6bm5uerXrx/n7AAAAJdj98yOh4eHFi9erL179yo2NlbLli3TwYMHNXfuXHl4eBRFRqu33npLFotFI0aMsI5dunRJ0dHRKl++vEqXLq0ePXooNTW1SHMAAIDiw+6Znetq1qypmjVrOjLLLW3evFn/+c9/dP/999uMjxw5Ul9//bWWLFkif39/DR06VN27d9dPP/1017IBAADXZffMTo8ePTR58uQ841OmTFHPnj0dEupG58+fV9++ffXRRx/Z3KU5PT1dc+bM0dSpU/Xwww+rcePGiomJ0X//+1/973//K5IsAACgeLG77Kxfv14dO3bMM/7oo49q/fr1Dgl1o+joaHXq1EmRkZE241u3btWVK1dsxsPDw1WlShVt2LDhptvLzs5WRkaGzQMAAJiT3W9jnT9/Pt9zc0qWLFkkpSEuLk7btm3T5s2b8yxLSUmRh4eHypQpYzMeGBiolJSUm25z0qRJmjhxoqOjAgAAF2T3zE69evW0ePHiPONxcXG67777HBLqumPHjmn48OGKjY2Vl5eXw7Y7duxYpaenWx/Hjh1z2LYBAIBrsXtmZ9y4cerevbsOHjyohx9+WJKUmJioRYsW5fuZWYWxdetWnTp1So0aNbKO5eTkaP369ZoxY4ZWrVqly5cvKy0tzWZ2JzU1VUFBQTfdrqenpzw9PR2aFQAAuCa7y07nzp21fPlyvfnmm/r888/l7e2t+++/X999950efPBBh4Zr27atdu3aZTM2cOBAhYeH68UXX1TlypVVsmRJJSYmqkePHpKkvXv36ujRo2revLlDswAAgOLpji4979Spkzp16pRnfPfu3apbt26hQ13n6+ubZ3s+Pj4qX768dTwqKkqjRo1SuXLl5Ofnp+eee07NmzdXs2bNHJYDAAAUX3d8n53rMjMztWjRIn388cfaunWrcnJyHJGrwP7973/Lzc1NPXr0UHZ2tjp06KCZM2fe1QwAAMB1WQzDMO7kievXr9fHH3+sZcuWKSQkRN27d1ePHj3UtGlTR2cschkZGfL391d6err8/Pwcum2LxaGbs8utfrOumktyXjZy2a84HmOumkviGLuRq+aSOMbsdWdN4/YK+vpt18xOSkqK5s2bpzlz5igjI0NPPvmksrOztXz5codfiQUAAOAIBb70vHPnzqpVq5Z27typ9957TydOnND06dOLMhsAAEChFXhm59tvv9WwYcP07LPP3tXPxAIAACiMAs/s/Pjjj8rMzFTjxo0VERGhGTNm6MyZM0WZDQAAoNAKXHaaNWumjz76SCdPntQzzzyjuLg4hYSEKDc3VwkJCcrMzCzKnAAAAHfkjq/Gkq7dwG/OnDlasGCB0tLS1K5dO61YscKR+e4Krsa6u4rr1QLkyqs4HmOumkviGLuRq+aSOMbs5eyrsez+bKw/qlWrlqZMmaLffvtNixYtKsymAAAAikShZnbMgpmdu6u4/uVBrryK4zHmqrkkjrEbuWouiWPMXsV6ZgcAAMDVUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpuXTZmTRpkpo2bSpfX18FBASoa9eu2rt3r806ly5dUnR0tMqXL6/SpUurR48eSk1NdVJiAADgaly67Kxbt07R0dH63//+p4SEBF25ckXt27dXVlaWdZ2RI0fqyy+/1JIlS7Ru3TqdOHFC3bt3d2JqAADgSiyGYRjODlFQp0+fVkBAgNatW6fWrVsrPT1dFStW1MKFC/XEE09Ikn799VfVrl1bGzZsULNmzQq03YyMDPn7+ys9PV1+fn4OzWyxOHRzdrnVb9ZVc0nOy0Yu+xXHY8xVc0kcYzdy1VwSx5i9iqppFPT126Vndm6Unp4uSSpXrpwkaevWrbpy5YoiIyOt64SHh6tKlSrasGHDTbeTnZ2tjIwMmwcAADCnYlN2cnNzNWLECD3wwAOqW7euJCklJUUeHh4qU6aMzbqBgYFKSUm56bYmTZokf39/66Ny5cpFGR0AADhRsSk70dHR2r17t+Li4gq9rbFjxyo9Pd36OHbsmAMSAgAAV1TC2QEKYujQofrqq6+0fv16VapUyToeFBSky5cvKy0tzWZ2JzU1VUFBQTfdnqenpzw9PYsyMgAAcBEuPbNjGIaGDh2q+Ph4rVmzRmFhYTbLGzdurJIlSyoxMdE6tnfvXh09elTNmze/23EBAIALcumZnejoaC1cuFBffPGFfH19refh+Pv7y9vbW/7+/oqKitKoUaNUrlw5+fn56bnnnlPz5s0LfCUWAAAwN5cuO7NmzZIkPfTQQzbjMTExGjBggCTp3//+t9zc3NSjRw9lZ2erQ4cOmjlz5l1OCgAAXFWxus9OUeE+O3dXcb0PBLnyKo7HmKvmkjjGbuSquSSOMXtxnx0AAIAiRNkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmZpqy88EHH6hq1ary8vJSRESENm3a5OxIAADABZii7CxevFijRo3ShAkTtG3bNtWvX18dOnTQqVOnnB0NAAA4mSnKztSpU/X0009r4MCBuu+++zR79myVKlVKc+fOdXY0AADgZMW+7Fy+fFlbt25VZGSkdczNzU2RkZHasGGDE5MBAABXUMLZAQrrzJkzysnJUWBgoM14YGCgfv3113yfk52drezsbOvX6enpkqSMjIyiC+oErvrtkMs+rppLct1s5LIPueznqtn+bLmuv24bhnHL9Yp92bkTkyZN0sSJE/OMV65c2Qlpio6/v7MT5I9c9nHVXJLrZiOXfchlP1fN9mfNlZmZKf9b7KTYl50KFSrI3d1dqampNuOpqakKCgrK9zljx47VqFGjrF/n5ubq7NmzKl++vCwWS5HmLaiMjAxVrlxZx44dk5+fn7Pj2HDVbOSyj6vmklw3G7nsQy77uWo2V81lGIYyMzMVEhJyy/WKfdnx8PBQ48aNlZiYqK5du0q6Vl4SExM1dOjQfJ/j6ekpT09Pm7EyZcoUcdI74+fn51IH1h+5ajZy2cdVc0mum41c9iGX/Vw1myvmutWMznXFvuxI0qhRo9S/f381adJEf/nLX/Tee+8pKytLAwcOdHY0AADgZKYoO7169dLp06c1fvx4paSkqEGDBlq5cmWek5YBAMCfjynKjiQNHTr0pm9bFUeenp6aMGFCnrfbXIGrZiOXfVw1l+S62chlH3LZz1WzuWqugrIYt7teCwAAoBgr9jcVBAAAuBXKDgAAMDXKDgAAMDXKDgAAMDXKjgtav369OnfurJCQEFksFi1fvtzZkTRp0iQ1bdpUvr6+CggIUNeuXbV3795ise8PP/xQDz30kPz8/GSxWJSWllZ0Yf9g1qxZuv/++6034WrevLm+/fbbu7Jve7z11luyWCwaMWKEU3O8+uqrslgsNo/w8HCnZrru+PHjeuqpp1S+fHl5e3urXr162rJli7NjqWrVqnl+ZhaLRdHR0U7NlZOTo3HjxiksLEze3t6qXr26Xnvttdt+fpGz97ts2TK1b9/eejf9pKSkIs37R5mZmRoxYoRCQ0Pl7e2tFi1aaPPmzXdt/9fd7vXHMAyNHz9ewcHB8vb2VmRkpPbv33/Xc9qLsuOCsrKyVL9+fX3wwQfOjmK1bt06RUdH63//+58SEhJ05coVtW/fXllZWS6/7wsXLuiRRx7RSy+9VMRJbVWqVElvvfWWtm7dqi1btujhhx9Wly5d9PPPP9/VHLeyefNm/ec//9H999/v7CiSpDp16ujkyZPWx48//ujsSDp37pweeOABlSxZUt9++61++eUXvfvuuypbtqyzo2nz5s02P6+EhARJUs+ePZ2aa/LkyZo1a5ZmzJihPXv2aPLkyZoyZYqmT5/u0vvNyspSy5YtNXny5CLNmZ+///3vSkhI0IIFC7Rr1y61b99ekZGROn78+F3NcbvXnylTpmjatGmaPXu2Nm7cKB8fH3Xo0EGXLl26qzntZsClSTLi4+OdHSOPU6dOGZKMdevWFZt9f//994Yk49y5c0UTrADKli1rfPzxx07b/x9lZmYaNWvWNBISEowHH3zQGD58uFPzTJgwwahfv75TM+TnxRdfNFq2bOnsGAUyfPhwo3r16kZubq5Tc3Tq1MkYNGiQzVj37t2Nvn37Fov9JicnG5KM7du3OzDdzV24cMFwd3c3vvrqK5vxRo0aGS+//PJdyZCfG19/cnNzjaCgIOPtt9+2jqWlpRmenp7GokWLnJCw4JjZwR1JT0+XJJUrV+5Pte87lZOTo7i4OGVlZal58+bOjiNJio6OVqdOnRQZGensKFb79+9XSEiIqlWrpr59++ro0aPOjqQVK1aoSZMm6tmzpwICAtSwYUN99NFHzo6Vx+XLl/Xpp59q0KBBTv9A4xYtWigxMVH79u2TJO3YsUM//vijHn30UVPut7CuXr2qnJwceXl52Yx7e3u7xOzmdcnJyUpJSbH5N8Pf318RERHasGGDE5PdnmnuoIy7Jzc3VyNGjNADDzygunXr/mn2fSd27dql5s2b69KlSypdurTi4+N13333OTuW4uLitG3bNqecE3AzERERmjdvnmrVqqWTJ09q4sSJatWqlXbv3i1fX1+n5Tp06JBmzZqlUaNG6aWXXtLmzZs1bNgweXh4qH///k7LdaPly5crLS1NAwYMcHYUjRkzRhkZGQoPD5e7u7tycnL0xhtvqG/fvqbcb2H5+vqqefPmeu2111S7dm0FBgZq0aJF2rBhg2rUqOHseFYpKSmSlOejmAIDA63LXBVlB3aLjo7W7t27nfIXhzP3fSdq1aqlpKQkpaen6/PPP1f//v21bt06pxaeY8eOafjw4UpISMjzl6Qz/fGv7/vvv18REREKDQ3VZ599pqioKKflys3NVZMmTfTmm29Kkho2bKjdu3dr9uzZLlV25syZo0cffVQhISHOjqLPPvtMsbGxWrhwoerUqaOkpCSNGDFCISEhRfozc9Z+HWHBggUaNGiQ7rnnHrm7u6tRo0bq06ePtm7d6uxo5uDs99Fwa3Kxc3aio6ONSpUqGYcOHSp2+3aFc3batm1rDB482Gn7NwzDiI+PNyQZ7u7u1ockw2KxGO7u7sbVq1edmu+PmjRpYowZM8apGapUqWJERUXZjM2cOdMICQlxUqK8Dh8+bLi5uRnLly93dhTDMAyjUqVKxowZM2zGXnvtNaNWrVrFYr93+5ydPzp//rxx4sQJwzAM48knnzQ6dux41zNcd+Prz8GDB/P9ubRu3doYNmzY3Q1nJ87ZQYEYhqGhQ4cqPj5ea9asUVhY2J9i346Wm5ur7Oxsp2Zo27atdu3apaSkJOujSZMm6tu3r5KSkuTu7u7UfNedP39eBw8eVHBwsFNzPPDAA3ludbBv3z6FhoY6KVFeMTExCggIUKdOnZwdRdK1KyDd3GxfXtzd3ZWbm2vK/TqSj4+PgoODde7cOa1atUpdunRxdiSrsLAwBQUFKTEx0TqWkZGhjRs3usy5iDfD21gu6Pz58zpw4ID16+TkZCUlJalcuXKqUqWKUzJFR0dr4cKF+uKLL+Tr62t9f9bf31/e3t4uve+UlBSlpKRYf6a7du2Sr6+vqlSpUqQnOY8dO1aPPvqoqlSposzMTC1cuFBr167VqlWrimyfBeHr65vnfCcfHx+VL1/eqedBjR49Wp07d1ZoaKhOnDihCRMmyN3dXX369HFaJkkaOXKkWrRooTfffFNPPvmkNm3apA8//FAffvihU3Ndl5ubq5iYGPXv318lSrjGP+mdO3fWG2+8oSpVqqhOnTravn27pk6dqkGDBrn0fs+ePaujR4/qxIkTkmQtuUFBQQoKCiqy3JK0atUqGYahWrVq6cCBA/rnP/+p8PBwDRw4sEj3e6Pbvf6MGDFCr7/+umrWrKmwsDCNGzdOISEh6tq1613NaTcnzywhH9ffbrnx0b9/f6dlyi+PJCMmJsbl9z1hwgSnZB80aJARGhpqeHh4GBUrVjTatm1rrF69ukj3eadc4dLzXr16GcHBwYaHh4dxzz33GL169TIOHDjg1EzXffnll0bdunUNT09PIzw83Pjwww+dHclq1apVhiRj7969zo5ilZGRYQwfPtyoUqWK4eXlZVSrVs14+eWXjezsbJfeb0xMTL7/VkyYMKFIcxuGYSxevNioVq2a4eHhYQQFBRnR0dFGWlpake/3Rrd7/cnNzTXGjRtnBAYGGp6enkbbtm1d6ti7GYthFPEtLQEAAJyIc3YAAICpUXZQrMXGxqp06dL5PurUqePseABcxA8//HDTfytKly7t7HgoYryNhWItMzNTqamp+S4rWbKkS10xA8B5Ll68eMvPmXKlm/fB8Sg7AADA1HgbCwAAmBplBwAAmBplBwAAmBplBwAc4PDhw7JYLEpKSirwcwYMGHDbO88+9NBDGjFiRKGyAX92lB3gT2LDhg1yd3d3mc9PcoZ69erpH//4R77LFixYIE9PT505c+aOtl25cmWdPHnSqR+5ASB/lB3gT2LOnDl67rnntH79eutn/zjL5cuXnbLfqKgoxcXF6eLFi3mWxcTE6PHHH1eFChXs3u7ly5fl7u6uoKAgl/l8KgD/j7ID/AmcP39eixcv1rPPPqtOnTpp3rx5edb58ssv1bRpU3l5ealChQrq1q2bdVl2drZefPFFVa5cWZ6enqpRo4bmzJkjSZo3b57KlCljs63ly5fLYrFYv3711VfVoEEDffzxxwoLC5OXl5ckaeXKlWrZsqXKlCmj8uXL67HHHtPBgwdttvXbb7+pT58+KleunHx8fNSkSRNt3LhRhw8flpubm7Zs2WKz/nvvvafQ0NB8P+n6qaee0sWLF7V06VKb8eTkZK1du1ZRUVE6ePCgunTposDAQJUuXVpNmzbVd999Z7N+1apV9dprr6lfv37y8/PT4MGD87yNlZOTo6ioKIWFhcnb21u1atXS+++/n89vR5o4caIqVqwoPz8//eMf/7hlGczOztbo0aN1zz33yMfHRxEREVq7dq11+ZEjR9S5c2eVLVtWPj4+qlOnjr755pubbg/4M6DsAH8Cn332mcLDw1WrVi099dRTmjt3rv54i62vv/5a3bp1U8eOHbV9+3YlJibqL3/5i3V5v379tGjRIk2bNk179uzRf/7zH7vvOnvgwAEtXbpUy5YtsxaCrKwsjRo1Slu2bFFiYqLc3NzUrVs3a1E5f/68HnzwQR0/flwrVqzQjh079MILLyg3N1dVq1ZVZGSkYmJibPYTExOjAQMGyM0t7z9vFSpUUJcuXTR37lyb8Xnz5qlSpUpq3769zp8/r44dOyoxMVHbt2/XI488os6dO+vo0aM2z3nnnXdUv359bd++XePGjcuzr9zcXFWqVElLlizRL7/8ovHjx+ull17SZ599ZrNeYmKi9uzZo7Vr12rRokVatmyZJk6ceNOf49ChQ7VhwwbFxcVp586d6tmzpx555BHt379fkhQdHa3s7GytX79eu3bt0uTJk7lDMODEDyEFcJe0aNHCeO+99wzDMIwrV64YFSpUML7//nvr8ubNmxt9+/bN97l79+41JBkJCQn5Lo+JiTH8/f1txuLj440//vMyYcIEo2TJksapU6dumfP06dOGJGPXrl2GYRjGf/7zH8PX19f4/fff811/8eLFRtmyZY1Lly4ZhmEYW7duNSwWi5GcnHzTfaxcudKwWCzGoUOHDMO49inOoaGhxiuvvHLT59SpU8eYPn269evQ0FCja9euNuskJycbkozt27ffdDvR0dFGjx49rF/379/fKFeunJGVlWUdmzVrllG6dGkjJyfHMAzbT6Q/cuSI4e7ubhw/ftxmu23btjXGjh1rGIZh1KtXz3j11VdvmgH4M2JmBzC5vXv3atOmTerTp48kqUSJEurVq5f1bShJSkpKUtu2bfN9flJSktzd3fXggw8WKkdoaKgqVqxoM7Z//3716dNH1apVk5+fn6pWrSpJ1lmUpKQkNWzYUOXKlct3m127dpW7u7vi4+MlXZuhadOmjXU7+WnXrp0qVapknRFKTEzU0aNHNXDgQEnXZpNGjx6t2rVrq0yZMipdurT27NmTZ2anSZMmt/2eP/jgAzVu3FgVK1ZU6dKl9eGHH+bZTv369VWqVCnr182bN9f58+d17NixPNvbtWuXcnJydO+999p8rtO6deusb/8NGzZMr7/+uh544AFNmDBBO3fuvG1OwOwoO4DJzZkzR1evXlVISIhKlCihEiVKaNasWVq6dKnS09MlSd7e3jd9/q2WSZKbm5vNW2KSdOXKlTzr+fj45Bnr3Lmzzp49q48++kgbN27Uxo0bJf3/Ccy327eHh4f69eunmJgYXb58WQsXLtSgQYNum3fAgAGaP3++cnNzFRMTozZt2qhatWqSpNGjRys+Pl5vvvmmfvjhByUlJalevXp5zqPJ7/v5o7i4OI0ePVpRUVFavXq1kpKSNHDgwEKdnH3+/Hm5u7tr69atSkpKsj727NljPR/o73//uw4dOqS//e1v2rVrl5o0aaLp06ff8T4BM6DsACZ29epVffLJJ3r33XdtXhx37NihkJAQLVq0SJJ0//33KzExMd9t1KtXT7m5uVq3bl2+yytWrKjMzExlZWVZxwpyr5nff/9de/fu1SuvvKK2bduqdu3aOnfunM06999/v5KSknT27Nmbbufvf/+7vvvuO82cOVNXr15V9+7db7vvgQMH6tixY1q2bJni4+MVFRVlXfbTTz9pwIAB6tatm+rVq6egoCAdPnz4ttu80U8//aQWLVpoyJAhatiwoWrUqJHn5GtJ2rFjh83VYf/73/9UunRpVa5cOc+6DRs2VE5Ojk6dOqUaNWrYPIKCgqzrVa5cWf/4xz+0bNkyPf/88/roo4/szg+YCWUHMLGvvvpK586dU1RUlOrWrWvz6NGjh/WtrAkTJmjRokWaMGGC9uzZYz2xVbp25VH//v01aNAgLV++3Hrl0vUTbSMiIlSqVCm99NJLOnjwoBYuXJjv1V43Klu2rMqXL68PP/xQBw4c0Jo1azRq1Cibdfr06aOgoCB17dpVP/30kw4dOqSlS5dqw4YN1nVq166tZs2a6cUXX1SfPn1uOxskSWFhYXr44Yc1ePBgeXp62hSkmjVrWk+i3rFjh/7617/me2XX7dSsWVNbtmzRqlWrtG/fPo0bN06bN2/Os97ly5cVFRWlX375Rd98840mTJigoUOH5nuC9b333qu+ffuqX79+WrZsmZKTk7Vp0yZNmjRJX3/9tSRpxIgRWrVqlZKTk7Vt2zZ9//33ql27tt35ATOh7AAmNmfOHEVGRsrf3z/Psh49emjLli3auXOnHnroIS1ZskQrVqxQgwYN9PDDD2vTpk3WdWfNmqUnnnhCQ4YMUXh4uJ5++mnrTE65cuX06aef6ptvvlG9evW0aNEivfrqq7fN5ubmpri4OG3dulV169bVyJEj9fbbb9us4+HhodWrVysgIEAdO3ZUvXr19NZbb8nd3d1mvaioKF2+fPm2b2Hd+Jxz587pr3/9q/VSeEmaOnWqypYtqxYtWqhz587q0KGDGjVqVODtXvfMM8+oe/fu6tWrlyIiIvT7779ryJAhedZr27atatasqdatW6tXr156/PHHb/nzi4mJUb9+/fT888+rVq1a6tq1qzZv3qwqVapIunbJe3R0tGrXrq1HHnlE9957r2bOnGl3fsBMLMaNb7YDQDHz2muvacmSJZyMCyBfzOwAKLbOnz+v3bt3a8aMGXruueecHQeAi6LsACi2hg4dqsaNG+uhhx6y6y0sAH8uvI0FAABMjZkdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgav8H/GzqtXu8YtUAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of accuracies from accuracy1 to accuracy10\n", + "accuracies = [accuracy1*100, accuracy2*100, accuracy2_1*100, accuracy3*100, accuracy4*100, accuracy5*100, accuracy6*100, accuracy7*100, accuracy8*100, accuracy8_1*100, accuracy9*100, accuracy10*100]\n", + "\n", + "# List of corresponding labels for each accuracy\n", + "labels = ['1', '2', '2_1', '3', '4', '5', '6', '7', '8', '8_1', '9', '10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, accuracies, color='blue')\n", + "plt.xlabel('Accuracy Variables')\n", + "plt.ylabel('Accuracy Values')\n", + "plt.title('Bar Graph of Accuracies')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "RFaaCNH6Cfoa", + "outputId": "e624dad4-1663-4a68-90ec-b569e5b0b46a" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIKElEQVR4nO3dfVxUZf7/8fdwN+ANICh3BUpmqWlKoGZZ3lHepWmYeZPhzdpWWqmblbumZW2k3Wi5pNaWZGm2Vpq1SZqpVOIdhltmZqlpJmipIBoocP3+8Mv8HEEDBWY4vZ6Px3k8mutcc53PnDkO785cZ47NGGMEAABgUR6uLgAAAKAqEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAWM7jjz8um82mX3/9tcq3lZqaqtatW8vX11c2m01Hjx6t8m0CqBjCDlCDpKSkyGazOS0hISHq3Lmzli9fXu31fPjhh+rdu7dCQ0Pl4+OjoKAg3XjjjXr++eeVm5tb7fVUt99++00DBgyQn5+fkpOT9eabb6p27dpl9j37vfPy8tIll1yiYcOGaf/+/aX6d+rUSTabTU2aNClzvJUrVzrGevfdd53Wff311+rfv78aNmwoX19fXXLJJbrppps0a9Ysp36NGjUqdTyVLN27d7/AvQK4Hy9XFwCg4qZOnaro6GgZY5Sdna2UlBT17NlTH374oW655ZYq335xcbFGjhyplJQUtWzZUvfdd58iIyN17Ngxpaena9KkSfr444+1atWqKq/FlTZt2qRjx47pySefVHx8fLmeU/Le5efna/369UpJSdEXX3yhb775Rr6+vk59fX199cMPP2jjxo1q27at07oFCxbI19dX+fn5Tu3r1q1T586dFRUVpVGjRiksLEz79u3T+vXr9eKLL+r+++936t+6dWv97W9/K1VnREREuV4PUBMQdoAaqEePHoqLi3M8HjlypEJDQ/X2229XStgpLi7WyZMnS/3xLTF9+nSlpKRo3Lhxev7552Wz2RzrHnzwQR04cEDz58+/qG3UBAcPHpQkBQYGlvs5Z753f/nLX1S/fn1NmzZNy5Yt04ABA5z6Nm7cWIWFhXr77bedwk5+fr6WLFmiXr166b333nN6zj//+U8FBARo06ZNpeoqqfdMl1xyie68885y1w/URHyNBVhAYGCg/Pz85OXl/P8vzz33nK677joFBwfLz89PsbGxpb7ykCSbzaYxY8ZowYIFuuqqq2S325Wamlrmtk6cOKFp06bpqquu0rPPPusUdEqEh4frkUceKfc2LqTOK6+8Ur6+voqNjVVaWlqZtR49elTDhg1TYGCgAgICNHz4cJ04caLsnXiWxYsXKzY2Vn5+fqpfv77uvPNOp6+bOnXqpMTERElSmzZtZLPZNGzYsHKNfaYbbrhBkvTjjz+WuX7QoEF65513VFxc7Gj78MMPdeLEiVLhqGScq666qswAFhISUuH6ACsg7AA1UE5Ojn799VcdOnRI27Zt07333qu8vLxS/4f+4osvKiYmRlOnTtXTTz8tLy8v3X777frvf/9baszPPvtM48aN0x133KEXX3xRjRo1KnPbX3zxhY4ePapBgwbJ09OzQnWfaxsVqXPt2rUaO3as7rzzTk2dOlW//fabunfvrm+++aZU3wEDBujYsWNKSkrSgAEDlJKSoieeeOIP60xJSdGAAQPk6emppKQkjRo1Su+//746dOjgmID8j3/8Q3fffbek019Nvfnmm/rrX/9aof0hSXv27JEk1atXr8z1gwcP1oEDB7RmzRpH28KFC9W1a9cyw0vDhg2VkZFR5v4oy6lTp/Trr7+WWn7//fcKvxbAbRkANca8efOMpFKL3W43KSkppfqfOHHC6fHJkydNixYtTJcuXZzaJRkPDw+zbdu2P6zhxRdfNJLM0qVLndoLCwvNoUOHnJbi4uJybaMidUoymzdvdrT99NNPxtfX1/Tr18/RNmXKFCPJjBgxwun5/fr1M8HBwed9fSdPnjQhISGmRYsW5vfff3e0f/TRR0aSmTx5sqOt5P3YtGnTecc8s++nn35qDh06ZPbt22feffdd06BBA2O3282+ffuc+nfs2NFcddVVxhhj4uLizMiRI40xxhw5csT4+PiYN954w6xevdpIMosXL3Y8b8WKFcbT09N4enqa9u3bm4cffth88skn5uTJk6VqatiwYZnHkySTlJT0h68JqCk4swPUQMnJyVq5cqVWrlypt956S507d9Zf/vIXvf/++079/Pz8HP995MgR5eTk6IYbbtCWLVtKjdmxY0c1b978D7ddcpVVnTp1nNq//vprNWjQwGn57bffyrWNitTZvn17xcbGOh5HRUXp1ltv1SeffKKioiKnvvfcc4/T4xtuuEG//fbbea8U27x5sw4ePKj77rvPaT5Rr1691LRp0zLPNlVEfHy8GjRooMjISPXv31+1a9fWsmXLdOmll57zOYMHD9b777+vkydP6t1335Wnp6f69etXZt+bbrpJ6enp6tOnj7Zu3arp06erW7duuuSSS7Rs2bJS/du1a+c4ls5cBg0adFGvE3AnTFAGaqC2bds6TVAeNGiQYmJiNGbMGN1yyy3y8fGRJH300Ud66qmnlJmZqYKCAkf/subZREdHl2vbdevWlSTl5eU5tV9++eVauXKlJGn+/Pl68803y72NitRZ1qXYV1xxhU6cOKFDhw4pLCzM0R4VFeXUr+SroiNHjsjf37/MWn766SdJ0pVXXllqXdOmTfXFF1+U+bzySk5O1hVXXKGcnBy9/vrrSktLk91uP+9zBg4cqIceekjLly/XggULdMsttzjeh7K0adPGEY62bt2qJUuWaMaMGerfv78yMzOdAmf9+vXLfSUZUFNxZgewAA8PD3Xu3FkHDhzQzp07JUmff/65+vTpI19fX7388sv6+OOPtXLlSg0ePFjGmFJjnHl25XyaNm0qSaXmhNSpU0fx8fGKj4/XZZddVuZzy9pGReusiHPNKbrYcS9G27ZtFR8fr4SEBC1btkwtWrTQ4MGDS4XHM4WHh6tTp056/vnnlZaWpsGDB5drWz4+PmrTpo2efvppzZ49W6dOndLixYsr66UANQZhB7CIwsJCSf//jMt7770nX19fffLJJxoxYoR69OhRKf8Hf8MNNyggIECLFi1yukLoQlW0zpIwd6bvv/9etWrVUoMGDS66noYNG0qSduzYUWrdjh07HOsrQ8kE6F9++UX/+te/ztt38ODB+vzzz+Xv76+ePXtWeFslZwIPHDhwQbUCNRlhB7CAU6dOacWKFfLx8VGzZs0knf5DarPZnOax7NmzR0uXLr2obdWqVUsPP/ywvvnmGz366KNlniWpyJmTitaZnp7uNJdn3759+uCDD3TzzTdX+OqwssTFxSkkJERz5sxx+kpt+fLl2r59u3r16nXR2zhTp06d1LZtW82cObPUDwSeqX///poyZYpefvllx9eUZVm9enWZ+//jjz+WVPbXc4DVMWcHqIGWL1+u7777TtLpH4pbuHChdu7cqUcffdQxF6VXr1564YUX1L17dw0ePFgHDx5UcnKyLr/8cv3vf/+7qO0/+uij2r59u5599lmtWLFCCQkJuvTSS3XkyBFt2bJFixcvVkhISLl+MLCidbZo0ULdunXTAw88ILvdrpdfflmSynVJeXl4e3tr2rRpGj58uDp27KhBgwYpOzvbcan8uHHjKmU7Z5owYYJuv/12paSklJpUXSIgIECPP/74H451//3368SJE+rXr5+aNm2qkydPat26dXrnnXfUqFEjDR8+3Kn//v379dZbb5Uap06dOurbt++FvBzA/bjyUjAAFVPWpee+vr6mdevWZvbs2U6XehtjzGuvvWaaNGli7Ha7adq0qZk3b57jsuwzSTKjR4+ucD1LliwxPXv2NA0aNDBeXl4mMDDQdOjQwTz77LPm6NGj5d5GRet86623HP1jYmLM6tWrnfqVPPfQoUNO7SX7b/fu3X/42t555x0TExNj7Ha7CQoKMkOGDDE///xzmeNV5NLzsvoWFRWZxo0bm8aNG5vCwkJjjPOl5+dS1qXny5cvNyNGjDBNmzY1derUMT4+Pubyyy83999/v8nOznZ6/vkuPW/YsOEfviagprAZ48KZegBQATabTaNHj/7D+S0AcCbm7AAAAEsj7AAAAEsj7AAAAEvjaiwANQZTDAFcCM7sAAAASyPsAAAAS+NrLEnFxcX65ZdfVLdu3TJvPAgAANyPMUbHjh1TRESEPDzOff6GsCPpl19+UWRkpKvLAAAAF2Dfvn269NJLz7mesCOpbt26kk7vrJKf2gcAAO4tNzdXkZGRjr/j50LYkRxfXfn7+xN2AACoYf5oCgoTlAEAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKW5NOykpaWpd+/eioiIkM1m09KlS0v12b59u/r06aOAgADVrl1bbdq00d69ex3r8/PzNXr0aAUHB6tOnTpKSEhQdnZ2Nb4KAADgzlwado4fP65WrVopOTm5zPU//vijOnTooKZNm2rNmjX63//+p8cee0y+vr6OPuPGjdOHH36oxYsXa+3atfrll1902223VddLAAAAbs5mjDGuLkI6/euHS5YsUd++fR1tAwcOlLe3t958880yn5OTk6MGDRpo4cKF6t+/vyTpu+++U7NmzZSenq5rr722XNvOzc1VQECAcnJy+AVlAABqiPL+/XbbOTvFxcX673//qyuuuELdunVTSEiI2rVr5/RVV0ZGhk6dOqX4+HhHW9OmTRUVFaX09PRzjl1QUKDc3FynBQAAWJPbhp2DBw8qLy9PzzzzjLp3764VK1aoX79+uu2227R27VpJUlZWlnx8fBQYGOj03NDQUGVlZZ1z7KSkJAUEBDgW7ngOAIB1uW3YKS4uliTdeuutGjdunFq3bq1HH31Ut9xyi+bMmXNRY0+cOFE5OTmOZd++fZVRMgAAcENue9fz+vXry8vLS82bN3dqb9asmb744gtJUlhYmE6ePKmjR486nd3Jzs5WWFjYOce22+2y2+1VUjcAAHAvbntmx8fHR23atNGOHTuc2r///ns1bNhQkhQbGytvb2+tWrXKsX7Hjh3au3ev2rdvX631AgAA9+TSMzt5eXn64YcfHI93796tzMxMBQUFKSoqShMmTNAdd9yhG2+8UZ07d1Zqaqo+/PBDrVmzRpIUEBCgkSNHavz48QoKCpK/v7/uv/9+tW/fvtxXYv2Z2Z6wuWS7ZopbXAAIAPiTcGnY2bx5szp37ux4PH78eElSYmKiUlJS1K9fP82ZM0dJSUl64IEHdOWVV+q9995Thw4dHM+ZMWOGPDw8lJCQoIKCAnXr1k0vv/xytb8WAADgntzmd3Zc6c/6Ozuc2QEA1GQ1/nd2AAAAKgNhBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWJqXqwsAALg32xM2l23bTDEu2zasgzM7AADA0gg7AADA0vgaC27HVafMOV0OANbEmR0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBpLg07aWlp6t27tyIiImSz2bR06dJz9r3nnntks9k0c+ZMp/bDhw9ryJAh8vf3V2BgoEaOHKm8vLyqLRwAANQYLg07x48fV6tWrZScnHzefkuWLNH69esVERFRat2QIUO0bds2rVy5Uh999JHS0tJ09913V1XJAACghvFy5cZ79OihHj16nLfP/v37df/99+uTTz5Rr169nNZt375dqamp2rRpk+Li4iRJs2bNUs+ePfXcc8+VGY4AAMCfi1vP2SkuLtbQoUM1YcIEXXXVVaXWp6enKzAw0BF0JCk+Pl4eHh7asGHDOcctKChQbm6u0wIAAKzJrcPOtGnT5OXlpQceeKDM9VlZWQoJCXFq8/LyUlBQkLKyss45blJSkgICAhxLZGRkpdYNAADch9uGnYyMDL344otKSUmRzWar1LEnTpyonJwcx7Jv375KHR8AALgPtw07n3/+uQ4ePKioqCh5eXnJy8tLP/30k/72t7+pUaNGkqSwsDAdPHjQ6XmFhYU6fPiwwsLCzjm23W6Xv7+/0wIAAKzJpROUz2fo0KGKj493auvWrZuGDh2q4cOHS5Lat2+vo0ePKiMjQ7GxsZKkzz77TMXFxWrXrl211wwAANyPS8NOXl6efvjhB8fj3bt3KzMzU0FBQYqKilJwcLBTf29vb4WFhenKK6+UJDVr1kzdu3fXqFGjNGfOHJ06dUpjxozRwIEDuRILAABIcvHXWJs3b1ZMTIxiYmIkSePHj1dMTIwmT55c7jEWLFigpk2bqmvXrurZs6c6dOigV155papKBgAANYxLz+x06tRJxphy99+zZ0+ptqCgIC1cuLASqwIA1AS2Jyr34pWKMFPK/7cLrue2E5QBAAAqA2EHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYmkvDTlpamnr37q2IiAjZbDYtXbrUse7UqVN65JFH1LJlS9WuXVsRERG666679MsvvziNcfjwYQ0ZMkT+/v4KDAzUyJEjlZeXV82vBAAAuCuXhp3jx4+rVatWSk5OLrXuxIkT2rJlix577DFt2bJF77//vnbs2KE+ffo49RsyZIi2bdumlStX6qOPPlJaWpruvvvu6noJAADAzXm5cuM9evRQjx49ylwXEBCglStXOrX961//Utu2bbV3715FRUVp+/btSk1N1aZNmxQXFydJmjVrlnr27KnnnntOERERVf4aAACAe6tRc3ZycnJks9kUGBgoSUpPT1dgYKAj6EhSfHy8PDw8tGHDhnOOU1BQoNzcXKcFAABYU40JO/n5+XrkkUc0aNAg+fv7S5KysrIUEhLi1M/Ly0tBQUHKyso651hJSUkKCAhwLJGRkVVaOwAAcJ0aEXZOnTqlAQMGyBij2bNnX/R4EydOVE5OjmPZt29fJVQJAADckUvn7JRHSdD56aef9NlnnznO6khSWFiYDh486NS/sLBQhw8fVlhY2DnHtNvtstvtVVYzAABwH259Zqck6OzcuVOffvqpgoODnda3b99eR48eVUZGhqPts88+U3Fxsdq1a1fd5QIAADfk0jM7eXl5+uGHHxyPd+/erczMTAUFBSk8PFz9+/fXli1b9NFHH6moqMgxDycoKEg+Pj5q1qyZunfvrlGjRmnOnDk6deqUxowZo4EDB3IlFgAAkOTisLN582Z17tzZ8Xj8+PGSpMTERD3++ONatmyZJKl169ZOz1u9erU6deokSVqwYIHGjBmjrl27ysPDQwkJCXrppZeqpX4AAOD+XBp2OnXqJGPMOdefb12JoKAgLVy4sDLLAgAAFuLWc3YAAAAuFmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYWqWEnaNHj1bGMAAAAJWuwmFn2rRpeueddxyPBwwYoODgYF1yySXaunVrhcZKS0tT7969FRERIZvNpqVLlzqtN8Zo8uTJCg8Pl5+fn+Lj47Vz506nPocPH9aQIUPk7++vwMBAjRw5Unl5eRV9WQAAwKIqHHbmzJmjyMhISdLKlSu1cuVKLV++XD169NCECRMqNNbx48fVqlUrJScnl7l++vTpeumllzRnzhxt2LBBtWvXVrdu3ZSfn+/oM2TIEG3btk0rV67URx99pLS0NN19990VfVkAAMCivCr6hKysLEfY+eijjzRgwADdfPPNatSokdq1a1ehsXr06KEePXqUuc4Yo5kzZ2rSpEm69dZbJUnz589XaGioli5dqoEDB2r79u1KTU3Vpk2bFBcXJ0maNWuWevbsqeeee04REREVfXkAAMBiKnxmp169etq3b58kKTU1VfHx8ZJOh5OioqJKK2z37t3KyspyjC9JAQEBateundLT0yVJ6enpCgwMdAQdSYqPj5eHh4c2bNhQabUAAICaq8Jndm677TYNHjxYTZo00W+//eY4M/PVV1/p8ssvr7TCsrKyJEmhoaFO7aGhoY51WVlZCgkJcVrv5eWloKAgR5+yFBQUqKCgwPE4Nze3ssoGAABupsJndmbMmKExY8aoefPmWrlyperUqSNJOnDggO67775KL7AqJCUlKSAgwLGUfC0HAACsp8Jndry9vfXQQw+Vah83blylFFQiLCxMkpSdna3w8HBHe3Z2tlq3bu3oc/DgQafnFRYW6vDhw47nl2XixIkaP36843Fubi6BBwAAi7qg39l588031aFDB0VEROinn36SJM2cOVMffPBBpRUWHR2tsLAwrVq1ytGWm5urDRs2qH379pKk9u3b6+jRo8rIyHD0+eyzz1RcXHzeydJ2u13+/v5OCwAAsKYKh53Zs2dr/Pjx6tGjh44ePeqYlBwYGKiZM2dWaKy8vDxlZmYqMzNT0ulJyZmZmdq7d69sNpvGjh2rp556SsuWLdPXX3+tu+66SxEREerbt68kqVmzZurevbtGjRqljRs36ssvv9SYMWM0cOBArsQCAACSLiDszJo1S6+++qr+8Y9/yNPT09EeFxenr7/+ukJjbd68WTExMYqJiZEkjR8/XjExMZo8ebIk6eGHH9b999+vu+++W23atFFeXp5SU1Pl6+vrGGPBggVq2rSpunbtqp49e6pDhw565ZVXKvqyAACARVV4zs7u3bsd4eRMdrtdx48fr9BYnTp1kjHmnOttNpumTp2qqVOnnrNPUFCQFi5cWKHtAgCAP48Kn9mJjo52fO10ptTUVDVr1qwyagIAAKg0FT6zM378eI0ePVr5+fkyxmjjxo16++23lZSUpH//+99VUSMAAMAFq3DY+ctf/iI/Pz9NmjRJJ06c0ODBgxUREaEXX3xRAwcOrIoaAQAALliFw450+uabQ4YM0YkTJ5SXl1fqV4wBAADcxQWFnRK1atVSrVq1KqsWAACASlfhsBMdHS2bzXbO9bt27bqoggAAACpThcPO2LFjnR6fOnVKX331lVJTUzVhwoTKqgsAAKBSVDjsPPjgg2W2Jycna/PmzRddEAAAQGW6oHtjlaVHjx567733Kms4AACASlFpYefdd99VUFBQZQ0HAABQKSr8NVZMTIzTBGVjjLKysnTo0CG9/PLLlVocAADAxapw2Cm543gJDw8PNWjQQJ06dVLTpk0rqy4AAIBKUeGwM2XKlKqoAwAAoEqUK+zk5uaWe0B/f/8LLgYAAKCylSvsBAYGnveHBKXTc3dsNpuKiooqpTAAAIDKUK6ws3r16qquAwAAoEqUK+x07NixqusAAACoEhd8I9ATJ05o7969OnnypFP71VdffdFFAQAAVJYKh51Dhw5p+PDhWr58eZnrmbMDAADcSYV/QXns2LE6evSoNmzYID8/P6WmpuqNN95QkyZNtGzZsqqoEQAA4IJV+MzOZ599pg8++EBxcXHy8PBQw4YNddNNN8nf319JSUnq1atXVdQJAABwQSp8Zuf48eMKCQmRJNWrV0+HDh2SJLVs2VJbtmyp3OoAAAAuUoXDzpVXXqkdO3ZIklq1aqW5c+dq//79mjNnjsLDwyu9QAAAgItR4a+xHnzwQR04cEDS6VtHdO/eXQsWLJCPj49SUlIquz4AAICLUu6w079/f/3lL3/RkCFDHL+mHBsbq59++knfffedoqKiVL9+/SorFAAA4EKU+2usI0eOqFevXoqKitLkyZO1a9cuSVKtWrV0zTXXEHQAAIBbKnfYWbVqlXbt2qWRI0fqrbfeUpMmTdSlSxctXLhQBQUFVVkjAADABavQBOWGDRvq8ccf165du7Ry5UpFRERo1KhRCg8P1+jRo5WRkVFVdQIAAFyQCl+NVaJLly566623lJWVpaSkJC1atEjt2rWrzNoAAAAu2gXfG0uSdu/erZSUFKWkpCgnJ0fx8fGVVRcAAEClqPCZnfz8fL311lvq0qWLmjRpovnz52vkyJHavXu3UlNTq6JGAACAC1buMzsbN27U66+/rnfeeUf5+fnq16+fUlNT1bVrV8el6AAAAO6m3GHn2muvVatWrfTkk09qyJAhqlevXlXWBQAAUCnKHXY2b96sa665piprAQAAqHTlnrPjiqBTVFSkxx57TNHR0fLz81Pjxo315JNPyhjj6GOM0eTJkxUeHi4/Pz/Fx8dr586d1V4rAABwTxd86Xl1mDZtmmbPnq1//etf2r59u6ZNm6bp06dr1qxZjj7Tp0/XSy+9pDlz5mjDhg2qXbu2unXrpvz8fBdWDgAA3MVFXXpe1datW6dbb71VvXr1kiQ1atRIb7/9tjZu3Cjp9FmdmTNnatKkSbr11lslSfPnz1doaKiWLl2qgQMHuqx2AADgHtz6zM51112nVatW6fvvv5ckbd26VV988YV69Ogh6fTv/GRlZTn9vk9AQIDatWun9PT0c45bUFCg3NxcpwUAAFhTucPOwYMHz7u+sLDQccalsjz66KMaOHCgmjZtKm9vb8XExGjs2LEaMmSIJCkrK0uSFBoa6vS80NBQx7qyJCUlKSAgwLFERkZWat0AAMB9lDvshIeHOwWeli1bat++fY7Hv/32m9q3b1+pxf3nP//RggULtHDhQm3ZskVvvPGGnnvuOb3xxhsXNe7EiROVk5PjWM58HQAAwFrKPWfnzCugJGnPnj06derUeftcrAkTJjjO7kinA9ZPP/2kpKQkJSYmKiwsTJKUnZ2t8PBwx/Oys7PVunXrc45rt9tlt9srtVYAAOCeKnXOTmX/kvKJEyfk4eFcoqenp4qLiyVJ0dHRCgsL06pVqxzrc3NztWHDhko/ywQAAGomt74aq3fv3vrnP/+pqKgoXXXVVfrqq6/0wgsvaMSIEZJOh6uxY8fqqaeeUpMmTRQdHa3HHntMERER6tu3r2uLBwAAbqHcYcdms+nYsWPy9fWVMUY2m015eXmOK5mq4oqmWbNm6bHHHtN9992ngwcPKiIiQn/96181efJkR5+HH35Yx48f1913362jR4+qQ4cOSk1Nla+vb6XXAwAAah6bKedEGw8PD6evqUoCz9mPi4qKKr/KKpabm6uAgADl5OTI39/f1eVUG9sTrrmBq5ly/kPOXesC/qxc9W9SOv+/S3etC9WnvH+/y31mZ/Xq1ZVSGAAAQHUqd9jp2LFjVdYBAABQJcoddgoLC1VUVOR0yXZ2drbmzJmj48ePq0+fPurQoUOVFAkAAHChyh12Ro0aJR8fH82dO1eSdOzYMbVp00b5+fkKDw/XjBkz9MEHH6hnz55VViwAAEBFlft3dr788kslJCQ4Hs+fP19FRUXauXOntm7dqvHjx+vZZ5+tkiIBAAAuVLnDzv79+9WkSRPH41WrVikhIUEBAQGSpMTERG3btq3yKwQAALgI5Q47vr6++v333x2P169fr3bt2jmtz8vLq9zqAAAALlK5w07r1q315ptvSpI+//xzZWdnq0uXLo71P/74oyIiIiq/QgAAgItQ7gnKkydPVo8ePfSf//xHBw4c0LBhw5xuvrlkyRJdf/31VVIkAADAharQ7+xkZGRoxYoVCgsL0+233+60vnXr1mrbtm2lFwgAAHAxKnQj0GbNmqlZs2Zlrrv77rsrpSAAAIDKVO6wk5aWVq5+N9544wUXAwAAUNnKHXY6derkuPHnue4dWlNvBAoAAKyr3GGnXr16qlu3roYNG6ahQ4eqfv36VVkXAABApSj3pecHDhzQtGnTlJ6erpYtW2rkyJFat26d/P39FRAQ4FgAAADcSbnDjo+Pj+644w598skn+u6773T11VdrzJgxioyM1D/+8Q8VFhZWZZ0AAAAXpNxh50xRUVGaPHmyPv30U11xxRV65plnlJubW9m1AQAAXLQKh52CggItXLhQ8fHxatGiherXr6///ve/CgoKqor6AAAALkq5Jyhv3LhR8+bN06JFi9SoUSMNHz5c//nPfwg5AADArZU77Fx77bWKiorSAw88oNjYWEnSF198Uapfnz59Kq86AACAi1ShX1Deu3evnnzyyXOu53d2AACAuyl32CkuLq7KOgAAAKrEBV2NdS6///57ZQ4HAABw0Sol7BQUFOj5559XdHR0ZQwHAABQacoddgoKCjRx4kTFxcXpuuuu09KlSyVJ8+bNU3R0tGbOnKlx48ZVVZ0AAAAXpNxzdiZPnqy5c+cqPj5e69at0+23367hw4dr/fr1euGFF3T77bfL09OzKmsFAACosHKHncWLF2v+/Pnq06ePvvnmG1199dUqLCzU1q1bHXdDBwAAcDfl/hrr559/dvy+TosWLWS32zVu3DiCDgAAcGvlDjtFRUXy8fFxPPby8lKdOnWqpCgAAIDKUu6vsYwxGjZsmOx2uyQpPz9f99xzj2rXru3U7/3336/cCgEAAC5CucNOYmKi0+M777yz0osBAACobOUOO/PmzavKOgAAAKpEpf6CMgAAgLtx+7Czf/9+3XnnnQoODpafn59atmypzZs3O9YbYzR58mSFh4fLz89P8fHx2rlzpwsrBgAA7sStw86RI0d0/fXXy9vbW8uXL9e3336r559/XvXq1XP0mT59ul566SXNmTNHGzZsUO3atdWtWzfl5+e7sHIAAOAuyj1nxxWmTZumyMhIp/lCZ95/yxijmTNnatKkSbr11lslSfPnz1doaKiWLl2qgQMHVnvNAADAvbj1mZ1ly5YpLi5Ot99+u0JCQhQTE6NXX33VsX737t3KyspSfHy8oy0gIEDt2rVTenr6OcctKChQbm6u0wIAAKzJrcPOrl27NHv2bDVp0kSffPKJ7r33Xj3wwAN64403JElZWVmSpNDQUKfnhYaGOtaVJSkpSQEBAY4lMjKy6l4EAABwKbcOO8XFxbrmmmv09NNPKyYmRnfffbdGjRqlOXPmXNS4EydOVE5OjmPZt29fJVUMAADcjVuHnfDwcDVv3typrVmzZtq7d68kKSwsTJKUnZ3t1Cc7O9uxrix2u13+/v5OCwAAsCa3DjvXX3+9duzY4dT2/fffq2HDhpJOT1YOCwvTqlWrHOtzc3O1YcMGtW/fvlprBQAA7smtr8YaN26crrvuOj399NMaMGCANm7cqFdeeUWvvPKKJMlms2ns2LF66qmn1KRJE0VHR+uxxx5TRESE+vbt69riAQCAW3DrsNOmTRstWbJEEydO1NSpUxUdHa2ZM2dqyJAhjj4PP/ywjh8/rrvvvltHjx5Vhw4dlJqaKl9fXxdWDgAA3IVbhx1JuuWWW3TLLbecc73NZtPUqVM1derUaqwKAADUFG49ZwcAAOBiEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAICl1aiw88wzz8hms2ns2LGOtvz8fI0ePVrBwcGqU6eOEhISlJ2d7boiAQCAW6kxYWfTpk2aO3eurr76aqf2cePG6cMPP9TixYu1du1a/fLLL7rttttcVCUAAHA3NSLs5OXlaciQIXr11VdVr149R3tOTo5ee+01vfDCC+rSpYtiY2M1b948rVu3TuvXr3dhxQAAwF3UiLAzevRo9erVS/Hx8U7tGRkZOnXqlFN706ZNFRUVpfT09HOOV1BQoNzcXKcFAABYk5erC/gjixYt0pYtW7Rp06ZS67KysuTj46PAwECn9tDQUGVlZZ1zzKSkJD3xxBOVXSoAAHBDbn1mZ9++fXrwwQe1YMEC+fr6Vtq4EydOVE5OjmPZt29fpY0NAADci1uHnYyMDB08eFDXXHONvLy85OXlpbVr1+qll16Sl5eXQkNDdfLkSR09etTpednZ2QoLCzvnuHa7Xf7+/k4LAACwJrf+Gqtr1676+uuvndqGDx+upk2b6pFHHlFkZKS8vb21atUqJSQkSJJ27NihvXv3qn379q4oGQAAuBm3Djt169ZVixYtnNpq166t4OBgR/vIkSM1fvx4BQUFyd/fX/fff7/at2+va6+91hUlAwAAN+PWYac8ZsyYIQ8PDyUkJKigoEDdunXTyy+/7OqyAACAm6hxYWfNmjVOj319fZWcnKzk5GTXFAQAANyaW09QBgAAuFiEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGluH3aSkpLUpk0b1a1bVyEhIerbt6927Njh1Cc/P1+jR49WcHCw6tSpo4SEBGVnZ7uoYgAA4E7cPuysXbtWo0eP1vr167Vy5UqdOnVKN998s44fP+7oM27cOH344YdavHix1q5dq19++UW33XabC6sGAADuwsvVBfyR1NRUp8cpKSkKCQlRRkaGbrzxRuXk5Oi1117TwoUL1aVLF0nSvHnz1KxZM61fv17XXnutK8oGAABuwu3P7JwtJydHkhQUFCRJysjI0KlTpxQfH+/o07RpU0VFRSk9Pb3MMQoKCpSbm+u0AAAAa6pRYae4uFhjx47V9ddfrxYtWkiSsrKy5OPjo8DAQKe+oaGhysrKKnOcpKQkBQQEOJbIyMiqLh0AALhIjQo7o0eP1jfffKNFixZd1DgTJ05UTk6OY9m3b18lVQgAANyN28/ZKTFmzBh99NFHSktL06WXXupoDwsL08mTJ3X06FGnszvZ2dkKCwsrcyy73S673V7VJQMAADfg9md2jDEaM2aMlixZos8++0zR0dFO62NjY+Xt7a1Vq1Y52nbs2KG9e/eqffv21V0uAABwM25/Zmf06NFauHChPvjgA9WtW9cxDycgIEB+fn4KCAjQyJEjNX78eAUFBcnf31/333+/2rdvz5VYAADA/cPO7NmzJUmdOnVyap83b56GDRsmSZoxY4Y8PDyUkJCggoICdevWTS+//HI1VwoAANyR24cdY8wf9vH19VVycrKSk5OroSIAAFCTuP2cHQAAgItB2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJbm9jcCBQAAlcP2hM0l2zVT/vim3lWJMzsAAMDSOLMD4E/nz/p/t8CfFWd2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApXm5ugAAwGm2J2wu2a6ZYlyyXaC6EHaAGs5VfyCl8/+RdNe6gKrGse9+LBN2kpOT9eyzzyorK0utWrXSrFmz1LZtW1eXBQvhAwwAaiZLhJ133nlH48eP15w5c9SuXTvNnDlT3bp1044dOxQSEuLS2vgDCQCAa1ligvILL7ygUaNGafjw4WrevLnmzJmjWrVq6fXXX3d1aQAAwMVqfNg5efKkMjIyFB8f72jz8PBQfHy80tPTXVgZAABwBzX+a6xff/1VRUVFCg0NdWoPDQ3Vd999V+ZzCgoKVFBQ4Hick5MjScrNza38AvMrf8jy+sPX46LaqKvizlsbdZXiru8ldVVcjTzG3LUuyX2PsYsc15g/mLZharj9+/cbSWbdunVO7RMmTDBt27Yt8zlTpkwxklhYWFhYWFgssOzbt++8WaHGn9mpX7++PD09lZ2d7dSenZ2tsLCwMp8zceJEjR8/3vG4uLhYhw8fVnBwsGw2100oPltubq4iIyO1b98++fv7u7ocB+qqGOqqOHetjboqxl3rkty3NuqqGGOMjh07poiIiPP2q/Fhx8fHR7GxsVq1apX69u0r6XR4WbVqlcaMGVPmc+x2u+x2u1NbYGBgFVd64fz9/d3q4CpBXRVDXRXnrrVRV8W4a12S+9ZGXeUXEBDwh31qfNiRpPHjxysxMVFxcXFq27atZs6cqePHj2v48OGuLg0AALiYJcLOHXfcoUOHDmny5MnKyspS69atlZqaWmrSMgAA+POxRNiRpDFjxpzza6uaym63a8qUKaW+cnM16qoY6qo4d62NuirGXeuS3Lc26qoaNmP+6HotAACAmqvG/6ggAADA+RB2AACApRF2AACApRF2AACApRF2KsGwYcNks9lks9nk7e2t6OhoPfzww8rP//83ISlZv379eqfnFhQUOH65ec2aNY72tWvXqkuXLgoKClKtWrXUpEkTJSYm6uTJk5KkNWvWOMY8e8nKypIk9e3b16k9ODjYpXWNHj1a+fn5evXVV3XDDTc42tu0aaONGzdWyz4p2Xa9evVUr149xcfHO237j97L999/32nczMzMaqm7c+fOTu12u129evVy+TF25v7y8vKSzWZTkyZNXF5Xhw4dSq3z8vJyeV2SNHjwYKd13t7e6t+/v8trCwsLK3N99+7dXVLXnj17Sm3XbrcrMjJS48aNU35+fpW/VzNnztSVV14pPz8/p+1Kf/xZkZaW5jTu0qVLq3R/nVlHhw4dFB0dLV9fX7Vq1colx9O2bduUkJCgRo0ayWazaebMmSpLcnKyGjVqJF9fX7Vr187p87gyEXYqSffu3XXgwAHt2rVLM2bM0Ny5czVlyhSnPpGRkZo3b55T25IlS1SnTh2ntm+//Vbdu3dXXFyc0tLS9PXXX2vWrFny8fFRUVGRU98dO3bowIEDTktISIgkqbCwUI0aNdLs2bPVoEED9e3bt9rq6tevnzp37qytW7dq8+bNev311/XWW29pypQpWrNmjQYNGiRJCg8PV25urm6++Wbt37+/yvdJybZXr16t9PR0RUZGOm1bOv97efz4cUlSUFCQzlaVddvtdsXExGjt2rVKS0vTnXfeqY8//lh33XVXlb+X56urZH9t3LhR9evXV7NmzbRnzx6XH/uS5Onp6XT81apVy+V1nTx5UitWrFCDBg30wQcf6Msvv9SUKVP0ySefuLy2zp07O/2bffHFFyVJHh7Ofyaqoq4bbrjB6b2qW7euXn75ZUnSwoULJUnBwcFKSEjQa6+9pnfeeUd///vfq3R/LFy4UI8++qimTJmi7du3O223RHk+K+rXr6+zVWbdAwYMUOfOnbV//37t2rVLMTExWrdunWJjY/Xtt9/qnnvukXQ6zFbn8XTixAlddtlleuaZZ85566Z33nlH48eP15QpU7Rlyxa1atVK3bp108GDB8vsf1Eq53acf26JiYnm1ltvdWq77bbbTExMjOOxJDNp0iTj7+9vTpw44Wi/6aabzGOPPWYkmdWrVxtjjJkxY4Zp1KjRebe5evVqI8kcOXKkXHU1bNjQzJgxo9rqGjRoUIX2SZ06dcwbb7xR5fvkbIWFhaZu3bqObZf3vRwzZoyRZNLT0x3t1fVelggICDBhYWFOdbniGOvTp4+57rrrzL///W+TmJhowsPDXX7sX3/99cbLy8upzR3+Tc6ePdvUqVPH9O7d2+1qO/sYmzFjhvHy8jKtWrWq8rp69uzp1H7m/hg9enSp7Y4fP95cf/31Vbo/Ro8ebbp06eLUVrJdYyr2uS/JLFq0yNFemXWfXUd4eLhp1apVqTpatGhRrcfTmUr+/pytbdu2ZvTo0Y7HRUVFJiIiwiQlJZVr3IrgzE4V+Oabb7Ru3Tr5+Pg4tcfGxqpRo0Z67733JEl79+5VWlqahg4d6tQvLCxMBw4cUFpaWqXWdeDAAZfVdb59EhUVpYKCAgUFBVX7Pjlx4oROnTpV5pma89XdsmVLSdKqVaskVe97aYzRv//9b+Xk5JS6p5srjrEdO3YoJCREI0eO1JEjR3T48GG3OPYLCwvVsGFDRUZGqnPnzkpLS3N5XcuWLVNISIj+97//KTQ0VC1atNCDDz7olp8XycnJ8vb2lq+vb7XWdfa/ueuuu07S6XsylZyp/vjjj3XddddV6f647rrrlJGR4fhaZdeuXfr444/Vs2fPctVdIjY2VpKUnp4uqerfx+PHj2vPnj2l6sjOznbp8XS2kydPKiMjQ/Hx8Y42Dw8PxcfHO/ZVpar0+PQnlJiYaDw9PU3t2rWN3W43koyHh4d59913HX0kmSVLlpiZM2eazp07G2OMeeKJJ0y/fv3MkSNHnJJ1YWGhGTZsmJFkwsLCTN++fc2sWbNMTk6OY7ySZF27dm2npXnz5mXWJala6/Ly8nJs84+2ff311xtfX1/z+++/V/k+Odu9995rLrvsMvP7779X6L2cO3eukWTatGlTre/lmfvTZrO5/Bjr3r27kWRq1arl2F+SXF5Xz549jYeHh/Hz8zPe3t6OuubOnevSuq688krj4eFhbDabU23u8F6eeez7+PhU6+dFWcvZ2/X09DQeHh5Gkrnnnnuq5bPixRdfNN7e3o7Ps3vuuafM/fVHn/v6vzMrVfE+ltR2Zh2SzKxZs0xRUZFZsWKF4zO5Oo+nM5V1Zmf//v1Gklm3bp1T+4QJE0zbtm3LHOdiEHYqQWJioomPjzc7d+40mZmZJjEx0YwcOdKpT8lB/+uvvxpfX1/z448/mujoaPPhhx+WOthK/Pzzz2b+/Plm9OjRJjw83Fx66aXml19+Mcb8/4Nty5YtZufOnY5lz549ZdYVHh5u2rRpU2119e7d21x33XXm008/NcuWLTMJCQllbvvOO+80AQEBxm63V8s+OVNSUpKpV6+e2bp1a4Xfy5KwU111JyYmmq5du5pPP/3ULFq0yMTFxRlvb2+n7VT3MZabm2tq165tWrdu7dhfjRs3NlFRUaX2lyuP/czMTDN06FBTt25dM2nSJJfW1aRJE1OrVi3TtWtXR21xcXHGz8/PrfZZQkKCCQwMrLbPi3bt2jk+K/r162fuuOMOx/NL+tx3330mLS3N+Pj4mPDwcFOvXr0q3R+rV682oaGh5tVXXzX/+9//zPvvv28iIyPN1KlTyzzGzve5L8n4+PhUyfvYr18/06FDB0cdd9xxh4mKijIeHh7G09PTXHHFFUaS8fb2rtbj6UyEHYs4+zvToqIi06JFC/Pvf//b0VZy0BtjTP/+/U2nTp1MeHi4KSwsPOfBdqbDhw+b+vXrm8mTJxtjLmzOzvPPP19tdZ09Z+dc+6RWrVpm06ZN1bZPSjz77LMmICDAbNq06Zz77Hx1l4Sd+Pj4an8vS+qqV6+e0/9JVfcx9tVXXzn+L9LT09PpzJPNZjM//PCDS+o61/7y9/d3nIlzVV033nijCQ8Pd6rto48+MpLMnDlzXFpbyT7Ly8sz/v7+5oUXXqi2z4sz5+yc/W+uQ4cOpbbbrFkzI8mcPHmyyvZHhw4dzEMPPeTU9uabbxo/Pz9TVFRUoc99SaZ9+/ZV8j6eq47Zs2ebn3/+2RQXFxtJ5tJLL3Xsv+r8rDWm7LBTUFBgPD09He9ribvuusv06dOnXONWBHN2qoCHh4f+/ve/a9KkSfr9999LrR8xYoTWrFmju+66S56enuUas169egoPD3fM8K9pdZ297enTp0uSJk+erLi4uGrdJ9OnT9eTTz6p1NRUxcXFVajus916660uey+vvvpq/fDDDy47xpo2bao+ffqoc+fOyszMVGZmpm699VY1b95cwcHBZV6F4qpj3xij2rVra9u2bS79N3n99dcrNzdXxhhH2w8//KDAwEA9/vjjbvF5sXjxYhUUFOiuu+5yyefF2f/mTpw4UWq727dvl5eXV6krxS5mu2c7ceJEqfFLXueZ79+56j5b165dq+V9LKnjiSeeUFBQkAoLCyVJ7dq1k+S6f4Nn8/HxUWxsrGPeoyQVFxdr1apVat++faVtp4Rl7nrubm6//XZNmDBBycnJeuihh5zWde/eXYcOHZK/v3+Zz507d64yMzPVr18/NW7cWPn5+Zo/f762bdumWbNmOfU9ePCg0+9zSKcv0fT29lZxcbFycnKUmZmpkydPav/+/erQoYOMMVVeV35+vvLz851+s6Jv376aMGGC+vfvr08//VSSFBISoqysLLVu3Vq7d+9WREREle6TadOmafLkyVq4cKEaNWrkqK9OnTqlLsEsceZ7OWLECEnSvn37JJ2+rPSzzz5T48aNq7Tur7/+Wna7Xbt27VJBQYE+/vhjffHFF6pbt67LjjFfX1/Vq1dPNptNLVq0kCQFBgaqcePGysnJ0auvvuqyY3/r1q3y8/PTrl27dPToUT377LM6fPiwAgMDXfpv8t5779Wzzz6rr7/+Wt9//7127typp59+WuPGjdMrr7zi0tpKvPbaa+rbt6+Cg4Or7XOsoKDA6bPihhtukKenp5KTk9W7d29t2bJFn3/+uVq1aiVPT081atRIsbGxZf6xrqz90bt3b73wwguKiYlRu3bt9MMPP+ixxx5T7969zxkSztxfJZd87969W9LpwPDZZ58pMjLyovfXmXX//vvvys/P16lTp+Tt7a0NGzbIy+v0n/a//e1v2rFjh6TTPwciVd/xdPLkSX377beS5Pj7k5mZqTp16ujyyy+XJI0fP16JiYmKi4tT27ZtNXPmTB0/flzDhw8vs7aLUunniv6EyroE0ZjTc0IaNGhg8vLynE7Dnu3s04hbtmwxd955p4mOjjZ2u90EBwebG2+80SxbtszxnPNN7Cu5HDohIaHM9dHR0S6rKykpyTHJ8OxlypQpVb5PGjZseN5t/9F7OWfOnPM+v6rqvvrqq03t2rWNr6+vqVevnmnfvr1ZtGiRy4+xs/dXyWNX19WsWTPj5+dnfHx8TGhoqOnZs6fZsmWLy+sy5vTk6Xr16hm73W4uu+wy889//tMUFha6vLaSeWGSzIoVKxzPdVVd9957r2nQoIE5evSokU5PlvX19TWRkZHmvvvuc3yFUlX749SpU+bxxx83jRs3LnO7f/RZ8fHHH5c5fmJiYpXWvWbNGtOsWTPj6elpbDabGThwoEuOp927d5e5vmPHjk7bnzVrlomKijI+Pj6mbdu2Zv369WXWebFsxpRxPg4AAMAimLMDAAAsjbAD/J/PP//cMXenrAUApNM/yHe+z4q9e/e6ukScha+xgP/z+++/O90j62wlk+oA/LkVFhY63aj0bI0aNXJMEoZ7IOwAAABL42ssAABgaYQdAABgaYQdAABgaYQdACjD448/rtatW1foOTabTUuXLj3n+j179shmsykzM/OiagNQMYQdAE6GDRsmm80mm80mb29vRUdH6+GHHy71s/AlfdavX+/UXlBQoODgYNlsNq1Zs8bRvnbtWnXp0kVBQUGqVauWmjRposTERJ08eVKStGbNGseYZy9n3kqgREZGRpnbL9G1a1fddtttF7wfHnroIaf79gCouQg7AErp3r27Dhw4oF27dmnGjBmaO3eupkyZUqpfZGSk5s2b59S2ZMmSUr9L9O2336p79+6Ki4tTWlqavv76a82aNUs+Pj4qKipy6rtjxw4dOHDAaQkJCSm17djYWLVq1Uqvv/56qXV79uzR6tWrNXLkyAq/dmOMCgsLVadOHQUHB1f4+QDcD2EHQCl2u11hYWGKjIxU3759FR8fr5UrV5bql5iYqEWLFjnd5fn1119XYmKiU78VK1YoLCxM06dPV4sWLdS4cWN1795dr776qvz8/Jz6hoSEKCwszGk5192tR44cqXfeeafUnbFTUlIUHh6u7t27680331RcXJzq1q2rsLAwDR48WAcPHnT0LTmjtHz5csXGxsput+uLL74o9TXWpk2bdNNNN6l+/foKCAhQx44dtWXLllI1HThwQD169JCfn58uu+wyvfvuu+fe0ZK++eYb9ejRQ3Xq1FFoaKiGDh2qX3/91bH+3XffVcuWLeXn56fg4GDFx8dX6t2ngT8Dwg6A8/rmm2+0bt06+fj4lFoXGxurRo0a6b333pN0+pdl09LSNHToUKd+YWFhOnDggNLS0iq1tiFDhqigoMApUBhj9MYbb2jYsGHy9PTUqVOn9OSTT2rr1q1aunSp9uzZo2HDhpUa69FHH9Uzzzyj7du36+qrry61/tixY0pMTNQXX3yh9evXq0mTJurZs6eOHTvm1O+xxx5TQkKCtm7dqiFDhmjgwIHavn17mfUfPXpUXbp0UUxMjDZv3qzU1FRlZ2drwIABkk4Hp0GDBmnEiBHavn271qxZo9tuu038PBpQQVVye1EANVZiYqLx9PQ0tWvXNna73UgyHh4e5t1333Xqp/+7k/LMmTNN586djTHGPPHEE6Zfv36l7qRcWFhohg0b5rh7dd++fc2sWbNMTk6OY7ySOynXrl3baWnevPl56x04cKDTnZRXrVplJJmdO3eW2X/Tpk1Gkjl27JjTdpcuXerUb8qUKaZVq1bn3G5RUZGpW7eu+fDDD532yT333OPUr127dubee+81xvz/O0F/9dVXxhhjnnzySXPzzTc79d+3b5+RZHbs2GEyMjKMJLNnz57z7gMA58eZHQCldO7cWZmZmdqwYYMSExM1fPhwJSQklNn3zjvvVHp6unbt2qWUlBSNGDGiVB9PT0/NmzdPP//8s6ZPn65LLrlETz/9tK666iodOHDAqe/nn3+uzMxMx/Lxxx+ft9YRI0YoLS1NP/74o6TTX6N17NjRcXuPjIwM9e7dW1FRUapbt646duwoSaXuXxQXF3fe7WRnZ2vUqFFq0qSJAgIC5O/vr7y8vFLjtG/fvtTjc53Z2bp1q1avXu10X6WmTZtKkn788Ue1atVKXbt2VcuWLXX77bfr1Vdf1ZEjR85bJ4DSCDsASqldu7Yuv/xyxwTgDRs26LXXXiuzb3BwsG655RaNHDlS+fn56tGjxznHveSSSzR06FD961//0rZt25Sfn685c+Y49YmOjtbll1/uWBo2bHjeWrt27aqoqCilpKQoNzdX77//vmNi8vHjx9WtWzf5+/trwYIF2rRpk5YsWSJJjqvAznzN55OYmKjMzEy9+OKLWrdunTIzMxUcHFxqnIrIy8tT7969ncJdZmamdu7cqRtvvFGenp5auXKlli9frubNm2vWrFm68sortXv37gveJvBnRNgBcF4eHh76+9//rkmTJjlNRD7TiBEjtGbNGt11113y9PQs17j16tVTeHj4RU+29fDw0PDhw/XGG29o4cKF8vHxUf/+/SVJ3333nX777Tc988wzuuGGG9S0aVOnyckV8eWXX+qBBx5Qz549ddVVV8lutztNJC5x9qXw69evV7Nmzcoc85prrtG2bdvUqFEjp4B3+eWXO8KXzWbT9ddfryeeeEJfffWVfHx8HIENQPkQdgD8odtvv12enp5KTk4uc3337t116NAhTZ06tcz1c+fO1b333qsVK1boxx9/1LZt2/TII49o27Zt6t27t1PfgwcPKisry2k5derUeesbPny49u/fr7///e8aNGiQ4wqvqKgo+fj4aNasWdq1a5eWLVumJ5988gL2gNSkSRO9+eab2r59uzZs2KAhQ4aUupJMkhYvXqzXX39d33//vaZMmaKNGzdqzJgxZY45evRoHT58WIMGDdKmTZv0448/6pNPPtHw4cNVVFSkDRs26Omnn9bmzZu1d+9evf/++zp06NA5wxOAshF2APwhLy8vjRkzRtOnTy/zTIzNZlP9+vXLvGJLktq2bau8vDzdc889uuqqq9SxY0etX79eS5cudcyhKXHllVcqPDzcacnIyDhvfVFRUYqPj9eRI0ec5gw1aNBAKSkpWrx4sZo3b65nnnlGzz333AXsAem1117TkSNHdM0112jo0KF64IEHyvz9nyeeeEKLFi3S1Vdfrfnz5+vtt99W8+bNyxwzIiJCX375pYqKinTzzTerZcuWGjt2rAIDA+Xh4SF/f3+lpaWpZ8+euuKKKzRp0iQ9//zz5/2qEEBpNmO4hhEAAFgXZ3YAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAICl/T/87OzQb65QZQAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of RMSE values from rmse1 to rmse10\n", + "rmse_values = [rmse1, rmse2, rmse2_1, rmse3, rmse4, rmse5, rmse6, rmse7, rmse8, rmse8_1, rmse9, rmse10]\n", + "\n", + "# List of corresponding labels for each RMSE value\n", + "labels = ['RMSE1', 'RMSE2', 'RMSE2_1', 'RMSE3', 'RMSE4', 'RMSE5', 'RMSE6', 'RMSE7', 'RMSE8', 'RMSE8_1', 'RMSE9', 'RMSE10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, rmse_values, color='green')\n", + "plt.xlabel('RMSE Variables')\n", + "plt.ylabel('RMSE Values')\n", + "plt.title('Bar Graph of RMSE')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "nrZu-K-KDCJ2", + "outputId": "d0dd5f18-77bd-41f4-c21b-09e71322b318" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/MUlEQVR4nO3deVxUZf//8fcACogCorIlKuW+pOYWmbdLFK6pueR2h2JqqZl5l+l9m2V5Z1qZS6RZKFmCS6mlpUWYW+GuZUmuuAuWKYomopzfH36dX3MDCjoww+n1fDzO4+Fc5zrn+swMMm/Ouc4Zi2EYhgAAAEzKxdEFAAAAFCbCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDoC/hVdeeUUWi0W///57oY+1evVqNWjQQB4eHrJYLDp37lyhjwkgb4QdoJiLjY2VxWKxWfz9/dW6dWutWrWqyOtZsWKFOnXqpICAAJUsWVJ+fn76xz/+obffflvnz58v8nqK2pkzZ9SzZ095enoqOjpaH3/8sby8vHLt+9f3buPGjTnWG4ahkJAQWSwWdezYMdd9nDt3zhqqkpOTc+3Tv3//HD8jNxYPD4/bf7JAMeHm6AIA2Merr76q0NBQGYahtLQ0xcbGqn379lqxYkWeH5T2lJ2drYEDByo2Nlb16tXT0KFDFRISogsXLigpKUnjxo3TV199pcTExEKvxZG2bt2qCxcu6LXXXlN4eHi+tvHw8FBcXJwefPBBm/Z169bp+PHjcnd3z3PbJUuWyGKxKDAwUAsWLNDEiRNz7efu7q4PP/wwR7urq2u+agSKM8IOYBLt2rVT48aNrY8HDhyogIAAxcfH2yXsZGdn68qVK3keCZgyZYpiY2P13HPP6e2335bFYrGue/bZZ3Xq1CnNnz//jsYoDk6fPi1J8vX1zfc27du315IlSzRjxgy5uf3/X8txcXFq1KjRTU+9ffLJJ2rfvr0qV66suLi4PMOOm5ub+vXrl++aADPhNBZgUr6+vvL09LT58JSkt956Sw888IDKlSsnT09PNWrUSJ9++mmO7S0Wi4YPH64FCxaoTp06cnd31+rVq3Md69KlS5o8ebLq1KmjN9980ybo3BAUFKQXX3wx32PcTp01atSQh4eHGjVqpPXr1+da67lz59S/f3/5+vrKx8dHAwYM0KVLl3J/Ef/HkiVL1KhRI3l6eqp8+fLq16+fTpw4YV3fqlUrRUZGSpKaNGkii8Wi/v3733K/vXv31pkzZ5SQkGBtu3Llij799FP16dMnz+2OHj2qDRs2qFevXurVq5dSUlL0ww8/5Ou5AH8nHNkBTCI9PV2///67DMPQ6dOnNXPmTGVkZOT4a3769Ol69NFH1bdvX125ckULFy5Ujx49tHLlSnXo0MGm75o1a7R48WINHz5c5cuXV5UqVXIde+PGjTp37pyef/75Ap8WyWuMgtS5bt06LVq0SCNGjJC7u7vee+89tW3bVlu2bFHdunVt+vbs2VOhoaGaNGmSduzYoQ8//FD+/v6aPHnyTeuMjY3VgAED1KRJE02aNElpaWmaPn26vv/+e+3cuVO+vr76z3/+oxo1amjOnDnW04r33HPPLV+DKlWqKCwsTPHx8WrXrp0kadWqVUpPT1evXr00Y8aMXLeLj4+Xl5eXOnbsKE9PT91zzz1asGCBHnjggVz753aEqGTJkvL29r5ljUCxZgAo1ubNm2dIyrG4u7sbsbGxOfpfunTJ5vGVK1eMunXrGm3atLFpl2S4uLgYv/zyyy1rmD59uiHJWL58uU371atXjd9++81myc7OztcYBalTkrFt2zZr25EjRwwPDw+ja9eu1raXX37ZkGRERUXZbN+1a1ejXLlyN31+V65cMfz9/Y26desaf/75p7V95cqVhiRj/Pjx1rYb78fWrVtvus//7fvuu+8aZcqUsT7vHj16GK1btzYMwzAqV65sdOjQIcf29erVM/r27Wt9/O9//9soX768kZWVZdMvMjIy158RSUZERMQt6wSKO05jASYRHR2thIQEJSQk6JNPPlHr1q315JNPaunSpTb9PD09rf8+e/as0tPT1aJFC+3YsSPHPlu2bKnatWvfcuwbV1mVLl3apn337t2qUKGCzXLmzJl8jVGQOsPCwtSoUSPr40qVKqlz5876+uuvde3aNZu+Tz31lM3jFi1a6MyZMze9Umzbtm06ffq0hg4dajOfqEOHDqpZs6a+/PLLPLfNr549e+rPP//UypUrdeHCBa1cufKmp7B++ukn7d69W71797a29e7dW7///ru+/vrrHP09PDysPx9/Xd544407rh1wdpzGAkyiadOmNhOUe/furYYNG2r48OHq2LGjSpYsKUlauXKlJk6cqF27dikzM9PaP7d5NqGhofkau0yZMpKkjIwMm/aqVata56HMnz9fH3/8cb7HKEid1apVy9FWvXp1Xbp0Sb/99psCAwOt7ZUqVbLpV7ZsWUnXA1Vep3OOHDkiSapRo0aOdTVr1sz1svGCqlChgsLDwxUXF6dLly7p2rVr6t69e579P/nkE3l5eenuu+/WgQMHJF0PNFWqVNGCBQtynOpzdXXN99VhgNlwZAcwKRcXF7Vu3VqnTp3S/v37JUkbNmzQo48+Kg8PD7333nv66quvlJCQoD59+sgwjBz7+OvRlZupWbOmJOnnn3+2aS9durTCw8MVHh6uu+++O9dtcxujoHUWRF5ziu50v/bQp08frVq1SrNnz1a7du3yvKLLMAzFx8fr4sWLql27tqpVq2ZdDh8+rM8//zxH8AT+zjiyA5jY1atXJf3/Iy6fffaZPDw89PXXX9vcu2XevHl3NE6LFi3k4+OjhQsXauzYsXJxubO/owpa540w91f79u1TqVKlVKFChTuqRZIqV64sSdq7d6/atGljs27v3r3W9Xeqa9euGjJkiDZt2qRFixbl2e/G/XdeffVV1apVy2bd2bNnNXjwYC1fvpxLzYH/w5EdwKSysrL0zTffqGTJktYPRFdXV1ksFpt5LIcPH9by5cvvaKxSpUpp9OjR+vnnnzVmzJhcj5IU5MhJQetMSkqymctz7Ngxff7553rkkUfsctO8xo0by9/fX7Nnz7Y5pbZq1SolJyfnOGV0u0qXLq1Zs2bplVdeUadOnfLsd+MU1gsvvKDu3bvbLIMGDVK1atW0YMECu9QEmAFHdgCTWLVqlX799VdJ129sFxcXp/3792vMmDHWuSgdOnTQ1KlT1bZtW/Xp00enT59WdHS0qlatqp9++umOxh8zZoySk5P15ptv6ptvvlG3bt1UsWJFnT17Vjt27NCSJUvk7++frxsGFrTOunXrKiIiwubSc0maMGHCHT2nG0qUKKHJkydrwIABatmypXr37m299LxKlSp67rnn7DKOJOt9evKSmZmpzz77TA8//HCer+Wjjz6q6dOn6/Tp0/L395d0/SjfJ598kmv/rl275vmVFoAZEHYAkxg/frz13x4eHqpZs6ZmzZqlIUOGWNvbtGmjmJgYvfHGGxo5cqRCQ0M1efJkHT58+I7DjouLiz7++GN169ZNH3zwgWbOnKmzZ8+qdOnSqlu3rv773/9q0KBBOa7Yyk1B62zZsqXCwsI0YcIEHT16VLVr11ZsbKzuvffeO3pOf9W/f3+VKlVKb7zxhl588UV5eXmpa9eumjx5coHulnynvvzyS507d+6mR346deqkt99+WwsXLtSIESMkXQ9J//znP3Ptn5KSQtiBqVkMZ5iVBwC3yWKxaNiwYXr33XcdXQoAJ8WcHQAAYGqEHQAAYGqEHQAAYGpMUAZQrDHtEMCtcGQHAACYGmEHAACYGqexJGVnZ+vkyZMqU6ZMrl8yCAAAnI9hGLpw4YKCg4Nv+jU1hB1JJ0+eVEhIiKPLAAAAt+HYsWOqWLFinusJO5LKlCkj6fqLdeO2+gAAwLmdP39eISEh1s/xvBB2JOupK29vb8IOAADFzK2moDBBGQAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmJqbowuAg8RZHDd2H8NxYwMA/nY4sgMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEzNoWFn/fr16tSpk4KDg2WxWLR8+XLruqysLL344ouqV6+evLy8FBwcrCeeeEInT5602ccff/yhvn37ytvbW76+vho4cKAyMjKK+JkAAABn5dCwc/HiRdWvX1/R0dE51l26dEk7duzQSy+9pB07dmjp0qXau3evHn30UZt+ffv21S+//KKEhAStXLlS69ev1+DBg4vqKQAAACdnMQzDcHQRkmSxWLRs2TJ16dIlzz5bt25V06ZNdeTIEVWqVEnJycmqXbu2tm7dqsaNG0uSVq9erfbt2+v48eMKDg7O19jnz5+Xj4+P0tPT5e3tbY+n4/ziLI4bu49T/MgBAIq5/H5+F6s5O+np6bJYLPL19ZUkJSUlydfX1xp0JCk8PFwuLi7avHmzg6oEAADOxM3RBeTX5cuX9eKLL6p3797W9Jaamip/f3+bfm5ubvLz81Nqamqe+8rMzFRmZqb18fnz5wunaAAA4HDF4shOVlaWevbsKcMwNGvWrDve36RJk+Tj42NdQkJC7FAlAABwRk4fdm4EnSNHjighIcHmnFxgYKBOnz5t0//q1av6448/FBgYmOc+x44dq/T0dOty7NixQqsfAAA4llOfxroRdPbv36/vvvtO5cqVs1kfFhamc+fOafv27WrUqJEkac2aNcrOzlazZs3y3K+7u7vc3d0LtXYAAOAcHBp2MjIydODAAevjlJQU7dq1S35+fgoKClL37t21Y8cOrVy5UteuXbPOw/Hz81PJkiVVq1YttW3bVoMGDdLs2bOVlZWl4cOHq1evXvm+EgsAAJibQy89X7t2rVq3bp2jPTIyUq+88opCQ0Nz3e67775Tq1atJF2/qeDw4cO1YsUKubi4qFu3bpoxY4ZKly6d7zq49LyIcek5AMAO8vv57dAjO61atdLNslZ+cpifn5/i4uLsWRYAADARp5+gDAAAcCcIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNTcHF0AkEOcxTHj9jEcMy4AoFBxZAcAAJgaYQcAAJgaYQcAAJgac3YAADfHPDoUcxzZAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApubQsLN+/Xp16tRJwcHBslgsWr58uc16wzA0fvx4BQUFydPTU+Hh4dq/f79Nnz/++EN9+/aVt7e3fH19NXDgQGVkZBThswAAAM7MzZGDX7x4UfXr11dUVJQee+yxHOunTJmiGTNm6KOPPlJoaKheeuklRUREaM+ePfLw8JAk9e3bV6dOnVJCQoKysrI0YMAADR48WHFxcUX9dAAARSnO4rix+xiOGxsF5tCw065dO7Vr1y7XdYZhaNq0aRo3bpw6d+4sSZo/f74CAgK0fPly9erVS8nJyVq9erW2bt2qxo0bS5Jmzpyp9u3b66233lJwcHCRPRcAAOCcnHbOTkpKilJTUxUeHm5t8/HxUbNmzZSUlCRJSkpKkq+vrzXoSFJ4eLhcXFy0efPmPPedmZmp8+fP2ywAAMCcnDbspKamSpICAgJs2gMCAqzrUlNT5e/vb7Pezc1Nfn5+1j65mTRpknx8fKxLSEiInasHAADOwmnDTmEaO3as0tPTrcuxY8ccXRIAACgkTht2AgMDJUlpaWk27WlpadZ1gYGBOn36tM36q1ev6o8//rD2yY27u7u8vb1tFgAAYE5OG3ZCQ0MVGBioxMREa9v58+e1efNmhYWFSZLCwsJ07tw5bd++3dpnzZo1ys7OVrNmzYq8ZgAA4HwcejVWRkaGDhw4YH2ckpKiXbt2yc/PT5UqVdLIkSM1ceJEVatWzXrpeXBwsLp06SJJqlWrltq2batBgwZp9uzZysrK0vDhw9WrVy+uxAIAAJIcHHa2bdum1q1bWx+PGjVKkhQZGanY2FiNHj1aFy9e1ODBg3Xu3Dk9+OCDWr16tfUeO5K0YMECDR8+XA899JBcXFzUrVs3zZgxo8ifCwAAcE4WwzD+9ndGOn/+vHx8fJSenv73mb/jzDfjclRt3CQMyJ2z/p905t9jKBL5/fx22jk7AAAA9kDYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApubUYefatWt66aWXFBoaKk9PT91zzz167bXXZBiGtY9hGBo/fryCgoLk6emp8PBw7d+/34FVAwAAZ3LHYefatWvatWuXzp49a496bEyePFmzZs3Su+++q+TkZE2ePFlTpkzRzJkzrX2mTJmiGTNmaPbs2dq8ebO8vLwUERGhy5cv270eAABQ/BQ47IwcOVIxMTGSrgedli1b6r777lNISIjWrl1r1+J++OEHde7cWR06dFCVKlXUvXt3PfLII9qyZYuk60d1pk2bpnHjxqlz58669957NX/+fJ08eVLLly+3ay0AAKB4KnDY+fTTT1W/fn1J0ooVK5SSkqJff/1Vzz33nP7zn//YtbgHHnhAiYmJ2rdvnyTpxx9/1MaNG9WuXTtJUkpKilJTUxUeHm7dxsfHR82aNVNSUlKe+83MzNT58+dtFgAAYE4FDju///67AgMDJUlfffWVevTooerVqysqKkq7d++2a3FjxoxRr169VLNmTZUoUUINGzbUyJEj1bdvX0lSamqqJCkgIMBmu4CAAOu63EyaNEk+Pj7WJSQkxK51AwAA51HgsBMQEKA9e/bo2rVrWr16tR5++GFJ0qVLl+Tq6mrX4hYvXqwFCxYoLi5OO3bs0EcffaS33npLH3300R3td+zYsUpPT7cux44ds1PFAADA2bgVdIMBAwaoZ8+eCgoKksVisZ5C2rx5s2rWrGnX4l544QXr0R1Jqlevno4cOaJJkyYpMjLSeoQpLS1NQUFB1u3S0tLUoEGDPPfr7u4ud3d3u9YKAACcU4HDziuvvKK6devq2LFj6tGjhzU0uLq6asyYMXYt7tKlS3JxsT345OrqquzsbElSaGioAgMDlZiYaA0358+f1+bNm/X000/btRYAAFA8FTjsSFL37t0lyeby7sjISPtU9BedOnXSf//7X1WqVEl16tTRzp07NXXqVEVFRUmSLBaLRo4cqYkTJ6patWoKDQ3VSy+9pODgYHXp0sXu9QAAgOKnwHN2rl27ptdee0133XWXSpcurUOHDkmSXnrpJesl6fYyc+ZMde/eXUOHDlWtWrX0/PPPa8iQIXrttdesfUaPHq1nnnlGgwcPVpMmTZSRkaHVq1fLw8PDrrUAAIDiqcBh57///a9iY2M1ZcoUlSxZ0tpet25dffjhh3YtrkyZMpo2bZqOHDmiP//8UwcPHtTEiRNtxrVYLHr11VeVmpqqy5cv69tvv1X16tXtWgcAACi+Chx25s+frzlz5qhv3742V1/Vr19fv/76q12LAwAAuFMFDjsnTpxQ1apVc7RnZ2crKyvLLkUBAADYS4HDTu3atbVhw4Yc7Z9++qkaNmxol6IAAADspcBXY40fP16RkZE6ceKEsrOztXTpUu3du1fz58/XypUrC6NGAACA21bgIzudO3fWihUr9O2338rLy0vjx49XcnKyVqxYYb2bMgAAgLO4rfvstGjRQgkJCfauBQAAwO4KfGQHAACgOCnwkR0XFxdZLJY811+7du2OCgIAALCnAoedZcuW2TzOysrSzp079dFHH2nChAl2KwwAAMAeChx2OnfunKOte/fuqlOnjhYtWqSBAwfapTAAAAB7sNucnfvvv1+JiYn22h0AAIBd2CXs/Pnnn5oxY4buuusue+wOAADAbgp8Gqts2bI2E5QNw9CFCxdUqlQpffLJJ3YtDgAA4E4VOOy88847NmHHxcVFFSpUULNmzVS2bFm7FgcAAHCnChx2+vfvXwhlAAAAFI58hZ2ffvop3zu89957b7sYAAAAe8tX2GnQoIEsFosMw7hpP4vFwk0FAQCAU8lX2ElJSSnsOgAAAApFvsJO5cqVC7sOAACAQnFb33ouSXv27NHRo0d15coVm/ZHH330josCAACwlwKHnUOHDqlr167avXu3zTyeG5ejM2cHAAA4kwLfQfnZZ59VaGioTp8+rVKlSumXX37R+vXr1bhxY61du7YQSgQAALh9BT6yk5SUpDVr1qh8+fJycXGRi4uLHnzwQU2aNEkjRozQzp07C6NOAACA21LgIzvXrl1TmTJlJEnly5fXyZMnJV2fxLx37177VgcAAHCHCnxkp27duvrxxx8VGhqqZs2aacqUKSpZsqTmzJmju+++uzBqBAAAuG0FDjvjxo3TxYsXJUmvvvqqOnbsqBYtWqhcuXJatGiR3QsEAAC4E/kOO40bN9aTTz6pPn36yNvbW5JUtWpV/frrr/rjjz9yfBs6AACAM8j3nJ369etr9OjRCgoK0hNPPGFz5ZWfnx9BBwAAOKV8h52YmBilpqYqOjpaR48e1UMPPaSqVavq9ddf14kTJwqzRgAAgNtWoKuxSpUqpf79+2vt2rXat2+fevXqpffff19VqlRRhw4dtHTp0sKqEwAA4LYU+NLzG+655x5NnDhRhw8fVnx8vDZt2qQePXrYszYAAIA7dtvfjSVJa9eu1bx58/TZZ5/Jzc1NgwYNslddAAAAdlHgsHP8+HHFxsYqNjZWhw4dUosWLfTee++pR48e8vT0LIwaAQAAblu+w87ixYs1d+5cJSYmyt/fX5GRkYqKilLVqlULsz4AAIA7ku+w069fP3Xo0EHLli1T+/bt5eJy29N9AAAAiky+w87x48fl7+9fmLUAAADYXb4PzxB0AABAccS5KAAAYGqEHQAAYGqEHQAAYGr5DjtbtmzRtWvX8lyfmZmpxYsX26UoAAAAe8l32AkLC9OZM2esj729vXXo0CHr43Pnzql37972rQ4AAOAO5TvsGIZx08d5tQEAADiSXefsWCwWe+4OAADgjjn9BOUTJ06oX79+KleunDw9PVWvXj1t27bNut4wDI0fP15BQUHy9PRUeHi49u/f78CKAQCAMynQF4Hu2bNHqampkq6HjF9//VUZGRmSpN9//93uxZ09e1bNmzdX69attWrVKlWoUEH79+9X2bJlrX2mTJmiGTNm6KOPPlJoaKheeuklRUREaM+ePfLw8LB7TQAAoHgpUNh56KGHbObldOzYUdL101eGYdj9NNbkyZMVEhKiefPmWdtCQ0Ot/zYMQ9OmTdO4cePUuXNnSdL8+fMVEBCg5cuXq1evXnatBwAAFD/5DjspKSmFWUeuvvjiC0VERKhHjx5at26d7rrrLg0dOlSDBg2y1pSamqrw8HDrNj4+PmrWrJmSkpLyDDuZmZnKzMy0Pj5//nzhPhEAAOAw+Q47lStXvmWfn3/++Y6K+V+HDh3SrFmzNGrUKP373//W1q1bNWLECJUsWVKRkZHWU2oBAQE22wUEBFjX5WbSpEmaMGGCXWsFAADO6Y4nKF+4cEFz5sxR06ZNVb9+fXvUZJWdna377rtPr7/+uho2bKjBgwdr0KBBmj179h3td+zYsUpPT7cux44ds1PFAADA2dx22Fm/fr0iIyMVFBSkt956S23atNGmTZvsWZuCgoJUu3Ztm7ZatWrp6NGjkqTAwEBJUlpamk2ftLQ067rcuLu7y9vb22YBAADmVKCwk5qaqjfeeEPVqlVTjx495O3trczMTC1fvlxvvPGGmjRpYtfimjdvrr1799q07du3z3pKLTQ0VIGBgUpMTLSuP3/+vDZv3qywsDC71gIAAIqnfIedTp06qUaNGvrpp580bdo0nTx5UjNnzizM2vTcc89p06ZNev3113XgwAHFxcVpzpw5GjZsmKTrV4GNHDlSEydO1BdffKHdu3friSeeUHBwsLp06VKotQEAgOIh3xOUV61apREjRujpp59WtWrVCrMmqyZNmmjZsmUaO3asXn31VYWGhmratGnq27evtc/o0aN18eJFDR48WOfOndODDz6o1atXc48dAAAgqQBhZ+PGjYqJiVGjRo1Uq1Yt/fOf/yyS+9h07NjRej+f3FgsFr366qt69dVXC70WAABQ/OT7NNb999+vDz74QKdOndKQIUO0cOFCBQcHKzs7WwkJCbpw4UJh1gkAAHBbCnw1lpeXl6KiorRx40bt3r1b//rXv/TGG2/I399fjz76aGHUCAAAcNvu6D47NWrU0JQpU3T8+HHFx8fbqyYAAAC7scu3nru6uqpLly764osv7LE7AAAAu8n3BOWoqKhb9rFYLIqJibmjggAAAOwp32EnNjZWlStXVsOGDW2++RwAAMCZ5TvsPP3004qPj1dKSooGDBigfv36yc/PrzBrAwAAuGP5nrMTHR2tU6dOafTo0VqxYoVCQkLUs2dPff311xzpAQAATqtAE5Td3d3Vu3dvJSQkaM+ePapTp46GDh2qKlWqKCMjo7BqBAAAuG23fTWWi4uLLBaLDMPQtWvX7FkTAACA3RQo7GRmZio+Pl4PP/ywqlevrt27d+vdd9/V0aNHVbp06cKqEQAA4Lble4Ly0KFDtXDhQoWEhCgqKkrx8fEqX758YdYGAABwx/IddmbPnq1KlSrp7rvv1rp167Ru3bpc+y1dutRuxQEAANypfIedJ554QhaLpTBrAQAAsLsC3VQQAACguLHLd2MBAAA4K8IOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwtWIVdt544w1ZLBaNHDnS2nb58mUNGzZM5cqVU+nSpdWtWzelpaU5rkgAAOBUik3Y2bp1q95//33de++9Nu3PPfecVqxYoSVLlmjdunU6efKkHnvsMQdVCQAAnE2xCDsZGRnq27evPvjgA5UtW9banp6erpiYGE2dOlVt2rRRo0aNNG/ePP3www/atGmTAysGAADOoliEnWHDhqlDhw4KDw+3ad++fbuysrJs2mvWrKlKlSopKSkpz/1lZmbq/PnzNgsAADAnN0cXcCsLFy7Ujh07tHXr1hzrUlNTVbJkSfn6+tq0BwQEKDU1Nc99Tpo0SRMmTLB3qQAAwAk59ZGdY8eO6dlnn9WCBQvk4eFht/2OHTtW6enp1uXYsWN22zcAAHAuTh12tm/frtOnT+u+++6Tm5ub3NzctG7dOs2YMUNubm4KCAjQlStXdO7cOZvt0tLSFBgYmOd+3d3d5e3tbbMAAABzcurTWA899JB2795t0zZgwADVrFlTL774okJCQlSiRAklJiaqW7dukqS9e/fq6NGjCgsLc0TJAADAyTh12ClTpozq1q1r0+bl5aVy5cpZ2wcOHKhRo0bJz89P3t7eeuaZZxQWFqb777/fESUDAAAn49RhJz/eeecdubi4qFu3bsrMzFRERITee+89R5cFAACcRLELO2vXrrV57OHhoejoaEVHRzumIAAA4NSceoIyAADAnSLsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAU3PqsDNp0iQ1adJEZcqUkb+/v7p06aK9e/fa9Ll8+bKGDRumcuXKqXTp0urWrZvS0tIcVDEAAHA2Th121q1bp2HDhmnTpk1KSEhQVlaWHnnkEV28eNHa57nnntOKFSu0ZMkSrVu3TidPntRjjz3mwKoBAIAzcXN0ATezevVqm8exsbHy9/fX9u3b9Y9//EPp6emKiYlRXFyc2rRpI0maN2+eatWqpU2bNun+++93RNkAAMCJOPWRnf+Vnp4uSfLz85Mkbd++XVlZWQoPD7f2qVmzpipVqqSkpCSH1AgAAJyLUx/Z+avs7GyNHDlSzZs3V926dSVJqampKlmypHx9fW36BgQEKDU1Nc99ZWZmKjMz0/r4/PnzhVIzAABwvGJzZGfYsGH6+eeftXDhwjve16RJk+Tj42NdQkJC7FAhAABwRsUi7AwfPlwrV67Ud999p4oVK1rbAwMDdeXKFZ07d86mf1pamgIDA/Pc39ixY5Wenm5djh07VlilAwAAB3PqsGMYhoYPH65ly5ZpzZo1Cg0NtVnfqFEjlShRQomJida2vXv36ujRowoLC8tzv+7u7vL29rZZAACAOTn1nJ1hw4YpLi5On3/+ucqUKWOdh+Pj4yNPT0/5+Pho4MCBGjVqlPz8/OTt7a1nnnlGYWFhXIkFAAAkOXnYmTVrliSpVatWNu3z5s1T//79JUnvvPOOXFxc1K1bN2VmZioiIkLvvfdeEVcKAACclVOHHcMwbtnHw8ND0dHRio6OLoKKAABAcePUc3YAAADuFGEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYmpujCwAAAEUkzuKYcfsYjhn3/3BkBwAAmBpHdgD8vTjqL1vJ4X/dAn9XHNkBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACm5uboAuwlOjpab775plJTU1W/fn3NnDlTTZs2dXRZAJB/cRbHjNvHcMy4ZuWo91HivcyDKcLOokWLNGrUKM2ePVvNmjXTtGnTFBERob1798rf39/R5cEsnPWDyFl/sTprXQD+dkwRdqZOnapBgwZpwIABkqTZs2fryy+/1Ny5czVmzBjHFscvfAAAHKrYz9m5cuWKtm/frvDwcGubi4uLwsPDlZSU5MDKAACAMyj2R3Z+//13Xbt2TQEBATbtAQEB+vXXX3PdJjMzU5mZmdbH6enpkqTz58/bv8BL9t9lvt3s+ThrXZLjaqOugiuOP2POWpfEz9j/cta6JH7GCqowPl/1/z+3DeMWZzKMYu7EiROGJOOHH36waX/hhReMpk2b5rrNyy+/bEhiYWFhYWFhMcFy7Nixm2aFYn9kp3z58nJ1dVVaWppNe1pamgIDA3PdZuzYsRo1apT1cXZ2tv744w+VK1dOFosD59j8xfnz5xUSEqJjx47J29vb0eXYcNbaqKtgnLUuyXlro66Coa6Cc9banLUuwzB04cIFBQcH37RfsQ87JUuWVKNGjZSYmKguXbpIuh5eEhMTNXz48Fy3cXd3l7u7u02br69vIVd6e7y9vZ3qB+uvnLU26ioYZ61Lct7aqKtgqKvgnLU2Z6zLx8fnln2KfdiRpFGjRikyMlKNGzdW06ZNNW3aNF28eNF6dRYAAPj7MkXYefzxx/Xbb79p/PjxSk1NVYMGDbR69eock5YBAMDfjynCjiQNHz48z9NWxZG7u7tefvnlHKfbnIGz1kZdBeOsdUnOWxt1FQx1FZyz1uasdeWXxTBudb0WAABA8VXsbyoIAABwM4QdAABgaoQdAABgaoQdAABgaoSdQtC/f39ZLBY99dRTOdYNGzZMFotF/fv3t2lPSkqSq6urOnTokGObw4cPy2Kx5Lps2rRJknTq1Cn16dNH1atXl4uLi0aOHOk0tS1dulTBwcGyWCwqWbKkwsLC9PXXXxfJuA8//LAqVKggb2/vHOPeyvr16xUSEmLd7/Lly4vk9dq4caOaN2+ucuXKydPTUzVr1tQ777xjsx9HvI9/9f3338vNzU0NGjRweF1r167NdX1qaqrDa5Oufxfff/7zH1WuXFnu7u6qUqWK5s6d69C6boz5v0udOnUc/nr94x//kMVikZubm4KCghQVFaUzZ84U+rgLFixQ/fr1VapUqRzj3sovv/yiypUrW/c7bdq0Inu9oqOjVatWLXl6eqpGjRpq0aKF037+LFmyRDVr1pSHh4fq1aunr776Ktd+hYGwU0hCQkK0cOFC/fnnn9a2y5cvKy4uTpUqVcrRPyYmRs8884zWr1+vkydP5rrPb7/9VqdOnbJZGjVqJOn6L9QKFSpo3Lhxql+/vlPVtn79egUHBysgIEAeHh568MEH1alTJ+3cubPQx3344Yf11Vdfafv27WrdurV13Py4ePGi/Pz8VL58eUmy+fLYwqzby8tLw4cP1/r165WcnKxx48Zp3LhxmjNnjs0+ivp9vOHcuXN64okn9NBDD+W6D0fVtXfvXpv1/v7+TlFbz549lZiYqJiYGO3du1fx8fGqUaOGQ+uaPn26TfuxY8fk5+enHj16OLSu77//Xhs2bJCvr69KlSqlTz75RFu2bNGgQYMKfdwnnnhCAwcO1C+//KIlS5ZYx82PS5cuqUyZMtavHLpy5UqRvF6zZs3S2LFj9corr+iXX37RhAkTtGnTJpUvX97pPn9++OEH9e7dWwMHDtTOnTvVpUsXdenSRT///HMer6p9meY+O87mvvvu08GDB7V06VL17dtX0vUjDZUqVVJoaKhN34yMDC1atEjbtm1TamqqYmNj9e9//zvHPsuVK5fn931VqVJF06dPlySbvxqdobZp06apf//+qlixog4ePKgGDRqoWrVqWrFihZKTkwt13L96/fXX9fnnn2vFihVq2LBhnq/PDe3atdOiRYsUGhqqzz//XJs2bdLjjz8uqXBfr4YNG9rUV6VKFS1dulQbNmzQ4MGDre1F/T7e8NRTT6lPnz5ydXXNcbTLkXX5+/vf8mtfirq21atXa926dTp06JD8/PwkXX8/HV2Xj4+PzS32ly9frrNnz+a463xR15WUlKTSpUurZcuWOnjwoFJTUzVkyBBNnjy50MetUqWKRowYIUkKDQ21jpsfTZo0UePGjXXu3Dl99dVX2r17t3VdYdb98ccfa8iQIdbfS3fffbdee+01paamKiQkxKk+f6ZPn662bdvqhRdekCS99tprSkhI0LvvvqvZs2fnuo09cWSnEEVFRWnevHnWx3Pnzs31KywWL16smjVrqkaNGurXr5/mzp1766+rL6a13Rj3woUL8vPzK9LXJDs72zru7VizZo3130VZ986dO/XDDz+oZcuWOdYV9fs4b948HTp0SC+//PJN+zni56tBgwYKCgrSww8/rO+//94pavviiy/UuHFjTZkyRXfddZeqV6+u559/3uYvbkfU9b9iYmIUHh6uypUrO7SusLAwXbx4UWlpaRowYIDef/99ffrpp2rfvn2hj3vs2DF99dVXMgxDaWlp1nELqnTp0tq8ebP1cWHWnZmZKQ8PD5s2Nzc3nT17VpGRkU71+ZOUlKTw8HCbtoiICCUlJdl9rNwQdgpRv379tHHjRh05ckRHjhzR999/r379+uXoFxMTY21v27at0tPTtW7duhz9HnjgAZUuXdpmKW619evXT+vWrVN6errCwsKK9DV56623lJGRoZ49e+bZ52aSk5OL9PWqWLGi3N3d1bhxYw0bNkxPPvlkjj5F+T7u379fY8aM0SeffCI3t5sfFC7KuoKCgjR79mx99tln+uyzzxQSEqJWrVppx44dDq/t0KFD2rhxo37++WctW7ZM06ZN06effqqhQ4c6tK6/OnnypFatWpXrz1dR19W8eXP94x//0NatWzV69Ght2LBBJUqU0OjRowt93AULFujxxx9XyZIlFRgYKB8fH0VHR+f6mtyMl5eXUlJSiuT1ioiI0Icffqjt27fLMAxt27ZN+/btk2EYatu2rVN9/qSmpub4CqeAgIAcc+sKC6exClGFChXUoUMHxcbGyjAMdejQwTr/44a9e/dqy5YtWrZsmaTrqfzxxx9XTEyMWrVqZdN30aJFqlWrVrGuLSEhQYZhqEuXLlqxYkWRjRsXF6cJEybo888/z3UuR340atSoSF+vDRs2KCMjQ5s2bdKYMWNUtWpV9e7d26ZPUb2P165dU58+fTRhwgRVr179pnUXZV2SVKNGDZs5MA888IAOHjyod955Rx9//LFDa8vOzpbFYtGCBQusp42mTp2q7t2767333pOnp6dD6vqrjz76SL6+vurSpUuu64uyrj179mjLli2qWbOm4uLiNHToUO3evVs9evQo9HGfffZZjR8/XhERETp16pReeOEFPfXUU4qJicl1m7y4urqqdu3aRfJ6vfTSS0pNTdX9998vwzAUEBCgqlWr6ueff3bqzx9HIOwUsqioKOt3duX2V0JMTIyuXr2q4OBga5thGHJ3d9e7775rc149JCREVatWLba1nThxQk8++aTGjRunjz76SOvXry+ScRcuXKgnn3xSS5YsyXEYtSAeeughxcbGSiqa1+vGufV69eopLS1Nr7zySo6wIxXN+3jhwgVt27ZNO3futI6VnZ0twzDk5uamb775Rm3atCnyuvLStGlTbdy4Mc/1RVVbUFCQ7rrrLpv+tWrVkmEYOn78uKpVq+aQuv667dy5c/XPf/5TJUuWzLNfUdU1adIk+fv7q2rVqrr33ns1duxYDRo0SLt27dK//vWvQh23efPm1vkk9957r7y8vNSiRQtNnDhRQUFBeb42uWnatGmR/K7w9PTU3Llz9f777ystLU1BQUF68MEH5ebmpgoVKjjV509gYKDS0tJs2tLS0m45F89eOI1VyNq2basrV64oKytLERERNuuuXr2q+fPn6+2339auXbusy48//qjg4GDFx8ebpraUlBTt2LFD8fHxeumll4ps3Pj4eA0YMEDx8fG5XlZZEA0bNnTYe5mdnW1zNdhfFcX76O3trd27d9vs46mnnlKNGjW0a9cuNWvWzCF15WXXrl03/YAqqtqaN2+ukydPKiMjw9q2b98+ubi4qGLFig6r64Z169bpwIEDGjhw4E37FVVdly5dksVisRk3KytLknLMWbP3uC4uth+Hrq6uknRb81dq1apVpO9jiRIlVLFiRbm6uiolJUUBAQFycXFxqs+fsLAwJSYm2rQlJCQoLCzMruPkhSM7hczV1VXJycnWf//VypUrdfbsWQ0cONAmQUtSt27dFBMTY3OvhDNnzuQ4v+nr62udoLZr1y5J12fX//bbb9q1a5dKliyp2rVrO7S2uLg4bdiwQfXq1VOzZs3022+/ae3atfLw8Cj0cSMjIzV9+nQ1a9bM2s/T0zPHvnOTkZGhP/74QxcuXJAkHT16VIsWLVLZsmULte7o6GhVqlRJNWvWlHT9Evq33nrLeqXI/yqq97Fu3bo27f7+/rm2F3Vd06ZNU2hoqOrUqaPLly/rww8/1Jo1a/TNN9/kWldR1tanTx+99tprGjBggCZMmKDff/9dL7zwgqKiomxOYRV1XTfExMSoWbNmeb6HRV1Xp06dtGzZMnl7e+vQoUM6deqUQkJCVLlyZYWEhBTquIMGDdKsWbOsp7FGjhyppk2b2hz1yMuVK1esvyuuXLmiU6dOadGiRfLy8irU12vfvn3asmWLmjVrprNnz2rq1Kk6e/asNRg60+fPs88+q5YtW+rtt99Whw4dtHDhQm3bti3HLTUKjQG7i4yMNDp37pzn+s6dOxuRkZFGx44djfbt2+faZ/PmzYYk48cffzRSUlIMSbku8fHx1m1yW1+5cmWH19ayZctc10dGRjp83Jv57rvvHFL3jBkzjDp16hilSpUyvL29jYYNGxrvvfeece3aNes+HfUz9lcvv/yyUb9+fZs2R9Q1efJk45577jE8PDwMPz8/o1WrVsaaNWty7NdRr1lycrIRHh5ueHp6GhUrVjRGjRplXLp0yeF1nTt3zvD09DTmzJmT6z4dVVfTpk2NMmXKGJ6enkZQUJDRt29f4/jx44U+7owZM4zatWvnOe7N5DVGy5YtC7XuPXv2GA0aNDA8PT0Nb29vo3PnzkaXLl2c9vNn8eLFRvXq1Y2SJUsaderUMb788st8vb72YPm/IgEAAEyJOTsAAMDUCDv4Wzp69GiOe0b8dTl69KijSwTgJG72u2LDhg2OLg/5wGks/C1dvXpVhw8fznN9lSpVbnnjPAB/DwcOHMhz3V133ZXrZHM4F8IOAAAwNU5jAQAAUyPsAAAAUyPsAAAAUyPsAICk2NhY+fr6FmibKlWqaNq0aTftY7FYtHz58tuuC8CdI+wAuKX+/fvLYrHY3D7+hmHDhslisah///451iUlJcnV1TXX7yU7fPiwLBZLrsumTZty9E9LS1OJEiW0cOHCXGscOHCg7rvvvoI/uf/z+OOPa9++fbe9PQDnRdgBkC8hISFauHCh/vzzT2vb5cuXFRcXp0qVKuW6TUxMjJ555hmtX79eJ0+ezLXPt99+q1OnTtksjRo1ytEvICBAHTp00Ny5c3Osu3jxohYvXnzLL7TMS1ZWljw9PeXv739b2wNwboQdAPly3333KSQkREuXLrW2LV26VJUqVVLDhg1z9M/IyNCiRYv09NNPq0OHDoqNjc11v+XKlVNgYKDNUqJEiVz7Dhw4UImJiTlu+rhkyRJdvXpVffv21erVq/Xggw/K19dX5cqVU8eOHXXw4EFr3xtHlBYtWqSWLVvKw8NDCxYsyHEa6+DBg+rcubMCAgJUunRpNWnSRN9++22Omi5cuKDevXvLy8tLd911l6Kjo2/2MurYsWPq2bOnfH195efnp86dO9vc82nt2rVq2rSpvLy85Ovrq+bNm+vIkSM33SeAmyPsAMi3qKgozZs3z/p47ty5GjBgQK59Fy9erJo1a6pGjRrq16+f5s6dqzu9rVf79u0VEBCQIzjNmzdPjz32mHx9fXXx4kWNGjVK27ZtU2JiolxcXNS1a1dlZ2fbbDNmzBg9++yzSk5OVkRERI6xMjIy1L59eyUmJmrnzp1q27atOnXqlCNovfnmm6pfv7527txp3WdCQkKu9WdlZSkiIkJlypTRhg0b9P3336t06dJq27atrly5oqtXr6pLly5q2bKlfvrpJyUlJWnw4MGyWCx39LoBf3tF9pWjAIqtG9+Affr0acPd3d04fPiwcfjwYcPDw8P47bffrN+k/FcPPPCAMW3aNMMwDCMrK8soX7688d1331nX3/g2ZU9PT8PLy8tmuZkxY8YYoaGhRnZ2tmEYhnHgwAHDYrEY3377ba79f/vtN0OSsXv3bptxb9R2w7x58wwfH5+bjl2nTh1j5syZ1seVK1c22rZta9Pn8ccfN9q1a2d9LMlYtmyZYRiG8fHHHxs1atSw1m4YhpGZmWl4enoaX3/9tXHmzBlDkrF27dqb1gGgYDiyAyDfKlSoYD0lNW/ePHXo0EHly5fP0W/v3r3asmWLevfuLUlyc3PT448/rpiYmBx9Fy1apF27dtksNxMVFaWUlBR99913kq4f1alSpYratGkjSdq/f7969+6tu+++W97e3qpSpYok5Tgi07hx45uOk5GRoeeff161atWSr6+vSpcureTk5Bz7CQsLy/E4OTk5133++OOPOnDggMqUKWP9biU/Pz9dvnxZBw8elJ+fn/r376+IiAh16tRJ06dP16lTp25aJ4Bb48t/ABRIVFSUhg8fLkl5zk+JiYnR1atXFRwcbG0zDEPu7u5699135ePjY20PCQlR1apV8z1+tWrV1KJFC82bN0+tWrXS/PnzNWjQIOupnk6dOqly5cr64IMPFBwcrOzsbNWtW1dXrlyx2Y+Xl9dNx3n++eeVkJCgt956S1WrVpWnp6e6d++eYz8FkZGRoUaNGmnBggU51lWoUEHS9fA2YsQIrV69WosWLdK4ceOUkJCg+++//7bHBf7uCDsACuTG/BKLxZLrXJerV69q/vz5evvtt/XII4/YrOvSpYvi4+NzvYS9IAYOHKinn35ajz76qE6cOGG97P3MmTPau3evPvjgA7Vo0UKStHHjxtsa4/vvv1f//v3VtWtXSdeDSm5fHvu/l8lv2rRJtWrVynWf9913nxYtWiR/f395e3vnOXbDhg3VsGFDjR07VmFhYYqLiyPsAHeA01gACsTV1VXJycnas2ePXF1dc6xfuXKlzp49q4EDB6pu3bo2S7du3XKcyjpz5oxSU1NtlsuXL9+0hh49eqhEiRIaMmSIHnnkEYWEhEiSypYtq3LlymnOnDk6cOCA1qxZo1GjRt3W86xWrZqWLl2qXbt26ccff1SfPn1yTHKWroeiKVOmaN++fYqOjtaSJUv07LPP5rrPvn37qnz58urcubM2bNiglJQUrV27ViNGjNDx48eVkpKisWPHKikpSUeOHNE333yj/fv35xmeAOQPYQdAgXl7e+d5ZCImJkbh4eE2p6pu6Natm7Zt26affvrJ2hYeHq6goCCb5VZ3HC5VqpR69eqls2fPKioqytru4uKihQsXavv27apbt66ee+45vfnmm7f1HKdOnaqyZcvqgQceUKdOnRQREZHrTQv/9a9/adu2bWrYsKEmTpyoqVOn5nrE60bd69evV6VKlfTYY4+pVq1aGjhwoC5fvixvb2+VKlVKv/76q7p166bq1atr8ODBGjZsmIYMGXJbzwHAdRbDuMNrQQEAAJwYR3YAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICp/T+WRF7HOqAsCAAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of MAE values from mae1 to mae10\n", + "mae_values = [mae1, mae2, mae2_1, mae3, mae4, mae5, mae6, mae7, mae8, mae8_1, mae9, mae10]\n", + "\n", + "# List of corresponding labels for each MAE value\n", + "labels = ['MAE1', 'MAE2', 'MAE2_1', 'MAE3', 'MAE4', 'MAE5', 'MAE6', 'MAE7', 'MAE8', 'MAE8_1', 'MAE9', 'MAE10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, mae_values, color='orange')\n", + "plt.xlabel('MAE Variables')\n", + "plt.ylabel('MAE Values')\n", + "plt.title('Bar Graph of MAE')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 100, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "_c4Pe76fDNM-", + "outputId": "c1784b34-6746-42fd-9f66-b7c1cfd50a21" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA930lEQVR4nO3deVwV9f7H8fcB9QAKuCDigopLmrtiFtxSLBMRt25XDTM3sjK9pXazbNGWX6GVqaVplso1U9zSyjXSXErKXFMzywpxAbVUEE1AmN8fPjzXIwflKHgO0+v5eMzj4XznOzOfMwfl7cx3ZiyGYRgCAAAwCQ9XFwAAAFCUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcASryXXnpJFotFf/zxR7Hva/Xq1WrRooW8vLxksVh0+vTpYt8nAOcQbgA3Fh8fL4vFYjcFBgaqffv2WrVq1U2v5/PPP1fXrl1VpUoVlSlTRhUrVlTbtm01YcIEZWRk3PR6brY///xTvXr1kre3t6ZOnaqPPvpIZcuWddj38u/u66+/zrfcMAwFBwfLYrGoS5cuDrdx+vRpW4jat2+fwz4DBgyw+/nw8/NT8+bNNWHCBGVlZdn6XQqABU1paWnXcUQA91TK1QUAuLZXXnlFISEhMgxDx44dU3x8vDp37qzPP/+8wF+MRSkvL0+xsbGKj49X06ZN9fjjjys4OFhnzpxRUlKSXnjhBa1cuVJr164t9lpc6fvvv9eZM2f06quvqkOHDoVax8vLS/PmzdOdd95p175hwwYdPnxYVqu1wHUXLVoki8WioKAgffzxx/q///s/h/2sVqs+/PBDSRcD0ZIlS/Sf//xH33//vRISEuz6Tps2TeXKlcu3jfLlyxfq8wAlAeEGKAGioqLUunVr23xsbKyqVKmi+fPnF0m4ycvLU3Z2try8vBwuf+ONNxQfH68RI0ZowoQJslgstmVPPvmkUlNTNWfOnBvaR0lw/PhxSc4Fgc6dO2vRokV65513VKrU//7JnTdvnkJDQ696KW3u3Lnq3LmzatWqpXnz5hUYbkqVKqW+ffva5h9//HHdfvvtWrBggd5++21Vq1bNtuxf//qXAgICCl0/UBJxWQoogcqXLy9vb2+7X5aS9NZbbyk8PFyVKlWSt7e3QkNDtXjx4nzrWywWDRs2TB9//LEaN24sq9Wq1atXO9zXuXPnNH78eDVu3FhvvvmmXbC5pGrVqnrmmWcKvY/rqbNBgwby8vJSaGioNm7c6LDW06dPa8CAASpfvrz8/f01cOBAnTt3zvFBvMKiRYsUGhoqb29vBQQEqG/fvjpy5IhteUREhPr37y9Juu2222SxWDRgwIBrbjcmJkZ//vmnEhMTbW3Z2dlavHix+vTpU+B6KSkp2rRpkx544AE98MAD+v3337V58+ZCfRYPDw9FRERIkpKTkwu1DmAmnLkBSoD09HT98ccfMgxDx48f17vvvqvMzEy7/61L0uTJk9WtWzc9+OCDys7OVkJCgnr27Knly5crOjraru+6deu0cOFCDRs2TAEBAapdu7bDfX/99dc6ffq0/vOf/8jT09OpugvahzN1btiwQQsWLNATTzwhq9Wq9957T506ddKWLVvUpEkTu769evVSSEiI4uLitH37dn344YcKDAzU+PHjr1pnfHy8Bg4cqNtuu01xcXE6duyYJk+erG+++UY7duxQ+fLl9fzzz6tBgwaaMWOG7TJh3bp1r3kMateurbCwMM2fP19RUVGSpFWrVik9PV0PPPCA3nnnHYfrzZ8/X2XLllWXLl3k7e2tunXr6uOPP1Z4ePg19ylJv/76qySpUqVKdu0nT57M17dUqVJcloK5GADc1uzZsw1J+Sar1WrEx8fn63/u3Dm7+ezsbKNJkybG3XffbdcuyfDw8DD27t17zRomT55sSDKWLVtm137hwgXjxIkTdlNeXl6h9uFMnZKMrVu32toOHjxoeHl5Gffdd5+tbezYsYYkY9CgQXbr33fffUalSpWu+vmys7ONwMBAo0mTJsZff/1la1++fLkhyRgzZoyt7dL38f333191m1f2nTJliuHr62v73D179jTat29vGIZh1KpVy4iOjs63ftOmTY0HH3zQNv/cc88ZAQEBRk5Ojl2//v37G2XLlrV9BwcOHDBef/11w2KxGM2aNbP1u3SMHE0NGjS45ucBShIuSwElwNSpU5WYmKjExETNnTtX7du318MPP6xPPvnErp+3t7ftz6dOnVJ6erruuusubd++Pd8227Vrp0aNGl1z35fugrpyEOru3btVuXJlu+nPP/8s1D6cqTMsLEyhoaG2+Zo1a6p79+5as2aNcnNz7fo+9thjdvN33XWX/vzzz6veybV161YdP35cjz/+uN14oOjoaDVs2FArVqwocN3C6tWrl/766y8tX75cZ86c0fLly696SeqHH37Q7t27FRMTY2uLiYnRH3/8oTVr1uTrf/bsWdt3UK9ePT333HMKCwvT0qVL8/VdsmSJ7Wfp0jR79uwb/oyAO+GyFFACtGnTxm5AcUxMjFq2bKlhw4apS5cuKlOmjCRp+fLl+r//+z/t3LnT7jZgR+NkQkJCCrVvX19fSVJmZqZde7169WzjSObMmaOPPvqo0Ptwps769evna7vlllt07tw5nThxQkFBQbb2mjVr2vWrUKGCpIsBys/Pz2EtBw8elCQ1aNAg37KGDRs6vI3bWZUrV1aHDh00b948nTt3Trm5ufrXv/5VYP+5c+eqbNmyqlOnjg4cOCDp4l1XtWvX1scff5zv0p2Xl5c+//xzSRfvnAoJCVGNGjUcbrtt27YMKIbpEW6AEsjDw0Pt27fX5MmT9csvv6hx48batGmTunXrprZt2+q9995T1apVVbp0ac2ePVvz5s3Lt43Lz55cTcOGDSVJe/bsUffu3W3t5cqVs90OXVAAcLQPZ+t0RkFjggzDuKHtFoU+ffpo8ODBSktLU1RUVIFjXAzD0Pz583X27FmHZ72OHz+uzMxMuzNpnp6ehb41Hfg7INwAJdSFCxck/e+MypIlS+Tl5aU1a9bYPTvlRi853HXXXfL391dCQoJGjx4tD48bu5rtbJ2//PJLvraff/5ZPj4+qly58g3VIkm1atWSJO3fv19333233bL9+/fblt+o++67T48++qi+/fZbLViwoMB+l55/88orr+jWW2+1W3bq1Ck98sgjWrZsWb7B5AD+hzE3QAmUk5OjL774QmXKlLH9AvT09JTFYrEbh5KcnKxly5bd0L58fHw0atQo7dmzR88++6zDsyDOnBlxts6kpCS7sTiHDh3Sp59+qo4dOzp995YjrVu3VmBgoKZPn253iWzVqlXat29fvktA16tcuXKaNm2aXnrpJXXt2rXAfpcuST399NP617/+ZTcNHjxY9evX18cff1wkNQFmxZkboARYtWqVfvrpJ0kXL0vMmzdPv/zyi5599lnbWJLo6Gi9/fbb6tSpk/r06aPjx49r6tSpqlevnn744Ycb2v+zzz6rffv26c0339QXX3yh+++/XzVq1NCpU6e0fft2LVq0SIGBgYV6QJ+zdTZp0kSRkZF2t4JL0ssvv3xDn+mS0qVLa/z48Ro4cKDatWunmJgY263gtWvX1ogRI4pkP5Jsz8kpSFZWlpYsWaJ77723wGPZrVs3TZ48WcePH1dgYKDTNSxevNjhE4rvvfdeValSxentAe6IcAOUAGPGjLH92cvLSw0bNtS0adP06KOP2trvvvtuzZw5U+PGjdPw4cMVEhKi8ePHKzk5+YbDjYeHhz766CPdf//9+uCDD/Tuu+/q1KlTKleunJo0aaLXXntNgwcPdvhL80rO1tmuXTuFhYXp5ZdfVkpKiho1aqT4+Hg1a9bshj7T5QYMGCAfHx+NGzdOzzzzjMqWLav77rtP48ePv6nPf1mxYoVOnz591TM7Xbt21YQJE5SQkKAnnnjC6X0MGTLEYftXX31FuIFpWAx3GGkHAA5YLBYNHTpUU6ZMcXUpAEoQxtwAAABTIdwAAABTIdwAAABTYUAxALfFkEAA14MzNwAAwFQINwAAwFT+dpel8vLydPToUfn6+jp8SR8AAHA/hmHozJkzqlat2jVfA/O3CzdHjx5VcHCwq8sAAADX4dChQwW+9f6Sv1248fX1lXTx4Fx6bD0AAHBvGRkZCg4Otv0ev5q/Xbi5dCnKz8+PcAMAQAlTmCElDCgGAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmUsrVBcA1aj+7wtUlKHlctKtLAACYEGduAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqbg03MTFxem2226Tr6+vAgMD1aNHD+3fv/+q68THx8tisdhNXl5eN6liAADg7lwabjZs2KChQ4fq22+/VWJionJyctSxY0edPXv2quv5+fkpNTXVNh08ePAmVQwAANxdKVfufPXq1Xbz8fHxCgwM1LZt29S2bdsC17NYLAoKCiru8gAAQAnkVmNu0tPTJUkVK1a8ar/MzEzVqlVLwcHB6t69u/bu3Vtg36ysLGVkZNhNAADAvNwm3OTl5Wn48OH6xz/+oSZNmhTYr0GDBpo1a5Y+/fRTzZ07V3l5eQoPD9fhw4cd9o+Li5O/v79tCg4OLq6PAAAA3IDFMAzD1UVI0pAhQ7Rq1Sp9/fXXqlGjRqHXy8nJ0a233qqYmBi9+uqr+ZZnZWUpKyvLNp+RkaHg4GClp6fLz8+vSGoviWo/u8LVJSh5XLSrSwAAlBAZGRny9/cv1O9vl465uWTYsGFavny5Nm7c6FSwkaTSpUurZcuWOnDggMPlVqtVVqu1KMoEAAAlgEsvSxmGoWHDhmnp0qVat26dQkJCnN5Gbm6udu/erapVqxZDhQAAoKRx6ZmboUOHat68efr000/l6+urtLQ0SZK/v7+8vb0lSf369VP16tUVFxcnSXrllVd0xx13qF69ejp9+rTefPNNHTx4UA8//LDLPgcAAHAfLg0306ZNkyRFRETYtc+ePVsDBgyQJKWkpMjD438nmE6dOqXBgwcrLS1NFSpUUGhoqDZv3qxGjRrdrLIBAIAbc5sBxTeLMwOSzIwBxQCAksSZ399ucys4AABAUSDcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAU3FpuImLi9Ntt90mX19fBQYGqkePHtq/f/8111u0aJEaNmwoLy8vNW3aVCtXrrwJ1QIAgJLApeFmw4YNGjp0qL799lslJiYqJydHHTt21NmzZwtcZ/PmzYqJiVFsbKx27NihHj16qEePHtqzZ89NrBwAALgri2EYhquLuOTEiRMKDAzUhg0b1LZtW4d9evfurbNnz2r58uW2tjvuuEMtWrTQ9OnTr7mPjIwM+fv7Kz09XX5+fkVWe0lT+9kVri5ByeOiXV0CAKCEcOb3t1uNuUlPT5ckVaxYscA+SUlJ6tChg11bZGSkkpKSHPbPyspSRkaG3QQAAMzLbcJNXl6ehg8frn/84x9q0qRJgf3S0tJUpUoVu7YqVaooLS3NYf+4uDj5+/vbpuDg4CKtGwAAuBe3CTdDhw7Vnj17lJCQUKTbHT16tNLT023ToUOHinT7AADAvZRydQGSNGzYMC1fvlwbN25UjRo1rto3KChIx44ds2s7duyYgoKCHPa3Wq2yWq1FVisAAHBvLj1zYxiGhg0bpqVLl2rdunUKCQm55jphYWFau3atXVtiYqLCwsKKq0wAAFCCuPTMzdChQzVv3jx9+umn8vX1tY2b8ff3l7e3tySpX79+ql69uuLi4iRJTz75pNq1a6cJEyYoOjpaCQkJ2rp1q2bMmOGyz4Hi4Q53dEnc1QUAJY1Lz9xMmzZN6enpioiIUNWqVW3TggULbH1SUlKUmppqmw8PD9e8efM0Y8YMNW/eXIsXL9ayZcuuOggZAAD8fbj0zE1hHrGzfv36fG09e/ZUz549i6EiAABQ0rnN3VIAAABFgXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMpZSrCwAA/L3VfnaFq0tQ8rhoV5eAIsSZGwAAYCqEGwAAYCpOh5tDhw7p8OHDtvktW7Zo+PDhmjFjRpEWBgAAcD2cDjd9+vTRV199JUlKS0vTvffeqy1btuj555/XK6+8UuQFAgAAOMPpcLNnzx61adNGkrRw4UI1adJEmzdv1scff6z4+Piirg8AAMApToebnJwcWa1WSdKXX36pbt26SZIaNmyo1NTUoq0OAADASU6Hm8aNG2v69OnatGmTEhMT1alTJ0nS0aNHValSpSIvEAAAwBlOh5vx48fr/fffV0REhGJiYtS8eXNJ0meffWa7XAUAAOAqTj/ELyIiQn/88YcyMjJUoUIFW/sjjzwiHx+fIi0OAADAWdf1nBvDMLRt2za9//77OnPmjCSpTJkyhBsAAOByTp+5OXjwoDp16qSUlBRlZWXp3nvvla+vr8aPH6+srCxNnz69OOoEAAAoFKfP3Dz55JNq3bq1Tp06JW9vb1v7fffdp7Vr1xZpcQAAAM5y+szNpk2btHnzZpUpU8auvXbt2jpy5EiRFQYAAHA9nD5zk5eXp9zc3Hzthw8flq+vb5EUBQAAcL2cDjcdO3bUpEmTbPMWi0WZmZkaO3asOnfuXJS1AQAAOM3py1ITJkxQZGSkGjVqpPPnz6tPnz765ZdfFBAQoPnz5xdHjQAAAIXmdLipUaOGdu3apYSEBP3www/KzMxUbGysHnzwQbsBxgAAAK7gdLiRpFKlSqlv375FXQsAAMANczrczJkz56rL+/Xrd93FAAAA3Cinw82TTz5pN5+Tk6Nz587ZnlBMuAEAAK7k9N1Sp06dspsyMzO1f/9+3XnnnQwoBgAALndd75a6Uv369TVu3Lh8Z3UAAAButiIJN9LFQcZHjx4tqs0BAABcF6fH3Hz22Wd284ZhKDU1VVOmTNE//vGPIisMAADgejgdbnr06GE3b7FYVLlyZd19992aMGFCUdUFAABwXZwON3l5ecVRBwAAQJEosjE3AAAA7qBQZ25GjhxZ6A2+/fbb110MAADAjSpUuNmxY0ehNmaxWJza+caNG/Xmm29q27ZtSk1N1dKlS/ON6bnc+vXr1b59+3ztqampCgoKcmrfAADAnAoVbr766qti2fnZs2fVvHlzDRo0SP/85z8Lvd7+/fvl5+dnmw8MDCyO8gAAQAl0XS/OLCpRUVGKiopyer3AwECVL1++6AsCAAAl3nWFm61bt2rhwoVKSUlRdna23bJPPvmkSAq7mhYtWigrK0tNmjTRSy+9dNXn62RlZSkrK8s2n5GRUez1AQAA13H6bqmEhASFh4dr3759Wrp0qXJycrR3716tW7dO/v7+xVGjTdWqVTV9+nQtWbJES5YsUXBwsCIiIrR9+/YC14mLi5O/v79tCg4OLtYaAQCAazl95ub111/XxIkTNXToUPn6+mry5MkKCQnRo48+qqpVqxZHjTYNGjRQgwYNbPPh4eH69ddfNXHiRH300UcO1xk9erTd3V4ZGRkEHAAATMzpMze//vqroqOjJUllypTR2bNnZbFYNGLECM2YMaPIC7yWNm3a6MCBAwUut1qt8vPzs5sAAIB5OR1uKlSooDNnzkiSqlevrj179kiSTp8+rXPnzhVtdYWwc+fOYj9jBAAASg6nL0u1bdtWiYmJatq0qXr27Kknn3xS69atU2Jiou655x6ntpWZmWl31uX333/Xzp07VbFiRdWsWVOjR4/WkSNHNGfOHEnSpEmTFBISosaNG+v8+fP68MMPtW7dOn3xxRfOfgwAAGBShQ43e/bsUZMmTTRlyhSdP39ekvT888+rdOnS2rx5s+6//3698MILTu1869atdg/luzQ2pn///oqPj1dqaqpSUlJsy7Ozs/XUU0/pyJEj8vHxUbNmzfTll186fLAfAAD4eyp0uGnWrJluu+02Pfzww3rggQckSR4eHnr22Weve+cREREyDKPA5fHx8Xbzo0aN0qhRo657fwAAwPwKPeZmw4YNaty4sZ566ilVrVpV/fv316ZNm4qzNgAAAKcVOtzcddddmjVrllJTU/Xuu+8qOTlZ7dq10y233KLx48crLS2tOOsEAAAoFKfvlipbtqwGDhyoDRs26Oeff1bPnj01depU1axZU926dSuOGgEAAArN6XBzuXr16um5557TCy+8IF9fX61YsaKo6gIAALgu1/3izI0bN2rWrFlasmSJPDw81KtXL8XGxhZlbQAAAE5zKtwcPXpU8fHxio+P14EDBxQeHq533nlHvXr1UtmyZYurRgAAgEIrdLiJiorSl19+qYCAAPXr10+DBg2ye88TAACAOyh0uCldurQWL16sLl26yNPTszhrAgAAuG6FDjefffZZcdYBAABQJG7obikAAAB3Q7gBAACmQrgBAACmQrgBAACmUuhw8/jjjyszM9M2P3/+fJ09e9Y2f/r0aXXu3LloqwMAAHBSocPN+++/r3PnztnmH330UR07dsw2n5WVpTVr1hRtdQAAAE4qdLgxDOOq8wAAAO6AMTcAAMBUCDcAAMBUnHpx5pgxY+Tj4yNJys7O1muvvSZ/f39JshuPAwAA4CqFDjdt27bV/v37bfPh4eH67bff8vUBAABwpUKHm/Xr1xdjGQAAAEXDqctSGRkZ+u6775Sdna02bdqocuXKxVUXAADAdSl0uNm5c6c6d+6stLQ0SZKvr68WLlyoyMjIYisOAADAWYW+W+qZZ55RSEiIvvnmG23btk333HOPhg0bVpy1AQAAOK3QZ262bdumL774Qq1atZIkzZo1SxUrVlRGRob8/PyKrUAAAABnFPrMzcmTJ1WjRg3bfPny5VW2bFn9+eefxVIYAADA9XBqQPGPP/5oG3MjXXwFw759+3TmzBlbW7NmzYquOgAAACc5FW7uueeefO+U6tKliywWiwzDkMViUW5ubpEWCAAA4IxCh5vff/+9OOsAAAAoEoUON7Vq1bpmnz179txQMQAAADfqhl+ceebMGc2YMUNt2rRR8+bNi6ImAACA63bd4Wbjxo3q37+/qlatqrfeekt33323vv3226KsDQAAwGlODShOS0tTfHy8Zs6cqYyMDPXq1UtZWVlatmyZGjVqVFw1AgAAFFqhz9x07dpVDRo00A8//KBJkybp6NGjevfdd4uzNgAAAKcV+szNqlWr9MQTT2jIkCGqX79+cdYEAABw3Qp95ubrr7/WmTNnFBoaqttvv11TpkzRH3/8UZy1AQAAOK3Q4eaOO+7QBx98oNTUVD366KNKSEhQtWrVlJeXp8TERLunFAMAALiK03dLlS1bVoMGDdLXX3+t3bt366mnntK4ceMUGBiobt26FUeNAAAAhXZDz7lp0KCB3njjDR0+fFjz588vqpoAAACu2w0/xE+SPD091aNHD3322WdFsTkAAIDrVui7pQYNGnTNPhaLRTNnzryhggAAAG5EocNNfHy8atWqpZYtW+Z7MzgAAIC7KHS4GTJkiObPn6/ff/9dAwcOVN++fVWxYsXirA0AAMBphR5zM3XqVKWmpmrUqFH6/PPPFRwcrF69emnNmjWcyQEAAG7DqQHFVqtVMTExSkxM1I8//qjGjRvr8ccfV+3atZWZmVlcNQIAABTadd8t5eHhIYvFIsMwlJubW5Q1AQAAXDenwk1WVpbmz5+ve++9V7fccot2796tKVOmKCUlReXKlSuuGgEAAAqt0AOKH3/8cSUkJCg4OFiDBg3S/PnzFRAQUJy1AQAAOK3Q4Wb69OmqWbOm6tSpow0bNmjDhg0O+33yySdFVhwAAICzCh1u+vXrJ4vFUpy1AAAA3DCnHuIHAADg7ork3VIAAADugnADAABMhXADAABMhXADAABMxaXhZuPGjeratauqVasmi8WiZcuWXXOd9evXq1WrVrJarapXrx4DnQEAgB2XhpuzZ8+qefPmmjp1aqH6//7774qOjlb79u21c+dODR8+XA8//LDWrFlTzJUCAICSotC3gheHqKgoRUVFFbr/9OnTFRISogkTJkiSbr31Vn399deaOHGiIiMji6tMAABQgpSoMTdJSUnq0KGDXVtkZKSSkpIKXCcrK0sZGRl2EwAAMK8SFW7S0tJUpUoVu7YqVaooIyNDf/31l8N14uLi5O/vb5uCg4NvRqkAAMBFSlS4uR6jR49Wenq6bTp06JCrSwIAAMXIpWNunBUUFKRjx47ZtR07dkx+fn7y9vZ2uI7VapXVar0Z5QEAADdQos7chIWFae3atXZtiYmJCgsLc1FFAADA3bg03GRmZmrnzp3auXOnpIu3eu/cuVMpKSmSLl5S6tevn63/Y489pt9++02jRo3STz/9pPfee08LFy7UiBEjXFE+AABwQy4NN1u3blXLli3VsmVLSdLIkSPVsmVLjRkzRpKUmppqCzqSFBISohUrVigxMVHNmzfXhAkT9OGHH3IbOAAAsHHpmJuIiAgZhlHgckdPH46IiNCOHTuKsSoAAFCSlagxNwAAANdCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKbiFuFm6tSpql27try8vHT77bdry5YtBfaNj4+XxWKxm7y8vG5itQAAwJ25PNwsWLBAI0eO1NixY7V9+3Y1b95ckZGROn78eIHr+Pn5KTU11TYdPHjwJlYMAADcmcvDzdtvv63Bgwdr4MCBatSokaZPny4fHx/NmjWrwHUsFouCgoJsU5UqVW5ixQAAwJ25NNxkZ2dr27Zt6tChg63Nw8NDHTp0UFJSUoHrZWZmqlatWgoODlb37t21d+/eAvtmZWUpIyPDbgIAAObl0nDzxx9/KDc3N9+ZlypVqigtLc3hOg0aNNCsWbP06aefau7cucrLy1N4eLgOHz7ssH9cXJz8/f1tU3BwcJF/DgAA4D5cflnKWWFhYerXr59atGihdu3a6ZNPPlHlypX1/vvvO+w/evRopaen26ZDhw7d5IoBAMDNVMqVOw8ICJCnp6eOHTtm137s2DEFBQUVahulS5dWy5YtdeDAAYfLrVarrFbrDdcKAABKBpeeuSlTpoxCQ0O1du1aW1teXp7Wrl2rsLCwQm0jNzdXu3fvVtWqVYurTAAAUIK49MyNJI0cOVL9+/dX69at1aZNG02aNElnz57VwIEDJUn9+vVT9erVFRcXJ0l65ZVXdMcdd6hevXo6ffq03nzzTR08eFAPP/ywKz8GAABwEy4PN71799aJEyc0ZswYpaWlqUWLFlq9erVtkHFKSoo8PP53gunUqVMaPHiw0tLSVKFCBYWGhmrz5s1q1KiRqz4CAABwIy4PN5I0bNgwDRs2zOGy9evX281PnDhREydOvAlVAQCAkqjE3S0FAABwNYQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKqVcXQAAlDS1n13h6hIkScnjol1dAuCWOHMDAABMhXADAABMhXADAABMhTE3AACYBOPBLuLMDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBW3CDdTp05V7dq15eXlpdtvv11btmy5av9FixapYcOG8vLyUtOmTbVy5cqbVCkAAHB3Lg83CxYs0MiRIzV27Fht375dzZs3V2RkpI4fP+6w/+bNmxUTE6PY2Fjt2LFDPXr0UI8ePbRnz56bXDkAAHBHLg83b7/9tgYPHqyBAweqUaNGmj59unx8fDRr1iyH/SdPnqxOnTrp6aef1q233qpXX31VrVq10pQpU25y5QAAwB2VcuXOs7OztW3bNo0ePdrW5uHhoQ4dOigpKcnhOklJSRo5cqRdW2RkpJYtW1acpQIlXu1nV7i6BCWPi75mn5JSZ0nAsSxaHM+Sw6Xh5o8//lBubq6qVKli116lShX99NNPDtdJS0tz2D8tLc1h/6ysLGVlZdnm09PTJUkZGRk3UnqBmoxdUyzbdcaelyOv2Scv69xNqOTqrvUduEON0rXr5DsvvML8vSsJdbpDjVLJqNMs37lUMup0hxql4vkde2mbhmFcs69Lw83NEBcXp5dffjlfe3BwsAuquTn8J7m6gsKhzqJTEmqUqLOolYQ6S0KNEnUWteKs88yZM/L3979qH5eGm4CAAHl6eurYsWN27ceOHVNQUJDDdYKCgpzqP3r0aLvLWHl5eTp58qQqVaoki8Vyg5+g6GVkZCg4OFiHDh2Sn5+fq8txqCTUKFFnUSsJdZaEGiXqLGoloc6SUKPk3nUahqEzZ86oWrVq1+zr0nBTpkwZhYaGau3aterRo4eki+Fj7dq1GjZsmMN1wsLCtHbtWg0fPtzWlpiYqLCwMIf9rVarrFarXVv58uWLovxi5efn53Y/WFcqCTVK1FnUSkKdJaFGiTqLWkmosyTUKLlvndc6Y3OJyy9LjRw5Uv3791fr1q3Vpk0bTZo0SWfPntXAgQMlSf369VP16tUVFxcnSXryySfVrl07TZgwQdHR0UpISNDWrVs1Y8YMV34MAADgJlwebnr37q0TJ05ozJgxSktLU4sWLbR69WrboOGUlBR5ePzvjvXw8HDNmzdPL7zwgp577jnVr19fy5YtU5MmTVz1EQAAgBtxebiRpGHDhhV4GWr9+vX52nr27KmePXsWc1WuYbVaNXbs2HyX0txJSahRos6iVhLqLAk1StRZ1EpCnSWhRqnk1HktFqMw91QBAACUEC5/QjEAAEBRItwAAABTIdwAAABTIdwAAABTIdxcpwEDBshiseixxx7Lt2zo0KGyWCwaMGCAXXtSUpI8PT0VHZ3/xWfJycmyWCy2qVKlSurYsaN27Nhh6xMREWHX59J0eQ2vvfaawsPD5ePjo/Lly7tVnZfqSE5OVmxsrEJCQuTt7S1/f39ZLBb169fvph6vK+uoW7euxo4dq+zs7Hz7k/J/5+fPn9eAAQPUtGlTeXh4uOw779atm2rWrCkvLy9VrVpVdevWdZvv3FENWVlZatGixVX7uLLO2rVrF/qzuPp4rlixQrfffrs8PT1lsVgUEhLiNjWuX7++wH8H/vnPf7pNnZL0888/q3v37goICJCfn5+qVKnidt/5pX9/atSoofLly6tSpUp65JFHlJmZ6Va/cxxJSUlRdHS0fHx8FBgYqKeffloXLlxw2LeoEG5uQHBwsBISEvTXX3/Z2s6fP6958+apZs2a+frPnDlT//73v7Vx40YdPXrU4Ta//PJLpaamas2aNcrMzFRUVJROnz5tWz548GClpqbaTW+88YZteXZ2tnr27KkhQ4a4VZ29evVSjRo1lJCQoF27dikvL0/vv/++tm/frtzcXHl4eGj79u039Xj99NNPtjr27t2riRMnavr06Xruuecc7uvKY5mbmytvb28NGTJEnp6e8vb2vinH8srvvH379lq4cKH279+vJUuW6MyZMypTpozLv/Mr67xk1KhRtsenBwUFuWWdr7zyisOfXXeqc8mSJXrooYc0cOBAde/eXUFBQTp+/Ljb1BgeHp5vWf369eXp6al169a5TZ2S1KVLF124cEHr1q3Ttm3bVKFCBVksFs2fP99t6jx37pwsFotOnDihDRs2aPXq1dq7d68eeught/udc7nc3FxFR0crOztbmzdv1n//+1/Fx8drzJgxDvsXGQPXpX///kb37t2NJk2aGHPnzrW1f/zxx0azZs2M7t27G/3797e1nzlzxihXrpzx008/Gb179zZee+01u+39/vvvhiRjx44dtrZvvvnGkGSsXr3aMAzDaNeunfHkk08Wqr7Zs2cb/v7+blPntepo3LixUa5cOZcdr0veeOMNIyQkxOGyq32GChUqGEFBQS79zi+5++67DUlG48aN3e5nc+XKlUbDhg2NvXv3GpKMiIgIl/9sXqlWrVrGxIkTbfPu8nfocjk5OUb16tWNDz/80G1rvFJ2drZhtVqNhg0bulWdJ06cMCQZGzdutLX16dPHkGTUrl3bbeoMCwszypQpY3fsfvjhB0OS0bBhQ5d/x5d+51xp5cqVhoeHh5GWlmZrmzZtmuHn52dkZWUVatvXgzM3N2jQoEGaPXu2bX7WrFm2V0dcbuHChWrYsKEaNGigvn37atasWdd8bfulMwEFXSYpiXUWVEdOTo7dQ6NcdbzS09NVsWJFpz9DvXr18vVzxWc4efKkfvvtN1WsWFGxsbFu8Z1fcuzYMQ0ePFgfffSRfHx8bO3u8rN5uXHjxqlSpUpq2bKl9uzZI8Mw3KrO7du368iRI/Lw8FDLli21YMECJSUlKSoqym1qvNJnn32mrKws1axZ062OZaVKldSgQQPNmTNHZ8+e1YULF7R//36VKVNGDz/8sNvUeekM9+XH7tI2WrZs6ZKaCiMpKUlNmza1vXVAkiIjI5WRkaG9e/cW2X7yKbbYZHKX/qd0/Phxw2q1GsnJyUZycrLh5eVlnDhxIl+KDg8PNyZNmmQYxsX/dQUEBBhfffWVbfmVKfrUqVPGfffdZ5QrV86WeNu1a2eULl3aKFu2rN10+f8sLrnyzI2r6yxVqpQRGhrqsI7vvvvOKFWqlBEWFuay42UYhvHLL78Yfn5+xowZMxwuv9qx7N27d74zNzfzM4waNcrw8fExJBkBAQFGVFSUy7/zy+vMy8szOnXqZLz66qt224yIiHCrOg3DMCZMmGB89dVXxq5du4xp06YZpUuXNurWretWdc6fP9+QZNSsWdNYvHix0aVLF6N69epGhQoV3KbGK0VFRRnVq1d3i3+Prqzz0KFDRmhoqGGxWAxPT0/D29vb7X42u3fvblgsFmPMmDGG1Wo1du3aZXTq1MmQZDz//PMu/44LOnMzePBgo2PHjnZtZ8+eNSQZK1euzNe/qLjF6xdKssqVKys6Olrx8fEyDEPR0dEKCAiw67N//35t2bJFS5culSSVKlVKvXv31syZMxUREWHXNzw8XB4eHjp79qzq1KmjBQsW2CXeBx98UM8//7zdOpcvd9c6R40apezs7Hx13H333erTp4+qVaumW265xWXH68iRI+rUqZN69uypwYMHO30svby8btqxdPQZnn76acXGxurgwYPq27evtm/froCAALf52Xz33Xd15swZjR49ulDH05V/h0aOHGn7c7NmzfTRRx8pKSlJfn5+blNnXl6eJOn555/X/fffr88//1ytWrVSUlKSGjVq5BY1Xu7w4cNas2aN2rZtK8m9vnPDMDR06FAFBgZq06ZN8vb2Vp8+ffTtt9/qwoULblNn+fLl1apVK73//vvKyspSq1at1KZNG1mtVvn6+rqkJndGuCkCgwYNsr0ba+rUqfmWz5w5UxcuXLANopQu/oWyWq2aMmWK3SvcFyxYoEaNGqlSpUoOR577+/s7vATi7nX6+fnZBqldqiM3N1e5ubm65557lJ6eflPqcOTo0aNq3769wsPDC/12+SuP5cKFC+2W3+zPEBAQoICAAN1yyy1q27atFi9erG+//dZtfjbXrVunpKSkfO+rWb9+vfr37+82dTpSuXJlGYah5ORkt6mzatWqkqRGjRrZ2jw8PFSnTh3Vrl1b8fHxLq/xcrNnz1alSpUUHBysjIwMSe7z7+a6deu0fPlynTp1Sn5+fpKkO+64Q4cPH9Z///tft6lTkmrUqKGtW7dq7ty5euGFF3T06FFlZ2erTp06SkpKcklN1xIUFKQtW7bYtR07dsy2rLgw5qYIdOrUSdnZ2crJyVFkZKTdsgsXLmjOnDmaMGGCdu7caZt27dqlatWqaf78+Xb9g4ODVbdu3QJvqTNDnZ06ddJff/2l1NRU3XnnnZo9e7YsFstNr0O6eMYmIiJCoaGhmj17tt0b6K/1GdzhWF5NVlaW29T5zjvvaNeuXbZ9rFy5UpJ022236bXXXnObOh05efKkJCkwMNBt6gwNDZXVatX+/fttbXl5eUpOTlb79u3dosZLDMPQ7Nmz1a9fP7u/X+5yLM+dOydJDv/u5+XluU2dl4uJiVFOTo4yMjLk5eWle++91+U1FSQsLEy7d+/W8ePHbW2JiYny8/OzC+dFjTM3RcDT01P79u2z/flyl/5HEBsba5eWJen+++/XzJkzHT5LoSDnzp1TWlqaXZvValWFChUkXXyewMmTJ5WSkqLc3FydPHlSZ86cUWZmpsqVK+eyOv/66y/l5ORIktLS0lS2bFk1bNhQb7/9tk6cOKHz58/rr7/+uqnH61KwqVWrlt566y2dOHHC1uda/6O49J3/9NNP2r17t06ePKmcnBydPHlS77777k37DN99952+//573XnnnapQoYJ+/fVXbdiwQT4+PgoLC3Obn80rb1MtV66cJKls2bKqUaOGJLlFnUlJSfruu+/Uvn17+fr6KikpSVu2bFFwcLDt75g71Onn56fHHntMY8eOVXBwsNLT07Vr1y5JUu/evdWnTx+X13jJunXr9Pvvv+vhhx/WuHHjbO3u8rMZFhamChUqqH///hozZoy8vb21detWnTt3TtHR0W5TpyT99ttv2r59u8qVK6cRI0boxRdf1Pjx4+2Ciat/5+zcuVOSVK9ePZUrV04dO3ZUo0aN9NBDD+mNN95QWlqaXnjhBQ0dOrR43zxebKN5TO7S4NKCXBrc1aVLF6Nz584O+3z33XeGJGPXrl0Ob8u7Urt27QxJ+abIyEi7uhz1uXwgmavqDAwMNAzj4sAzR8sl3dTjdbU6HHH0ndeqVcvh+jfrM/zwww9G+/btjYoVKxpWq9WoXbu2ccstt9j9TFzJVT+bl7t8QLE71blt2zbj9ttvN/z9/Q0vLy/j1ltvNVq1amV07drVreo0jIu3Vj/11FNGYGCgUapUKaNy5crGnj173KpGwzCMmJgYIzw83DAM9/138/vvvzc6duxoVKxY0fD19TUCAgKMO+64w63q7N+/v1GjRg2jYsWKRpkyZYxmzZoZc+bMcfmxK8zvnOTkZCMqKsrw9vY2AgICjKeeesrIyckpcL9FwWIY17g3DAAAoARhzA0AADAVwg1QgKioKJUrV87h9Prrr7u6PABAAbgsBRTgyJEjdu+VuVzFihWv+SRjAIBrEG4AAICpcFkKAACYCuEGAACYCuEGAACYCuEGACRZLBYtW7as0P1feukltWjR4qp9BgwYoB49etxQXQCcR7gB/uYGDBggi8Xi8JHsQ4cOlcVi0YABA/ItS0pKkqenp6Kjo/MtS05OlsVisU2VKlVSx44dtWPHDlufiIgIuz6XpoIeDd+1a1d16tTJ4bJNmzbJYrHohx9+KOSnzi81NVVRUVHXvT4A90G4AaDg4GAlJCTY3fp+/vx5zZs3L997oS6ZOXOm/v3vf2vjxo06evSowz5ffvmlUlNTtWbNGmVmZioqKsr2dnhJGjx4sFJTU+2mN954w+G2YmNjlZiYqMOHD+dbNnv2bLVu3VrNmjVz4lNflJ2dLeni+8SK9V03AG4awg0AtWrVSsHBwfrkk09sbZ988olq1qypli1b5uufmZmpBQsWaMiQIYqOjlZ8fLzD7VaqVElBQUFq3bq13nrrLR07dkzfffedbbmPj4+CgoLsJj8/P4fb6tKliypXrpxvX5mZmVq0aJFiY2P1559/KiYmRtWrV5ePj4+aNm2a7y3IERERGjZsmIYPH66AgADbm56vvCz1zDPP6JZbbpGPj4/q1KmjF1980fby18u9//77Cg4Olo+Pj3r16qX09HSH9UsX3zIdFxenkJAQeXt7q3nz5lq8eLFt+alTp/Tggw+qcuXK8vb2Vv369TV79uwCtwfAMcINAEnSoEGD7H6Rzpo1SwMHDnTYd+HChWrYsKEaNGigvn37atasWbrWI7O8vb0l/e9MibNKlSqlfv36KT4+3m5fixYtUm5urmJiYnT+/HmFhoZqxYoV2rNnjx555BE99NBD2rJli922/vvf/6pMmTL65ptvNH36dIf78/X1VXx8vH788UdNnjxZH3zwgSZOnGjX58CBA1q4cKE+//xzrV69Wjt27NDjjz9e4GeIi4vTnDlzNH36dO3du1cjRoxQ3759tWHDBknSiy++qB9//FGrVq3Svn37NG3aNAUEBFzX8QL+1or1tZwA3N6lNzUfP37csFqtRnJyspGcnGx4eXkZJ06csL1t+HLh4eHGpEmTDMMwjJycHCMgIMDuLcBXvnH41KlTxn333WeUK1fOSEtLMwzj4huHS5cubZQtW9Zumjt3boG17tu3L98bh++66y6jb9++Ba4THR1tPPXUU7b5du3aGS1btszXT5KxdOnSArfz5ptvGqGhobb5sWPHGp6ensbhw4dtbatWrTI8PDyM1NRUwzDs34J9/vx5w8fHx9i8ebPddmNjY42YmBjDMAyja9euxsCBAwusAUDhlHJxtgLgJipXrmy7xGQYhqKjox2eNdi/f7+2bNmipUuXSrp4RqV3796aOXOmIiIi7PqGh4fLw8NDZ8+eVZ06dbRgwQJVqVLFtvzBBx/U888/b7fO5cuv1LBhQ4WHh2vWrFmKiIjQgQMHtGnTJr3yyiuSpNzcXL3++utauHChjhw5ouzsbGVlZcnHx8duO6Ghodc8HgsWLNA777yjX3/9VZmZmbpw4UK+S2Y1a9ZU9erVbfNhYWHKy8vT/v37FRQUZNf3wIEDOnfunO6991679uzsbNulvyFDhuj+++/X9u3b1bFjR/Xo0UPh4eHXrBWAPcINAJtBgwZp2LBhkqSpU6c67DNz5kxduHBB1apVs7UZhiGr1aopU6bI39/f1r5gwQI1atRIlSpVUvny5fNty9/fX/Xq1XOqxtjYWP373//W1KlTNXv2bNWtW1ft2rWTJL355puaPHmyJk2apKZNm6ps2bIaPnx4vkthZcuWveo+kpKS9OCDD+rll19WZGSk/P39lZCQoAkTJjhV6+UyMzMlSStWrLALRJJsA5mjoqJ08OBBrVy5UomJibrnnns0dOhQvfXWW9e9X+DviDE3AGw6deqk7Oxs5eTk2AbaXu7ChQuaM2eOJkyYoJ07d9qmXbt2qVq1avkG7wYHB6tu3boOg8316tWrlzw8PDRv3jzNmTNHgwYNksVikSR988036t69u/r27avmzZurTp06+vnnn53ex+bNm1WrVi09//zzat26terXr6+DBw/m65eSkmJ3p9i3334rDw8PNWjQIF/fRo0ayWq1KiUlRfXq1bObgoODbf0qV66s/v37a+7cuZo0aZJmzJjhdP3A3x1nbgDYeHp6at++fbY/X2n58uU6deqUYmNj7c7QSNL999+vmTNnFvicGkfOnTuntLQ0uzar1aoKFSoUuE65cuXUu3dvjR49WhkZGXbP4Klfv74WL16szZs3q0KFCnr77bd17NgxNWrUqNA1XdpOSkqKEhISdNttt2nFihW2y3CX8/LyUv/+/fXWW28pIyNDTzzxhHr16pXvkpR0cYDyf/7zH40YMUJ5eXm68847lZ6erm+++UZ+fn7q37+/xowZo9DQUDVu3FhZWVlavny5br31VqdqB8CZGwBX8PPzK/B27JkzZ6pDhw75go10Mdxs3brVqQfpffDBB6patardFBMTc831YmNjderUKUVGRtpdHnvhhRfUqlUrRUZGKiIiQkFBQdf1hOBu3bppxIgRGjZsmFq0aKHNmzfrxRdfzNevXr16+uc//6nOnTurY8eOatasmd57770Ct/vqq6/qxRdfVFxcnG699VZ16tRJK1asUEhIiCSpTJkyGj16tJo1a6a2bdvK09NTCQkJTtcP/N1ZDOMa928CAACUIJy5AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApvL/s2EKz3IU2acAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of MAPE values from mape1 to mape10\n", + "mape_values = [mape1, mape2, mape2_1, mape3, mape4, mape5, mape6, mape7, mape8, mape8_1, mape9, mape10]\n", + "\n", + "# List of corresponding labels for each MAPE value\n", + "labels = ['MAPE1', 'MAPE2', 'MAPE2_1', 'MAPE3', 'MAPE4', 'MAPE5', 'MAPE6', 'MAPE7', 'MAPE8', 'MAPE2_1', 'MAPE9', 'MAPE10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, mape_values)\n", + "plt.xlabel('MAPE Variables')\n", + "plt.ylabel('MAPE Values')\n", + "plt.title('Bar Graph of MAPE')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "bCF5ZehcARcw", + "outputId": "ed3103b5-2636-48c5-82ba-60f8b3dfd729" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Length of labels: 12\n", + "Length of mape_values: 10\n" + ] + } + ], + "source": [ + "print(\"Length of labels:\", len(labels))\n", + "print(\"Length of mape_values:\", len(mape_values))" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "ZDPV0M5rDTi6", + "outputId": "2b5b43fb-f025-41ff-dc55-6193541132e0" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAHHCAYAAABdm0mZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQuUlEQVR4nO3deXhMZ/8G8Hsmy0wiO9mQCKJ2QWyhKEJQKdqSl5BQpWqpSjdqSdBKVW2trRRRr1YssdcSabRoWkopbUWoilYSQSUiss7z+8Mv583IhJmYmMlxf65rrsucOct3nvPkzO2sCiGEABEREZHMKE1dABEREVFlYMghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEisxEVFQWFQoEbN25U+rL279+Pli1bQq1WQ6FQ4Pbt25W+TGMYMWIEfHx8DJrm8OHDUCgUOHz4cKXURGSuGHKInoCYmBgoFAqtl5ubG7p164Z9+/Y98Xp2796N4OBguLu7w9raGi4uLujSpQsWLFiA7OzsJ17Pk3bz5k0MHjwYNjY2WLZsGTZs2IBq1arpHPfBdadWq/HMM89gwoQJyMjIeMKVE5EhLE1dANHTZPbs2ahbty6EEMjIyEBMTAz69u2L3bt3o1+/fpW+fI1Gg1GjRiEmJgbNmzfHuHHj4OXlhTt37iApKQnTp0/HN998g4SEhEqvxZROnDiBO3fuYM6cOQgMDNRrmpJ1l5eXh6NHj2LFihX45ptvcO7cOdja2lZyxf+zevVqaDQag6bp0qUL7t27B2tr60qqisg8MeQQPUF9+vRBmzZtpPejRo2Cu7s7vv76a6OEHI1Gg4KCAqjVap2ff/zxx4iJicHkyZOxYMECKBQK6bNJkyYhLS0NX3755WMtoyq4fv06AMDJyUnvaUqvu1dffRXVq1fHwoULsXPnTgwZMkTnNHfv3i13D1FFWVlZGTyNUqms0uuLqKJ4uIrIhJycnGBjYwNLS+3/b3zyySfo2LEjqlevDhsbG/j7+2Pr1q1lplcoFJgwYQI2btyIpk2bQqVSYf/+/TqXlZubi3nz5qFp06aYP3++VsAp4enpiffee0/vZVSkzoYNG0KtVsPf3x/ff/+9zlpv376NESNGwMnJCY6Ojhg5ciRyc3N1N+IDtmzZAn9/f9jY2KBGjRoYNmwY/vnnH+nz5557DuHh4QCAtm3bQqFQYMSIEXrNu7Tu3bsDAC5fvgzg/rkydnZ2uHTpEvr27Qt7e3uEhoYCuB8MFy9ejKZNm0KtVsPd3R2vvfYa/v333zLz3bdvH7p27Qp7e3s4ODigbdu2+Oqrr6TPdZ2Ts2nTJvj7+0vTNG/eHEuWLJE+L++cnEe1Venv9c8//2DAgAGws7ODq6sr3n77bRQXFxvcbkRPEkMO0ROUlZWFGzduIDMzE7/99htef/115OTkYNiwYVrjLVmyBK1atcLs2bMxd+5cWFpaYtCgQdi7d2+ZeX777beYPHkyQkJCsGTJknJPSj169Chu376NIUOGwMLCwqC6y1uGIXV+9913ePPNNzFs2DDMnj0bN2/eRO/evXHu3Lky4w4ePBh37txBdHQ0Bg8ejJiYGMyaNeuRdcbExGDw4MGwsLBAdHQ0Ro8ejbi4ODz77LPSicXTpk3DmDFjANw/BLVhwwa89tprBrUHAFy6dAkAUL16dWlYUVERgoKC4Obmhk8++QQvvfQSAOC1117DO++8g06dOmHJkiUYOXIkNm7ciKCgIBQWFmrV//zzz+PWrVuYOnUqPvroI7Rs2bLc4AoA8fHxGDJkCJydnTFv3jx89NFHeO6553Ds2LHHbqsSxcXFCAoKQvXq1fHJJ5+ga9euWLBgAVatWmVosxE9WYKIKt26desEgDIvlUolYmJiyoyfm5ur9b6goEA0a9ZMdO/eXWs4AKFUKsVvv/32yBqWLFkiAIgdO3ZoDS8qKhKZmZlaL41Go9cyDKkTgPj555+lYVeuXBFqtVoMHDhQGhYZGSkAiFdeeUVr+oEDB4rq1as/9PsVFBQINzc30axZM3Hv3j1p+J49ewQAMXPmTGlYyfo4ceLEQ+dZetxDhw6JzMxMcfXqVbFp0yZRvXp1YWNjI/7++28hhBDh4eECgJgyZYrW9EeOHBEAxMaNG7WG79+/X2v47du3hb29vWjfvr1W/UIIrfURHh4u6tSpI72fNGmScHBwEEVFReV+h8TERAFAJCYmGtxWJd9r9uzZWvNs1aqV8Pf3L3eZROaAe3KInqBly5YhPj4e8fHx+O9//4tu3brh1VdfRVxcnNZ4NjY20r///fdfZGVloXPnzjh16lSZeXbt2hVNmjR55LJLrpqys7PTGn727Fm4urpqvW7evKnXMgypMyAgAP7+/tJ7b29v9O/fHwcOHChz2GPs2LFa7zt37oybN28+9Mqvn3/+GdevX8e4ceO0zj95/vnn0ahRI517lwwRGBgIV1dXeHl54T//+Q/s7Oywfft21KpVS2u8119/Xev9li1b4OjoiJ49e+LGjRvSy9/fH3Z2dkhMTARwf4/MnTt3MGXKlDLnz+g6tFjCyckJd+/eRXx8vN7fpSJtpWud/Pnnn3ovk8gUeOIx0RPUrl07rROPhwwZglatWmHChAno16+fdPXLnj178MEHH+D06dPIz8+Xxtf1Y1e3bl29lm1vbw8AyMnJ0Rru6+sr/UB++eWX2LBhg97LMKTOBg0alBn2zDPPIDc3F5mZmfDw8JCGe3t7a43n7OwM4H6QcnBw0FnLlStXAAANGzYs81mjRo1w9OhRndPpa9myZXjmmWdgaWkJd3d3NGzYEEql9v8TLS0tUbt2ba1hKSkpyMrKgpubm875lpwEXXL4q1mzZgbVNW7cOGzevBl9+vRBrVq10KtXLwwePBi9e/cudxpD20qtVsPV1VVrmLOzs85ziojMCUMOkQkplUp069YNS5YsQUpKCpo2bYojR47ghRdeQJcuXbB8+XJ4enrCysoK69at0zoBtUTpvSkP06hRIwDAuXPn0L9/f2m4nZ2ddBl1eUFA1zIMrdMQ5Z0zJIR4rPk+jgcDqi4qlapM8NFoNHBzc8PGjRt1TvNgeDCUm5sbTp8+jQMHDmDfvn3Yt28f1q1bh7CwMKxfv/6x5l3C0HO4iMwFQw6RiRUVFQH43x6Wbdu2Qa1W48CBA1CpVNJ469ate6zldO7cGY6Ojti0aROmTp1a5sfYUIbWmZKSUmbYhQsXYGtr+9g/9ABQp04dAEBycrJ05VOJ5ORk6fMnrX79+jh06BA6der00EBav359APdDqK+vr0HLsLa2RnBwMIKDg6HRaDBu3Dh8/vnnmDFjhs55mWtbERkbz8khMqHCwkIcPHgQ1tbWaNy4MYD7/2tWKBRa56n89ddf2LFjx2Mty9bWFu+++y7OnTuHKVOm6NwrYsieEkPrTEpK0jpX5+rVq9i5cyd69epllD0Fbdq0gZubG1auXKl16Gzfvn34448/8Pzzzz/2Mipi8ODBKC4uxpw5c8p8VlRUJF3J1KtXL9jb2yM6Ohp5eXla4z1svTx4/pRSqUSLFi0AQKsdSjPXtiIyNu7JIXqC9u3bh/PnzwO4fy7GV199hZSUFEyZMkU61+T555/HwoUL0bt3bwwdOhTXr1/HsmXL4Ovri19//fWxlj9lyhT88ccfmD9/Pg4ePIiXXnoJtWvXxr///otTp05hy5YtcHNz0+vGcYbW2axZMwQFBeGNN96ASqXC8uXLAUCvS8P1YWVlhXnz5mHkyJHo2rUrhgwZgoyMDOmS98mTJxtlOYbq2rUrXnvtNURHR+P06dPo1asXrKyskJKSgi1btmDJkiV4+eWX4eDggEWLFuHVV19F27ZtMXToUDg7O+PMmTPIzc0t99DTq6++ilu3bqF79+6oXbs2rly5gs8++wwtW7aUgvODzLWtiIzOtBd3ET0ddF1CrlarRcuWLcWKFSu0LhEWQog1a9aIBg0aCJVKJRo1aiTWrVsnXV5dGgAxfvx4g+vZvn276Nu3r3B1dRWWlpbCyclJPPvss2L+/Pni9u3bei/D0Dr/+9//SuO3atVKuqS5RMm0mZmZWsNL2u/y5cuP/G6xsbGiVatWQqVSCRcXFxEaGipd5v3g/Ay5hPxR44aHh4tq1aqV+/mqVauEv7+/sLGxEfb29qJ58+bi3XffFdeuXdMab9euXaJjx47CxsZGODg4iHbt2omvv/5aazmlLyHfunWr6NWrl3BzcxPW1tbC29tbvPbaayItLU0a58FLyEvo01blfS9d65nI3CiEMOGZfET0VFAoFBg/fjyWLl1q6lKI6CnCc3KIiIhIlhhyiIiISJYYcoiIiEiWeHUVEVU6nvpHRKbAPTlEREQkSww5REREJEtP3eEqjUaDa9euwd7e/qFP9iUiIiLzIYTAnTt3ULNmTb0fS/PUhZxr167By8vL1GUQERFRBVy9ehW1a9fWa9ynLuTY29sDuN9IJbfRJyIiIvOWnZ0NLy8v6XdcH09dyCk5ROXg4MCQQ0REVMUYcqoJTzwmIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWTJpyPn+++8RHByMmjVrQqFQYMeOHY+c5vDhw2jdujVUKhV8fX0RExNT6XUSERFR1WPSkHP37l34+flh2bJleo1/+fJlPP/88+jWrRtOnz6NN998E6+++ioOHDhQyZUSERFRVWPSB3T26dMHffr00Xv8lStXom7duliwYAEAoHHjxjh69CgWLVqEoKCgyiqTiIiIqqAqdU5OUlISAgMDtYYFBQUhKSnJRBURERGRuTLpnhxDpaenw93dXWuYu7s7srOzce/ePdjY2JSZJj8/H/n5+dL77OzsSq+TiIiITK9K7cmpiOjoaDg6OkovLy8vU5dEpSkUpnsRUdXCbQUZqEqFHA8PD2RkZGgNy8jIgIODg869OAAwdepUZGVlSa+rV68+iVLND8MEEdHThdv9qnW4KiAgAN98843WsPj4eAQEBJQ7jUqlgkqlquzSiMhcmXKDK4Tplk1Ept2Tk5OTg9OnT+P06dMA7l8ifvr0aaSmpgK4vxcmLCxMGn/s2LH4888/8e677+L8+fNYvnw5Nm/ejMmTJ5uifCIiIjJjJt2T8/PPP6Nbt27S+4iICABAeHg4YmJikJaWJgUeAKhbty727t2LyZMnY8mSJahduza++OILXj5ORGRMptr7xT1fZGQKIZ6uXpWdnQ1HR0dkZWXBwcHB1OU8Oea6y95c6yL5YB8znLmGHHOty1zJrO9X5Pe7Sp14TERERKQvhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlS1MXQEREVKXJ7GnfcsI9OURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkS5amLoCIDKRQmGa5Qjz8c3Oti4ieWtyTQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJsBEhGZgqlungjwBor01OCeHCIiIpIl7skxNt7anoiIyCxwTw4RERHJEvfkEOnC8yWIiKo87skhIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZMnnIWbZsGXx8fKBWq9G+fXscP378oeMvXrwYDRs2hI2NDby8vDB58mTk5eU9oWqJiIioqjBpyImNjUVERAQiIyNx6tQp+Pn5ISgoCNevX9c5/ldffYUpU6YgMjISf/zxB9asWYPY2Fi8//77T7hyIiIiMncmDTkLFy7E6NGjMXLkSDRp0gQrV66Era0t1q5dq3P8H374AZ06dcLQoUPh4+ODXr16YciQIY/c+0NERERPH5OFnIKCApw8eRKBgYH/K0apRGBgIJKSknRO07FjR5w8eVIKNX/++Se++eYb9O3bt9zl5OfnIzs7W+tFRERE8mdpqgXfuHEDxcXFcHd31xru7u6O8+fP65xm6NChuHHjBp599lkIIVBUVISxY8c+9HBVdHQ0Zs2aZdTaiYiIyPyZ/MRjQxw+fBhz587F8uXLcerUKcTFxWHv3r2YM2dOudNMnToVWVlZ0uvq1atPsGIiIiIyFZPtyalRowYsLCyQkZGhNTwjIwMeHh46p5kxYwaGDx+OV199FQDQvHlz3L17F2PGjMG0adOgVJbNbCqVCiqVyvhfgIiIiMyayfbkWFtbw9/fHwkJCdIwjUaDhIQEBAQE6JwmNze3TJCxsLAAAAghKq9YIiIiqnJMticHACIiIhAeHo42bdqgXbt2WLx4Me7evYuRI0cCAMLCwlCrVi1ER0cDAIKDg7Fw4UK0atUK7du3x8WLFzFjxgwEBwdLYYeIiIgIMHHICQkJQWZmJmbOnIn09HS0bNkS+/fvl05GTk1N1dpzM336dCgUCkyfPh3//PMPXF1dERwcjA8//NBUX4GIiIjMlEI8Zcd5srOz4ejoiKysLDg4OBh/AQqF8eepj0etRlPVBTy8NtZVlrmuS9ZlOPYxw7Auw1XVPlYBFfn9rlJXVxERERHpiyGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGTJ4JCzf/9+HD16VHq/bNkytGzZEkOHDsW///5r1OKIiIiIKsrgkPPOO+8gOzsbAHD27Fm89dZb6Nu3Ly5fvoyIiAijF0hERERUEZaGTnD58mU0adIEALBt2zb069cPc+fOxalTp9C3b1+jF0hERERUEQbvybG2tkZubi4A4NChQ+jVqxcAwMXFRdrDQ0RERGRqBu/JefbZZxEREYFOnTrh+PHjiI2NBQBcuHABtWvXNnqBRERERBVh8J6cpUuXwtLSElu3bsWKFStQq1YtAMC+ffvQu3dvoxdIREREVBEKIYQwdRFPUnZ2NhwdHZGVlQUHBwfjL0ChMP489fGo1WiquoCH18a6yjLXdcm6DMc+ZhjWZbiq2scqoCK/3xW6T86lS5cwffp0DBkyBNevXwdwf0/Ob7/9VpHZERERERmdwSHnu+++Q/PmzfHTTz8hLi4OOTk5AIAzZ84gMjLS6AUSERERVYTBIWfKlCn44IMPEB8fD2tra2l49+7d8eOPPxq1OCIiIqKKMjjknD17FgMHDiwz3M3NDTdu3DBKUURERESPy+CQ4+TkhLS0tDLDf/nlF+lKKyIiIiJTMzjk/Oc//8F7772H9PR0KBQKaDQaHDt2DG+//TbCwsIqo0YiIiIigxkccubOnYtGjRrBy8sLOTk5aNKkCbp06YKOHTti+vTplVEjERERkcEqfJ+c1NRUnDt3Djk5OWjVqhUaNGhg7NoqBe+TYwJV8T4O5loXwD72IHOtC2AfMxTrMlxV7WMVUJHfb4Mf61DC29sb3t7eFZ2ciIiIqFIZHHJeeeWVh36+du3aChdDREREZCwGh5x///1X631hYSHOnTuH27dvo3v37kYrjIiIiOhxGBxytm/fXmaYRqPB66+/jvr16xulKCIiIqLHVaFnV5WZiVKJiIgILFq0yBizIyIiInpsRgk5wP2HdhYVFRlrdkRERESPxeDDVREREVrvhRBIS0vD3r17ER4ebrTCiIiIiB6HwSHnl19+0XqvVCrh6uqKBQsWPPLKKyIiIqInxeCQk5iYaNQCli1bhvnz5yM9PR1+fn747LPP0K5du3LHv337NqZNm4a4uDjcunULderUweLFi9G3b1+j1kVERERVW4VvBmgMsbGxiIiIwMqVK9G+fXssXrwYQUFBSE5OhpubW5nxCwoK0LNnT7i5uWHr1q2oVasWrly5AicnpydfPBEREZk1vR7r0KpVKyj0vD30qVOn9F54+/bt0bZtWyxduhTA/UvRvby8MHHiREyZMqXM+CtXrsT8+fNx/vx5WFlZ6b2c0vhYBxOoircdN9e6APaxB5lrXQD7mKFYl+Gqah+rgEp7rMOAAQMepy6dCgoKcPLkSUydOlUaplQqERgYiKSkJJ3T7Nq1CwEBARg/fjx27twJV1dXDB06FO+99x4sLCx0TpOfn4/8/HzpfXZ2tnG/CBEREZklvUJOZGSk0Rd848YNFBcXw93dXWu4u7s7zp8/r3OaP//8E99++y1CQ0PxzTff4OLFixg3bhwKCwvLrTE6OhqzZs0yev1ERERk3ox2n5wnQaPRwM3NDatWrYK/vz9CQkIwbdo0rFy5stxppk6diqysLOl19erVJ1gxERERmYrBJx4XFxdj0aJF2Lx5M1JTU1FQUKD1+a1bt/SaT40aNWBhYYGMjAyt4RkZGfDw8NA5jaenJ6ysrLQOTTVu3Bjp6ekoKCiAtbV1mWlUKhVUKpVeNREREZF8GLwnZ9asWVi4cCFCQkKQlZWFiIgIvPjii1AqlYiKitJ7PtbW1vD390dCQoI0TKPRICEhAQEBATqn6dSpEy5evAiNRiMNu3DhAjw9PXUGHCIiInqKCQPVq1dP7NmzRwghhJ2dnbh48aIQQoglS5aIIUOGGDSvTZs2CZVKJWJiYsTvv/8uxowZI5ycnER6eroQQojhw4eLKVOmSOOnpqYKe3t7MWHCBJGcnCz27Nkj3NzcxAcffKD3MrOysgQAkZWVZVCtert/TvmTf5lrXY+qjXVVnXXJutjHWJd51VWV+1gFVOT32+DDVenp6WjevDkAwM7ODllZWQCAfv36YcaMGQbNKyQkBJmZmZg5cybS09PRsmVL7N+/XzoZOTU1FUrl/3Y2eXl54cCBA5g8eTJatGiBWrVqYdKkSXjvvfcM/RpEREQkcwaHnNq1ayMtLQ3e3t6oX78+Dh48iNatW+PEiRMVOvdlwoQJmDBhgs7PDh8+XGZYQEAAfvzxR4OXQ0RERE8Xg8/JGThwoHQezcSJEzFjxgw0aNAAYWFhfHYVERERmQ297ngMAEuXLsWwYcPKPEIhKSkJSUlJaNCgAYKDgyujRqPiHY9N4GG1sa6yzHVdsi7DsY8ZhnUZrqr2sQqoyO+33iHH0dERhYWFGDhwIEaNGoXu3bs/VrGmwpBjAlXxj9Bc6wLYxx5krnUB7GOGYl2Gq6p9rAIq8vut9+Gq9PR0rFy5EteuXUPPnj1Rt25dzJkzhzfXIyIiIrOkd8ixsbFBWFgYEhMTkZKSguHDh2PNmjWoW7cuevfujS1btqCwsLAyayUiIiLSW4Ue61CvXj3Mnj0bly9fxr59+1C9enWMGDECtWrVMnZ9RERERBXyWM+uUigUsLS0hEKhgBCCe3KIiIjIbFQo5Fy9ehWzZ89GvXr10LNnT1y7dg2rV69GWlqasesjIiIiqhC9bwZYUFCAuLg4rF27Ft9++y08PT0RHh6OV155BfXq1avMGomIiIgMpnfI8fDwQG5uLvr164fdu3cjKChI65ELREREROZE75Azffp0DB8+HK6urpVZDxEREZFR6B1yIiIiKrMOIiIiIqPi8SYiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJb1PPC5RXFyMmJgYJCQk4Pr169BoNFqff/vtt0YrjoiIiKiiDA45kyZNQkxMDJ5//nk0a9YMClM+yp2IiIioHAaHnE2bNmHz5s3o27dvZdRDREREZBQGn5NjbW0NX1/fyqiFiIiIyGgMDjlvvfUWlixZAiFEZdRDREREZBQGH646evQoEhMTsW/fPjRt2hRWVlZan8fFxRmtOCIiIqKKMjjkODk5YeDAgZVRCxEREZHRGBxy1q1bVxl1EBERERmVwSGnRGZmJpKTkwEADRs25NPJiYiIyKwYfOLx3bt38corr8DT0xNdunRBly5dULNmTYwaNQq5ubmVUSMRERGRwQwOOREREfjuu++we/du3L59G7dv38bOnTvx3Xff4a233qqMGomIiIgMphAGXgteo0YNbN26Fc8995zW8MTERAwePBiZmZnGrM/osrOz4ejoiKysLDg4OBh/Aaa6A/SjVqMp70z9sNpYV1nmui5Zl+HYxwzDugxXVftYBVTk99vgPTm5ublwd3cvM9zNzY2Hq4iIiMhsGBxyAgICEBkZiby8PGnYvXv3MGvWLAQEBBi1OCIiIqKKMvjqqiVLliAoKAi1a9eGn58fAODMmTNQq9U4cOCA0QskIiIiqgiDQ06zZs2QkpKCjRs34vz58wCAIUOGIDQ0FDY2NkYvkIiIiKgiKnSfHFtbW4wePdrYtRAREREZjV4hZ9euXejTpw+srKywa9euh477wgsvGKUwIiIioseh1yXkSqUS6enpcHNzg1JZ/rnKCoUCxcXFRi3Q2HgJuQlUxUsczbUugH3sQeZaF8A+ZijWZbiq2scqoCK/33rtydFoNDr/TURERGSuDL6EXJfbt28bYzZERERERmNwyJk3bx5iY2Ol94MGDYKLiwtq1aqFM2fOGLU4IiIioooyOOSsXLkSXl5eAID4+HgcOnQI+/fvR58+ffDOO+8YvUAiIiKiijD4EvL09HQp5OzZsweDBw9Gr1694OPjg/bt2xu9QCIiIqKKMHhPjrOzM65evQoA2L9/PwIDAwEAQgizv7KKiIiInh4G78l58cUXMXToUDRo0AA3b95Enz59AAC//PILfH19jV4gERERUUUYHHIWLVoEHx8fXL16FR9//DHs7OwAAGlpaRg3bpzRCyQiIiKqCL1uBignvBmgCVTFm1WZa10A+9iDzLUugH3MUKzLcFW1j1VApd0MkI91ICIioqqGj3UwNv5Po6yq+D8Nc60LYB97kLnWBbCPGYp1Ga6q9rEK4GMdiIiIiP6fUR7rQERERGRuDA45b7zxBj799NMyw5cuXYo333zTGDURERERPTaDQ862bdvQqVOnMsM7duyIrVu3GqUoIiIiosdlcMi5efMmHB0dywx3cHDAjRs3jFIUERER0eMyOOT4+vpi//79ZYbv27cP9erVM0pRRERERI/L4DseR0REYMKECcjMzET37t0BAAkJCViwYAEWL15s7PqIiIiIKsTgkPPKK68gPz8fH374IebMmQMA8PHxwYoVKxAWFmb0AomIiIgq4rEe65CZmQkbGxvp+VVVAW8GaAJV8WZV5loXwD72IHOtC2AfMxTrMlxV7WMVUJHf7wrdJ6eoqAiHDh1CXFwcSjLStWvXkJOTU5HZERERERmdwYerrly5gt69eyM1NRX5+fno2bMn7O3tMW/ePOTn52PlypWVUScRERGRQQzekzNp0iS0adMG//77L2xsbKThAwcOREJCglGLIyIiIqoog/fkHDlyBD/88AOsra21hvv4+OCff/4xWmFEREREj8PgPTkajUbnk8b//vtv2NvbG6UoIiIiosdlcMjp1auX1v1wFAoFcnJyEBkZib59+1aoiGXLlsHHxwdqtRrt27fH8ePH9Zpu06ZNUCgUGDBgQIWWS0RERPJlcMj55JNPcOzYMTRp0gR5eXkYOnSodKhq3rx5BhcQGxuLiIgIREZG4tSpU/Dz80NQUBCuX7/+0On++usvvP322+jcubPByyQiIiL5q9B9coqKihAbG4szZ84gJycHrVu3RmhoqNaJyPpq37492rZti6VLlwK4fzjMy8sLEydOxJQpU3ROU1xcjC5duuCVV17BkSNHcPv2bezYsUOv5fE+OSZQFe/jYK51AexjDzLXugD2MUOxLsNV1T5WARX5/TboxOPCwkI0atQIe/bsQWhoKEJDQytUaImCggKcPHkSU6dOlYYplUoEBgYiKSmp3Olmz54NNzc3jBo1CkeOHHnoMvLz85Gfny+9z87OfqyaiYiIqGow6HCVlZUV8vLyjLbwGzduoLi4GO7u7lrD3d3dkZ6ernOao0ePYs2aNVi9erVey4iOjoajo6P08vLyeuy6iYiIyPwZfE7O+PHjMW/ePBQVFVVGPQ91584dDB8+HKtXr0aNGjX0mmbq1KnIysqSXlevXq3kKomIiMgcGHyfnBMnTiAhIQEHDx5E8+bNUa1aNa3P4+Li9J5XjRo1YGFhgYyMDK3hGRkZ8PDwKDP+pUuX8NdffyE4OFgaptFoAACWlpZITk5G/fr1taZRqVRQqVR610RERETyYHDIcXJywksvvWSUhVtbW8Pf3x8JCQnSZeAajQYJCQmYMGFCmfEbNWqEs2fPag2bPn067ty5gyVLlvBQFBEREUkMDjnr1q0zagEREREIDw9HmzZt0K5dOyxevBh3797FyJEjAQBhYWGoVasWoqOjoVar0axZM63pnZycAKDMcCIiInq66R1yNBoN5s+fj127dqGgoAA9evRAZGRkhS4bLy0kJASZmZmYOXMm0tPT0bJlS+zfv186GTk1NRVKZYUelk5ERERPMb3vkzNnzhxERUUhMDAQNjY2OHDgAIYMGYK1a9dWdo1GxfvkmEBVvI+DudYFsI89yFzrAtjHDMW6DFdV+1gFVOT3W+9dJF9++SWWL1+OAwcOYMeOHdi9ezc2btwonfhLREREZE70Djmpqalaz6YKDAyEQqHAtWvXKqUwIiIiosehd8gpKiqCWq3WGmZlZYXCwkKjF0VERET0uPQ+8VgIgREjRmjdcyYvLw9jx47VuleOIffJISIiIqoseoec8PDwMsOGDRtm1GKIiIiIjEXvkGPs++MQERERVSbegIaIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZMksQs6yZcvg4+MDtVqN9u3b4/jx4+WOu3r1anTu3BnOzs5wdnZGYGDgQ8cnIiKip5PJQ05sbCwiIiIQGRmJU6dOwc/PD0FBQbh+/brO8Q8fPowhQ4YgMTERSUlJ8PLyQq9evfDPP/884cqJiIjInCmEEMKUBbRv3x5t27bF0qVLAQAajQZeXl6YOHEipkyZ8sjpi4uL4ezsjKVLlyIsLOyR42dnZ8PR0RFZWVlwcHB47PrLUCiMP099PGo1mqou4OG1sa6yzHVdsi7DsY8ZhnUZrqr2sQqoyO+3SffkFBQU4OTJkwgMDJSGKZVKBAYGIikpSa955ObmorCwEC4uLjo/z8/PR3Z2ttaLiIiI5M+kIefGjRsoLi6Gu7u71nB3d3ekp6frNY/33nsPNWvW1ApKpUVHR8PR0VF6eXl5PXbdREREZP5Mfk7O4/joo4+wadMmbN++HWq1Wuc4U6dORVZWlvS6evXqE66SiIiITMHSlAuvUaMGLCwskJGRoTU8IyMDHh4eD532k08+wUcffYRDhw6hRYsW5Y6nUqmgUqmMUi8RERFVHSbdk2NtbQ1/f38kJCRIwzQaDRISEhAQEFDudB9//DHmzJmD/fv3o02bNk+iVCIiIqpiTLonBwAiIiIQHh6ONm3aoF27dli8eDHu3r2LkSNHAgDCwsJQq1YtREdHAwDmzZuHmTNn4quvvoKPj4907o6dnR3s7OxM9j2IiIjIvJg85ISEhCAzMxMzZ85Eeno6WrZsif3790snI6empkKp/N8OpxUrVqCgoAAvv/yy1nwiIyMRFRX1JEsnIiIiM2by++Q8abxPjglUxfs4mGtdAPvYg8y1LoB9zFCsy3BVtY9VQJW7Tw4RERFRZWHIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlkyi5CzbNky+Pj4QK1Wo3379jh+/PhDx9+yZQsaNWoEtVqN5s2b45tvvnlClRIREVFVYfKQExsbi4iICERGRuLUqVPw8/NDUFAQrl+/rnP8H374AUOGDMGoUaPwyy+/YMCAARgwYADOnTv3hCsnIiIic6YQQghTFtC+fXu0bdsWS5cuBQBoNBp4eXlh4sSJmDJlSpnxQ0JCcPfuXezZs0ca1qFDB7Rs2RIrV6585PKys7Ph6OiIrKwsODg4GO+LlFAojD9PfTxqNZqqLuDhtbGussx1XbIuw7GPGYZ1Ga6q9rEKqMjvt0n35BQUFODkyZMIDAyUhimVSgQGBiIpKUnnNElJSVrjA0BQUFC54xMREdHTydKUC79x4waKi4vh7u6uNdzd3R3nz5/XOU16errO8dPT03WOn5+fj/z8fOl9VlYWgPuJUFbM+fuYa22syzCsy3DmWhvrMoy51gWYb22VUFfJ77YhB6BMGnKehOjoaMyaNavMcC8vLxNUU4kcHU1dQfnMtTbWZRjWZThzrY11GcZc6wLMt7ZKrOvOnTtw1HP+Jg05NWrUgIWFBTIyMrSGZ2RkwMPDQ+c0Hh4eBo0/depURERESO81Gg1u3bqF6tWrQ2HK45UPyM7OhpeXF65evVo55wpVkLnWBZhvbazLMKzLcOZaG+syDOsyjBACd+7cQc2aNfWexqQhx9raGv7+/khISMCAAQMA3A8hCQkJmDBhgs5pAgICkJCQgDfffFMaFh8fj4CAAJ3jq1QqqFQqrWFOTk7GKL9SODg4mFWnKmGudQHmWxvrMgzrMpy51sa6DMO69KfvHpwSJj9cFRERgfDwcLRp0wbt2rXD4sWLcffuXYwcORIAEBYWhlq1aiE6OhoAMGnSJHTt2hULFizA888/j02bNuHnn3/GqlWrTPk1iIiIyMyYPOSEhIQgMzMTM2fORHp6Olq2bIn9+/dLJxenpqZCqfzfRWAdO3bEV199henTp+P9999HgwYNsGPHDjRr1sxUX4GIiIjMkMlDDgBMmDCh3MNThw8fLjNs0KBBGDRoUCVX9WSpVCpERkaWObRmauZaF2C+tbEuw7Auw5lrbazLMKyr8pn8ZoBERERElcHkj3UgIiIiqgwMOURERCRLDDlEREQkSww5JqJQKLBjxw6jj/u4TFmXubbJo5hr3azLMOZal6HLexrazFzb41HMpW5zqeOJECTCw8MFAAFAWFlZifr164tZs2aJwsLCSltmWlqayMvLM1ld27ZtEz179hQuLi4CgPjll1+06tJn2fp8B0OkpqaKiIgI0axZM2Frays8PT3F8OHDxT///FNm3PKWXdE2KygoEO+++65eyy6vlg8++EAEBAQIGxsb4ejoaJS69BEZGSkaNmwobG1thZOTk+jRo4f48ccfTd7HSnvttdcEALFo0SKT11V63iWvoKAgvftzZdb2+++/i+DgYOHg4CBsbW1FmzZtxJUrV0zeZg+2V8lrxowZYtiwYXot15jbi5J53blzR4wfP17UqlVLqNVq0bhxY7FixQq9lvs47aXPch9W9+effy66du0q7O3ttdqzdB1Xr1416vZVCCHS09NFeHi4cHNzE2q1WgQFBYkLFy7oVbMxlff7U9q9e/fEuHHjhIuLi6hWrZp48cUXRXp6usHLYsgR9zt77969RVpamvjrr7/E8uXLhUKhEHPnzi0zbn5+vizq+vLLL8WsWbPE6tWrdXYyU7TJ7du3RWBgoIiNjRXnz58XSUlJol27dsLf31/veVS0bmMse+bMmWLhwoUiIiJCZ8iprPbcuHGjiI+PF5cuXRLnzp0To0aNEg4ODuL69euPnPZJrOe4uDjh5+cnatasKRYtWqTXNJVZV+l5l7xu3bpVoemNWdvFixeFi4uLeOedd8SpU6fExYsXxc6dO0VGRoZJ6xJCaLVVWlqaWLt2rVAoFOLSpUsm3X6OHj1a1K9fXyQmJorLly+Lzz//XFhYWIidO3c+ctrHqftxliuEEIsWLRLR0dEiOjpaABA9evSo9PbTaDSiQ4cOonPnzuL48ePi/PnzYsyYMcLb21vk5ORUeL4V8ajfHyGEGDt2rPDy8hIJCQni559/Fh06dBAdO3Y0eFkMOeJ+Z+/fv7/WsJ49e4oOHTpIn33wwQfC09NT+Pj4CCHu73UYNGiQcHR0FM7OzuKFF14Qly9f1prHmjVrRJMmTYS1tbXw8PAQ48ePlz4DILZv3y6EuN9xx48fLzw8PIRKpRLe3t5i7ty50rJLj9uzZ0/RokUL4eHhIZRKpbCxsRG2traiTp06Ul116tQRlpaWwsbGRqhUKuHo6CjGjRsnCgoKytTl6uqq1clKlhUeHi6Cg4O16lKr1cLLy0urLmdnZ6lNDh48KM1PoVCIOnXqiHPnzmm1c8uWLYW7u7s0TrNmzaS6dLVJ9erVBQBRq1YtrT/60uMKIcSvv/4qunXrJpRKpbCyshKjR48Wd+7ckdrM1dVVeHl5iaZNmwo7OzuhUCiEvb29KCgoKHddHj9+XAAQV65cMWhddu/eXSgUiie+LkvqysrKkv5naA59TKlUiiFDhog6deqIRYsWmbwuR0dHoVQqK/Q3WdKPH+x/AQEBwsHBQep/bdq0ER4eHtLfxssvvyxq1qwp1Gq1UCgUwsrKSgwbNkyqSwgh2rZtKxwdHc16e1FSV//+/UX37t0FANGtWzfRv39/rboUCoWwtrYWrVu3lrafAISbm5u03F69eglLS0tpD8Z//vMf6W9WCCE6duwo7O3thYWFhVAqlUKlUkl1lXzHpk2bipkzZ2q1h7W1tXjuued0tp0QxtlWlLRl6e1+69atxbRp0wzaVgwYMEAAEEqlUquP9ezZU6ttP/jgA+Hq6irUarVQq9XC0dFR1K1bV2ub9dJLL4n+/fuL+fPnCw8PD1GtWjXh7Ows1REaGioAiHPnzkl1FBcXixo1aohu3brp7OsPaz+1Wi1cXFy02q/k76N0HS4uLlr9qbTLly/rDDm3b98WVlZWYsuWLdKwP/74QwAQSUlJZebzMDwnpxw2NjYoKCgAACQkJCA5ORnx8fHYs2cPCgsLERQUBHt7exw5cgTHjh2DnZ0devfuLU2zYsUKjB8/HmPGjMHZs2exa9cu+Pr66lzWp59+il27dmHz5s1ITk7Gxo0b4ePjo3Nca2tr/P7777C2toZarcazzz4LZ2dn+Pn5SXVZWVlBpVLhhRdeQM+ePWFnZ4d169YhJiamTF2rV68utw3+/PNPrbratGkDCwsLqU0AICoqCnv27MHt27fRt29f2NraYtu2bVizZg1u3LiBjh07Sm1y/vx5nD59GvXr18c333yDTz75BMnJyYiJiSm3TaZNmwYAWLNmTbltcvfuXQQFBcHZ2Rn9+vVD27ZtcejQIekGkzY2NiguLkZ6ejouXLiA7t2747PPPkNhYSG++OKLctfljRs3oFAosHXrVoPW5enTp2Fra/vE1+WuXbvg4+ODVatWlXm+iyn62OjRo9GqVSu8+eabaNeuXbnt9aTreuaZZ2Bra4u8vDxs3rwZr7/+Om7evFnhuu7evYtTp05BqVSiX79+sLS0xPnz59GuXTtpexEfH4/MzEwEBwdj9+7d6NixIzZu3IgvvvgCALBs2TKcOHECHTt2RNu2bZGXl4fdu3frPBfClNuLXbt2wd3dHXv37sWoUaPKratHjx7w8fGBnZ2dtP0EgGnTpqGwsBA9e/bEkSNH0LVrV+zcuRNdunTBtm3b8PrrrwO4v/386aefUFBQgEGDBmHTpk0YPnw4YmJitLYXHTt2xNq1a7F9+3bExsZi3bp1sLCwQOfOnctdV8bYVgwcOBD16tWDUqlE7969cfDgQVy4cAG5ubkGbSt++OEHAEDXrl211qONjY00XkJCAn777TcIIfDss8/ihx9+gKOjIzIzM9G1a1dpmxUfH49vv/0Wly5dwpgxY1BYWIicnBzMmDEDu3btkh5qqVarpXkrlUoUFhbi+PHjevf1kvY7ceIEtmzZotV+JRITE3Hp0iUkJiZi/fr1Zdbbo5w8eRKFhYUIDAyUhjVq1Aje3t5ISkrSez4AeE6OENp7cjQajYiPjxcqlUq8/fbbIjw8XLi7u2vtJtywYYNo2LCh0Gg00rD8/HxhY2MjDhw4IIQQombNmmLatGnlLhOl0vHEiRNF9+7dteZXui4AIi4uTsTHxwtLS0uhUqlEaGioVNfevXuFUqkUS5cuFQ0bNhRhYWGiTp06oqioSKqrc+fOIiQkpExdDybpkrrCw8NF3bp1Rffu3UVxcbHONin9HV555RWhVCq1Ev2OHTsEALFp0yYhhBA2NjbCwcFBFBUVSeMMGjRIhISE6GyT5557TrRq1UoMHTr0oe23atUq4ezsLHJycqQ227t3r1AoFGLz5s1CpVKJpk2bimrVqmmty0GDBon27duXuy59fX3F0KFDDV6XjRs3Fg4ODk90Xe7evVtUq1ZNKBQKUbNmTWkvlCn72Ny5c0XPnj2lZerak2OKur7++muxc+dO8euvv4rt27eLxo0bi7Zt2+pVV0ltJeNqNBrx5ptvCgBi0qRJ0t/Gjh07hFKpFOnp6WLDhg3CwcFBeHt7S30/Pz9fWFhYiK5duwohhPDw8BAAhK2trVi4cKH45ZdfRHR0tFAoFOLw4cMmb7PS5s2bJ5ydncW9e/e09jZMnDhRdOvWTRw8eFDn9rPkO2zYsEG4u7sLJycn6TBJfn6+UKlUQqFQiPT0dFGzZk3RvHlzqa4SJduLknnl5eWJRo0aCQDCwsJCWFtbi/Xr15f792msbUVeXp4ICwuT9phaWlqK9evXG7ytaNWqlQAg+vbtK4TQ/v0paVt3d3exfPlyqe6S3589e/ZIfaykP7m5uYmioiKpjtLb14KCAuHt7S0GDRokAIjNmzeLjz76SAAQLi4uOvv6w9qvREl/KjlfJjw8vNz19qDy9uRs3LhRWFtblxm/bdu24t133y23fXUxi8c6mIM9e/bAzs4OhYWF0Gg0GDp0KKKiojB+/Hg0b94c1tbW0rhnzpzBxYsXYW9vrzWPvLw8XLp0CdevX8e1a9fQo0cPvZY9YsQI9OzZEw0bNkTv3r3Rr18/9OrVS6oLAAYPHgwAaNCgAWrUqAFLS0uprk6dOkGj0eDo0aO4ePEiLl26BCGE9L/5vLw8WFhY4O+//zaortTUVFy+fBmWlpZQKBTo3r27VptkZGRotYlGo4GHh0eZ+fz000/o1q0b7t27hxYtWkh7gwDA09MTZ8+eLTPNsGHD8Oyzz0KpVKJdu3Y4ePCg1CYP+uOPP+Dn54dq1apJbXbo0CEIITBkyBCEhoaiqKgIt2/fRuPGjaV16enpiR9//BHXrl0rsy7v3buHvLw8zJ49G76+vgaty7Vr1+LevXt44403nti67NatG06fPo0bN25g9erV0jJK1/Uk+5iXlxciIyNx6tQpKBSKh7bXk+773bp1k5bfvHlztGjRAvXr19e7rhJDhgyBRqNBUVER3N3d8eGHH0p/G8899xw0Gg2Sk5Nx5swZ3LlzB3fv3tXaw1ZcXIy0tDRcv34d6enpAID+/ftj8uTJAICWLVvihx9+wMqVK03eZqWtXbsWoaGhWnsE9uzZA2tra9y7dw+JiYlo1KgROnfujLi4OJ3bz+vXr0OhUEjPKASAgoICCCGkv8lmzZrBy8vroduLzz77DLm5ubC3t4ezszPq1q2L1157DTVr1tTaC1DCWNuKwsJCFBYWQq1WIz8/Hy+++CJef/115ObmGrStWL9+PQBg3759sLGxgUajkX5/vvzySwD3+2hKSopUd8nvT0hICDQaDerWrQulUoni4mK4urri5s2b0nq7c+eO1F5WVlaIi4uT9sD95z//Qc+ePdGxY0ecOHHioX29vPYDIPWn5ORkaX02bdpUr+38k8DDVf+v5EciJSUF9+7dw/r166UVWXqFAkBOTg78/f1x+vRprdeFCxcwdOhQrV2N+mjdujUuX76MOXPm4N69exg8eDBefvllqS4AWL58Oe7du4fevXtLnefBunJzc+Hv74/g4GA899xzWnU1atSoQm1y6tQpfPbZZxgxYgROnDiB8PBwncsuLCyEvb29VnscOXIEABAYGCi1SemOD9y/PFGj0ZSZV3R0NJ555hksXboUxcXFWm2iT90lyz548CDWr18PKysrKJVKrboVCgWKioq01uWJEycQEBCAhg0b4vvvv4ebm5sBLXZ/Xc6fPx8qleqJrstq1arB19cXHTp0wJo1a2Bpqf3/lyfdx3799Vdcv34d3t7esLS0hKWlJa5cuYK33nrLpHXpUq9ePdSoUUPvukosXLgQKSkpmDhxIho3bvzQ7UX16tW16jp9+jTCw8Ph6uoq/W0olUo0adJEa9rGjRsjNTXVbNrsyJEjSE5Oxquvvqo1vFu3bvj1119x7tw5bNy4Ec8++yzCwsJw+PBhne3h7u6ONm3aaLXHyZMnAUDreUlWVlZa05beXuTn5+P999/H8uXL8ffff+Pjjz9GgwYNoNFoMGzYMJ31P6gi24off/wRGo0Gn3/+Oc6ePYsLFy5g1apVeOmll/RaZonWrVvjq6++AgB4eHjA0tISPXr0kH5/SpT3+1NS9xdffIHTp09j4MCBqFOnjtbvz4Pb15JtHXA/rO7fvx9FRUUIDw9/aF831MPWmz48PDxQUFCA27dvaw3PyMjQ+R/ph2HI+X8lPxIlG+WHad26NVJSUuDm5gZfX1+tl6OjI+zt7eHj4yOdt6IPBwcHhISEYPXq1YiNjcW2bduQn58vdXBXV1dYWlqicePGOHPmDIqKiqRpjx07BqVSiS5duiAlJQVqtRp2dnZadalUKlhaWhpUV7Vq1dCqVSuMHz8ea9as0arrQX5+fsjJyZHa0dfXF2lpaVAqlfD394e9vT3s7Oxw48aNhy6zqKgIgwcPRkpKChITE/Hqq69qtcmtW7fKTFPSJnfv3pXqLll206ZNH7o8e3t7aV3WqVMH77//PtLS0nDkyBHUrVu3QuvSxsYG1tbWJl2XujYoT7KPqdVq/Prrr1o/YjVr1sQ777xj0rp0tdfff/9d5pyc8uoq3f88PT3h7e2Npk2bavW/0nU1bNgQrVu3RnZ2NlQqlVZdTk5OsLS0lPqYp6endO5KiQsXLqBOnTpm02Zr1qyBv78//Pz8tOop+btv2rQphg4dKtV15coV6Zy8EiXtceHCBXh6epbZXrRq1Qo+Pj5IS0sr871LKy4uRmFhIZRKpVZ79OjRAxkZGZW2rXByckJRURFq166ttd23sbGBWq02aFtRsr5atWqFrVu3Yt++fcjOzn5o3SW/P5cuXYJSqUSPHj3g6+sLBwcHWFlZ6b3NcnR0REpKCn7++WcMGjTooX1dVx0lSvd1Y/H394eVlZXWd0hOTkZqaioCAgIMmhcPV1VAaGgo5s+fj/79+2P27NmoXbs2rly5gri4OLz77ruoXbs2oqKiMHbsWLi5uaFPnz64c+cOjh07hokTJ5aZ38KFC+Hp6YlWrVpBqVRiy5Yt8PDwkHb/PrjsyMhIHD16FPXq1UNiYiImTpyI4cOH4/XXX8fnn3+OxMRE+Pr64vLly1JdJZ2ypK5q1aqhSZMmuHLlCgCU2bgCwMWLF/H111/rVdfChQvx1Vdfwc/PD/Pnz4eVlRXefvttPPPMMygsLARwPwglJSXh008/ldqk5H8VJT7++GOkpaUhJCQEW7duRbNmzaBUKhEbGwsPDw84OTnpXB+RkZEIDw9HYWEhbt68KbVJ6d3huri5uUEIgRdeeAFFRUW4dOkS5syZg6lTp2LcuHGoWbMmpk+fjgkTJjxyXaampmLJkiVITU1FYWEhdu7ciZiYGLi7u1fquvzpp58wZswY2Nra4vDhw7h58yb++eefMuvnSfexOnXqaLWXlZVVmf+FmaKupKQkjB07FjY2Nti/fz+SkpLg6+uLlJSUR9ZVkf4XGhqKt99+G8ePH8eRI0ek7cXhw4el/3VHRUVhzJgx+Oqrr9CwYUM0b94c//3vf7F7924cPnwYX3/9tUnbzM3NDZ07d0ZsbCxeeOGFMm1QXl1qtbrM/+pDQ0Px8ccfIzU1Fc8//zymTJmCP/74A1FRUXjxxRfh7u6OqKgojBo1CkIIpKSkSH2oNFtbW3Tt2hUjR47E6NGj0bVrV/z88884ePAgHBwcKm1bMXz4cPj5+WHSpElITk7G6dOn0aJFC3z55ZcYPHgwFixY8MhtRXp6OubPny8FmoyMDKxcuRLu7u6PrPu9995DtWrVMHz4cPTq1Qu5ubk4fPgwfvrpJ3h7e2utt/bt2yM3NxenTp3CsWPH4OHhAVdXVwD3TyN488030bRpU9y8eRPnz583qK9HRUUhMzNT7/Yr7datW0hNTcW1a9cA/O/3x8PDAx4eHnB0dMSoUaMQEREBFxcXODg4YOLEiQgICECHDh30Xg4AnngshO5LyB/1WVpamggLCxM1atQQKpVK1KtXT4wePVpkZWVJ46xcuVI0bNhQWFlZCU9PTzFx4kTpMzxwMlfLli1FtWrVhIODg+jRo4c4deqUzktChbh/CV/JJaEPXsKXlpYm6tevL6ytrbXqGjt2rHSS48qVK6UTHXW9Sk489vPzM6iub7/9Vmu+9vb2YsSIEVKblMyzdJv4+flJdZVXDwDRunVrcerUKZ3tV9Im5V0WWrJsLy8vrXU5adIk0bVrV5GWliZefPHFcpedmJio17rUdZM5AGLVqlWVti4/++wzYWdnJy3L1tZWvPDCC2VOPDZFH3uwvXSdePyk6/r000+Fra2tVh8dPXq0SE9P16uukr5kaP8bPHiw8PLy0tpeNGvWTHTq1Eka58G/yxo1aogdO3aU6e+mWpcWFhYCgBgzZoxW3y858VhXXcHBwdLfXOm60tLSRHBwsLCyspIuoW7UqJHWzTc7dOgg7OzstPpQyd9sybzS0tJEx44dpUvRlUqlaNCggTh58qRWjcbcVoSFhQkXFxehVCqFhYWFsLCwEL6+vmLBggVCo9Hota2IjIzUua2IiorS2bal61ar1cLJyUk0aNBAVK9eXVpvDRo0kE5gLllvzs7OQqFQSHUsWbJE1K5dW+pf06dPF8uXLy+3rz+s/R51CXlpJe1XYt26dTq/f2RkpDROyc0AnZ2dha2trRg4cKBIS0sThlL8/5cgIiIikhWek0NERESyxJBDpIe5c+fCzs5O56tPnz6mLo+IzMTGjRvL3VY86uRmMj4eriLSw61bt3RebQDcv5qqVq1aT7giIjJHd+7c0bqHWGlWVlY6r5ajysOQQ0RERLLEw1VEREQkSww5REREJEsMOURERCRLDDlEZBQKhQI7duww+rjm6LnnnsObb76p9/iHDx+GQqEo8yye0mJiYnTeZZaIKo4hh0hmRowYAYVCAYVCAWtra/j6+mL27Nlazy+qDGlpaXpfTm/IuBWxYMECODs7Iy8vr8xnubm5cHBwwKefflrh+cfFxWHOnDmPUyIRPQEMOUQy1Lt3b6SlpSElJQVvvfUWoqKiMH/+fJ3jPvgAxYry8PDQeoK0scatiOHDh+Pu3buIi4sr89nWrVtRUFCg95OqSytpKxcXF9jb2z92nURUuRhyiGRIpVLBw8MDderUweuvv47AwEDs2rULwP09PQMGDMCHH36ImjVrSk8Pvnr1KgYPHgwnJye4uLigf//++Ouvv7Tmu3btWjRt2hQqlQqenp6YMGGC9FnpQ1AFBQWYMGECPD09oVarUadOHURHR+scFwDOnj2L7t27w8bGBtWrV8eYMWOQk5MjfV5S8yeffAJPT09Ur14d48ePlx7++iA3NzcEBwdj7dq1ZT5bu3YtBgwYABcXF7z33nt45plnYGtri3r16mHGjBla84yKikLLli3xxRdfoG7dulCr1QDKHq7asGED2rRpA3t7e3h4eGDo0KG4fv16mWUfO3YMLVq0gFqtRocOHXDu3Dmd9ZfYuXMnWrduDbVajXr16mHWrFnSHjkhBKKiouDt7Q2VSoWaNWvijTfeeOj8iJ42DDlETwEbGxutPTYJCQlITk5GfHw89uzZg8LCQgQFBcHe3h5HjhzBsWPHYGdnh969e0vTrVixAuPHj8eYMWNw9uxZ7Nq1C76+vjqX9+mnn2LXrl3YvHkzkpOTsXHjRvj4+Ogc9+7duwgKCoKzszNOnDiBLVu24NChQ1oBCgASExNx6dIlJCYmYv369YiJiUFMTEy533nUqFH49ttvceXKFWnYn3/+ie+//x6jRo0CANjb2yMmJga///47lixZgtWrV2PRokVa87l48SK2bduGuLg4nD59WueyCgsLMWfOHJw5cwY7duzAX3/9hREjRpQZ75133sGCBQtw4sQJuLq6Ijg4uNygduTIEYSFhWHSpEn4/fff8fnnnyMmJgYffvghAGDbtm1YtGgRPv/8c6SkpGDHjh1o3rx5ue1B9FQy+JGeRGTWSj8FWKPRiPj4eKFSqcTbb78tfe7u7i7y8/OlaTZs2CAaNmwoNBqNNCw/P1/Y2NiIAwcOCCGEqFmzppg2bVq5y0WppxVPnDhRdO/eXWt+5Y27atUq4ezsLHJycqTP9+7dK5RKpUhPT5dqrlOnjigqKpLGGTRokAgJCSm3nqKiIlGrVi2tJxvPmDFDeHt7i+LiYp3TzJ8/X/j7+0vvIyMjhZWVlbh+/brWeF27dhWTJk0qd9knTpwQAKSnMycmJgoAYtOmTdI4N2/eFDY2NiI2NlYIcf/JzI6OjtLnPXr0EHPnztWa74YNG4Snp6cQQogFCxaIZ555RhQUFJRbB9HTjntyiGRoz549sLOzg1qtRp8+fRASEoKoqCjp8+bNm8Pa2lp6f+bMGVy8eBH29vbSc3ZcXFyQl5eHS5cu4fr167h27Rp69Oih1/JHjBiB06dPo2HDhnjjjTdw8ODBcsf9448/4Ofnh2rVqknDOnXqBI1Gg+TkZGlY06ZNYWFhIb339PTUeUiohIWFBcLDwxETEwMhBDQaDdavX4+RI0dCqby/6YuNjUWnTp3g4eEBOzs7TJ8+HampqVrzqVOnDlxdXR/6fU+ePIng4GB4e3vD3t4eXbt2BYAy8woICJD+7eLigoYNG+KPP/7QOc8zZ85g9uzZWs8+Gj16NNLS0pCbm4tBgwbh3r17qFevHkaPHo3t27dX+snlRFWNpakLICLj69atG1asWAFra2vUrFkTlpbaf+qlAwUA5OTkwN/fHxs3biwzL1dXVykU6Kt169a4fPky9u3bh0OHDmHw4MEIDAzE1q1bDf8y/8/KykrrvUKhgEajeeg0r7zyCqKjo/Htt99Co9Hg6tWrGDlyJAAgKSkJoaGhmDVrFoKCguDo6IhNmzZhwYIFWvN4sK0eVHK4LSgoCBs3boSrqytSU1MRFBT0WCd15+TkYNasWXjxxRfLfKZWq+Hl5YXk5GQcOnQI8fHxGDduHObPn4/vvvuuTFsRPa0YcohkqFq1auWeL6NL69atERsbCzc3Nzg4OOgcx8fHBwkJCejWrZte83RwcEBISAhCQkLw8ssvo3fv3rh16xZcXFy0xmvcuDFiYmJw9+5dKVAcO3YMSqVSOim6ourXr4+uXbti7dq1EEIgMDBQekDiDz/8gDp16mDatGnS+KXP39HX+fPncfPmTXz00Ufw8vICAPz88886x/3xxx/h7e0NAPj3339x4cIFNG7cWOe4rVu3RnJy8kPXo42NDYKDgxEcHIzx48ejUaNGOHv2LFq3bm3w9yCSI4YcIkJoaCjmz5+P/v37Y/bs2ahduzauXLmCuLg4vPvuu6hduzaioqIwduxYuLm5oU+fPrhz5w6OHTuGiRMnlpnfwoUL4enpiVatWkGpVGLLli3w8PDQebO70NBQREZGIjw8HFFRUcjMzMTEiRMxfPhwuLu7P/Z3GzVqFEaPHg0AWicqN2jQAKmpqdi0aRPatm2LvXv3Yvv27QbP39vbG9bW1vjss88wduxYnDt3rtx76MyePRvVq1eHu7s7pk2bhho1amDAgAE6x505cyb69esHb29vvPzyy1AqlThz5gzOnTuHDz74ADExMSguLkb79u1ha2uL//73v7CxseFTrolK4Tk5RARbW1t8//338Pb2xosvvojGjRtj1KhRyMvLk/bshIeHY/HixVi+fDmaNm2Kfv36ISUlRef87O3t8fHHH6NNmzZo27Yt/vrrL3zzzTc6D3vZ2triwIEDuHXrFtq2bYuXX34ZPXr0wNKlS43y3V566SWoVCrY2tpqBYoXXngBkydPxoQJE9CyZUv88MMPmDFjhsHzd3V1RUxMDLZs2YImTZrgo48+wieffKJz3I8++giTJk2Cv78/0tPTsXv3bq1zo0oLCgrCnj17cPDgQbRt2xYdOnTAokWLpBDj5OSE1atXo1OnTmjRogUOHTqE3bt3o3r16gZ/ByK5UgghhKmLICIiIjI27skhIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZ+j+kAJmILEPk8AAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of precision values from precision1 to precision10\n", + "precision_values = [precision1, precision2, precision2_1, precision3, precision4, precision5, precision6, precision7, precision8, precision8_1, precision9, precision10]\n", + "\n", + "# List of corresponding labels for each precision value\n", + "labels = ['Precision1', 'Precision2', 'Precision2_1', 'Precision3', 'Precision4', 'Precision5', 'Precision6', 'Precision7', 'Precision8', 'Precision8_1', 'Precision9', 'Precision10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, precision_values, color='red')\n", + "plt.xlabel('Precision Variables')\n", + "plt.ylabel('Precision Values')\n", + "plt.title('Bar Graph of Precision')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "39LBleNeDeuw", + "outputId": "66c1cd08-96bb-46bb-afd3-7792e2b71345" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFVUlEQVR4nO3df3zO9eL/8ee1za7NMD83msUwSjKaH01Gq62hRDkSObZZOYo4dnxEYeQci/Krg/TD73OKQh3FEc1RiSizQsjv0WHzc2Njy/b+/uG767hs2DWba3t73G+363Zr773f1+u59/V2Xc/evy6LYRiGAAAATMLF2QEAAABKEuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGQLk1btw4WSwWnTp1qtTHWrNmjVq0aCEPDw9ZLBadO3eu1McsLRaLRePGjbP9vGDBAlksFh0+fNhpmYCSRLkByqD8D5urHz4+PgoLC9O///3v257n888/V9euXeXr6yt3d3dVr15dHTp00JQpU5SRkXHb89xup0+f1jPPPCNPT0/NmjVLixcvlpeXV6HzXvvaubm5yc/PT9HR0frtt99uc3LgzuTm7AAAru/1119XQECADMNQamqqFixYoC5duujzzz/XE088Uerj5+XlKTY2VgsWLND999+vl156Sf7+/jp//rw2b96s0aNHa/Xq1UpMTCz1LM70ww8/6Pz585owYYLCw8OLtEz+a3fp0iV9//33WrBggTZu3KidO3fKw8OjlBMDdzbKDVCGde7cWa1atbL9HBsbK19fX3300UclUm7y8vKUk5Nz3Q/byZMna8GCBRo2bJimTJkii8Vi+93QoUN1/PhxLVq06JbGKA/S0tIkSVWrVi3yMle/ds8//7xq1qypSZMmaeXKlXrmmWdKIyaA/4/DUkA5UrVqVXl6esrNzf7/S9566y21a9dONWrUkKenp4KDg7Vs2bICy1ssFg0ePFj//Oc/dd9998lqtWrNmjWFjpWVlaVJkybpvvvu05tvvmlXbPLVqVNHr7zySpHHKE7OJk2ayMPDQ8HBwfrmm28KzXru3DlFR0eratWq8vb2VkxMjLKysgpfidf45JNPFBwcLE9PT9WsWVN9+/a1O3z08MMPKyoqSpLUunVrWSwWRUdHF+m5rxYaGipJOnDggN30PXv26A9/+IOqV68uDw8PtWrVSitXriz0bxw2bJjq168vq9WqunXrql+/frbzjXJycjR27FgFBwfL29tbXl5eCg0N1X/+8x+HswLlHXtugDIsPT1dp06dkmEYSktL09///ndduHBBffv2tZtvxowZevLJJ/Xcc88pJydHS5YsUc+ePfXFF1/o8ccft5t3/fr1+vjjjzV48GDVrFlT9evXL3TsjRs36ty5cxo+fLhcXV0dyn29MRzJ+fXXX2vp0qUaMmSIrFarZs+erU6dOmnr1q1q1qyZ3bzPPPOMAgIClJCQoKSkJH3wwQfy8fHRpEmTbphzwYIFiomJUevWrZWQkKDU1FTNmDFD3333nbZv366qVavqtddeU5MmTfTee+/ZDjU1bNjQofUhyXaybrVq1WzTdu3apYceekh+fn4aOXKkvLy89PHHH6t79+5avny5nnrqKUnShQsXFBoaqt27d6t///564IEHdOrUKa1cuVLHjh1TzZo1lZGRoQ8++EC9e/fWCy+8oPPnz2vu3LmKjIzU1q1b1aJFC4czA+WWAaDMmT9/viGpwMNqtRoLFiwoMH9WVpbdzzk5OUazZs2MRx55xG66JMPFxcXYtWvXTTPMmDHDkGR89tlndtMvX75snDx50u6Rl5dXpDEcySnJ+PHHH23Tjhw5Ynh4eBhPPfWUbVp8fLwhyejfv7/d8k899ZRRo0aNG/59OTk5ho+Pj9GsWTPj4sWLtulffPGFIckYO3asbVr+6/HDDz/c8Dmvnverr74yTp48aRw9etRYtmyZUatWLcNqtRpHjx61zfvoo48a999/v3Hp0iXbtLy8PKNdu3ZGYGCgbdrYsWMNScaKFSsKjJe/7i9fvmxkZ2fb/e7s2bOGr69vgfUjyYiPjy+Q+dChQzf9+4DygMNSQBk2a9YsrVu3TuvWrdM//vEPhYWF6fnnn9eKFSvs5vP09LT999mzZ5Wenq7Q0FAlJSUVeM6OHTuqadOmNx07/yqoSpUq2U3fsWOHatWqZfc4ffp0kcZwJGdISIiCg4NtP999993q1q2bvvzyS+Xm5trNO3DgQLufQ0NDdfr06RteyfXjjz8qLS1NL730kt35QI8//rjuuecerVq16rrLFkV4eLhq1aolf39//eEPf5CXl5dWrlypunXrSpLOnDmj9evX65lnntH58+d16tQpnTp1SqdPn1ZkZKT27dtnOzy2fPlyBQUF2fbkXC3/cKGrq6vc3d0lXTnP6cyZM7p8+bJatWpV6PoFzIzDUkAZ1qZNG7sTinv37q2WLVtq8ODBeuKJJ2wfZl988YX++te/Kjk5WdnZ2bb5CztPJiAgoEhjV65cWdKVQyJXa9SokdatWydJWrRokRYvXlzkMRzJGRgYWGBa48aNlZWVpZMnT6p27dq26XfffbfdfPmHfs6ePasqVaoUmuXIkSOSpCZNmhT43T333KONGzcWulxRzZo1S40bN1Z6errmzZunb775Rlar1fb7/fv3yzAMjRkzRmPGjCn0OdLS0uTn56cDBw6oR48eNx1z4cKFmjJlivbs2aPff//dNr2orzlgFpQboBxxcXFRWFiYZsyYoX379um+++7Tt99+qyeffFIdOnTQ7NmzVadOHVWoUEHz58/Xhx9+WOA5rt57ciP33HOPJGnnzp3q1q2bbXqlSpVsl0NfrwAUNoajOR1xvXOCDMO4pee9FVcX0+7du6t9+/bq06eP9u7dq0qVKikvL0+SNHz4cEVGRhb6HI0aNSryeP/4xz8UHR2t7t276//+7//k4+MjV1dXJSQkFDiJGTA7yg1Qzly+fFnS//aoLF++XB4eHvryyy/t9gzMnz//lsYJDQ2Vt7e3lixZolGjRsnF5daOYjuac9++fQWm/frrr6pYsaJq1ap1S1kkqV69epKkvXv36pFHHrH73d69e22/Lwn5JSMsLEwzZ87UyJEj1aBBA0lShQoVbnrvnIYNG2rnzp03nGfZsmVq0KCBVqxYYbcnLD4+/tb/AKCc4ZwboBz5/ffftXbtWrm7u+vee++VdOWD02Kx2J2HcvjwYX322We3NFbFihU1YsQI7dy5UyNHjix0L4gje0Yczbl582a7c0WOHj2qf/3rX3rsscccvnqrMK1atZKPj4/mzJljd4js3//+t3bv3l3g6q1b9fDDD6tNmzaaPn26Ll26JB8fHz388MN69913dfz48QLznzx50vbfPXr00E8//aRPP/20wHz5r0H+Orn6NdmyZYs2b95con8HUB6w5wYow/79739rz549kq6cf/Hhhx9q3759GjlypO1ckscff1xTp05Vp06d1KdPH6WlpWnWrFlq1KiRfv7551saf+TIkdq9e7fefPNNrV27Vj169FDdunV19uxZJSUl6ZNPPpGPj0+RbtDnaM5mzZopMjLS7lJwSRo/fvwt/U35KlSooEmTJikmJkYdO3ZU7969bZeC169fX8OGDSuRca72f//3f+rZs6cWLFiggQMHatasWWrfvr3uv/9+vfDCC2rQoIFSU1O1efNmHTt2TD/99JNtuWXLlqlnz57q37+/goODdebMGa1cuVJz5sxRUFCQnnjiCa1YsUJPPfWUHn/8cR06dEhz5sxR06ZNC5w3BZieMy/VAlC4wi4F9/DwMFq0aGG88847dpdeG4ZhzJ071wgMDDSsVqtxzz33GPPnz7ddJn01ScagQYMczvPpp58aXbp0MWrVqmW4ubkZVatWNdq3b2+8+eabxrlz54o8hqM5//GPf9jmb9mypfGf//zHbr78ZU+ePGk33ZFLm5cuXWq0bNnSsFqtRvXq1Y3nnnvOOHbsWKHP58il4IXNm5ubazRs2NBo2LChcfnyZcMwDOPAgQNGv379jNq1axsVKlQw/Pz8jCeeeMJYtmyZ3bKnT582Bg8ebPj5+Rnu7u5G3bp1jaioKOPUqVOGYVy5JHzixIlGvXr1bOvriy++MKKioox69erZPZe4FBwmZzEMJ55xBwCFsFgsGjRokGbOnOnsKADKIc65AQAApkK5AQAApkK5AQAApsLVUgDKHE4FBHAr2HMDAABMhXIDAABM5Y47LJWXl6f//ve/qly5cqFf1gcAAMoewzB0/vx53XXXXTf9Opg7rtz897//lb+/v7NjAACAYjh69Kjq1q17w3nuuHJTuXJlSVdWTv7t6wEAQNmWkZEhf39/2+f4jdxx5Sb/UFSVKlUoNwAAlDNFOaWEE4oBAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpOLXcfPPNN+ratavuuusuWSwWffbZZzddZsOGDXrggQdktVrVqFEjLViwoNRzAgCA8sOp5SYzM1NBQUGaNWtWkeY/dOiQHn/8cYWFhSk5OVl//vOf9fzzz+vLL78s5aQAAKC8cOoXZ3bu3FmdO3cu8vxz5sxRQECApkyZIkm69957tXHjRk2bNk2RkZGlFRMAAJQj5eqcm82bNys8PNxuWmRkpDZv3uykRAAAoKxx6p4bR504cUK+vr5203x9fZWRkaGLFy/K09OzwDLZ2dnKzs62/ZyRkVHqOQEAgPOUqz03xZGQkCBvb2/bw9/f39mRnMLixEd5zAUAKL/KVbmpXbu2UlNT7aalpqaqSpUqhe61kaRRo0YpPT3d9jh69OjtiAoAKGH8jxCKqlwdlgoJCdHq1avtpq1bt04hISHXXcZqtcpqtZZ2NAAAyhRnFjPDiWNLTt5zc+HCBSUnJys5OVnSlUu9k5OTlZKSIunKXpd+/frZ5h84cKAOHjyoESNGaM+ePZo9e7Y+/vhjDRs2zBnxAZQDHPp0HOsL5Z1Ty82PP/6oli1bqmXLlpKkuLg4tWzZUmPHjpUkHT9+3FZ0JCkgIECrVq3SunXrFBQUpClTpuiDDz7gMnAAAGBjMQzD2XuPbquMjAx5e3srPT1dVapUcXac26as7p4sq7lgHmxjjnPWOrvZ+iqrucoqs237jnx+l6sTigEAAG6GcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEzFzdkBAAAozyxOHNtw4thlGeUGKGec9UZ6szfRspoLwJ2Hw1IAAMBUKDcAAMBUKDcAAMBUKDcAAMBUKDcAAMBUuFoKAJyAy4eB0sOeGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCpcLQUUgitZAKD8Ys8NAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFaeXm1mzZql+/fry8PBQ27ZttXXr1hvOP336dDVp0kSenp7y9/fXsGHDdOnSpduU9uYsTnoAAIArnFpuli5dqri4OMXHxyspKUlBQUGKjIxUWlpaofN/+OGHGjlypOLj47V7927NnTtXS5cu1auvvnqbkwMAgLLKqeVm6tSpeuGFFxQTE6OmTZtqzpw5qlixoubNm1fo/Js2bdJDDz2kPn36qH79+nrsscfUu3fvm+7tAQAAdw6nlZucnBxt27ZN4eHh/wvj4qLw8HBt3ry50GXatWunbdu22crMwYMHtXr1anXp0uW642RnZysjI8PuAQAAzMvNWQOfOnVKubm58vX1tZvu6+urPXv2FLpMnz59dOrUKbVv316GYejy5csaOHDgDQ9LJSQkaPz48SWaHQAAlF1OP6HYERs2bNDEiRM1e/ZsJSUlacWKFVq1apUmTJhw3WVGjRql9PR02+Po0aO3MTEAALjdnLbnpmbNmnJ1dVVqaqrd9NTUVNWuXbvQZcaMGaM//vGPev755yVJ999/vzIzMzVgwAC99tprcnEp2NWsVqusVmvJ/wEAAKBMctqeG3d3dwUHBysxMdE2LS8vT4mJiQoJCSl0maysrAIFxtXVVZJkGEbphQUAAOWG0/bcSFJcXJyioqLUqlUrtWnTRtOnT1dmZqZiYmIkSf369ZOfn58SEhIkSV27dtXUqVPVsmVLtW3bVvv379eYMWPUtWtXW8kBAAB3NqeWm169eunkyZMaO3asTpw4oRYtWmjNmjW2k4xTUlLs9tSMHj1aFotFo0eP1m+//aZatWqpa9eu+tvf/uasPwEAAJQxFuMOO56TkZEhb29vpaenq0qVKiX+/M66W/DNXkRn3sX4RtnIVVBZfS3J5Ti2MceQy3HldRsrDkc+v8vV1VIAAAA3Q7kBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACm4nC5uXjxorKysmw/HzlyRNOnT9fatWtLNBgAAEBxOFxuunXrpkWLFkmSzp07p7Zt22rKlCnq1q2b3nnnnRIPCAAA4AiHy01SUpJCQ0MlScuWLZOvr6+OHDmiRYsW6e233y7xgAAAAI5wuNxkZWWpcuXKkqS1a9fq6aeflouLix588EEdOXKkxAMCAAA4wuFy06hRI3322Wc6evSovvzySz322GOSpLS0NFWpUqXEAwIAADjC4XIzduxYDR8+XPXr11ebNm0UEhIi6cpenJYtW5Z4QAAAAEdYDMMwHF3oxIkTOn78uIKCguTicqUfbd26VVWqVNE999xT4iFLUkZGhry9vZWenl4qe5osJf6MRXOzF9FZuaQbZyNXQWX1tSSX49jGHEMux5XXbaw4HPn8LtZ9bmrXrq3KlStr3bp1unjxoiSpdevWZb7YAAAA83O43Jw+fVqPPvqoGjdurC5duuj48eOSpNjYWP3lL38p8YAAAACOcLjcDBs2TBUqVFBKSooqVqxom96rVy+tWbOmRMMBAAA4ys3RBdauXasvv/xSdevWtZseGBjIpeAAAMDpHN5zk5mZabfHJt+ZM2dktVpLJBQAAEBxOVxuQkNDbV+/IEkWi0V5eXmaPHmywsLCSjQcAACAoxwuN5MnT9Z7772nzp07KycnRyNGjFCzZs30zTffaNKkSQ4HmDVrlurXry8PDw+1bdtWW7duveH8586d06BBg1SnTh1ZrVY1btxYq1evdnhcAABgTg6Xm2bNmunXX39V+/bt1a1bN2VmZurpp5/W9u3b1bBhQ4eea+nSpYqLi1N8fLySkpIUFBSkyMhIpaWlFTp/Tk6OIiIidPjwYS1btkx79+7V+++/Lz8/P0f/DAAAYFLFuolfSWnbtq1at26tmTNnSpLy8vLk7++vl19+WSNHjiww/5w5c/Tmm29qz549qlChQrHG5CZ+t195vMlUWc0lsY1dq6zmktjGHEUux5XXbaw4HPn8dvhqqW+++eaGv+/QoUORnicnJ0fbtm3TqFGjbNNcXFwUHh6uzZs3F7rMypUrFRISokGDBulf//qXatWqpT59+uiVV16Rq6troctkZ2crOzvb9nNGRkaR8gEAgPLJ4XLz8MMPF5hmsfyvH+bm5hbpeU6dOqXc3Fz5+vraTff19dWePXsKXebgwYNav369nnvuOa1evVr79+/XSy+9pN9//13x8fGFLpOQkKDx48cXKRMAACj/HD7n5uzZs3aPtLQ0rVmzRq1bt9batWtLI6NNXl6efHx89N577yk4OFi9evXSa6+9pjlz5lx3mVGjRik9Pd32OHr0aKlmBAAAzuXwnhtvb+8C0yIiIuTu7q64uDht27atSM9Ts2ZNubq6KjU11W56amqqateuXegyderUUYUKFewOQd177706ceKEcnJy5O7uXmAZq9XK/XcAALiDFOuLMwvj6+urvXv3Fnl+d3d3BQcHKzEx0TYtLy9PiYmJCgkJKXSZhx56SPv371deXp5t2q+//qo6deoUWmwAAMCdx+E9Nz///LPdz4Zh6Pjx43rjjTfUokULh54rLi5OUVFRatWqldq0aaPp06crMzNTMTExkqR+/frJz89PCQkJkqQXX3xRM2fO1NChQ/Xyyy9r3759mjhxooYMGeLonwEAAEzK4XLTokULWSwWXXsF+YMPPqh58+Y59Fy9evXSyZMnNXbsWJ04cUItWrTQmjVrbCcZp6SkyMXlfzuX/P399eWXX2rYsGFq3ry5/Pz8NHToUL3yyiuO/hkAAMCkHL7PzbVfjuni4qJatWrJw8OjRIOVFu5zc/uVx/swlNVcEtvYtcpqLoltzFHkclx53caKo1Tvc1OvXr1iBwMAAChtRSo3b7/9dpGfkPNfAACAMxXpsFRAQEDRnsxi0cGDB285VGnisNTtVx53m5bVXBLb2LXKai6JbcxR5HJced3GiqPED0sdOnSoRIIBAACUthK7zw0AAEBZ4PAJxZJ07NgxrVy5UikpKcrJybH73dSpU0skGAAAQHE4XG4SExP15JNPqkGDBtqzZ4+aNWumw4cPyzAMPfDAA6WREQAAoMgcPiw1atQoDR8+XDt27JCHh4eWL1+uo0ePqmPHjurZs2dpZAQAACgyh8vN7t271a9fP0mSm5ubLl68qEqVKun111/XpEmTSjwgAACAIxwuN15eXrbzbOrUqaMDBw7Yfnfq1KmSSwYAAFAMDp9z8+CDD2rjxo2699571aVLF/3lL3/Rjh07tGLFCj344IOlkREAAKDIilxuzpw5o+rVq2vq1Km6cOGCJGn8+PG6cOGCli5dqsDAQK6UAgAATlfkL8708PBQ9+7dFRsbq4iIiNLOVWq4Q/HtVx7voFlWc0lsY9cqq7kktjFHkctx5XUbKw5HPr+LfM7N+++/r5MnT6pTp06qX7++xo0bp8OHD99qVgAAgBJV5HLzxz/+UYmJidq/f7+ioqK0cOFCNWrUSBEREVq6dGmBm/kBAAA4g8NXSwUEBGj8+PE6dOiQ1qxZIx8fH/Xv31916tThG8EBAIDTFfmcmxtZvny5BgwYoHPnzik3N7ckcpUazrm5/crjMeGymktiG7tWWc0lsY05ilyOK6/bWHGU+LeCF+bIkSOaP3++Fi5cqKNHjyosLEyxsbHFfToAAIAS4VC5yc7O1vLlyzVv3jxt2LBBfn5+io6OVkxMjOrXr19KEQEAAIquyOXmpZde0pIlS5SVlaVu3bpp9erVioiIkMXizB1fAAAA9opcbjZu3Kj4+Hj17dtXNWrUKM1MAAAAxVbkcvPzzz+XZg4AAIAS4fCl4AAAAGUZ5QYAAJgK5QYAAJgK5QYAAJhKkU4oduRk4ubNmxc7DAAAwK0qUrlp0aKFLBaLrvdNDfm/s1gsZf7rFwAAgLkVqdwcOnSotHMAAACUiCKVm3r16pV2DgAAgBJRpHKzcuXKIj/hk08+WewwAAAAt6pI5aZ79+5FejLOuQEAAM5WpHKTl5dX2jkAAABKBPe5AQAAplLkL868WmZmpr7++mulpKQoJyfH7ndDhgwpkWAAAADF4XC52b59u7p06aKsrCxlZmaqevXqOnXqlCpWrCgfHx/KDQAAcCqHD0sNGzZMXbt21dmzZ+Xp6anvv/9eR44cUXBwsN56663SyAgAAFBkDpeb5ORk/eUvf5GLi4tcXV2VnZ0tf39/TZ48Wa+++mppZAQAACgyh8tNhQoV5OJyZTEfHx+lpKRIkry9vXX06NGSTQcAAOAgh8+5admypX744QcFBgaqY8eOGjt2rE6dOqXFixerWbNmpZERAACgyBzeczNx4kTVqVNHkvS3v/1N1apV04svvqiTJ0/q3XffLfGAAAAAjrAY1/uqb5PKyMiQt7e30tPTVaVKlRJ/fkuJP2PR3OxFdFYu6cbZyFVQWX0tyeU4tjHHkMtx5XUbKw5HPr8d3nNz6NAh7du3r8D0ffv26fDhw44+HQAAQIlyuNxER0dr06ZNBaZv2bJF0dHRJZEJAACg2BwuN9u3b9dDDz1UYPqDDz6o5OTkksgEAABQbA6XG4vFovPnzxeYnp6ezjeCAwAAp3O43HTo0EEJCQl2RSY3N1cJCQlq3759iYYDAABwlMP3uZk0aZI6dOigJk2aKDQ0VJL07bffKiMjQ+vXry/xgAAAAI5weM9N06ZN9fPPP+uZZ55RWlqazp8/r379+mnPnj3cxA8AADgd97kpYdyHoaDyeB+GsppLYhu7VlnNJbGNOYpcjiuv21hxlOp9bqQrh6H69u2rdu3a6bfffpMkLV68WBs3bizO0wEAAJQYh8vN8uXLFRkZKU9PTyUlJSk7O1vSlaulJk6cWOIBAQAAHOFwufnrX/+qOXPm6P3331eFChVs0x966CElJSWVaDgAAABHOVxu9u7dqw4dOhSY7u3trXPnzpVEJgAAgGJzuNzUrl1b+/fvLzB948aNatCgQYmEAgAAKC6Hy80LL7ygoUOHasuWLbJYLPrvf/+rf/7znxo+fLhefPHF0sgIAABQZA7fxG/kyJHKy8vTo48+qqysLHXo0EFWq1XDhw/Xyy+/XBoZAQAAiqzY97nJycnR/v37deHCBTVt2lSVKlXSxYsX5enpWdIZSxT3ubn9yuN9GMpqLolt7FplNZfENuYocjmuvG5jxVHq97mRJHd3dzVt2lRt2rRRhQoVNHXqVAUEBBT36QAAAEpEkctNdna2Ro0apVatWqldu3b67LPPJEnz589XQECApk2bpmHDhpVWTgAAgCIpcrkZO3as3nnnHdWvX1+HDx9Wz549NWDAAE2bNk1Tp07V4cOH9corrxQrxKxZs1S/fn15eHiobdu22rp1a5GWW7JkiSwWi7p3716scQEAgPkUudx88sknWrRokZYtW6a1a9cqNzdXly9f1k8//aRnn31Wrq6uxQqwdOlSxcXFKT4+XklJSQoKClJkZKTS0tJuuNzhw4c1fPhw2zeTAwAASA6Um2PHjik4OFiS1KxZM1mtVg0bNkwWy62dsjR16lS98MILiomJUdOmTTVnzhxVrFhR8+bNu+4yubm5eu655zR+/HjurQMAAOwUudzk5ubK3d3d9rObm5sqVap0S4Pn5ORo27ZtCg8P/18gFxeFh4dr8+bN113u9ddfl4+Pj2JjY286RnZ2tjIyMuweAADAvIp8nxvDMBQdHS2r1SpJunTpkgYOHCgvLy+7+VasWFHkwU+dOqXc3Fz5+vraTff19dWePXsKXWbjxo2aO3eukpOTizRGQkKCxo8fX+RMAACgfCtyuYmKirL7uW/fviUe5mbOnz+vP/7xj3r//fdVs2bNIi0zatQoxcXF2X7OyMiQv79/aUUEAABOVuRyM3/+/BIfvGbNmnJ1dVVqaqrd9NTUVNWuXbvA/AcOHNDhw4fVtWtX27S8vDxJVw6T7d27Vw0bNrRbxmq12vY2AQAA8yv2TfxKgru7u4KDg5WYmGiblpeXp8TERIWEhBSY/5577tGOHTuUnJxsezz55JMKCwtTcnIye2QAAIDj3y1V0uLi4hQVFaVWrVqpTZs2mj59ujIzMxUTEyNJ6tevn/z8/JSQkCAPDw81a9bMbvmqVatKUoHpAADgzuT0ctOrVy+dPHlSY8eO1YkTJ9SiRQutWbPGdpJxSkqKXFycuoMJAACUI8X+4szyii/OvP3K4xe7ldVcEtvYtcpqLoltzFHkclx53caK47Z8cSYAAEBZRLkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmUibKzaxZs1S/fn15eHiobdu22rp163Xnff/99xUaGqpq1aqpWrVqCg8Pv+H8AADgzuL0crN06VLFxcUpPj5eSUlJCgoKUmRkpNLS0gqdf8OGDerdu7f+85//aPPmzfL399djjz2m33777TYnBwAAZZHFMAzDmQHatm2r1q1ba+bMmZKkvLw8+fv76+WXX9bIkSNvunxubq6qVaummTNnql+/fjedPyMjQ97e3kpPT1eVKlVuOf+1LCX+jEVzsxfRWbmkG2cjV0Fl9bUkl+PYxhxDLseV122sOBz5/HbqnpucnBxt27ZN4eHhtmkuLi4KDw/X5s2bi/QcWVlZ+v3331W9evVCf5+dna2MjAy7BwAAMC+nlptTp04pNzdXvr6+dtN9fX114sSJIj3HK6+8orvuusuuIF0tISFB3t7etoe/v/8t5wYAAGWX08+5uRVvvPGGlixZok8//VQeHh6FzjNq1Cilp6fbHkePHr3NKQEAwO3k5szBa9asKVdXV6WmptpNT01NVe3atW+47FtvvaU33nhDX331lZo3b37d+axWq6xWa4nkBQAAZZ9T99y4u7srODhYiYmJtml5eXlKTExUSEjIdZebPHmyJkyYoDVr1qhVq1a3IyoAACgnnLrnRpLi4uIUFRWlVq1aqU2bNpo+fboyMzMVExMjSerXr5/8/PyUkJAgSZo0aZLGjh2rDz/8UPXr17edm1OpUiVVqlTJaX8HAAAoG5xebnr16qWTJ09q7NixOnHihFq0aKE1a9bYTjJOSUmRi8v/djC98847ysnJ0R/+8Ae754mPj9e4ceNuZ3QAAFAGOf0+N7cb97m5/crjfRjKai6JbexaZTWXxDbmKHI5rrxuY8VRbu5zAwAAUNIoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFTKRLmZNWuW6tevLw8PD7Vt21Zbt2694fyffPKJ7rnnHnl4eOj+++/X6tWrb1NSAABQ1jm93CxdulRxcXGKj49XUlKSgoKCFBkZqbS0tELn37Rpk3r37q3Y2Fht375d3bt3V/fu3bVz587bnBwAAJRFFsMwDGcGaNu2rVq3bq2ZM2dKkvLy8uTv76+XX35ZI0eOLDB/r169lJmZqS+++MI27cEHH1SLFi00Z86cm46XkZEhb29vpaenq0qVKiX3h/x/lhJ/xqK52YvorFzSjbORq6Cy+lqSy3FsY44hl+PK6zZWHI58fjt1z01OTo62bdum8PBw2zQXFxeFh4dr8+bNhS6zefNmu/klKTIy8rrzAwCAO4ubMwc/deqUcnNz5evrazfd19dXe/bsKXSZEydOFDr/iRMnCp0/Oztb2dnZtp/T09MlXWmAZlKW/5qymo1cjiGX48pqNnI5pqzmksputtLIlf+5XZQDTk4tN7dDQkKCxo8fX2C6v7+/E9KUHm9nB7iBspqNXI4hl+PKajZyOaas5pLKbrbSzHX+/Hl5e994BKeWm5o1a8rV1VWpqal201NTU1W7du1Cl6ldu7ZD848aNUpxcXG2n/Py8nTmzBnVqFFDFoszj0jay8jIkL+/v44ePVoq5wIVV1nNJZXdbORyDLkcV1azkcsx5HKMYRg6f/687rrrrpvO69Ry4+7uruDgYCUmJqp79+6SrpSPxMREDR48uNBlQkJClJiYqD//+c+2aevWrVNISEih81utVlmtVrtpVatWLYn4paJKlSplamPKV1ZzSWU3G7kcQy7HldVs5HIMuYruZnts8jn9sFRcXJyioqLUqlUrtWnTRtOnT1dmZqZiYmIkSf369ZOfn58SEhIkSUOHDlXHjh01ZcoUPf7441qyZIl+/PFHvffee878MwAAQBnh9HLTq1cvnTx5UmPHjtWJEyfUokULrVmzxnbScEpKilxc/ndRV7t27fThhx9q9OjRevXVVxUYGKjPPvtMzZo1c9afAAAAyhCnlxtJGjx48HUPQ23YsKHAtJ49e6pnz56lnOr2slqtio+PL3AIzdnKai6p7GYjl2PI5biymo1cjiFX6XH6TfwAAABKktO/fgEAAKAkUW4AAICpUG4AAICpUG7KGYvFos8++0ySdPjwYVksFiUnJzs1Uz5nZSvL6+RGympucjmurGYjV9kY91aVldxlJUdRUG4cEB0dLYvFIovFogoVKiggIEAjRozQpUuXnB3NLlv+w8fHp9SzXT2uJP3pT3/SiBEj7L7PS5J++ukn9e7dW/7+/vL09NS9996rGTNmlGq2G41b1Nfy+PHj6tOnjxo3biwXFxe7m0eWhrFjx9pyubi4yM3NTa6urqpbt64GDx7stO9EuzpX/vp6+eWX5efnJ4vFonPnzjkll1T4tp//WLJkidNyXbvOatWqpVq1aslqtcrHx0eDBg1yeq7rPdLS0kp83KK+V0jSDz/8oEcffVRVq1ZVtWrVFBkZqZ9++qnEMxVl3CeffLJI7xWXLl1SdHS07r//frm5udluTFtS3n77bVksFgUEBEiSHn/8cVuOxMREtWvXTpUrV1bt2rX1yiuv6PLlyyU6flEMGTJEwcHBslqtatGiRaHz/PzzzwoNDZWHh4f8/f01efLkUslCuXFQp06ddPz4cR08eFDTpk3Tu+++q/j4eGfHknQlW//+/TVhwgR17NhRp0+fvi3Z8teJJPXv31/vvvuupk2bZjfPtm3b5OPjo3/84x/atWuXXnvtNY0aNUozZ84s1WzXG3f37t1Fei2zs7NVq1YtjR49WkFBQaWaNV+nTp20e/duTZgwQW+88Ya8vLzUvn17ffXVVxo4cOBtyXC9XFevrzlz5pSZS0U7deokSXrrrbc0b948Va5cWYMGDSrxD5ji5Dp+/LhGjhyp3NxcZWZmKjo6Wl999ZUiIyOdmuvgwYP68ccf7dZXZGSkOnbsKB8fn1Ib92bvFRcuXFCnTp109913a8uWLdq4caMqV66syMhI/f7776WS60bjrlu3TpGRkTd9r8jNzZWnp6eGDBmi8PDwUsnYqVMnbd26VZI0fPhwvfvuu3rxxRfVpUsXderUSdu3b9fSpUu1cuVKjRw5slQy3Ez//v3Vq1evQn+XkZGhxx57TPXq1dO2bdv05ptvaty4caVyE17KjYOsVqtq164tf39/de/eXeHh4Vq3bp2kK18dkZCQoICAAHl6eiooKEjLli2zW37Xrl164oknVKVKFVWuXFmhoaE6cOCApCv/1xAREaGaNWvK29tbHTt2VFJSkkPZ5s6dq9GjR+vhhx+2/cMs7Wz560SS2rZtq/DwcG3cuNFu3AkTJui9997TkCFDlJSUpL59+yomJkYrVqwo1XXSv39/zZgxQx07dlSDBg1s46akpBTptQwLC9N7772nKVOmKCcn57a8llarVffcc49ee+01DR8+XBEREfr111/10ksv6ZtvvnHaNnb1+jp+/LiqVq0qV1dXu/XlzG1fkho2bKiYmBhFRERo06ZN8vDwcGq2/K9/mTJlij755BN17txZP/zwg5o3b64nnnjCqbkCAgIUHBxsW1/ffPON1q9fr5iYGKe+VzRp0kRnzpzRli1btGPHDt13332Kj49Xamqqvvrqq1Lbhvbs2aMzZ87o9ddfV5MmTWzjXrp0Sbm5uTd9r2jWrJkWLFigmTNnFtirU1Kvo9VqVa1atSRJYWFhCg8P17///W81b95co0eP1ieffKLo6GgdPHhQU6dO1eLFi0slx/W8/fbbGjRokBo0aFDo7//5z38qJydH8+bN03333adnn31WQ4YM0dSpUx0apygoN7dg586d2rRpk9zd3SVd+QbyRYsWac6cOdq1a5eGDRumvn376uuvv5Yk/fbbb+rQoYOsVqvWr1+vbdu2qX///rbdh+fPn1dUVJQ2btyo77//XoGBgerSpYvOnz/vcLa0tDRlZmaWerZr/0/qyJEj2rRpkypUqCBJmjdv3nXHTU9Pl6en521bJ/nS09ML7HEoymu5e/duHTt27JbWl6O583NJ0ooVK1SzZk2nb2O//PKLxowZY9tNL0lTp051ei5JGjRokKpWrarPP/9c6enpMgzD6f8u161bp7y8PG3ZskX/+te/tHPnTj3zzDMaOXJkmVhn+dtYenq6KlasqEOHDjn1vWLmzJmqWrWqGjdurL59+2rt2rWaO3euGjVqpL59+5ba+mjSpIlq1KihuXPnKicnRxcvXtTcuXPl7e2tihUrFlhfN3qv+Pbbb3Xq1KlSfR3379+vTZs2yWKxyMPDwy7HBx98IMMwFBsb65TPn+vZvHmzOnToYFt3khQZGam9e/fq7NmzJTaOJMlAkUVFRRmurq6Gl5eXYbVaDUmGi4uLsWzZMuPSpUtGxYoVjU2bNtktExsba/Tu3dswDMMYNWqUERAQYOTk5BRpvNzcXKNy5crG559/bpsmyfj0008NwzCMQ4cOGZKM7du3F5pNUqlne+SRR2zj5o/p4uJizJ4925BkeHh4FDpuRESE4ebmZvTq1avU1klhvvvuO8PNzc2IiIhw+LWsXbu20bhx41taXzfL3bVr10JfR0lGly5dnLaNXZ3LYrHY1te4ceMMSWVi23d3dzfc3d0NSYbFYjHc3NyMKVOmOH2d5WfKX2cTJ040wsLCDIvFYnz99ddOy3Xttu/n52cMGDCgTLxX7Nixw2jYsKFtviZNmhgvvfRSqb9X5I/r4uJiuLi4GE2aNDF69Ojh8HtFYGCg4efnd0vr69rcYWFhhqurq1GxYkW79Td69GjDYrEYVqvV+Pbbb41jx44ZoaGhhiTj4Ycfvi3/Bq8VHx9vBAUFFZgeERFhDBgwwG7arl27DEnGL7/8UqRcRVUmvn6hPAkLC9M777yjzMxMTZs2TW5uburRo4d27dqlrKwsRURE2M2fk5Ojli1bSpKSk5MVGhpq+z+Va6Wmpmr06NHasGGD0tLSlJubq6ysLKWkpDicLSoqSkePHi31bJmZmbZxAwMDFRYWpgYNGqhz586Srpxkd+24+ScQxsfHa9OmTaW6Tq62c+dOdevWTfHx8dq/f7/Dr2VWVpaM/39D79J8La/ONXHiROXm5qpfv34aNmyYU7exsLAw+fv767ffflOdOnXk5uamjh072tZNWdn281/Lu+66S5MnT3b6OmvevLmmTp2qiIgI3X333Ro1apTat2+vDh06KDIy0nZo73bnunp9nTlzRp9//rkeffRRvffee05/r7h48aLthPrGjRvr3nvv1aJFi9StW7dS24YuXryo2NhYPfTQQ/roo4+Um5urt956S4mJierYsaPefffdIr9XXLx40fZt2iX5OoaFhem1115TWFiYunbtKh8fH02YMEHZ2dl68803FRoaKkm2PSPffvutgoODSzxHeUC5cZCXl5caNWok6cpu1KCgIM2dO9f2xZ2rVq2Sn5+f3TL5h0A8PT1v+NxRUVE6ffq0ZsyYoXr16slqtSokJKTAuR5FydatWzdNnjy51LPl5eXZjTt48GDFx8dr6dKltmWvHnffvn3q27ev+vTpo9GjR6tHjx6luk7y/fLLL3r00Uc1YMAAjR49WtHR0Q6/ls8995ztd6X5Wl6d66OPPlJQUJBOnjypESNGaODAgVq0aJGaN29ut8zt2Ma8vLyUlJSkHTt2SLpyrsG8efNsv+/Ro4fGjBlz23PlZ7v2tXzkkUeUmpoqyXn/Lr28vGzbzAcffKDHH3/cbhsbNGhQgZPEb1euq9dXzZo15e/vr3r16kly7nvFd999pylTpmjz5s1ycXGR1WqVr6+vKlaseMMP2lvdhj788EMdPnzYNm7+tIoVKyojI8Oh94oRI0YoMzPzltZXYbm9vLxUv359SdK4ceMUFRWluXPnqkePHnrzzTe1bNkyNWnSRMeOHVPnzp318ccfq3Xr1iWeo7hq165t+zeZL//n/HOxSgrl5ha4uLjo1VdfVVxcnH799VdZrValpKTY/m/2Ws2bN9fChQv1+++/F9qev/vuO82ePVtdunSRJB09etR23NZR+ZeCjx49ulSz5V+WmC9/nQwdOlTSlf+DyB93165dio6OVmxsrO3yv9uxTnbt2qVHHnlEUVFR+tvf/lboPEV5LT09PVW5cuXblvvaXPPnz5d05f4STz/9dKHzl3au5cuX6+LFi5Kk1atXa+LEiUpPT5e7u7vatGlj+wC43bmulr/OBgwYoKpVq+rixYtO/Xf50EMPSbpS7PNfy++//96W1dnrLCsrS1lZWcrNzVXTpk2d/l5RuXJlubu7KzAw0HbZ+OXLl+Xi4qI9e/aU2vrIysqSi4uLbcz8jBaLxbbH9urcN3qvqFKlivLy8m5pfd1MYTmysrLUrFkzffzxx/L391e3bt1sewZv57/B6wkJCdFrr71ml2HdunVq0qSJqlWrVqJjcULxLerZs6dcXV317rvvavjw4Ro2bJgWLlyoAwcOKCkpSX//+9+1cOFCSbLdp+TZZ5/Vjz/+qH379mnx4sXau3evJCkwMFCLFy/W7t27tWXLFj333HM3bdvX2r9/v5KTk3XixAlZrVbl5eUpPj5ew4YNu23Z8teJJNvhlL/97W/q0KGDgoOD5e3trbffflsnTpzQs88+W6rrZOfOnQoLC9Njjz2muLg4nThxQidOnCj0/j/Xey0///xzffTRRzp48KC2bNmi5ORkRURElGru1atXa/78+dq5c6dat26t33//XVFRUapbt64mTpzotG2sYcOGatasmZo1a6a4uDjbG9TLL7+s+Ph4p+U6ceKEPvjgA+3cuVP79+/X6dOnlZmZqVatWjn932Xjxo3VrVs3DR06VH5+fsrLy1Pnzp1Vs2ZNzZs3z6nvF5Jse04qVap029/HCnuvyMzM1JkzZ/TMM8/otdde08SJExUTEyMPDw9dvny51NZHRESEzp49q0GDBmn37t3atWuXYmJiZLFYVLNmzUJzX7u+1qxZo48++kjbtm3T3r17lZycrI4dO5ba65ifo3fv3urXr5+GDBmip59+WgkJCRo6dKhmz57ttM+fixcvKjk5WcnJyba9P3369JG7u7tiY2O1a9cuLV26VDNmzFBcXJxD4xRJiZ7BY3JRUVFGt27dCkxPSEgwatWqZVy4cMGYPn260aRJE6NChQpGrVq1jMjISLuTBn/66SfjscceMypWrGhUrlzZCA0NNQ4cOGAYhmEkJSUZrVq1Mjw8PIzAwEDjk08+MerVq2dMmzbNtrxucFJlt27djI4dO9qdhJr/2LVrV6lka926tW2dXJ1txIgRhiRj06ZNxvTp040aNWoUmqtevXqltk4M48qJbYWN6+XlVeTX8nbm7tq1q9GtWzdj/fr1RkhIiOHt7W14eHgYNWrUMCpWrGgcO3bMKdtYfq5rvfDCC4Ykp+XK3/ZDQkKMFi1aGJUqVTK8vLyMoKAgo3v37k79d3n1OktPTzf69+9vVK1a1fD09DTc3d2NPXv2OD2XYRhGSEiI0adPn1J/Hyvqe0WTJk0MNzc3o0KFCoabm5tRqVIl45FHHjE2b95cqu8VhmEYa9euNR566CHD29vbqFatmvHII48YXbp0uaX3CkklkjssLMzo1q1bgdwJCQlGhQoVjCpVqhhubm6Gh4eH4ebmdlv/Dea73ufPoUOH7DK0b9/esFqthp+fn/HGG28UWLclwfL/AwMAAJgCh6UAAICpUG5wR7vvvvtUqVKlQh///Oc/nR0PQBnRuXPn675XTJw40dnxcA0OS+GOduTIket+X42vr6/t6igAd7bffvvNdqXgtapXr67q1avf5kS4EcoNAAAwFQ5LAQAAU6HcAAAAU6HcAAAAU6HcAHA6i8Wizz77TNKVr5ewWCxKTk6+7TmKM3Z0dLS6d+9+w3kefvhh/fnPf76lbACKjnID3MGio6NlsVhksVhUoUIFBQQEaMSIEYV+PUVZcf/99xf4ssl8ixcvltVqLfZ34vj7++v48eO2L0QEUD5RboA7XKdOnXT8+HEdPHhQ06ZN07vvvqv4+Hhnx7qu2NhYLVmypNDLcufPn68nn3yywHcBFUVOTo5cXV1Vu3ZtubnxncJAeUa5Ae5wVqtVtWvXlr+/v7p3767w8HCtW7fO9vu8vDwlJCQoICBAnp6eCgoK0rJly+yeY9euXXriiSdUpUoVVa5cWaGhoTpw4IAk6YcfflBERIRq1qwpb29vdezYUUlJScXO27dvX128eFHLly+3m37o0CFt2LBBsbGxOnDggLp16yZfX19VqlRJrVu31ldffWU3f/369TVhwgT169dPVapU0YABAwoclsrNzVVsbKztb2/SpIlmzJhRaK7x48erVq1aqlKligYOHGj7ssDCZGdna/jw4fLz85OXl5fatm2rDRs22H5/5MgRde3aVdWqVZOXl5fuu+8+rV69ungrDLgDUW4A2OzcuVObNm2Su7u7bVpCQoIWLVqkOXPmaNeuXRo2bJj69u2rr7/+WtKVm5t16NBBVqtV69ev17Zt29S/f39dvnxZknT+/HlFRUVp48aN+v777xUYGKguXbro/PnzxcpYs2ZNdevWTfPmzbObvmDBAtWtW1ePPfaYLly4oC5duigxMVHbt29Xp06d1LVrV6WkpNgt89ZbbykoKEjbt2/XmDFjCoyVl5enunXr6pNPPtEvv/yisWPH6tVXX9XHH39sN19iYqJ2796tDRs26KOPPtKKFSs0fvz46/4NgwcP1ubNm7VkyRL9/PPP6tmzpzp16qR9+/ZJkgYNGqTs7Gx988032rFjhyZNmqRKlSoVa30Bd6RS+TpOAOVCVFSU4erqanh5eRlWq9WQZLi4uBjLli0zDMMwLl26ZFSsWNHYtGmT3XKxsbFG7969DcMwjFGjRhkBAQFGTk5OkcbMzc01KleubHz++ee2abrJtw1fa82aNYbFYjEOHjxoGIZh5OXlGfXq1TNGjx593WXuu+8+4+9//7vt53r16hndu3e3m6coYw8aNMjo0aOH7eeoqCijevXqRmZmpm3aO++8Y1SqVMnIzc01DOPKtyUPHTrUMAzDOHLkiOHq6mr89ttvds/76KOPGqNGjTIMwzDuv/9+Y9y4cdfNAODGOLAM3OHCwsL0zjvvKDMzU9OmTZObm5t69OghSdq/f7+ysrIUERFht0xOTo5atmwpSUpOTlZoaKgqVKhQ6POnpqZq9OjR2rBhg9LS0pSbm6usrKwCe1EcERERobp162r+/Pl6/fXXlZiYqJSUFMXExEiSLly4oHHjxmnVqlU6fvy4Ll++rIsXLxYYs1WrVjcda9asWZo3b55SUlJ08eJF5eTkqEWLFnbzBAUFqWLFirafQ0JCdOHCBR09elT16tWzm3fHjh3Kzc1V48aN7aZnZ2erRo0akqQhQ4boxRdf1Nq1axUeHq4ePXqoefPmRV4/wJ2OcgPc4by8vNSoUSNJ0rx58xQUFKS5c+cqNjZWFy5ckCStWrVKfn5+dstZrVZJkqen5w2fPyoqSqdPn9aMGTNUr149Wa1WhYSE3PCclJtxcXFRdHS0Fi5cqHHjxmn+/PkKCwtTgwYNJEnDhw/XunXr9NZbb6lRo0by9PTUH/7whwJjenl53XCcJUuWaPjw4ZoyZYpCQkJUuXJlvfnmm9qyZUuxs1+4cEGurq7atm2bXF1d7X6Xf+jp+eefV2RkpFatWqW1a9cqISFBU6ZM0csvv1zscYE7CeUGgI2Li4teffVVxcXFqU+fPmratKmsVqtSUlLUsWPHQpdp3ry5Fi5cqN9//73QvTffffedZs+erS5dukiSjh49WuxLta8WExOjv/71r1qxYoU+/fRTffDBB3ZjRkdH66mnnpJ0pVAcPnzY4TG+++47tWvXTi+99JJtWv6J0lf76aefdPHiRVvR+/7771WpUiX5+/sXmLdly5bKzc1VWlqaQkNDrzu2v7+/Bg4cqIEDB2rUqFF6//33KTdAEXFCMQA7PXv2lKurq2bNmqXKlStr+PDhGjZsmBYuXKgDBw4oKSlJf//737Vw4UJJV06OzcjI0LPPPqsff/xR+/bt0+LFi7V3715JUmBgoBYvXqzdu3dry5Yteu655266t6coAgIC9Mgjj2jAgAGyWq16+umnbb8LDAzUihUrlJycrJ9++kl9+vRRXl6ew2MEBgbqxx9/1Jdffqlff/1VY8aM0Q8//FBgvpycHMXGxuqXX37R6tWrFR8fr8GDB8vFpeBbbOPGjfXcc8+pX79+WrFihQ4dOqStW7cqISFBq1atkiT9+c9/1pdffqlDhw4pKSlJ//nPf3Tvvfc6nB+4U1FuANhxc3PT4MGDNXnyZGVmZmrChAkaM2aMEhISdO+996pTp05atWqVAgICJEk1atTQ+vXrdeHCBXXs2FHBwcF6//33bXtx5s6dq7Nnz+qBBx7QH//4Rw0ZMkQ+Pj4lkjU2NlZnz55Vnz595OHhYZs+depUVatWTe3atVPXrl0VGRmpBx54wOHn/9Of/qSnn35avXr1Utu2bXX69Gm7vTj5Hn30UQUGBqpDhw7q1auXnnzySY0bN+66zzt//nz169dPf/nLX9SkSRN1795dP/zwg+6++25JVy5BHzRokG19N27cWLNnz3Y4P3CnshiGYTg7BAAAQElhzw0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADCV/wcuiWwhrgYr0QAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of recall values from recall1 to recall10\n", + "recall_values = [recall1, recall2, recall2_1, recall3, recall4, recall5, recall6, recall7, recall8, recall8_1, recall9, recall10]\n", + "\n", + "# List of corresponding labels for each recall value\n", + "labels = ['Recall1', 'Recall2', 'Recall2_1', 'Recall3', 'Recall4', 'Recall5', 'Recall6', 'Recall7', 'Recall8', 'Recall8_1', 'Recall9', 'Recall10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, recall_values, color='cyan')\n", + "plt.xlabel('Recall Variables')\n", + "plt.ylabel('Recall Values')\n", + "plt.title('Bar Graph of Recall')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": { + "id": "13cZXvb0DsvK" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "provenance": [], + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Python File/Stock_Price_Prediction_BASE_19716.ipynb b/Python File/Stock_Price_Prediction_BASE_19716.ipynb new file mode 100644 index 0000000..0211e85 --- /dev/null +++ b/Python File/Stock_Price_Prediction_BASE_19716.ipynb @@ -0,0 +1,2708 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "qCDSjVhXLr_Z" + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.metrics import mean_squared_error, mean_absolute_error, mean_absolute_percentage_error, accuracy_score, precision_score, confusion_matrix, recall_score, f1_score" + ] + }, + { + "cell_type": "code", + "source": [ + "from google.colab import drive\n", + "drive.mount('/content/drive')\n", + "df = pd.read_csv('drive/My Drive/Colab Notebooks/Stock Price Prediction RNN/SBIN.csv')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "SOQbXSiB-g5G", + "outputId": "6ae02a27-02b0-4bd9-a1ae-a7029056f32e" + }, + "execution_count": 22, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "Sc4id6VxL8BS", + "outputId": "568d039c-faf4-4636-bfc1-70b9ef83367b" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Date Open High Low Close Adj Close \\\n", + "0 01-01-1996 18.691147 18.978922 18.540184 18.823240 12.409931 \n", + "1 02-01-1996 18.894005 18.964767 17.738192 18.224106 12.014931 \n", + "2 03-01-1996 18.327892 18.568489 17.643839 17.738192 11.694577 \n", + "3 04-01-1996 17.502312 17.832542 17.223972 17.676863 11.654142 \n", + "4 05-01-1996 17.738192 17.785366 17.459852 17.577793 11.588827 \n", + "\n", + " Volume \n", + "0 43733533.0 \n", + "1 56167280.0 \n", + "2 68296318.0 \n", + "3 86073880.0 \n", + "4 76613039.0 " + ], + "text/html": [ + "\n", + "
    \n", + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    DateOpenHighLowCloseAdj CloseVolume
    001-01-199618.69114718.97892218.54018418.82324012.40993143733533.0
    102-01-199618.89400518.96476717.73819218.22410612.01493156167280.0
    203-01-199618.32789218.56848917.64383917.73819211.69457768296318.0
    304-01-199617.50231217.83254217.22397217.67686311.65414286073880.0
    405-01-199617.73819217.78536617.45985217.57779311.58882776613039.0
    \n", + "
    \n", + "
    \n", + "\n", + "
    \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
    \n", + "\n", + "\n", + "
    \n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
    \n", + "\n", + "
    \n", + "
    \n" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ], + "source": [ + "# Load the dataset\n", + "#df = pd.read_csv('/content/SBIN.NS.csv')\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "id": "7LaYGXsfN-8y" + }, + "outputs": [], + "source": [ + "# Drop the 'Date' and 'Adj Close' columns\n", + "df.drop(['Date', 'Adj Close'], axis=1, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "pqbTBdnBOKJc", + "outputId": "21da8a7f-4f3e-4f4f-e32b-3b90c230ce55" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Open High Low Close Volume\n", + "0 18.691147 18.978922 18.540184 18.823240 43733533.0\n", + "1 18.894005 18.964767 17.738192 18.224106 56167280.0\n", + "2 18.327892 18.568489 17.643839 17.738192 68296318.0\n", + "3 17.502312 17.832542 17.223972 17.676863 86073880.0\n", + "4 17.738192 17.785366 17.459852 17.577793 76613039.0" + ], + "text/html": [ + "\n", + "
    \n", + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    OpenHighLowCloseVolume
    018.69114718.97892218.54018418.82324043733533.0
    118.89400518.96476717.73819218.22410656167280.0
    218.32789218.56848917.64383917.73819268296318.0
    317.50231217.83254217.22397217.67686386073880.0
    417.73819217.78536617.45985217.57779376613039.0
    \n", + "
    \n", + "
    \n", + "\n", + "
    \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
    \n", + "\n", + "\n", + "
    \n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
    \n", + "\n", + "
    \n", + "
    \n" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "id": "dydEPoNeM6eN" + }, + "outputs": [], + "source": [ + "# Handle missing values\n", + "from sklearn.impute import SimpleImputer\n", + "imputer = SimpleImputer(strategy='mean')\n", + "df = pd.DataFrame(imputer.fit_transform(df), columns=df.columns)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "id": "OQ3cGqgTMBwt" + }, + "outputs": [], + "source": [ + "# Select features and target variable\n", + "X = df[['Open', 'High', 'Low', 'Volume']]\n", + "y = df['Close']" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "id": "9Oz-bwJOMEWD" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "ugapDyXODtn3" + }, + "outputs": [], + "source": [ + "# Scale the features using Min-Max scaling\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "997ZEgibCZIO", + "outputId": "2a45a8e3-71b0-47f3-bd66-91bcdc028c76" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(5659, 4)" + ] + }, + "metadata": {}, + "execution_count": 29 + } + ], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "bmtt76RuCeyG", + "outputId": "658075af-e75d-45b1-f6cf-756e349a32d1" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(1415, 4)" + ] + }, + "metadata": {}, + "execution_count": 30 + } + ], + "source": [ + "X_test.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "CeJkUJ92Ciqd", + "outputId": "93dec527-ea2e-42e6-c70b-a9491c71d917" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(5659,)" + ] + }, + "metadata": {}, + "execution_count": 31 + } + ], + "source": [ + "y_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7HGC7VuTCjWc", + "outputId": "64dc2569-b4b4-4c2e-d416-1cf77c41ac75" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(1415,)" + ] + }, + "metadata": {}, + "execution_count": 32 + } + ], + "source": [ + "y_test.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "c6Ek8jRlO2_I" + }, + "source": [ + "## 1. LINEAR REGRESSION" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "id": "RdZ1SpzdMHAJ" + }, + "outputs": [], + "source": [ + "# Create a linear regression model\n", + "model1 = LinearRegression()" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mPM035IzMY04", + "outputId": "07379dba-cfe8-4814-b972-d08b12f224ac" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "5286 257.350006\n", + "3408 129.464996\n", + "5477 279.350006\n", + "6906 588.500000\n", + "530 21.644367\n", + "Name: Close, dtype: float64" + ] + }, + "metadata": {}, + "execution_count": 34 + } + ], + "source": [ + "y_train.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "qBhQ9HbYMI3d", + "outputId": "52e0655f-1d23-47b7-decc-7a7ca35c0470" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "LinearRegression()" + ], + "text/html": [ + "
    LinearRegression()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ] + }, + "metadata": {}, + "execution_count": 35 + } + ], + "source": [ + "# Train the model\n", + "model1.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "id": "X269co2kMS4z" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred1 = model1.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "id": "QK8GvDYPOd0Y" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse1 = np.sqrt(mean_squared_error(y_test, pred1))\n", + "mae1 = mean_absolute_error(y_test, pred1)\n", + "mape1 = mean_absolute_percentage_error(y_test, pred1)\n", + "accuracy1 = accuracy_score(y_test > pred1, y_test > pred1.round())\n", + "precision1 = precision_score(y_test > pred1, y_test > pred1.round())\n", + "confusion1 = confusion_matrix(y_test > pred1, y_test > pred1.round())\n", + "recall1 = recall_score(y_test > pred1, y_test > pred1.round())\n", + "f11 = f1_score(y_test > pred1, y_test > pred1.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dEi49xtEOtne", + "outputId": "0000b074-3187-41de-fbac-4ae75cbda6bd" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RMSE: 1.6881364643681482\n", + "MAE: 0.9433353485344729\n", + "MAPE: 0.006085435990853812\n", + "Accuracy: 0.8296819787985866\n", + "Precision: 0.8623595505617978\n", + "Confusion Matrix:\n", + " [[560 98]\n", + " [143 614]]\n", + "Recall: 0.8110964332892999\n", + "F1 Score: 0.8359428182437032\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse1)\n", + "print(\"MAE:\", mae1)\n", + "print(\"MAPE:\", mape1)\n", + "print(\"Accuracy:\", accuracy1)\n", + "print(\"Precision:\", precision1)\n", + "print(\"Confusion Matrix:\\n\", confusion1)\n", + "print(\"Recall:\", recall1)\n", + "print(\"F1 Score:\", f11)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GxtMzlg-gR2P" + }, + "source": [ + "## 2. SVR" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "id": "o7K9r7EXWRjQ" + }, + "outputs": [], + "source": [ + "from sklearn.svm import SVR" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "id": "0xQewd7QWTtq" + }, + "outputs": [], + "source": [ + "# Create an SVR model\n", + "model2 = SVR()" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "id": "DuNes3s6U2IV" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "22SaCsQmfhgP", + "outputId": "2121e992-399d-4b78-e42c-fc20b9d52189" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "SVR()" + ], + "text/html": [ + "
    SVR()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ] + }, + "metadata": {}, + "execution_count": 42 + } + ], + "source": [ + "# Train the model\n", + "model2.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "id": "OQ1nL4oYfkAC" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred2 = model2.predict(X_test)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "id": "nRYTwydsfpjb" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse2 = np.sqrt(mean_squared_error(y_test, pred2))\n", + "mae2 = mean_absolute_error(y_test, pred2)\n", + "mape2 = mean_absolute_percentage_error(y_test, pred2)\n", + "accuracy2 = accuracy_score(y_test > pred2, y_test > pred2.round())\n", + "precision2 = precision_score(y_test > pred2, y_test > pred2.round())\n", + "confusion2 = confusion_matrix(y_test > pred2, y_test > pred2.round())\n", + "recall2 = recall_score(y_test > pred2, y_test > pred2.round())\n", + "f12 = f1_score(y_test > pred2, y_test > pred2.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "656J5oz5fzq6", + "outputId": "ce67d2d8-0bc8-4e6d-d6b5-6b78e7e1c59b" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RMSE: 147.71103599153602\n", + "MAE: 110.99419106508152\n", + "MAPE: 1.9715076513294716\n", + "Accuracy: 0.9992932862190813\n", + "Precision: 1.0\n", + "Confusion Matrix:\n", + " [[727 0]\n", + " [ 1 687]]\n", + "Recall: 0.998546511627907\n", + "F1 Score: 0.9992727272727273\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse2)\n", + "print(\"MAE:\", mae2)\n", + "print(\"MAPE:\", mape2)\n", + "print(\"Accuracy:\", accuracy2)\n", + "print(\"Precision:\", precision2)\n", + "print(\"Confusion Matrix:\\n\", confusion2)\n", + "print(\"Recall:\", recall2)\n", + "print(\"F1 Score:\", f12)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hcIfVMWdgcKt" + }, + "source": [ + "## 3. Random Forest" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "id": "f7raXT_hf2ij" + }, + "outputs": [], + "source": [ + "from sklearn.ensemble import RandomForestRegressor\n", + "# Create a Random Forest model\n", + "model3 = RandomForestRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "id": "TadNM7MEU7fh" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "fF002Yepgk55", + "outputId": "d148c589-4879-4e2d-8b0f-5b5ca01a2a53" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "RandomForestRegressor()" + ], + "text/html": [ + "
    RandomForestRegressor()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ] + }, + "metadata": {}, + "execution_count": 48 + } + ], + "source": [ + "# Train the model\n", + "model3.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "id": "8nRU_pzEgnCt" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred3 = model3.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "id": "4aKEXGVUgsry" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse3 = np.sqrt(mean_squared_error(y_test, pred3))\n", + "mae3 = mean_absolute_error(y_test, pred3)\n", + "mape3 = mean_absolute_percentage_error(y_test, pred3)\n", + "accuracy3 = accuracy_score(y_test > pred3, y_test > pred3.round())\n", + "precision3 = precision_score(y_test > pred3, y_test > pred3.round())\n", + "confusion3 = confusion_matrix(y_test > pred3, y_test > pred3.round())\n", + "recall3 = recall_score(y_test > pred3, y_test > pred3.round())\n", + "f13 = f1_score(y_test > pred3, y_test > pred3.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8pPzsCY1g305", + "outputId": "72c4ea56-2610-41c6-f286-4c8289d3f0ac" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RMSE: 2.189635498596314\n", + "MAE: 1.250413817712252\n", + "MAPE: 0.007984509559881612\n", + "Accuracy: 0.8551236749116607\n", + "Precision: 0.8558823529411764\n", + "Confusion Matrix:\n", + " [[628 98]\n", + " [107 582]]\n", + "Recall: 0.8447024673439768\n", + "F1 Score: 0.8502556610664718\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse3)\n", + "print(\"MAE:\", mae3)\n", + "print(\"MAPE:\", mape3)\n", + "print(\"Accuracy:\", accuracy3)\n", + "print(\"Precision:\", precision3)\n", + "print(\"Confusion Matrix:\\n\", confusion3)\n", + "print(\"Recall:\", recall3)\n", + "print(\"F1 Score:\", f13)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mZsLwLivhLGH" + }, + "source": [ + "## 4. Gradient Boosting Models (GBM)" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "id": "TI8idoxOg6jF" + }, + "outputs": [], + "source": [ + "import xgboost as xgb\n", + "# Create an XGBoost model\n", + "model4 = xgb.XGBRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": { + "id": "7r9xJDtOVBEA" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "id": "2gpbDxshhexj", + "outputId": "b2b1a681-7ede-4d66-be5d-1a8606d0f470" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + " colsample_bylevel=None, colsample_bynode=None,\n", + " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", + " enable_categorical=False, eval_metric=None, feature_types=None,\n", + " gamma=None, grow_policy=None, importance_type=None,\n", + " interaction_constraints=None, learning_rate=None, max_bin=None,\n", + " max_cat_threshold=None, max_cat_to_onehot=None,\n", + " max_delta_step=None, max_depth=None, max_leaves=None,\n", + " min_child_weight=None, missing=nan, monotone_constraints=None,\n", + " multi_strategy=None, n_estimators=None, n_jobs=None,\n", + " num_parallel_tree=None, random_state=None, ...)" + ], + "text/html": [ + "
    XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
    +              "             colsample_bylevel=None, colsample_bynode=None,\n",
    +              "             colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
    +              "             enable_categorical=False, eval_metric=None, feature_types=None,\n",
    +              "             gamma=None, grow_policy=None, importance_type=None,\n",
    +              "             interaction_constraints=None, learning_rate=None, max_bin=None,\n",
    +              "             max_cat_threshold=None, max_cat_to_onehot=None,\n",
    +              "             max_delta_step=None, max_depth=None, max_leaves=None,\n",
    +              "             min_child_weight=None, missing=nan, monotone_constraints=None,\n",
    +              "             multi_strategy=None, n_estimators=None, n_jobs=None,\n",
    +              "             num_parallel_tree=None, random_state=None, ...)
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ] + }, + "metadata": {}, + "execution_count": 54 + } + ], + "source": [ + "# Train the model\n", + "model4.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": { + "id": "Jj9DXdUPhh9V" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred4 = model4.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": { + "id": "TdH60Sllhn5O" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse4 = np.sqrt(mean_squared_error(y_test, pred4))\n", + "mae4 = mean_absolute_error(y_test, pred4)\n", + "mape4 = mean_absolute_percentage_error(y_test, pred4)\n", + "accuracy4 = accuracy_score(y_test > pred4, y_test > pred4.round())\n", + "precision4 = precision_score(y_test > pred4, y_test > pred4.round())\n", + "confusion4 = confusion_matrix(y_test > pred4, y_test > pred4.round())\n", + "recall4 = recall_score(y_test > pred4, y_test > pred4.round())\n", + "f14 = f1_score(y_test > pred4, y_test > pred4.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "qpnLeFyZhwB3", + "outputId": "4dcac062-ec60-4b2c-ab4b-dcda1b0f2341" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RMSE: 2.733930065274145\n", + "MAE: 1.502457380471909\n", + "MAPE: 0.010026410639661481\n", + "Accuracy: 0.8840989399293286\n", + "Precision: 0.8948106591865358\n", + "Confusion Matrix:\n", + " [[613 75]\n", + " [ 89 638]]\n", + "Recall: 0.8775790921595599\n", + "F1 Score: 0.8861111111111112\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse4)\n", + "print(\"MAE:\", mae4)\n", + "print(\"MAPE:\", mape4)\n", + "print(\"Accuracy:\", accuracy4)\n", + "print(\"Precision:\", precision4)\n", + "print(\"Confusion Matrix:\\n\", confusion4)\n", + "print(\"Recall:\", recall4)\n", + "print(\"F1 Score:\", f14)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "d8nSGoyuh9dx" + }, + "source": [ + "## 5. Extreme Gradient Boosting (XGBoost)" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": { + "id": "DyhhdlZAhx94" + }, + "outputs": [], + "source": [ + "import xgboost as xgb\n", + "# Create an XGBoost model\n", + "model5 = xgb.XGBRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "id": "Z_AD0lVOVHwB" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "id": "RAIwxIp5iH9Z", + "outputId": "d2b4aa97-7e07-4015-c308-76a292b0929f" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + " colsample_bylevel=None, colsample_bynode=None,\n", + " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", + " enable_categorical=False, eval_metric=None, feature_types=None,\n", + " gamma=None, grow_policy=None, importance_type=None,\n", + " interaction_constraints=None, learning_rate=None, max_bin=None,\n", + " max_cat_threshold=None, max_cat_to_onehot=None,\n", + " max_delta_step=None, max_depth=None, max_leaves=None,\n", + " min_child_weight=None, missing=nan, monotone_constraints=None,\n", + " multi_strategy=None, n_estimators=None, n_jobs=None,\n", + " num_parallel_tree=None, random_state=None, ...)" + ], + "text/html": [ + "
    XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
    +              "             colsample_bylevel=None, colsample_bynode=None,\n",
    +              "             colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
    +              "             enable_categorical=False, eval_metric=None, feature_types=None,\n",
    +              "             gamma=None, grow_policy=None, importance_type=None,\n",
    +              "             interaction_constraints=None, learning_rate=None, max_bin=None,\n",
    +              "             max_cat_threshold=None, max_cat_to_onehot=None,\n",
    +              "             max_delta_step=None, max_depth=None, max_leaves=None,\n",
    +              "             min_child_weight=None, missing=nan, monotone_constraints=None,\n",
    +              "             multi_strategy=None, n_estimators=None, n_jobs=None,\n",
    +              "             num_parallel_tree=None, random_state=None, ...)
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ] + }, + "metadata": {}, + "execution_count": 60 + } + ], + "source": [ + "# Train the model\n", + "model5.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": { + "id": "XmJds5fYiKT3" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred5 = model5.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": { + "id": "lZ1A0-L8iNCM" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse5 = np.sqrt(mean_squared_error(y_test, pred5))\n", + "mae5 = mean_absolute_error(y_test, pred5)\n", + "mape5 = mean_absolute_percentage_error(y_test, pred5)\n", + "accuracy5 = accuracy_score(y_test > pred5, y_test > pred5.round())\n", + "precision5 = precision_score(y_test > pred5, y_test > pred5.round())\n", + "confusion5 = confusion_matrix(y_test > pred5, y_test > pred5.round())\n", + "recall5 = recall_score(y_test > pred5, y_test > pred5.round())\n", + "f15 = f1_score(y_test > pred5, y_test > pred5.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7IkE-RAmiWNo", + "outputId": "cf4c1d84-412b-4a18-f70c-65ce637772ea" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RMSE: 2.733930065274145\n", + "MAE: 1.502457380471909\n", + "MAPE: 0.010026410639661481\n", + "Accuracy: 0.8840989399293286\n", + "Precision: 0.8948106591865358\n", + "Confusion Matrix:\n", + " [[613 75]\n", + " [ 89 638]]\n", + "Recall: 0.8775790921595599\n", + "F1 Score: 0.8861111111111112\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse5)\n", + "print(\"MAE:\", mae5)\n", + "print(\"MAPE:\", mape5)\n", + "print(\"Accuracy:\", accuracy5)\n", + "print(\"Precision:\", precision5)\n", + "print(\"Confusion Matrix:\\n\", confusion5)\n", + "print(\"Recall:\", recall5)\n", + "print(\"F1 Score:\", f15)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "A_J776rtiovq" + }, + "source": [ + "## 6. AdaBoostRegressor" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": { + "id": "HNq66cXRiYPJ" + }, + "outputs": [], + "source": [ + "from sklearn.ensemble import AdaBoostRegressor\n", + "# Create an AdaBoost model\n", + "model6 = AdaBoostRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": { + "id": "qPHH6rG0VW4V" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "P0oB5wjQivBr", + "outputId": "8726c583-6782-4504-b0ac-d2ef4ccbca4c" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "AdaBoostRegressor()" + ], + "text/html": [ + "
    AdaBoostRegressor()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ] + }, + "metadata": {}, + "execution_count": 66 + } + ], + "source": [ + "# Train the model\n", + "model6.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": { + "id": "Bf1m5ukOi2VM" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred6 = model6.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "id": "oFWSqC4ai6gd" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse6 = np.sqrt(mean_squared_error(y_test, pred6))\n", + "mae6 = mean_absolute_error(y_test, pred6)\n", + "mape6 = mean_absolute_percentage_error(y_test, pred6)\n", + "accuracy6 = accuracy_score(y_test > pred6, y_test > pred6.round())\n", + "precision6 = precision_score(y_test > pred6, y_test > pred6.round())\n", + "confusion6 = confusion_matrix(y_test > pred6, y_test > pred6.round())\n", + "recall6 = recall_score(y_test > pred6, y_test > pred6.round())\n", + "f16 = f1_score(y_test > pred6, y_test > pred6.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "BsajWJGBjC80", + "outputId": "1af1194f-9a33-40af-8578-c99832509c1b" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RMSE: 9.283285018137352\n", + "MAE: 7.574989783595977\n", + "MAPE: 0.16829256716397573\n", + "Accuracy: 0.9901060070671378\n", + "Precision: 0.9900990099009901\n", + "Confusion Matrix:\n", + " [[901 5]\n", + " [ 9 500]]\n", + "Recall: 0.9823182711198428\n", + "F1 Score: 0.9861932938856016\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse6)\n", + "print(\"MAE:\", mae6)\n", + "print(\"MAPE:\", mape6)\n", + "print(\"Accuracy:\", accuracy6)\n", + "print(\"Precision:\", precision6)\n", + "print(\"Confusion Matrix:\\n\", confusion6)\n", + "print(\"Recall:\", recall6)\n", + "print(\"F1 Score:\", f16)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Q9DzOt3CkWFX" + }, + "source": [ + "## 7. Decision Tree" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": { + "id": "23DZ2biSjF9a" + }, + "outputs": [], + "source": [ + "from sklearn.tree import DecisionTreeRegressor\n", + "# Create a Decision Tree model\n", + "model7 = DecisionTreeRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": { + "id": "Ajo2RAVAVb7H" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "6mQEQf-ykc9F", + "outputId": "f1a62020-4125-4aea-e7e4-11acffdc5169" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "DecisionTreeRegressor()" + ], + "text/html": [ + "
    DecisionTreeRegressor()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ] + }, + "metadata": {}, + "execution_count": 72 + } + ], + "source": [ + "# Train the model\n", + "model7.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": { + "id": "BFJ9q_tvkgRC" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred7 = model7.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "id": "9IxfYZbYkjv1" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse7 = np.sqrt(mean_squared_error(y_test, pred7))\n", + "mae7 = mean_absolute_error(y_test, pred7)\n", + "mape7 = mean_absolute_percentage_error(y_test, pred7)\n", + "accuracy7 = accuracy_score(y_test > pred7, y_test > pred7.round())\n", + "precision7 = precision_score(y_test > pred7, y_test > pred7.round())\n", + "confusion7 = confusion_matrix(y_test > pred7, y_test > pred7.round())\n", + "recall7 = recall_score(y_test > pred7, y_test > pred7.round())\n", + "f17 = f1_score(y_test > pred7, y_test > pred7.round())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AnZXMYb8kooV", + "outputId": "273fa9ed-d6f2-4c4d-fb0e-a643f5ef5732" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RMSE: 3.193539964582351\n", + "MAE: 1.6240937361593886\n", + "MAPE: 0.010136361140005275\n", + "Accuracy: 0.8579505300353357\n", + "Precision: 0.8700410396716827\n", + "Confusion Matrix:\n", + " [[578 95]\n", + " [106 636]]\n", + "Recall: 0.8571428571428571\n", + "F1 Score: 0.8635437881873728\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse7)\n", + "print(\"MAE:\", mae7)\n", + "print(\"MAPE:\", mape7)\n", + "print(\"Accuracy:\", accuracy7)\n", + "print(\"Precision:\", precision7)\n", + "print(\"Confusion Matrix:\\n\", confusion7)\n", + "print(\"Recall:\", recall7)\n", + "print(\"F1 Score:\", f17)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LH-B-Xd6k5UD" + }, + "source": [ + "## 8. KNeighborsRegressor(KNN)" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": { + "id": "JVDSed7yktFY" + }, + "outputs": [], + "source": [ + "from sklearn.neighbors import KNeighborsRegressor\n", + "# Create a KNN model\n", + "model8 = KNeighborsRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": { + "id": "XJHb5SxrVgVp" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "9fn64o-ZlBka", + "outputId": "dc5e6af2-de37-46ee-cde7-e0a3baa31a1f" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "KNeighborsRegressor()" + ], + "text/html": [ + "
    KNeighborsRegressor()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ] + }, + "metadata": {}, + "execution_count": 78 + } + ], + "source": [ + "# Train the model\n", + "model8.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": { + "id": "hbfbbjcSlDn7" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred8 = model8.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": { + "id": "hnWyNv3blHdL" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse8 = np.sqrt(mean_squared_error(y_test, pred8))\n", + "mae8 = mean_absolute_error(y_test, pred8)\n", + "mape8 = mean_absolute_percentage_error(y_test, pred8)\n", + "accuracy8 = accuracy_score(y_test > pred8, y_test > pred8.round())\n", + "precision8 = precision_score(y_test > pred8, y_test > pred8.round())\n", + "confusion8 = confusion_matrix(y_test > pred8, y_test > pred8.round())\n", + "recall8 = recall_score(y_test > pred8, y_test > pred8.round())\n", + "f18 = f1_score(y_test > pred8, y_test > pred8.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IPoDRkcMlMAr", + "outputId": "9892f42f-e65f-46c0-eeed-77ce32f6a7eb" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RMSE: 148.73183825029315\n", + "MAE: 109.35229571264969\n", + "MAPE: 1.75024316976612\n", + "Accuracy: 0.9908127208480565\n", + "Precision: 0.9887820512820513\n", + "Confusion Matrix:\n", + " [[785 7]\n", + " [ 6 617]]\n", + "Recall: 0.9903691813804173\n", + "F1 Score: 0.9895749799518845\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse8)\n", + "print(\"MAE:\", mae8)\n", + "print(\"MAPE:\", mape8)\n", + "print(\"Accuracy:\", accuracy8)\n", + "print(\"Precision:\", precision8)\n", + "print(\"Confusion Matrix:\\n\", confusion8)\n", + "print(\"Recall:\", recall8)\n", + "print(\"F1 Score:\", f18)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "X5XtlzMXljps" + }, + "source": [ + "## 9. Artificial Neural Networks (ANN)" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": { + "id": "bJk1-9VhlRL6" + }, + "outputs": [], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": { + "id": "sZVPMR9Wlo7-" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": { + "id": "vd1fDjQiltP4" + }, + "outputs": [], + "source": [ + "# Create an ANN model\n", + "model9 = Sequential()\n", + "model9.add(Dense(32, activation='relu', input_shape=(X_train.shape[1],)))\n", + "model9.add(Dense(16, activation='relu'))\n", + "model9.add(Dense(1, activation='linear'))" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": { + "id": "ZIf94WLMlv04" + }, + "outputs": [], + "source": [ + "# Compile the model\n", + "model9.compile(loss='mean_squared_error', optimizer='adam')" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "FX5DTKqslxWf", + "outputId": "9253b26c-1a79-4390-975e-d14c28a5e2a8" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 86 + } + ], + "source": [ + "# Train the model\n", + "model9.fit(X_train_scaled, y_train, epochs=100, batch_size=32, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OVW2qpNsmGVq", + "outputId": "34343782-f560-4dee-c307-ff0d0c52ab5a" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "45/45 [==============================] - 0s 1ms/step\n" + ] + } + ], + "source": [ + "# Make predictions on the test set\n", + "pred9 = model9.predict(X_test_scaled).flatten()" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": { + "id": "CqRmjMj2maJY" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse9 = np.sqrt(mean_squared_error(y_test, pred9))\n", + "mae9 = mean_absolute_error(y_test, pred9)\n", + "mape9 = mean_absolute_percentage_error(y_test, pred9)\n", + "accuracy9 = accuracy_score(y_test > pred9, y_test > pred9.round())\n", + "precision9 = precision_score(y_test > pred9, y_test > pred9.round())\n", + "confusion9 = confusion_matrix(y_test > pred9, y_test > pred9.round())\n", + "recall9 = recall_score(y_test > pred9, y_test > pred9.round())\n", + "f19 = f1_score(y_test > pred9, y_test > pred9.round())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5zuwkC1emmh3", + "outputId": "5d6a0e05-3112-4d27-f5fb-ed665867b22d" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RMSE: 2.7570259701356035\n", + "MAE: 1.7412277270507284\n", + "MAPE: 0.012205298865408084\n", + "Accuracy: 0.8904593639575972\n", + "Precision: 0.8242753623188406\n", + "Confusion Matrix:\n", + " [[805 97]\n", + " [ 58 455]]\n", + "Recall: 0.8869395711500975\n", + "F1 Score: 0.8544600938967135\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse9)\n", + "print(\"MAE:\", mae9)\n", + "print(\"MAPE:\", mape9)\n", + "print(\"Accuracy:\", accuracy9)\n", + "print(\"Precision:\", precision9)\n", + "print(\"Confusion Matrix:\\n\", confusion9)\n", + "print(\"Recall:\", recall9)\n", + "print(\"F1 Score:\", f19)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vjSMQNcOnFPJ" + }, + "source": [ + "## 10. LSTM(Long Short term Memory)" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": { + "id": "nCoyUanhnDKw" + }, + "outputs": [], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import LSTM, Dense" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": { + "id": "ThcXESVEVv0U" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": { + "id": "uACvajfImrbB" + }, + "outputs": [], + "source": [ + "# Reshape the input data for LSTM\n", + "n_features = X_train_scaled.shape[1]\n", + "n_steps = 10\n", + "n_samples_train = X_train_scaled.shape[0] - n_steps + 1\n", + "n_samples_test = X_test_scaled.shape[0] - n_steps + 1\n", + "\n", + "# Reshape the input data\n", + "X_train_reshaped = np.array([X_train_scaled[i:i+n_steps, :] for i in range(n_samples_train)])\n", + "X_test_reshaped = np.array([X_test_scaled[i:i+n_steps, :] for i in range(n_samples_test)])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": { + "id": "r066pVYpnXH5" + }, + "outputs": [], + "source": [ + "# Create an LSTM model\n", + "model = Sequential()\n", + "model.add(LSTM(64, activation='relu', input_shape=(n_steps, n_features)))\n", + "model.add(Dense(1))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": { + "id": "YpSfHu6gov35" + }, + "outputs": [], + "source": [ + "# Compile the model\n", + "model.compile(loss='mean_squared_error', optimizer='adam')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0vHjcluaoxzP", + "outputId": "1eaafd31-9f91-4655-f437-e9199c0f7933" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 95 + } + ], + "source": [ + "# Train the model\n", + "model.fit(X_train_reshaped, y_train[n_steps-1:], epochs=100, batch_size=32, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "gEE06_TjozYv", + "outputId": "30306af7-2ec8-4733-db96-d3416a7fc6d4" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "44/44 [==============================] - 0s 4ms/step\n" + ] + } + ], + "source": [ + "# Make predictions on the test set\n", + "y_pred = model.predict(X_test_reshaped).flatten()" + ] + }, + { + "cell_type": "code", + "execution_count": 113, + "metadata": { + "id": "7k6C8DrxpB_Q" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse10 = np.sqrt(mean_squared_error(y_test[n_steps-1:], y_pred))\n", + "mae10 = mean_absolute_error(y_test[n_steps-1:], y_pred)\n", + "mape10 = mean_absolute_percentage_error(y_test[n_steps-1:], y_pred)\n", + "accuracy10 = accuracy_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "precision10 = precision_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "recall10 = recall_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "f110 = f1_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "confusion10 = confusion_matrix(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 114, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "i_6-UUDhpi0c", + "outputId": "3dcc5761-03b6-4b52-dfe6-08dece835c8d" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RMSE: 10.083053125286519\n", + "MAE: 7.973378150691296\n", + "MAPE: 0.12730792351246625\n", + "Accuracy: 0.9886201991465149\n", + "Precision: 0.9904912836767037\n", + "Recall: 0.984251968503937\n", + "F1 Score: 0.9873617693522907\n", + "Confusion Matrix:\n", + " [[765 6]\n", + " [ 10 625]]\n" + ] + } + ], + "source": [ + "# Print evaluation metrics\n", + "print(\"RMSE:\", rmse10)\n", + "print(\"MAE:\", mae10)\n", + "print(\"MAPE:\", mape10)\n", + "print(\"Accuracy:\", accuracy10)\n", + "print(\"Precision:\", precision10)\n", + "print(\"Recall:\", recall10)\n", + "print(\"F1 Score:\", f110)\n", + "print(\"Confusion Matrix:\\n\", confusion10)" + ] + }, + { + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of accuracies from accuracy1 to accuracy10\n", + "accuracies = [accuracy1*100, accuracy2*100, accuracy3*100, accuracy4*100, accuracy5*100, accuracy6*100, accuracy7*100, accuracy8*100, accuracy9*100, accuracy10*100]\n", + "\n", + "# List of corresponding labels for each accuracy\n", + "labels = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, accuracies, color='blue')\n", + "plt.xlabel('Accuracy Variables')\n", + "plt.ylabel('Accuracy Values')\n", + "plt.title('Bar Graph of Accuracies')\n", + "plt.show()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "qpWPtph9CGip", + "outputId": "c099cb8d-96af-4223-f499-743040aecdf1" + }, + "execution_count": 117, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDeUlEQVR4nO3deVxU9eL/8feAsogsbmypiEtiau4XNa1MzNLMLVOv5UbZTSiXvKWVmm2klbe00lspmqGYuWRWKuF263rdcSlzyy0T0JRVRYPz+8Of820ClYGBgdPr+XjM49F8zplz3gw+mjefs4zFMAxDAAAAJuXi7AAAAAAlibIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDwGleeuklWSwWnT17tsT3tXr1ajVv3lweHh6yWCxKS0sr8X2WZ/PmzZPFYtGxY8ecHQUoNsoOUAKufVD88eHv769OnTrpm2++KfU8X375pXr06KGAgAC5ubmpatWquvPOO/X2228rIyOj1POUtt9++00PP/ywPD099f7772vBggXy8vK66es++OADWSwWhYeHl0JKACWlgrMDAGb28ssvKzQ0VIZhKCUlRfPmzVO3bt305Zdf6oEHHijx/efl5SkyMlLz5s1T06ZNNXLkSNWqVUuZmZnavHmzXnzxRX399ddKTEws8SzOtG3bNmVmZuqVV15RREREoV8XFxenOnXqaOvWrTp8+LDq169fginLlkcffVQDBgyQu7u7s6MAxUbZAUrQ/fffr9atW1ufR0ZGKiAgQIsWLXJI2cnLy9Ply5fl4eFR4PJp06Zp3rx5GjNmjN5++21ZLBbrslGjRun06dP65JNPirWP8iA1NVWS5OfnV+jXHD16VP/973+1bNkyPfHEE4qLi9PkyZNLKGHxZGdnF2qmyh6urq5ydXV16DYBZ+EwFlCK/Pz85OnpqQoVbP/OeOutt9S+fXtVq1ZNnp6eatWqlT7//PN8r7dYLIqOjlZcXJwaN24sd3d3rV69usB9XbhwQVOnTlXjxo315ptv2hSda4KCgvTcc88Veh9FydmwYUN5eHioVatW2rRpU4FZ09LSNHToUPn5+cnX11fDhg3ThQsXCn4T/2TJkiVq1aqVPD09Vb16dT3yyCM6deqUdfndd9+tIUOGSJLatGkji8WioUOH3nS7cXFxqlKlirp3766HHnpIcXFx180+ZswY1alTR+7u7qpZs6YGDx5scx7SpUuX9NJLL+nWW2+Vh4eHgoKC1KdPHx05ckSStGHDBlksFm3YsMFm28eOHZPFYtG8efOsY0OHDlXlypV15MgRdevWTd7e3ho0aJAk6T//+Y/69eun2rVry93dXbVq1dKYMWN08eLFfLl/+uknPfzww6pRo4Y8PT3VsGFDvfDCC9bl1ztn55tvvlHHjh3l5eUlb29vde/eXT/88IPNOsnJyRo2bJhq1qwpd3d3BQUFqWfPnpz/A6dhZgcoQenp6Tp79qwMw1BqaqpmzpyprKwsPfLIIzbrvfvuu3rwwQc1aNAgXb58WfHx8erXr59WrVql7t2726y7bt06ffbZZ4qOjlb16tVVp06dAvf93XffKS0tTePGjbP7L/Tr7cOenBs3btTixYv19NNPy93dXR988IHuu+8+bd26VU2aNLFZ9+GHH1ZoaKhiYmK0c+dOffzxx/L399fUqVNvmHPevHkaNmyY2rRpo5iYGKWkpOjdd9/V999/r127dsnPz08vvPCCGjZsqA8//NB6WLFevXo3fQ/i4uLUp08fubm5aeDAgZo1a5a2bdumNm3aWNfJyspSx44dtX//fg0fPlwtW7bU2bNntXLlSv3yyy+qXr26cnNz9cADDygxMVEDBgzQqFGjlJmZqYSEBO3bt69QWf7s999/V9euXdWhQwe99dZbqlSpkqSrxe/ChQt68sknVa1aNW3dulUzZ87UL7/8oiVLllhfv2fPHnXs2FEVK1bUiBEjVKdOHR05ckRffvmlXnvttevud8GCBRoyZIi6du2qqVOn6sKFC5o1a5Y6dOigXbt2Wf+d9O3bVz/88IOeeuop1alTR6mpqUpISNCJEyeu++8VKFEGAIeLjY01JOV7uLu7G/Pmzcu3/oULF2yeX7582WjSpIlxzz332IxLMlxcXIwffvjhphneffddQ5KxYsUKm/Hff//dOHPmjM0jLy+vUPuwJ6ckY/v27dax48ePGx4eHkbv3r2tY5MnTzYkGcOHD7d5fe/evY1q1ard8Oe7fPmy4e/vbzRp0sS4ePGidXzVqlWGJGPSpEnWsWu/j23btt1wm9ds377dkGQkJCQYhmEYeXl5Rs2aNY1Ro0bZrDdp0iRDkrFs2bJ827j2ns6dO9eQZEyfPv2666xfv96QZKxfv95m+dGjRw1JRmxsrHVsyJAhhiRj/Pjx+bb359+PYRhGTEyMYbFYjOPHj1vH7rzzTsPb29tm7I95DOP/3rOjR48ahmEYmZmZhp+fn/H444/bvCY5Odnw9fW1jp8/f96QZLz55pv5sgDOwmEsoAS9//77SkhIUEJCgj799FN16tRJjz32mJYtW2aznqenp/W/z58/r/T0dHXs2FE7d+7Mt8277rpLt9122033fe0qq8qVK9uM7927VzVq1LB5/Pbbb4Xahz0527Vrp1atWlmf165dWz179tSaNWuUm5trs+4//vEPm+cdO3bUb7/9dsMrxbZv367U1FSNHDnS5nyi7t27KywsTF999dV1X3szcXFxCggIUKdOnSRdPSzXv39/xcfH22RfunSpmjVrpt69e+fbxrXDhkuXLlX16tX11FNPXXedonjyySfzjf3x95Odna2zZ8+qffv2MgxDu3btkiSdOXNGmzZt0vDhw1W7du1C50lISFBaWpoGDhyos2fPWh+urq4KDw/X+vXrrRnc3Ny0YcMGnT9/vsg/H+BIHMYCStDf/vY3mxOUBw4cqBYtWig6OloPPPCA3NzcJEmrVq3Sq6++qqSkJOXk5FjXL+jDJzQ0tFD79vb2lnT1UMsf1a9fXwkJCZKkTz75RAsWLCj0PuzJ2aBBg3xjt956qy5cuKAzZ84oMDDQOv7nD90qVapIulqofHx8Csxy/PhxSVLDhg3zLQsLC9N3331X4OtuJjc3V/Hx8erUqZOOHj1qHQ8PD9fbb7+txMRE3XvvvZKkI0eOqG/fvjfc3pEjR9SwYcN852kVR4UKFVSzZs184ydOnNCkSZO0cuXKfEUjPT1dkvTzzz9LUr5DiTdz6NAhSdI999xT4PJrvyd3d3dNnTpVzzzzjAICAtS2bVs98MADGjx4sM3vHChNlB2gFLm4uKhTp0569913dejQITVu3Fj/+c9/9OCDD+rOO+/UBx98oKCgIFWsWFGxsbFauHBhvm388a/3GwkLC5Mk7du3Tz179rSOV65c2Xr59fUKQUH7sDenPa53TpFhGMXablGsW7dOp0+fVnx8vOLj4/Mtj4uLs5YdR7nejMqfZ8CucXd3l4uLS751u3TponPnzum5555TWFiYvLy8dOrUKQ0dOlR5eXnFynjt9QsWLCiwtPyxzI0ePVo9evTQihUrtGbNGk2cOFExMTFat26dWrRoUawcQFFQdoBS9vvvv0v6vxmXpUuXysPDQ2vWrLG5p0lsbGyx9tOxY0f5+voqPj5eEyZMyPfhaC97c16bCfijgwcPqlKlSqpRo0axskhSSEiIJOnAgQP5ZhsOHDhgXW6vuLg4+fv76/3338+3bNmyZVq+fLlmz54tT09P1atXT/v27bvh9urVq6ctW7boypUrqlixYoHrXJvJ+vNdna/NXhXG3r17dfDgQc2fP1+DBw+2jl+bxbumbt26knTT3H927URqf3//Qt2rqF69enrmmWf0zDPP6NChQ2revLnefvttffrpp3btF3AEztkBStGVK1e0du1aubm5qVGjRpKuzmpYLBabv+KPHTumFStWFGtflSpV0rPPPqt9+/Zp/PjxBc6S2DNzYm/OzZs325zLc/LkSX3xxRe69957HXL/ltatW8vf31+zZ8+2OaT2zTffaP/+/fmuDiuMixcvatmyZXrggQf00EMP5XtER0crMzNTK1eulHT1qqPdu3dr+fLl+bZ17b3t27evzp49q/fee++664SEhMjV1TXfpfkffPBBobNfe0//+Ds1DEPvvvuuzXo1atTQnXfeqblz5+rEiRMF5ilI165d5ePjo9dff11XrlzJt/zMmTOSrt7y4NKlSzbL6tWrJ29vb5vfE1CamNkBStA333yjn376SdLVG9stXLhQhw4d0vjx463nOHTv3l3Tp0/Xfffdp7///e9KTU3V+++/r/r162vPnj3F2v/48eO1f/9+vfnmm1q7dq369u2rmjVr6vz589q5c6eWLFkif3//Qt0w0N6cTZo0UdeuXW0uPZekKVOmFOtnuqZixYqaOnWqhg0bprvuuksDBw60Xnpep04djRkzxu5trly5UpmZmXrwwQcLXN62bVvVqFFDcXFx6t+/v/75z3/q888/V79+/TR8+HC1atVK586d08qVKzV79mw1a9ZMgwcP1ieffKKxY8dq69at6tixo7Kzs/Xtt99q5MiR6tmzp3x9fdWvXz/NnDlTFotF9erV06pVq6w3QyyMsLAw1atXT+PGjdOpU6fk4+OjpUuXFniS8IwZM9ShQwe1bNlSI0aMUGhoqI4dO6avvvpKSUlJBW7fx8dHs2bN0qOPPqqWLVtqwIABqlGjhk6cOKGvvvpKd9xxh9577z0dPHhQnTt31sMPP6zbbrtNFSpU0PLly5WSkqIBAwYU+ucBHMpp14EBJlbQpeceHh5G8+bNjVmzZtlc4msYhjFnzhyjQYMGhru7uxEWFmbExsZaL8v+I0lGVFSU3XmWL19udOvWzahRo4ZRoUIFw8/Pz+jQoYPx5ptvGmlpaYXeh705P/30U+v6LVq0yHdp9bXXnjlzxmb8z5c938jixYuNFi1aGO7u7kbVqlWNQYMGGb/88kuB27vZpec9evQwPDw8jOzs7OuuM3ToUKNixYrG2bNnDcMwjN9++82Ijo42brnlFsPNzc2oWbOmMWTIEOtyw7h6SfgLL7xghIaGGhUrVjQCAwONhx56yDhy5Ih1nTNnzhh9+/Y1KlWqZFSpUsV44oknjH379hV46bmXl1eB2X788UcjIiLCqFy5slG9enXj8ccfN3bv3p1vG4ZhGPv27TN69+5t+Pn5GR4eHkbDhg2NiRMn5nvP/vw7WL9+vdG1a1fD19fX8PDwMOrVq2cMHTrUepuBs2fPGlFRUUZYWJjh5eVl+Pr6GuHh4cZnn312w/ceKEkWw3DCGYAATM1isSgqKqrAQzcAUNo4ZwcAAJgaZQcAAJgaZQcAAJgaV2MBcDhOBQRQljCzAwAATI2yAwAATI3DWLr6nS+//vqrvL29i/UtxAAAoPQYhqHMzEwFBwff8CtxKDuSfv31V9WqVcvZMQAAQBGcPHlSNWvWvO5yyo4kb29vSVffrGu38AcAAGVbRkaGatWqZf0cvx7KjmQ9dOXj40PZAQCgnLnZKSicoAwAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEzNqWVn06ZN6tGjh4KDg2WxWLRixQqb5YZhaNKkSQoKCpKnp6ciIiJ06NAhm3XOnTunQYMGycfHR35+foqMjFRWVlYp/hQAAKAsc2rZyc7OVrNmzfT+++8XuHzatGmaMWOGZs+erS1btsjLy0tdu3bVpUuXrOsMGjRIP/zwgxISErRq1Spt2rRJI0aMKK0fAQAAlHEWwzAMZ4eQrn6J1/Lly9WrVy9JV2d1goOD9cwzz2jcuHGSpPT0dAUEBGjevHkaMGCA9u/fr9tuu03btm1T69atJUmrV69Wt27d9Msvvyg4OLhQ+87IyJCvr6/S09P5IlAAAMqJwn5+l9lzdo4ePark5GRFRERYx3x9fRUeHq7NmzdLkjZv3iw/Pz9r0ZGkiIgIubi4aMuWLdfddk5OjjIyMmweAADAnMps2UlOTpYkBQQE2IwHBARYlyUnJ8vf399meYUKFVS1alXrOgWJiYmRr6+v9VGrVi0HpwcAAGVFmS07JWnChAlKT0+3Pk6ePOnsSGWOxVL2HgAAFEWZLTuBgYGSpJSUFJvxlJQU67LAwEClpqbaLP/999917tw56zoFcXd3l4+Pj80DAACYU5ktO6GhoQoMDFRiYqJ1LCMjQ1u2bFG7du0kSe3atVNaWpp27NhhXWfdunXKy8tTeHh4qWcGAABlTwVn7jwrK0uHDx+2Pj969KiSkpJUtWpV1a5dW6NHj9arr76qBg0aKDQ0VBMnTlRwcLD1iq1GjRrpvvvu0+OPP67Zs2frypUrio6O1oABAwp9JRaAv56yeFi0bFwXWzJ4v0sX73d+Ti0727dvV6dOnazPx44dK0kaMmSI5s2bp2effVbZ2dkaMWKE0tLS1KFDB61evVoeHh7W18TFxSk6OlqdO3eWi4uL+vbtqxkzZpT6zwIAAMqmMnOfHWfiPjv58ZcBzIx/36WL97t0/ZXe73J/nx0AAABHoOwAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTq+DsAAAAlEUWi7MT5GcYzk5QPjGzAwAATI2ZHaAMKK9/QZbX3AD+WpjZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApsYdlAGgnOCO1UDRUHZgKnwYAAD+jMNYAADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1LjPTgnjvi8AADgXMzsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUynTZyc3N1cSJExUaGipPT0/Vq1dPr7zyiow/XDttGIYmTZqkoKAgeXp6KiIiQocOHXJiagAAUJaU6bIzdepUzZo1S++9957279+vqVOnatq0aZo5c6Z1nWnTpmnGjBmaPXu2tmzZIi8vL3Xt2lWXLl1yYnIAAFBWlOmbCv73v/9Vz5491b17d0lSnTp1tGjRIm3dulXS1Vmdd955Ry+++KJ69uwpSfrkk08UEBCgFStWaMCAAU7LDgAAyoYyPbPTvn17JSYm6uDBg5Kk3bt367vvvtP9998vSTp69KiSk5MVERFhfY2vr6/Cw8O1efPm6243JydHGRkZNg8AAGBOZXpmZ/z48crIyFBYWJhcXV2Vm5ur1157TYMGDZIkJScnS5ICAgJsXhcQEGBdVpCYmBhNmTKl5IIDAIAyo0zP7Hz22WeKi4vTwoULtXPnTs2fP19vvfWW5s+fX6ztTpgwQenp6dbHyZMnHZQYAACUNWV6Zuef//ynxo8fbz33pmnTpjp+/LhiYmI0ZMgQBQYGSpJSUlIUFBRkfV1KSoqaN29+3e26u7vL3d29RLMDAICyoUzP7Fy4cEEuLrYRXV1dlZeXJ0kKDQ1VYGCgEhMTrcszMjK0ZcsWtWvXrlSzAgCAsqlMz+z06NFDr732mmrXrq3GjRtr165dmj59uoYPHy5JslgsGj16tF599VU1aNBAoaGhmjhxooKDg9WrVy/nhgcAAGVCmS47M2fO1MSJEzVy5EilpqYqODhYTzzxhCZNmmRd59lnn1V2drZGjBihtLQ0dejQQatXr5aHh4cTkwMAgLLCYvzxdsR/URkZGfL19VV6erp8fHwcum2LxaGbc4jC/MbJ7TjkLl3kLl3kLl1mzl0Uhf38LtPn7AAAABQXZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJia3WXn4sWLunDhgvX58ePH9c4772jt2rUODQYAAOAIdpednj176pNPPpEkpaWlKTw8XG+//bZ69uypWbNmOTwgAABAcdhddnbu3KmOHTtKkj7//HMFBATo+PHj+uSTTzRjxgyHBwQAACgOu8vOhQsX5O3tLUlau3at+vTpIxcXF7Vt21bHjx93eEAAAIDisLvs1K9fXytWrNDJkye1Zs0a3XvvvZKk1NRU+fj4ODwgAABAcdhddiZNmqRx48apTp06+tvf/qZ27dpJujrL06JFC4cHBAAAKA6LYRiGvS9KTk7W6dOn1axZM7m4XO1LW7dulY+Pj8LCwhwesqRlZGTI19dX6enpDp+dslgcujmHKMxvnNyOQ+7SRe7SRe7SZebcRVHYz+8i3WcnMDBQ3t7eSkhI0MWLFyVJbdq0KZdFBwAAmJvdZee3335T586ddeutt6pbt246ffq0JCkyMlLPPPOMwwMCAAAUh91lZ8yYMapYsaJOnDihSpUqWcf79++v1atXOzQcAABAcVWw9wVr167VmjVrVLNmTZvxBg0acOk5AAAoc+ye2cnOzraZ0bnm3Llzcnd3d0goAAAAR7G77HTs2NH6dRGSZLFYlJeXp2nTpqlTp04ODQcAAFBcdh/GmjZtmjp37qzt27fr8uXLevbZZ/XDDz/o3Llz+v7770siIwAAQJHZPbPTpEkTHTx4UB06dFDPnj2VnZ2tPn36aNeuXapXr15JZAQAACiyIt1U0Gy4qWB+5HYccpcucpcucpcuM+cuisJ+ftt9GGvTpk03XH7nnXfau0kAAIASY3fZufvuu/ONWf5QI3Nzc4sVCAAAwJHsPmfn/PnzNo/U1FStXr1abdq00dq1a0siIwAAQJHZPbPj6+ubb6xLly5yc3PT2LFjtWPHDocEAwAAcIQifRFoQQICAnTgwAFHbQ4AAMAh7J7Z2bNnj81zwzB0+vRpvfHGG2revLmjcgEAADiE3WWnefPmslgs+vMV623bttXcuXMdFgwAAMAR7C47R48etXnu4uKiGjVqyMPDw2GhAAAAHMXuc3ZCQkJsHrVq1SrRonPq1Ck98sgjqlatmjw9PdW0aVNt377dutwwDE2aNElBQUHy9PRURESEDh06VGJ5AABA+VKomZ0ZM2YUeoNPP/10kcP82fnz53XHHXeoU6dO+uabb1SjRg0dOnRIVapUsa4zbdo0zZgxQ/Pnz1doaKgmTpyorl276scff2S2CQAAFO7rIkJDQwu3MYtFP//8c7FDXTN+/Hh9//33+s9//lPgcsMwFBwcrGeeeUbjxo2TJKWnpysgIEDz5s3TgAEDCrUfvi4iP3I7DrlLF7lLF7lLl5lzF4VDvy7iz+fplJaVK1eqa9eu6tevnzZu3KhbbrlFI0eO1OOPP27NlZycrIiICOtrfH19FR4ers2bN1+37OTk5CgnJ8f6PCMjo2R/EAAA4DQOu89OSfj55581a9YsNWjQQGvWrNGTTz6pp59+WvPnz5ckJScnS7p6j58/CggIsC4rSExMjHx9fa2PWrVqldwPAQAAnMruq7Ek6ZdfftHKlSt14sQJXb582WbZ9OnTHRJMkvLy8tS6dWu9/vrrkqQWLVpo3759mj17toYMGVLk7U6YMEFjx461Ps/IyKDwAABgUnaXncTERD344IOqW7eufvrpJzVp0kTHjh2TYRhq2bKlQ8MFBQXptttusxlr1KiRli5dKkkKDAyUJKWkpCgoKMi6TkpKyg1vcOju7i53d3eHZgUAAGWT3YexJkyYoHHjxmnv3r3y8PDQ0qVLdfLkSd11113q16+fQ8Pdcccd+b6C4uDBgwoJCZF09cTpwMBAJSYmWpdnZGRoy5YtateunUOzAACAcsqwU+XKlY3Dhw8bhmEYfn5+xr59+wzDMIykpCQjJCTE3s3d0NatW40KFSoYr732mnHo0CEjLi7OqFSpkvHpp59a13njjTcMPz8/44svvjD27Nlj9OzZ0wgNDTUuXrxY6P2kp6cbkoz09HSH5jcMw7h6DnrZepCb3OQuew9yk/uvnrsoCvv5bfdhLC8vL+t5OkFBQTpy5IgaN24sSTp79qwje5jatGmj5cuXa8KECXr55ZcVGhqqd955R4MGDbKu8+yzzyo7O1sjRoxQWlqaOnTooNWrV3OPHQAAIKmQ99n5o169eql79+56/PHHNW7cOH3xxRcaOnSoli1bpipVqujbb78tqawlhvvs5EduxyF36SJ36SJ36TJz7qJw6H12JOncuXOqWrWqpk+frqysLEnSlClTlJWVpcWLF6tBgwYOvRILAADAEQo9s+Ph4aFevXopMjJSXbp0KelcpYqZnfzI7TjkLl3kLl3kLl1mzl0Uhf38LvTVWB999JHOnDmj++67T3Xq1NFLL72kY8eOOSIrAABAiSl02Xn00UeVmJiow4cPa8iQIZo/f77q16+vLl26aPHixfluLggAAFAW2H2fndDQUE2ZMkVHjx7V6tWr5e/vr+HDhysoKMih33gOAADgCHZfjVWQpUuXWi/9zs3NdUSuUsU5O/mR23HIXbrIXbrIXbrMnLsoHH411p8dP35csbGxmj9/vk6ePKlOnTopMjKyqJsDAAAoEXaVnZycHC1dulRz587Vhg0bdMstt2jo0KEaNmyY6tSpU0IRAQAAiq7QZWfkyJGKj4/XhQsX1LNnT3399dfq0qWLLGVxvgwAAOD/K3TZ+e677zR58mQ98sgjqlatWklmAgAAcJhCl509e/aUZA4AAIASYfel5wAAAOUJZQcAAJgaZQcAAJgaZQcAAJia3WWnTp06evnll3XixImSyAMAAOBQdped0aNHa9myZapbt666dOmi+Ph45eTklEQ2AACAYitS2UlKStLWrVvVqFEjPfXUUwoKClJ0dLR27txZEhkBAACKrMjn7LRs2VIzZszQr7/+qsmTJ+vjjz9WmzZt1Lx5c82dO1cO+H5RAACAYivyF4FeuXJFy5cvV2xsrBISEtS2bVtFRkbql19+0fPPP69vv/1WCxcudGRWAAAAu9lddnbu3KnY2FgtWrRILi4uGjx4sP71r38pLCzMuk7v3r3Vpk0bhwYFAAAoCrvLTps2bdSlSxfNmjVLvXr1UsWKFfOtExoaqgEDBjgkIAAAQHHYXXZ+/vlnhYSE3HAdLy8vxcbGFjkUAACAo9h9gnJqaqq2bNmSb3zLli3avn27Q0IBAAA4it1lJyoqSidPnsw3furUKUVFRTkkFAAAgKPYXXZ+/PFHtWzZMt94ixYt9OOPPzokFAAAgKPYXXbc3d2VkpKSb/z06dOqUKHIV7IDAACUCLvLzr333qsJEyYoPT3dOpaWlqbnn39eXbp0cWg4AACA4rJ7Kuatt97SnXfeqZCQELVo0UKSlJSUpICAAC1YsMDhAQEAAIrD7rJzyy23aM+ePYqLi9Pu3bvl6empYcOGaeDAgQXecwcAAMCZinSSjZeXl0aMGOHoLAAAAA5X5DOKf/zxR504cUKXL1+2GX/wwQeLHQoAAMBRinQH5d69e2vv3r2yWCzWbze3WCySpNzcXMcmBAAAKAa7r8YaNWqUQkNDlZqaqkqVKumHH37Qpk2b1Lp1a23YsKEEIgIAABSd3TM7mzdv1rp161S9enW5uLjIxcVFHTp0UExMjJ5++mnt2rWrJHICAAAUid0zO7m5ufL29pYkVa9eXb/++qskKSQkRAcOHHBsOgAAgGKye2anSZMm2r17t0JDQxUeHq5p06bJzc1NH374oerWrVsSGQEAAIrM7rLz4osvKjs7W5L08ssv64EHHlDHjh1VrVo1LV682OEBAQAAisNiXLucqhjOnTunKlWqWK/IKm8yMjLk6+ur9PR0+fj4OHTbZfEtKcxvnNyOQ+7SRe7SRe7SZebcRVHYz2+7ztm5cuWKKlSooH379tmMV61atdwWHQAAYG52lZ2KFSuqdu3a3EsHAACUG3ZfjfXCCy/o+eef17lz50oiDwAAgEPZfYLye++9p8OHDys4OFghISHy8vKyWb5z506HhQMAACguu8tOr169SiAGAABAybC77EyePLkkcgAAAJQIu8/ZAQAAKE/sntlxcXG54WXmXKkFAADKErvLzvLly22eX7lyRbt27dL8+fM1ZcoUhwUDAABwBIfcQVmSFi5cqMWLF+uLL75wxOZKFXdQzo/cjkPu0kXu0kXu0mXm3EVRIndQvpG2bdsqMTHRUZsDAABwCIeUnYsXL2rGjBm65ZZbHLE5AAAAh7H7nJ0/f+GnYRjKzMxUpUqV9Omnnzo0HAAAQHHZXXb+9a9/2ZQdFxcX1ahRQ+Hh4apSpYpDwwEAABSX3WVn6NChJRADAACgZNh9zk5sbKyWLFmSb3zJkiWaP3++Q0IBAAA4it1lJyYmRtWrV8837u/vr9dff90hoQAAABzF7rJz4sQJhYaG5hsPCQnRiRMnHBIKAADAUewuO/7+/tqzZ0++8d27d6tatWoOCQUAAOAodpedgQMH6umnn9b69euVm5ur3NxcrVu3TqNGjdKAAQNKIiMAAECR2X011iuvvKJjx46pc+fOqlDh6svz8vI0ePBgztkBAABljt0zO25ublq8eLEOHDiguLg4LVu2TEeOHNHcuXPl5uZWEhmt3njjDVksFo0ePdo6dunSJUVFRalatWqqXLmy+vbtq5SUlBLNAQAAyg+7Z3auadCggRo0aODILDe0bds2/fvf/9btt99uMz5mzBh99dVXWrJkiXx9fRUdHa0+ffro+++/L7VsAACg7LJ7Zqdv376aOnVqvvFp06apX79+Dgn1Z1lZWRo0aJA++ugjm7s0p6ena86cOZo+fbruuecetWrVSrGxsfrvf/+r//3vfyWSBQAAlC92l51NmzapW7du+cbvv/9+bdq0ySGh/iwqKkrdu3dXRESEzfiOHTt05coVm/GwsDDVrl1bmzdvvu72cnJylJGRYfMAAADmZPdhrKysrALPzalYsWKJlIb4+Hjt3LlT27Zty7csOTlZbm5u8vPzsxkPCAhQcnLydbcZExOjKVOmODoqAAAog+ye2WnatKkWL16cbzw+Pl633XabQ0Jdc/LkSY0aNUpxcXHy8PBw2HYnTJig9PR06+PkyZMO2zYAAChb7J7ZmThxovr06aMjR47onnvukSQlJiZq0aJFBX5nVnHs2LFDqampatmypXUsNzdXmzZt0nvvvac1a9bo8uXLSktLs5ndSUlJUWBg4HW36+7uLnd3d4dmBQAAZZPdZadHjx5asWKFXn/9dX3++efy9PTU7bffrm+//VZ33XWXQ8N17txZe/futRkbNmyYwsLC9Nxzz6lWrVqqWLGiEhMT1bdvX0nSgQMHdOLECbVr186hWQAAQPlUpEvPu3fvru7du+cb37dvn5o0aVLsUNd4e3vn256Xl5eqVatmHY+MjNTYsWNVtWpV+fj46KmnnlK7du3Utm1bh+UAAADlV5Hvs3NNZmamFi1apI8//lg7duxQbm6uI3IV2r/+9S+5uLiob9++ysnJUdeuXfXBBx+UagYAAFB2WQzDMIrywk2bNunjjz/WsmXLFBwcrD59+qhv375q06aNozOWuIyMDPn6+io9PV0+Pj4O3bbF4tDNOURhfuPkdhxyly5yly5yly4z5y6Kwn5+2zWzk5ycrHnz5mnOnDnKyMjQww8/rJycHK1YscLhV2IBAAA4QqEvPe/Ro4caNmyoPXv26J133tGvv/6qmTNnlmQ2AACAYiv0zM4333yjp59+Wk8++WSpficWAABAcRR6Zue7775TZmamWrVqpfDwcL333ns6e/ZsSWYDAAAotkKXnbZt2+qjjz7S6dOn9cQTTyg+Pl7BwcHKy8tTQkKCMjMzSzInAABAkRT5aizp6g385syZowULFigtLU1dunTRypUrHZmvVHA1Vn7kdhxyly5yly5yly4z5y6Kwn5+2/3dWH/UsGFDTZs2Tb/88osWLVpUnE0BAACUiGLN7JgFMzv5kdtxyF26yF26yF26zJy7KEplZgcAAKCso+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTK9NlJyYmRm3atJG3t7f8/f3Vq1cvHThwwGadS5cuKSoqStWqVVPlypXVt29fpaSkOCkxAAAoa8p02dm4caOioqL0v//9TwkJCbpy5YruvfdeZWdnW9cZM2aMvvzySy1ZskQbN27Ur7/+qj59+jgxNQAAKEsshmEYzg5RWGfOnJG/v782btyoO++8U+np6apRo4YWLlyohx56SJL0008/qVGjRtq8ebPatm1bqO1mZGTI19dX6enp8vHxcWhmi8Whm3OIwvzGye045C5d5C5d5C5dZs5dFIX9/C7TMzt/lp6eLkmqWrWqJGnHjh26cuWKIiIirOuEhYWpdu3a2rx583W3k5OTo4yMDJsHAAAwp3JTdvLy8jR69GjdcccdatKkiSQpOTlZbm5u8vPzs1k3ICBAycnJ191WTEyMfH19rY9atWqVZHQAAOBE5absREVFad++fYqPjy/2tiZMmKD09HTr4+TJkw5ICAAAyqIKzg5QGNHR0Vq1apU2bdqkmjVrWscDAwN1+fJlpaWl2czupKSkKDAw8Lrbc3d3l7u7e0lGBgAAZUSZntkxDEPR0dFavny51q1bp9DQUJvlrVq1UsWKFZWYmGgdO3DggE6cOKF27dqVdlwAAFAGlemZnaioKC1cuFBffPGFvL29refh+Pr6ytPTU76+voqMjNTYsWNVtWpV+fj46KmnnlK7du0KfSUWAAAwtzJddmbNmiVJuvvuu23GY2NjNXToUEnSv/71L7m4uKhv377KyclR165d9cEHH5RyUgAAUFaVq/vslBTus5MfuR2H3KWL3KWL3KXLzLmLwpT32QEAALAXZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJiaacrO+++/rzp16sjDw0Ph4eHaunWrsyMBAIAywBRlZ/HixRo7dqwmT56snTt3qlmzZuratatSU1OdHQ0AADiZKcrO9OnT9fjjj2vYsGG67bbbNHv2bFWqVElz5851djQAAOBk5b7sXL58WTt27FBERIR1zMXFRREREdq8ebMTkwEAgLKggrMDFNfZs2eVm5urgIAAm/GAgAD99NNPBb4mJydHOTk51ufp6emSpIyMjJILWoaU1x+T3KWL3KWL3KWL3KWrpHJf+9w2DOOG65X7slMUMTExmjJlSr7xWrVqOSFN6fP1dXaCoiF36SJ36SJ36SJ36Srp3JmZmfK9wU7KfdmpXr26XF1dlZKSYjOekpKiwMDAAl8zYcIEjR071vo8Ly9P586dU7Vq1WSxWEo0b1FlZGSoVq1aOnnypHx8fJwdp9DIXbrIXbrIXbrIXbrKQ27DMJSZmang4OAbrlfuy46bm5tatWqlxMRE9erVS9LV8pKYmKjo6OgCX+Pu7i53d3ebMT8/vxJO6hg+Pj5l9h/djZC7dJG7dJG7dJG7dJX13Dea0bmm3JcdSRo7dqyGDBmi1q1b629/+5veeecdZWdna9iwYc6OBgAAnMwUZad///46c+aMJk2apOTkZDVv3lyrV6/Od9IyAAD46zFF2ZGk6Ojo6x62MgN3d3dNnjw53+G3so7cpYvcpYvcpYvcpau85i6IxbjZ9VoAAADlWLm/qSAAAMCNUHYAAICpUXYAAICpUXYAAICpUXbKuE2bNqlHjx4KDg6WxWLRihUrnB3ppmJiYtSmTRt5e3vL399fvXr10oEDB5wd66ZmzZql22+/3XoDrXbt2umbb75xdiy7vfHGG7JYLBo9erSzo9zQSy+9JIvFYvMICwtzdqxCOXXqlB555BFVq1ZNnp6eatq0qbZv3+7sWDdUp06dfO+3xWJRVFSUs6PdUG5uriZOnKjQ0FB5enqqXr16euWVV276XUhlQWZmpkaPHq2QkBB5enqqffv22rZtm7Nj2bjZZ4xhGJo0aZKCgoLk6empiIgIHTp0yDlhi4GyU8ZlZ2erWbNmev/9950dpdA2btyoqKgo/e9//1NCQoKuXLmie++9V9nZ2c6OdkM1a9bUG2+8oR07dmj79u2655571LNnT/3www/OjlZo27Zt07///W/dfvvtzo5SKI0bN9bp06etj++++87ZkW7q/PnzuuOOO1SxYkV98803+vHHH/X222+rSpUqzo52Q9u2bbN5rxMSEiRJ/fr1c3KyG5s6dapmzZql9957T/v379fUqVM1bdo0zZw509nRbuqxxx5TQkKCFixYoL179+ree+9VRESETp065exoVjf7jJk2bZpmzJih2bNna8uWLfLy8lLXrl116dKlUk5aTAbKDUnG8uXLnR3DbqmpqYYkY+PGjc6OYrcqVaoYH3/8sbNjFEpmZqbRoEEDIyEhwbjrrruMUaNGOTvSDU2ePNlo1qyZs2PY7bnnnjM6dOjg7BjFNmrUKKNevXpGXl6es6PcUPfu3Y3hw4fbjPXp08cYNGiQkxIVzoULFwxXV1dj1apVNuMtW7Y0XnjhBSelurE/f8bk5eUZgYGBxptvvmkdS0tLM9zd3Y1FixY5IWHRMbODEpeeni5Jqlq1qpOTFF5ubq7i4+OVnZ2tdu3aOTtOoURFRal79+6KiIhwdpRCO3TokIKDg1W3bl0NGjRIJ06ccHakm1q5cqVat26tfv36yd/fXy1atNBHH33k7Fh2uXz5sj799FMNHz68zH758TXt27dXYmKiDh48KEnavXu3vvvuO91///1OTnZjv//+u3Jzc+Xh4WEz7unpWS5mMCXp6NGjSk5Otvl/iq+vr8LDw7V582YnJrOfae6gjLIpLy9Po0eP1h133KEmTZo4O85N7d27V+3atdOlS5dUuXJlLV++XLfddpuzY91UfHy8du7cWebOB7iR8PBwzZs3Tw0bNtTp06c1ZcoUdezYUfv27ZO3t7ez413Xzz//rFmzZmns2LF6/vnntW3bNj399NNyc3PTkCFDnB2vUFasWKG0tDQNHTrU2VFuavz48crIyFBYWJhcXV2Vm5ur1157TYMGDXJ2tBvy9vZWu3bt9Morr6hRo0YKCAjQokWLtHnzZtWvX9/Z8QolOTlZkvJ99VJAQIB1WXlB2UGJioqK0r59+8rNXzINGzZUUlKS0tPT9fnnn2vIkCHauHFjmS48J0+e1KhRo5SQkJDvr8iy7I9/md9+++0KDw9XSEiIPvvsM0VGRjox2Y3l5eWpdevWev311yVJLVq00L59+zR79uxyU3bmzJmj+++/X8HBwc6OclOfffaZ4uLitHDhQjVu3FhJSUkaPXq0goODy/z7vWDBAg0fPly33HKLXF1d1bJlSw0cOFA7duxwdrS/HA5jocRER0dr1apVWr9+vWrWrOnsOIXi5uam+vXrq1WrVoqJiVGzZs307rvvOjvWDe3YsUOpqalq2bKlKlSooAoVKmjjxo2aMWOGKlSooNzcXGdHLBQ/Pz/deuutOnz4sLOj3FBQUFC+8tuoUaNycQhOko4fP65vv/1Wjz32mLOjFMo///lPjR8/XgMGDFDTpk316KOPasyYMYqJiXF2tJuqV6+eNm7cqKysLJ08eVJbt27VlStXVLduXWdHK5TAwEBJUkpKis14SkqKdVl5QdmBwxmGoejoaC1fvlzr1q1TaGiosyMVWV5ennJycpwd44Y6d+6svXv3Kikpyfpo3bq1Bg0apKSkJLm6ujo7YqFkZWXpyJEjCgoKcnaUG7rjjjvy3Urh4MGDCgkJcVIi+8TGxsrf31/du3d3dpRCuXDhglxcbD+qXF1dlZeX56RE9vPy8lJQUJDOnz+vNWvWqGfPns6OVCihoaEKDAxUYmKidSwjI0NbtmwpN+cyXsNhrDIuKyvL5i/do0ePKikpSVWrVlXt2rWdmOz6oqKitHDhQn3xxRfy9va2Htv19fWVp6enk9Nd34QJE3T//ferdu3ayszM1MKFC7VhwwatWbPG2dFuyNvbO9/5UF5eXqpWrVqZPk9q3Lhx6tGjh0JCQvTrr79q8uTJcnV11cCBA50d7YbGjBmj9u3b6/XXX9fDDz+srVu36sMPP9SHH37o7Gg3lZeXp9jYWA0ZMkQVKpSP//336NFDr732mmrXrq3GjRtr165dmj59uoYPH+7saDe1Zs0aGYahhg0b6vDhw/rnP/+psLAwDRs2zNnRrG72GTN69Gi9+uqratCggUJDQzVx4kQFBwerV69ezgtdFM6+HAw3tn79ekNSvseQIUOcHe26CsoryYiNjXV2tBsaPny4ERISYri5uRk1atQwOnfubKxdu9bZsYqkPFx63r9/fyMoKMhwc3MzbrnlFqN///7G4cOHnR2rUL788kujSZMmhru7uxEWFmZ8+OGHzo5UKGvWrDEkGQcOHHB2lELLyMgwRo0aZdSuXdvw8PAw6tata7zwwgtGTk6Os6Pd1OLFi426desabm5uRmBgoBEVFWWkpaU5O5aNm33G5OXlGRMnTjQCAgIMd3d3o3PnzuXq3881FsMoB7ehBAAAKCLO2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEABzh27JgsFouSkpIK/ZqhQ4fe9E60d999t0aPHl2sbMBfHWUH+IvYvHmzXF1dy813IpWEpk2b6h//+EeByxYsWCB3d3edPXu2SNuuVauWTp8+Xaa/ogP4q6LsAH8Rc+bM0VNPPaVNmzbp119/dWqWy5cvO2W/kZGRio+P18WLF/Mti42N1YMPPqjq1avbvd3Lly/L1dVVgYGB5eY7p4C/EsoO8BeQlZWlxYsX68knn1T37t01b968fOt8+eWXatOmjTw8PFS9enX17t3buiwnJ0fPPfecatWqJXd3d9WvX19z5syRJM2bN09+fn4221qxYoUsFov1+UsvvaTmzZvr448/VmhoqDw8PCRJq1evVocOHeTn56dq1arpgQce0JEjR2y29csvv2jgwIGqWrWqvLy81Lp1a23ZskXHjh2Ti4uLtm/fbrP+O++8o5CQkAK/FfuRRx7RxYsXtXTpUpvxo0ePasOGDYqMjNSRI0fUs2dPBQQEqHLlymrTpo2+/fZbm/Xr1KmjV155RYMHD5aPj49GjBiR7zBWbm6uIiMjFRoaKk9PTzVs2FDvvvtuAb8dacqUKapRo4Z8fHz0j3/844ZlMCcnR+PGjdMtt9wiLy8vhYeHa8OGDdblx48fV48ePVSlShV5eXmpcePG+vrrr6+7PeCvgLID/AV89tlnCgsLU8OGDfXII49o7ty5+uPX4n311Vfq3bu3unXrpl27dikxMVF/+9vfrMsHDx6sRYsWacaMGdq/f7/+/e9/q3LlynZlOHz4sJYuXaply5ZZC0F2drbGjh2r7du3KzExUS4uLurdu7e1qGRlZemuu+7SqVOntHLlSu3evVvPPvus8vLyVKdOHUVERCg2NtZmP7GxsRo6dKhcXPL/76169erq2bOn5s6dazM+b9481axZU/fee6+ysrLUrVs3JSYmateuXbrvvvvUo0cPnThxwuY1b731lpo1a6Zdu3Zp4sSJ+faVl5enmjVrasmSJfrxxx81adIkPf/88/rss89s1ktMTNT+/fu1YcMGLVq0SMuWLdOUKVOu+z5GR0dr8+bNio+P1549e9SvXz/dd999OnTokCQpKipKOTk52rRpk/bu3aupU6fa/bsCTMfJX0QKoBS0b9/eeOeddwzDMIwrV64Y1atXN9avX29d3q5dO2PQoEEFvvbAgQOGJCMhIaHA5bGxsYavr6/N2PLly40//u9l8uTJRsWKFY3U1NQb5jxz5owhydi7d69hGIbx73//2/D29jZ+++23AtdfvHixUaVKFePSpUuGYRjGjh07DIvFYhw9evS6+1i9erVhsViMn3/+2TCMq9/qHBISYrz44ovXfU3jxo2NmTNnWp+HhIQYvXr1slnn6NGjhiRj165d191OVFSU0bdvX+vzIUOGGFWrVjWys7OtY7NmzTIqV65s5ObmGoZh+w32x48fN1xdXY1Tp07ZbLdz587GhAkTDMMwjKZNmxovvfTSdTMAf0XM7AAmd+DAAW3dulUDBw6UJFWoUEH9+/e3HoaSpKSkJHXu3LnA1yclJcnV1VV33XVXsXKEhISoRo0aNmOHDh3SwIEDVbduXfn4+KhOnTqSZJ1FSUpKUosWLVS1atUCt9mrVy+5urpq+fLlkq7O0HTq1Mm6nYJ06dJFNWvWtM4IJSYm6sSJExo2bJikq7NJ48aNU6NGjeTn56fKlStr//79+WZ2WrdufdOf+f3331erVq1Uo0YNVa5cWR9++GG+7TRr1kyVKlWyPm/Xrp2ysrJ08uTJfNvbu3evcnNzdeutt6py5crWx8aNG62H/55++mm9+uqruuOOOzR58mTt2bPnpjkBs6PsACY3Z84c/f777woODlaFChVUoUIFzZo1S0uXLlV6erokydPT87qvv9EySXJxcbE5JCZJV65cybeel5dXvrEePXro3Llz+uijj7RlyxZt2bJF0v+dwHyzfbu5uWnw4MGKjY3V5cuXtXDhQg0fPvymeYcOHar58+crLy9PsbGx6tSpk+rWrStJGjdunJYvX67XX39d//nPf5SUlKSmTZvmO4+moJ/nj+Lj4zVu3DhFRkZq7dq1SkpK0rBhw4p1cnZWVpZcXV21Y8cOJSUlWR/79++3ng/02GOP6eeff9ajjz6qvXv3qnXr1po5c2aR9wmYAWUHMLHff/9dn3zyid5++22bD8fdu3crODhYixYtkiTdfvvtSkxMLHAbTZs2VV5enjZu3Fjg8ho1aigzM1PZ2dnWscLca+a3337TgQMH9OKLL6pz585q1KiRzp8/b7PO7bffrqSkJJ07d+6623nsscf07bff6oMPPtDvv/+uPn363HTfw4YN08mTJ7Vs2TItX75ckZGR1mXff/+9hg4dqt69e6tp06YKDAzUsWPHbrrNP/v+++/Vvn17jRw5Ui1atFD9+vXznXwtSbt377a5Oux///ufKleurFq1auVbt0WLFsrNzVVqaqrq169v8wgMDLSuV6tWLf3jH//QsmXL9Mwzz+ijjz6yOz9gJpQdwMRWrVql8+fPKzIyUk2aNLF59O3b13ooa/LkyVq0aJEmT56s/fv3W09sla5eeTRkyBANHz5cK1assF65dO1E2/DwcFWqVEnPP/+8jhw5ooULFxZ4tdefValSRdWqVdOHH36ow4cPa926dRo7dqzNOgMHDlRgYKB69eql77//Xj///LOWLl2qzZs3W9dp1KiR2rZtq+eee04DBw686WyQJIWGhuqee+7RiBEj5O7ublOQGjRoYD2Jevfu3fr73/9e4JVdN9OgQQNt375da9as0cGDBzVx4kRt27Yt33qXL19WZGSkfvzxR3399deaPHmyoqOjCzzB+tZbb9WgQYM0ePBgLVu2TEePHtXWrVsVExOjr776SpI0evRorVmzRkePHtXOnTu1fv16NWrUyO78gJlQdgATmzNnjiIiIuTr65tvWd++fbV9+3bt2bNHd999t5YsWaKVK1eqefPmuueee7R161brurNmzdJDDz2kkSNHKiwsTI8//rh1Jqdq1ar69NNP9fXXX6tp06ZatGiRXnrppZtmc3FxUXx8vHbs2KEmTZpozJgxevPNN23WcXNz09q1a+Xv769u3bqpadOmeuONN+Tq6mqzXmRkpC5fvnzTQ1h/fs358+f197//3XopvCRNnz5dVapUUfv27dWjRw917dpVLVu2LPR2r3niiSfUp08f9e/fX+Hh4frtt980cuTIfOt17txZDRo00J133qn+/fvrwQcfvOH7Fxsbq8GDB+uZZ55Rw4YN1atXL23btk21a9eWdPWS96ioKDVq1Ej33Xefbr31Vn3wwQd25wfMxGL8+WA7AJQzr7zyipYsWcLJuAAKxMwOgHIrKytL+/bt03vvvaennnrK2XEAlFGUHQDlVnR0tFq1aqW7777brkNYAP5aOIwFAABMjZkdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgav8PriEMHNJ5QJIAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of RMSE values from rmse1 to rmse10\n", + "rmse_values = [rmse1, rmse2, rmse3, rmse4, rmse5, rmse6, rmse7, rmse8, rmse9, rmse10]\n", + "\n", + "# List of corresponding labels for each RMSE value\n", + "labels = ['RMSE1', 'RMSE2', 'RMSE3', 'RMSE4', 'RMSE5', 'RMSE6', 'RMSE7', 'RMSE8', 'RMSE9', 'RMSE10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, rmse_values, color='green')\n", + "plt.xlabel('RMSE Variables')\n", + "plt.ylabel('RMSE Values')\n", + "plt.title('Bar Graph of RMSE')\n", + "plt.show()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "RFaaCNH6Cfoa", + "outputId": "67a8f358-e3ce-4ad2-9c78-ebc75902beb4" + }, + "execution_count": 118, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABB/klEQVR4nO3de1xUdeL/8fcAMpAKiMbNQEnNe0qSrmV5o7xlWl5WJReRdCut1O1meSnblbSLlpm6rYm6mq6mZn2V8msataIppptmZnkjE7QUEA3k8vn90c/5OoEGOshw9vV8PM5jdz7nM+e8B8l5e+acOTZjjBEAAIBFeVR2AAAAgIpE2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QFgOc8//7xsNpt++umnCt9XcnKyWrduLR8fH9lsNmVlZVX4PgGUD2UHqEKSkpJks9mclqCgIHXu3Fnr16+/5nk++OAD9e7dW8HBwfL29lZgYKDuvPNOvfrqq8rJybnmea61n3/+WQMHDpSvr69mz56txYsXq3r16qXO/e2fnZeXl+rWrathw4bp2LFjJeZ36tRJNptNjRo1KnV7GzZscGxr5cqVTuu++uor9e/fX/Xq1ZOPj4/q1q2ru+66S7NmzXKaV79+/RK/TxeW7t27X+FPBXA/XpUdAED5TZkyRZGRkTLGKDMzU0lJSerZs6c++OAD3XPPPRW+/+LiYiUkJCgpKUktW7bUI488ovDwcJ05c0apqamaMGGC1q1bp40bN1Z4lsq0fft2nTlzRi+++KJiYmLK9JwLf3Z5eXnaunWrkpKS9Pnnn2vPnj3y8fFxmuvj46PvvvtOX3zxhdq2beu0bsmSJfLx8VFeXp7T+JYtW9S5c2dFRERoxIgRCgkJUXp6urZu3arXX39djz76qNP81q1b6y9/+UuJnGFhYWV6PUBVQNkBqqAePXooOjra8TghIUHBwcF69913XVJ2iouLdf78+RJvvhdMnz5dSUlJGjt2rF599VXZbDbHuscff1zHjx/XokWLrmofVcGJEyckSQEBAWV+zsV/dg8++KDq1KmjadOmae3atRo4cKDT3AYNGqiwsFDvvvuuU9nJy8vT6tWr1atXL7333ntOz/nb3/4mf39/bd++vUSuC3kvVrduXT3wwANlzg9URXyMBVhAQECAfH195eXl/O+XV155Rbfddptq164tX19ftWnTpsRHHpJks9k0evRoLVmyRM2bN5fdbldycnKp+zp37pymTZum5s2b6+WXX3YqOheEhobq6aefLvM+riRn48aN5ePjozZt2iglJaXUrFlZWRo2bJgCAgLk7++v+Ph4nTt3rvQf4m+sWLFCbdq0ka+vr+rUqaMHHnjA6eOmTp06KS4uTpJ06623ymazadiwYWXa9sXuuOMOSdL3339f6vrBgwdr+fLlKi4udox98MEHOnfuXIlydGE7zZs3L7WABQUFlTsfYAWUHaAKys7O1k8//aSTJ09q7969evjhh5Wbm1viX+ivv/66oqKiNGXKFE2dOlVeXl4aMGCA/ud//qfENj/55BONHTtWf/zjH/X666+rfv36pe77888/V1ZWlgYPHixPT89y5b7UPsqT89NPP9WYMWP0wAMPaMqUKfr555/VvXt37dmzp8TcgQMH6syZM0pMTNTAgQOVlJSkF1544XdzJiUlaeDAgfL09FRiYqJGjBihVatWqUOHDo4TkJ977jmNHDlS0q8fTS1evFh//vOfy/XzkKTDhw9LkmrVqlXq+iFDhuj48ePavHmzY2zp0qXq2rVrqeWlXr16SktLK/XnUZqCggL99NNPJZZffvml3K8FcFsGQJWxYMECI6nEYrfbTVJSUon5586dc3p8/vx506JFC9OlSxencUnGw8PD7N2793czvP7660aSWbNmjdN4YWGhOXnypNNSXFxcpn2UJ6cks2PHDsfYkSNHjI+Pj7nvvvscY5MnTzaSzPDhw52ef99995natWtf9vWdP3/eBAUFmRYtWphffvnFMf7hhx8aSWbSpEmOsQt/Htu3b7/sNi+e+7//+7/m5MmTJj093axcudJcf/31xm63m/T0dKf5HTt2NM2bNzfGGBMdHW0SEhKMMcacPn3aeHt7m4ULF5pNmzYZSWbFihWO53388cfG09PTeHp6mvbt25unnnrKfPTRR+b8+fMlMtWrV6/U3ydJJjEx8XdfE1BVcGQHqIJmz56tDRs2aMOGDfrnP/+pzp0768EHH9SqVauc5vn6+jr+/+nTp5Wdna077rhDO3fuLLHNjh07qlmzZr+77wtXWdWoUcNp/KuvvtL111/vtPz8889l2kd5crZv315t2rRxPI6IiFCfPn300UcfqaioyGnuQw895PT4jjvu0M8//3zZK8V27NihEydO6JFHHnE6n6hXr15q0qRJqUebyiMmJkbXX3+9wsPD1b9/f1WvXl1r167VDTfccMnnDBkyRKtWrdL58+e1cuVKeXp66r777it17l133aXU1FTde++92r17t6ZPn65u3bqpbt26Wrt2bYn57dq1c/wuXbwMHjz4ql4n4E44QRmogtq2bet0gvLgwYMVFRWl0aNH65577pG3t7ck6cMPP9Rf//pX7dq1S/n5+Y75pZ1nExkZWaZ916xZU5KUm5vrNN6wYUNt2LBBkrRo0SItXry4zPsoT87SLsW+6aabdO7cOZ08eVIhISGO8YiICKd5Fz4qOn36tPz8/ErNcuTIEUlS48aNS6xr0qSJPv/881KfV1azZ8/WTTfdpOzsbL3zzjtKSUmR3W6/7HMGDRqkJ554QuvXr9eSJUt0zz33OP4cSnPrrbc6ytHu3bu1evVqzZgxQ/3799euXbucCmedOnXKfCUZUFVxZAewAA8PD3Xu3FnHjx/XgQMHJEmfffaZ7r33Xvn4+Oitt97SunXrtGHDBg0ZMkTGmBLbuPjoyuU0adJEkkqcE1KjRg3FxMQoJiZGN954Y6nPLW0f5c1ZHpc6p+hqt3s12rZtq5iYGPXr109r165VixYtNGTIkBLl8WKhoaHq1KmTXn31VaWkpGjIkCFl2pe3t7duvfVWTZ06VXPmzFFBQYFWrFjhqpcCVBmUHcAiCgsLJf3fEZf33ntPPj4++uijjzR8+HD16NHDJf+Cv+OOO+Tv769ly5Y5XSF0pcqb80KZu9i3336r6667Ttdff/1V56lXr54kaf/+/SXW7d+/37HeFS6cAP3jjz/qzTffvOzcIUOG6LPPPpOfn5969uxZ7n1dOBJ4/PjxK8oKVGWUHcACCgoK9PHHH8vb21tNmzaV9Osbqc1mczqP5fDhw1qzZs1V7eu6667TU089pT179uiZZ54p9ShJeY6clDdnamqq07k86enpev/993X33XeX++qw0kRHRysoKEhz5851+kht/fr12rdvn3r16nXV+7hYp06d1LZtW82cObPEFwRerH///po8ebLeeustx8eUpdm0aVOpP/9169ZJKv3jOcDqOGcHqILWr1+vb775RtKvXxS3dOlSHThwQM8884zjXJRevXrptddeU/fu3TVkyBCdOHFCs2fPVsOGDfWf//znqvb/zDPPaN++fXr55Zf18ccfq1+/frrhhht0+vRp7dy5UytWrFBQUFCZvjCwvDlbtGihbt266bHHHpPdbtdbb70lSWW6pLwsqlWrpmnTpik+Pl4dO3bU4MGDlZmZ6bhUfuzYsS7Zz8WefPJJDRgwQElJSSVOqr7A399fzz///O9u69FHH9W5c+d03333qUmTJjp//ry2bNmi5cuXq379+oqPj3eaf+zYMf3zn/8ssZ0aNWqob9++V/JyAPdTmZeCASif0i499/HxMa1btzZz5sxxutTbGGPmz59vGjVqZOx2u2nSpIlZsGCB47Lsi0kyo0aNKnee1atXm549e5rrr7/eeHl5mYCAANOhQwfz8ssvm6ysrDLvo7w5//nPfzrmR0VFmU2bNjnNu/DckydPOo1f+PkdOnTod1/b8uXLTVRUlLHb7SYwMNDExsaaH374odTtlefS89LmFhUVmQYNGpgGDRqYwsJCY4zzpeeXUtql5+vXrzfDhw83TZo0MTVq1DDe3t6mYcOG5tFHHzWZmZlOz7/cpef16tX73dcEVBU2YyrxTD0AKAebzaZRo0b97vktAHAxztkBAACWRtkBAACWRtkBAACWxtVYAKoMTjEEcCU4sgMAACyNsgMAACyNj7EkFRcX68cff1TNmjVLvfEgAABwP8YYnTlzRmFhYfLwuPTxG8qOpB9//FHh4eGVHQMAAFyB9PR03XDDDZdcT9mRVLNmTUm//rAufNU+AABwbzk5OQoPD3e8j18KZUdyfHTl5+dH2QEAoIr5vVNQOEEZAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYmldlBwAAWJvtBVtlRyjBTDaVHQHXEEd2AACApXFkB6XiX2IAAKvgyA4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALC0Si07KSkp6t27t8LCwmSz2bRmzZpLzn3ooYdks9k0c+ZMp/FTp04pNjZWfn5+CggIUEJCgnJzcys2OAAAqDIqteycPXtWrVq10uzZsy87b/Xq1dq6davCwsJKrIuNjdXevXu1YcMGffjhh0pJSdHIkSMrKjIAAKhivCpz5z169FCPHj0uO+fYsWN69NFH9dFHH6lXr15O6/bt26fk5GRt375d0dHRkqRZs2apZ8+eeuWVV0otRwAA4L+LW5+zU1xcrKFDh+rJJ59U8+bNS6xPTU1VQECAo+hIUkxMjDw8PLRt27ZLbjc/P185OTlOCwAAsCa3LjvTpk2Tl5eXHnvssVLXZ2RkKCgoyGnMy8tLgYGBysjIuOR2ExMT5e/v71jCw8NdmhsAALgPty07aWlpev3115WUlCSbzebSbY8fP17Z2dmOJT093aXbBwAA7sNty85nn32mEydOKCIiQl5eXvLy8tKRI0f0l7/8RfXr15ckhYSE6MSJE07PKyws1KlTpxQSEnLJbdvtdvn5+TktAADAmir1BOXLGTp0qGJiYpzGunXrpqFDhyo+Pl6S1L59e2VlZSktLU1t2rSRJH3yyScqLi5Wu3btrnlmAADgfiq17OTm5uq7775zPD506JB27dqlwMBARUREqHbt2k7zq1WrppCQEDVu3FiS1LRpU3Xv3l0jRozQ3LlzVVBQoNGjR2vQoEFciQUAACRV8sdYO3bsUFRUlKKioiRJ48aNU1RUlCZNmlTmbSxZskRNmjRR165d1bNnT3Xo0EF///vfKyoyAACoYir1yE6nTp1kjCnz/MOHD5cYCwwM1NKlS12YCgAAWInbnqAMAADgCpQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZVadlJSUtS7d2+FhYXJZrNpzZo1jnUFBQV6+umn1bJlS1WvXl1hYWH605/+pB9//NFpG6dOnVJsbKz8/PwUEBCghIQE5ebmXuNXAgAA3FWllp2zZ8+qVatWmj17dol1586d086dOzVx4kTt3LlTq1at0v79+3Xvvfc6zYuNjdXevXu1YcMGffjhh0pJSdHIkSOv1UsAAABuzqsyd96jRw/16NGj1HX+/v7asGGD09ibb76ptm3b6ujRo4qIiNC+ffuUnJys7du3Kzo6WpI0a9Ys9ezZU6+88orCwsIq/DUAAAD3VqXO2cnOzpbNZlNAQIAkKTU1VQEBAY6iI0kxMTHy8PDQtm3bKiklAABwJ5V6ZKc88vLy9PTTT2vw4MHy8/OTJGVkZCgoKMhpnpeXlwIDA5WRkXHJbeXn5ys/P9/xOCcnp2JCAwCASlcljuwUFBRo4MCBMsZozpw5V729xMRE+fv7O5bw8HAXpAQAAO7I7cvOhaJz5MgRbdiwwXFUR5JCQkJ04sQJp/mFhYU6deqUQkJCLrnN8ePHKzs727Gkp6dXWH4AAFC53PpjrAtF58CBA9q0aZNq167ttL59+/bKyspSWlqa2rRpI0n65JNPVFxcrHbt2l1yu3a7XXa7vUKzAwAA91CpZSc3N1ffffed4/GhQ4e0a9cuBQYGKjQ0VP3799fOnTv14YcfqqioyHEeTmBgoLy9vdW0aVN1795dI0aM0Ny5c1VQUKDRo0dr0KBBXIkFAAAkVXLZ2bFjhzp37ux4PG7cOElSXFycnn/+ea1du1aS1Lp1a6fnbdq0SZ06dZIkLVmyRKNHj1bXrl3l4eGhfv366Y033rgm+QEAgPur1LLTqVMnGWMuuf5y6y4IDAzU0qVLXRkLAABYiNufoAwAAHA1KDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKrXspKSkqHfv3goLC5PNZtOaNWuc1htjNGnSJIWGhsrX11cxMTE6cOCA05xTp04pNjZWfn5+CggIUEJCgnJzc6/hqwAAAO6sUsvO2bNn1apVK82ePbvU9dOnT9cbb7yhuXPnatu2bapevbq6deumvLw8x5zY2Fjt3btXGzZs0IcffqiUlBSNHDnyWr0EAADg5rwqc+c9evRQjx49Sl1njNHMmTM1YcIE9enTR5K0aNEiBQcHa82aNRo0aJD27dun5ORkbd++XdHR0ZKkWbNmqWfPnnrllVcUFhZ2zV4LAABwT257zs6hQ4eUkZGhmJgYx5i/v7/atWun1NRUSVJqaqoCAgIcRUeSYmJi5OHhoW3btl1y2/n5+crJyXFaAACANblt2cnIyJAkBQcHO40HBwc71mVkZCgoKMhpvZeXlwIDAx1zSpOYmCh/f3/HEh4e7uL0AADAXbht2alI48ePV3Z2tmNJT0+v7EgAAKCCuG3ZCQkJkSRlZmY6jWdmZjrWhYSE6MSJE07rCwsLderUKcec0tjtdvn5+TktAADAmty27ERGRiokJEQbN250jOXk5Gjbtm1q3769JKl9+/bKyspSWlqaY84nn3yi4uJitWvX7ppnBgAA7qdSr8bKzc3Vd99953h86NAh7dq1S4GBgYqIiNCYMWP017/+VY0aNVJkZKQmTpyosLAw9e3bV5LUtGlTde/eXSNGjNDcuXNVUFCg0aNHa9CgQVyJBQAAJFVy2dmxY4c6d+7seDxu3DhJUlxcnJKSkvTUU0/p7NmzGjlypLKystShQwclJyfLx8fH8ZwlS5Zo9OjR6tq1qzw8PNSvXz+98cYb1/y1AAAA92QzxpjKDlHZcnJy5O/vr+zsbM7f+f9sL9gqO0IJZvJ//a8qUCXx9wkqSlnfv932nB0AAABXoOwAAABLc0nZycrKcsVmAAAAXK7cZWfatGlavny54/HAgQNVu3Zt1a1bV7t373ZpOAAAgKtV7rIzd+5cx+0VNmzYoA0bNmj9+vXq0aOHnnzySZcHBAAAuBrlvvQ8IyPDUXY+/PBDDRw4UHfffbfq16/PF/kBAAC3U+4jO7Vq1XLcSyo5OdlxV3JjjIqKilybDgAA4CqV+8jO/fffryFDhqhRo0b6+eef1aNHD0nSl19+qYYNG7o8IAAAwNUod9mZMWOG6tevr/T0dE2fPl01atSQJB0/flyPPPKIywMCAABcjXKXnWrVqumJJ54oMT527FiXBAIAAHClK/qencWLF6tDhw4KCwvTkSNHJEkzZ87U+++/79JwAAAAV6vcZWfOnDkaN26cevTooaysLMdJyQEBAZo5c6ar8wEAAFyVcpedWbNm6e2339Zzzz0nT09Px3h0dLS++uorl4YDAAC4WuUuO4cOHVJUVFSJcbvdrrNnz7okFAAAgKuUu+xERkZq165dJcaTk5PVtGlTV2QCAABwmXJfjTVu3DiNGjVKeXl5Msboiy++0LvvvqvExET94x//qIiMAAAAV6zcZefBBx+Ur6+vJkyYoHPnzmnIkCEKCwvT66+/rkGDBlVERgAAgCtW7rIjSbGxsYqNjdW5c+eUm5uroKAgV+cCAABwiSsqOxdcd911uu6661yVBQAAwOXKXXYiIyNls9kuuf7gwYNXFQgAAMCVyl12xowZ4/S4oKBAX375pZKTk/Xkk0+6KhcAAIBLlLvsPP7446WOz549Wzt27LjqQAAAAK50RffGKk2PHj303nvvuWpzAAAALuGysrNy5UoFBga6anMAAAAuUe6PsaKiopxOUDbGKCMjQydPntRbb73l0nAAAABXq9xlp2/fvk6PPTw8dP3116tTp05q0qSJq3IBAAC4RLnLzuTJkysiBwAAQIUoU9nJyckp8wb9/PyuOAwAAICrlansBAQEXPaLBKVfz92x2WwqKipySTAAAABXKFPZ2bRpU0XnAAAAqBBlKjsdO3as6BwAAAAV4opvBHru3DkdPXpU58+fdxq/+eabrzoUAACAq5S77Jw8eVLx8fFav359qes5ZwcAALiTcn+D8pgxY5SVlaVt27bJ19dXycnJWrhwoRo1aqS1a9dWREYAAIArVu4jO5988onef/99RUdHy8PDQ/Xq1dNdd90lPz8/JSYmqlevXhWREwAA4IqU+8jO2bNnFRQUJEmqVauWTp48KUlq2bKldu7c6dp0AAAAV6ncZadx48bav3+/JKlVq1aaN2+ejh07prlz5yo0NNSl4YqKijRx4kRFRkbK19dXDRo00IsvvihjjGOOMUaTJk1SaGiofH19FRMTowMHDrg0BwAAqLrK/THW448/ruPHj0v69dYR3bt315IlS+Tt7a2kpCSXhps2bZrmzJmjhQsXqnnz5tqxY4fi4+Pl7++vxx57TJI0ffp0vfHGG1q4cKEiIyM1ceJEdevWTV9//bV8fHxcmgcAAFQ9ZS47/fv314MPPqjY2FjHtym3adNGR44c0TfffKOIiAjVqVPHpeG2bNmiPn36OM4Dql+/vt5991198cUXkn49qjNz5kxNmDBBffr0kSQtWrRIwcHBWrNmjQYNGuTSPAAAoOop88dYp0+fVq9evRQREaFJkybp4MGDkqTrrrtOt9xyi8uLjiTddttt2rhxo7799ltJ0u7du/X555+rR48ekqRDhw4pIyNDMTExjuf4+/urXbt2Sk1NveR28/PzlZOT47QAAABrKnPZ2bhxow4ePKiEhAT985//VKNGjdSlSxctXbpU+fn5FRLumWee0aBBg9SkSRNVq1ZNUVFRGjNmjGJjYyVJGRkZkqTg4GCn5wUHBzvWlSYxMVH+/v6OJTw8vELyAwCAyleuE5Tr1aun559/XgcPHtSGDRsUFhamESNGKDQ0VKNGjVJaWppLw/3rX//SkiVLtHTpUu3cuVMLFy7UK6+8ooULF17VdsePH6/s7GzHkp6e7qLEAADA3Vzx7SK6dOmiLl266MyZM1q6dKmeffZZzZs3T4WFhS4L9+STTzqO7ki/Xt5+5MgRJSYmKi4uTiEhIZKkzMxMpyvBMjMz1bp160tu1263y263uywnAABwX+W+9Pxihw4d0iuvvKKpU6cqOzvb6dwZVzh37pw8PJwjenp6qri4WJIUGRmpkJAQbdy40bE+JydH27ZtU/v27V2aBQAAVE3lPrKTl5enlStX6p133lFKSorCw8OVkJCg+Ph4l5/70rt3b/3tb39TRESEmjdvri+//FKvvfaahg8fLkmy2WwaM2aM/vrXv6pRo0aOS8/DwsLUt29fl2YBAABVU5nLzhdffKF33nlHy5cvV15enu677z4lJyera9eujkvRXW3WrFmaOHGiHnnkEZ04cUJhYWH685//rEmTJjnmPPXUUzp79qxGjhyprKwsdejQQcnJyXzHDgAAkCTZzMVfR3wZHh4eatWqlRISEhQbG6tatWpVdLZrJicnR/7+/srOzpafn19lx3ELthcqpsBeDTO5TL+qANwMf5+gopT1/bvMR3Z27NihW265xSXhAAAArpUyn6BM0QEAAFXRVV2NBQAA4O4oOwAAwNIoOwAAwNLKXHZOnDhx2fWFhYWOu5EDAAC4izKXndDQUKfC07JlS6d7Sv388898azEAAHA7ZS47v/06nsOHD6ugoOCycwAAACqbS8/ZqahvUgYAALhSnKAMAAAsrczfoGyz2XTmzBn5+PjIGCObzabc3Fzl5ORIkuN/AQAA3EmZy44xRjfddJPT46ioKKfHfIwFAADcTZnLzqZNmyoyBwAAQIUoc9np2LFjReYAAACoEGUuO4WFhSoqKpLdbneMZWZmau7cuTp79qzuvfdedejQoUJCAgAAXKkyl50RI0bI29tb8+bNkySdOXNGt956q/Ly8hQaGqoZM2bo/fffV8+ePSssLAAAQHmV+dLzf//73+rXr5/j8aJFi1RUVKQDBw5o9+7dGjdunF5++eUKCQkAAHClylx2jh07pkaNGjkeb9y4Uf369ZO/v78kKS4uTnv37nV9QgAAgKtQ5rLj4+OjX375xfF469atateundP63Nxc16YDAAC4SmUuO61bt9bixYslSZ999pkyMzPVpUsXx/rvv/9eYWFhrk8IAABwFcp8gvKkSZPUo0cP/etf/9Lx48c1bNgwhYaGOtavXr1at99+e4WEBAAAuFLl+p6dtLQ0ffzxxwoJCdGAAQOc1rdu3Vpt27Z1eUAAAICrUeayI0lNmzZV06ZNS103cuRIlwQCAABwpTKXnZSUlDLNu/POO684DAAAgKuVuex06tTJcaNPY0ypc2w2m4qKilyTDAAAwAXKXHZq1aqlmjVratiwYRo6dKjq1KlTkbkAAABcosyXnh8/flzTpk1TamqqWrZsqYSEBG3ZskV+fn7y9/d3LAAAAO6kzGXH29tbf/zjH/XRRx/pm2++0c0336zRo0crPDxczz33nAoLCysyJwAAwBUpc9m5WEREhCZNmqT//d//1U033aSXXnpJOTk5rs4GAABw1cpddvLz87V06VLFxMSoRYsWqlOnjv7nf/5HgYGBFZEPAADgqpT5BOUvvvhCCxYs0LJly1S/fn3Fx8frX//6FyUHAAC4tTKXnT/84Q+KiIjQY489pjZt2kiSPv/88xLz7r33XtelAwAAuErl+gblo0eP6sUXX7zker5nBwAAuJsyl53i4uKKzAEAAFAhruhqrEv55ZdfXLk5AACAq+aSspOfn69XX31VkZGRrtgcAACAy5S57OTn52v8+PGKjo7WbbfdpjVr1kiSFixYoMjISM2cOVNjx451ecBjx47pgQceUO3ateXr66uWLVtqx44djvXGGE2aNEmhoaHy9fVVTEyMDhw44PIcAACgaipz2Zk0aZLmzJmj+vXr6/DhwxowYIBGjhypGTNm6LXXXtPhw4f19NNPuzTc6dOndfvtt6tatWpav369vv76a7366quqVauWY8706dP1xhtvaO7cudq2bZuqV6+ubt26KS8vz6VZAABA1VTmE5RXrFihRYsW6d5779WePXt08803q7CwULt373bcDd3Vpk2bpvDwcC1YsMAxdvFHZcYYzZw5UxMmTFCfPn0kSYsWLVJwcLDWrFmjQYMGVUguAABQdZT5yM4PP/zg+H6dFi1ayG63a+zYsRVWdCRp7dq1io6O1oABAxQUFKSoqCi9/fbbjvWHDh1SRkaGYmJiHGP+/v5q166dUlNTKywXAACoOspcdoqKiuTt7e147OXlpRo1alRIqAsOHjyoOXPmqFGjRvroo4/08MMP67HHHtPChQslSRkZGZKk4OBgp+cFBwc71pUmPz9fOTk5TgsAALCmMn+MZYzRsGHDZLfbJUl5eXl66KGHVL16dad5q1atclm44uJiRUdHa+rUqZKkqKgo7dmzR3PnzlVcXNwVbzcxMVEvvPCCq2ICAAA3VuYjO3FxcQoKCpK/v7/8/f31wAMPKCwszPH4wuJKoaGhatasmdNY06ZNdfToUUlSSEiIJCkzM9NpTmZmpmNdacaPH6/s7GzHkp6e7tLcAADAfZT5yM7FJwlfK7fffrv279/vNPbtt9+qXr16kn49WTkkJEQbN25U69atJUk5OTnatm2bHn744Utu1263O45QAQAAayvXvbGutbFjx+q2227T1KlTNXDgQH3xxRf6+9//rr///e+Sfr0X15gxY/TXv/5VjRo1UmRkpCZOnKiwsDD17du3csMDAAC34NZl59Zbb9Xq1as1fvx4TZkyxfHlhbGxsY45Tz31lM6ePauRI0cqKytLHTp0UHJysnx8fCoxOQAAcBc2Y4yp7BCVLScnR/7+/srOzpafn19lx3ELthcq7isFrpSZ/F//qwpUSfx9gopS1vdvl94IFAAAwN1QdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVVqbLz0ksvyWazacyYMY6xvLw8jRo1SrVr11aNGjXUr18/ZWZmVl5IAADgVqpM2dm+fbvmzZunm2++2Wl87Nix+uCDD7RixQp9+umn+vHHH3X//fdXUkoAAOBuqkTZyc3NVWxsrN5++23VqlXLMZ6dna358+frtddeU5cuXdSmTRstWLBAW7Zs0datWysxMQAAcBdVouyMGjVKvXr1UkxMjNN4WlqaCgoKnMabNGmiiIgIpaamXnJ7+fn5ysnJcVoAAIA1eVV2gN+zbNky7dy5U9u3by+xLiMjQ97e3goICHAaDw4OVkZGxiW3mZiYqBdeeMHVUQEAgBty6yM76enpevzxx7VkyRL5+Pi4bLvjx49Xdna2Y0lPT3fZtgEAgHtx67KTlpamEydO6JZbbpGXl5e8vLz06aef6o033pCXl5eCg4N1/vx5ZWVlOT0vMzNTISEhl9yu3W6Xn5+f0wIAAKzJrT/G6tq1q7766iunsfj4eDVp0kRPP/20wsPDVa1aNW3cuFH9+vWTJO3fv19Hjx5V+/btKyMyAABwM25ddmrWrKkWLVo4jVWvXl21a9d2jCckJGjcuHEKDAyUn5+fHn30UbVv315/+MMfKiMyAABwM25ddspixowZ8vDwUL9+/ZSfn69u3brprbfequxYAADATVS5srN582anxz4+Ppo9e7Zmz55dOYEAAIBbc+sTlAEAAK4WZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFiaW5edxMRE3XrrrapZs6aCgoLUt29f7d+/32lOXl6eRo0apdq1a6tGjRrq16+fMjMzKykxAABwN25ddj799FONGjVKW7du1YYNG1RQUKC7775bZ8+edcwZO3asPvjgA61YsUKffvqpfvzxR91///2VmBoAALgTr8oOcDnJyclOj5OSkhQUFKS0tDTdeeedys7O1vz587V06VJ16dJFkrRgwQI1bdpUW7du1R/+8IfKiA0AANyIWx/Z+a3s7GxJUmBgoCQpLS1NBQUFiomJccxp0qSJIiIilJqaesnt5OfnKycnx2kBAADWVGXKTnFxscaMGaPbb79dLVq0kCRlZGTI29tbAQEBTnODg4OVkZFxyW0lJibK39/fsYSHh1dkdAAAUImqTNkZNWqU9uzZo2XLll31tsaPH6/s7GzHkp6e7oKEAADAHbn1OTsXjB49Wh9++KFSUlJ0ww03OMZDQkJ0/vx5ZWVlOR3dyczMVEhIyCW3Z7fbZbfbKzIyAABwE259ZMcYo9GjR2v16tX65JNPFBkZ6bS+TZs2qlatmjZu3OgY279/v44ePar27dtf67gAAMANufWRnVGjRmnp0qV6//33VbNmTcd5OP7+/vL19ZW/v78SEhI0btw4BQYGys/PT48++qjat2/PlVgAAECSm5edOXPmSJI6derkNL5gwQINGzZMkjRjxgx5eHioX79+ys/PV7du3fTWW29d46QAAMBduXXZMcb87hwfHx/Nnj1bs2fPvgaJAABAVePW5+wAAABcLcoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNK/KDgAAAFzH9oKtsiOUYCabSt0/R3YAAIClcWQHwH8d/uUL/HfhyA4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA07noOAFUEd2sHrgxlB3ADVfVNrKrmBsqC32/r4GMsAABgaZY5sjN79my9/PLLysjIUKtWrTRr1iy1bdu2smPhGuNfYgCA37JE2Vm+fLnGjRunuXPnql27dpo5c6a6deum/fv3KygoqFKz8eYLAEDlssTHWK+99ppGjBih+Ph4NWvWTHPnztV1112nd955p7KjAQCASlbly8758+eVlpammJgYx5iHh4diYmKUmppaickAAIA7qPIfY/30008qKipScHCw03hwcLC++eabUp+Tn5+v/Px8x+Ps7GxJUk5OjusD5rl+k1erTK+T3C5D7muL3NcWua8tS+e+iu0a8zunZ5gq7tixY0aS2bJli9P4k08+adq2bVvqcyZPnmwksbCwsLCwsFhgSU9Pv2xXqPJHdurUqSNPT09lZmY6jWdmZiokJKTU54wfP17jxo1zPC4uLtapU6dUu3Zt2Wzud0Kx9Gt7DQ8PV3p6uvz8/Co7TpmR+9oi97VF7muL3NdWVchtjNGZM2cUFhZ22XlVvux4e3urTZs22rhxo/r27Svp1/KyceNGjR49utTn2O122e12p7GAgIAKTuoafn5+bvtLdznkvrbIfW2R+9oi97Xl7rn9/f1/d06VLzuSNG7cOMXFxSk6Olpt27bVzJkzdfbsWcXHx1d2NAAAUMksUXb++Mc/6uTJk5o0aZIyMjLUunVrJScnlzhpGQAA/PexRNmRpNGjR1/yYysrsNvtmjx5comP39wdua8tcl9b5L62yH1tVdXcpbEZ83vXawEAAFRdVf5LBQEAAC6HsgMAACyNsgMAACyNsgMAACyNsuNiw4YNk81mk81mU7Vq1RQZGamnnnpKeXn/d7OSC+u3bt3q9Nz8/HzHtzhv3rzZMf7pp5+qS5cuCgwM1HXXXadGjRopLi5O58+flyRt3rzZsc3fLhkZGZKkvXv3ql+/fqpfv75sNptmzpxZJXK//fbbuuOOO1SrVi3VqlVLMTEx+uKLL9w+96pVqxQdHa2AgABVr15drVu31uLFi90+98WWLVsmm83m+LJOd86dlJRUYp2Pj4/b55akrKwsjRo1SqGhobLb7brpppu0bt06t87dqVOnUtf36tXLrXNL0syZM9W4cWP5+voqPDxcY8eOdeRy19wFBQWaMmWKGjRoIB8fHwUGBrplzt97n7lg9uzZql+/vnx8fNSuXTunv9MrCmWnAnTv3l3Hjx/XwYMHNWPGDM2bN0+TJ092mhMeHq4FCxY4ja1evVo1atRwGvv666/VvXt3RUdHKyUlRV999ZVmzZolb29vFRUVOc3dv3+/jh8/7rQEBQVJks6dO6cbb7xRL7300iVvo+GOuTdv3qzBgwdr06ZNSk1NVXh4uO6++24dO3bMrXMHBgbqueeeU2pqqv7zn/8oPj5e8fHx+uijj9w69wWHDx/WE088oTvuuEO/5a65/fz8nNYdOXLE7XOfP39ed911lw4fPqyVK1dq//79evvtt1W3bl23zr1q1Sqn8T179sjT01MDBgxw69xLly7VM888o8mTJ2vfvn2aP3++li9frmeffdatc0+YMEHz5s3TrFmz9PXXX6tx48by8PDQxx9/7FY5y/I+s3z5co0bN06TJ0/Wzp071apVK3Xr1k0nTpwodb7LuOZ2nLggLi7O9OnTx2ns/vvvN1FRUY7HksyECROMn5+fOXfunGP8rrvuMhMnTjSSzKZNm4wxxsyYMcPUr1//svvctGmTkWROnz5dpoz16tUzM2bMqHK5jTGmsLDQ1KxZ0yxcuLBK5TbGmKioKDNhwgS3z11YWGhuu+02849//KNETnfNvWDBAuPv73/J9e6ae86cOebGG28058+fr1K5f2vGjBmmZs2aJjc3161zjxo1ynTp0sVpbNy4ceb2229369yhoaHmzTffdDyOi4szoaGhJjY21q1yXqy09xljjGnbtq0ZNWqU43FRUZEJCwsziYmJZdruleLITgXbs2ePtmzZIm9vb6fxNm3aqH79+nrvvfckSUePHlVKSoqGDh3qNC8kJETHjx9XSkrKNcssuW/uc+fOqaCgQIGBgVUmtzFGGzdu1P79+3XnnXe6fe4pU6YoKChICQkJvzvXnXLn5uaqXr16Cg8PV58+fbR37163z7127Vq1b99eo0aNUnBwsFq0aKGpU6eW+Ne0u+X+rfnz52vQoEGqXr26W+e+7bbblJaW5vjY5ODBg1q3bp169uzp1rnz8/OdPpaVJE9PT33++edulfP3nD9/XmlpaYqJiXGMeXh4KCYmRqmpqRW6b47suFhcXJzx9PQ01atXN3a73UgyHh4eZuXKlY45kszq1avNzJkzTefOnY0xxrzwwgvmvvvuM6dPn3Zq3IWFhWbYsGFGkgkJCTF9+/Y1s2bNMtnZ2Y7tXWjc1atXd1qaNWtWasZLHdlx99zGGPPwww+bG2+80fzyyy9unzsrK8tUr17deHl5GbvdbubPn+/2P+/PPvvM1K1b15w8edKR87dHdtwx95YtW8zChQvNl19+aTZv3mzuuece4+fnZ9LT0906d+PGjY3dbjfDhw83O3bsMMuWLTOBgYHm+eefd+vcF9u2bZuRZLZt2+b2vyfGGPP666+batWqGS8vLyPJPPTQQ26fe/DgwaZZs2bm22+/NUVFReauu+4ykowkt8p5sdLeZ44dO2YkmS1btjiNP/nkk6Zt27albsdVKDsuFhcXZ2JiYsyBAwfMrl27TFxcnElISHCac+GX8KeffjI+Pj7m+++/N5GRkeaDDz4o8Ut4wQ8//GAWLVpkRo0aZUJDQ80NN9xgfvzxR2PM//0S7ty50xw4cMCxHD58uNSMlyo77p47MTHR1KpVy+zevbtK5C4qKjIHDhwwX375pXnllVeMv7+/Yz/umDsnJ8fUr1/frFu3zunn+9uy4265S3P+/HnToEEDp48N3TF3o0aNTHh4uCksLHSMvfrqqyYkJMStc19s5MiRpmXLlk5j7pp706ZNJjg42Lz99tvmP//5j1m1apUJDw83U6ZMcevcJ06cMH369DEeHh7G09PT+Pn5mRtuuMF4e3u7Vc6LUXYs7rdvDkVFRaZFixbmH//4h2Pswi+hMcb079/fdOrUyYSGhprCwsJL/hJe7NSpU6ZOnTpm0qRJxpiKOWfH3XK//PLLxt/f32zfvr1K5b5YQkKCufvuu90295dffmkkGU9PT8dis9mMzWYznp6e5rvvvnPL3JfSv39/M2jQIGOMe/68jTHmzjvvNF27dnUaW7dunZFk8vPz3Tb3Bbm5ucbPz8/MnDnTadxdc3fo0ME88cQTTmOLFy82vr6+pqioyG1zX/DLL7+YH374wcTFxZmGDRs6jqq4W05jSn+fyc/PN56eno5cF/zpT38y9957b5m2e6U4Z6eCeXh46Nlnn9WECRP0yy+/lFg/fPhwbd68WX/605/k6elZpm3WqlVLoaGhOnv2rKvjOrhT7unTp+vFF19UcnKyoqOjq0zu3youLlZ+fr7b5m7SpIm++uor7dq1y7Hce++96ty5s3bt2qXw8HC3zF2aoqIiffXVVwoNDS11vbvkvv322/Xdd9+puLjYMfbtt98qNDS0xPkX7pT7ghUrVig/P18PPPDAZee5S+5z587Jw8P5be/C/kwpt4l0l9wX+Pj4qG7duiouLtaPP/6oPn36uGXOS/H29labNm20ceNGx1hxcbE2btyo9u3bu2w/pbHMXc/d2YABA/Tkk09q9uzZeuKJJ5zWde/eXSdPnpSfn1+pz503b5527dql++67Tw0aNFBeXp4WLVqkvXv3atasWU5zT5w44fQ9C5JUu3ZtVatWTefPn9fXX38t6deTxI4dO6Zdu3apRo0aatiwodvmnjZtmiZNmqSlS5eqfv36ju9zqFGjRonLJ90pd2JioqKjo9WgQQPl5+dr3bp1Wrx4sebMmVPqft0ht4+Pj1q0aOE0HhAQIEklxt0pd7Vq1TRlyhT94Q9/UMOGDZWVlaWXX35ZR44c0YMPPujWuR9++GG9+eabevzxx/Xoo4/qwIEDmjp1qh577DG3zn3B/Pnz1bdvX9WuXfuSed0pd+/evfXaa68pKipK7dq103fffaeJEyeqd+/elywB7pB727ZtOnbsmFq3bq1jx45pw4YNkqSnnnrKrXKW5X1m3LhxiouLU3R0tNq2bauZM2fq7Nmzio+PLzWby1TocaP/QqVdumjMr+ebXH/99SY3N9fp8OJv/fbw4s6dO80DDzxgIiMjjd1uN7Vr1zZ33nmnWbt2reM5Fw4vlrakpqYaY4w5dOhQqes7duzo1rnr1atX6vrJkye7de7nnnvONGzY0Pj4+JhatWqZ9u3bm2XLljm24a65f6ssl567Q+4xY8aYiIgI4+3tbYKDg03Pnj3Nzp073T63Mb+eXN2uXTtjt9vNjTfeaP72t785zuFx59zffPONkWQ+/vjjEvt119wFBQXm+eefNw0aNDA+Pj4mPDzcPPLII46PZtw19+bNm03Tpk0d27jxxhtNt27d3C7n773PXDBr1izHf69t27Y1W7duLTWnK9mMKeXYHQAAgEVwzg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AlOL5559X69aty/Ucm82mNWvWXHL94cOHZbPZtGvXrqvKBqB8KDsAnAwbNkw2m002m03VqlVTZGSknnrqqRJfEX9hztatW53G8/PzVbt2bdlsNm3evNkx/umnn6pLly4KDAzUddddp0aNGikuLk7nz5+XJG3evNmxzd8uF24TcrG0tLRS939B165ddf/991/xz+GJJ55wuocPgKqLsgOghO7du+v48eM6ePCgZsyYoXnz5mny5Mkl5oWHh2vBggVOY6tXry5x37Kvv/5a3bt3V3R0tFJSUvTVV19p1qxZ8vb2VlFRkdPc/fv36/jx405LUFBQiX23adNGrVq10jvvvFNi3eHDh7Vp0yYlJCSU+7UbY1RYWKgaNWqU6Z5PANwfZQdACXa7XSEhIQoPD1ffvn0VExPjuPngxeLi4rRs2TKnOy2/8847iouLc5r38ccfKyQkRNOnT1eLFi3UoEEDde/eXW+//bZ8fX2d5gYFBSkkJMRp+e2dqi9ISEjQ8uXLde7cOafxpKQkhYaGqnv37lq8eLGio6NVs2ZNhYSEaMiQITpx4oRj7oUjSuvXr1ebNm1kt9v1+eefl/gYa/v27brrrrtUp04d+fv7q2PHjtq5c2eJTMePH1ePHj3k6+urG2+8UStXrrz0D1rSnj171KNHD9WoUUPBwcEaOnSofvrpJ8f6lStXqmXLlvL19VXt2rUVExPj0jtRA/8NKDsALmvPnj3asmWLvL29S6xr06aN6tevr/fee0+SdPToUaWkpGjo0KFO80JCQnT8+HGlpKS4NFtsbKzy8/OdCoUxRgsXLtSwYcPk6empgoICvfjii9q9e7fWrFmjw4cPa9iwYSW29cwzz+ill17Svn37dPPNN5dYf+bMGcXFxenzzz/X1q1b1ahRI/Xs2VNnzpxxmjdx4kT169dPu3fvVmxsrAYNGqR9+/aVmj8rK0tdunRRVFSUduzYoeTkZGVmZmrgwIGSfi1OgwcP1vDhw7Vv3z5t3rxZ999/v7ilIVBOFX6rUQBVSlxcnPH09DTVq1c3drvdSDIeHh5m5cqVTvP0/++qPHPmTNO5c2djjDEvvPCCue+++0rcVbmwsNAMGzbMSDIhISGmb9++ZtasWSY7O9uxvQt3Va5evbrT0qxZs8vmHTRokNNdlTdu3GgkmQMHDpQ6f/v27UaSOXPmjNN+16xZ4zRv8uTJplWrVpfcb1FRkalZs6b54IMPnH4mDz30kNO8du3amYcfftgY8393hf7yyy+NMca8+OKL5u6773aan56ebiSZ/fv3m7S0NCPJHD58+LI/AwCXx5EdACV07txZu3bt0rZt2xQXF6f4+Hj169ev1LkPPPCAUlNTdfDgQSUlJWn48OEl5nh6emrBggX64YcfNH36dNWtW1dTp05V8+bNdfz4cae5n332mXbt2uVY1q1bd9msw4cPV0pKir7//ntJv36M1rFjRzVs2FDSrycy9+7dWxEREapZs6Y6duwo6dejUBeLjo6+7H4yMzM1YsQINWrUSP7+/vLz81Nubm6J7bRv377E40sd2dm9e7c2bdqkGjVqOJYmTZpIkr7//nu1atVKXbt2VcuWLTVgwAC9/fbbOn369GVzAiiJsgOghOrVq6thw4aOE4C3bdum+fPnlzq3du3auueee5SQkKC8vDz16NHjktutW7euhg4dqjfffFN79+5VXl6e5s6d6zQnMjJSDRs2dCz16tW7bNauXbsqIiJCSUlJysnJ0apVqxwnJp89e1bdunWTn5+flixZou3bt2v16tWS5LgK7OLXfDlxcXHatWuXXn/9dW3ZskW7du1S7dq1S2ynPHJzc9W7d2+ncrdr1y4dOHBAd955pzw9PbVhwwatX79ezZo106xZs9S4cWMdOnToivcJ/Dei7AC4LA8PDz377LOaMGGC04nIFxs+fLg2b96sP/3pT/L09CzTdmvVqqXQ0NCrPtnWw8ND8fHxWrhwoZYuXSpvb2/1799fkvTNN9/o559/1ksvvaQ77rhDTZo0cTo5uTz+/e9/67HHHlPPnj3VvHlz2e12pxOJL/jtpfBbt25V06ZNS93mLbfcor1796p+/fpOBa9hw4aO8mWz2XT77bfrhRde0Jdffilvb29HYQNQNpQdAL9rwIAB8vT01OzZs0td3717d508eVJTpkwpdf28efP08MMP6+OPP9b333+vvXv36umnn9bevXvVu3dvp7knTpxQRkaG01JQUHDZfPHx8Tp27JieffZZDR482HGFV0REhLy9vTVr1iwdPHhQa9eu1YsvvngFPwGpUaNGWrx4sfbt26dt27YpNja2xJVkkrRixQq98847+vbbbzV58mR98cUXGj16dKnbHDVqlE6dOqXBgwdr+/bt+v777/XRRx8pPj5eRUVF2rZtm6ZOnaodO3bo6NGjWrVqlU6ePHnJ8gSgdJQdAL/Ly8tLo0eP1vTp00s9EmOz2VSnTp1Sr9iSpLZt2yo3N1cPPfSQmjdvro4dO2rr1q1as2aN4xyaCxo3bqzQ0FCnJS0t7bL5IiIiFBMTo9OnTzudM3T99dcrKSlJK1asULNmzfTSSy/plVdeuYKfgDR//nydPn1at9xyi4YOHarHHnus1O//eeGFF7Rs2TLdfPPNWrRokd599101a9as1G2GhYXp3//+t4qKinT33XerZcuWGjNmjAICAuTh4SE/Pz+lpKSoZ8+euummmzRhwgS9+uqrl/2oEEBJNmO4hhEAAFgXR3YAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAICl/T/eW9kFikhhAwAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of MAE values from mae1 to mae10\n", + "mae_values = [mae1, mae2, mae3, mae4, mae5, mae6, mae7, mae8, mae9, mae10]\n", + "\n", + "# List of corresponding labels for each MAE value\n", + "labels = ['MAE1', 'MAE2', 'MAE3', 'MAE4', 'MAE5', 'MAE6', 'MAE7', 'MAE8', 'MAE9', 'MAE10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, mae_values, color='orange')\n", + "plt.xlabel('MAE Variables')\n", + "plt.ylabel('MAE Values')\n", + "plt.title('Bar Graph of MAE')\n", + "plt.show()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "nrZu-K-KDCJ2", + "outputId": "69165581-da05-4554-a464-a606eb87a734" + }, + "execution_count": 119, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6NklEQVR4nO3deVRV9eL+8ecACogCOTCYqJSzlJqmoXlNozCH1JyHGwqpleZ0q6v3qmVZppU567VQ1ASHUktzyOg6hpqmpTknzoJDCqKJCvv3h1/Pr3MBZTjAYfd+rbXX6uzxOcTiPH72cCyGYRgCAAAwKafCDgAAAJCfKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsA/hLefvttWSwWXbx4Md+PtXbtWtWtW1dubm6yWCy6cuVKvh8TQNYoO0ARFxUVJYvFYjP5+PioefPmWrNmTYHnWblypdq2bStfX18VL15cpUuX1t/+9jd9/PHHSk5OLvA8Be3SpUvq0qWL3N3dNX36dC1YsEAeHh6Zrvvn/3dbtmzJsNwwDAUEBMhisahNmzaZ7uPKlSvWUnXgwIFM1+ndu3eG35G7k5ubW+7fLFBEuBR2AAD28c477ygwMFCGYSgxMVFRUVFq1aqVVq5cmeUHpT2lp6crIiJCUVFReuSRR/Tqq68qICBAV69eVVxcnEaOHKnVq1crNjY237MUph9//FFXr17Vu+++q5CQkGxt4+bmpujoaD355JM28zdu3KjTp0/L1dU1y22XLl0qi8UiPz8/LVy4UGPHjs10PVdXV3322WcZ5js7O2crI1CUUXYAk3juuefUoEED6+uIiAj5+voqJibGLmUnPT1dN2/ezHIkYMKECYqKitLQoUP18ccfy2KxWJcNHjxY586d0/z58/N0jKLg/PnzkiRvb+9sb9OqVSstXbpUU6ZMkYvL//+zHB0drfr169/z1Nvnn3+uVq1aqVKlSoqOjs6y7Li4uKhXr17ZzgSYCaexAJPy9vaWu7u7zYenJH300Udq3LixypQpI3d3d9WvX19ffPFFhu0tFosGDhyohQsXqnbt2nJ1ddXatWszPdb169c1fvx41a5dWx9++KFN0bnL399f//znP7N9jNzkrF69utzc3FS/fn1t2rQp06xXrlxR79695e3tLS8vL/Xp00fXr1/P/If4P5YuXar69evL3d1dZcuWVa9evXTmzBnr8qeeekphYWGSpMcff1wWi0W9e/e+7367d++uS5cuaf369dZ5N2/e1BdffKEePXpkud3Jkye1efNmdevWTd26dVN8fLx++OGHbL0X4K+EkR3AJJKSknTx4kUZhqHz589r6tSpSklJyfCv+cmTJ+v5559Xz549dfPmTS1atEidO3fWqlWr1Lp1a5t1v//+ey1ZskQDBw5U2bJlVbly5UyPvWXLFl25ckWvv/56jk+LZHWMnOTcuHGjFi9erEGDBsnV1VUzZsxQy5YttWPHDgUFBdms26VLFwUGBmrcuHH66aef9Nlnn8nHx0fjx4+/Z86oqCj16dNHjz/+uMaNG6fExERNnjxZW7du1e7du+Xt7a1///vfql69umbPnm09rfjwww/f92dQuXJlBQcHKyYmRs8995wkac2aNUpKSlK3bt00ZcqUTLeLiYmRh4eH2rRpI3d3dz388MNauHChGjdunOn6mY0QFS9eXJ6envfNCBRpBoAibe7cuYakDJOrq6sRFRWVYf3r16/bvL5586YRFBRktGjRwma+JMPJycn49ddf75th8uTJhiRjxYoVNvNv375tXLhwwWZKT0/P1jFyklOSsXPnTuu8EydOGG5ubkaHDh2s89566y1DkhEeHm6zfYcOHYwyZcrc8/3dvHnT8PHxMYKCgow//vjDOn/VqlWGJGP06NHWeXf/f/z444/33Of/rjtt2jSjVKlS1vfduXNno3nz5oZhGEalSpWM1q1bZ9j+kUceMXr27Gl9/a9//csoW7ascevWLZv1wsLCMv0dkWSEhobeNydQ1HEaCzCJ6dOna/369Vq/fr0+//xzNW/eXC+99JKWLVtms567u7v1vy9fvqykpCQ1bdpUP/30U4Z9NmvWTLVq1brvse/eZVWyZEmb+Xv37lW5cuVspkuXLmXrGDnJGRwcrPr161tfV6xYUe3atdO6deuUlpZms+7LL79s87pp06a6dOnSPe8U27lzp86fP69XX33V5nqi1q1bq0aNGvrmm2+y3Da7unTpoj/++EOrVq3S1atXtWrVqnuewvrll1+0d+9ede/e3Tqve/fuunjxotatW5dhfTc3N+vvx5+nDz74IM/ZAUfHaSzAJBo2bGhzgXL37t1Vr149DRw4UG3atFHx4sUlSatWrdLYsWO1Z88epaamWtfP7DqbwMDAbB27VKlSkqSUlBSb+VWqVLFehzJ//nwtWLAg28fISc6qVatmmFetWjVdv35dFy5ckJ+fn3V+xYoVbdZ74IEHJN0pVFmdzjlx4oQkqXr16hmW1ahRI9PbxnOqXLlyCgkJUXR0tK5fv660tDR16tQpy/U///xzeXh46KGHHtLRo0cl3Sk0lStX1sKFCzOc6nN2ds723WGA2TCyA5iUk5OTmjdvrnPnzunIkSOSpM2bN+v555+Xm5ubZsyYodWrV2v9+vXq0aOHDMPIsI8/j67cS40aNSRJ+/bts5lfsmRJhYSEKCQkRA899FCm22Z2jJzmzImsrinK637toUePHlqzZo1mzZql5557Lss7ugzDUExMjK5du6ZatWqpatWq1un48eP66quvMhRP4K+MkR3AxG7fvi3p/4+4fPnll3Jzc9O6detsnt0yd+7cPB2nadOm8vLy0qJFizRixAg5OeXt31E5zXm3zP3Z4cOHVaJECZUrVy5PWSSpUqVKkqRDhw6pRYsWNssOHTpkXZ5XHTp0UP/+/bVt2zYtXrw4y/XuPn/nnXfeUc2aNW2WXb58Wf369dOKFSu41Rz4P4zsACZ169YtffvttypevLj1A9HZ2VkWi8XmOpbjx49rxYoVeTpWiRIl9Oabb2rfvn0aPnx4pqMkORk5yWnOuLg4m2t5Tp06pa+++krPPvusXR6a16BBA/n4+GjWrFk2p9TWrFmjAwcOZDhllFslS5bUzJkz9fbbb6tt27ZZrnf3FNYbb7yhTp062Ux9+/ZV1apVtXDhQrtkAsyAkR3AJNasWaODBw9KuvNgu+joaB05ckTDhw+3XovSunVrTZw4US1btlSPHj10/vx5TZ8+XVWqVNEvv/ySp+MPHz5cBw4c0Icffqhvv/1WHTt2VIUKFXT58mX99NNPWrp0qXx8fLL1wMCc5gwKClJoaKjNreeSNGbMmDy9p7uKFSum8ePHq0+fPmrWrJm6d+9uvfW8cuXKGjp0qF2OI8n6nJ6spKam6ssvv9QzzzyT5c/y+eef1+TJk3X+/Hn5+PhIujPK9/nnn2e6focOHbL8SgvADCg7gEmMHj3a+t9ubm6qUaOGZs6cqf79+1vnt2jRQpGRkfrggw80ZMgQBQYGavz48Tp+/Hiey46Tk5MWLFigjh076tNPP9XUqVN1+fJllSxZUkFBQXrvvffUt2/fDHdsZSanOZs1a6bg4GCNGTNGJ0+eVK1atRQVFaVHH300T+/pz3r37q0SJUrogw8+0D//+U95eHioQ4cOGj9+fI6elpxX33zzja5cuXLPkZ+2bdvq448/1qJFizRo0CBJd0rS3//+90zXj4+Pp+zA1CyGI1yVBwC5ZLFYNGDAAE2bNq2wowBwUFyzAwAATI2yAwAATI2yAwAATI0LlAEUaVx2COB+GNkBAACmRtkBAACmxmksSenp6Tp79qxKlSqV6ZcMAgAAx2MYhq5evary5cvf82tqKDuSzp49q4CAgMKOAQAAcuHUqVOqUKFClsspO5JKlSol6c4P6+5j9QEAgGNLTk5WQECA9XM8K5QdyXrqytPTk7IDAEARc79LULhAGQAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmJpLYQeAg4q2FHaCjHoYhZ0AAFAEMbIDAABMjbIDAABMjbIDAABMjbIDAABMjQuUAQD5ixseUMgY2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZWqGVn06ZNatu2rcqXLy+LxaIVK1bYLDcMQ6NHj5a/v7/c3d0VEhKiI0eO2Kzz+++/q2fPnvL09JS3t7ciIiKUkpJSgO8CAAA4skItO9euXVOdOnU0ffr0TJdPmDBBU6ZM0axZs7R9+3Z5eHgoNDRUN27csK7Ts2dP/frrr1q/fr1WrVqlTZs2qV+/fgX1FgAAgIOzGIZhFHYISbJYLFq+fLnat28v6c6oTvny5fWPf/xDr7/+uiQpKSlJvr6+ioqKUrdu3XTgwAHVqlVLP/74oxo0aCBJWrt2rVq1aqXTp0+rfPny2Tp2cnKyvLy8lJSUJE9Pz3x5f0VOtKWwE2TUwyF+VQHkFH9PkE+y+/ntsNfsxMfHKyEhQSEhIdZ5Xl5eatSokeLi4iRJcXFx8vb2thYdSQoJCZGTk5O2b99e4JkBAIDjcSnsAFlJSEiQJPn6+trM9/X1tS5LSEiQj4+PzXIXFxeVLl3auk5mUlNTlZqaan2dnJxsr9gAAMDBOOzITn4aN26cvLy8rFNAQEBhRwIAAPnEYcuOn5+fJCkxMdFmfmJionWZn5+fzp8/b7P89u3b+v33363rZGbEiBFKSkqyTqdOnbJzegAA4CgctuwEBgbKz89PsbGx1nnJycnavn27goODJUnBwcG6cuWKdu3aZV3n+++/V3p6uho1apTlvl1dXeXp6WkzAQAAcyrUa3ZSUlJ09OhR6+v4+Hjt2bNHpUuXVsWKFTVkyBCNHTtWVatWVWBgoEaNGqXy5ctb79iqWbOmWrZsqb59+2rWrFm6deuWBg4cqG7dumX7TiwAAGBuhVp2du7cqebNm1tfDxs2TJIUFhamqKgovfnmm7p27Zr69eunK1eu6Mknn9TatWvl5uZm3WbhwoUaOHCgnn76aTk5Oaljx46aMmVKgb8XAADgmBzmOTuFiefsZILnYgCwF/6eIJ8U+efsAAAA2ANlBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmJpDl520tDSNGjVKgYGBcnd318MPP6x3331XhmFY1zEMQ6NHj5a/v7/c3d0VEhKiI0eOFGJqAADgSBy67IwfP14zZ87UtGnTdODAAY0fP14TJkzQ1KlTretMmDBBU6ZM0axZs7R9+3Z5eHgoNDRUN27cKMTkAADAUbgUdoB7+eGHH9SuXTu1bt1aklS5cmXFxMRox44dku6M6kyaNEkjR45Uu3btJEnz58+Xr6+vVqxYoW7duhVadgAA4BgcemSncePGio2N1eHDhyVJP//8s7Zs2aLnnntOkhQfH6+EhASFhIRYt/Hy8lKjRo0UFxeX5X5TU1OVnJxsMwEAAHNy6JGd4cOHKzk5WTVq1JCzs7PS0tL03nvvqWfPnpKkhIQESZKvr6/Ndr6+vtZlmRk3bpzGjBmTf8EBAIDDcOiRnSVLlmjhwoWKjo7WTz/9pHnz5umjjz7SvHnz8rTfESNGKCkpyTqdOnXKTokBAICjceiRnTfeeEPDhw+3XnvzyCOP6MSJExo3bpzCwsLk5+cnSUpMTJS/v791u8TERNWtWzfL/bq6usrV1TVfswMAAMfg0CM7169fl5OTbURnZ2elp6dLkgIDA+Xn56fY2Fjr8uTkZG3fvl3BwcEFmhUAADgmhx7Zadu2rd577z1VrFhRtWvX1u7duzVx4kSFh4dLkiwWi4YMGaKxY8eqatWqCgwM1KhRo1S+fHm1b9++cMMDAACH4NBlZ+rUqRo1apReffVVnT9/XuXLl1f//v01evRo6zpvvvmmrl27pn79+unKlSt68skntXbtWrm5uRVicgAA4Cgsxp8fR/wXlZycLC8vLyUlJcnT07Ow4ziGaEthJ8iox1/+VxUomvh7gnyS3c9vh75mBwAAIK8oOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNTyXHbS0tK0Z88eXb582R55AAAA7CrHZWfIkCGKjIyUdKfoNGvWTI899pgCAgK0YcMGe+cDAADIkxyXnS+++EJ16tSRJK1cuVLx8fE6ePCghg4dqn//+992DwgAAJAXOS47Fy9elJ+fnyRp9erV6ty5s6pVq6bw8HDt3bvX7gEBAADyIsdlx9fXV/v371daWprWrl2rZ555RpJ0/fp1OTs72z0gAABAXrjkdIM+ffqoS5cu8vf3l8ViUUhIiCRp+/btqlGjht0DAgAA5EWOy87bb7+toKAgnTp1Sp07d5arq6skydnZWcOHD7d7QAAAgLzIcdmRpE6dOkmSbty4YZ0XFhZmn0QAAAB2lONrdtLS0vTuu+/qwQcfVMmSJXXs2DFJ0qhRo6y3pAMAADiKHJed9957T1FRUZowYYKKFy9unR8UFKTPPvvMruEAAADyKsdlZ/78+Zo9e7Z69uxpc/dVnTp1dPDgQbuGAwAAyKscl50zZ86oSpUqGeanp6fr1q1bdgkFAABgLzkuO7Vq1dLmzZszzP/iiy9Ur149u4QCAACwlxzfjTV69GiFhYXpzJkzSk9P17Jly3To0CHNnz9fq1atyo+MAAAAuZbjkZ127dpp5cqV+u677+Th4aHRo0frwIEDWrlypfVpygAAAI4iV8/Zadq0qdavX2/vLAAAAHaX45EdAACAoiTHIztOTk6yWCxZLk9LS8tTIAAAAHvKcdlZvny5zetbt25p9+7dmjdvnsaMGWO3YAAAAPaQ47LTrl27DPM6deqk2rVra/HixYqIiLBLMAAAAHuw2zU7TzzxhGJjY+21OwAAALuwS9n5448/NGXKFD344IP22B0AAIDd5Pg01gMPPGBzgbJhGLp69apKlCihzz//3K7hAAAA8irHZeeTTz6xKTtOTk4qV66cGjVqpAceeMCu4QAAAPIqx2Wnd+/e+RADAAAgf2Sr7Pzyyy/Z3uGjjz6a6zAAAAD2lq2yU7duXVksFhmGcc/1LBYLDxUEAAAOJVtlJz4+Pr9zAAAA5ItslZ1KlSrldw4AAIB8kevn7Ozfv19r167V119/bTPZ25kzZ9SrVy+VKVNG7u7ueuSRR7Rz507rcsMwNHr0aPn7+8vd3V0hISE6cuSI3XMAAICiKcd3Yx07dkwdOnTQ3r17ba7juXs7uj2v2bl8+bKaNGmi5s2ba82aNSpXrpyOHDlic4v7hAkTNGXKFM2bN0+BgYEaNWqUQkNDtX//frm5udktCwAAKJpyPLIzePBgBQYG6vz58ypRooR+/fVXbdq0SQ0aNNCGDRvsGm78+PEKCAjQ3Llz1bBhQwUGBurZZ5/Vww8/LOnOqM6kSZM0cuRItWvXTo8++qjmz5+vs2fPasWKFXbNAgAAiqYcl524uDi98847Klu2rJycnOTk5KQnn3xS48aN06BBg+wa7uuvv1aDBg3UuXNn+fj4qF69evr000+ty+Pj45WQkKCQkBDrPC8vLzVq1EhxcXFZ7jc1NVXJyck2EwAAMKccl520tDSVKlVKklS2bFmdPXtW0p2LmA8dOmTXcMeOHdPMmTNVtWpVrVu3Tq+88ooGDRqkefPmSZISEhIkSb6+vjbb+fr6WpdlZty4cfLy8rJOAQEBds0NAAAcR46v2QkKCtLPP/+swMBANWrUSBMmTFDx4sU1e/ZsPfTQQ3YNl56ergYNGuj999+XJNWrV0/79u3TrFmzFBYWluv9jhgxQsOGDbO+Tk5OpvAAAGBSOR7ZGTlypNLT0yVJ77zzjuLj49W0aVOtXr1aU6ZMsWs4f39/1apVy2ZezZo1dfLkSUmSn5+fJCkxMdFmncTEROuyzLi6usrT09NmAgAA5pTtkZ0GDRropZdeUo8ePazloEqVKjp48KB+//33DN+Gbg9NmjTJcGrs8OHD1uf+BAYGys/PT7Gxsapbt66kO6M027dv1yuvvGLXLAAAoGjK9shOnTp19Oabb8rf318vvviizZ1XpUuXtnvRkaShQ4dq27Ztev/993X06FFFR0dr9uzZGjBggKQ7t7sPGTJEY8eO1ddff629e/fqxRdfVPny5dW+fXu75wEAAEVPtstOZGSkEhISNH36dJ08eVJPP/20qlSpovfff19nzpzJl3CPP/64li9frpiYGAUFBendd9/VpEmT1LNnT+s6b775pl577TX169dPjz/+uFJSUrR27VqesQMAACRJFuN+3+6Zhd9++01z587VggULdPbsWT377LOKiIjQCy+8YO+M+S45OVleXl5KSkri+p27ou0/UpdnPXL1qwqgsPH3BPkku5/fuf66iIcfflhjx47V8ePHFRMTo23btqlz58653R0AAEC+yPGt53+2YcMGzZ07V19++aVcXFzUt29fe+UCAACwixyXndOnTysqKkpRUVE6duyYmjZtqhkzZqhz585yd3fPj4wAAAC5lu2ys2TJEs2ZM0exsbHy8fFRWFiYwsPDVaVKlfzMBwAAkCfZLju9evVS69attXz5crVq1UpOTrm+3AcAAKDAZLvsnD59Wj4+PvmZBQAAwO6yPTxD0QEAAEUR56IAAICpUXYAAICpUXYAAICpZbvs7NixQ2lpaVkuT01N1ZIlS+wSCgAAwF6yXXaCg4N16dIl62tPT08dO3bM+vrKlSvq3r27fdMBAADkUbbLzv9+X2hm3x+ay+8UBQAAyDd2vWbHYnHAb7YFAAB/aVygDAAATC1HXwS6f/9+JSQkSLpzyurgwYNKSUmRJF28eNH+6QAAAPIoR2Xn6aeftrkup02bNpLunL4yDIPTWAAAwOFku+zEx8fnZw4AAIB8ke2yU6lSpfuus2/fvjyFAQAAsLc8X6B89epVzZ49Ww0bNlSdOnXskQkAAMBucl12Nm3apLCwMPn7++ujjz5SixYttG3bNntmAwAAyLMcXaCckJCgqKgoRUZGKjk5WV26dFFqaqpWrFihWrVq5VdGAACAXMv2yE7btm1VvXp1/fLLL5o0aZLOnj2rqVOn5mc2AACAPMv2yM6aNWs0aNAgvfLKK6patWp+ZgIAALCbbI/sbNmyRVevXlX9+vXVqFEjTZs2jQcJAgAAh5ftsvPEE0/o008/1blz59S/f38tWrRI5cuXV3p6utavX6+rV6/mZ04AAIBcyfHdWB4eHgoPD9eWLVu0d+9e/eMf/9AHH3wgHx8fPf/88/mREQAAINfy9Jyd6tWra8KECTp9+rRiYmLslQkAAMBu7PKt587Ozmrfvr2+/vpre+wOAADAbrJ9N1Z4ePh917FYLIqMjMxTIAAAAHvKdtmJiopSpUqVVK9ePZtvPgcAAHBk2S47r7zyimJiYhQfH68+ffqoV69eKl26dH5mAwAAyLNsX7Mzffp0nTt3Tm+++aZWrlypgIAAdenSRevWrWOkBwAAOKwcXaDs6uqq7t27a/369dq/f79q166tV199VZUrV1ZKSkp+ZQQAAMi1XN+N5eTkJIvFIsMwlJaWZs9MAAAAdpOjspOamqqYmBg988wzqlatmvbu3atp06bp5MmTKlmyZH5lBAAAyLVsX6D86quvatGiRQoICFB4eLhiYmJUtmzZ/MwGAACQZ9kuO7NmzVLFihX10EMPaePGjdq4cWOm6y1btsxu4QAAAPIq22XnxRdflMViyc8sAAAAdpejhwoCAAAUNXb5biwAAABHRdkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmVqTKzgcffCCLxaIhQ4ZY5924cUMDBgxQmTJlVLJkSXXs2FGJiYmFFxIAADiUIlN2fvzxR/3nP//Ro48+ajN/6NChWrlypZYuXaqNGzfq7NmzeuGFFwopJQAAcDRFouykpKSoZ8+e+vTTT/XAAw9Y5yclJSkyMlITJ05UixYtVL9+fc2dO1c//PCDtm3bVoiJAQCAoygSZWfAgAFq3bq1QkJCbObv2rVLt27dsplfo0YNVaxYUXFxcVnuLzU1VcnJyTYTAAAwJ5fCDnA/ixYt0k8//aQff/wxw7KEhAQVL15c3t7eNvN9fX2VkJCQ5T7HjRunMWPG2DsqAABwQA49snPq1CkNHjxYCxculJubm932O2LECCUlJVmnU6dO2W3fAADAsTh02dm1a5fOnz+vxx57TC4uLnJxcdHGjRs1ZcoUubi4yNfXVzdv3tSVK1dstktMTJSfn1+W+3V1dZWnp6fNBAAAzMmhT2M9/fTT2rt3r828Pn36qEaNGvrnP/+pgIAAFStWTLGxserYsaMk6dChQzp58qSCg4MLIzIAAHAwDl12SpUqpaCgIJt5Hh4eKlOmjHV+RESEhg0bptKlS8vT01OvvfaagoOD9cQTTxRGZAAA4GAcuuxkxyeffCInJyd17NhRqampCg0N1YwZMwo7FgAAcBAWwzCMwg5R2JKTk+Xl5aWkpCSu37kr2lLYCTLq8Zf/VQWKJv6eIJ9k9/PboS9QBgAAyCvKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDWHLjvjxo3T448/rlKlSsnHx0ft27fXoUOHbNa5ceOGBgwYoDJlyqhkyZLq2LGjEhMTCykxAABwNA5ddjZu3KgBAwZo27ZtWr9+vW7duqVnn31W165ds64zdOhQrVy5UkuXLtXGjRt19uxZvfDCC4WYGgAAOBKLYRhGYYfIrgsXLsjHx0cbN27U3/72NyUlJalcuXKKjo5Wp06dJEkHDx5UzZo1FRcXpyeeeCJb+01OTpaXl5eSkpLk6emZn2+h6Ii2FHaCjHoUmV9VAH/G3xPkk+x+fjv0yM7/SkpKkiSVLl1akrRr1y7dunVLISEh1nVq1KihihUrKi4uLsv9pKamKjk52WYCAADmVGTKTnp6uoYMGaImTZooKChIkpSQkKDixYvL29vbZl1fX18lJCRkua9x48bJy8vLOgUEBORndAAAUIiKTNkZMGCA9u3bp0WLFuV5XyNGjFBSUpJ1OnXqlB0SAgAAR+RS2AGyY+DAgVq1apU2bdqkChUqWOf7+fnp5s2bunLlis3oTmJiovz8/LLcn6urq1xdXfMzMgAAcBAOPbJjGIYGDhyo5cuX6/vvv1dgYKDN8vr166tYsWKKjY21zjt06JBOnjyp4ODggo4LAAAckEOP7AwYMEDR0dH66quvVKpUKet1OF5eXnJ3d5eXl5ciIiI0bNgwlS5dWp6ennrttdcUHByc7TuxAACAuTl02Zk5c6Yk6amnnrKZP3fuXPXu3VuS9Mknn8jJyUkdO3ZUamqqQkNDNWPGjAJOCgAAHJVDl53sPALIzc1N06dP1/Tp0wsgEQAAKGoc+podAACAvKLsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU3Mp7AAAAMCOoi2FnSCjHkahHp6RHQAAYGqM7AD46+FfvsBfCiM7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1FwKOwAAAA4p2lLYCTLqYRR2giLJNGVn+vTp+vDDD5WQkKA6depo6tSpatiwYWHHArKnqP5RLaq5iyp+3kCumKLsLF68WMOGDdOsWbPUqFEjTZo0SaGhoTp06JB8fHwKOx4KEh8GAID/YYqyM3HiRPXt21d9+vSRJM2aNUvffPON5syZo+HDhxduOD58AQAoVEX+AuWbN29q165dCgkJsc5zcnJSSEiI4uLiCjEZAABwBEV+ZOfixYtKS0uTr6+vzXxfX18dPHgw021SU1OVmppqfZ2UlCRJSk5Otn/A6/bfZZ5l532S237IXbDIXbDIXbDMnDtXu72zX8O4zxkLo4g7c+aMIcn44YcfbOa/8cYbRsOGDTPd5q233jIkMTExMTExMZlgOnXq1D27QpEf2SlbtqycnZ2VmJhoMz8xMVF+fn6ZbjNixAgNGzbM+jo9PV2///67ypQpI4vFAa+x0Z32GhAQoFOnTsnT07Ow42QbuQsWuQsWuQsWuQtWUchtGIauXr2q8uXL33O9Il92ihcvrvr16ys2Nlbt27eXdKe8xMbGauDAgZlu4+rqKldXV5t53t7e+ZzUPjw9PR32l+5eyF2wyF2wyF2wyF2wHD23l5fXfdcp8mVHkoYNG6awsDA1aNBADRs21KRJk3Tt2jXr3VkAAOCvyxRlp2vXrrpw4YJGjx6thIQE1a1bV2vXrs1w0TIAAPjrMUXZkaSBAwdmedrKDFxdXfXWW29lOP3m6MhdsMhdsMhdsMhdsIpq7sxYDON+92sBAAAUXUX+oYIAAAD3QtkBAACmRtkBAACmRtkBAACmRtnJZ71795bFYtHLL7+cYdmAAQNksVjUu3dvm/lxcXFydnZW69atM2xz/PhxWSyWTKdt27ZJks6dO6cePXqoWrVqcnJy0pAhQ4pE7mXLlumZZ55RuXLl5OnpqeDgYK1bt87hc2/ZskVNmjRRmTJl5O7urho1auiTTz7JUe7Cyv5nW7dulYuLi+rWrevwuTds2JDp8oSEBIfNLN35Xr5///vfqlSpklxdXVW5cmXNmTMnW5kLM/vdY/7vVLt2bYfNLEkLFy5UnTp1VKJECfn7+ys8PFyXLl3KVubCzj59+nTVrFlT7u7uql69uubPn+9QGbP7ObN06VLVqFFDbm5ueuSRR7R69eos30d+ouwUgICAAC1atEh//PGHdd6NGzcUHR2tihUrZlg/MjJSr732mjZt2qSzZ89mus/vvvtO586ds5nq168v6c4f1HLlymnkyJGqU6dOkcm9adMmPfPMM1q9erV27dql5s2bq23bttq9e7dD5/bw8NDAgQO1adMmHThwQCNHjtTIkSM1e/bsHOUujOx3XblyRS+++KKefvrpHGcuzNyHDh2yWe7j4+PQmbt06aLY2FhFRkbq0KFDiomJUfXq1bOdubCyT5482Wb+qVOnVLp0aXXu3NlhM2/dulUvvviiIiIi9Ouvv2rp0qXasWOH+vbtm+3MhZV95syZGjFihN5++239+uuvGjNmjAYMGKCVK1c6TMbsfM788MMP6t69uyIiIrR79261b99e7du31759+7J8H/nFNM/ZcWSPPfaYfvvtNy1btkw9e/aUdGcUo2LFigoMDLRZNyUlRYsXL9bOnTuVkJCgqKgo/etf/8qwzzJlymT53V+VK1fW5MmTJSnH/2oszNyTJk2yef3+++/rq6++0sqVK1WvXj2HzV2vXj2bfJUrV9ayZcu0efNm9evXL9u5CyP7XS+//LJ69OghZ2dnrVixIkeZCzO3j49Prr/qpaAzr127Vhs3btSxY8dUunRpSXd+V4pCdi8vL5tH8q9YsUKXL1/O0VPqCzpzXFycKleurEGDBkmSAgMD1b9/f40fPz7bmQsr+4IFC9S/f3917dpVkvTQQw/pxx9/1Pjx49W2bVuHyJidz5nJkyerZcuWeuONNyRJ7777rtavX69p06Zp1qxZmW6TXxjZKSDh4eGaO3eu9fWcOXMy/UOxZMkS1ahRQ9WrV1evXr00Z86c+391fT4qzNzp6em6evWq9YOhqOTevXu3fvjhBzVr1ixX2xd09rlz5+rYsWN66623cpW3sHJLUt26deXv769nnnlGW7dudejMX3/9tRo0aKAJEybowQcfVLVq1fT666/b/EvcUbP/r8jISIWEhKhSpUoOmzk4OFinTp3S6tWrZRiGEhMT9cUXX6hVq1Y52k9hZE9NTZWbm5vNPHd3d+3YsUO3bt1yiIzZERcXp5CQEJt5oaGhiouLs/ux7oeyU0B69eqlLVu26MSJEzpx4oS2bt2qXr16ZVgvMjLSOr9ly5ZKSkrSxo0bM6zXuHFjlSxZ0mYyW+6PPvpIKSkp6tKlS5HIXaFCBbm6uqpBgwYaMGCAXnrppRznLujsR44c0fDhw/X555/LxSVvA70Fmdvf31+zZs3Sl19+qS+//FIBAQF66qmn9NNPPzls5mPHjmnLli3at2+fli9frkmTJumLL77Qq6++mqPMhZH9z86ePas1a9bk6ve7IDM3adJECxcuVNeuXVW8eHH5+fnJy8tL06dPz3Hugs4eGhqqzz77TLt27ZJhGNq5c6c+++wz3bp1SxcvXnSIjNmRkJCQ4WubfH19s31tnT1xGquAlCtXTq1bt1ZUVJQMw1Dr1q1VtmxZm3UOHTqkHTt2aPny5ZIkFxcXde3aVZGRkXrqqads1l28eLFq1qxp2tzR0dEaM2aMvvrqqxxdh1GYuTdv3qyUlBRt27ZNw4cPV5UqVdS9e3eHzZ6WlqYePXpozJgxqlatWo5zFlZuSapevbrNtS6NGzfWb7/9pk8++UQLFixwyMzp6emyWCxauHCh9ZTQxIkT1alTJ82YMUPu7u7Zzl3Q2f9s3rx58vb2Vvv27XOUt6Az79+/X4MHD9bo0aMVGhqqc+fO6Y033tDLL7+syMhIh84+atQoJSQk6IknnpBhGPL19VVYWJgmTJggJ6esxyiK6udMQaDsFKDw8HDr93dl9q+LyMhI3b59W+XLl7fOMwxDrq6umjZtms0584CAAFWpUiX/Q6vgcy9atEgvvfSSli5dmmEI1JFz3z0v/sgjjygxMVFvv/12rspOQWW/evWqdu7cqd27d1uPlZ6eLsMw5OLiom+//VYtWrRwuNxZadiwobZs2ZKjvAWZ2d/fXw8++KDN+jVr1pRhGDp9+rSqVq3qsNn/vO2cOXP097//XcWLF89x3oLMPG7cODVp0sR6vcijjz4qDw8PNW3aVGPHjpW/v7/DZnd3d9ecOXP0n//8R4mJifL399fs2bNVqlQplStXziEyZoefn58SExNt5iUmJt73Wrz8wGmsAtSyZUvdvHlTt27dUmhoqM2y27dva/78+fr444+1Z88e6/Tzzz+rfPnyiomJKaTUBZs7JiZGffr0UUxMTKa3RDpq7v+Vnp6u1NRUh87u6empvXv32uzj5ZdfVvXq1bVnzx41atTIIXNnZc+ePbn6ACuozE2aNNHZs2eVkpJinXf48GE5OTmpQoUKOc5dkNnv2rhxo44ePaqIiIhc5S3IzNevX88wCuLs7CxJub4+paB/3sWKFVOFChXk7OysRYsWqU2bNvcc2SmMjPcSHBys2NhYm3nr169XcHCwXY+THYzsFCBnZ2cdOHDA+t9/tmrVKl2+fFkRERE2zVqSOnbsqMjISJtnKFy6dCnDeU9vb2/rRW179uyRdOeq+wsXLmjPnj0qXry4atWq5bC5o6OjFRYWpsmTJ6tRo0bW9dzd3TPs25FyT58+XRUrVlSNGjUk3bmF/qOPPrLeBZIbBZU9KCjIZr6Pj0+m8x0t96RJkxQYGKjatWvrxo0b+uyzz/T999/r22+/ddjMPXr00Lvvvqs+ffpozJgxunjxot544w2Fh4fn+BRWQWe/KzIyUo0aNcr170dBZm7btq369u2rmTNnWk9jDRkyRA0bNrQZ1XDE7IcPH9aOHTvUqFEjXb58WRMnTtS+ffs0b948h8ko3f9zZvDgwWrWrJk+/vhjtW7dWosWLdLOnTtz9ViOPDOQr8LCwox27dplubxdu3ZGWFiY0aZNG6NVq1aZrrN9+3ZDkvHzzz8b8fHxhqRMp5iYGOs2mS2vVKmSQ+du1qxZpsvDwsIcOveUKVOM2rVrGyVKlDA8PT2NevXqGTNmzDDS0tKynbuwsv+vt956y6hTp47D5x4/frzx8MMPG25ubkbp0qWNp556yvj+++8dOrNhGMaBAweMkJAQw93d3ahQoYIxbNgw4/r169nOXZjZr1y5Yri7uxuzZ8/OUd7CzDxlyhSjVq1ahru7u+Hv72/07NnTOH36tMNn379/v1G3bl3D3d3d8PT0NNq1a2ccPHjQoTIaRvY+Z5YsWWJUq1bNKF68uFG7dm3jm2++yTJnfrIYRiHe1wwAAJDPuGYHAACYGmUHAACYGmUHAACYGmUHAACYGmUHAACYGmUHAACYGmUHAACYGmUHACRFRUXJ29s7R9tUrlxZkyZNuuc6FotFK1asyHUuAHlH2QFwX71795bFYrF5lPxdAwYMkMViUe/evTMsi4uLk7Ozc6bfc3b8+HFZLJZMp23btmVYPzExUcWKFdOiRYsyzRgREaHHHnss52/u/3Tt2lWHDx/O9fYAHBdlB0C2BAQEaNGiRfrjjz+s827cuKHo6GhVrFgx020iIyP12muvadOmTTp79mym63z33Xc6d+6czVS/fv0M6/n6+qp169aaM2dOhmXXrl3TkiVLcv0Flbdu3ZK7u7t8fHxytT0Ax0bZAZAtjz32mAICArRs2TLrvGXLlqlixYqqV69ehvVTUlK0ePFivfLKK2rdurWioqIy3W+ZMmXk5+dnMxUrVizTdSMiIhQbG6uTJ0/azF+6dKlu376tnj17au3atXryySfl7e2tMmXKqE2bNvrtt9+s694dUVq8eLGaNWsmNzc3LVy4MMNprN9++03t2rWTr6+vSpYsqccff1zfffddhkxXr15V9+7d5eHhoQcffFDTp0+/149Rp06dUpcuXeTt7a3SpUurXbt2On78uHX5hg0b1LBhQ3l4eMjb21tNmjTRiRMn7rlPAPdG2QGQbeHh4Zo7d6719Zw5c9SnT59M112yZIlq1Kih6tWrq1evXpozZ47y+lV8rVq1kq+vb4biNHfuXL3wwgvy9vbWtWvXNGzYMO3cuVOxsbFycnJShw4dlJ6ebrPN8OHDNXjwYB04cEChoaEZjpWSkqJWrVopNjZWu3fvVsuWLdW2bdsMRevDDz9UnTp1tHv3bus+169fn2n+W7duKTQ0VKVKldLmzZu1detWlSxZUi1bttTNmzd1+/ZttW/fXs2aNdMvv/yiuLg49evXTxaLJU8/N+Avr1C+fhRAkXL3W5XPnz9vuLq6GsePHzeOHz9uuLm5GRcuXLB+q/KfNW7c2Jg0aZJhGIZx69Yto2zZssZ///tf6/K736zs7u5ueHh42Ez3Mnz4cCMwMNBIT083DMMwjh49algsFuO7777LdP0LFy4Ykoy9e/faHPdutrvmzp1reHl53fPYtWvXNqZOnWp9XalSJaNly5Y263Tt2tV47rnnrK8lGcuXLzcMwzAWLFhgVK9e3ZrdMAwjNTXVcHd3N9atW2dcunTJkGRs2LDhnjkA5AwjOwCyrVy5ctZTUnPnzlXr1q1VtmzZDOsdOnRIO3bsUPfu3SVJLi4u6tq1qyIjIzOsu3jxYu3Zs8dmupfw8HDFx8frv//9r6Q7ozqVK1dWixYtJElHjhxR9+7d9dBDD8nT01OVK1eWpAwjMg0aNLjncVJSUvT666+rZs2a8vb2VsmSJXXgwIEM+wkODs7w+sCBA5nu8+eff9bRo0dVqlQplSxZUiVLllTp0qV148YN/fbbbypdurR69+6t0NBQtW3bVpMnT9a5c+fumRPA/bkUdgAARUt4eLgGDhwoSVlenxIZGanbt2+rfPny1nmGYcjV1VXTpk2Tl5eXdX5AQICqVKmS7eNXrVpVTZs21dy5c/XUU09p/vz56tu3r/VUT9u2bVWpUiV9+umnKl++vNLT0xUUFKSbN2/a7MfDw+Oex3n99de1fv16ffTRR6pSpYrc3d3VqVOnDPvJiZSUFNWvX18LFy7MsKxcuXKS7pS3QYMGae3atVq8eLFGjhyp9evX64knnsj1cYG/OsoOgBy5e32JxWLJ9FqX27dva/78+fr444/17LPP2ixr3769YmJiMr2FPSciIiL0yiuv6Pnnn9eZM2est71funRJhw4d0qeffqqmTZtKkrZs2ZKrY2zdulW9e/dWhw4dJN0pKn++kPiu/71Nftu2bapZs2am+3zssce0ePFi+fj4yNPTM8tj16tXT/Xq1dOIESMUHBys6Ohoyg6QB5zGApAjzs7OOnDggPbv3y9nZ+cMy1etWqXLly8rIiJCQUFBNlPHjh0znMq6dOmSEhISbKYbN27cM0Pnzp1VrFgx9e/fX88++6wCAgIkSQ888IDKlCmj2bNn6+jRo/r+++81bNiwXL3PqlWratmyZdqzZ49+/vln9ejRI8NFztKdUjRhwgQdPnxY06dP19KlSzV48OBM99mzZ0+VLVtW7dq10+bNmxUfH68NGzZo0KBBOn36tOLj4zVixAjFxcXpxIkT+vbbb3XkyJEsyxOA7KHsAMgxT0/PLEcmIiMjFRISYnOq6q6OHTtq586d+uWXX6zzQkJC5O/vbzPd74nDJUqUULdu3XT58mWFh4db5zs5OWnRokXatWuXgoKCNHToUH344Ye5eo8TJ07UAw88oMaNG6tt27YKDQ3N9KGF//jHP7Rz507Vq1dPY8eO1cSJEzMd8bqbe9OmTapYsaJeeOEF1axZUxEREbpx44Y8PT1VokQJHTx4UB07dlS1atXUr18/DRgwQP3798/VewBwh8Uw8ngvKAAAgANjZAcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJja/wPwsxxbql1RiQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of MAPE values from mape1 to mape10\n", + "mape_values = [mape1, mape2, mape3, mape4, mape5, mape6, mape7, mape8, mape9, mape10]\n", + "\n", + "# List of corresponding labels for each MAPE value\n", + "labels = ['MAPE1', 'MAPE2', 'MAPE3', 'MAPE4', 'MAPE5', 'MAPE6', 'MAPE7', 'MAPE8', 'MAPE9', 'MAPE10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, mape_values, color='purple')\n", + "plt.xlabel('MAPE Variables')\n", + "plt.ylabel('MAPE Values')\n", + "plt.title('Bar Graph of MAPE')\n", + "plt.show()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "_c4Pe76fDNM-", + "outputId": "0e3d2f74-9042-4e2d-92c6-5ce61e967bd4" + }, + "execution_count": 120, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABH10lEQVR4nO3de3zP9f//8ft7YydsDrNTDXNoctZkn+2rTI1Zjv3KYRFGKvEpreNKRIdFiLJahFEYUipEWiEscqr0kdIHc9jmEJtNNuz1+8PF+9O7bWzs8J7X7Xq5vC4fr+fr+Xq+Hq/l0+69Xs/X62UxDMMQAACAiThUdAEAAADljQAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAE4Ib38ssvy2Kx6MSJE2V+rNWrV6tNmzZycXGRxWLR6dOny/yYAEqOAARUYomJibJYLDaLl5eXOnXqpC+//LLc6/niiy/Uo0cPeXt7y8nJSbVr19add96pKVOmKCsrq9zrKW8nT55U37595erqqvj4eH344YeqVq1aoX3//s9u48aNBbYbhiF/f39ZLBZ179690DFOnz5tDVp79uwptM+QIUNs/n64u7urdevWmjJlinJzc639LofEopb09PRr+IkA9qtKRRcA4PpNmDBBAQEBMgxDGRkZSkxM1D333KMvvviiyF+epSk/P1/Dhg1TYmKiWrZsqccee0z+/v46c+aMUlJSNGbMGK1atUrJycllXktF+uGHH3TmzBm98sorCg8PL9Y+Li4uWrhwoTp06GDTvn79eh0+fFjOzs5F7rt06VJZLBb5+PhowYIFevXVVwvt5+zsrA8++EDSpdC0bNkyPf300/rhhx+UlJRk0/e9995T9erVC4xRs2bNYp0PUFkQgIAbQGRkpNq1a2ddHzZsmLy9vbVo0aJSCUD5+fnKy8uTi4tLodsnTZqkxMREPfnkk5oyZYosFot12xNPPKG0tDTNnz//uo5RGRw7dkxSycLCPffco6VLl+rtt99WlSr/+1fywoULFRQUdMXbdh999JHuuece1a9fXwsXLiwyAFWpUkUDBw60rj/22GMKDg7W4sWLNXXqVPn5+Vm33X///fL09Cx2/UBlxS0w4AZUs2ZNubq62vxClaTJkycrNDRUderUkaurq4KCgvTxxx8X2N9isWjUqFFasGCBmjdvLmdnZ61evbrQY509e1YTJ05U8+bN9eabb9qEn8t8fX313HPPFfsY11JnYGCgXFxcFBQUpA0bNhRa6+nTpzVkyBDVrFlTHh4eio6O1tmzZwv/If7D0qVLFRQUJFdXV3l6emrgwIE6cuSIdXtYWJgGDx4sSbr99ttlsVg0ZMiQq44bFRWlkydPau3atda2vLw8ffzxx3rggQeK3C81NVXfffed+vfvr/79+2v//v3avHlzsc7FwcFBYWFhkqQDBw4Uax/gRsMVIOAGkJmZqRMnTsgwDB07dkzvvPOOsrOzbf6rX5KmT5+unj17asCAAcrLy1NSUpL69OmjFStWqFu3bjZ9v/nmGy1ZskSjRo2Sp6enGjRoUOixN27cqNOnT+vpp5+Wo6Njieou6hglqXP9+vVavHixHn/8cTk7O+vdd99V165dtXXrVrVo0cKmb9++fRUQEKC4uDjt2LFDH3zwgby8vDRx4sQr1pmYmKjo6GjdfvvtiouLU0ZGhqZPn65NmzZp586dqlmzpl588UUFBgZq5syZ1luSjRo1uurPoEGDBgoJCdGiRYsUGRkpSfryyy+VmZmp/v376+233y50v0WLFqlatWrq3r27XF1d1ahRIy1YsEChoaFXPaYk/fHHH5KkOnXq2LT/+eefBfpWqVKFW2C48RgAKq25c+cakgoszs7ORmJiYoH+Z8+etVnPy8szWrRoYdx111027ZIMBwcH45dffrlqDdOnTzckGcuXL7dpv3DhgnH8+HGbJT8/v1jHKEmdkoxt27ZZ2w4ePGi4uLgY9957r7Vt3LhxhiRj6NChNvvfe++9Rp06da54fnl5eYaXl5fRokUL46+//rK2r1ixwpBkjB071tp2+Z/HDz/8cMUx/9l3xowZRo0aNazn3adPH6NTp06GYRhG/fr1jW7duhXYv2XLlsaAAQOs6y+88ILh6elpnD9/3qbf4MGDjWrVqln/Gezbt894/fXXDYvFYrRq1cra7/LPqLAlMDDwqucDVDbcAgNuAPHx8Vq7dq3Wrl2rjz76SJ06ddJDDz2kTz75xKafq6ur9c+nTp1SZmam7rjjDu3YsaPAmB07dlSzZs2ueuzLT3f9c+Lszz//rLp169osJ0+eLNYxSlJnSEiIgoKCrOv16tVTr169tGbNGl28eNGm76OPPmqzfscdd+jkyZNXfEJt27ZtOnbsmB577DGb+UndunVT06ZNtXLlyiL3La6+ffvqr7/+0ooVK3TmzBmtWLHiire/fvrpJ/3888+KioqytkVFRenEiRNas2ZNgf45OTnWfwaNGzfWCy+8oJCQEH366acF+i5btsz6d+nyMnfu3Os+R8DecAsMuAG0b9/eZhJ0VFSU2rZtq1GjRql79+5ycnKSJK1YsUKvvvqqdu3aZfMIdGHzdgICAop17Bo1akiSsrOzbdobN25sndcyf/58ffjhh8U+RknqbNKkSYG2W265RWfPntXx48fl4+Njba9Xr55Nv1q1akm6FLLc3d0LreXgwYOSpMDAwALbmjZtWugj7CVVt25dhYeHa+HChTp79qwuXryo+++/v8j+H330kapVq6aGDRtq3759ki49TdagQQMtWLCgwG1CFxcXffHFF5IuPREWEBCgm2++udCx77zzTiZBwxQIQMANyMHBQZ06ddL06dP1+++/q3nz5vruu+/Us2dP3XnnnXr33Xfl6+urqlWrau7cuVq4cGGBMf5+FeZKmjZtKknavXu3evXqZW2vXr269VHwokJCYccoaZ0lUdQcJcMwrmvc0vDAAw9o+PDhSk9PV2RkZJFzbgzD0KJFi5STk1Po1bNjx44pOzvb5oqco6NjsR/LB8yCAATcoC5cuCDpf1dmli1bJhcXF61Zs8bm3TLXe3vjjjvukIeHh5KSkhQbGysHh+u7s17SOn///fcCbb/99pvc3NxUt27d66pFkurXry9J2rt3r+666y6bbXv37rVuv1733nuvHnnkEX3//fdavHhxkf0uvx9owoQJuvXWW222nTp1Sg8//LCWL19eYAI8AFvMAQJuQOfPn9dXX30lJycn6y9JR0dHWSwWm3kxBw4c0PLly6/rWG5ubnr22We1e/duPf/884VeTSnJFZaS1pmSkmIzN+jQoUP67LPP1KVLlxI/lVaYdu3aycvLSwkJCTa347788kvt2bOnwO2ma1W9enW99957evnll9WjR48i+12+/fXMM8/o/vvvt1mGDx+uJk2aaMGCBaVSE3Aj4woQcAP48ssv9euvv0q6dAtk4cKF+v333/X8889b57Z069ZNU6dOVdeuXfXAAw/o2LFjio+PV+PGjfXTTz9d1/Gff/557dmzR2+++aa++uor3Xfffbr55pt16tQp7dixQ0uXLpWXl1exXnJY0jpbtGihiIgIm8fgJWn8+PHXdU6XVa1aVRMnTlR0dLQ6duyoqKgo62PwDRo00JNPPlkqx5FkfY9QUXJzc7Vs2TJ17ty5yJ9lz549NX36dB07dkxeXl4lruHjjz8u9E3QnTt3lre3d4nHA+wVAQi4AYwdO9b6ZxcXFzVt2lTvvfeeHnnkEWv7XXfdpdmzZ+uNN97Q6NGjFRAQoIkTJ+rAgQPXHYAcHBz04Ycf6r777tOsWbP0zjvv6NSpU6pevbpatGih1157TcOHDy/0F+s/lbTOjh07KiQkROPHj1dqaqqaNWumxMREtWrV6rrO6e+GDBkiNzc3vfHGG3ruuedUrVo13XvvvZo4cWK5vh9n5cqVOn369BWvEPXo0UNTpkxRUlKSHn/88RIfY8SIEYW2f/vttwQg3FAshj3M/gOAa2CxWDRy5EjNmDGjoksBUMkwBwgAAJgOAQgAAJgOAQgAAJgOk6ABVFpMYQRwrbgCBAAATIcABAAATIdbYIXIz8/X0aNHVaNGjUI/vggAAOyPYRg6c+aM/Pz8rvpZHgJQIY4ePSp/f/+KLgMAAFyDQ4cO6eabb75iHwJQIWrUqCHp0g/w8mcEAACAfcvKypK/v7/19/iVEIAKcfm2l7u7OwEIAIBKpjjTV5gEDQAATIcABAAATIcABAAATIcABAAATIcABAAATKdCA1BcXJxuv/121ahRQ15eXurdu7f27t171f2WLl2qpk2bysXFRS1bttSqVatsthuGobFjx8rX11eurq4KDw/X77//XlanAQAAKpkKDUDr16/XyJEj9f3332vt2rU6f/68unTpopycnCL32bx5s6KiojRs2DDt3LlTvXv3Vu/evbV7925rn0mTJuntt99WQkKCtmzZomrVqikiIkLnzp0rj9MCAAB2zmLY0eeUjx8/Li8vL61fv1533nlnoX369eunnJwcrVixwtr2r3/9S23atFFCQoIMw5Cfn5+eeuopPf3005KkzMxMeXt7KzExUf37979qHVlZWfLw8FBmZibvAQIAoJIoye9vu5oDlJmZKUmqXbt2kX1SUlIUHh5u0xYREaGUlBRJ0v79+5Wenm7Tx8PDQ8HBwdY+AADA3OzmTdD5+fkaPXq0/u///k8tWrQosl96erq8vb1t2ry9vZWenm7dfrmtqD7/lJubq9zcXOt6VlbWNZ0DAACoHOzmCtDIkSO1e/duJSUllfux4+Li5OHhYV34ECoAADc2uwhAo0aN0ooVK/Ttt99e9eutPj4+ysjIsGnLyMiQj4+PdfvltqL6/FNsbKwyMzOty6FDh671VAAAQCVQoQHIMAyNGjVKn376qb755hsFBARcdZ+QkBAlJyfbtK1du1YhISGSpICAAPn4+Nj0ycrK0pYtW6x9/snZ2dn64VM+gAoAwI2vQucAjRw5UgsXLtRnn32mGjVqWOfoeHh4yNXVVZI0aNAg3XTTTYqLi5MkPfHEE+rYsaOmTJmibt26KSkpSdu2bdPMmTMlXfoC7OjRo/Xqq6+qSZMmCggI0EsvvSQ/Pz/17t27Qs4TAADYlwoNQO+9954kKSwszKZ97ty5GjJkiCQpNTVVDg7/u1AVGhqqhQsXasyYMXrhhRfUpEkTLV++3Gbi9LPPPqucnBw9/PDDOn36tDp06KDVq1fLxcWlzM8JAADYP7t6D5C94D1AhRtvGV/RJdgYZ4yr6BIAAHak0r4HCAAAoDwQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOlUaADasGGDevToIT8/P1ksFi1fvvyK/YcMGSKLxVJgad68ubXPyy+/XGB706ZNy/hMAABAZVKhASgnJ0etW7dWfHx8sfpPnz5daWlp1uXQoUOqXbu2+vTpY9OvefPmNv02btxYFuUDAIBKqkpFHjwyMlKRkZHF7u/h4SEPDw/r+vLly3Xq1ClFR0fb9KtSpYp8fHxKrU4AAHBjqdRzgGbPnq3w8HDVr1/fpv3333+Xn5+fGjZsqAEDBig1NfWK4+Tm5iorK8tmAQAAN64KvQJ0PY4ePaovv/xSCxcutGkPDg5WYmKiAgMDlZaWpvHjx+uOO+7Q7t27VaNGjULHiouL0/jx48ujbACApPEW+/p37jhjXEWXgHJWaa8AzZs3TzVr1lTv3r1t2iMjI9WnTx+1atVKERERWrVqlU6fPq0lS5YUOVZsbKwyMzOty6FDh8q4egAAUJEq5RUgwzA0Z84cPfjgg3Jycrpi35o1a+qWW27Rvn37iuzj7OwsZ2fn0i4TAADYqUp5BWj9+vXat2+fhg0bdtW+2dnZ+uOPP+Tr61sOlQEAgMqgQgNQdna2du3apV27dkmS9u/fr127dlknLcfGxmrQoEEF9ps9e7aCg4PVokWLAtuefvpprV+/XgcOHNDmzZt17733ytHRUVFRUWV6LgAAoPKo0Ftg27ZtU6dOnazrMTExkqTBgwcrMTFRaWlpBZ7gyszM1LJlyzR9+vRCxzx8+LCioqJ08uRJ1a1bVx06dND333+vunXrlt2JAACASqVCA1BYWJgMwyhye2JiYoE2Dw8PnT17tsh9kpKSSqM0AABwA6uUc4AAAACuBwEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYToUGoA0bNqhHjx7y8/OTxWLR8uXLr9h/3bp1slgsBZb09HSbfvHx8WrQoIFcXFwUHBysrVu3luFZAACAyqZCA1BOTo5at26t+Pj4Eu23d+9epaWlWRcvLy/rtsWLFysmJkbjxo3Tjh071Lp1a0VEROjYsWOlXT4AAKikqlTkwSMjIxUZGVni/by8vFSzZs1Ct02dOlXDhw9XdHS0JCkhIUErV67UnDlz9Pzzz19PuQAA4AZRKecAtWnTRr6+vurcubM2bdpkbc/Ly9P27dsVHh5ubXNwcFB4eLhSUlKKHC83N1dZWVk2CwAAuHFVqgDk6+urhIQELVu2TMuWLZO/v7/CwsK0Y8cOSdKJEyd08eJFeXt72+zn7e1dYJ7Q38XFxcnDw8O6+Pv7l+l5AACAilWht8BKKjAwUIGBgdb10NBQ/fHHH3rrrbf04YcfXvO4sbGxiomJsa5nZWURggAAuIFVqgBUmPbt22vjxo2SJE9PTzk6OiojI8OmT0ZGhnx8fIocw9nZWc7OzmVaJwAAsB+V6hZYYXbt2iVfX19JkpOTk4KCgpScnGzdnp+fr+TkZIWEhFRUiQAAwM5U6BWg7Oxs7du3z7q+f/9+7dq1S7Vr11a9evUUGxurI0eOaP78+ZKkadOmKSAgQM2bN9e5c+f0wQcf6JtvvtFXX31lHSMmJkaDBw9Wu3bt1L59e02bNk05OTnWp8IAAAAqNABt27ZNnTp1sq5fnoczePBgJSYmKi0tTampqdbteXl5euqpp3TkyBG5ubmpVatW+vrrr23G6Nevn44fP66xY8cqPT1dbdq00erVqwtMjAYAAOZlMQzDqOgi7E1WVpY8PDyUmZkpd3f3ii7Hboy3jK/oEmyMM8ZVdAkArhH/PkFZKMnv70o/BwgAAKCkCEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0ShyADh06pMOHD1vXt27dqtGjR2vmzJklPviGDRvUo0cP+fn5yWKxaPny5Vfs/8knn6hz586qW7eu3N3dFRISojVr1tj0efnll2WxWGyWpk2blrg2AABw4ypxAHrggQf07bffSpLS09PVuXNnbd26VS+++KImTJhQorFycnLUunVrxcfHF6v/hg0b1LlzZ61atUrbt29Xp06d1KNHD+3cudOmX/PmzZWWlmZdNm7cWKK6AADAja1KSXfYvXu32rdvL0lasmSJWrRooU2bNumrr77So48+qrFjxxZ7rMjISEVGRha7/7Rp02zWX3/9dX322Wf64osv1LZtW2t7lSpV5OPjU+xxAQCAuZT4CtD58+fl7OwsSfr666/Vs2dPSVLTpk2VlpZWutVdRX5+vs6cOaPatWvbtP/+++/y8/NTw4YNNWDAAKWmppZrXQAAwL6VOAA1b95cCQkJ+u6777R27Vp17dpVknT06FHVqVOn1Au8ksmTJys7O1t9+/a1tgUHBysxMVGrV6/We++9p/379+uOO+7QmTNnihwnNzdXWVlZNgsAALhxlTgATZw4Ue+//77CwsIUFRWl1q1bS5I+//xz662x8rBw4UKNHz9eS5YskZeXl7U9MjJSffr0UatWrRQREaFVq1bp9OnTWrJkSZFjxcXFycPDw7r4+/uXxykAAIAKUuI5QGFhYTpx4oSysrJUq1Yta/vDDz8sNze3Ui2uKElJSXrooYe0dOlShYeHX7FvzZo1dcstt2jfvn1F9omNjVVMTIx1PSsrixAEAMAN7JreA2QYhrZv367333/femvJycmpXALQokWLFB0drUWLFqlbt25X7Z+dna0//vhDvr6+RfZxdnaWu7u7zQIAAG5cJb4CdPDgQXXt2lWpqanKzc1V586dVaNGDU2cOFG5ublKSEgo9ljZ2dk2V2b279+vXbt2qXbt2qpXr55iY2N15MgRzZ8/X9Kl216DBw/W9OnTFRwcrPT0dEmSq6urPDw8JElPP/20evToofr16+vo0aMaN26cHB0dFRUVVdJTBQAAN6gSXwF64okn1K5dO506dUqurq7W9nvvvVfJycklGmvbtm1q27at9RH2mJgYtW3b1voofVpams0TXDNnztSFCxc0cuRI+fr6WpcnnnjC2ufw4cOKiopSYGCg+vbtqzp16uj7779X3bp1S3qqAADgBlXiK0DfffedNm/eLCcnJ5v2Bg0a6MiRIyUaKywsTIZhFLk9MTHRZn3dunVXHTMpKalENQAAAPMp8RWg/Px8Xbx4sUD74cOHVaNGjVIpCgAAoCyVOAB16dLF5o3MFotF2dnZGjdunO65557SrA0AAKBMlPgW2JQpUxQREaFmzZrp3LlzeuCBB/T777/L09NTixYtKosaAQAASlWJA9DNN9+sH3/8UUlJSfrpp5+UnZ2tYcOGacCAATaTogEAAOxViQOQdOljowMHDiztWgAAAMpFiQPQ5XfyFGXQoEHXXAwAAEB5KHEA+vs7d6RLX4c/e/as9U3QBCAAAGDvSvwU2KlTp2yW7Oxs7d27Vx06dGASNAAAqBSu6Vtg/9SkSRO98cYbBa4OAQAA2KNSCUDSpYnRR48eLa3hAAAAykyJ5wB9/vnnNuuGYSgtLU0zZszQ//3f/5VaYQAAAGWlxAGod+/eNusWi0V169bVXXfdpSlTppRWXQAAAGWmxAEoPz+/LOoAAAAoN6U2BwgAAKCyKNYVoJiYmGIPOHXq1GsuBgAAoDwUKwDt3LmzWINZLJbrKgYAAKA8FCsAffvtt2VdBwAAQLlhDhAAADCda/oa/LZt27RkyRKlpqYqLy/PZtsnn3xSKoUBAACUlRJfAUpKSlJoaKj27NmjTz/9VOfPn9cvv/yib775Rh4eHmVRIwAAQKkqcQB6/fXX9dZbb+mLL76Qk5OTpk+frl9//VV9+/ZVvXr1yqJGAACAUlXiAPTHH3+oW7dukiQnJyfl5OTIYrHoySef1MyZM0u9QAAAgNJW4gBUq1YtnTlzRpJ00003affu3ZKk06dP6+zZs6VbHQAAQBko8SToO++8U2vXrlXLli3Vp08fPfHEE/rmm2+0du1a3X333WVRIwAAQKkqdgDavXu3WrRooRkzZujcuXOSpBdffFFVq1bV5s2bdd9992nMmDFlVigAAEBpKXYAatWqlW6//XY99NBD6t+/vyTJwcFBzz//fJkVBwAAUBaKPQdo/fr1at68uZ566in5+vpq8ODB+u6778qyNgAAgDJR7AB0xx13aM6cOUpLS9M777yjAwcOqGPHjrrllls0ceJEpaenl2WdAAAApabET4FVq1ZN0dHRWr9+vX777Tf16dNH8fHxqlevnnr27FkWNQIAAJSq6/oWWOPGjfXCCy9ozJgxqlGjhlauXFladQEAAJSZa/oWmCRt2LBBc+bM0bJly+Tg4KC+fftq2LBhpVkbAABAmShRADp69KgSExOVmJioffv2KTQ0VG+//bb69u2ratWqlVWNAAAAparYASgyMlJff/21PD09NWjQIA0dOlSBgYFlWRsAAECZKHYAqlq1qj7++GN1795djo6OZVkTAABAmSr2JOjPP/9cvXr1KtXws2HDBvXo0UN+fn6yWCxavnz5VfdZt26dbrvtNjk7O6tx48ZKTEws0Cc+Pl4NGjSQi4uLgoODtXXr1lKrGQAAVH7X9RTY9crJyVHr1q0VHx9frP779+9Xt27d1KlTJ+3atUujR4/WQw89pDVr1lj7LF68WDExMRo3bpx27Nih1q1bKyIiQseOHSur0wAAAJXMNT8FVhoiIyMVGRlZ7P4JCQkKCAjQlClTJEm33nqrNm7cqLfeeksRERGSpKlTp2r48OGKjo627rNy5UrNmTOHz3YAAABJFXwFqKRSUlIUHh5u0xYREaGUlBRJUl5enrZv327Tx8HBQeHh4dY+hcnNzVVWVpbNAgAAblyVKgClp6fL29vbps3b21tZWVn666+/dOLECV28eLHQPlf6VEdcXJw8PDysi7+/f5nUDwAA7EOxA9Bjjz2m7Oxs6/qiRYuUk5NjXT99+rTuueee0q2unMTGxiozM9O6HDp0qKJLAgAAZajYAej999/X2bNnreuPPPKIMjIyrOu5ubk2k5HLgo+Pj80xJSkjI0Pu7u5ydXWVp6enHB0dC+3j4+NT5LjOzs5yd3e3WQAAwI2r2AHIMIwrrpeHkJAQJScn27StXbtWISEhkiQnJycFBQXZ9MnPz1dycrK1DwAAQIXOAcrOztauXbu0a9cuSZcec9+1a5dSU1MlXbo1NWjQIGv/Rx99VP/973/17LPP6tdff9W7776rJUuW6Mknn7T2iYmJ0axZszRv3jzt2bNHI0aMUE5OjvWpMAAAgAp9DH7btm3q1KmTdT0mJkaSNHjwYCUmJiotLc0ahiQpICBAK1eu1JNPPqnp06fr5ptv1gcffGB9BF6S+vXrp+PHj2vs2LFKT09XmzZttHr16gITowEAgHmVKACNHTtWbm5uki49cv7aa6/Jw8NDkmzmBxVXWFjYFW+lFfaW57CwMO3cufOK444aNUqjRo0qcT0AAMAcih2A7rzzTu3du9e6Hhoaqv/+978F+gAAANi7YgegdevWlWEZAAAA5adEt8CysrK0ZcsW5eXlqX379qpbt25Z1QUAAFBmih2Adu3apXvuucf6RuUaNWpoyZIlNhOQAQAAKoNiPwb/3HPPKSAgQJs2bdL27dt19913M9EYAABUSsW+ArR9+3Z99dVXuu222yRJc+bMUe3atZWVlcWbkwEAQKVS7CtAf/75p26++Wbres2aNVWtWjWdPHmyTAoDAAAoKyWaBP2f//zH5qvqhmFoz549OnPmjLWtVatWpVcdAABAGShRALr77rsLvLiwe/fuslgsMgxDFotFFy9eLNUCAQAASluxA9D+/fvLsg4AAIByU+wAVL9+/av22b1793UVAwAAUB6u+2vwZ86c0cyZM9W+fXu1bt26NGoCAAAoU9ccgDZs2KDBgwfL19dXkydP1l133aXvv/++NGsDAAAoEyWaBJ2enq7ExETNnj1bWVlZ6tu3r3Jzc7V8+XI1a9asrGoEAAAoVcW+AtSjRw8FBgbqp59+0rRp03T06FG98847ZVkbAABAmSj2FaAvv/xSjz/+uEaMGKEmTZqUZU0AAABlqthXgDZu3KgzZ84oKChIwcHBmjFjhk6cOFGWtQEAAJSJYgegf/3rX5o1a5bS0tL0yCOPKCkpSX5+fsrPz9fatWtt3gYNAABgz0r8FFi1atU0dOhQbdy4UT///LOeeuopvfHGG/Ly8lLPnj3LokYAAIBSdV3vAQoMDNSkSZN0+PBhLVq0qLRqAgAAKFPX/SJESXJ0dFTv3r31+eefl8ZwAAAAZarYT4ENHTr0qn0sFotmz559XQUBAACUtWIHoMTERNWvX19t27Yt8EV4AACAyqTYAWjEiBFatGiR9u/fr+joaA0cOFC1a9cuy9oAAADKRLHnAMXHxystLU3PPvusvvjiC/n7+6tv375as2YNV4QAAEClUqJJ0M7OzoqKitLatWv1n//8R82bN9djjz2mBg0aKDs7u6xqBAAAKFXX/BSYg4ODLBaLDMPQxYsXS7MmAACAMlWiAJSbm6tFixapc+fOuuWWW/Tzzz9rxowZSk1NVfXq1cuqRgAAgFJV7EnQjz32mJKSkuTv76+hQ4dq0aJF8vT0LMvaAAAAykSxA1BCQoLq1aunhg0bav369Vq/fn2h/T755JNSKw4AAKAsFDsADRo0SBaLpSxrAQAAKBclehEiAADAjaBUvgUGAABQmRCAAACA6dhFAIqPj1eDBg3k4uKi4OBgbd26tci+YWFhslgsBZZu3bpZ+wwZMqTA9q5du5bHqQAAgEqg2HOAysrixYsVExOjhIQEBQcHa9q0aYqIiNDevXvl5eVVoP8nn3yivLw86/rJkyfVunVr9enTx6Zf165dNXfuXOu6s7Nz2Z0EAACoVCr8CtDUqVM1fPhwRUdHq1mzZkpISJCbm5vmzJlTaP/atWvLx8fHuqxdu1Zubm4FApCzs7NNv1q1apXH6QAAgEqgQgNQXl6etm/frvDwcGubg4ODwsPDlZKSUqwxZs+erf79+6tatWo27evWrZOXl5cCAwM1YsQInTx5ssgxcnNzlZWVZbMAAIAbV4UGoBMnTujixYvy9va2aff29lZ6evpV99+6dat2796thx56yKa9a9eumj9/vpKTkzVx4kStX79ekZGRRX6zLC4uTh4eHtbF39//2k8KAADYvQqfA3Q9Zs+erZYtW6p9+/Y27f3797f+uWXLlmrVqpUaNWqkdevW6e677y4wTmxsrGJiYqzrWVlZhCAAAG5gFXoFyNPTU46OjsrIyLBpz8jIkI+PzxX3zcnJUVJSkoYNG3bV4zRs2FCenp7at29fodudnZ3l7u5uswAAgBtXhQYgJycnBQUFKTk52dqWn5+v5ORkhYSEXHHfpUuXKjc3VwMHDrzqcQ4fPqyTJ0/K19f3umsGAACVX4U/BRYTE6NZs2Zp3rx52rNnj0aMGKGcnBxFR0dLuvQNstjY2AL7zZ49W71791adOnVs2rOzs/XMM8/o+++/14EDB5ScnKxevXqpcePGioiIKJdzAgAA9q3C5wD169dPx48f19ixY5Wenq42bdpo9erV1onRqampcnCwzWl79+7Vxo0b9dVXXxUYz9HRUT/99JPmzZun06dPy8/PT126dNErr7zCu4AAAIAkOwhAkjRq1CiNGjWq0G3r1q0r0BYYGCjDMArt7+rqqjVr1pRmeQAA4AZT4bfAAAAAyhsBCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmI5dBKD4+Hg1aNBALi4uCg4O1tatW4vsm5iYKIvFYrO4uLjY9DEMQ2PHjpWvr69cXV0VHh6u33//vaxPAwAAVBIVHoAWL16smJgYjRs3Tjt27FDr1q0VERGhY8eOFbmPu7u70tLSrMvBgwdttk+aNElvv/22EhIStGXLFlWrVk0RERE6d+5cWZ8OAACoBCo8AE2dOlXDhw9XdHS0mjVrpoSEBLm5uWnOnDlF7mOxWOTj42NdvL29rdsMw9C0adM0ZswY9erVS61atdL8+fN19OhRLV++vBzOCAAA2LsKDUB5eXnavn27wsPDrW0ODg4KDw9XSkpKkftlZ2erfv368vf3V69evfTLL79Yt+3fv1/p6ek2Y3p4eCg4OLjIMXNzc5WVlWWzAACAG1eFBqATJ07o4sWLNldwJMnb21vp6emF7hMYGKg5c+bos88+00cffaT8/HyFhobq8OHDkmTdryRjxsXFycPDw7r4+/tf76kBAAA7VuG3wEoqJCREgwYNUps2bdSxY0d98sknqlu3rt5///1rHjM2NlaZmZnW5dChQ6VYMQAAsDcVGoA8PT3l6OiojIwMm/aMjAz5+PgUa4yqVauqbdu22rdvnyRZ9yvJmM7OznJ3d7dZAADAjatCA5CTk5OCgoKUnJxsbcvPz1dycrJCQkKKNcbFixf1888/y9fXV5IUEBAgHx8fmzGzsrK0ZcuWYo8JAABubFUquoCYmBgNHjxY7dq1U/v27TVt2jTl5OQoOjpakjRo0CDddNNNiouLkyRNmDBB//rXv9S4cWOdPn1ab775pg4ePKiHHnpI0qUnxEaPHq1XX31VTZo0UUBAgF566SX5+fmpd+/eFXWaAADAjlR4AOrXr5+OHz+usWPHKj09XW3atNHq1autk5hTU1Pl4PC/C1WnTp3S8OHDlZ6erlq1aikoKEibN29Ws2bNrH2effZZ5eTk6OGHH9bp06fVoUMHrV69usALEwEAgDlZDMMwKroIe5OVlSUPDw9lZmYyH+hvxlvGV3QJNsYZ4yq6BADXiH+foCyU5Pd3pXsKDAAA4HoRgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOnYRQCKj49XgwYN5OLiouDgYG3durXIvrNmzdIdd9yhWrVqqVatWgoPDy/Qf8iQIbJYLDZL165dy/o0AABAJVHhAWjx4sWKiYnRuHHjtGPHDrVu3VoRERE6duxYof3XrVunqKgoffvtt0pJSZG/v7+6dOmiI0eO2PTr2rWr0tLSrMuiRYvK43QAAEAlUOEBaOrUqRo+fLiio6PVrFkzJSQkyM3NTXPmzCm0/4IFC/TYY4+pTZs2atq0qT744APl5+crOTnZpp+zs7N8fHysS61atcrjdAAAQCVQoQEoLy9P27dvV3h4uLXNwcFB4eHhSklJKdYYZ8+e1fnz51W7dm2b9nXr1snLy0uBgYEaMWKETp48WeQYubm5ysrKslkAAMCNq0ID0IkTJ3Tx4kV5e3vbtHt7eys9Pb1YYzz33HPy8/OzCVFdu3bV/PnzlZycrIkTJ2r9+vWKjIzUxYsXCx0jLi5OHh4e1sXf3//aTwoAANi9KhVdwPV44403lJSUpHXr1snFxcXa3r9/f+ufW7ZsqVatWqlRo0Zat26d7r777gLjxMbGKiYmxrqelZVFCAIA4AZWoVeAPD095ejoqIyMDJv2jIwM+fj4XHHfyZMn64033tBXX32lVq1aXbFvw4YN5enpqX379hW63dnZWe7u7jYLAAC4cVVoAHJyclJQUJDNBObLE5pDQkKK3G/SpEl65ZVXtHr1arVr1+6qxzl8+LBOnjwpX1/fUqkbAABUbhX+FFhMTIxmzZqlefPmac+ePRoxYoRycnIUHR0tSRo0aJBiY2Ot/SdOnKiXXnpJc+bMUYMGDZSenq709HRlZ2dLkrKzs/XMM8/o+++/14EDB5ScnKxevXqpcePGioiIqJBzBAAA9qXC5wD169dPx48f19ixY5Wenq42bdpo9erV1onRqampcnD4X0577733lJeXp/vvv99mnHHjxunll1+Wo6OjfvrpJ82bN0+nT5+Wn5+funTpoldeeUXOzs7lem4AAMA+VXgAkqRRo0Zp1KhRhW5bt26dzfqBAweuOJarq6vWrFlTSpUBAIAbUYXfAgMAAChvBCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6dvEiRACoaOMt4yu6BBvjjHEVXQJwQ+MKEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0egwcA4AbHax4K4goQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHbsIQPHx8WrQoIFcXFwUHBysrVu3XrH/0qVL1bRpU7m4uKhly5ZatWqVzXbDMDR27Fj5+vrK1dVV4eHh+v3338vyFAAAQCVS4QFo8eLFiomJ0bhx47Rjxw61bt1aEREROnbsWKH9N2/erKioKA0bNkw7d+5U79691bt3b+3evdvaZ9KkSXr77beVkJCgLVu2qFq1aoqIiNC5c+fK67QAAIAdq/AANHXqVA0fPlzR0dFq1qyZEhIS5Obmpjlz5hTaf/r06erataueeeYZ3XrrrXrllVd02223acaMGZIuXf2ZNm2axowZo169eqlVq1aaP3++jh49quXLl5fjmQEAAHtVpSIPnpeXp+3btys2Ntba5uDgoPDwcKWkpBS6T0pKimJiYmzaIiIirOFm//79Sk9PV3h4uHW7h4eHgoODlZKSov79+5f+icCujbeMr+gSbIwzxhWrH3WXjuLWXVnx8y5f/LxvHBUagE6cOKGLFy/K29vbpt3b21u//vprofukp6cX2j89Pd26/XJbUX3+KTc3V7m5udb1zMxMSVJWVlYJzqb44jziymTcaxWbGXv1TpLOyb5uIRb3nw91lw7qLl/UXb6ou3yV1e/Xy+MahnH1zkYFOnLkiCHJ2Lx5s037M888Y7Rv377QfapWrWosXLjQpi0+Pt7w8vIyDMMwNm3aZEgyjh49atOnT58+Rt++fQsdc9y4cYYkFhYWFhYWlhtgOXTo0FUzSIVeAfL09JSjo6MyMjJs2jMyMuTj41PoPj4+Plfsf/l/MzIy5Ovra9OnTZs2hY4ZGxtrc1stPz9ff/75p+rUqSOLxVLi8yoPWVlZ8vf316FDh+Tu7l7R5RQbdZcv6i5f1F2+qLt8VYa6DcPQmTNn5Ofnd9W+FRqAnJycFBQUpOTkZPXu3VvSpfCRnJysUaNGFbpPSEiIkpOTNXr0aGvb2rVrFRISIkkKCAiQj4+PkpOTrYEnKytLW7Zs0YgRIwod09nZWc7OzjZtNWvWvK5zKy/u7u52+xfxSqi7fFF3+aLu8kXd5cve6/bw8ChWvwoNQJIUExOjwYMHq127dmrfvr2mTZumnJwcRUdHS5IGDRqkm266SXFxl+bNPPHEE+rYsaOmTJmibt26KSkpSdu2bdPMmTMlSRaLRaNHj9arr76qJk2aKCAgQC+99JL8/PysIQsAAJhbhQegfv366fjx4xo7dqzS09PVpk0brV692jqJOTU1VQ4O/3taPzQ0VAsXLtSYMWP0wgsvqEmTJlq+fLlatGhh7fPss88qJydHDz/8sE6fPq0OHTpo9erVcnFxKffzAwAA9qfCA5AkjRo1qshbXuvWrSvQ1qdPH/Xp06fI8SwWiyZMmKAJEyaUVol2x9nZWePGjStw687eUXf5ou7yRd3li7rLV2WtuygWwyjOs2IAAAA3jgp/EzQAAEB5IwABAADTIQABAADTIQABAADTIQCVgyFDhshisejRRx8tsG3kyJGyWCwaMmSITXtKSoocHR3VrVu3AvscOHBAFovFutSpU0ddunTRzp07rX3CwsJs+lxe/l7Da6+9ptDQULm5uRX64kd7rPvAgQMaNmyYAgIC5OrqqkaNGmncuHHKy8uz67olqWfPnqpXr55cXFzk6+urBx98UEePHrX7ui/Lzc1VmzZtZLFYtGvXLruvu0GDBgW2v/HGG3ZftyStXLlSwcHBcnV1Va1atWzeYWaPda9bt67Q7RaLRT/88IPd1i1Jv/32m3r16iVPT0+5u7urQ4cO+vbbb+365y1JO3bsUOfOnVWzZk05OzvLYrFo2LBhdlXj1X7HSJdeddOtWze5ubnJy8tLzzzzjC5cuFBo39JGACon/v7+SkpK0l9//WVtO3funBYuXKh69eoV6D979mz9+9//1oYNG2x+Sf7d119/rbS0NK1Zs0bZ2dmKjIzU6dOnrduHDx+utLQ0m2XSpEnW7Xl5eerTp0+Rb8i2x7p//fVX5efn6/3339cvv/yit956SwkJCXrhhRfsum5J6tSpk5YsWaK9e/dq2bJl+uOPP3T//ffbfd2XPfvss0W+Xt5e654wYYLN9n//+992X/eyZcv04IMPKjo6Wj/++KM2bdqkBx54wK7rDg0NLbDtoYceUkBAgNq1a2e3dUtS9+7ddeHCBX3zzTfavn27Wrdure7du9t8PNve6j569KjCw8PVuHFjbdmyRZ07d5aTk5M+/PBDu6lRuvrvmIsXL6pbt27Ky8vT5s2bNW/ePCUmJmrs2LGF9i91V/1aGK7b4MGDjV69ehktWrQwPvroI2v7ggULjFatWhm9evUyBg8ebG0/c+aMUb16dePXX381+vXrZ7z22ms24+3fv9+QZOzcudPadvkjsKtXrzYMwzA6duxoPPHEE8Wqb+7cuYaHh0elq/uySZMmGQEBAZWu7s8++8ywWCxGXl6e3de9atUqo2nTpsYvv/xSYEx7rbt+/frGW2+9VeR2e6z7/Pnzxk033WR88MEHlaruf8rLyzPq1q1rTJgwwa7rPn78uCHJ2LBhg7UtKyvLkGSsXbvWbut+//33DS8vL+PixYvWGjt16mRIMiZPnmwXNf5dUb9jVq1aZTg4OBjp6enWtvfee89wd3c3cnNzizX29eAKUDkaOnSo5s6da12fM2eO9ZMff7dkyRI1bdpUgYGBGjhwoObMmSPjKq9rcnV1lSSbW0Glxd7rzszMVO3atStV3X/++acWLFig0NBQVa1a1a7rzsjI0PDhw/Xhhx/Kzc2tyH72VrckvfHGG6pTp47atm2rN998s9BL6/ZU944dO3TkyBE5ODiobdu28vX1VWRkpHbv3m3Xdf/T559/rpMnTxZajz3VXadOHQUGBmr+/PnKycnRhQsX9P7778vLy0tBQUF2W3dubq6cnJxsvpLg6OhorcseaiyOlJQUtWzZ0vrlB0mKiIhQVlaWfvnll1I7TlEIQOVo4MCB2rhxow4ePKiDBw9q06ZNGjhwYIF+s2fPtrZ37dpVmZmZWr9+fZHjnj59Wq+88oqqV6+u9u3bW9vfffddVa9e3WZZsGDBDVX3vn379M477+iRRx6pFHU/99xzqlatmurUqaPU1FR99tlndl23YRgaMmSIHn30UZtbGYWxp7ol6fHHH1dSUpK+/fZbPfLII3r99df17LPP2nXd//3vfyVJL7/8ssaMGaMVK1aoVq1aCgsL059//mm3dRd2zIiICN18880FttlT3RaLRV9//bV27typGjVqyMXFRVOnTtXq1atVq1Ytu637rrvuUnp6ut58803l5eUpLy/PGhh+++03u6ixONLT023CjyTr+t9vQZYVu/gUhlnUrVtX3bp1U2JiogzDULdu3eTp6WnTZ+/evdq6das+/fRTSVKVKlXUr18/zZ49W2FhYTZ9Q0ND5eDgoJycHDVs2FCLFy+2+cs0YMAAvfjiizb7/PMvW2Wu+8iRI+ratav69Omj4cOHV4q6n3nmGQ0bNkwHDx7U+PHjNWjQIK1YsUIWi8Uu637nnXd05swZxcbGFvj5/pM91S1d+tDyZa1atZKTk5MeeeQRxcXF2bzK357qzs/PlyS9+OKLuu+++yRJc+fO1c0336ylS5faBH17qvvvDh8+rDVr1mjJkiUFttlb3YZhaOTIkfLy8tJ3330nV1dXffDBB+rRo4d++OEH+fr62mXdzZs317x58xQTE6PY2FgZhqGGDRvK29tbnp6edlFjZUAAKmdDhw61fvcsPj6+wPbZs2frwoULNpNNDcOQs7OzZsyYIQ8PD2v74sWL1axZM9WpU6fQGfYeHh5q3LjxDVn30aNH1alTJ4WGhmrmzJmVpm5PT095enrqlltu0a233ip/f399//33CgkJscu6v/nmG6WkpBT49k+7du00YMAAzZs3zy7rLkxwcLAuXLigAwcOKDAw0C7rvvwLt1mzZtY2Z2dnNWzYUKmpqQX620vdfzd37lzVqVNHPXv2LLKPvdT9zTffaMWKFTp16pTc3d0lXbqqsXbtWs2bN0/PP/+8XdYtSQ888IAeeOABZWRkKCYmRllZWVq1apWio6OVmJhoFzVejY+Pj7Zu3WrTlpGRYd1W1rgFVs66du2qvLw8nT9/XhERETbbLly4oPnz52vKlCnatWuXdfnxxx/l5+enRYsW2fT39/dXo0aNiny88Eat+8iRIwoLC1NQUJDmzp1rcx/cnuv+p8v/tZ+bm2u3db/99tv68ccfrcdYtWqVpEv/Ynzttdfstu7C7Nq1Sw4ODvLy8rLbuoOCguTs7Ky9e/da286fP68DBw6ofv36dlv3ZYZhaO7cuRo0aFCBuW32WPfZs2clqcC/QxwcHKz//7THuv/O29tbVatW1eHDh+Xi4qKnn37a7mosSkhIiH7++WcdO3bM2rZ27Vq5u7vb/EdAWeEKUDlzdHTUnj17rH/+u8v/JTJs2DCbFC5J9913n2bPnl3ouyiKcvbs2QL3UZ2dna33tlNTU/Xnn38qNTVVFy9etL7bpXHjxqpevbpd1n05/NSvX1+TJ0/W8ePHrX0K+y8Ge6l7y5Yt+uGHH9ShQwfVqlVLf/zxh1566SU1atSowNUfe6r7n4/PXv570ahRo0Lnd9hL3SkpKdqyZYs6deqkGjVqKCUlRU8++aQGDhxYYG6HPdXt7u6uRx99VOPGjZO/v7/q16+vN998U5LUp08fu637sm+++Ub79+/XQw89dMWx7KXukJAQ1apVS4MHD9bYsWPl6uqqWbNmaf/+/YW+H8de6pakGTNmKDQ0VNWrV9evv/6qn376SW+99Zbq1KljNzVe7XdMly5d1KxZMz344IOaNGmS0tPTNWbMGI0cObJ8vjhf1o+Z4X+PURbl8iOK3bt3N+65555C+2zZssWQZPz444+FPqL4Tx07djQkFVgiIiJs6iqsz7fffmu3dc+dO7fQ7X//q2yPdf/0009Gp06djNq1axvOzs5GgwYNjEcffdQ4fPiwXdf9T4WNaY91b9++3QgODjY8PDwMFxcX49ZbbzVef/1149y5c3Zdt2FceoT8qaeeMry8vIwaNWoY4eHhxu7du+2+bsMwjKioKCM0NLTQMey17h9++MHo0qWLUbt2baNGjRrGv/71L2PVqlV2X/eDDz5o1K5d23BycjJq1apl3HbbbXZX49V+xxiGYRw4cMCIjIw0XF1dDU9PT+Opp54yzp8/X+RxS5PFMK7y7BsAAMANhjlAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAFBMFotFy5cvL3b/l19+WW3atLlinyFDhqh3797XVReAkiMAAbiqIUOGyGKxFPqa/JEjR8pisWjIkCEFtqWkpMjR0bHQzwocOHBAFovFutSpU0ddunTRzp07rX3CwsJs+lxeinpdf48ePdS1a9dCt3333XeyWCz66aefinnWBaWlpSkyMvKa9wdgPwhAAIrF399fSUlJ+uuvv6xt586d08KFCwt8M+yy2bNn69///rc2bNigo0ePFtrn66+/VlpamtasWaPs7GxFRkbq9OnT1u3Dhw9XWlqazTJp0qRCxxo2bJjWrl2rw4cPF9g2d+5ctWvXTq1atSrBWV+Sl5cn6dL35srlG0UAyhwBCECx3HbbbfL399cnn3xibfvkk09Ur149tW3btkD/7OxsLV68WCNGjFC3bt2UmJhY6Lh16tSRj4+P2rVrp8mTJysjI0Nbtmyxbndzc5OPj4/N4u7uXuhY3bt3V926dQscKzs7W0uXLtWwYcN08uRJRUVF6aabbpKbm5tatmxZ4CvYYWFhGjVqlEaPHi1PT0/rV7X/eQvsueee0y233CI3Nzc1bNhQL730ks6fP1+grvfff1/+/v5yc3NT3759lZmZWWj9kpSfn6+4uDgFBATI1dVVrVu31scff2zdfurUKQ0YMEB169aVq6urmjRporlz5xY5HoDCEYAAFNvQoUNtftnOmTNH0dHRhfZdsmSJmjZtqsDAQA0cOFBz5szR1T496OrqKul/V1xKqkqVKho0aJASExNtjrV06VJdvHhRUVFROnfunIKCgrRy5Urt3r1bDz/8sB588EFt3brVZqx58+bJyclJmzZtUkJCQqHHq1GjhhITE/Wf//xH06dP16xZs/TWW2/Z9Nm3b5+WLFmiL774QqtXr9bOnTv12GOPFXkOcXFxmj9/vhISEvTLL79Yv2K/fv16SdJLL72k//znP/ryyy+1Z88evffee/L09LymnxdgauXyyVUAldrlL2IfO3bMcHZ2Ng4cOGAcOHDAcHFxMY4fP2792vTfhYaGGtOmTTMMwzDOnz9veHp62nwF+p9fnD516pRx7733GtWrVzfS09MNw7j0xemqVasa1apVs1k++uijImvds2dPgS9O33HHHcbAgQOL3Kdbt27GU089ZV3v2LGj0bZt2wL9JBmffvppkeO8+eabRlBQkHV93LhxhqOjo3H48GFr25dffmk4ODgYaWlphmHYfm383Llzhpubm7F582abcYcNG2ZERUUZhmEYPXr0MKKjo4usAUDxVKng/AWgEqlbt671dpZhGOrWrVuhVx/27t2rrVu36tNPP5V06cpMv379NHv2bIWFhdn0DQ0NlYODg3JyctSwYUMtXrxY3t7e1u0DBgzQiy++aLPP37f/U9OmTRUaGqo5c+YoLCxM+/bt03fffacJEyZIki5evKjXX39dS5Ys0ZEjR5SXl6fc3Fy5ubnZjBMUFHTVn8fixYv19ttv648//lB2drYuXLhQ4PZcvXr1dNNNN1nXQ0JClJ+fr71798rHx8em7759+3T27Fl17tzZpj0vL896m3HEiBG67777tGPHDnXp0kW9e/dWaGjoVWsFYIsABKBEhg4dqlGjRkmS4uPjC+0ze/ZsXbhwQX5+ftY2wzDk7OysGTNmyMPDw9q+ePFiNWvWTHXq1FHNmjULjOXh4aHGjRuXqMZhw4bp3//+t+Lj4zV37lw1atRIHTt2lCS9+eabmj59uqZNm6aWLVuqWrVqGj16dIHbbtWqVbviMVJSUjRgwACNHz9eERER8vDwUFJSkqZMmVKiWv8uOztbkrRy5Uqb0CTJOvk6MjJSBw8e1KpVq7R27VrdfffdGjlypCZPnnzNxwXMiDlAAEqka9euysvL0/nz562Tg//uwoULmj9/vqZMmaJdu3ZZlx9//FF+fn4FJhz7+/urUaNGhYafa9W3b185ODho4cKFmj9/voYOHSqLxSJJ2rRpk3r16qWBAweqdevWatiwoX777bcSH2Pz5s2qX7++XnzxRbVr105NmjTRwYMHC/RLTU21eQLu+++/l4ODgwIDAwv0bdasmZydnZWamqrGjRvbLP7+/tZ+devW1eDBg/XRRx9p2rRpmjlzZonrB8yOK0AASsTR0VF79uyx/vmfVqxYoVOnTmnYsGE2V3ok6b777tPs2bOLfI9PYc6ePav09HSbNmdnZ9WqVavIfapXr65+/fopNjZWWVlZNu8oatKkiT7++GNt3rxZtWrV0tSpU5WRkaFmzZoVu6bL46SmpiopKUm33367Vq5cab3l93cuLi4aPHiwJk+erKysLD3++OPq27dvgdtf0qVJ1U8//bSefPJJ5efnq0OHDsrMzNSmTZvk7u6uwYMHa+zYsQoKClLz5s2Vm5urFStW6NZbby1R7QC4AgTgGri7uxf5KPrs2bMVHh5eIPxIlwLQtm3bSvQywlmzZsnX19dmiYqKuup+w4YN06lTpxQREWFzK27MmDG67bbbFBERobCwMPn4+FzTm5h79uypJ598UqNGjVKbNm20efNmvfTSSwX6NW7cWP/v//0/3XPPPerSpYtatWqld999t8hxX3nlFb300kuKi4vTrbfeqq5du2rlypUKCAiQJDk5OSk2NlatWrXSnXfeKUdHRyUlJZW4fsDsLIZxledSAQAAbjBcAQIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKbz/wGv+ZTScaIQRQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of precision values from precision1 to precision10\n", + "precision_values = [precision1, precision2, precision3, precision4, precision5, precision6, precision7, precision8, precision9, precision10]\n", + "\n", + "# List of corresponding labels for each precision value\n", + "labels = ['Precision1', 'Precision2', 'Precision3', 'Precision4', 'Precision5', 'Precision6', 'Precision7', 'Precision8', 'Precision9', 'Precision10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, precision_values, color='red')\n", + "plt.xlabel('Precision Variables')\n", + "plt.ylabel('Precision Values')\n", + "plt.title('Bar Graph of Precision')\n", + "plt.show()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "ZDPV0M5rDTi6", + "outputId": "9db63164-3f42-47be-d302-d80d381d9b91" + }, + "execution_count": 121, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHHklEQVR4nO3deZyNdeP/8fcZZmM2g1kwQ5YQsowlqUTDWLMUbsSQtFiSuVu4yVgqlYQ7W7nTVLdusiRL1omS9CXi5r6z3sKNsWaMZTbn8/ujn3M7zdAczswcl9fz8TiPh3Odz3Vd73PNcN6u6zrXZTPGGAEAAFiEV2EHAAAAcCfKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQCPMXr0aNlsNp0+fTrf17Vy5UrVqVNHfn5+stlsOnfuXL6v0x369OmjChUquDTP+vXrZbPZtH79+nzJBHgayg1QAJKSkmSz2ZweYWFhatasmVasWFHgeZYuXar27dsrPDxcPj4+Cg0N1UMPPaSJEyfq/PnzBZ6noJ05c0Zdu3aVv7+/pk2bpk8//VTFixfPdezvf3Z+fn66++67NWjQIJ04caKAkwPIi6KFHQC4k4wdO1Z33XWXjDE6ceKEkpKS1KZNGy1dulTt2rXL9/Xb7Xb169dPSUlJqlWrlgYMGKCoqCilpaVp06ZNGjlypL766islJyfne5bCtGXLFqWlpWncuHGKjY3N0zxXf3bp6en67rvvNGPGDH311VfatWuXihUrls+J/2fWrFmy2+0uzfPQQw/p8uXL8vHxyadUgGeh3AAFqHXr1qpfv77jeb9+/RQeHq5//OMfbik3drtdmZmZ8vPzy/X1t99+W0lJSRo6dKgmTpwom83meG3IkCE6fvy4Pvnkk1tax+3g5MmTkqSQkJA8z3Ptz+6pp55SyZIl9e677+rLL79U9+7dc53n4sWL190jdLO8vb1dnsfLy+u2/nkBruKwFFCIQkJC5O/vr6JFnf+f8c477+j+++9XyZIl5e/vr5iYGC1YsCDH/DabTYMGDdKcOXNUo0YN+fr6auXKlbmu69KlS3rrrbdUo0YNTZgwwanYXBUZGalXXnklz+u4mZxVq1aVn5+fYmJi9O233+aa9dy5c+rTp49CQkIUHBysvn376tKlS7lvxN+ZP3++YmJi5O/vr1KlSumJJ57Q0aNHHa8//PDDio+PlyQ1aNBANptNffr0ydOyr9W8eXNJ0sGDByX9di5MQECADhw4oDZt2igwMFA9e/aU9FshnDx5smrUqCE/Pz+Fh4frmWee0a+//ppjuStWrFDTpk0VGBiooKAgNWjQQJ999pnj9dzOuZk7d65iYmIc89SqVUtTpkxxvH69c27+aFtd+76OHj2qjh07KiAgQKVLl9aLL76oK1euuLzdgIJAuQEKUGpqqk6fPq1Tp07pX//6l5577jlduHBBTzzxhNO4KVOmqG7duho7dqzeeOMNFS1aVF26dNHy5ctzLPPrr7/W0KFD1a1bN02ZMuW6J5t+9913OnfunLp3764iRYq4lPt663Al5zfffKMXXnhBTzzxhMaOHaszZ86oVatW2rVrV46xXbt2VVpamsaPH6+uXbsqKSlJY8aM+cOcSUlJ6tq1q4oUKaLx48erf//+WrRokR544AHHCcMjRozQ008/Lem3Q02ffvqpnnnmGZe2hyQdOHBAklSyZEnHtOzsbMXFxSksLEzvvPOOHnvsMUnSM888o5deeklNmjTRlClT1LdvX82ZM0dxcXHKyspyyt+2bVudPXtWw4cP15tvvqk6depct7BK0po1a9S9e3eVKFFCb731lt588009/PDD2rhx4y1vq6uuXLmiuLg4lSxZUu+8846aNm2qiRMn6oMPPnB1swEFwwDIdx999JGRlOPh6+trkpKScoy/dOmS0/PMzExTs2ZN07x5c6fpkoyXl5f517/+9YcZpkyZYiSZxYsXO03Pzs42p06dcnrY7fY8rcOVnJLMjz/+6Jh26NAh4+fnZzp16uSYlpiYaCSZJ5980mn+Tp06mZIlS97w/WVmZpqwsDBTs2ZNc/nyZcf0ZcuWGUlm1KhRjmlXfx5btmy54TKvHbt27Vpz6tQpc+TIETN37lxTsmRJ4+/vb/773/8aY4yJj483ksywYcOc5t+wYYORZObMmeM0feXKlU7Tz507ZwIDA02jRo2c8htjnH4e8fHxpnz58o7nQ4YMMUFBQSY7O/u672HdunVGklm3bp3L2+rq+xo7dqzTMuvWrWtiYmKuu06gMLHnBihA06ZN05o1a7RmzRr9/e9/V7NmzfTUU09p0aJFTuP8/f0df/7111+VmpqqBx98UNu2bcuxzKZNm+qee+75w3Vf/RZUQECA0/SdO3eqdOnSTo8zZ87kaR2u5GzcuLFiYmIcz6Ojo9WhQwetWrUqx+GNZ5991un5gw8+qDNnztzwm1w//vijTp48qQEDBjidX9K2bVtVq1Yt171JroiNjVXp0qUVFRWlP/3pTwoICNAXX3yhsmXLOo177rnnnJ7Pnz9fwcHBatGihU6fPu14xMTEKCAgQOvWrZP02x6YtLQ0DRs2LMf5MbkdQrwqJCREFy9e1Jo1a/L8Xm5mW+X2M/nPf/6T53UCBYkTioEC1LBhQ6cTirt37666detq0KBBateunePbLMuWLdNrr72m7du3KyMjwzE+tw+5u+66K0/rDgwMlCRduHDBaXrlypUdH4yffPKJPv300zyvw5WcVapUyTHt7rvv1qVLl3Tq1ClFREQ4pkdHRzuNK1GihKTfClRQUFCuWQ4dOiRJqlq1ao7XqlWrpu+++y7X+fJq2rRpuvvuu1W0aFGFh4eratWq8vJy/v9h0aJFVa5cOadp+/btU2pqqsLCwnJd7tWTm68e5qpZs6ZLuQYMGKDPP/9crVu3VtmyZdWyZUt17dpVrVq1uu48rm4rPz8/lS5d2mlaiRIlcj1nCPAElBugEHl5ealZs2aaMmWK9u3bpxo1amjDhg169NFH9dBDD2n69OmKjIyUt7e3PvroI6cTS6+6du/JjVSrVk2StGvXLnXo0MExPSAgwPF16OsVgNzW4WpOV1zvnCBjzC0t91b8vpjmxtfXN0fhsdvtCgsL05w5c3Kd5/elwVVhYWHavn27Vq1apRUrVmjFihX66KOP1Lt3b3388ce3tOyrXD1HCyhslBugkGVnZ0v63x6VhQsXys/PT6tWrZKvr69j3EcffXRL63nwwQcVHBysuXPnavjw4Tk+hF3las59+/blmLZ3714VK1bslj/gJal8+fKSpD179ji+yXTVnj17HK8XtEqVKmnt2rVq0qTJDYtopUqVJP1WPitXruzSOnx8fNS+fXu1b99edrtdAwYM0Pvvv69XX30112V56rYC3IVzboBClJWVpdWrV8vHx0fVq1eX9Nv/km02m9N5KL/88osWL158S+sqVqyYXn75Ze3atUvDhg3LdS+IK3tGXM25adMmp3Nxjhw5oi+//FItW7Z0y56B+vXrKywsTDNnznQ6RLZixQr9/PPPatu27S2v42Z07dpVV65c0bhx43K8lp2d7fhmUsuWLRUYGKjx48crPT3dadyNfi6/Pz/Ky8tL9957ryQ5bYdreeq2AtyFPTdAAVqxYoV2794t6bdzLT777DPt27dPw4YNc5xL0rZtW7377rtq1aqVevTooZMnT2ratGmqXLmy/vnPf97S+ocNG6aff/5ZEyZM0OrVq/XYY4+pXLly+vXXX7Vt2zbNnz9fYWFhebrgm6s5a9asqbi4OD3//PPy9fXV9OnTJSlPX/HOC29vb7311lvq27evmjZtqu7du+vEiROOr64PHTrULetxVdOmTfXMM89o/Pjx2r59u1q2bClvb2/t27dP8+fP15QpU/T4448rKChIkyZN0lNPPaUGDRqoR48eKlGihHbs2KFLly5d9xDTU089pbNnz6p58+YqV66cDh06pPfee0916tRxFObf89RtBbhN4X5ZC7gz5PZVcD8/P1OnTh0zY8YMp6/6GmPMhx9+aKpUqWJ8fX1NtWrVzEcffeT4mvS1JJmBAwe6nOeLL74wbdq0MaVLlzZFixY1ISEh5oEHHjATJkww586dy/M6XM3597//3TG+bt26jq8mX3V13lOnTjlNv7r9Dh48+Ifvbd68eaZu3brG19fXhIaGmp49ezq+rv375bnyVfA/GhsfH2+KFy9+3dc/+OADExMTY/z9/U1gYKCpVauWefnll82xY8ecxi1ZssTcf//9xt/f3wQFBZmGDRuaf/zjH07rufar4AsWLDAtW7Y0YWFhxsfHx0RHR5tnnnnGHD9+3DHm918Fvyov2+p67yu3nzPgKWzGFOIZegDuCDabTQMHDtTUqVMLOwqAOwDn3AAAAEuh3AAAAEuh3AAAAEvh21IA8h2n9gEoSOy5AQAAlkK5AQAAlnLHHZay2+06duyYAgMDb3inXQAA4DmMMUpLS1OZMmX+8PYxd1y5OXbsmKKiogo7BgAAuAlHjhxRuXLlbjjmjis3gYGBkn7bOFcvdw8AADzb+fPnFRUV5fgcv5E7rtxcPRQVFBREuQEA4DaTl1NKOKEYAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYSqGWm2+//Vbt27dXmTJlZLPZtHjx4j+cZ/369apXr558fX1VuXJlJSUl5XtOAABw+yjUcnPx4kXVrl1b06ZNy9P4gwcPqm3btmrWrJm2b9+uF154QU899ZRWrVqVz0kBAMDtolBvnNm6dWu1bt06z+Nnzpypu+66SxMnTpQkVa9eXd99950mTZqkuLi4/IoJAABuI7fVOTebNm1SbGys07S4uDht2rSpkBIBAABPU6h7blyVkpKi8PBwp2nh4eE6f/68Ll++LH9//xzzZGRkKCMjw/H8/Pnz+Z4TAAAUnttqz83NGD9+vIKDgx2PqKiowo7kmWw2z3sAAHATbqtyExERoRMnTjhNO3HihIKCgnLdayNJw4cPV2pqquNx5MiRgogKAAAKyW11WKpx48b66quvnKatWbNGjRs3vu48vr6+8vX1ze9oAADAQxRqublw4YL279/veH7w4EFt375doaGhio6O1vDhw3X06FF98sknkqRnn31WU6dO1csvv6wnn3xSX3/9tT7//HMtX768sN4CgNuBJx7mNKawE8Aq+P3OoVDLzY8//qhmzZo5nickJEiS4uPjlZSUpOPHj+vw4cOO1++66y4tX75cQ4cO1ZQpU1SuXDn97W9/42vgAOBJ+LBFIbMZc2f9xM+fP6/g4GClpqYqKCiosON4Dv4xgpXx+12w2N4F6w7Z3q58ft9WJxQDAAD8EcoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwlKKFHQC4I9lshZ0gJ2P+eMztmhvAHYU9NwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFK4zg0AeCquKwTcFPbcAAAAS6HcAAAAS+GwlLuxGxkAgELFnhsAAGAp7LnB7Y09ZQCA32HPDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTuLQUAgMS96iyEPTcAAMBSKDcAAMBSKDcAAMBSCr3cTJs2TRUqVJCfn58aNWqkzZs333D85MmTVbVqVfn7+ysqKkpDhw5Venp6AaUFAACerlDLzbx585SQkKDExERt27ZNtWvXVlxcnE6ePJnr+M8++0zDhg1TYmKifv75Z3344YeaN2+e/vKXvxRwcgAA4KkKtdy8++676t+/v/r27at77rlHM2fOVLFixTR79uxcx3///fdq0qSJevTooQoVKqhly5bq3r37H+7tAQAAd45CKzeZmZnaunWrYmNj/xfGy0uxsbHatGlTrvPcf//92rp1q6PM/Oc//9FXX32lNm3aXHc9GRkZOn/+vNMDAABYV6Fd5+b06dO6cuWKwsPDnaaHh4dr9+7duc7To0cPnT59Wg888ICMMcrOztazzz57w8NS48eP15gxY9yaHQAAeK5CP6HYFevXr9cbb7yh6dOna9u2bVq0aJGWL1+ucePGXXee4cOHKzU11fE4cuRIASYGAAAFrdD23JQqVUpFihTRiRMnnKafOHFCERERuc7z6quvqlevXnrqqackSbVq1dLFixf19NNPa8SIEfLyytnVfH195evr6/43AAAAPFKh7bnx8fFRTEyMkpOTHdPsdruSk5PVuHHjXOe5dOlSjgJTpEgRSZLhEtUAAECFfG+phIQExcfHq379+mrYsKEmT56sixcvqm/fvpKk3r17q2zZsho/frwkqX379nr33XdVt25dNWrUSPv379err76q9u3bO0oOAAC4sxVquenWrZtOnTqlUaNGKSUlRXXq1NHKlSsdJxkfPnzYaU/NyJEjZbPZNHLkSB09elSlS5dW+/bt9frrrxfWWwAAAB7GZu6w4znnz59XcHCwUlNTFRQU5P4V3K53lSW3+5C7YJG7YJG7YFk5t4tc+fy+rb4tBQAA8EcoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFJcLjcrV67Ud99953g+bdo01alTRz169NCvv/7q1nAAAACucrncvPTSSzp//rwkaefOnfrzn/+sNm3a6ODBg0pISHB7QAAAAFcUdXWGgwcP6p577pEkLVy4UO3atdMbb7yhbdu2qU2bNm4PCAAA4AqX99z4+Pjo0qVLkqS1a9eqZcuWkqTQ0FDHHh0AAIDC4vKemwceeEAJCQlq0qSJNm/erHnz5kmS9u7dq3Llyrk9IAAAgCtc3nMzdepUFS1aVAsWLNCMGTNUtmxZSdKKFSvUqlUrtwcEAABwhc0YYwo7REE6f/68goODlZqaqqCgIPevwGZz/zJvVV5+xOR2H3IXLHIXLHIXLCvndpErn983dZ2bAwcOaOTIkerevbtOnjwp6bc9N//6179uZnEAAABu43K5+eabb1SrVi393//9nxYtWqQLFy5Iknbs2KHExES3BwQAAHCFy+Vm2LBheu2117RmzRr5+Pg4pjdv3lw//PCDW8MBAAC4yuVys3PnTnXq1CnH9LCwMJ0+fdotoQAAAG6Wy+UmJCREx48fzzH9p59+cnxzCgAAoLC4XG7+9Kc/6ZVXXlFKSopsNpvsdrs2btyoF198Ub17986PjAAAAHnmcrl54403VK1aNUVFRenChQu655579NBDD+n+++/XyJEj8yMjAABAnt30dW4OHz6sXbt26cKFC6pbt66qVKni7mz5guvcXAe53YfcBYvcBYvcBcvKuV3kyue3y7dfuCo6OlrR0dE3OzsAAEC+cLncPPnkkzd8ffbs2TcdBgAA4Fa5XG5+/fVXp+dZWVnatWuXzp07p+bNm7stGAAAwM1wudx88cUXOabZ7XY999xzqlSpkltCAQAA3KyburdUjoV4eSkhIUGTJk1yx+IAAABumlvKjfTbzTSzs7PdtTgAAICb4vJhqYSEBKfnxhgdP35cy5cvV3x8vNuCAQAA3AyXy81PP/3k9NzLy0ulS5fWxIkT//CbVAAAAPnN5XKzbt06twaYNm2aJkyYoJSUFNWuXVvvvfeeGjZseN3x586d04gRI7Ro0SKdPXtW5cuX1+TJk9WmTRu35gIAALenm76InzvMmzdPCQkJmjlzpho1aqTJkycrLi5Oe/bsUVhYWI7xmZmZatGihcLCwrRgwQKVLVtWhw4dUkhISMGHBwAAHilPt1+oW7eubHm8vPO2bdvyvPJGjRqpQYMGmjp1qqTfvlIeFRWlwYMHa9iwYTnGz5w5UxMmTNDu3bvl7e2d5/Vci9svXAe53YfcBYvcBYvcBcvKuV3k9tsvdOzY0R25nGRmZmrr1q0aPny4Y5qXl5diY2O1adOmXOdZsmSJGjdurIEDB+rLL79U6dKl1aNHD73yyisqUqSI2zMCAIDbT57KTWJiottXfPr0aV25ckXh4eFO08PDw7V79+5c5/nPf/6jr7/+Wj179tRXX32l/fv3a8CAAcrKyrpuxoyMDGVkZDienz9/3n1vAgAAeBy3XeemINjtdoWFhemDDz5QTEyMunXrphEjRmjmzJnXnWf8+PEKDg52PKKiogowMQAAKGgul5srV67onXfeUcOGDRUREaHQ0FCnR16VKlVKRYoU0YkTJ5ymnzhxQhEREbnOExkZqbvvvtvpEFT16tWVkpKizMzMXOcZPny4UlNTHY8jR47kOSMAALj9uFxuxowZo3fffVfdunVTamqqEhIS1LlzZ3l5eWn06NF5Xo6Pj49iYmKUnJzsmGa325WcnKzGjRvnOk+TJk20f/9+2e12x7S9e/cqMjJSPj4+uc7j6+uroKAgpwcAALAw46KKFSuaZcuWGWOMCQgIMPv37zfGGDNlyhTTvXt3l5Y1d+5c4+vra5KSksy///1v8/TTT5uQkBCTkpJijDGmV69eZtiwYY7xhw8fNoGBgWbQoEFmz549ZtmyZSYsLMy89tpreV5namqqkWRSU1Ndyppnv50j7lkPcpOb3J73IDe57/TcLnLl89vl69ykpKSoVq1akqSAgAClpqZKktq1a6dXX33VpWV169ZNp06d0qhRo5SSkqI6depo5cqVjpOMDx8+LC+v/+1cioqK0qpVqzR06FDde++9Klu2rIYMGaJXXnnF1bcBAAAsyuVyU65cOR0/flzR0dGqVKmSVq9erXr16mnLli3y9fV1OcCgQYM0aNCgXF9bv359jmmNGzfWDz/84PJ6AADAncHlc246derkOE9m8ODBevXVV1WlShX17t2be0sBAIBCl6crFEvS1KlT9cQTT+S41cGmTZu0adMmValSRe3bt8+PjG7FFYqvg9zuQ+6CRe6CRe6CZeXcLnLl8zvP5SY4OFhZWVnq1KmT+vXrp+bNm7slbEGj3FwHud2H3AWL3AWL3AXLyrld5Mrnd54PS6WkpGjmzJk6duyYWrRoobvuukvjxo3jujEAAMCj5Lnc+Pv7q3fv3lq3bp327dunXr166cMPP9Rdd92lVq1aaf78+crKysrPrAAAAH/opm6/ULFiRY0dO1YHDx7UihUrVLJkSfXp00dly5Z1dz4AAACX3NK9pWw2m4oWLSqbzSZjDHtuAABAobupcnPkyBGNHTtWFStWVIsWLXTs2DHNmjVLx48fd3c+AAAAl+T5In6ZmZlatGiRZs+era+//lqRkZGKj4/Xk08+qYoVK+ZnRgAAgDzLc7mJiIjQpUuX1K5dOy1dulRxcXFOt0YAAADwBHkuNyNHjlSvXr1UunTp/MwDAABwS/JcbhISEvIzBwAAgFtwXAkAAFgK5QYAAFgK5QYAAFgK5QYAAFhKnk8ovurKlStKSkpScnKyTp48Kbvd7vT6119/7bZwAAAArnK53AwZMkRJSUlq27atatasKZsn3modAADcsVwuN3PnztXnn3+uNm3a5EceAACAW+LyOTc+Pj6qXLlyfmQBAAC4ZS6Xmz//+c+aMmWKjDH5kQcAAOCWuHxY6rvvvtO6deu0YsUK1ahRQ97e3k6vL1q0yG3hAAAAXOVyuQkJCVGnTp3yIwsAAMAtc7ncfPTRR/mRAwAAwC1cLjdXnTp1Snv27JEkVa1albuFAwAAj+DyCcUXL17Uk08+qcjISD300EN66KGHVKZMGfXr10+XLl3Kj4wAAAB55nK5SUhI0DfffKOlS5fq3LlzOnfunL788kt98803+vOf/5wfGQEAAPLMZlz8TnepUqW0YMECPfzww07T161bp65du+rUqVPuzOd258+fV3BwsFJTUxUUFOT+FXjiFZvz8iMmt/uQu2CRu2CRu2BZObeLXPn8dnnPzaVLlxQeHp5jelhYGIelAABAoXO53DRu3FiJiYlKT093TLt8+bLGjBmjxo0buzUcAACAq1z+ttSUKVMUFxencuXKqXbt2pKkHTt2yM/PT6tWrXJ7QAAAAFe4XG5q1qypffv2ac6cOdq9e7ckqXv37urZs6f8/f3dHhAAAMAVN3Wdm2LFiql///7uzgIAAHDL8lRulixZotatW8vb21tLliy54dhHH33ULcEAAABuRp6+Cu7l5aWUlBSFhYXJy+v65yDbbDZduXLFrQHdja+CXwe53YfcBYvcBYvcBcvKuV3kyud3nvbc2O32XP8MAADgaVz+Knhuzp07547FAAAA3DKXy81bb72lefPmOZ536dJFoaGhKlu2rHbs2OHWcAAAAK5yudzMnDlTUVFRkqQ1a9Zo7dq1WrlypVq3bq2XXnrJ7QEBAABc4fJXwVNSUhzlZtmyZeratatatmypChUqqFGjRm4PCAAA4AqX99yUKFFCR44ckSStXLlSsbGxkiRjjMd/UwoAAFify3tuOnfurB49eqhKlSo6c+aMWrduLUn66aefVLlyZbcHBAAAcIXL5WbSpEmqUKGCjhw5orffflsBAQGSpOPHj2vAgAFuDwgAAOCKPF3Ez0q4iN91kNt9yF2wyF2wyF2wrJzbRW6/iB+3XwAAALcLbr/gbrdrgya3+5C7YJG7YJG7YFk5t4u4/QIAALhjueX2CwAAAJ7C5XLz/PPP669//WuO6VOnTtULL7zgjkwAAAA3zeVys3DhQjVp0iTH9Pvvv18LFixwSygAAICb5XK5OXPmjIKDg3NMDwoK0unTp90SCgAA4Ga5XG4qV66slStX5pi+YsUKVaxY0S2hAAAAbpbLVyhOSEjQoEGDdOrUKTVv3lySlJycrIkTJ2ry5MnuzgcAAOASl8vNk08+qYyMDL3++usaN26cJKlChQqaMWOGevfu7faAAAAArril2y+cOnVK/v7+jvtL3Q64iN91kNt9yF2wyF2wyF2wrJzbRa58ft/UdW6ys7O1du1aLVq0SFe70bFjx3ThwoWbWRwAAIDbuHxY6tChQ2rVqpUOHz6sjIwMtWjRQoGBgXrrrbeUkZGhmTNn5kdOAACAPHF5z82QIUNUv359/frrr/L393dM79Spk5KTk90aDgAAwFUu77nZsGGDvv/+e/n4+DhNr1Chgo4ePeq2YAAAADfD5T03drs91zt///e//1VgYKBbQgEAANwsl8tNy5Ytna5nY7PZdOHCBSUmJqpNmzY3FWLatGmqUKGC/Pz81KhRI23evDlP882dO1c2m00dO3a8qfUCAADrcbncvPPOO9q4caPuuecepaenq0ePHo5DUm+99ZbLAebNm6eEhAQlJiZq27Ztql27tuLi4nTy5MkbzvfLL7/oxRdf1IMPPujyOgEAgHXd1HVusrOzNW/ePO3YsUMXLlxQvXr11LNnT6cTjPOqUaNGatCggaZOnSrpt8NeUVFRGjx4sIYNG5brPFeuXNFDDz2kJ598Uhs2bNC5c+e0ePHiPK2P69xcB7ndh9wFi9wFi9wFy8q5XeTK57dLJxRnZWWpWrVqWrZsmXr27KmePXveUtDMzExt3bpVw4cPd0zz8vJSbGysNm3adN35xo4dq7CwMPXr108bNmy44ToyMjKUkZHheH7+/PlbygwAADybS4elvL29lZ6e7raVnz59WleuXFF4eLjT9PDwcKWkpOQ6z3fffacPP/xQs2bNytM6xo8fr+DgYMcjKirqlnMDAADP5fI5NwMHDtRbb72l7Ozs/MhzQ2lpaerVq5dmzZqlUqVK5Wme4cOHKzU11fE4cuRIPqcEAACFyeXr3GzZskXJyclavXq1atWqpeLFizu9vmjRojwvq1SpUipSpIhOnDjhNP3EiROKiIjIMf7AgQP65Zdf1L59e8c0u90uSSpatKj27NmjSpUqOc3j6+srX1/fPGcCAAC3N5fLTUhIiB577DG3rNzHx0cxMTFKTk52fJ3bbrcrOTlZgwYNyjG+WrVq2rlzp9O0kSNHKi0tTVOmTOGQEwAAcL3cfPTRR24NkJCQoPj4eNWvX18NGzbU5MmTdfHiRfXt21eS1Lt3b5UtW1bjx4+Xn5+fatas6TR/SEiIJOWYDgAA7kx5Ljd2u10TJkzQkiVLlJmZqUceeUSJiYk39fXva3Xr1k2nTp3SqFGjlJKSojp16mjlypWOk4wPHz4sL6+bunk5AAC4A+X5Ojfjxo3T6NGjFRsbK39/f61atUrdu3fX7Nmz8zujW3Gdm+sgt/uQu2CRu2CRu2BZObeLXPn8zvMukU8++UTTp0/XqlWrtHjxYi1dulRz5sxxnNALAADgCfJcbg4fPux076jY2FjZbDYdO3YsX4IBAADcjDyXm+zsbPn5+TlN8/b2VlZWlttDAQAA3Kw8n1BsjFGfPn2crhmTnp6uZ5991ulaN65c5wYAAMDd8lxu4uPjc0x74okn3BoGAADgVuW53Lj7+jYAAAD5gQvIAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS/GIcjNt2jRVqFBBfn5+atSokTZv3nzdsbNmzdKDDz6oEiVKqESJEoqNjb3heAAAcGcp9HIzb948JSQkKDExUdu2bVPt2rUVFxenkydP5jp+/fr16t69u9atW6dNmzYpKipKLVu21NGjRws4OQAA8EQ2Y4wpzACNGjVSgwYNNHXqVEmS3W5XVFSUBg8erGHDhv3h/FeuXFGJEiU0depU9e7d+w/Hnz9/XsHBwUpNTVVQUNAt58/BZnP/Mm9VXn7E5HYfchcschcschcsK+d2kSuf34W65yYzM1Nbt25VbGysY5qXl5diY2O1adOmPC3j0qVLysrKUmhoaK6vZ2Rk6Pz5804PAABgXYVabk6fPq0rV64oPDzcaXp4eLhSUlLytIxXXnlFZcqUcSpI1xo/fryCg4Mdj6ioqFvODQAAPFehn3NzK958803NnTtXX3zxhfz8/HIdM3z4cKWmpjoeR44cKeCUAACgIBUtzJWXKlVKRYoU0YkTJ5ymnzhxQhERETec95133tGbb76ptWvX6t57773uOF9fX/n6+rolLwAA8HyFuufGx8dHMTExSk5Odkyz2+1KTk5W48aNrzvf22+/rXHjxmnlypWqX79+QUQFAAC3iULdcyNJCQkJio+PV/369dWwYUNNnjxZFy9eVN++fSVJvXv3VtmyZTV+/HhJ0ltvvaVRo0bps88+U4UKFRzn5gQEBCggIKDQ3gcAAPAMhV5uunXrplOnTmnUqFFKSUlRnTp1tHLlSsdJxocPH5aX1/92MM2YMUOZmZl6/PHHnZaTmJio0aNHF2R0AADggQr9OjcFjevcXAe53YfcBYvcBYvcBcvKuV1021znBgAAwN0oNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFI8otxMmzZNFSpUkJ+fnxo1aqTNmzffcPz8+fNVrVo1+fn5qVatWvrqq68KKCkAAPB0hV5u5s2bp4SEBCUmJmrbtm2qXbu24uLidPLkyVzHf//99+revbv69eunn376SR07dlTHjh21a9euAk4OAAA8kc0YYwozQKNGjdSgQQNNnTpVkmS32xUVFaXBgwdr2LBhOcZ369ZNFy9e1LJlyxzT7rvvPtWpU0czZ878w/WdP39ewcHBSk1NVVBQkPveyFU2m/uXeavy8iMmt/uQu2CRu2CRu2BZObeLXPn8LtQ9N5mZmdq6datiY2Md07y8vBQbG6tNmzblOs+mTZucxktSXFzcdccDAIA7S9HCXPnp06d15coVhYeHO00PDw/X7t27c50nJSUl1/EpKSm5js/IyFBGRobjeWpqqqTfGuAd43Z9r+QuWOQuWOQuWOQuWPmQ++rndl4OOBVquSkI48eP15gxY3JMj4qKKoQ0hSQ4uLAT3BxyFyxyFyxyFyxyF6x8zJ2WlqbgP1h+oZabUqVKqUiRIjpx4oTT9BMnTigiIiLXeSIiIlwaP3z4cCUkJDie2+12nT17ViVLlpTNE49T6rd2GhUVpSNHjuTPeUH5hNwFi9wFi9wFi9wF63bIbYxRWlqaypQp84djC7Xc+Pj4KCYmRsnJyerYsaOk38pHcnKyBg0alOs8jRs3VnJysl544QXHtDVr1qhx48a5jvf19ZWvr6/TtJCQEHfEz3dBQUEe+0t2I+QuWOQuWOQuWOQuWJ6e+4/22FxV6IelEhISFB8fr/r166thw4aaPHmyLl68qL59+0qSevfurbJly2r8+PGSpCFDhqhp06aaOHGi2rZtq7lz5+rHH3/UBx98UJhvAwAAeIhCLzfdunXTqVOnNGrUKKWkpKhOnTpauXKl46Thw4cPy8vrf1/quv/++/XZZ59p5MiR+stf/qIqVapo8eLFqlmzZmG9BQAA4EEKvdxI0qBBg657GGr9+vU5pnXp0kVdunTJ51SFx9fXV4mJiTkOp3k6chcschcschcsches2zX39RT6RfwAAADcqdBvvwAAAOBOlBsAAGAplBsAAGAplBsPYLPZtHjxYrePzW/kLljkLljkLljkzl+3S063MXASHx9vJBlJxtvb21SqVMmMGTPGZGVl5ds6jx8/btLT029p7K3kXrhwoWnRooUJDQ01ksxPP/3k8bkzMzPNyy+/bGrWrGmKFStmIiMjTa9evczRo0c9OrcxxiQmJpqqVauaYsWKmZCQEPPII4+YH374weNzX+uZZ54xksykSZM8Pve18159xMXFeXxuY4z597//bdq3b2+CgoJMsWLFTP369c2hQ4c8Ovfvt/XVx9tvv+3RudPS0szAgQNN2bJljZ+fn6levbqZMWPGTWe50Vh3fs6kpKSY+Ph4ExkZafz9/U1cXJzZu3evW3K6U14+Zy5fvmwGDBhgQkNDTfHixU3nzp1NSkrKTa2PcvM78fHxplWrVub48ePml19+MdOnTzc2m8288cYbOcZmZGQUQsLc3UruTz75xIwZM8bMmjXLpXLjDjeb+9y5cyY2NtbMmzfP7N6922zatMk0bNjQxMTEeHRuY4yZM2eOWbNmjTlw4IDZtWuX6devnwkKCjInT5706NxXLVq0yNSuXduUKVMmT+XGHW4l97XzXn2cPXvW43Pv37/fhIaGmpdeesls27bN7N+/33z55ZfmxIkTHp372u18/PhxM3v2bGOz2cyBAwc8Onf//v1NpUqVzLp168zBgwfN+++/b4oUKWK+/PJLj8p5Lbvdbu677z7z4IMPms2bN5vdu3ebp59+2kRHR5sLFy64PfetyMvnzLPPPmuioqJMcnKy+fHHH819991n7r///ptaH+Xmd+Lj402HDh2cprVo0cLcd999jtdee+01ExkZaSpUqGCMMebw4cOmS5cuJjg42JQoUcI8+uij5uDBg07L+PDDD80999xjfHx8TEREhBk4cKDjNUnmiy++MMb89os8cOBAExERYXx9fU10dLTTL/y1Y40x5p///Kdp1qyZ8fLyMt7e3qZ///4mLS3Nkbt06dImKirK1KhRwwQEBBibzWYCAwNNZmZmjtyxsbE5fuluh9xXt/fmzZuNJHPo0KHbKndqaqqRZNauXevxuYODg42fn59ZtWqVKV++vKPceHJub29v4+3tfdv9vfT29jY+Pj63Xe7f/3536NDBNG/e3ONze3l5GX9/f6ftXa9ePTNixAi35776WXI1t5+fnylatKgJCwszPXr0cHzO+Pv7m2LFipkJEyaY0qVLGx8fH+Pj4+PYvsnJyUaS2bVrl9P2lWSCg4Pdvn39/PxMaGio0/Y15n+fmxMmTDAREREmNDTUDBgwwGRmZprfO3jwYK7l5ty5c8bb29vMnz/fMe3nn382ksymTZtyLOePcM5NHvj7+yszM1OSlJycrD179mjNmjVatmyZsrKyFBcXp8DAQG3YsEEbN25UQECAWrVq5ZhnxowZGjhwoJ5++mnt3LlTS5YsUeXKlXNd11//+lctWbJEn3/+ufbs2aM5c+aoQoUKuY69ePGi4uLiVKJECbVr104NGjTQ2rVrHRdE9Pf315UrV5SSkqK9e/eqefPmeu+995SVlaW//e1vOXIXL15ckpSVlXVb5b66vU+fPi2bzaYFCxbcNrnj4uI0ffp0BQcHa9u2bR6d+5tvvlHVqlVVo0YNPf/88zL//xJZnv570rp1a/n6+mrVqlW6++679fTTT+vMmTMenTsgIEBFixbVM888o82bN6ty5cpq0KCBFi9e7NG5f//73aJFCy1btkz9+vXz+NydOnVSxYoV5eXlpVatWmn16tXau3evLl26lC+5r1y54si9ZcsWNWzYUOfOndP//d//OT5nWrRoIZvNpr179yooKEhNmzaVl5eXXnjhBQUEBKhfv36SJD8/P6ftGx4ergceeMDt23fLli2aP3++0/a9at26dTpw4IDWrVunjz/+WElJSUpKSsp1mbnZunWrsrKyFBsb65hWrVo1RUdHa9OmTXlejoPLdcjirt1zY7fbzZo1a4yvr6958cUXTXx8vAkPD3faTfjpp5+aqlWrGrvd7piWkZFh/P39zapVq4wxxpQpU8aMGDHiuuvUNS158ODBpnnz5k7Lu97YDz74wJQoUcJcuHDBkXv58uXGZrOZzz//3Pj6+poaNWqY4sWLO+Xu0qWLadSoUY7ce/bsMZLM9OnTb6vcV7d35cqVTY8ePW6L3EuXLjXFihUzkkxoaKjZvHmzx+d+4403TIsWLUx6errx9/c3YWFhZtKkSR6f+x//+If58ssvzdatW42Pj4+JiooyDRo08Ojcx44dM5JMsWLFzNtvv238/PxM3759jc1mM6VKlfLY3L//e+nt7W0CAgLM5cuXPXp72+12k56ebnr37u04F6Zo0aLm448/zpfc8fHxpnbt2qZEiRImLS3N8TnTuXNnI8mULl3aZGRkmPj4eFO+fHnz8ccfO3J26dLFdOvWzfHvXunSpU2XLl1MZGSkGTZsmHnzzTeNJNOyZUu3b9+rli9fbry8vBznw1zNmZ2d7RhzNefvXW/PzZw5c4yPj0+O8Q0aNDAvv/xyrjlvxCNuv+Bpli1bpoCAAGVlZclut6tHjx4aPXq0Bg4cqFq1asnHx8cxdseOHdq/f78CAwOdlpGenq4DBw7o5MmTOnbsmB555JE8rbtPnz5q0aKFqlatqlatWqldu3Zq2bJlrmN//vln1a5d27HHZdmyZVq7dq2MMerevbt69uyp7OxsnTt3TtWrV3fkjoyM1A8//KBjx4455Tb//3/iR44cua1yS9Lly5eVnp6usWPHqnLlyrdNbpvNpqpVq+qxxx7z6O1dvHhxpaeny9/fXyVLlnT8OS0tzaNz/357Z2VlqX///ho1apQkeWzuq//jzszM1JgxY5SRkaEGDRro6NGjWr16tcfmzm1733///Tp//rzH/55kZWUpKytLfn5+ysjIUOfOnfXcc8/p0qVL+ZL7n//8p2w2m0qWLOn4nBk/frwWLVqk6OhoR84aNWpo586djs+ZzMxM2e12LVu2TOnp6RoyZIiWLFmi48eP6+2331aLFi3UunVrx7/n7t6+ktSkSRPZ7Xbt2bPHcR/IGjVqqEiRIo4xkZGR2rlzZ562W37gsFQumjVrpu3bt2vfvn26fPmyPv74Y8cP9tofsCRduHBBMTEx2r59u9Nj79696tGjh/z9/V1ad7169XTw4EGNGzdOly9fVteuXfX444/nOfeGDRskSatXr9bHH38sb29veXl5OeW22WzKzs7OkXv58uWSpNatW982ubds2aLGjRuratWq+vbbbxUWFnZb5N6+fbt27NihvXv3asWKFfL29vbo3EOHDpUxRunp6bp8+bJsNpvOnj2rxMREj86d29/L559/XqGhoR6de8uWLSpSpIgGDRrk9O9J9erVPTr3tdt61qxZkqTXXnvN4/89+eGHH2S32/X+++9r586d2rt3rz744AM99thj+ZY7KipK9evXz/Vz5trt5e3t7fQ506NHD8ef9+7dq2HDhumHH36QJC1YsEArV67UmTNnVLFiRbfkzKvf/xtms9lkt9vzPH9ERIQyMzN17tw5p+knTpxQRESEy3koN7koXry4KleurOjoaBUteuOdW/Xq1dO+ffsUFhamypUrOz2Cg4MVGBioChUqKDk5Oc/rDwoKUrdu3TRr1izNmzdPCxcu1NmzZ3OMq169unbs2KGLFy86ch8/flxeXl6qUaPGDdcRGBiYI/fVY66BgYG3Re7y5cvrL3/5i44fP64NGzborrvuui1y5/Z7IkkhISEem7t///7auXOnduzY4XiUKVNGL7/8ssqWLeuxuXPb3mlpafr1118VFhbmsbnLlSunhg0b6vTp006/J4cOHVLx4sU9Nve123vVqlWKiYnRAw884PF/L0NCQpSdna1y5co5bW9/f3/5+fnlS+4SJUpo3759KlmypONzZuPGjZKkgIAAp7HXfs6EhITI398/18+ZrVu3at++ffrxxx/VoUMHt+T8/fa9mtPLy0tVq1bN83b5IzExMfL29nba1nv27NHhw4fVuHFjl5fHYalb1LNnT02YMEEdOnTQ2LFjVa5cOR06dEiLFi3Syy+/rHLlymn06NF69tlnFRYWptatWystLU0bN27U4MGDcyzv3XffVWRkpOrWrSsvLy/Nnz9fERERCgkJyXXdiYmJio+PV1ZWls6cOaPBgwerV69ejl2F1xMWFiZjjDp06KAXX3xRkhy7EL///ntJ0tChQ/XKK694ZO5HH31U2dnZOnDggMaNG6fhw4drwIABKlOmjEaOHKlBgwZ5ZO527dqpfPny6tSpkzIzM7V48WIZY3T06FGNGjVK48aN88jcffv2zfH7bbPZFBERoddff91jf7/btWunsmXLqkuXLsrMzNS8efO0f/9+Va5cWS+//LIGDx7skbk7dOigtm3bavTo0QoPD9fJkydVpUoVLV26VK+88oomTpzosbnHjh2r4OBgzZ07V40bN9Z///tfj/93sFevXqpdu7aGDBmiPXv2aPv27br33nv1ySefqGvXrvmyvaOionTy5EnFx8dr9OjROnXqlAYPHqxKlSrluDP3tZ8zpUqV0uXLl7V+/XotWrRI99xzj6pVq6YBAwZo5MiRmj59umJjY1WqVCm99957bt2+1+bMy/a91tmzZ3X48GEdO3ZM0m/FRfptj01ERISCg4PVr18/JSQkKDQ0VEFBQRo8eLAaN26s++67L8/ruYo9N7eoWLFi+vbbbxUdHa3OnTurevXq6tevn9LT0xUUFCRJio+P1+TJkzV9+nTVqFFD7dq10759+3JdXmBgoN5++23Vr19fDRo00C+//KKvvvpKXl45f1TFihXTqlWrdPbsWS1btkybN2/WI488oqlTp/5h7iJFijhy/+lPf1K7du00fPhwSdLAgQNVt25dnT171mNzlyxZUhs3blRKSor69++vDz/8UDExMYqMjFSlSpU8Nnd0dLQ+//xzPfbYY+revbuWLFmitLQ0bdiwQX/5y188Ovfvf7+vrsvTf78XLlzo2N5r165VTEyMNmzYoKeeesqjc0+ePFmSNGXKFH322Wf6/PPPtXDhQr3++usenbtz586KiYlRZmamypcvf9v8O3jkyBEdOHBAL774ov7+979rxowZev3115WUlJQvuYsUKeLI3aBBAz3++ON65JFH1KhRo1zf49Wcy5cv15YtWxx/D8+fP69evXppxIgRKl68uLy8vLRu3bp82b7X5szL9r3WkiVLVLduXbVt21aS9Kc//Ul169bVzJkzHWMmTZqkdu3a6bHHHtNDDz2kiIgILVq0yKX1XGUzNzrrCAAA4DbDnhsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAbmGz2bR48WK3j/VEDz/8sF544YU8j1+/fr1sNluO++ZcKykpKdcrxAJwHeUGsJg+ffrIZrPJZrPJx8dHlStX1tixY5WdnZ2v6z1+/Lhat27t9rE3Y+LEiSpRooTS09NzvHbp0iUFBQXpr3/9600vf9GiRRo3btytRASQjyg3gAW1atVKx48f1759+/TnP/9Zo0eP1oQJE3Idm5mZ6ZZ1RkRE5LgnjjvG3oxevXrp4sWLuV66fcGCBcrMzNQTTzzh8nKvbqvQ0FAFBgbeck4A+YNyA1iQr6+vIiIiVL58eT333HOKjY3VkiVLJP22Z6djx456/fXXVaZMGcedfY8cOaKuXbsqJCREoaGh6tChg3755Ren5c6ePVs1atSQr6+vIiMjNWjQIMdr1x5qyszM1KBBgxQZGSk/Pz+VL19e48ePz3Ws9NtNW5s3by5/f3+VLFlSTz/9tC5cuOB4/Wrmd955R5GRkSpZsqQGDhyorKysXN9/WFiY2rdvr9mzZ+d4bfbs2erYsaNCQ0P1yiuv6O6771axYsVUsWJFvfrqq07LHD16tOrUqaO//e1vuuuuu+Tn5ycp52GpTz/9VPXr11dgYKAiIiLUo0cPnTx5Mse6N27cqHvvvVd+fn667777tGvXrlzzX/Xll1+qXr168vPzU8WKFTVmzBjHHjhjjEaPHq3o6Gj5+vqqTJkyev7552+4POBOQbkB7gD+/v5Oe2iSk5O1Z88erVmzRsuWLVNWVpbi4uIUGBioDRs2aOPGjQoICFCrVq0c882YMUMDBw7U008/rZ07d2rJkiWqXLlyruv761//qiVLlujzzz/Xnj17NGfOHFWoUCHXsRcvXlRcXJxKlCihLVu2aP78+Vq7dq1TcZKkdevW6cCBA1q3bp0+/vhjJSUlKSkp6brvuV+/fvr666916NAhx7T//Oc/+vbbb9WvXz9Jv91AMCkpSf/+9781ZcoUzZo1S5MmTXJazv79+7Vw4UItWrRI27dvz3VdWVlZGjdunHbs2KHFixfrl19+UZ8+fXKMe+mllzRx4kRt2bJFpUuXVvv27a9b0DZs2KDevXtryJAh+ve//633339fSUlJev311yVJCxcu1KRJk/T+++9r3759Wrx4sWrVqnXd7QHcUQwAS4mPjzcdOnQwxhhjt9vNmjVrjK+vr3nxxRcdr4eHh5uMjAzHPJ9++qmpWrWqsdvtjmkZGRnG39/frFq1yhhjTJkyZcyIESOuu15J5osvvjDGGDN48GDTvHlzp+Vdb+wHH3xgSpQoYS5cuOB4ffny5cbLy8ukpKQ4MpcvX95kZ2c7xnTp0sV069btunmys7NN2bJlTWJiomPaq6++aqKjo82VK1dynWfChAkmJibG8TwxMdF4e3ubkydPOo1r2rSpGTJkyHXXvWXLFiPJpKWlGWOMWbdunZFk5s6d6xhz5swZ4+/vb+bNm2eMMeajjz4ywcHBjtcfeeQR88Ybbzgt99NPPzWRkZHGGGMmTpxo7r77bpOZmXndHMCdij03gAUtW7ZMAQEB8vPzU+vWrdWtWzeNHj3a8XqtWrXk4+PjeL5jxw7t379fgYGBCggIUEBAgEJDQ5Wenq4DBw7o5MmTOnbsmB555JE8rb9Pnz7avn27qlatqueff16rV6++7tiff/5ZtWvXVvHixR3TmjRpIrvdrj179jim1ahRQ0WKFHE8j4yMzPXQz1VFihRRfHy8kpKSZIyR3W7Xxx9/rL59+8rL67d/+ubNm6cmTZooIiJCAQEBGjlypA4fPuy0nPLly6t06dI3fL9bt25V+/btFR0drcDAQDVt2lSSciyrcePGjj+HhoaqatWq+vnnn3Nd5o4dOzR27FjHzyMgIED9+/fX8ePHdenSJXXp0kWXL19WxYoV1b9/f33xxRf5ftI4cLsoWtgBALhfs2bNNGPGDPn4+KhMmTIqWtT5r/q1RUKSLly4oJiYGM2ZMyfHskqXLu0oA3lVr149HTx4UCtWrNDatWvVtWtXxcbGasGCBa6/mf/P29vb6bnNZpPdbr/hPE8++aTGjx+vr7/+Wna7XUeOHFHfvn0lSZs2bVLPnj01ZswYxcXFKTg4WHPnztXEiROdlvH7bfV7Vw+rxcXFac6cOSpdurQOHz6suLi4WzpZ+8KFCxozZow6d+6c4zU/Pz9FRUVpz549Wrt2rdasWaMBAwZowoQJ+uabb3JsK+BOQ7kBLKh48eLXPR8mN/Xq1dO8efMUFhamoKCgXMdUqFBBycnJatasWZ6WGRQUpG7duqlbt256/PHH1apVK509e1ahoaFO46pXr66kpCRdvHjRUSQ2btwoLy8vx8nON6tSpUpq2rSpZs+eLWOMYmNjVb58eUnS999/r/Lly2vEiBGO8deen5NXu3fv1pkzZ/Tmm28qKipKkvTjjz/mOvaHH35QdHS0JOnXX3/V3r17Vb169VzH1qtXT3v27Lnhz9Hf31/t27dX+/btNXDgQFWrVk07d+5UvXr1XH4fgJVQbgCoZ8+emjBhgjp06KCxY8eqXLlyOnTokBYtWqSXX35Z5cqV0+jRo/Xss88qLCxMrVu3VlpamjZu3KjBgwfnWN67776ryMhI1a1bV15eXpo/f74iIiJyvUhdz549lZiYqPj4eI0ePVqnTp3S4MGD1atXL4WHh9/ye+vXr5/69+8vSU4nIFepUkWHDx/W3Llz1aBBAy1fvlxffPGFy8uPjo6Wj4+P3nvvPT377LPatWvXda+BM3bsWJUsWVLh4eEaMWKESpUqpY4dO+Y6dtSoUWrXrp2io6P1+OOPy8vLSzt27NCuXbv02muvKSkpSVeuXFGjRo1UrFgx/f3vf5e/v7+jvAF3Ms65AaBixYrp22+/VXR0tDp37qzq1aurX79+Sk9Pd+zJiY+P1+TJkzV9+nTVqFFD7dq10759+3JdXmBgoN5++23Vr19fDRo00C+//KKvvvoq18NbxYoV06pVq3T27Fk1aNBAjz/+uB555BFNnTrVLe/tsccek6+vr4oVK+ZUJB599FENHTpUgwYNUp06dfT999/r1VdfdXn5pUuXVlJSkubPn6977rlHb775pt55551cx7755psaMmSIYmJilJKSoqVLlzqd+3StuLg4LVu2TKtXr1aDBg103333adKkSY7yEhISolmzZqlJkya69957tXbtWi1dulQlS5Z0+T0AVmMzxpjCDgEAAOAu7LkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACW8v8A1rYhCY9bpSkAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of recall values from recall1 to recall10\n", + "recall_values = [recall1, recall2, recall3, recall4, recall5, recall6, recall7, recall8, recall9, recall10]\n", + "\n", + "# List of corresponding labels for each recall value\n", + "labels = ['Recall1', 'Recall2', 'Recall3', 'Recall4', 'Recall5', 'Recall6', 'Recall7', 'Recall8', 'Recall9', 'Recall10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, recall_values, color='cyan')\n", + "plt.xlabel('Recall Variables')\n", + "plt.ylabel('Recall Values')\n", + "plt.title('Bar Graph of Recall')\n", + "plt.show()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "39LBleNeDeuw", + "outputId": "3c6c40bc-f1da-44fb-da14-25ec6d6cf278" + }, + "execution_count": 122, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/z0lEQVR4nO3deVxU9eL/8feAMOACroAhV3HfEg03MjQTxSyXFjPNRKX8WdoieUu7JlrdyMqtcmlx75qWmtfSXMKsa1KmiFtqaiJkCuKGIELC+f3h17nOBY1RluH4ej4e83jEZ87ynoM5b89qMQzDEAAAgEm4lHYAAACAokS5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AVBmTZgwQRaLRWlpacW+rrVr16ply5by8PCQxWLR2bNni32dxcVisWjChAm2n+fPny+LxaLExMRSywQUJcoN4ISufNlc/fLx8VHnzp319ddfl3ieL7/8Uj179pSvr6/c3d1VtWpVdezYUZMnT1Z6enqJ5ylpp06d0iOPPCJPT0/NmDFDixYtUoUKFQqc9n9/d+XKlZO/v78GDx6sY8eOlXBy4NZUrrQDALi2V199VYGBgTIMQykpKZo/f7569OihL7/8Uvfff3+xrz8vL0+RkZGaP3++br/9dj399NMKCAjQ+fPnFRcXp3HjxmnNmjWKjY0t9iyl6eeff9b58+f12muvKSwsrFDzXPndXbx4UT/++KPmz5+vzZs3a8+ePfLw8CjmxMCtjXIDOLF7771XrVu3tv0cGRkpX19fffrpp0VSbvLy8pSTk3PNL9u33npL8+fP16hRozR58mRZLBbbe88995yOHz+uhQsX3tQ6yoLU1FRJUuXKlQs9z9W/uyeeeELVq1fXpEmTtGrVKj3yyCPFERPA/+GwFFCGVK5cWZ6enipXzv7fJe+8847uvPNOVatWTZ6engoODtayZcvyzW+xWDRy5Ej961//UrNmzWS1WrV27doC13XhwgVNmjRJzZo109tvv21XbK6oWbOmXnrppUKv40ZyNmrUSB4eHgoODtb3339fYNazZ89q8ODBqly5sry9vTVkyBBduHCh4I34Pz7//HMFBwfL09NT1atX18CBA+0OH919992KiIiQJLVp00YWi0WDBw8u1LKvFhoaKkk6fPiw3fj+/fv18MMPq2rVqvLw8FDr1q21atWqAj/jqFGjVKdOHVmtVtWqVUuDBg2ynW+Uk5Oj8ePHKzg4WN7e3qpQoYJCQ0P17bffOpwVKOvYcwM4sXPnziktLU2GYSg1NVXvvfeeMjIyNHDgQLvppk+frl69eumxxx5TTk6OlixZor59++qrr77SfffdZzftxo0b9dlnn2nkyJGqXr266tSpU+C6N2/erLNnz2r06NFydXV1KPe11uFIzu+++05Lly7Vs88+K6vVqpkzZ6p79+7aunWrmjdvbjftI488osDAQMXExCg+Pl4ff/yxfHx8NGnSpOvmnD9/voYMGaI2bdooJiZGKSkpmj59un744Qft2LFDlStX1j/+8Q81atRIH374oe1QU7169RzaHpJsJ+tWqVLFNrZ371516NBB/v7+GjNmjCpUqKDPPvtMffr00fLly/XAAw9IkjIyMhQaGqp9+/Zp6NChuuOOO5SWlqZVq1bp999/V/Xq1ZWenq6PP/5Y/fv315NPPqnz589rzpw5Cg8P19atW9WyZUuHMwNllgHA6cybN8+QlO9ltVqN+fPn55v+woULdj/n5OQYzZs3N+655x67cUmGi4uLsXfv3r/MMH36dEOSsXLlSrvxS5cuGSdPnrR75eXlFWodjuSUZGzbts02dvToUcPDw8N44IEHbGPR0dGGJGPo0KF28z/wwANGtWrVrvv5cnJyDB8fH6N58+ZGVlaWbfyrr74yJBnjx4+3jV35ffz888/XXebV037zzTfGyZMnjeTkZGPZsmVGjRo1DKvVaiQnJ9um7dKli3H77bcbFy9etI3l5eUZd955p9GgQQPb2Pjx4w1JxooVK/Kt78q2v3TpkpGdnW333pkzZwxfX99820eSER0dnS/zkSNH/vLzAWUBh6UAJzZjxgxt2LBBGzZs0CeffKLOnTvriSee0IoVK+ym8/T0tP33mTNndO7cOYWGhio+Pj7fMjt16qSmTZv+5bqvXAVVsWJFu/Hdu3erRo0adq9Tp04Vah2O5AwJCVFwcLDt57/97W/q3bu31q1bp9zcXLtphw8fbvdzaGioTp06dd0rubZt26bU1FQ9/fTTducD3XfffWrcuLFWr159zXkLIywsTDVq1FBAQIAefvhhVahQQatWrVKtWrUkSadPn9bGjRv1yCOP6Pz580pLS1NaWppOnTql8PBwHTx40HZ4bPny5QoKCrLtybnalcOFrq6ucnd3l3T5PKfTp0/r0qVLat26dYHbFzAzDksBTqxt27Z2JxT3799frVq10siRI3X//ffbvsy++uorvf7660pISFB2drZt+oLOkwkMDCzUuitVqiTp8iGRq9WvX18bNmyQJC1cuFCLFi0q9DocydmgQYN8Yw0bNtSFCxd08uRJ+fn52cb/9re/2U135dDPmTNn5OXlVWCWo0ePSpIaNWqU773GjRtr8+bNBc5XWDNmzFDDhg117tw5zZ07V99//72sVqvt/UOHDskwDL3yyit65ZVXClxGamqq/P39dfjwYT300EN/uc4FCxZo8uTJ2r9/v/7880/beGF/54BZUG6AMsTFxUWdO3fW9OnTdfDgQTVr1kz/+c9/1KtXL3Xs2FEzZ85UzZo15ebmpnnz5mnx4sX5lnH13pPrady4sSRpz5496t27t228YsWKtsuhr1UAClqHozkdca1zggzDuKnl3oyri2mfPn101113acCAATpw4IAqVqyovLw8SdLo0aMVHh5e4DLq169f6PV98sknGjx4sPr06aO///3v8vHxkaurq2JiYvKdxAyYHeUGKGMuXbok6b97VJYvXy4PDw+tW7fObs/AvHnzbmo9oaGh8vb21pIlSzR27Fi5uNzcUWxHcx48eDDf2K+//qry5curRo0aN5VFkmrXri1JOnDggO655x679w4cOGB7vyhcKRmdO3fW+++/rzFjxqhu3bqSJDc3t7+8d069evW0Z8+e606zbNky1a1bVytWrLDbExYdHX3zHwAoYzjnBihD/vzzT61fv17u7u5q0qSJpMtfnBaLxe48lMTERK1cufKm1lW+fHm9+OKL2rNnj8aMGVPgXhBH9ow4mjMuLs7uXJHk5GT9+9//Vrdu3Ry+eqsgrVu3lo+Pj2bPnm13iOzrr7/Wvn378l29dbPuvvtutW3bVtOmTdPFixfl4+Oju+++Wx988IGOHz+eb/qTJ0/a/vuhhx7Szp079cUXX+Sb7srv4Mo2ufp38tNPPykuLq5IPwdQFrDnBnBiX3/9tfbv3y/p8vkXixcv1sGDBzVmzBjbuST33XefpkyZou7du2vAgAFKTU3VjBkzVL9+fe3ateum1j9mzBjt27dPb7/9ttavX6+HHnpItWrV0pkzZxQfH6/PP/9cPj4+hbpBn6M5mzdvrvDwcLtLwSVp4sSJN/WZrnBzc9OkSZM0ZMgQderUSf3797ddCl6nTh2NGjWqSNZztb///e/q27ev5s+fr+HDh2vGjBm66667dPvtt+vJJ59U3bp1lZKSori4OP3+++/auXOnbb5ly5apb9++Gjp0qIKDg3X69GmtWrVKs2fPVlBQkO6//36tWLFCDzzwgO677z4dOXJEs2fPVtOmTfOdNwWYXmleqgWgYAVdCu7h4WG0bNnSmDVrlt2l14ZhGHPmzDEaNGhgWK1Wo3Hjxsa8efNsl0lfTZIxYsQIh/N88cUXRo8ePYwaNWoY5cqVMypXrmzcddddxttvv22cPXu20OtwNOcnn3xim75Vq1bGt99+azfdlXlPnjxpN+7Ipc1Lly41WrVqZVitVqNq1arGY489Zvz+++8FLs+RS8ELmjY3N9eoV6+eUa9ePePSpUuGYRjG4cOHjUGDBhl+fn6Gm5ub4e/vb9x///3GsmXL7OY9deqUMXLkSMPf399wd3c3atWqZURERBhpaWmGYVy+JPyNN94wateubdteX331lREREWHUrl3bblniUnCYnMUwSvGMOwAogMVi0YgRI/T++++XdhQAZRDn3AAAAFOh3AAAAFOh3AAAAFPhaikATodTAQHcDPbcAAAAU6HcAAAAU7nlDkvl5eXpjz/+UKVKlQp8WB8AAHA+hmHo/Pnzuu222/7ycTC3XLn5448/FBAQUNoxAADADUhOTlatWrWuO80tV24qVaok6fLGuXL7egAA4NzS09MVEBBg+x6/nluu3Fw5FOXl5UW5AQCgjCnMKSWcUAwAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEylVMvN999/r549e+q2226TxWLRypUr/3KeTZs26Y477pDValX9+vU1f/78Ys8JAADKjlItN5mZmQoKCtKMGTMKNf2RI0d03333qXPnzkpISNDzzz+vJ554QuvWrSvmpAAAoKwo1Qdn3nvvvbr33nsLPf3s2bMVGBioyZMnS5KaNGmizZs3a+rUqQoPDy+umAAAoAwpU+fcxMXFKSwszG4sPDxccXFx15wnOztb6enpdi8AAGBeZarcnDhxQr6+vnZjvr6+Sk9PV1ZWVoHzxMTEyNvb2/YKCAgoiagAAKCUlKlycyPGjh2rc+fO2V7JycmlHckpWZzwBQDAjSjVc24c5efnp5SUFLuxlJQUeXl5ydPTs8B5rFarrFZrScQDAABOoEztuQkJCVFsbKzd2IYNGxQSElJKiQAAgLMp1XKTkZGhhIQEJSQkSLp8qXdCQoKSkpIkXT6kNGjQINv0w4cP12+//aYXX3xR+/fv18yZM/XZZ59p1KhRpREfAFCA0j6kzWFulGq52bZtm1q1aqVWrVpJkqKiotSqVSuNHz9eknT8+HFb0ZGkwMBArV69Whs2bFBQUJAmT56sjz/+mMvAAQCAjcUwDKO0Q5Sk9PR0eXt769y5c/Ly8irtOE7DGf9lc0v9wUSx4s93yWJ7l6xbZXs78v1dps65AQAA+CuUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCrlSjsAAADOwFLaAQpglHaAMoo9NwAAwFQoNwAAwFQ4LAWUgrK6+7us5gZwa2HPDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXucwMATor7CgE3hj03AADAVCg3AADAVCg3AADAVDjnBmUa5yQAAP4Xe24AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICplHq5mTFjhurUqSMPDw+1a9dOW7duve7006ZNU6NGjeTp6amAgACNGjVKFy9eLKG0AADA2ZVquVm6dKmioqIUHR2t+Ph4BQUFKTw8XKmpqQVOv3jxYo0ZM0bR0dHat2+f5syZo6VLl+rll18u4eTXZnHCFwAAt5JSLTdTpkzRk08+qSFDhqhp06aaPXu2ypcvr7lz5xY4/ZYtW9ShQwcNGDBAderUUbdu3dS/f/+/3NsDAABuHaVWbnJycrR9+3aFhYX9N4yLi8LCwhQXF1fgPHfeeae2b99uKzO//fab1qxZox49epRIZgAA4PzKldaK09LSlJubK19fX7txX19f7d+/v8B5BgwYoLS0NN11110yDEOXLl3S8OHDr3tYKjs7W9nZ2baf09PTi+YDAAAAp1TqJxQ7YtOmTXrjjTc0c+ZMxcfHa8WKFVq9erVee+21a84TExMjb29v2ysgIKAEEwMAgJJmMQzDKI0V5+TkqHz58lq2bJn69OljG4+IiNDZs2f173//O988oaGhat++vd5++23b2CeffKJhw4YpIyNDLi75u1pBe24CAgJ07tw5eXl5Fe2HknOewFuYXzC5iw65Sxa5Sxa5S5aZczsqPT1d3t7ehfr+LrU9N+7u7goODlZsbKxtLC8vT7GxsQoJCSlwngsXLuQrMK6urpKka3U0q9UqLy8vuxcAADCvUjvnRpKioqIUERGh1q1bq23btpo2bZoyMzM1ZMgQSdKgQYPk7++vmJgYSVLPnj01ZcoUtWrVSu3atdOhQ4f0yiuvqGfPnraSAwAAbm2lWm769eunkydPavz48Tpx4oRatmyptWvX2k4yTkpKsttTM27cOFksFo0bN07Hjh1TjRo11LNnT/3zn/8srY8AAACcTKmdc1NaHDlmdyPK6rFPchcdcpcscpcscpcsM+d2VJk45wYAAKA4UG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpOFxusrKydOHCBdvPR48e1bRp07R+/foiDQYAAHAjHC43vXv31sKFCyVJZ8+eVbt27TR58mT17t1bs2bNKvKAAAAAjnC43MTHxys0NFSStGzZMvn6+uro0aNauHCh3n333SIPCAAA4AiHy82FCxdUqVIlSdL69ev14IMPysXFRe3bt9fRo0eLPCAAAIAjHC439evX18qVK5WcnKx169apW7dukqTU1FR5eXkVeUAAAABHOFxuxo8fr9GjR6tOnTpq27atQkJCJF3ei9OqVasiDwgAAOAIi2EYhqMznThxQsePH1dQUJBcXC73o61bt8rLy0uNGzcu8pBFKT09Xd7e3jp37lyx7GmyFPkSb15hfsHkLjrkLlnkLlnkLllmzu0oR76/b+g+N35+fqpUqZI2bNigrKwsSVKbNm2cvtgAAADzc7jcnDp1Sl26dFHDhg3Vo0cPHT9+XJIUGRmpF154ocgDAgAAOMLhcjNq1Ci5ubkpKSlJ5cuXt43369dPa9euLdJwAAAAjirn6Azr16/XunXrVKtWLbvxBg0acCk4AAAodQ7vucnMzLTbY3PF6dOnZbVaiyQUAADAjXK43ISGhtoevyBJFotFeXl5euutt9S5c+ciDQcAAOAoh8vNW2+9pQ8//FD33nuvcnJy9OKLL6p58+b6/vvvNWnSJIcDzJgxQ3Xq1JGHh4fatWunrVu3Xnf6s2fPasSIEapZs6asVqsaNmyoNWvWOLxeAABgTg6Xm+bNm+vXX3/VXXfdpd69eyszM1MPPvigduzYoXr16jm0rKVLlyoqKkrR0dGKj49XUFCQwsPDlZqaWuD0OTk56tq1qxITE7Vs2TIdOHBAH330kfz9/R39GAAAwKRu6CZ+RaVdu3Zq06aN3n//fUlSXl6eAgIC9Mwzz2jMmDH5pp89e7befvtt7d+/X25ubje0Tm7iVzByFx1ylyxylyxylywz53aUI9/fDl8t9f3331/3/Y4dOxZqOTk5Odq+fbvGjh1rG3NxcVFYWJji4uIKnGfVqlUKCQnRiBEj9O9//1s1atTQgAED9NJLL8nV1bXAebKzs5WdnW37OT09vVD5AABA2eRwubn77rvzjVks/+2Nubm5hVpOWlqacnNz5evrazfu6+ur/fv3FzjPb7/9po0bN+qxxx7TmjVrdOjQIT399NP6888/FR0dXeA8MTExmjhxYqEyAQCAss/hc27OnDlj90pNTdXatWvVpk0brV+/vjgy2uTl5cnHx0cffvihgoOD1a9fP/3jH//Q7NmzrznP2LFjde7cOdsrOTm5WDMCAIDS5fCeG29v73xjXbt2lbu7u6KiorR9+/ZCLad69epydXVVSkqK3XhKSor8/PwKnKdmzZpyc3OzOwTVpEkTnThxQjk5OXJ3d883j9Vq5f47AADcQm7owZkF8fX11YEDBwo9vbu7u4KDgxUbG2sby8vLU2xsrEJCQgqcp0OHDjp06JDy8vJsY7/++qtq1qxZYLEBAAC3Hof33OzatcvuZ8MwdPz4cb355ptq2bKlQ8uKiopSRESEWrdurbZt22ratGnKzMzUkCFDJEmDBg2Sv7+/YmJiJElPPfWU3n//fT333HN65plndPDgQb3xxht69tlnHf0YAADApBwuNy1btpTFYtH/XkHevn17zZ0716Fl9evXTydPntT48eN14sQJtWzZUmvXrrWdZJyUlCQXl//uXAoICNC6des0atQotWjRQv7+/nruuef00ksvOfoxAACASTl8n5v/fTimi4uLatSoIQ8PjyINVly4z03ByF10yF2yyF2yyF2yzJzbUcV6n5vatWvfcDAAAIDiVqhy8+677xZ6gZz/AgAASlOhDksFBgYWbmEWi3777bebDlWcOCxVMHIXHXKXLHKXLHKXLDPndlSRH5Y6cuRIkQQDAAAobkV2nxsAAABn4PAJxZL0+++/a9WqVUpKSlJOTo7de1OmTCmSYAAAADfC4XITGxurXr16qW7dutq/f7+aN2+uxMREGYahO+64ozgyAgAAFJrDh6XGjh2r0aNHa/fu3fLw8NDy5cuVnJysTp06qW/fvsWREQAAoNAcLjf79u3ToEGDJEnlypVTVlaWKlasqFdffVWTJk0q8oAAAACOcLjcVKhQwXaeTc2aNXX48GHbe2lpaUWXDAAA4AY4fM5N+/bttXnzZjVp0kQ9evTQCy+8oN27d2vFihVq3759cWQEAAAotEKXm9OnT6tq1aqaMmWKMjIyJEkTJ05URkaGli5dqgYNGnClFAAAKHWFfnCmh4eH+vTpo8jISHXt2rW4cxUb7lBcMHIXHXKXLHKXLHKXLDPndpQj39+FPufmo48+0smTJ9W9e3fVqVNHEyZMUGJi4s1mBQAAKFKFLjePP/64YmNjdejQIUVERGjBggWqX7++unbtqqVLl+a7mR8AAEBpcPhqqcDAQE2cOFFHjhzR2rVr5ePjo6FDh6pmzZo8ERwAAJS6Qp9zcz3Lly/XsGHDdPbsWeXm5hZFrmLDOTcFI3fRIXfJInfJInfJMnNuRxX5U8ELcvToUc2bN08LFixQcnKyOnfurMjIyBtdHAAAQJFwqNxkZ2dr+fLlmjt3rjZt2iR/f38NHjxYQ4YMUZ06dYopIgAAQOEVutw8/fTTWrJkiS5cuKDevXtrzZo16tq1qywWZ9whBgAAblWFLjebN29WdHS0Bg4cqGrVqhVnJgAAgBtW6HKza9eu4swBAABQJBy+FBwAAMCZUW4AAICpUG4AAICpUG4AAICpFOqEYkdOJm7RosUNhwEAALhZhSo3LVu2lMVi0bWe1HDlPYvF4vSPXwAAAOZWqHJz5MiR4s4BAABQJApVbmrXrl3cOQAAAIpEocrNqlWrCr3AXr163XAYAACAm1WoctOnT59CLYxzbgAAQGkrVLnJy8sr7hwAAABFgvvcAAAAUyn0gzOvlpmZqe+++05JSUnKycmxe+/ZZ58tkmAAAAA3wuFys2PHDvXo0UMXLlxQZmamqlatqrS0NJUvX14+Pj6UGwAAUKocPiw1atQo9ezZU2fOnJGnp6d+/PFHHT16VMHBwXrnnXeKIyMAAEChOVxuEhIS9MILL8jFxUWurq7Kzs5WQECA3nrrLb388svFkREAAKDQHC43bm5ucnG5PJuPj4+SkpIkSd7e3kpOTi7adAAAAA5y+JybVq1a6eeff1aDBg3UqVMnjR8/XmlpaVq0aJGaN29eHBkBAAAKzeE9N2+88YZq1qwpSfrnP/+pKlWq6KmnntLJkyf1wQcfFHlAAAAAR1iMaz3q26TS09Pl7e2tc+fOycvLq8iXbynyJd68wvyCyV10yF2yyF2yyF2yzJzbUY58fzu85+bIkSM6ePBgvvGDBw8qMTHR0cUBAAAUKYfLzeDBg7Vly5Z84z/99JMGDx5cFJkAAABumMPlZseOHerQoUO+8fbt2yshIaEoMgEAANwwh8uNxWLR+fPn842fO3eOJ4IDAIBS53C56dixo2JiYuyKTG5urmJiYnTXXXcVaTgAAABHOXyfm0mTJqljx45q1KiRQkNDJUn/+c9/lJ6ero0bNxZ5QAAAAEc4vOemadOm2rVrlx555BGlpqbq/PnzGjRokPbv389N/AAAQKnjPjdFrKzeb4DcRYfcJYvcJYvcJcvMuR1VrPe5kS4fhho4cKDuvPNOHTt2TJK0aNEibd68+UYWBwAAUGQcLjfLly9XeHi4PD09FR8fr+zsbEmXr5Z64403ijwgAACAIxwuN6+//rpmz56tjz76SG5ubrbxDh06KD4+vkjDAQAAOMrhcnPgwAF17Ngx37i3t7fOnj1bFJkAAABumMPlxs/PT4cOHco3vnnzZtWtW7dIQgEAANwoh8vNk08+qeeee04//fSTLBaL/vjjD/3rX//S6NGj9dRTTxVHRgAAgEJz+CZ+Y8aMUV5enrp06aILFy6oY8eOslqtGj16tJ555pniyAgAAFBoN3yfm5ycHB06dEgZGRlq2rSpKlasqKysLHl6ehZ1xiLFfW4KRu6iQ+6SRe6SRe6SZebcjir2+9xIkru7u5o2baq2bdvKzc1NU6ZMUWBg4I0uDgAAoEgUutxkZ2dr7Nixat26te68806tXLlSkjRv3jwFBgZq6tSpGjVq1A2FmDFjhurUqSMPDw+1a9dOW7duLdR8S5YskcViUZ8+fW5ovQAAwHwKXW7Gjx+vWbNmqU6dOkpMTFTfvn01bNgwTZ06VVOmTFFiYqJeeuklhwMsXbpUUVFRio6OVnx8vIKCghQeHq7U1NTrzpeYmKjRo0fbHt4JAAAgOVBuPv/8cy1cuFDLli3T+vXrlZubq0uXLmnnzp169NFH5erqekMBpkyZoieffFJDhgxR06ZNNXv2bJUvX15z58695jy5ubl67LHHNHHiRC4/BwAAdgpdbn7//XcFBwdLkpo3by6r1apRo0bJYrnxU5lycnK0fft2hYWF/TeQi4vCwsIUFxd3zfleffVV+fj4KDIy8obXDQAAzKnQl4Ln5ubK3d39vzOWK6eKFSve1MrT0tKUm5srX19fu3FfX1/t37+/wHk2b96sOXPmKCEhoVDryM7Otj3/Srp8tjUAADCvQpcbwzA0ePBgWa1WSdLFixc1fPhwVahQwW66FStWFG3Cq5w/f16PP/64PvroI1WvXr1Q88TExGjixInFlgkAADiXQpebiIgIu58HDhx40yuvXr26XF1dlZKSYjeekpIiPz+/fNMfPnxYiYmJ6tmzp20sLy9P0uU9SQcOHFC9evXs5hk7dqyioqJsP6enpysgIOCmswMAAOdU6HIzb968Il+5u7u7goODFRsba7ucOy8vT7GxsRo5cmS+6Rs3bqzdu3fbjY0bN07nz5/X9OnTCywtVqvVtrcJAACYn8OPXyhqUVFRioiIUOvWrdW2bVtNmzZNmZmZGjJkiCRp0KBB8vf3V0xMjDw8PNS8eXO7+StXrixJ+cYBAMCtqdTLTb9+/XTy5EmNHz9eJ06cUMuWLbV27VrbScZJSUlycbnhGykDAIBbzA0/W6qs4tlSBSN30SF3ySJ3ySJ3yTJzbkeVyLOlAAAAnBHlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmIpTlJsZM2aoTp068vDwULt27bR169ZrTvvRRx8pNDRUVapUUZUqVRQWFnbd6QEAwK2l1MvN0qVLFRUVpejoaMXHxysoKEjh4eFKTU0tcPpNmzapf//++vbbbxUXF6eAgAB169ZNx44dK+HkAADAGVkMwzBKM0C7du3Upk0bvf/++5KkvLw8BQQE6JlnntGYMWP+cv7c3FxVqVJF77//vgYNGvSX06enp8vb21vnzp2Tl5fXTef/X5YiX+LNK8wvmNxFh9wli9wli9wly8y5HeXI93ep7rnJycnR9u3bFRYWZhtzcXFRWFiY4uLiCrWMCxcu6M8//1TVqlULfD87O1vp6el2LwAAYF6lWm7S0tKUm5srX19fu3FfX1+dOHGiUMt46aWXdNttt9kVpKvFxMTI29vb9goICLjp3AAAwHmV+jk3N+PNN9/UkiVL9MUXX8jDw6PAacaOHatz587ZXsnJySWcEgAAlKRypbny6tWry9XVVSkpKXbjKSkp8vPzu+6877zzjt5880198803atGixTWns1qtslqtRZIXAAA4v1Ldc+Pu7q7g4GDFxsbaxvLy8hQbG6uQkJBrzvfWW2/ptdde09q1a9W6deuSiAoAAMqIUt1zI0lRUVGKiIhQ69at1bZtW02bNk2ZmZkaMmSIJGnQoEHy9/dXTEyMJGnSpEkaP368Fi9erDp16tjOzalYsaIqVqxYap8DAAA4h1IvN/369dPJkyc1fvx4nThxQi1bttTatWttJxknJSXJxeW/O5hmzZqlnJwcPfzww3bLiY6O1oQJE0oyOgAAcEKlfp+bksZ9bgpG7qJD7pJF7pJF7pJl5tyOKjP3uQEAAChqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqTlFuZsyYoTp16sjDw0Pt2rXT1q1brzv9559/rsaNG8vDw0O333671qxZU0JJAQCAsyv1crN06VJFRUUpOjpa8fHxCgoKUnh4uFJTUwucfsuWLerfv78iIyO1Y8cO9enTR3369NGePXtKODkAAHBGFsMwjNIM0K5dO7Vp00bvv/++JCkvL08BAQF65plnNGbMmHzT9+vXT5mZmfrqq69sY+3bt1fLli01e/bsv1xfenq6vL29de7cOXl5eRXdB/k/liJf4s0rzC+Y3EWH3CWL3CWL3CXLzLkd5cj3d6nuucnJydH27dsVFhZmG3NxcVFYWJji4uIKnCcuLs5uekkKDw+/5vQAAODWUq40V56Wlqbc3Fz5+vrajfv6+mr//v0FznPixIkCpz9x4kSB02dnZys7O9v287lz5yRdboC3irL6Scldsshdsshdsshdsooj95Xv7cIccCrVclMSYmJiNHHixHzjAQEBpZCmdHiXdoAbRO6SRe6SRe6SRe6SVZy5z58/L2/v66+hVMtN9erV5erqqpSUFLvxlJQU+fn5FTiPn5+fQ9OPHTtWUVFRtp/z8vJ0+vRpVatWTRaLMx6pvNxOAwIClJycXCznBRUXcpcscpcscpcscpesspDbMAydP39et912219OW6rlxt3dXcHBwYqNjVWfPn0kXS4fsbGxGjlyZIHzhISEKDY2Vs8//7xtbMOGDQoJCSlweqvVKqvVajdWuXLloohf7Ly8vJz2D9n1kLtkkbtkkbtkkbtkOXvuv9pjc0WpH5aKiopSRESEWrdurbZt22ratGnKzMzUkCFDJEmDBg2Sv7+/YmJiJEnPPfecOnXqpMmTJ+u+++7TkiVLtG3bNn344Yel+TEAAICTKPVy069fP508eVLjx4/XiRMn1LJlS61du9Z20nBSUpJcXP57Udedd96pxYsXa9y4cXr55ZfVoEEDrVy5Us2bNy+tjwAAAJxIqZcbSRo5cuQ1D0Nt2rQp31jfvn3Vt2/fYk5VeqxWq6Kjo/MdTnN25C5Z5C5Z5C5Z5C5ZZTX3tZT6TfwAAACKUqk/fgEAAKAoUW4AAICpUG4AAICpUG7KMIvFopUrV0qSEhMTZbFYlJCQUKqZCoPcJa+sZi+Lucti5ivKYvaymPmKspC9LGQsCOXmBg0ePFgWi0UWi0Vubm4KDAzUiy++qIsXL5Z2NJtnn31WwcHBslqtatmypSTnz71z5071799fAQEB8vT0VJMmTTR9+nSnz33q1Cl1795dt912m6xWqwICAjRy5Eilp6c7ffarnTp1SrVq1ZLFYtGAAQOcPveVfAW9nDWzJM2fP18tWrSQh4eHfHx8NGLECKf/czJ//vwyub1//vlndenSRZUrV1aVKlUUHh6unTt3Ov32li4/FPrqbVy5cmWNHj3aqTIW9D3zv3bt2qXQ0FB5eHgoICBAb731VrHncopLwcuq7t27a968efrzzz+1fft2RUREyGKxaNKkSaUdzWbo0KH66aeftGvXLtuYM+fevn27fHx89MknnyggIEBbtmzRsGHDdPvttzt1bhcXF/Xu3Vuvv/66atSooUOHDmnEiBE6ffq03N3dnTr71SIjI9WiRQsdO3ZMknP/Wbli3rx56t69u6TLN/k8e/asFixY4LSZp0yZosmTJ+vtt99Wu3btlJmZqcTERK1YscKpt3e/fv1s2/mK4OBgZWVl6ZdffnHKzBkZGerevbt69eqlmTNn6tKlS4qOjlZ4eLi6devm1Nt7586d+uabb1S/fn0tXLhQv//+u0aNGqX33ntPrq6uTpHxioK+Z65IT09Xt27dFBYWptmzZ2v37t0aOnSoKleurGHDhhVbJvbc3ASr1So/Pz8FBASoT58+CgsL04YNGyRdfoxETEyMAgMD5enpqaCgIC1btsxu/r179+r++++Xl5eXKlWqpNDQUB0+fFjS5X9tdO3aVdWrV5e3t7c6deqk+Ph4h/K9++67GjFihOrWrVtmcg8dOlTTp09Xp06dVLduXQ0cOFBDhgxRUlKSU+euUqWKnnrqKbVu3Vq1a9dWly5d9PTTT+s///mP02/zK2bNmqWzZ89q9OjRtrGykLty5cry8/OTn5+fPD095enp6bSZz5w5o3HjxmnhwoUaMGCA6tWrpxYtWqhXr15Ov72vbNcrL1dXVx0/flyBgYFOm3n//v06ffq0Xn31VTVq1EjNmjVTdHS0UlJSlJGR4dTbe+nSpapSpYqaNWumkJAQ9e3bV7NmzdKlS5e0bt06p8goXft75op//etfysnJ0dy5c9WsWTM9+uijevbZZzVlyhSH1uMoyk0R2bNnj7Zs2SJ3d3dJl59GvnDhQs2ePVt79+7VqFGjNHDgQH333XeSpGPHjqljx46yWq3auHGjtm/frqFDh+rSpUuSLj/1NCIiQps3b9aPP/6oBg0aqEePHjp//vwtl/vcuXP5bizl7Ln/+OMPrVixQp06dcr3njNm/+WXX/Tqq69q4cKFdncEd/bckjRixAhVr15dbdu21cGDB50684YNG5SXl6djx46pSZMmqlWrlh555BElJyeXme19xcKFC1WuXDm7hxg6W+ZGjRqpWrVqmjNnjnJycpSVlaU5c+aoSZMmqlixolNv7+zsbLm6utqNnThxQnl5ecrJyXGKjIURFxenjh072rardPlw24EDB3TmzJkiW08+Bm5IRESE4erqalSoUMGwWq2GJMPFxcVYtmyZcfHiRaN8+fLGli1b7OaJjIw0+vfvbxiGYYwdO9YIDAw0cnJyCrW+3Nxco1KlSsaXX35pG5NkfPHFF4ZhGMaRI0cMScaOHTvyzRsdHW0EBQWVudyGYRg//PCDUa5cOaNr165lIvejjz5qeHp6GpKMnj17GllZWU6/zS9evGi0aNHCWLRokWEYhvHtt98akoz+/fs7dW7DMIxXX33V2Lx5sxEfH2+8+eabhouLi+Hi4uK0mWNiYgw3NzejUaNGxtq1a424uDijS5cuRqNGjYzHH3/c6bf31Zo0aWI0atTI6TPv3r3bqFevnu3PRqNGjYzExESn//9y3bp1tkxXZ5RkPP/8806R8WpXf89crWvXrsawYcPsxvbu3WtIMn755ZdC5boRnHNzEzp37qxZs2YpMzNTU6dOVbly5fTQQw9p7969unDhgrp27Wo3fU5Ojlq1aiVJSkhIUGhoqNzc3ApcdkpKisaNG6dNmzYpNTVVubm5unDhgpKSkm6Z3Hv27FHv3r0VHR2tQ4cOlYncU6dOVXR0tH799VeNHTtWUVFRkpx7m48dO1ZNmjTRwIED873nzLkl6ZVXXrH9d6tWrbR48WIdOHBACQkJTpk5Ly9Pf/75p959911169ZNkvTpp5/aDo04+/a+Ii4uTvv27dP999+vgIAAp82clZWlyMhIdejQQZ9++qlyc3P1zjvv6L777lOrVq2cent369ZNrVu31o4dO5SVlSV3d3fdcccdio+PV/v27XXo0KFSz+jMKDc3oUKFCqpfv74kae7cuQoKCtKcOXNsD/FcvXq1/P397ea5cnjF09PzusuOiIjQqVOnNH36dNWuXVtWq1UhISG23ZFmz/3LL7+oS5cuGjZsmMaNG6fBgweXidxXzkdo3LixqlatqtDQUD3yyCNOnX3jxo3avXu37Vi98X9PZFmyZIkaNmzotLkLUqNGDe3atUsBAQGyWq1Ol7lmzZqSpKZNm9plrl69ujIzM+Xj41MmtvfHH3+sli1bqlq1ajp79qzTZl68eLESExMVFxdnO9y6ePFiValSRdWqVVOVKlWcNrskNWvWTP7+/po5c6aqVKmi3377Tc2bN9fu3btVp04dp8j4V/z8/JSSkmI3duVnPz+/IlvP/6LcFBEXFxe9/PLLioqK0q+//iqr1aqkpKQCz7mQpBYtWtiu6CioVf/www+aOXOmevToIUlKTk5WWlraLZF77969uueeexQREaF//vOfZSb3/8rLy5Mk5ebmOnX25cuXKysry/bzzz//rKFDh+ree++1fQZnzF2Q06dPy83NzfaXu7Nl7tChgyTpwIEDqlWrli1zWlqagoKC7KZ1tuxXZGRk6LPPPlNMTIy2bdvm1JkvXLggFxcXWSwWu4wWi8VW4p01+9WunNe0dOlSVa1aVXPmzNFLL73kVBmvJSQkRP/4xz/sMmzYsEGNGjVSlSpVinRdV+OE4iLUt29fubq66oMPPtDo0aM1atQoLViwQIcPH1Z8fLzee+89LViwQJJs90B59NFHtW3bNh08eFCLFi3SgQMHJEkNGjTQokWLtG/fPv3000967LHH/rKF/69Dhw4pISFBJ06cUFZWlhISEnT69Gm7Lyxny71nzx517txZ3bp1U1RUlE6cOKETJ04UeF8HZ8q9Zs0azZs3T3v27FFiYqJWr16t4cOHq0OHDvlOXHS27PXq1VPz5s1tr8DAQEmSt7d3vhO5nSn3l19+qY8//lh79uzRoUOHNGvWLO3atSvfVRvOlLlhw4bq3bu3nnvuOW3ZskV79uxRRESEGjduXOC/Yp0p+xVLly7VpUuXCjyM6WyZu3btqjNnzmjEiBHat2+f9u7dqyFDhqhcuXK2vWjOml26/Pdhenq69u7dq9dee01vvvmmPvzwQ6fKWND3TEJCgm3vz4ABA+Tu7q7IyEjt3btXS5cu1fTp022H7ItNsZ3NY3IRERFG7969843HxMQYNWrUMDIyMoxp06YZjRo1Mtzc3IwaNWoY4eHhxnfffWebdufOnUa3bt2M8uXLG5UqVTJCQ0ONw4cPG4ZhGPHx8Ubr1q0NDw8Po0GDBsbnn39u1K5d25g6daptfv3FiV6dOnWynYB29atr165Omzs6OrrAzBUqVHDq7b1x40YjJCTE8Pb2ti3jpZdeMs6cOVMm/qxc7eoTip0599dff220bNnSqFixolGhQgUjKCjIaN++vdGrVy+nzWwYhnHu3Dlj6NChRuXKlY2qVasaDzzwgJGUlFRm/pyEhIQYAwYMMAyjbPw9uH79eqNDhw6Gt7e3UaVKFeOee+4x4uLiykR2Pz8/o1y5coaHh4fRrl07Y82aNU6X8VrfM0eOHLHLcNdddxlWq9Xw9/c33nzzzXzbvahZ/i88AACAKXBYCgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBkCps1gsWrlypSQpMTFRFotFCQkJJZ7jRtY9ePBg9enT57rT3H333Xr++edvKhuAwqPcALewwYMHy2KxyGKxyM3NTYGBgXrxxRcLfNyFs7j99ts1fPjwAt9btGiRrFbrDT8fJyAgQMePH7c9OBFA2US5AW5x3bt31/Hjx/Xbb79p6tSp+uCDDxQdHV3asa4pMjJSS5YssXvY5xXz5s1Tr169VL16dYeXm5OTI1dXV/n5+alcOZ4pDJRllBvgFme1WuXn56eAgAD16dNHYWFh2rBhg+39vLw8xcTEKDAwUJ6engoKCtKyZcvslrF3717df//98vLyUqVKlRQaGqrDhw9LuvyU8a5du6p69ery9vZWp06dFB8ff8N5Bw4cqKysLC1fvtxu/MiRI9q0aZMiIyN1+PBh9e7dW76+vqpYsaLatGmjb775xm76OnXq6LXXXtOgQYPk5eWlYcOG5TsslZubq8jISNtnb9SokaZPn15grokTJ6pGjRry8vLS8OHDbQ8OLEh2drZGjx4tf39/VahQQe3atdOmTZts7x89elQ9e/ZUlSpVVKFCBTVr1kxr1qy5sQ0G3IIoNwBs9uzZoy1btsjd3d02FhMTo4ULF2r27Nnau3evRo0apYEDB+q7776TJB07dkwdO3aU1WrVxo0btX37dg0dOlSXLl2SJJ0/f14RERHavHmzfvzxRzVo0EA9evTQ+fPnbyhj9erV1bt3b82dO9dufP78+apVq5a6deumjIwM9ejRQ7GxsdqxY4e6d++unj17KikpyW6ed955R0FBQdqxY4deeeWVfOvKy8tTrVq19Pnnn+uXX37R+PHj9fLLL+uzzz6zmy42Nlb79u3Tpk2b9Omnn2rFihWaOHHiNT/DyJEjFRcXpyVLlmjXrl3q27evunfvroMHD0qSRowYoezsbH3//ffavXu3Jk2aVODT5QFcQ7E/mhOA04qIiDBcXV2NChUqGFar1ZBkuLi4GMuWLTMMwzAuXrxolC9f3tiyZYvdfJGRkUb//v0NwzCMsWPHGoGBgUZOTk6h1pmbm2tUqlTJ+PLLL21jcuCp5YZhGGvXrjUsFovx22+/GYZhGHl5eUbt2rWNcePGXXOeZs2aGe+9957t59q1axt9+vSxm6Yw6x4xYoTx0EMP2X6OiIgwqlatamRmZtrGZs2aZVSsWNHIzc01DOPyk5Ofe+45wzAM4+jRo4arq6tx7Ngxu+V26dLFGDt2rGEYhnH77bcbEyZMuGYGANfHgWXgFte5c2fNmjVLmZmZmjp1qsqVK6eHHnpIknTo0CFduHBBXbt2tZsnJydHrVq1kiQlJCQoNDRUbm5uBS4/JSVF48aN06ZNm5Samqrc3FxduHAh314UR3Tt2lW1atXSvHnz9Oqrryo2NlZJSUkaMmSIJCkjI0MTJkzQ6tWrdfz4cV26dElZWVn51tm6deu/XNeMGTM0d+5cJSUlKSsrSzk5OWrZsqXdNEFBQSpfvrzt55CQEGVkZCg5OVm1a9e2m3b37t3Kzc1Vw4YN7cazs7NVrVo1SdKzzz6rp556SuvXr1dYWJgeeughtWjRotDbB7jVUW6AW1yFChVUv359SdLcuXMVFBSkOXPmKDIyUhkZGZKk1atXy9/f324+q9UqSfL09Lzu8iMiInTq1ClNnz5dtWvXltVqVUhIyHXPSfkrLi4uGjx4sBYsWKAJEyZo3rx56ty5s+rWrStJGj16tDZs2KB33nlH9evXl6enpx5++OF866xQocJ117NkyRKNHj1akydPVkhIiCpVqqS3335bP/300w1nz8jIkKurq7Zv3y5XV1e7964cenriiScUHh6u1atXa/369YqJidHkyZP1zDPP3PB6gVsJ5QaAjYuLi15++WVFRUVpwIABatq0qaxWq5KSktSpU6cC52nRooUWLFigP//8s8C9Nz/88INmzpypHj16SJKSk5Nv+FLtqw0ZMkSvv/66VqxYoS+++EIff/yx3ToHDx6sBx54QNLlQpGYmOjwOn744Qfdeeedevrpp21jV06UvtrOnTuVlZVlK3o//vijKlasqICAgHzTtmrVSrm5uUpNTVVoaOg11x0QEKDhw4dr+PDhGjt2rD766CPKDVBInFAMwE7fvn3l6uqqGTNmqFKlSho9erRGjRqlBQsW6PDhw4qPj9d7772nBQsWSLp8cmx6eroeffRRbdu2TQcPHtSiRYt04MABSVKDBg20aNEi7du3Tz/99JMee+yxv9zbUxiBgYG65557NGzYMFmtVj344IO29xo0aKAVK1YoISFBO3fu1IABA5SXl+fwOho0aKBt27Zp3bp1+vXXX/XKK6/o559/zjddTk6OIiMj9csvv2jNmjWKjo7WyJEj5eKS/6/Yhg0b6rHHHtOgQYO0YsUKHTlyRFu3blVMTIxWr14tSXr++ee1bt06HTlyRPHx8fr222/VpEkTh/MDtyrKDQA75cqV08iRI/XWW28pMzNTr732ml555RXFxMSoSZMm6t69u1avXq3AwEBJUrVq1bRx40ZlZGSoU6dOCg4O1kcffWTbizNnzhydOXNGd9xxhx5//HE9++yz8vHxKZKskZGROnPmjAYMGCAPDw/b+JQpU1SlShXdeeed6tmzp8LDw3XHHXc4vPz/9//+nx588EH169dP7dq106lTp+z24lzRpUsXNWjQQB07dlS/fv3Uq1cvTZgw4ZrLnTdvngYNGqQXXnhBjRo1Up8+ffTzzz/rb3/7m6TLl6CPGDHCtr0bNmyomTNnOpwfuFVZDMMwSjsEAABAUWHPDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMJX/D3PqyuT3IxkKAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "13cZXvb0DsvK" + }, + "execution_count": null, + "outputs": [] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.16" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Python File/Stock_Price_Prediction_BASE_20502.ipynb b/Python File/Stock_Price_Prediction_BASE_20502.ipynb new file mode 100644 index 0000000..c82b075 --- /dev/null +++ b/Python File/Stock_Price_Prediction_BASE_20502.ipynb @@ -0,0 +1,2708 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "qCDSjVhXLr_Z" + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.metrics import mean_squared_error, mean_absolute_error, mean_absolute_percentage_error, accuracy_score, precision_score, confusion_matrix, recall_score, f1_score" + ] + }, + { + "cell_type": "code", + "source": [ + "from google.colab import drive\n", + "drive.mount('/content/drive')\n", + "df = pd.read_csv('drive/My Drive/Colab Notebooks/Stock Price Prediction RNN/SBIN.csv')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "SOQbXSiB-g5G", + "outputId": "6ae02a27-02b0-4bd9-a1ae-a7029056f32e" + }, + "execution_count": 22, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "Sc4id6VxL8BS", + "outputId": "568d039c-faf4-4636-bfc1-70b9ef83367b" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Date Open High Low Close Adj Close \\\n", + "0 01-01-1996 18.691147 18.978922 18.540184 18.823240 12.409931 \n", + "1 02-01-1996 18.894005 18.964767 17.738192 18.224106 12.014931 \n", + "2 03-01-1996 18.327892 18.568489 17.643839 17.738192 11.694577 \n", + "3 04-01-1996 17.502312 17.832542 17.223972 17.676863 11.654142 \n", + "4 05-01-1996 17.738192 17.785366 17.459852 17.577793 11.588827 \n", + "\n", + " Volume \n", + "0 43733533.0 \n", + "1 56167280.0 \n", + "2 68296318.0 \n", + "3 86073880.0 \n", + "4 76613039.0 " + ], + "text/html": [ + "\n", + "
    \n", + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    DateOpenHighLowCloseAdj CloseVolume
    001-01-199618.69114718.97892218.54018418.82324012.40993143733533.0
    102-01-199618.89400518.96476717.73819218.22410612.01493156167280.0
    203-01-199618.32789218.56848917.64383917.73819211.69457768296318.0
    304-01-199617.50231217.83254217.22397217.67686311.65414286073880.0
    405-01-199617.73819217.78536617.45985217.57779311.58882776613039.0
    \n", + "
    \n", + "
    \n", + "\n", + "
    \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
    \n", + "\n", + "\n", + "
    \n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
    \n", + "\n", + "
    \n", + "
    \n" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ], + "source": [ + "# Load the dataset\n", + "#df = pd.read_csv('/content/SBIN.NS.csv')\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "id": "7LaYGXsfN-8y" + }, + "outputs": [], + "source": [ + "# Drop the 'Date' and 'Adj Close' columns\n", + "df.drop(['Date', 'Adj Close'], axis=1, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "pqbTBdnBOKJc", + "outputId": "21da8a7f-4f3e-4f4f-e32b-3b90c230ce55" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Open High Low Close Volume\n", + "0 18.691147 18.978922 18.540184 18.823240 43733533.0\n", + "1 18.894005 18.964767 17.738192 18.224106 56167280.0\n", + "2 18.327892 18.568489 17.643839 17.738192 68296318.0\n", + "3 17.502312 17.832542 17.223972 17.676863 86073880.0\n", + "4 17.738192 17.785366 17.459852 17.577793 76613039.0" + ], + "text/html": [ + "\n", + "
    \n", + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    OpenHighLowCloseVolume
    018.69114718.97892218.54018418.82324043733533.0
    118.89400518.96476717.73819218.22410656167280.0
    218.32789218.56848917.64383917.73819268296318.0
    317.50231217.83254217.22397217.67686386073880.0
    417.73819217.78536617.45985217.57779376613039.0
    \n", + "
    \n", + "
    \n", + "\n", + "
    \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
    \n", + "\n", + "\n", + "
    \n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
    \n", + "\n", + "
    \n", + "
    \n" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "id": "dydEPoNeM6eN" + }, + "outputs": [], + "source": [ + "# Handle missing values\n", + "from sklearn.impute import SimpleImputer\n", + "imputer = SimpleImputer(strategy='mean')\n", + "df = pd.DataFrame(imputer.fit_transform(df), columns=df.columns)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "id": "OQ3cGqgTMBwt" + }, + "outputs": [], + "source": [ + "# Select features and target variable\n", + "X = df[['Open', 'High', 'Low', 'Volume']]\n", + "y = df['Close']" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "id": "9Oz-bwJOMEWD" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "ugapDyXODtn3" + }, + "outputs": [], + "source": [ + "# Scale the features using Min-Max scaling\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "997ZEgibCZIO", + "outputId": "2a45a8e3-71b0-47f3-bd66-91bcdc028c76" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(5659, 4)" + ] + }, + "metadata": {}, + "execution_count": 29 + } + ], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "bmtt76RuCeyG", + "outputId": "658075af-e75d-45b1-f6cf-756e349a32d1" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(1415, 4)" + ] + }, + "metadata": {}, + "execution_count": 30 + } + ], + "source": [ + "X_test.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "CeJkUJ92Ciqd", + "outputId": "93dec527-ea2e-42e6-c70b-a9491c71d917" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(5659,)" + ] + }, + "metadata": {}, + "execution_count": 31 + } + ], + "source": [ + "y_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7HGC7VuTCjWc", + "outputId": "64dc2569-b4b4-4c2e-d416-1cf77c41ac75" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(1415,)" + ] + }, + "metadata": {}, + "execution_count": 32 + } + ], + "source": [ + "y_test.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "c6Ek8jRlO2_I" + }, + "source": [ + "## 1. LINEAR REGRESSION" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "id": "RdZ1SpzdMHAJ" + }, + "outputs": [], + "source": [ + "# Create a linear regression model\n", + "model1 = LinearRegression()" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mPM035IzMY04", + "outputId": "07379dba-cfe8-4814-b972-d08b12f224ac" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "5286 257.350006\n", + "3408 129.464996\n", + "5477 279.350006\n", + "6906 588.500000\n", + "530 21.644367\n", + "Name: Close, dtype: float64" + ] + }, + "metadata": {}, + "execution_count": 34 + } + ], + "source": [ + "y_train.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "qBhQ9HbYMI3d", + "outputId": "52e0655f-1d23-47b7-decc-7a7ca35c0470" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "LinearRegression()" + ], + "text/html": [ + "
    LinearRegression()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ] + }, + "metadata": {}, + "execution_count": 35 + } + ], + "source": [ + "# Train the model\n", + "model1.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "id": "X269co2kMS4z" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred1 = model1.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "id": "QK8GvDYPOd0Y" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse1 = np.sqrt(mean_squared_error(y_test, pred1))\n", + "mae1 = mean_absolute_error(y_test, pred1)\n", + "mape1 = mean_absolute_percentage_error(y_test, pred1)\n", + "accuracy1 = accuracy_score(y_test > pred1, y_test > pred1.round())\n", + "precision1 = precision_score(y_test > pred1, y_test > pred1.round())\n", + "confusion1 = confusion_matrix(y_test > pred1, y_test > pred1.round())\n", + "recall1 = recall_score(y_test > pred1, y_test > pred1.round())\n", + "f11 = f1_score(y_test > pred1, y_test > pred1.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dEi49xtEOtne", + "outputId": "0000b074-3187-41de-fbac-4ae75cbda6bd" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RMSE: 1.6881364643681482\n", + "MAE: 0.9433353485344729\n", + "MAPE: 0.006085435990853812\n", + "Accuracy: 0.8296819787985866\n", + "Precision: 0.8623595505617978\n", + "Confusion Matrix:\n", + " [[560 98]\n", + " [143 614]]\n", + "Recall: 0.8110964332892999\n", + "F1 Score: 0.8359428182437032\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse1)\n", + "print(\"MAE:\", mae1)\n", + "print(\"MAPE:\", mape1)\n", + "print(\"Accuracy:\", accuracy1)\n", + "print(\"Precision:\", precision1)\n", + "print(\"Confusion Matrix:\\n\", confusion1)\n", + "print(\"Recall:\", recall1)\n", + "print(\"F1 Score:\", f11)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GxtMzlg-gR2P" + }, + "source": [ + "## 2. SVR" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "id": "o7K9r7EXWRjQ" + }, + "outputs": [], + "source": [ + "from sklearn.svm import SVR" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "id": "0xQewd7QWTtq" + }, + "outputs": [], + "source": [ + "# Create an SVR model\n", + "model2 = SVR()" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "id": "DuNes3s6U2IV" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "22SaCsQmfhgP", + "outputId": "2121e992-399d-4b78-e42c-fc20b9d52189" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "SVR()" + ], + "text/html": [ + "
    SVR()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ] + }, + "metadata": {}, + "execution_count": 42 + } + ], + "source": [ + "# Train the model\n", + "model2.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "id": "OQ1nL4oYfkAC" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred2 = model2.predict(X_test)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "id": "nRYTwydsfpjb" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse2 = np.sqrt(mean_squared_error(y_test, pred2))\n", + "mae2 = mean_absolute_error(y_test, pred2)\n", + "mape2 = mean_absolute_percentage_error(y_test, pred2)\n", + "accuracy2 = accuracy_score(y_test > pred2, y_test > pred2.round())\n", + "precision2 = precision_score(y_test > pred2, y_test > pred2.round())\n", + "confusion2 = confusion_matrix(y_test > pred2, y_test > pred2.round())\n", + "recall2 = recall_score(y_test > pred2, y_test > pred2.round())\n", + "f12 = f1_score(y_test > pred2, y_test > pred2.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "656J5oz5fzq6", + "outputId": "ce67d2d8-0bc8-4e6d-d6b5-6b78e7e1c59b" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RMSE: 147.71103599153602\n", + "MAE: 110.99419106508152\n", + "MAPE: 1.9715076513294716\n", + "Accuracy: 0.9992932862190813\n", + "Precision: 1.0\n", + "Confusion Matrix:\n", + " [[727 0]\n", + " [ 1 687]]\n", + "Recall: 0.998546511627907\n", + "F1 Score: 0.9992727272727273\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse2)\n", + "print(\"MAE:\", mae2)\n", + "print(\"MAPE:\", mape2)\n", + "print(\"Accuracy:\", accuracy2)\n", + "print(\"Precision:\", precision2)\n", + "print(\"Confusion Matrix:\\n\", confusion2)\n", + "print(\"Recall:\", recall2)\n", + "print(\"F1 Score:\", f12)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hcIfVMWdgcKt" + }, + "source": [ + "## 3. Random Forest" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "id": "f7raXT_hf2ij" + }, + "outputs": [], + "source": [ + "from sklearn.ensemble import RandomForestRegressor\n", + "# Create a Random Forest model\n", + "model3 = RandomForestRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "id": "TadNM7MEU7fh" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "fF002Yepgk55", + "outputId": "d148c589-4879-4e2d-8b0f-5b5ca01a2a53" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "RandomForestRegressor()" + ], + "text/html": [ + "
    RandomForestRegressor()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ] + }, + "metadata": {}, + "execution_count": 48 + } + ], + "source": [ + "# Train the model\n", + "model3.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "id": "8nRU_pzEgnCt" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred3 = model3.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "id": "4aKEXGVUgsry" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse3 = np.sqrt(mean_squared_error(y_test, pred3))\n", + "mae3 = mean_absolute_error(y_test, pred3)\n", + "mape3 = mean_absolute_percentage_error(y_test, pred3)\n", + "accuracy3 = accuracy_score(y_test > pred3, y_test > pred3.round())\n", + "precision3 = precision_score(y_test > pred3, y_test > pred3.round())\n", + "confusion3 = confusion_matrix(y_test > pred3, y_test > pred3.round())\n", + "recall3 = recall_score(y_test > pred3, y_test > pred3.round())\n", + "f13 = f1_score(y_test > pred3, y_test > pred3.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8pPzsCY1g305", + "outputId": "72c4ea56-2610-41c6-f286-4c8289d3f0ac" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RMSE: 2.189635498596314\n", + "MAE: 1.250413817712252\n", + "MAPE: 0.007984509559881612\n", + "Accuracy: 0.8551236749116607\n", + "Precision: 0.8558823529411764\n", + "Confusion Matrix:\n", + " [[628 98]\n", + " [107 582]]\n", + "Recall: 0.8447024673439768\n", + "F1 Score: 0.8502556610664718\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse3)\n", + "print(\"MAE:\", mae3)\n", + "print(\"MAPE:\", mape3)\n", + "print(\"Accuracy:\", accuracy3)\n", + "print(\"Precision:\", precision3)\n", + "print(\"Confusion Matrix:\\n\", confusion3)\n", + "print(\"Recall:\", recall3)\n", + "print(\"F1 Score:\", f13)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mZsLwLivhLGH" + }, + "source": [ + "## 4. Gradient Boosting Models (GBM)" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "id": "TI8idoxOg6jF" + }, + "outputs": [], + "source": [ + "import xgboost as xgb\n", + "# Create an XGBoost model\n", + "model4 = xgb.XGBRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": { + "id": "7r9xJDtOVBEA" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "id": "2gpbDxshhexj", + "outputId": "b2b1a681-7ede-4d66-be5d-1a8606d0f470" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + " colsample_bylevel=None, colsample_bynode=None,\n", + " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", + " enable_categorical=False, eval_metric=None, feature_types=None,\n", + " gamma=None, grow_policy=None, importance_type=None,\n", + " interaction_constraints=None, learning_rate=None, max_bin=None,\n", + " max_cat_threshold=None, max_cat_to_onehot=None,\n", + " max_delta_step=None, max_depth=None, max_leaves=None,\n", + " min_child_weight=None, missing=nan, monotone_constraints=None,\n", + " multi_strategy=None, n_estimators=None, n_jobs=None,\n", + " num_parallel_tree=None, random_state=None, ...)" + ], + "text/html": [ + "
    XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
    +              "             colsample_bylevel=None, colsample_bynode=None,\n",
    +              "             colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
    +              "             enable_categorical=False, eval_metric=None, feature_types=None,\n",
    +              "             gamma=None, grow_policy=None, importance_type=None,\n",
    +              "             interaction_constraints=None, learning_rate=None, max_bin=None,\n",
    +              "             max_cat_threshold=None, max_cat_to_onehot=None,\n",
    +              "             max_delta_step=None, max_depth=None, max_leaves=None,\n",
    +              "             min_child_weight=None, missing=nan, monotone_constraints=None,\n",
    +              "             multi_strategy=None, n_estimators=None, n_jobs=None,\n",
    +              "             num_parallel_tree=None, random_state=None, ...)
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ] + }, + "metadata": {}, + "execution_count": 54 + } + ], + "source": [ + "# Train the model\n", + "model4.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": { + "id": "Jj9DXdUPhh9V" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred4 = model4.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": { + "id": "TdH60Sllhn5O" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse4 = np.sqrt(mean_squared_error(y_test, pred4))\n", + "mae4 = mean_absolute_error(y_test, pred4)\n", + "mape4 = mean_absolute_percentage_error(y_test, pred4)\n", + "accuracy4 = accuracy_score(y_test > pred4, y_test > pred4.round())\n", + "precision4 = precision_score(y_test > pred4, y_test > pred4.round())\n", + "confusion4 = confusion_matrix(y_test > pred4, y_test > pred4.round())\n", + "recall4 = recall_score(y_test > pred4, y_test > pred4.round())\n", + "f14 = f1_score(y_test > pred4, y_test > pred4.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "qpnLeFyZhwB3", + "outputId": "4dcac062-ec60-4b2c-ab4b-dcda1b0f2341" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RMSE: 2.733930065274145\n", + "MAE: 1.502457380471909\n", + "MAPE: 0.010026410639661481\n", + "Accuracy: 0.8840989399293286\n", + "Precision: 0.8948106591865358\n", + "Confusion Matrix:\n", + " [[613 75]\n", + " [ 89 638]]\n", + "Recall: 0.8775790921595599\n", + "F1 Score: 0.8861111111111112\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse4)\n", + "print(\"MAE:\", mae4)\n", + "print(\"MAPE:\", mape4)\n", + "print(\"Accuracy:\", accuracy4)\n", + "print(\"Precision:\", precision4)\n", + "print(\"Confusion Matrix:\\n\", confusion4)\n", + "print(\"Recall:\", recall4)\n", + "print(\"F1 Score:\", f14)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "d8nSGoyuh9dx" + }, + "source": [ + "## 5. Extreme Gradient Boosting (XGBoost)" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": { + "id": "DyhhdlZAhx94" + }, + "outputs": [], + "source": [ + "import xgboost as xgb\n", + "# Create an XGBoost model\n", + "model5 = xgb.XGBRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "id": "Z_AD0lVOVHwB" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "id": "RAIwxIp5iH9Z", + "outputId": "d2b4aa97-7e07-4015-c308-76a292b0929f" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + " colsample_bylevel=None, colsample_bynode=None,\n", + " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", + " enable_categorical=False, eval_metric=None, feature_types=None,\n", + " gamma=None, grow_policy=None, importance_type=None,\n", + " interaction_constraints=None, learning_rate=None, max_bin=None,\n", + " max_cat_threshold=None, max_cat_to_onehot=None,\n", + " max_delta_step=None, max_depth=None, max_leaves=None,\n", + " min_child_weight=None, missing=nan, monotone_constraints=None,\n", + " multi_strategy=None, n_estimators=None, n_jobs=None,\n", + " num_parallel_tree=None, random_state=None, ...)" + ], + "text/html": [ + "
    XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
    +              "             colsample_bylevel=None, colsample_bynode=None,\n",
    +              "             colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
    +              "             enable_categorical=False, eval_metric=None, feature_types=None,\n",
    +              "             gamma=None, grow_policy=None, importance_type=None,\n",
    +              "             interaction_constraints=None, learning_rate=None, max_bin=None,\n",
    +              "             max_cat_threshold=None, max_cat_to_onehot=None,\n",
    +              "             max_delta_step=None, max_depth=None, max_leaves=None,\n",
    +              "             min_child_weight=None, missing=nan, monotone_constraints=None,\n",
    +              "             multi_strategy=None, n_estimators=None, n_jobs=None,\n",
    +              "             num_parallel_tree=None, random_state=None, ...)
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ] + }, + "metadata": {}, + "execution_count": 60 + } + ], + "source": [ + "# Train the model\n", + "model5.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": { + "id": "XmJds5fYiKT3" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred5 = model5.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": { + "id": "lZ1A0-L8iNCM" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse5 = np.sqrt(mean_squared_error(y_test, pred5))\n", + "mae5 = mean_absolute_error(y_test, pred5)\n", + "mape5 = mean_absolute_percentage_error(y_test, pred5)\n", + "accuracy5 = accuracy_score(y_test > pred5, y_test > pred5.round())\n", + "precision5 = precision_score(y_test > pred5, y_test > pred5.round())\n", + "confusion5 = confusion_matrix(y_test > pred5, y_test > pred5.round())\n", + "recall5 = recall_score(y_test > pred5, y_test > pred5.round())\n", + "f15 = f1_score(y_test > pred5, y_test > pred5.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7IkE-RAmiWNo", + "outputId": "cf4c1d84-412b-4a18-f70c-65ce637772ea" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RMSE: 2.733930065274145\n", + "MAE: 1.502457380471909\n", + "MAPE: 0.010026410639661481\n", + "Accuracy: 0.8840989399293286\n", + "Precision: 0.8948106591865358\n", + "Confusion Matrix:\n", + " [[613 75]\n", + " [ 89 638]]\n", + "Recall: 0.8775790921595599\n", + "F1 Score: 0.8861111111111112\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse5)\n", + "print(\"MAE:\", mae5)\n", + "print(\"MAPE:\", mape5)\n", + "print(\"Accuracy:\", accuracy5)\n", + "print(\"Precision:\", precision5)\n", + "print(\"Confusion Matrix:\\n\", confusion5)\n", + "print(\"Recall:\", recall5)\n", + "print(\"F1 Score:\", f15)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "A_J776rtiovq" + }, + "source": [ + "## 6. AdaBoostRegressor" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": { + "id": "HNq66cXRiYPJ" + }, + "outputs": [], + "source": [ + "from sklearn.ensemble import AdaBoostRegressor\n", + "# Create an AdaBoost model\n", + "model6 = AdaBoostRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": { + "id": "qPHH6rG0VW4V" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "P0oB5wjQivBr", + "outputId": "8726c583-6782-4504-b0ac-d2ef4ccbca4c" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "AdaBoostRegressor()" + ], + "text/html": [ + "
    AdaBoostRegressor()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ] + }, + "metadata": {}, + "execution_count": 66 + } + ], + "source": [ + "# Train the model\n", + "model6.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": { + "id": "Bf1m5ukOi2VM" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred6 = model6.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "id": "oFWSqC4ai6gd" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse6 = np.sqrt(mean_squared_error(y_test, pred6))\n", + "mae6 = mean_absolute_error(y_test, pred6)\n", + "mape6 = mean_absolute_percentage_error(y_test, pred6)\n", + "accuracy6 = accuracy_score(y_test > pred6, y_test > pred6.round())\n", + "precision6 = precision_score(y_test > pred6, y_test > pred6.round())\n", + "confusion6 = confusion_matrix(y_test > pred6, y_test > pred6.round())\n", + "recall6 = recall_score(y_test > pred6, y_test > pred6.round())\n", + "f16 = f1_score(y_test > pred6, y_test > pred6.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "BsajWJGBjC80", + "outputId": "1af1194f-9a33-40af-8578-c99832509c1b" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RMSE: 9.283285018137352\n", + "MAE: 7.574989783595977\n", + "MAPE: 0.16829256716397573\n", + "Accuracy: 0.9901060070671378\n", + "Precision: 0.9900990099009901\n", + "Confusion Matrix:\n", + " [[901 5]\n", + " [ 9 500]]\n", + "Recall: 0.9823182711198428\n", + "F1 Score: 0.9861932938856016\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse6)\n", + "print(\"MAE:\", mae6)\n", + "print(\"MAPE:\", mape6)\n", + "print(\"Accuracy:\", accuracy6)\n", + "print(\"Precision:\", precision6)\n", + "print(\"Confusion Matrix:\\n\", confusion6)\n", + "print(\"Recall:\", recall6)\n", + "print(\"F1 Score:\", f16)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Q9DzOt3CkWFX" + }, + "source": [ + "## 7. Decision Tree" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": { + "id": "23DZ2biSjF9a" + }, + "outputs": [], + "source": [ + "from sklearn.tree import DecisionTreeRegressor\n", + "# Create a Decision Tree model\n", + "model7 = DecisionTreeRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": { + "id": "Ajo2RAVAVb7H" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "6mQEQf-ykc9F", + "outputId": "f1a62020-4125-4aea-e7e4-11acffdc5169" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "DecisionTreeRegressor()" + ], + "text/html": [ + "
    DecisionTreeRegressor()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ] + }, + "metadata": {}, + "execution_count": 72 + } + ], + "source": [ + "# Train the model\n", + "model7.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": { + "id": "BFJ9q_tvkgRC" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred7 = model7.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "id": "9IxfYZbYkjv1" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse7 = np.sqrt(mean_squared_error(y_test, pred7))\n", + "mae7 = mean_absolute_error(y_test, pred7)\n", + "mape7 = mean_absolute_percentage_error(y_test, pred7)\n", + "accuracy7 = accuracy_score(y_test > pred7, y_test > pred7.round())\n", + "precision7 = precision_score(y_test > pred7, y_test > pred7.round())\n", + "confusion7 = confusion_matrix(y_test > pred7, y_test > pred7.round())\n", + "recall7 = recall_score(y_test > pred7, y_test > pred7.round())\n", + "f17 = f1_score(y_test > pred7, y_test > pred7.round())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AnZXMYb8kooV", + "outputId": "273fa9ed-d6f2-4c4d-fb0e-a643f5ef5732" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RMSE: 3.193539964582351\n", + "MAE: 1.6240937361593886\n", + "MAPE: 0.010136361140005275\n", + "Accuracy: 0.8579505300353357\n", + "Precision: 0.8700410396716827\n", + "Confusion Matrix:\n", + " [[578 95]\n", + " [106 636]]\n", + "Recall: 0.8571428571428571\n", + "F1 Score: 0.8635437881873728\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse7)\n", + "print(\"MAE:\", mae7)\n", + "print(\"MAPE:\", mape7)\n", + "print(\"Accuracy:\", accuracy7)\n", + "print(\"Precision:\", precision7)\n", + "print(\"Confusion Matrix:\\n\", confusion7)\n", + "print(\"Recall:\", recall7)\n", + "print(\"F1 Score:\", f17)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LH-B-Xd6k5UD" + }, + "source": [ + "## 8. KNeighborsRegressor(KNN)" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": { + "id": "JVDSed7yktFY" + }, + "outputs": [], + "source": [ + "from sklearn.neighbors import KNeighborsRegressor\n", + "# Create a KNN model\n", + "model8 = KNeighborsRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": { + "id": "XJHb5SxrVgVp" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "9fn64o-ZlBka", + "outputId": "dc5e6af2-de37-46ee-cde7-e0a3baa31a1f" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "KNeighborsRegressor()" + ], + "text/html": [ + "
    KNeighborsRegressor()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ] + }, + "metadata": {}, + "execution_count": 78 + } + ], + "source": [ + "# Train the model\n", + "model8.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": { + "id": "hbfbbjcSlDn7" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred8 = model8.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": { + "id": "hnWyNv3blHdL" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse8 = np.sqrt(mean_squared_error(y_test, pred8))\n", + "mae8 = mean_absolute_error(y_test, pred8)\n", + "mape8 = mean_absolute_percentage_error(y_test, pred8)\n", + "accuracy8 = accuracy_score(y_test > pred8, y_test > pred8.round())\n", + "precision8 = precision_score(y_test > pred8, y_test > pred8.round())\n", + "confusion8 = confusion_matrix(y_test > pred8, y_test > pred8.round())\n", + "recall8 = recall_score(y_test > pred8, y_test > pred8.round())\n", + "f18 = f1_score(y_test > pred8, y_test > pred8.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IPoDRkcMlMAr", + "outputId": "9892f42f-e65f-46c0-eeed-77ce32f6a7eb" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RMSE: 148.73183825029315\n", + "MAE: 109.35229571264969\n", + "MAPE: 1.75024316976612\n", + "Accuracy: 0.9908127208480565\n", + "Precision: 0.9887820512820513\n", + "Confusion Matrix:\n", + " [[785 7]\n", + " [ 6 617]]\n", + "Recall: 0.9903691813804173\n", + "F1 Score: 0.9895749799518845\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse8)\n", + "print(\"MAE:\", mae8)\n", + "print(\"MAPE:\", mape8)\n", + "print(\"Accuracy:\", accuracy8)\n", + "print(\"Precision:\", precision8)\n", + "print(\"Confusion Matrix:\\n\", confusion8)\n", + "print(\"Recall:\", recall8)\n", + "print(\"F1 Score:\", f18)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "X5XtlzMXljps" + }, + "source": [ + "## 9. Artificial Neural Networks (ANN)" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": { + "id": "bJk1-9VhlRL6" + }, + "outputs": [], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": { + "id": "sZVPMR9Wlo7-" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": { + "id": "vd1fDjQiltP4" + }, + "outputs": [], + "source": [ + "# Create an ANN model\n", + "model9 = Sequential()\n", + "model9.add(Dense(32, activation='relu', input_shape=(X_train.shape[1],)))\n", + "model9.add(Dense(16, activation='relu'))\n", + "model9.add(Dense(1, activation='linear'))" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": { + "id": "ZIf94WLMlv04" + }, + "outputs": [], + "source": [ + "# Compile the model\n", + "model9.compile(loss='mean_squared_error', optimizer='adam')" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "FX5DTKqslxWf", + "outputId": "9253b26c-1a79-4390-975e-d14c28a5e2a8" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 86 + } + ], + "source": [ + "# Train the model\n", + "model9.fit(X_train_scaled, y_train, epochs=100, batch_size=32, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OVW2qpNsmGVq", + "outputId": "34343782-f560-4dee-c307-ff0d0c52ab5a" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "45/45 [==============================] - 0s 1ms/step\n" + ] + } + ], + "source": [ + "# Make predictions on the test set\n", + "pred9 = model9.predict(X_test_scaled).flatten()" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": { + "id": "CqRmjMj2maJY" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse9 = np.sqrt(mean_squared_error(y_test, pred9))\n", + "mae9 = mean_absolute_error(y_test, pred9)\n", + "mape9 = mean_absolute_percentage_error(y_test, pred9)\n", + "accuracy9 = accuracy_score(y_test > pred9, y_test > pred9.round())\n", + "precision9 = precision_score(y_test > pred9, y_test > pred9.round())\n", + "confusion9 = confusion_matrix(y_test > pred9, y_test > pred9.round())\n", + "recall9 = recall_score(y_test > pred9, y_test > pred9.round())\n", + "f19 = f1_score(y_test > pred9, y_test > pred9.round())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5zuwkC1emmh3", + "outputId": "5d6a0e05-3112-4d27-f5fb-ed665867b22d" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RMSE: 2.7570259701356035\n", + "MAE: 1.7412277270507284\n", + "MAPE: 0.012205298865408084\n", + "Accuracy: 0.8904593639575972\n", + "Precision: 0.8242753623188406\n", + "Confusion Matrix:\n", + " [[805 97]\n", + " [ 58 455]]\n", + "Recall: 0.8869395711500975\n", + "F1 Score: 0.8544600938967135\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse9)\n", + "print(\"MAE:\", mae9)\n", + "print(\"MAPE:\", mape9)\n", + "print(\"Accuracy:\", accuracy9)\n", + "print(\"Precision:\", precision9)\n", + "print(\"Confusion Matrix:\\n\", confusion9)\n", + "print(\"Recall:\", recall9)\n", + "print(\"F1 Score:\", f19)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vjSMQNcOnFPJ" + }, + "source": [ + "## 10. LSTM(Long Short term Memory)" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": { + "id": "nCoyUanhnDKw" + }, + "outputs": [], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import LSTM, Dense" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": { + "id": "ThcXESVEVv0U" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": { + "id": "uACvajfImrbB" + }, + "outputs": [], + "source": [ + "# Reshape the input data for LSTM\n", + "n_features = X_train_scaled.shape[1]\n", + "n_steps = 10\n", + "n_samples_train = X_train_scaled.shape[0] - n_steps + 1\n", + "n_samples_test = X_test_scaled.shape[0] - n_steps + 1\n", + "\n", + "# Reshape the input data\n", + "X_train_reshaped = np.array([X_train_scaled[i:i+n_steps, :] for i in range(n_samples_train)])\n", + "X_test_reshaped = np.array([X_test_scaled[i:i+n_steps, :] for i in range(n_samples_test)])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": { + "id": "r066pVYpnXH5" + }, + "outputs": [], + "source": [ + "# Create an LSTM model\n", + "model = Sequential()\n", + "model.add(LSTM(64, activation='relu', input_shape=(n_steps, n_features)))\n", + "model.add(Dense(1))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": { + "id": "YpSfHu6gov35" + }, + "outputs": [], + "source": [ + "# Compile the model\n", + "model.compile(loss='mean_squared_error', optimizer='adam')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0vHjcluaoxzP", + "outputId": "1eaafd31-9f91-4655-f437-e9199c0f7933" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 95 + } + ], + "source": [ + "# Train the model\n", + "model.fit(X_train_reshaped, y_train[n_steps-1:], epochs=100, batch_size=32, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "gEE06_TjozYv", + "outputId": "30306af7-2ec8-4733-db96-d3416a7fc6d4" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "44/44 [==============================] - 0s 4ms/step\n" + ] + } + ], + "source": [ + "# Make predictions on the test set\n", + "y_pred = model.predict(X_test_reshaped).flatten()" + ] + }, + { + "cell_type": "code", + "execution_count": 113, + "metadata": { + "id": "7k6C8DrxpB_Q" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse10 = np.sqrt(mean_squared_error(y_test[n_steps-1:], y_pred))\n", + "mae10 = mean_absolute_error(y_test[n_steps-1:], y_pred)\n", + "mape10 = mean_absolute_percentage_error(y_test[n_steps-1:], y_pred)\n", + "accuracy10 = accuracy_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "precision10 = precision_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "recall10 = recall_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "f110 = f1_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "confusion10 = confusion_matrix(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 114, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "i_6-UUDhpi0c", + "outputId": "3dcc5761-03b6-4b52-dfe6-08dece835c8d" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RMSE: 10.083053125286519\n", + "MAE: 7.973378150691296\n", + "MAPE: 0.12730792351246625\n", + "Accuracy: 0.9886201991465149\n", + "Precision: 0.9904912836767037\n", + "Recall: 0.984251968503937\n", + "F1 Score: 0.9873617693522907\n", + "Confusion Matrix:\n", + " [[765 6]\n", + " [ 10 625]]\n" + ] + } + ], + "source": [ + "# Print evaluation metrics\n", + "print(\"RMSE:\", rmse10)\n", + "print(\"MAE:\", mae10)\n", + "print(\"MAPE:\", mape10)\n", + "print(\"Accuracy:\", accuracy10)\n", + "print(\"Precision:\", precision10)\n", + "print(\"Recall:\", recall10)\n", + "print(\"F1 Score:\", f110)\n", + "print(\"Confusion Matrix:\\n\", confusion10)" + ] + }, + { + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of accuracies from accuracy1 to accuracy10\n", + "accuracies = [accuracy1*100, accuracy2*100, accuracy3*100, accuracy4*100, accuracy5*100, accuracy6*100, accuracy7*100, accuracy8*100, accuracy9*100, accuracy10*100]\n", + "\n", + "# List of corresponding labels for each accuracy\n", + "labels = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, accuracies, color='blue')\n", + "plt.xlabel('Accuracy Variables')\n", + "plt.ylabel('Accuracy Values')\n", + "plt.title('Bar Graph of Accuracies')\n", + "plt.show()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "qpWPtph9CGip", + "outputId": "c099cb8d-96af-4223-f499-743040aecdf1" + }, + "execution_count": 117, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDeUlEQVR4nO3deVxU9eL/8feAsogsbmypiEtiau4XNa1MzNLMLVOv5UbZTSiXvKWVmm2klbe00lspmqGYuWRWKuF263rdcSlzyy0T0JRVRYPz+8Of820ClYGBgdPr+XjM49F8zplz3gw+mjefs4zFMAxDAAAAJuXi7AAAAAAlibIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDAABMjbIDwGleeuklWSwWnT17tsT3tXr1ajVv3lweHh6yWCxKS0sr8X2WZ/PmzZPFYtGxY8ecHQUoNsoOUAKufVD88eHv769OnTrpm2++KfU8X375pXr06KGAgAC5ubmpatWquvPOO/X2228rIyOj1POUtt9++00PP/ywPD099f7772vBggXy8vK66es++OADWSwWhYeHl0JKACWlgrMDAGb28ssvKzQ0VIZhKCUlRfPmzVO3bt305Zdf6oEHHijx/efl5SkyMlLz5s1T06ZNNXLkSNWqVUuZmZnavHmzXnzxRX399ddKTEws8SzOtG3bNmVmZuqVV15RREREoV8XFxenOnXqaOvWrTp8+LDq169fginLlkcffVQDBgyQu7u7s6MAxUbZAUrQ/fffr9atW1ufR0ZGKiAgQIsWLXJI2cnLy9Ply5fl4eFR4PJp06Zp3rx5GjNmjN5++21ZLBbrslGjRun06dP65JNPirWP8iA1NVWS5OfnV+jXHD16VP/973+1bNkyPfHEE4qLi9PkyZNLKGHxZGdnF2qmyh6urq5ydXV16DYBZ+EwFlCK/Pz85OnpqQoVbP/OeOutt9S+fXtVq1ZNnp6eatWqlT7//PN8r7dYLIqOjlZcXJwaN24sd3d3rV69usB9XbhwQVOnTlXjxo315ptv2hSda4KCgvTcc88Veh9FydmwYUN5eHioVatW2rRpU4FZ09LSNHToUPn5+cnX11fDhg3ThQsXCn4T/2TJkiVq1aqVPD09Vb16dT3yyCM6deqUdfndd9+tIUOGSJLatGkji8WioUOH3nS7cXFxqlKlirp3766HHnpIcXFx180+ZswY1alTR+7u7qpZs6YGDx5scx7SpUuX9NJLL+nWW2+Vh4eHgoKC1KdPHx05ckSStGHDBlksFm3YsMFm28eOHZPFYtG8efOsY0OHDlXlypV15MgRdevWTd7e3ho0aJAk6T//+Y/69eun2rVry93dXbVq1dKYMWN08eLFfLl/+uknPfzww6pRo4Y8PT3VsGFDvfDCC9bl1ztn55tvvlHHjh3l5eUlb29vde/eXT/88IPNOsnJyRo2bJhq1qwpd3d3BQUFqWfPnpz/A6dhZgcoQenp6Tp79qwMw1BqaqpmzpyprKwsPfLIIzbrvfvuu3rwwQc1aNAgXb58WfHx8erXr59WrVql7t2726y7bt06ffbZZ4qOjlb16tVVp06dAvf93XffKS0tTePGjbP7L/Tr7cOenBs3btTixYv19NNPy93dXR988IHuu+8+bd26VU2aNLFZ9+GHH1ZoaKhiYmK0c+dOffzxx/L399fUqVNvmHPevHkaNmyY2rRpo5iYGKWkpOjdd9/V999/r127dsnPz08vvPCCGjZsqA8//NB6WLFevXo3fQ/i4uLUp08fubm5aeDAgZo1a5a2bdumNm3aWNfJyspSx44dtX//fg0fPlwtW7bU2bNntXLlSv3yyy+qXr26cnNz9cADDygxMVEDBgzQqFGjlJmZqYSEBO3bt69QWf7s999/V9euXdWhQwe99dZbqlSpkqSrxe/ChQt68sknVa1aNW3dulUzZ87UL7/8oiVLllhfv2fPHnXs2FEVK1bUiBEjVKdOHR05ckRffvmlXnvttevud8GCBRoyZIi6du2qqVOn6sKFC5o1a5Y6dOigXbt2Wf+d9O3bVz/88IOeeuop1alTR6mpqUpISNCJEyeu++8VKFEGAIeLjY01JOV7uLu7G/Pmzcu3/oULF2yeX7582WjSpIlxzz332IxLMlxcXIwffvjhphneffddQ5KxYsUKm/Hff//dOHPmjM0jLy+vUPuwJ6ckY/v27dax48ePGx4eHkbv3r2tY5MnTzYkGcOHD7d5fe/evY1q1ard8Oe7fPmy4e/vbzRp0sS4ePGidXzVqlWGJGPSpEnWsWu/j23btt1wm9ds377dkGQkJCQYhmEYeXl5Rs2aNY1Ro0bZrDdp0iRDkrFs2bJ827j2ns6dO9eQZEyfPv2666xfv96QZKxfv95m+dGjRw1JRmxsrHVsyJAhhiRj/Pjx+bb359+PYRhGTEyMYbFYjOPHj1vH7rzzTsPb29tm7I95DOP/3rOjR48ahmEYmZmZhp+fn/H444/bvCY5Odnw9fW1jp8/f96QZLz55pv5sgDOwmEsoAS9//77SkhIUEJCgj799FN16tRJjz32mJYtW2aznqenp/W/z58/r/T0dHXs2FE7d+7Mt8277rpLt9122033fe0qq8qVK9uM7927VzVq1LB5/Pbbb4Xahz0527Vrp1atWlmf165dWz179tSaNWuUm5trs+4//vEPm+cdO3bUb7/9dsMrxbZv367U1FSNHDnS5nyi7t27KywsTF999dV1X3szcXFxCggIUKdOnSRdPSzXv39/xcfH22RfunSpmjVrpt69e+fbxrXDhkuXLlX16tX11FNPXXedonjyySfzjf3x95Odna2zZ8+qffv2MgxDu3btkiSdOXNGmzZt0vDhw1W7du1C50lISFBaWpoGDhyos2fPWh+urq4KDw/X+vXrrRnc3Ny0YcMGnT9/vsg/H+BIHMYCStDf/vY3mxOUBw4cqBYtWig6OloPPPCA3NzcJEmrVq3Sq6++qqSkJOXk5FjXL+jDJzQ0tFD79vb2lnT1UMsf1a9fXwkJCZKkTz75RAsWLCj0PuzJ2aBBg3xjt956qy5cuKAzZ84oMDDQOv7nD90qVapIulqofHx8Csxy/PhxSVLDhg3zLQsLC9N3331X4OtuJjc3V/Hx8erUqZOOHj1qHQ8PD9fbb7+txMRE3XvvvZKkI0eOqG/fvjfc3pEjR9SwYcN852kVR4UKFVSzZs184ydOnNCkSZO0cuXKfEUjPT1dkvTzzz9LUr5DiTdz6NAhSdI999xT4PJrvyd3d3dNnTpVzzzzjAICAtS2bVs98MADGjx4sM3vHChNlB2gFLm4uKhTp0569913dejQITVu3Fj/+c9/9OCDD+rOO+/UBx98oKCgIFWsWFGxsbFauHBhvm388a/3GwkLC5Mk7du3Tz179rSOV65c2Xr59fUKQUH7sDenPa53TpFhGMXablGsW7dOp0+fVnx8vOLj4/Mtj4uLs5YdR7nejMqfZ8CucXd3l4uLS751u3TponPnzum5555TWFiYvLy8dOrUKQ0dOlR5eXnFynjt9QsWLCiwtPyxzI0ePVo9evTQihUrtGbNGk2cOFExMTFat26dWrRoUawcQFFQdoBS9vvvv0v6vxmXpUuXysPDQ2vWrLG5p0lsbGyx9tOxY0f5+voqPj5eEyZMyPfhaC97c16bCfijgwcPqlKlSqpRo0axskhSSEiIJOnAgQP5ZhsOHDhgXW6vuLg4+fv76/3338+3bNmyZVq+fLlmz54tT09P1atXT/v27bvh9urVq6ctW7boypUrqlixYoHrXJvJ+vNdna/NXhXG3r17dfDgQc2fP1+DBw+2jl+bxbumbt26knTT3H927URqf3//Qt2rqF69enrmmWf0zDPP6NChQ2revLnefvttffrpp3btF3AEztkBStGVK1e0du1aubm5qVGjRpKuzmpYLBabv+KPHTumFStWFGtflSpV0rPPPqt9+/Zp/PjxBc6S2DNzYm/OzZs325zLc/LkSX3xxRe69957HXL/ltatW8vf31+zZ8+2OaT2zTffaP/+/fmuDiuMixcvatmyZXrggQf00EMP5XtER0crMzNTK1eulHT1qqPdu3dr+fLl+bZ17b3t27evzp49q/fee++664SEhMjV1TXfpfkffPBBobNfe0//+Ds1DEPvvvuuzXo1atTQnXfeqblz5+rEiRMF5ilI165d5ePjo9dff11XrlzJt/zMmTOSrt7y4NKlSzbL6tWrJ29vb5vfE1CamNkBStA333yjn376SdLVG9stXLhQhw4d0vjx463nOHTv3l3Tp0/Xfffdp7///e9KTU3V+++/r/r162vPnj3F2v/48eO1f/9+vfnmm1q7dq369u2rmjVr6vz589q5c6eWLFkif3//Qt0w0N6cTZo0UdeuXW0uPZekKVOmFOtnuqZixYqaOnWqhg0bprvuuksDBw60Xnpep04djRkzxu5trly5UpmZmXrwwQcLXN62bVvVqFFDcXFx6t+/v/75z3/q888/V79+/TR8+HC1atVK586d08qVKzV79mw1a9ZMgwcP1ieffKKxY8dq69at6tixo7Kzs/Xtt99q5MiR6tmzp3x9fdWvXz/NnDlTFotF9erV06pVq6w3QyyMsLAw1atXT+PGjdOpU6fk4+OjpUuXFniS8IwZM9ShQwe1bNlSI0aMUGhoqI4dO6avvvpKSUlJBW7fx8dHs2bN0qOPPqqWLVtqwIABqlGjhk6cOKGvvvpKd9xxh9577z0dPHhQnTt31sMPP6zbbrtNFSpU0PLly5WSkqIBAwYU+ucBHMpp14EBJlbQpeceHh5G8+bNjVmzZtlc4msYhjFnzhyjQYMGhru7uxEWFmbExsZaL8v+I0lGVFSU3XmWL19udOvWzahRo4ZRoUIFw8/Pz+jQoYPx5ptvGmlpaYXeh705P/30U+v6LVq0yHdp9bXXnjlzxmb8z5c938jixYuNFi1aGO7u7kbVqlWNQYMGGb/88kuB27vZpec9evQwPDw8jOzs7OuuM3ToUKNixYrG2bNnDcMwjN9++82Ijo42brnlFsPNzc2oWbOmMWTIEOtyw7h6SfgLL7xghIaGGhUrVjQCAwONhx56yDhy5Ih1nTNnzhh9+/Y1KlWqZFSpUsV44oknjH379hV46bmXl1eB2X788UcjIiLCqFy5slG9enXj8ccfN3bv3p1vG4ZhGPv27TN69+5t+Pn5GR4eHkbDhg2NiRMn5nvP/vw7WL9+vdG1a1fD19fX8PDwMOrVq2cMHTrUepuBs2fPGlFRUUZYWJjh5eVl+Pr6GuHh4cZnn312w/ceKEkWw3DCGYAATM1isSgqKqrAQzcAUNo4ZwcAAJgaZQcAAJgaZQcAAJgaV2MBcDhOBQRQljCzAwAATI2yAwAATI3DWLr6nS+//vqrvL29i/UtxAAAoPQYhqHMzEwFBwff8CtxKDuSfv31V9WqVcvZMQAAQBGcPHlSNWvWvO5yyo4kb29vSVffrGu38AcAAGVbRkaGatWqZf0cvx7KjmQ9dOXj40PZAQCgnLnZKSicoAwAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEzNqWVn06ZN6tGjh4KDg2WxWLRixQqb5YZhaNKkSQoKCpKnp6ciIiJ06NAhm3XOnTunQYMGycfHR35+foqMjFRWVlYp/hQAAKAsc2rZyc7OVrNmzfT+++8XuHzatGmaMWOGZs+erS1btsjLy0tdu3bVpUuXrOsMGjRIP/zwgxISErRq1Spt2rRJI0aMKK0fAQAAlHEWwzAMZ4eQrn6J1/Lly9WrVy9JV2d1goOD9cwzz2jcuHGSpPT0dAUEBGjevHkaMGCA9u/fr9tuu03btm1T69atJUmrV69Wt27d9Msvvyg4OLhQ+87IyJCvr6/S09P5IlAAAMqJwn5+l9lzdo4ePark5GRFRERYx3x9fRUeHq7NmzdLkjZv3iw/Pz9r0ZGkiIgIubi4aMuWLdfddk5OjjIyMmweAADAnMps2UlOTpYkBQQE2IwHBARYlyUnJ8vf399meYUKFVS1alXrOgWJiYmRr6+v9VGrVi0HpwcAAGVFmS07JWnChAlKT0+3Pk6ePOnsSGWOxVL2HgAAFEWZLTuBgYGSpJSUFJvxlJQU67LAwEClpqbaLP/999917tw56zoFcXd3l4+Pj80DAACYU5ktO6GhoQoMDFRiYqJ1LCMjQ1u2bFG7du0kSe3atVNaWpp27NhhXWfdunXKy8tTeHh4qWcGAABlTwVn7jwrK0uHDx+2Pj969KiSkpJUtWpV1a5dW6NHj9arr76qBg0aKDQ0VBMnTlRwcLD1iq1GjRrpvvvu0+OPP67Zs2frypUrio6O1oABAwp9JRaAv56yeFi0bFwXWzJ4v0sX73d+Ti0727dvV6dOnazPx44dK0kaMmSI5s2bp2effVbZ2dkaMWKE0tLS1KFDB61evVoeHh7W18TFxSk6OlqdO3eWi4uL+vbtqxkzZpT6zwIAAMqmMnOfHWfiPjv58ZcBzIx/36WL97t0/ZXe73J/nx0AAABHoOwAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTq+DsAAAAlEUWi7MT5GcYzk5QPjGzAwAATI2ZHaAMKK9/QZbX3AD+WpjZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApkbZAQAApsYdlAGgnOCO1UDRUHZgKnwYAAD+jMNYAADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1LjPTgnjvi8AADgXMzsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUynTZyc3N1cSJExUaGipPT0/Vq1dPr7zyiow/XDttGIYmTZqkoKAgeXp6KiIiQocOHXJiagAAUJaU6bIzdepUzZo1S++9957279+vqVOnatq0aZo5c6Z1nWnTpmnGjBmaPXu2tmzZIi8vL3Xt2lWXLl1yYnIAAFBWlOmbCv73v/9Vz5491b17d0lSnTp1tGjRIm3dulXS1Vmdd955Ry+++KJ69uwpSfrkk08UEBCgFStWaMCAAU7LDgAAyoYyPbPTvn17JSYm6uDBg5Kk3bt367vvvtP9998vSTp69KiSk5MVERFhfY2vr6/Cw8O1efPm6243JydHGRkZNg8AAGBOZXpmZ/z48crIyFBYWJhcXV2Vm5ur1157TYMGDZIkJScnS5ICAgJsXhcQEGBdVpCYmBhNmTKl5IIDAIAyo0zP7Hz22WeKi4vTwoULtXPnTs2fP19vvfWW5s+fX6ztTpgwQenp6dbHyZMnHZQYAACUNWV6Zuef//ynxo8fbz33pmnTpjp+/LhiYmI0ZMgQBQYGSpJSUlIUFBRkfV1KSoqaN29+3e26u7vL3d29RLMDAICyoUzP7Fy4cEEuLrYRXV1dlZeXJ0kKDQ1VYGCgEhMTrcszMjK0ZcsWtWvXrlSzAgCAsqlMz+z06NFDr732mmrXrq3GjRtr165dmj59uoYPHy5JslgsGj16tF599VU1aNBAoaGhmjhxooKDg9WrVy/nhgcAAGVCmS47M2fO1MSJEzVy5EilpqYqODhYTzzxhCZNmmRd59lnn1V2drZGjBihtLQ0dejQQatXr5aHh4cTkwMAgLLCYvzxdsR/URkZGfL19VV6erp8fHwcum2LxaGbc4jC/MbJ7TjkLl3kLl3kLl1mzl0Uhf38LtPn7AAAABQXZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJia3WXn4sWLunDhgvX58ePH9c4772jt2rUODQYAAOAIdpednj176pNPPpEkpaWlKTw8XG+//bZ69uypWbNmOTwgAABAcdhddnbu3KmOHTtKkj7//HMFBATo+PHj+uSTTzRjxgyHBwQAACgOu8vOhQsX5O3tLUlau3at+vTpIxcXF7Vt21bHjx93eEAAAIDisLvs1K9fXytWrNDJkye1Zs0a3XvvvZKk1NRU+fj4ODwgAABAcdhddiZNmqRx48apTp06+tvf/qZ27dpJujrL06JFC4cHBAAAKA6LYRiGvS9KTk7W6dOn1axZM7m4XO1LW7dulY+Pj8LCwhwesqRlZGTI19dX6enpDp+dslgcujmHKMxvnNyOQ+7SRe7SRe7SZebcRVHYz+8i3WcnMDBQ3t7eSkhI0MWLFyVJbdq0KZdFBwAAmJvdZee3335T586ddeutt6pbt246ffq0JCkyMlLPPPOMwwMCAAAUh91lZ8yYMapYsaJOnDihSpUqWcf79++v1atXOzQcAABAcVWw9wVr167VmjVrVLNmTZvxBg0acOk5AAAoc+ye2cnOzraZ0bnm3Llzcnd3d0goAAAAR7G77HTs2NH6dRGSZLFYlJeXp2nTpqlTp04ODQcAAFBcdh/GmjZtmjp37qzt27fr8uXLevbZZ/XDDz/o3Llz+v7770siIwAAQJHZPbPTpEkTHTx4UB06dFDPnj2VnZ2tPn36aNeuXapXr15JZAQAACiyIt1U0Gy4qWB+5HYccpcucpcucpcuM+cuisJ+ftt9GGvTpk03XH7nnXfau0kAAIASY3fZufvuu/ONWf5QI3Nzc4sVCAAAwJHsPmfn/PnzNo/U1FStXr1abdq00dq1a0siIwAAQJHZPbPj6+ubb6xLly5yc3PT2LFjtWPHDocEAwAAcIQifRFoQQICAnTgwAFHbQ4AAMAh7J7Z2bNnj81zwzB0+vRpvfHGG2revLmjcgEAADiE3WWnefPmslgs+vMV623bttXcuXMdFgwAAMAR7C47R48etXnu4uKiGjVqyMPDw2GhAAAAHMXuc3ZCQkJsHrVq1SrRonPq1Ck98sgjqlatmjw9PdW0aVNt377dutwwDE2aNElBQUHy9PRURESEDh06VGJ5AABA+VKomZ0ZM2YUeoNPP/10kcP82fnz53XHHXeoU6dO+uabb1SjRg0dOnRIVapUsa4zbdo0zZgxQ/Pnz1doaKgmTpyorl276scff2S2CQAAFO7rIkJDQwu3MYtFP//8c7FDXTN+/Hh9//33+s9//lPgcsMwFBwcrGeeeUbjxo2TJKWnpysgIEDz5s3TgAEDCrUfvi4iP3I7DrlLF7lLF7lLl5lzF4VDvy7iz+fplJaVK1eqa9eu6tevnzZu3KhbbrlFI0eO1OOPP27NlZycrIiICOtrfH19FR4ers2bN1+37OTk5CgnJ8f6PCMjo2R/EAAA4DQOu89OSfj55581a9YsNWjQQGvWrNGTTz6pp59+WvPnz5ckJScnS7p6j58/CggIsC4rSExMjHx9fa2PWrVqldwPAQAAnMruq7Ek6ZdfftHKlSt14sQJXb582WbZ9OnTHRJMkvLy8tS6dWu9/vrrkqQWLVpo3759mj17toYMGVLk7U6YMEFjx461Ps/IyKDwAABgUnaXncTERD344IOqW7eufvrpJzVp0kTHjh2TYRhq2bKlQ8MFBQXptttusxlr1KiRli5dKkkKDAyUJKWkpCgoKMi6TkpKyg1vcOju7i53d3eHZgUAAGWT3YexJkyYoHHjxmnv3r3y8PDQ0qVLdfLkSd11113q16+fQ8Pdcccd+b6C4uDBgwoJCZF09cTpwMBAJSYmWpdnZGRoy5YtateunUOzAACAcsqwU+XKlY3Dhw8bhmEYfn5+xr59+wzDMIykpCQjJCTE3s3d0NatW40KFSoYr732mnHo0CEjLi7OqFSpkvHpp59a13njjTcMPz8/44svvjD27Nlj9OzZ0wgNDTUuXrxY6P2kp6cbkoz09HSH5jcMw7h6DnrZepCb3OQuew9yk/uvnrsoCvv5bfdhLC8vL+t5OkFBQTpy5IgaN24sSTp79qwje5jatGmj5cuXa8KECXr55ZcVGhqqd955R4MGDbKu8+yzzyo7O1sjRoxQWlqaOnTooNWrV3OPHQAAIKmQ99n5o169eql79+56/PHHNW7cOH3xxRcaOnSoli1bpipVqujbb78tqawlhvvs5EduxyF36SJ36SJ36TJz7qJw6H12JOncuXOqWrWqpk+frqysLEnSlClTlJWVpcWLF6tBgwYOvRILAADAEQo9s+Ph4aFevXopMjJSXbp0KelcpYqZnfzI7TjkLl3kLl3kLl1mzl0Uhf38LvTVWB999JHOnDmj++67T3Xq1NFLL72kY8eOOSIrAABAiSl02Xn00UeVmJiow4cPa8iQIZo/f77q16+vLl26aPHixfluLggAAFAW2H2fndDQUE2ZMkVHjx7V6tWr5e/vr+HDhysoKMih33gOAADgCHZfjVWQpUuXWi/9zs3NdUSuUsU5O/mR23HIXbrIXbrIXbrMnLsoHH411p8dP35csbGxmj9/vk6ePKlOnTopMjKyqJsDAAAoEXaVnZycHC1dulRz587Vhg0bdMstt2jo0KEaNmyY6tSpU0IRAQAAiq7QZWfkyJGKj4/XhQsX1LNnT3399dfq0qWLLGVxvgwAAOD/K3TZ+e677zR58mQ98sgjqlatWklmAgAAcJhCl509e/aUZA4AAIASYfel5wAAAOUJZQcAAJgaZQcAAJgaZQcAAJia3WWnTp06evnll3XixImSyAMAAOBQdped0aNHa9myZapbt666dOmi+Ph45eTklEQ2AACAYitS2UlKStLWrVvVqFEjPfXUUwoKClJ0dLR27txZEhkBAACKrMjn7LRs2VIzZszQr7/+qsmTJ+vjjz9WmzZt1Lx5c82dO1cO+H5RAACAYivyF4FeuXJFy5cvV2xsrBISEtS2bVtFRkbql19+0fPPP69vv/1WCxcudGRWAAAAu9lddnbu3KnY2FgtWrRILi4uGjx4sP71r38pLCzMuk7v3r3Vpk0bhwYFAAAoCrvLTps2bdSlSxfNmjVLvXr1UsWKFfOtExoaqgEDBjgkIAAAQHHYXXZ+/vlnhYSE3HAdLy8vxcbGFjkUAACAo9h9gnJqaqq2bNmSb3zLli3avn27Q0IBAAA4it1lJyoqSidPnsw3furUKUVFRTkkFAAAgKPYXXZ+/PFHtWzZMt94ixYt9OOPPzokFAAAgKPYXXbc3d2VkpKSb/z06dOqUKHIV7IDAACUCLvLzr333qsJEyYoPT3dOpaWlqbnn39eXbp0cWg4AACA4rJ7Kuatt97SnXfeqZCQELVo0UKSlJSUpICAAC1YsMDhAQEAAIrD7rJzyy23aM+ePYqLi9Pu3bvl6empYcOGaeDAgQXecwcAAMCZinSSjZeXl0aMGOHoLAAAAA5X5DOKf/zxR504cUKXL1+2GX/wwQeLHQoAAMBRinQH5d69e2vv3r2yWCzWbze3WCySpNzcXMcmBAAAKAa7r8YaNWqUQkNDlZqaqkqVKumHH37Qpk2b1Lp1a23YsKEEIgIAABSd3TM7mzdv1rp161S9enW5uLjIxcVFHTp0UExMjJ5++mnt2rWrJHICAAAUid0zO7m5ufL29pYkVa9eXb/++qskKSQkRAcOHHBsOgAAgGKye2anSZMm2r17t0JDQxUeHq5p06bJzc1NH374oerWrVsSGQEAAIrM7rLz4osvKjs7W5L08ssv64EHHlDHjh1VrVo1LV682OEBAQAAisNiXLucqhjOnTunKlWqWK/IKm8yMjLk6+ur9PR0+fj4OHTbZfEtKcxvnNyOQ+7SRe7SRe7SZebcRVHYz2+7ztm5cuWKKlSooH379tmMV61atdwWHQAAYG52lZ2KFSuqdu3a3EsHAACUG3ZfjfXCCy/o+eef17lz50oiDwAAgEPZfYLye++9p8OHDys4OFghISHy8vKyWb5z506HhQMAACguu8tOr169SiAGAABAybC77EyePLkkcgAAAJQIu8/ZAQAAKE/sntlxcXG54WXmXKkFAADKErvLzvLly22eX7lyRbt27dL8+fM1ZcoUhwUDAABwBIfcQVmSFi5cqMWLF+uLL75wxOZKFXdQzo/cjkPu0kXu0kXu0mXm3EVRIndQvpG2bdsqMTHRUZsDAABwCIeUnYsXL2rGjBm65ZZbHLE5AAAAh7H7nJ0/f+GnYRjKzMxUpUqV9Omnnzo0HAAAQHHZXXb+9a9/2ZQdFxcX1ahRQ+Hh4apSpYpDwwEAABSX3WVn6NChJRADAACgZNh9zk5sbKyWLFmSb3zJkiWaP3++Q0IBAAA4it1lJyYmRtWrV8837u/vr9dff90hoQAAABzF7rJz4sQJhYaG5hsPCQnRiRMnHBIKAADAUewuO/7+/tqzZ0++8d27d6tatWoOCQUAAOAodpedgQMH6umnn9b69euVm5ur3NxcrVu3TqNGjdKAAQNKIiMAAECR2X011iuvvKJjx46pc+fOqlDh6svz8vI0ePBgztkBAABljt0zO25ublq8eLEOHDiguLg4LVu2TEeOHNHcuXPl5uZWEhmt3njjDVksFo0ePdo6dunSJUVFRalatWqqXLmy+vbtq5SUlBLNAQAAyg+7Z3auadCggRo0aODILDe0bds2/fvf/9btt99uMz5mzBh99dVXWrJkiXx9fRUdHa0+ffro+++/L7VsAACg7LJ7Zqdv376aOnVqvvFp06apX79+Dgn1Z1lZWRo0aJA++ugjm7s0p6ena86cOZo+fbruuecetWrVSrGxsfrvf/+r//3vfyWSBQAAlC92l51NmzapW7du+cbvv/9+bdq0ySGh/iwqKkrdu3dXRESEzfiOHTt05coVm/GwsDDVrl1bmzdvvu72cnJylJGRYfMAAADmZPdhrKysrALPzalYsWKJlIb4+Hjt3LlT27Zty7csOTlZbm5u8vPzsxkPCAhQcnLydbcZExOjKVOmODoqAAAog+ye2WnatKkWL16cbzw+Pl633XabQ0Jdc/LkSY0aNUpxcXHy8PBw2HYnTJig9PR06+PkyZMO2zYAAChb7J7ZmThxovr06aMjR47onnvukSQlJiZq0aJFBX5nVnHs2LFDqampatmypXUsNzdXmzZt0nvvvac1a9bo8uXLSktLs5ndSUlJUWBg4HW36+7uLnd3d4dmBQAAZZPdZadHjx5asWKFXn/9dX3++efy9PTU7bffrm+//VZ33XWXQ8N17txZe/futRkbNmyYwsLC9Nxzz6lWrVqqWLGiEhMT1bdvX0nSgQMHdOLECbVr186hWQAAQPlUpEvPu3fvru7du+cb37dvn5o0aVLsUNd4e3vn256Xl5eqVatmHY+MjNTYsWNVtWpV+fj46KmnnlK7du3Utm1bh+UAAADlV5Hvs3NNZmamFi1apI8//lg7duxQbm6uI3IV2r/+9S+5uLiob9++ysnJUdeuXfXBBx+UagYAAFB2WQzDMIrywk2bNunjjz/WsmXLFBwcrD59+qhv375q06aNozOWuIyMDPn6+io9PV0+Pj4O3bbF4tDNOURhfuPkdhxyly5yly5yly4z5y6Kwn5+2zWzk5ycrHnz5mnOnDnKyMjQww8/rJycHK1YscLhV2IBAAA4QqEvPe/Ro4caNmyoPXv26J133tGvv/6qmTNnlmQ2AACAYiv0zM4333yjp59+Wk8++WSpficWAABAcRR6Zue7775TZmamWrVqpfDwcL333ns6e/ZsSWYDAAAotkKXnbZt2+qjjz7S6dOn9cQTTyg+Pl7BwcHKy8tTQkKCMjMzSzInAABAkRT5aizp6g385syZowULFigtLU1dunTRypUrHZmvVHA1Vn7kdhxyly5yly5yly4z5y6Kwn5+2/3dWH/UsGFDTZs2Tb/88osWLVpUnE0BAACUiGLN7JgFMzv5kdtxyF26yF26yF26zJy7KEplZgcAAKCso+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTo+wAAABTK9NlJyYmRm3atJG3t7f8/f3Vq1cvHThwwGadS5cuKSoqStWqVVPlypXVt29fpaSkOCkxAAAoa8p02dm4caOioqL0v//9TwkJCbpy5YruvfdeZWdnW9cZM2aMvvzySy1ZskQbN27Ur7/+qj59+jgxNQAAKEsshmEYzg5RWGfOnJG/v782btyoO++8U+np6apRo4YWLlyohx56SJL0008/qVGjRtq8ebPatm1bqO1mZGTI19dX6enp8vHxcWhmi8Whm3OIwvzGye045C5d5C5d5C5dZs5dFIX9/C7TMzt/lp6eLkmqWrWqJGnHjh26cuWKIiIirOuEhYWpdu3a2rx583W3k5OTo4yMDJsHAAAwp3JTdvLy8jR69GjdcccdatKkiSQpOTlZbm5u8vPzs1k3ICBAycnJ191WTEyMfH19rY9atWqVZHQAAOBE5absREVFad++fYqPjy/2tiZMmKD09HTr4+TJkw5ICAAAyqIKzg5QGNHR0Vq1apU2bdqkmjVrWscDAwN1+fJlpaWl2czupKSkKDAw8Lrbc3d3l7u7e0lGBgAAZUSZntkxDEPR0dFavny51q1bp9DQUJvlrVq1UsWKFZWYmGgdO3DggE6cOKF27dqVdlwAAFAGlemZnaioKC1cuFBffPGFvL29refh+Pr6ytPTU76+voqMjNTYsWNVtWpV+fj46KmnnlK7du0KfSUWAAAwtzJddmbNmiVJuvvuu23GY2NjNXToUEnSv/71L7m4uKhv377KyclR165d9cEHH5RyUgAAUFaVq/vslBTus5MfuR2H3KWL3KWL3KXLzLmLwpT32QEAALAXZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJiaacrO+++/rzp16sjDw0Ph4eHaunWrsyMBAIAywBRlZ/HixRo7dqwmT56snTt3qlmzZuratatSU1OdHQ0AADiZKcrO9OnT9fjjj2vYsGG67bbbNHv2bFWqVElz5851djQAAOBk5b7sXL58WTt27FBERIR1zMXFRREREdq8ebMTkwEAgLKggrMDFNfZs2eVm5urgIAAm/GAgAD99NNPBb4mJydHOTk51ufp6emSpIyMjJILWoaU1x+T3KWL3KWL3KWL3KWrpHJf+9w2DOOG65X7slMUMTExmjJlSr7xWrVqOSFN6fP1dXaCoiF36SJ36SJ36SJ36Srp3JmZmfK9wU7KfdmpXr26XF1dlZKSYjOekpKiwMDAAl8zYcIEjR071vo8Ly9P586dU7Vq1WSxWEo0b1FlZGSoVq1aOnnypHx8fJwdp9DIXbrIXbrIXbrIXbrKQ27DMJSZmang4OAbrlfuy46bm5tatWqlxMRE9erVS9LV8pKYmKjo6OgCX+Pu7i53d3ebMT8/vxJO6hg+Pj5l9h/djZC7dJG7dJG7dJG7dJX13Dea0bmm3JcdSRo7dqyGDBmi1q1b629/+5veeecdZWdna9iwYc6OBgAAnMwUZad///46c+aMJk2apOTkZDVv3lyrV6/Od9IyAAD46zFF2ZGk6Ojo6x62MgN3d3dNnjw53+G3so7cpYvcpYvcpYvcpau85i6IxbjZ9VoAAADlWLm/qSAAAMCNUHYAAICpUXYAAICpUXYAAICpUXbKuE2bNqlHjx4KDg6WxWLRihUrnB3ppmJiYtSmTRt5e3vL399fvXr10oEDB5wd66ZmzZql22+/3XoDrXbt2umbb75xdiy7vfHGG7JYLBo9erSzo9zQSy+9JIvFYvMICwtzdqxCOXXqlB555BFVq1ZNnp6eatq0qbZv3+7sWDdUp06dfO+3xWJRVFSUs6PdUG5uriZOnKjQ0FB5enqqXr16euWVV276XUhlQWZmpkaPHq2QkBB5enqqffv22rZtm7Nj2bjZZ4xhGJo0aZKCgoLk6empiIgIHTp0yDlhi4GyU8ZlZ2erWbNmev/9950dpdA2btyoqKgo/e9//1NCQoKuXLmie++9V9nZ2c6OdkM1a9bUG2+8oR07dmj79u2655571LNnT/3www/OjlZo27Zt07///W/dfvvtzo5SKI0bN9bp06etj++++87ZkW7q/PnzuuOOO1SxYkV98803+vHHH/X222+rSpUqzo52Q9u2bbN5rxMSEiRJ/fr1c3KyG5s6dapmzZql9957T/v379fUqVM1bdo0zZw509nRbuqxxx5TQkKCFixYoL179+ree+9VRESETp065exoVjf7jJk2bZpmzJih2bNna8uWLfLy8lLXrl116dKlUk5aTAbKDUnG8uXLnR3DbqmpqYYkY+PGjc6OYrcqVaoYH3/8sbNjFEpmZqbRoEEDIyEhwbjrrruMUaNGOTvSDU2ePNlo1qyZs2PY7bnnnjM6dOjg7BjFNmrUKKNevXpGXl6es6PcUPfu3Y3hw4fbjPXp08cYNGiQkxIVzoULFwxXV1dj1apVNuMtW7Y0XnjhBSelurE/f8bk5eUZgYGBxptvvmkdS0tLM9zd3Y1FixY5IWHRMbODEpeeni5Jqlq1qpOTFF5ubq7i4+OVnZ2tdu3aOTtOoURFRal79+6KiIhwdpRCO3TokIKDg1W3bl0NGjRIJ06ccHakm1q5cqVat26tfv36yd/fXy1atNBHH33k7Fh2uXz5sj799FMNHz68zH758TXt27dXYmKiDh48KEnavXu3vvvuO91///1OTnZjv//+u3Jzc+Xh4WEz7unpWS5mMCXp6NGjSk5Otvl/iq+vr8LDw7V582YnJrOfae6gjLIpLy9Po0eP1h133KEmTZo4O85N7d27V+3atdOlS5dUuXJlLV++XLfddpuzY91UfHy8du7cWebOB7iR8PBwzZs3Tw0bNtTp06c1ZcoUdezYUfv27ZO3t7ez413Xzz//rFmzZmns2LF6/vnntW3bNj399NNyc3PTkCFDnB2vUFasWKG0tDQNHTrU2VFuavz48crIyFBYWJhcXV2Vm5ur1157TYMGDXJ2tBvy9vZWu3bt9Morr6hRo0YKCAjQokWLtHnzZtWvX9/Z8QolOTlZkvJ99VJAQIB1WXlB2UGJioqK0r59+8rNXzINGzZUUlKS0tPT9fnnn2vIkCHauHFjmS48J0+e1KhRo5SQkJDvr8iy7I9/md9+++0KDw9XSEiIPvvsM0VGRjox2Y3l5eWpdevWev311yVJLVq00L59+zR79uxyU3bmzJmj+++/X8HBwc6OclOfffaZ4uLitHDhQjVu3FhJSUkaPXq0goODy/z7vWDBAg0fPly33HKLXF1d1bJlSw0cOFA7duxwdrS/HA5jocRER0dr1apVWr9+vWrWrOnsOIXi5uam+vXrq1WrVoqJiVGzZs307rvvOjvWDe3YsUOpqalq2bKlKlSooAoVKmjjxo2aMWOGKlSooNzcXGdHLBQ/Pz/deuutOnz4sLOj3FBQUFC+8tuoUaNycQhOko4fP65vv/1Wjz32mLOjFMo///lPjR8/XgMGDFDTpk316KOPasyYMYqJiXF2tJuqV6+eNm7cqKysLJ08eVJbt27VlStXVLduXWdHK5TAwEBJUkpKis14SkqKdVl5QdmBwxmGoejoaC1fvlzr1q1TaGiosyMVWV5ennJycpwd44Y6d+6svXv3Kikpyfpo3bq1Bg0apKSkJLm6ujo7YqFkZWXpyJEjCgoKcnaUG7rjjjvy3Urh4MGDCgkJcVIi+8TGxsrf31/du3d3dpRCuXDhglxcbD+qXF1dlZeX56RE9vPy8lJQUJDOnz+vNWvWqGfPns6OVCihoaEKDAxUYmKidSwjI0NbtmwpN+cyXsNhrDIuKyvL5i/do0ePKikpSVWrVlXt2rWdmOz6oqKitHDhQn3xxRfy9va2Htv19fWVp6enk9Nd34QJE3T//ferdu3ayszM1MKFC7VhwwatWbPG2dFuyNvbO9/5UF5eXqpWrVqZPk9q3Lhx6tGjh0JCQvTrr79q8uTJcnV11cCBA50d7YbGjBmj9u3b6/XXX9fDDz+srVu36sMPP9SHH37o7Gg3lZeXp9jYWA0ZMkQVKpSP//336NFDr732mmrXrq3GjRtr165dmj59uoYPH+7saDe1Zs0aGYahhg0b6vDhw/rnP/+psLAwDRs2zNnRrG72GTN69Gi9+uqratCggUJDQzVx4kQFBwerV69ezgtdFM6+HAw3tn79ekNSvseQIUOcHe26CsoryYiNjXV2tBsaPny4ERISYri5uRk1atQwOnfubKxdu9bZsYqkPFx63r9/fyMoKMhwc3MzbrnlFqN///7G4cOHnR2rUL788kujSZMmhru7uxEWFmZ8+OGHzo5UKGvWrDEkGQcOHHB2lELLyMgwRo0aZdSuXdvw8PAw6tata7zwwgtGTk6Os6Pd1OLFi426desabm5uRmBgoBEVFWWkpaU5O5aNm33G5OXlGRMnTjQCAgIMd3d3o3PnzuXq3881FsMoB7ehBAAAKCLO2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEABzh27JgsFouSkpIK/ZqhQ4fe9E60d999t0aPHl2sbMBfHWUH+IvYvHmzXF1dy813IpWEpk2b6h//+EeByxYsWCB3d3edPXu2SNuuVauWTp8+Xaa/ogP4q6LsAH8Rc+bM0VNPPaVNmzbp119/dWqWy5cvO2W/kZGRio+P18WLF/Mti42N1YMPPqjq1avbvd3Lly/L1dVVgYGB5eY7p4C/EsoO8BeQlZWlxYsX68knn1T37t01b968fOt8+eWXatOmjTw8PFS9enX17t3buiwnJ0fPPfecatWqJXd3d9WvX19z5syRJM2bN09+fn4221qxYoUsFov1+UsvvaTmzZvr448/VmhoqDw8PCRJq1evVocOHeTn56dq1arpgQce0JEjR2y29csvv2jgwIGqWrWqvLy81Lp1a23ZskXHjh2Ti4uLtm/fbrP+O++8o5CQkAK/FfuRRx7RxYsXtXTpUpvxo0ePasOGDYqMjNSRI0fUs2dPBQQEqHLlymrTpo2+/fZbm/Xr1KmjV155RYMHD5aPj49GjBiR7zBWbm6uIiMjFRoaKk9PTzVs2FDvvvtuAb8dacqUKapRo4Z8fHz0j3/844ZlMCcnR+PGjdMtt9wiLy8vhYeHa8OGDdblx48fV48ePVSlShV5eXmpcePG+vrrr6+7PeCvgLID/AV89tlnCgsLU8OGDfXII49o7ty5+uPX4n311Vfq3bu3unXrpl27dikxMVF/+9vfrMsHDx6sRYsWacaMGdq/f7/+/e9/q3LlynZlOHz4sJYuXaply5ZZC0F2drbGjh2r7du3KzExUS4uLurdu7e1qGRlZemuu+7SqVOntHLlSu3evVvPPvus8vLyVKdOHUVERCg2NtZmP7GxsRo6dKhcXPL/76169erq2bOn5s6dazM+b9481axZU/fee6+ysrLUrVs3JSYmateuXbrvvvvUo0cPnThxwuY1b731lpo1a6Zdu3Zp4sSJ+faVl5enmjVrasmSJfrxxx81adIkPf/88/rss89s1ktMTNT+/fu1YcMGLVq0SMuWLdOUKVOu+z5GR0dr8+bNio+P1549e9SvXz/dd999OnTokCQpKipKOTk52rRpk/bu3aupU6fa/bsCTMfJX0QKoBS0b9/eeOeddwzDMIwrV64Y1atXN9avX29d3q5dO2PQoEEFvvbAgQOGJCMhIaHA5bGxsYavr6/N2PLly40//u9l8uTJRsWKFY3U1NQb5jxz5owhydi7d69hGIbx73//2/D29jZ+++23AtdfvHixUaVKFePSpUuGYRjGjh07DIvFYhw9evS6+1i9erVhsViMn3/+2TCMq9/qHBISYrz44ovXfU3jxo2NmTNnWp+HhIQYvXr1slnn6NGjhiRj165d191OVFSU0bdvX+vzIUOGGFWrVjWys7OtY7NmzTIqV65s5ObmGoZh+w32x48fN1xdXY1Tp07ZbLdz587GhAkTDMMwjKZNmxovvfTSdTMAf0XM7AAmd+DAAW3dulUDBw6UJFWoUEH9+/e3HoaSpKSkJHXu3LnA1yclJcnV1VV33XVXsXKEhISoRo0aNmOHDh3SwIEDVbduXfn4+KhOnTqSZJ1FSUpKUosWLVS1atUCt9mrVy+5urpq+fLlkq7O0HTq1Mm6nYJ06dJFNWvWtM4IJSYm6sSJExo2bJikq7NJ48aNU6NGjeTn56fKlStr//79+WZ2WrdufdOf+f3331erVq1Uo0YNVa5cWR9++GG+7TRr1kyVKlWyPm/Xrp2ysrJ08uTJfNvbu3evcnNzdeutt6py5crWx8aNG62H/55++mm9+uqruuOOOzR58mTt2bPnpjkBs6PsACY3Z84c/f777woODlaFChVUoUIFzZo1S0uXLlV6erokydPT87qvv9EySXJxcbE5JCZJV65cybeel5dXvrEePXro3Llz+uijj7RlyxZt2bJF0v+dwHyzfbu5uWnw4MGKjY3V5cuXtXDhQg0fPvymeYcOHar58+crLy9PsbGx6tSpk+rWrStJGjdunJYvX67XX39d//nPf5SUlKSmTZvmO4+moJ/nj+Lj4zVu3DhFRkZq7dq1SkpK0rBhw4p1cnZWVpZcXV21Y8cOJSUlWR/79++3ng/02GOP6eeff9ajjz6qvXv3qnXr1po5c2aR9wmYAWUHMLHff/9dn3zyid5++22bD8fdu3crODhYixYtkiTdfvvtSkxMLHAbTZs2VV5enjZu3Fjg8ho1aigzM1PZ2dnWscLca+a3337TgQMH9OKLL6pz585q1KiRzp8/b7PO7bffrqSkJJ07d+6623nsscf07bff6oMPPtDvv/+uPn363HTfw4YN08mTJ7Vs2TItX75ckZGR1mXff/+9hg4dqt69e6tp06YKDAzUsWPHbrrNP/v+++/Vvn17jRw5Ui1atFD9+vXznXwtSbt377a5Oux///ufKleurFq1auVbt0WLFsrNzVVqaqrq169v8wgMDLSuV6tWLf3jH//QsmXL9Mwzz+ijjz6yOz9gJpQdwMRWrVql8+fPKzIyUk2aNLF59O3b13ooa/LkyVq0aJEmT56s/fv3W09sla5eeTRkyBANHz5cK1assF65dO1E2/DwcFWqVEnPP/+8jhw5ooULFxZ4tdefValSRdWqVdOHH36ow4cPa926dRo7dqzNOgMHDlRgYKB69eql77//Xj///LOWLl2qzZs3W9dp1KiR2rZtq+eee04DBw686WyQJIWGhuqee+7RiBEj5O7ublOQGjRoYD2Jevfu3fr73/9e4JVdN9OgQQNt375da9as0cGDBzVx4kRt27Yt33qXL19WZGSkfvzxR3399deaPHmyoqOjCzzB+tZbb9WgQYM0ePBgLVu2TEePHtXWrVsVExOjr776SpI0evRorVmzRkePHtXOnTu1fv16NWrUyO78gJlQdgATmzNnjiIiIuTr65tvWd++fbV9+3bt2bNHd999t5YsWaKVK1eqefPmuueee7R161brurNmzdJDDz2kkSNHKiwsTI8//rh1Jqdq1ar69NNP9fXXX6tp06ZatGiRXnrppZtmc3FxUXx8vHbs2KEmTZpozJgxevPNN23WcXNz09q1a+Xv769u3bqpadOmeuONN+Tq6mqzXmRkpC5fvnzTQ1h/fs358+f197//3XopvCRNnz5dVapUUfv27dWjRw917dpVLVu2LPR2r3niiSfUp08f9e/fX+Hh4frtt980cuTIfOt17txZDRo00J133qn+/fvrwQcfvOH7Fxsbq8GDB+uZZ55Rw4YN1atXL23btk21a9eWdPWS96ioKDVq1Ej33Xefbr31Vn3wwQd25wfMxGL8+WA7AJQzr7zyipYsWcLJuAAKxMwOgHIrKytL+/bt03vvvaennnrK2XEAlFGUHQDlVnR0tFq1aqW7777brkNYAP5aOIwFAABMjZkdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgav8PriEMHNJ5QJIAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of RMSE values from rmse1 to rmse10\n", + "rmse_values = [rmse1, rmse2, rmse3, rmse4, rmse5, rmse6, rmse7, rmse8, rmse9, rmse10]\n", + "\n", + "# List of corresponding labels for each RMSE value\n", + "labels = ['RMSE1', 'RMSE2', 'RMSE3', 'RMSE4', 'RMSE5', 'RMSE6', 'RMSE7', 'RMSE8', 'RMSE9', 'RMSE10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, rmse_values, color='green')\n", + "plt.xlabel('RMSE Variables')\n", + "plt.ylabel('RMSE Values')\n", + "plt.title('Bar Graph of RMSE')\n", + "plt.show()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "RFaaCNH6Cfoa", + "outputId": "67a8f358-e3ce-4ad2-9c78-ebc75902beb4" + }, + "execution_count": 118, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABB/klEQVR4nO3de1xUdeL/8fcAMpAKiMbNQEnNe0qSrmV5o7xlWl5WJReRdCut1O1meSnblbSLlpm6rYm6mq6mZn2V8msataIppptmZnkjE7QUEA3k8vn90c/5OoEGOshw9vV8PM5jdz7nM+e8B8l5e+acOTZjjBEAAIBFeVR2AAAAgIpE2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QEAAJZG2QFgOc8//7xsNpt++umnCt9XcnKyWrduLR8fH9lsNmVlZVX4PgGUD2UHqEKSkpJks9mclqCgIHXu3Fnr16+/5nk++OAD9e7dW8HBwfL29lZgYKDuvPNOvfrqq8rJybnmea61n3/+WQMHDpSvr69mz56txYsXq3r16qXO/e2fnZeXl+rWrathw4bp2LFjJeZ36tRJNptNjRo1KnV7GzZscGxr5cqVTuu++uor9e/fX/Xq1ZOPj4/q1q2ru+66S7NmzXKaV79+/RK/TxeW7t27X+FPBXA/XpUdAED5TZkyRZGRkTLGKDMzU0lJSerZs6c++OAD3XPPPRW+/+LiYiUkJCgpKUktW7bUI488ovDwcJ05c0apqamaMGGC1q1bp40bN1Z4lsq0fft2nTlzRi+++KJiYmLK9JwLf3Z5eXnaunWrkpKS9Pnnn2vPnj3y8fFxmuvj46PvvvtOX3zxhdq2beu0bsmSJfLx8VFeXp7T+JYtW9S5c2dFRERoxIgRCgkJUXp6urZu3arXX39djz76qNP81q1b6y9/+UuJnGFhYWV6PUBVQNkBqqAePXooOjra8TghIUHBwcF69913XVJ2iouLdf78+RJvvhdMnz5dSUlJGjt2rF599VXZbDbHuscff1zHjx/XokWLrmofVcGJEyckSQEBAWV+zsV/dg8++KDq1KmjadOmae3atRo4cKDT3AYNGqiwsFDvvvuuU9nJy8vT6tWr1atXL7333ntOz/nb3/4mf39/bd++vUSuC3kvVrduXT3wwANlzg9URXyMBVhAQECAfH195eXl/O+XV155Rbfddptq164tX19ftWnTpsRHHpJks9k0evRoLVmyRM2bN5fdbldycnKp+zp37pymTZum5s2b6+WXX3YqOheEhobq6aefLvM+riRn48aN5ePjozZt2iglJaXUrFlZWRo2bJgCAgLk7++v+Ph4nTt3rvQf4m+sWLFCbdq0ka+vr+rUqaMHHnjA6eOmTp06KS4uTpJ06623ymazadiwYWXa9sXuuOMOSdL3339f6vrBgwdr+fLlKi4udox98MEHOnfuXIlydGE7zZs3L7WABQUFlTsfYAWUHaAKys7O1k8//aSTJ09q7969evjhh5Wbm1viX+ivv/66oqKiNGXKFE2dOlVeXl4aMGCA/ud//qfENj/55BONHTtWf/zjH/X666+rfv36pe77888/V1ZWlgYPHixPT89y5b7UPsqT89NPP9WYMWP0wAMPaMqUKfr555/VvXt37dmzp8TcgQMH6syZM0pMTNTAgQOVlJSkF1544XdzJiUlaeDAgfL09FRiYqJGjBihVatWqUOHDo4TkJ977jmNHDlS0q8fTS1evFh//vOfy/XzkKTDhw9LkmrVqlXq+iFDhuj48ePavHmzY2zp0qXq2rVrqeWlXr16SktLK/XnUZqCggL99NNPJZZffvml3K8FcFsGQJWxYMECI6nEYrfbTVJSUon5586dc3p8/vx506JFC9OlSxencUnGw8PD7N2793czvP7660aSWbNmjdN4YWGhOXnypNNSXFxcpn2UJ6cks2PHDsfYkSNHjI+Pj7nvvvscY5MnTzaSzPDhw52ef99995natWtf9vWdP3/eBAUFmRYtWphffvnFMf7hhx8aSWbSpEmOsQt/Htu3b7/sNi+e+7//+7/m5MmTJj093axcudJcf/31xm63m/T0dKf5HTt2NM2bNzfGGBMdHW0SEhKMMcacPn3aeHt7m4ULF5pNmzYZSWbFihWO53388cfG09PTeHp6mvbt25unnnrKfPTRR+b8+fMlMtWrV6/U3ydJJjEx8XdfE1BVcGQHqIJmz56tDRs2aMOGDfrnP/+pzp0768EHH9SqVauc5vn6+jr+/+nTp5Wdna077rhDO3fuLLHNjh07qlmzZr+77wtXWdWoUcNp/KuvvtL111/vtPz8889l2kd5crZv315t2rRxPI6IiFCfPn300UcfqaioyGnuQw895PT4jjvu0M8//3zZK8V27NihEydO6JFHHnE6n6hXr15q0qRJqUebyiMmJkbXX3+9wsPD1b9/f1WvXl1r167VDTfccMnnDBkyRKtWrdL58+e1cuVKeXp66r777it17l133aXU1FTde++92r17t6ZPn65u3bqpbt26Wrt2bYn57dq1c/wuXbwMHjz4ql4n4E44QRmogtq2bet0gvLgwYMVFRWl0aNH65577pG3t7ck6cMPP9Rf//pX7dq1S/n5+Y75pZ1nExkZWaZ916xZU5KUm5vrNN6wYUNt2LBBkrRo0SItXry4zPsoT87SLsW+6aabdO7cOZ08eVIhISGO8YiICKd5Fz4qOn36tPz8/ErNcuTIEUlS48aNS6xr0qSJPv/881KfV1azZ8/WTTfdpOzsbL3zzjtKSUmR3W6/7HMGDRqkJ554QuvXr9eSJUt0zz33OP4cSnPrrbc6ytHu3bu1evVqzZgxQ/3799euXbucCmedOnXKfCUZUFVxZAewAA8PD3Xu3FnHjx/XgQMHJEmfffaZ7r33Xvn4+Oitt97SunXrtGHDBg0ZMkTGmBLbuPjoyuU0adJEkkqcE1KjRg3FxMQoJiZGN954Y6nPLW0f5c1ZHpc6p+hqt3s12rZtq5iYGPXr109r165VixYtNGTIkBLl8WKhoaHq1KmTXn31VaWkpGjIkCFl2pe3t7duvfVWTZ06VXPmzFFBQYFWrFjhqpcCVBmUHcAiCgsLJf3fEZf33ntPPj4++uijjzR8+HD16NHDJf+Cv+OOO+Tv769ly5Y5XSF0pcqb80KZu9i3336r6667Ttdff/1V56lXr54kaf/+/SXW7d+/37HeFS6cAP3jjz/qzTffvOzcIUOG6LPPPpOfn5969uxZ7n1dOBJ4/PjxK8oKVGWUHcACCgoK9PHHH8vb21tNmzaV9Osbqc1mczqP5fDhw1qzZs1V7eu6667TU089pT179uiZZ54p9ShJeY6clDdnamqq07k86enpev/993X33XeX++qw0kRHRysoKEhz5851+kht/fr12rdvn3r16nXV+7hYp06d1LZtW82cObPEFwRerH///po8ebLeeustx8eUpdm0aVOpP/9169ZJKv3jOcDqOGcHqILWr1+vb775RtKvXxS3dOlSHThwQM8884zjXJRevXrptddeU/fu3TVkyBCdOHFCs2fPVsOGDfWf//znqvb/zDPPaN++fXr55Zf18ccfq1+/frrhhht0+vRp7dy5UytWrFBQUFCZvjCwvDlbtGihbt266bHHHpPdbtdbb70lSWW6pLwsqlWrpmnTpik+Pl4dO3bU4MGDlZmZ6bhUfuzYsS7Zz8WefPJJDRgwQElJSSVOqr7A399fzz///O9u69FHH9W5c+d03333qUmTJjp//ry2bNmi5cuXq379+oqPj3eaf+zYMf3zn/8ssZ0aNWqob9++V/JyAPdTmZeCASif0i499/HxMa1btzZz5sxxutTbGGPmz59vGjVqZOx2u2nSpIlZsGCB47Lsi0kyo0aNKnee1atXm549e5rrr7/eeHl5mYCAANOhQwfz8ssvm6ysrDLvo7w5//nPfzrmR0VFmU2bNjnNu/DckydPOo1f+PkdOnTod1/b8uXLTVRUlLHb7SYwMNDExsaaH374odTtlefS89LmFhUVmQYNGpgGDRqYwsJCY4zzpeeXUtql5+vXrzfDhw83TZo0MTVq1DDe3t6mYcOG5tFHHzWZmZlOz7/cpef16tX73dcEVBU2YyrxTD0AKAebzaZRo0b97vktAHAxztkBAACWRtkBAACWRtkBAACWxtVYAKoMTjEEcCU4sgMAACyNsgMAACyNj7EkFRcX68cff1TNmjVLvfEgAABwP8YYnTlzRmFhYfLwuPTxG8qOpB9//FHh4eGVHQMAAFyB9PR03XDDDZdcT9mRVLNmTUm//rAufNU+AABwbzk5OQoPD3e8j18KZUdyfHTl5+dH2QEAoIr5vVNQOEEZAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYGmUHAABYmldlBwAAWJvtBVtlRyjBTDaVHQHXEEd2AACApXFkB6XiX2IAAKvgyA4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALC0Si07KSkp6t27t8LCwmSz2bRmzZpLzn3ooYdks9k0c+ZMp/FTp04pNjZWfn5+CggIUEJCgnJzcys2OAAAqDIqteycPXtWrVq10uzZsy87b/Xq1dq6davCwsJKrIuNjdXevXu1YcMGffjhh0pJSdHIkSMrKjIAAKhivCpz5z169FCPHj0uO+fYsWN69NFH9dFHH6lXr15O6/bt26fk5GRt375d0dHRkqRZs2apZ8+eeuWVV0otRwAA4L+LW5+zU1xcrKFDh+rJJ59U8+bNS6xPTU1VQECAo+hIUkxMjDw8PLRt27ZLbjc/P185OTlOCwAAsCa3LjvTpk2Tl5eXHnvssVLXZ2RkKCgoyGnMy8tLgYGBysjIuOR2ExMT5e/v71jCw8NdmhsAALgPty07aWlpev3115WUlCSbzebSbY8fP17Z2dmOJT093aXbBwAA7sNty85nn32mEydOKCIiQl5eXvLy8tKRI0f0l7/8RfXr15ckhYSE6MSJE07PKyws1KlTpxQSEnLJbdvtdvn5+TktAADAmir1BOXLGTp0qGJiYpzGunXrpqFDhyo+Pl6S1L59e2VlZSktLU1t2rSRJH3yyScqLi5Wu3btrnlmAADgfiq17OTm5uq7775zPD506JB27dqlwMBARUREqHbt2k7zq1WrppCQEDVu3FiS1LRpU3Xv3l0jRozQ3LlzVVBQoNGjR2vQoEFciQUAACRV8sdYO3bsUFRUlKKioiRJ48aNU1RUlCZNmlTmbSxZskRNmjRR165d1bNnT3Xo0EF///vfKyoyAACoYir1yE6nTp1kjCnz/MOHD5cYCwwM1NKlS12YCgAAWInbnqAMAADgCpQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZQdAABgaZVadlJSUtS7d2+FhYXJZrNpzZo1jnUFBQV6+umn1bJlS1WvXl1hYWH605/+pB9//NFpG6dOnVJsbKz8/PwUEBCghIQE5ebmXuNXAgAA3FWllp2zZ8+qVatWmj17dol1586d086dOzVx4kTt3LlTq1at0v79+3Xvvfc6zYuNjdXevXu1YcMGffjhh0pJSdHIkSOv1UsAAABuzqsyd96jRw/16NGj1HX+/v7asGGD09ibb76ptm3b6ujRo4qIiNC+ffuUnJys7du3Kzo6WpI0a9Ys9ezZU6+88orCwsIq/DUAAAD3VqXO2cnOzpbNZlNAQIAkKTU1VQEBAY6iI0kxMTHy8PDQtm3bKiklAABwJ5V6ZKc88vLy9PTTT2vw4MHy8/OTJGVkZCgoKMhpnpeXlwIDA5WRkXHJbeXn5ys/P9/xOCcnp2JCAwCASlcljuwUFBRo4MCBMsZozpw5V729xMRE+fv7O5bw8HAXpAQAAO7I7cvOhaJz5MgRbdiwwXFUR5JCQkJ04sQJp/mFhYU6deqUQkJCLrnN8ePHKzs727Gkp6dXWH4AAFC53PpjrAtF58CBA9q0aZNq167ttL59+/bKyspSWlqa2rRpI0n65JNPVFxcrHbt2l1yu3a7XXa7vUKzAwAA91CpZSc3N1ffffed4/GhQ4e0a9cuBQYGKjQ0VP3799fOnTv14YcfqqioyHEeTmBgoLy9vdW0aVN1795dI0aM0Ny5c1VQUKDRo0dr0KBBXIkFAAAkVXLZ2bFjhzp37ux4PG7cOElSXFycnn/+ea1du1aS1Lp1a6fnbdq0SZ06dZIkLVmyRKNHj1bXrl3l4eGhfv366Y033rgm+QEAgPur1LLTqVMnGWMuuf5y6y4IDAzU0qVLXRkLAABYiNufoAwAAHA1KDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKDsAAMDSKrXspKSkqHfv3goLC5PNZtOaNWuc1htjNGnSJIWGhsrX11cxMTE6cOCA05xTp04pNjZWfn5+CggIUEJCgnJzc6/hqwAAAO6sUsvO2bNn1apVK82ePbvU9dOnT9cbb7yhuXPnatu2bapevbq6deumvLw8x5zY2Fjt3btXGzZs0IcffqiUlBSNHDnyWr0EAADg5rwqc+c9evRQjx49Sl1njNHMmTM1YcIE9enTR5K0aNEiBQcHa82aNRo0aJD27dun5ORkbd++XdHR0ZKkWbNmqWfPnnrllVcUFhZ2zV4LAABwT257zs6hQ4eUkZGhmJgYx5i/v7/atWun1NRUSVJqaqoCAgIcRUeSYmJi5OHhoW3btl1y2/n5+crJyXFaAACANblt2cnIyJAkBQcHO40HBwc71mVkZCgoKMhpvZeXlwIDAx1zSpOYmCh/f3/HEh4e7uL0AADAXbht2alI48ePV3Z2tmNJT0+v7EgAAKCCuG3ZCQkJkSRlZmY6jWdmZjrWhYSE6MSJE07rCwsLderUKcec0tjtdvn5+TktAADAmty27ERGRiokJEQbN250jOXk5Gjbtm1q3769JKl9+/bKyspSWlqaY84nn3yi4uJitWvX7ppnBgAA7qdSr8bKzc3Vd99953h86NAh7dq1S4GBgYqIiNCYMWP017/+VY0aNVJkZKQmTpyosLAw9e3bV5LUtGlTde/eXSNGjNDcuXNVUFCg0aNHa9CgQVyJBQAAJFVy2dmxY4c6d+7seDxu3DhJUlxcnJKSkvTUU0/p7NmzGjlypLKystShQwclJyfLx8fH8ZwlS5Zo9OjR6tq1qzw8PNSvXz+98cYb1/y1AAAA92QzxpjKDlHZcnJy5O/vr+zsbM7f+f9sL9gqO0IJZvJ//a8qUCXx9wkqSlnfv932nB0AAABXoOwAAABLc0nZycrKcsVmAAAAXK7cZWfatGlavny54/HAgQNVu3Zt1a1bV7t373ZpOAAAgKtV7rIzd+5cx+0VNmzYoA0bNmj9+vXq0aOHnnzySZcHBAAAuBrlvvQ8IyPDUXY+/PBDDRw4UHfffbfq16/PF/kBAAC3U+4jO7Vq1XLcSyo5OdlxV3JjjIqKilybDgAA4CqV+8jO/fffryFDhqhRo0b6+eef1aNHD0nSl19+qYYNG7o8IAAAwNUod9mZMWOG6tevr/T0dE2fPl01atSQJB0/flyPPPKIywMCAABcjXKXnWrVqumJJ54oMT527FiXBAIAAHClK/qencWLF6tDhw4KCwvTkSNHJEkzZ87U+++/79JwAAAAV6vcZWfOnDkaN26cevTooaysLMdJyQEBAZo5c6ar8wEAAFyVcpedWbNm6e2339Zzzz0nT09Px3h0dLS++uorl4YDAAC4WuUuO4cOHVJUVFSJcbvdrrNnz7okFAAAgKuUu+xERkZq165dJcaTk5PVtGlTV2QCAABwmXJfjTVu3DiNGjVKeXl5Msboiy++0LvvvqvExET94x//qIiMAAAAV6zcZefBBx+Ur6+vJkyYoHPnzmnIkCEKCwvT66+/rkGDBlVERgAAgCtW7rIjSbGxsYqNjdW5c+eUm5uroKAgV+cCAABwiSsqOxdcd911uu6661yVBQAAwOXKXXYiIyNls9kuuf7gwYNXFQgAAMCVyl12xowZ4/S4oKBAX375pZKTk/Xkk0+6KhcAAIBLlLvsPP7446WOz549Wzt27LjqQAAAAK50RffGKk2PHj303nvvuWpzAAAALuGysrNy5UoFBga6anMAAAAuUe6PsaKiopxOUDbGKCMjQydPntRbb73l0nAAAABXq9xlp2/fvk6PPTw8dP3116tTp05q0qSJq3IBAAC4RLnLzuTJkysiBwAAQIUoU9nJyckp8wb9/PyuOAwAAICrlansBAQEXPaLBKVfz92x2WwqKipySTAAAABXKFPZ2bRpU0XnAAAAqBBlKjsdO3as6BwAAAAV4opvBHru3DkdPXpU58+fdxq/+eabrzoUAACAq5S77Jw8eVLx8fFav359qes5ZwcAALiTcn+D8pgxY5SVlaVt27bJ19dXycnJWrhwoRo1aqS1a9dWREYAAIArVu4jO5988onef/99RUdHy8PDQ/Xq1dNdd90lPz8/JSYmqlevXhWREwAA4IqU+8jO2bNnFRQUJEmqVauWTp48KUlq2bKldu7c6dp0AAAAV6ncZadx48bav3+/JKlVq1aaN2+ejh07prlz5yo0NNSl4YqKijRx4kRFRkbK19dXDRo00IsvvihjjGOOMUaTJk1SaGiofH19FRMTowMHDrg0BwAAqLrK/THW448/ruPHj0v69dYR3bt315IlS+Tt7a2kpCSXhps2bZrmzJmjhQsXqnnz5tqxY4fi4+Pl7++vxx57TJI0ffp0vfHGG1q4cKEiIyM1ceJEdevWTV9//bV8fHxcmgcAAFQ9ZS47/fv314MPPqjY2FjHtym3adNGR44c0TfffKOIiAjVqVPHpeG2bNmiPn36OM4Dql+/vt5991198cUXkn49qjNz5kxNmDBBffr0kSQtWrRIwcHBWrNmjQYNGuTSPAAAoOop88dYp0+fVq9evRQREaFJkybp4MGDkqTrrrtOt9xyi8uLjiTddttt2rhxo7799ltJ0u7du/X555+rR48ekqRDhw4pIyNDMTExjuf4+/urXbt2Sk1NveR28/PzlZOT47QAAABrKnPZ2bhxow4ePKiEhAT985//VKNGjdSlSxctXbpU+fn5FRLumWee0aBBg9SkSRNVq1ZNUVFRGjNmjGJjYyVJGRkZkqTg4GCn5wUHBzvWlSYxMVH+/v6OJTw8vELyAwCAyleuE5Tr1aun559/XgcPHtSGDRsUFhamESNGKDQ0VKNGjVJaWppLw/3rX//SkiVLtHTpUu3cuVMLFy7UK6+8ooULF17VdsePH6/s7GzHkp6e7qLEAADA3Vzx7SK6dOmiLl266MyZM1q6dKmeffZZzZs3T4WFhS4L9+STTzqO7ki/Xt5+5MgRJSYmKi4uTiEhIZKkzMxMpyvBMjMz1bp160tu1263y263uywnAABwX+W+9Pxihw4d0iuvvKKpU6cqOzvb6dwZVzh37pw8PJwjenp6qri4WJIUGRmpkJAQbdy40bE+JydH27ZtU/v27V2aBQAAVE3lPrKTl5enlStX6p133lFKSorCw8OVkJCg+Ph4l5/70rt3b/3tb39TRESEmjdvri+//FKvvfaahg8fLkmy2WwaM2aM/vrXv6pRo0aOS8/DwsLUt29fl2YBAABVU5nLzhdffKF33nlHy5cvV15enu677z4lJyera9eujkvRXW3WrFmaOHGiHnnkEZ04cUJhYWH685//rEmTJjnmPPXUUzp79qxGjhyprKwsdejQQcnJyXzHDgAAkCTZzMVfR3wZHh4eatWqlRISEhQbG6tatWpVdLZrJicnR/7+/srOzpafn19lx3ELthcqpsBeDTO5TL+qANwMf5+gopT1/bvMR3Z27NihW265xSXhAAAArpUyn6BM0QEAAFXRVV2NBQAA4O4oOwAAwNIoOwAAwNLKXHZOnDhx2fWFhYWOu5EDAAC4izKXndDQUKfC07JlS6d7Sv388898azEAAHA7ZS47v/06nsOHD6ugoOCycwAAACqbS8/ZqahvUgYAALhSnKAMAAAsrczfoGyz2XTmzBn5+PjIGCObzabc3Fzl5ORIkuN/AQAA3EmZy44xRjfddJPT46ioKKfHfIwFAADcTZnLzqZNmyoyBwAAQIUoc9np2LFjReYAAACoEGUuO4WFhSoqKpLdbneMZWZmau7cuTp79qzuvfdedejQoUJCAgAAXKkyl50RI0bI29tb8+bNkySdOXNGt956q/Ly8hQaGqoZM2bo/fffV8+ePSssLAAAQHmV+dLzf//73+rXr5/j8aJFi1RUVKQDBw5o9+7dGjdunF5++eUKCQkAAHClylx2jh07pkaNGjkeb9y4Uf369ZO/v78kKS4uTnv37nV9QgAAgKtQ5rLj4+OjX375xfF469atateundP63Nxc16YDAAC4SmUuO61bt9bixYslSZ999pkyMzPVpUsXx/rvv/9eYWFhrk8IAABwFcp8gvKkSZPUo0cP/etf/9Lx48c1bNgwhYaGOtavXr1at99+e4WEBAAAuFLl+p6dtLQ0ffzxxwoJCdGAAQOc1rdu3Vpt27Z1eUAAAICrUeayI0lNmzZV06ZNS103cuRIlwQCAABwpTKXnZSUlDLNu/POO684DAAAgKuVuex06tTJcaNPY0ypc2w2m4qKilyTDAAAwAXKXHZq1aqlmjVratiwYRo6dKjq1KlTkbkAAABcosyXnh8/flzTpk1TamqqWrZsqYSEBG3ZskV+fn7y9/d3LAAAAO6kzGXH29tbf/zjH/XRRx/pm2++0c0336zRo0crPDxczz33nAoLCysyJwAAwBUpc9m5WEREhCZNmqT//d//1U033aSXXnpJOTk5rs4GAABw1cpddvLz87V06VLFxMSoRYsWqlOnjv7nf/5HgYGBFZEPAADgqpT5BOUvvvhCCxYs0LJly1S/fn3Fx8frX//6FyUHAAC4tTKXnT/84Q+KiIjQY489pjZt2kiSPv/88xLz7r33XtelAwAAuErl+gblo0eP6sUXX7zker5nBwAAuJsyl53i4uKKzAEAAFAhruhqrEv55ZdfXLk5AACAq+aSspOfn69XX31VkZGRrtgcAACAy5S57OTn52v8+PGKjo7WbbfdpjVr1kiSFixYoMjISM2cOVNjx451ecBjx47pgQceUO3ateXr66uWLVtqx44djvXGGE2aNEmhoaHy9fVVTEyMDhw44PIcAACgaipz2Zk0aZLmzJmj+vXr6/DhwxowYIBGjhypGTNm6LXXXtPhw4f19NNPuzTc6dOndfvtt6tatWpav369vv76a7366quqVauWY8706dP1xhtvaO7cudq2bZuqV6+ubt26KS8vz6VZAABA1VTmE5RXrFihRYsW6d5779WePXt08803q7CwULt373bcDd3Vpk2bpvDwcC1YsMAxdvFHZcYYzZw5UxMmTFCfPn0kSYsWLVJwcLDWrFmjQYMGVUguAABQdZT5yM4PP/zg+H6dFi1ayG63a+zYsRVWdCRp7dq1io6O1oABAxQUFKSoqCi9/fbbjvWHDh1SRkaGYmJiHGP+/v5q166dUlNTKywXAACoOspcdoqKiuTt7e147OXlpRo1alRIqAsOHjyoOXPmqFGjRvroo4/08MMP67HHHtPChQslSRkZGZKk4OBgp+cFBwc71pUmPz9fOTk5TgsAALCmMn+MZYzRsGHDZLfbJUl5eXl66KGHVL16dad5q1atclm44uJiRUdHa+rUqZKkqKgo7dmzR3PnzlVcXNwVbzcxMVEvvPCCq2ICAAA3VuYjO3FxcQoKCpK/v7/8/f31wAMPKCwszPH4wuJKoaGhatasmdNY06ZNdfToUUlSSEiIJCkzM9NpTmZmpmNdacaPH6/s7GzHkp6e7tLcAADAfZT5yM7FJwlfK7fffrv279/vNPbtt9+qXr16kn49WTkkJEQbN25U69atJUk5OTnatm2bHn744Utu1263O45QAQAAayvXvbGutbFjx+q2227T1KlTNXDgQH3xxRf6+9//rr///e+Sfr0X15gxY/TXv/5VjRo1UmRkpCZOnKiwsDD17du3csMDAAC34NZl59Zbb9Xq1as1fvx4TZkyxfHlhbGxsY45Tz31lM6ePauRI0cqKytLHTp0UHJysnx8fCoxOQAAcBc2Y4yp7BCVLScnR/7+/srOzpafn19lx3ELthcq7isFrpSZ/F//qwpUSfx9gopS1vdvl94IFAAAwN1QdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVRdgAAgKVVqbLz0ksvyWazacyYMY6xvLw8jRo1SrVr11aNGjXUr18/ZWZmVl5IAADgVqpM2dm+fbvmzZunm2++2Wl87Nix+uCDD7RixQp9+umn+vHHH3X//fdXUkoAAOBuqkTZyc3NVWxsrN5++23VqlXLMZ6dna358+frtddeU5cuXdSmTRstWLBAW7Zs0datWysxMQAAcBdVouyMGjVKvXr1UkxMjNN4WlqaCgoKnMabNGmiiIgIpaamXnJ7+fn5ysnJcVoAAIA1eVV2gN+zbNky7dy5U9u3by+xLiMjQ97e3goICHAaDw4OVkZGxiW3mZiYqBdeeMHVUQEAgBty6yM76enpevzxx7VkyRL5+Pi4bLvjx49Xdna2Y0lPT3fZtgEAgHtx67KTlpamEydO6JZbbpGXl5e8vLz06aef6o033pCXl5eCg4N1/vx5ZWVlOT0vMzNTISEhl9yu3W6Xn5+f0wIAAKzJrT/G6tq1q7766iunsfj4eDVp0kRPP/20wsPDVa1aNW3cuFH9+vWTJO3fv19Hjx5V+/btKyMyAABwM25ddmrWrKkWLVo4jVWvXl21a9d2jCckJGjcuHEKDAyUn5+fHn30UbVv315/+MMfKiMyAABwM25ddspixowZ8vDwUL9+/ZSfn69u3brprbfequxYAADATVS5srN582anxz4+Ppo9e7Zmz55dOYEAAIBbc+sTlAEAAK4WZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFgaZQcAAFiaW5edxMRE3XrrrapZs6aCgoLUt29f7d+/32lOXl6eRo0apdq1a6tGjRrq16+fMjMzKykxAABwN25ddj799FONGjVKW7du1YYNG1RQUKC7775bZ8+edcwZO3asPvjgA61YsUKffvqpfvzxR91///2VmBoAALgTr8oOcDnJyclOj5OSkhQUFKS0tDTdeeedys7O1vz587V06VJ16dJFkrRgwQI1bdpUW7du1R/+8IfKiA0AANyIWx/Z+a3s7GxJUmBgoCQpLS1NBQUFiomJccxp0qSJIiIilJqaesnt5OfnKycnx2kBAADWVGXKTnFxscaMGaPbb79dLVq0kCRlZGTI29tbAQEBTnODg4OVkZFxyW0lJibK39/fsYSHh1dkdAAAUImqTNkZNWqU9uzZo2XLll31tsaPH6/s7GzHkp6e7oKEAADAHbn1OTsXjB49Wh9++KFSUlJ0ww03OMZDQkJ0/vx5ZWVlOR3dyczMVEhIyCW3Z7fbZbfbKzIyAABwE259ZMcYo9GjR2v16tX65JNPFBkZ6bS+TZs2qlatmjZu3OgY279/v44ePar27dtf67gAAMANufWRnVGjRmnp0qV6//33VbNmTcd5OP7+/vL19ZW/v78SEhI0btw4BQYGys/PT48++qjat2/PlVgAAECSm5edOXPmSJI6derkNL5gwQINGzZMkjRjxgx5eHioX79+ys/PV7du3fTWW29d46QAAMBduXXZMcb87hwfHx/Nnj1bs2fPvgaJAABAVePW5+wAAABcLcoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNMoOAACwNK/KDgAAAFzH9oKtsiOUYCabSt0/R3YAAIClcWQHwH8d/uUL/HfhyA4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA07noOAFUEd2sHrgxlB3ADVfVNrKrmBsqC32/r4GMsAABgaZY5sjN79my9/PLLysjIUKtWrTRr1iy1bdu2smPhGuNfYgCA37JE2Vm+fLnGjRunuXPnql27dpo5c6a6deum/fv3KygoqFKz8eYLAEDlssTHWK+99ppGjBih+Ph4NWvWTHPnztV1112nd955p7KjAQCASlbly8758+eVlpammJgYx5iHh4diYmKUmppaickAAIA7qPIfY/30008qKipScHCw03hwcLC++eabUp+Tn5+v/Px8x+Ps7GxJUk5OjusD5rl+k1erTK+T3C5D7muL3NcWua8tS+e+iu0a8zunZ5gq7tixY0aS2bJli9P4k08+adq2bVvqcyZPnmwksbCwsLCwsFhgSU9Pv2xXqPJHdurUqSNPT09lZmY6jWdmZiokJKTU54wfP17jxo1zPC4uLtapU6dUu3Zt2Wzud0Kx9Gt7DQ8PV3p6uvz8/Co7TpmR+9oi97VF7muL3NdWVchtjNGZM2cUFhZ22XlVvux4e3urTZs22rhxo/r27Svp1/KyceNGjR49utTn2O122e12p7GAgIAKTuoafn5+bvtLdznkvrbIfW2R+9oi97Xl7rn9/f1/d06VLzuSNG7cOMXFxSk6Olpt27bVzJkzdfbsWcXHx1d2NAAAUMksUXb++Mc/6uTJk5o0aZIyMjLUunVrJScnlzhpGQAA/PexRNmRpNGjR1/yYysrsNvtmjx5comP39wdua8tcl9b5L62yH1tVdXcpbEZ83vXawEAAFRdVf5LBQEAAC6HsgMAACyNsgMAACyNsgMAACyNsuNiw4YNk81mk81mU7Vq1RQZGamnnnpKeXn/d7OSC+u3bt3q9Nz8/HzHtzhv3rzZMf7pp5+qS5cuCgwM1HXXXadGjRopLi5O58+flyRt3rzZsc3fLhkZGZKkvXv3ql+/fqpfv75sNptmzpxZJXK//fbbuuOOO1SrVi3VqlVLMTEx+uKLL9w+96pVqxQdHa2AgABVr15drVu31uLFi90+98WWLVsmm83m+LJOd86dlJRUYp2Pj4/b55akrKwsjRo1SqGhobLb7brpppu0bt06t87dqVOnUtf36tXLrXNL0syZM9W4cWP5+voqPDxcY8eOdeRy19wFBQWaMmWKGjRoIB8fHwUGBrplzt97n7lg9uzZql+/vnx8fNSuXTunv9MrCmWnAnTv3l3Hjx/XwYMHNWPGDM2bN0+TJ092mhMeHq4FCxY4ja1evVo1atRwGvv666/VvXt3RUdHKyUlRV999ZVmzZolb29vFRUVOc3dv3+/jh8/7rQEBQVJks6dO6cbb7xRL7300iVvo+GOuTdv3qzBgwdr06ZNSk1NVXh4uO6++24dO3bMrXMHBgbqueeeU2pqqv7zn/8oPj5e8fHx+uijj9w69wWHDx/WE088oTvuuEO/5a65/fz8nNYdOXLE7XOfP39ed911lw4fPqyVK1dq//79evvtt1W3bl23zr1q1Sqn8T179sjT01MDBgxw69xLly7VM888o8mTJ2vfvn2aP3++li9frmeffdatc0+YMEHz5s3TrFmz9PXXX6tx48by8PDQxx9/7FY5y/I+s3z5co0bN06TJ0/Wzp071apVK3Xr1k0nTpwodb7LuOZ2nLggLi7O9OnTx2ns/vvvN1FRUY7HksyECROMn5+fOXfunGP8rrvuMhMnTjSSzKZNm4wxxsyYMcPUr1//svvctGmTkWROnz5dpoz16tUzM2bMqHK5jTGmsLDQ1KxZ0yxcuLBK5TbGmKioKDNhwgS3z11YWGhuu+02849//KNETnfNvWDBAuPv73/J9e6ae86cOebGG28058+fr1K5f2vGjBmmZs2aJjc3161zjxo1ynTp0sVpbNy4ceb2229369yhoaHmzTffdDyOi4szoaGhJjY21q1yXqy09xljjGnbtq0ZNWqU43FRUZEJCwsziYmJZdruleLITgXbs2ePtmzZIm9vb6fxNm3aqH79+nrvvfckSUePHlVKSoqGDh3qNC8kJETHjx9XSkrKNcssuW/uc+fOqaCgQIGBgVUmtzFGGzdu1P79+3XnnXe6fe4pU6YoKChICQkJvzvXnXLn5uaqXr16Cg8PV58+fbR37163z7127Vq1b99eo0aNUnBwsFq0aKGpU6eW+Ne0u+X+rfnz52vQoEGqXr26W+e+7bbblJaW5vjY5ODBg1q3bp169uzp1rnz8/OdPpaVJE9PT33++edulfP3nD9/XmlpaYqJiXGMeXh4KCYmRqmpqRW6b47suFhcXJzx9PQ01atXN3a73UgyHh4eZuXKlY45kszq1avNzJkzTefOnY0xxrzwwgvmvvvuM6dPn3Zq3IWFhWbYsGFGkgkJCTF9+/Y1s2bNMtnZ2Y7tXWjc1atXd1qaNWtWasZLHdlx99zGGPPwww+bG2+80fzyyy9unzsrK8tUr17deHl5GbvdbubPn+/2P+/PPvvM1K1b15w8edKR87dHdtwx95YtW8zChQvNl19+aTZv3mzuuece4+fnZ9LT0906d+PGjY3dbjfDhw83O3bsMMuWLTOBgYHm+eefd+vcF9u2bZuRZLZt2+b2vyfGGPP666+batWqGS8vLyPJPPTQQ26fe/DgwaZZs2bm22+/NUVFReauu+4ykowkt8p5sdLeZ44dO2YkmS1btjiNP/nkk6Zt27albsdVKDsuFhcXZ2JiYsyBAwfMrl27TFxcnElISHCac+GX8KeffjI+Pj7m+++/N5GRkeaDDz4o8Ut4wQ8//GAWLVpkRo0aZUJDQ80NN9xgfvzxR2PM//0S7ty50xw4cMCxHD58uNSMlyo77p47MTHR1KpVy+zevbtK5C4qKjIHDhwwX375pXnllVeMv7+/Yz/umDsnJ8fUr1/frFu3zunn+9uy4265S3P+/HnToEEDp48N3TF3o0aNTHh4uCksLHSMvfrqqyYkJMStc19s5MiRpmXLlk5j7pp706ZNJjg42Lz99tvmP//5j1m1apUJDw83U6ZMcevcJ06cMH369DEeHh7G09PT+Pn5mRtuuMF4e3u7Vc6LUXYs7rdvDkVFRaZFixbmH//4h2Pswi+hMcb079/fdOrUyYSGhprCwsJL/hJe7NSpU6ZOnTpm0qRJxpiKOWfH3XK//PLLxt/f32zfvr1K5b5YQkKCufvuu90295dffmkkGU9PT8dis9mMzWYznp6e5rvvvnPL3JfSv39/M2jQIGOMe/68jTHmzjvvNF27dnUaW7dunZFk8vPz3Tb3Bbm5ucbPz8/MnDnTadxdc3fo0ME88cQTTmOLFy82vr6+pqioyG1zX/DLL7+YH374wcTFxZmGDRs6jqq4W05jSn+fyc/PN56eno5cF/zpT38y9957b5m2e6U4Z6eCeXh46Nlnn9WECRP0yy+/lFg/fPhwbd68WX/605/k6elZpm3WqlVLoaGhOnv2rKvjOrhT7unTp+vFF19UcnKyoqOjq0zu3youLlZ+fr7b5m7SpIm++uor7dq1y7Hce++96ty5s3bt2qXw8HC3zF2aoqIiffXVVwoNDS11vbvkvv322/Xdd9+puLjYMfbtt98qNDS0xPkX7pT7ghUrVig/P18PPPDAZee5S+5z587Jw8P5be/C/kwpt4l0l9wX+Pj4qG7duiouLtaPP/6oPn36uGXOS/H29labNm20ceNGx1hxcbE2btyo9u3bu2w/pbHMXc/d2YABA/Tkk09q9uzZeuKJJ5zWde/eXSdPnpSfn1+pz503b5527dql++67Tw0aNFBeXp4WLVqkvXv3atasWU5zT5w44fQ9C5JUu3ZtVatWTefPn9fXX38t6deTxI4dO6Zdu3apRo0aatiwodvmnjZtmiZNmqSlS5eqfv36ju9zqFGjRonLJ90pd2JioqKjo9WgQQPl5+dr3bp1Wrx4sebMmVPqft0ht4+Pj1q0aOE0HhAQIEklxt0pd7Vq1TRlyhT94Q9/UMOGDZWVlaWXX35ZR44c0YMPPujWuR9++GG9+eabevzxx/Xoo4/qwIEDmjp1qh577DG3zn3B/Pnz1bdvX9WuXfuSed0pd+/evfXaa68pKipK7dq103fffaeJEyeqd+/elywB7pB727ZtOnbsmFq3bq1jx45pw4YNkqSnnnrKrXKW5X1m3LhxiouLU3R0tNq2bauZM2fq7Nmzio+PLzWby1TocaP/QqVdumjMr+ebXH/99SY3N9fp8OJv/fbw4s6dO80DDzxgIiMjjd1uN7Vr1zZ33nmnWbt2reM5Fw4vlrakpqYaY4w5dOhQqes7duzo1rnr1atX6vrJkye7de7nnnvONGzY0Pj4+JhatWqZ9u3bm2XLljm24a65f6ssl567Q+4xY8aYiIgI4+3tbYKDg03Pnj3Nzp073T63Mb+eXN2uXTtjt9vNjTfeaP72t785zuFx59zffPONkWQ+/vjjEvt119wFBQXm+eefNw0aNDA+Pj4mPDzcPPLII46PZtw19+bNm03Tpk0d27jxxhtNt27d3C7n773PXDBr1izHf69t27Y1W7duLTWnK9mMKeXYHQAAgEVwzg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AALA0yg4AlOL5559X69aty/Ucm82mNWvWXHL94cOHZbPZtGvXrqvKBqB8KDsAnAwbNkw2m002m03VqlVTZGSknnrqqRJfEX9hztatW53G8/PzVbt2bdlsNm3evNkx/umnn6pLly4KDAzUddddp0aNGikuLk7nz5+XJG3evNmxzd8uF24TcrG0tLRS939B165ddf/991/xz+GJJ55wuocPgKqLsgOghO7du+v48eM6ePCgZsyYoXnz5mny5Mkl5oWHh2vBggVOY6tXry5x37Kvv/5a3bt3V3R0tFJSUvTVV19p1qxZ8vb2VlFRkdPc/fv36/jx405LUFBQiX23adNGrVq10jvvvFNi3eHDh7Vp0yYlJCSU+7UbY1RYWKgaNWqU6Z5PANwfZQdACXa7XSEhIQoPD1ffvn0VExPjuPngxeLi4rRs2TKnOy2/8847iouLc5r38ccfKyQkRNOnT1eLFi3UoEEDde/eXW+//bZ8fX2d5gYFBSkkJMRp+e2dqi9ISEjQ8uXLde7cOafxpKQkhYaGqnv37lq8eLGio6NVs2ZNhYSEaMiQITpx4oRj7oUjSuvXr1ebNm1kt9v1+eefl/gYa/v27brrrrtUp04d+fv7q2PHjtq5c2eJTMePH1ePHj3k6+urG2+8UStXrrz0D1rSnj171KNHD9WoUUPBwcEaOnSofvrpJ8f6lStXqmXLlvL19VXt2rUVExPj0jtRA/8NKDsALmvPnj3asmWLvL29S6xr06aN6tevr/fee0+SdPToUaWkpGjo0KFO80JCQnT8+HGlpKS4NFtsbKzy8/OdCoUxRgsXLtSwYcPk6empgoICvfjii9q9e7fWrFmjw4cPa9iwYSW29cwzz+ill17Svn37dPPNN5dYf+bMGcXFxenzzz/X1q1b1ahRI/Xs2VNnzpxxmjdx4kT169dPu3fvVmxsrAYNGqR9+/aVmj8rK0tdunRRVFSUduzYoeTkZGVmZmrgwIGSfi1OgwcP1vDhw7Vv3z5t3rxZ999/v7ilIVBOFX6rUQBVSlxcnPH09DTVq1c3drvdSDIeHh5m5cqVTvP0/++qPHPmTNO5c2djjDEvvPCCue+++0rcVbmwsNAMGzbMSDIhISGmb9++ZtasWSY7O9uxvQt3Va5evbrT0qxZs8vmHTRokNNdlTdu3GgkmQMHDpQ6f/v27UaSOXPmjNN+16xZ4zRv8uTJplWrVpfcb1FRkalZs6b54IMPnH4mDz30kNO8du3amYcfftgY8393hf7yyy+NMca8+OKL5u6773aan56ebiSZ/fv3m7S0NCPJHD58+LI/AwCXx5EdACV07txZu3bt0rZt2xQXF6f4+Hj169ev1LkPPPCAUlNTdfDgQSUlJWn48OEl5nh6emrBggX64YcfNH36dNWtW1dTp05V8+bNdfz4cae5n332mXbt2uVY1q1bd9msw4cPV0pKir7//ntJv36M1rFjRzVs2FDSrycy9+7dWxEREapZs6Y6duwo6dejUBeLjo6+7H4yMzM1YsQINWrUSP7+/vLz81Nubm6J7bRv377E40sd2dm9e7c2bdqkGjVqOJYmTZpIkr7//nu1atVKXbt2VcuWLTVgwAC9/fbbOn369GVzAiiJsgOghOrVq6thw4aOE4C3bdum+fPnlzq3du3auueee5SQkKC8vDz16NHjktutW7euhg4dqjfffFN79+5VXl6e5s6d6zQnMjJSDRs2dCz16tW7bNauXbsqIiJCSUlJysnJ0apVqxwnJp89e1bdunWTn5+flixZou3bt2v16tWS5LgK7OLXfDlxcXHatWuXXn/9dW3ZskW7du1S7dq1S2ynPHJzc9W7d2+ncrdr1y4dOHBAd955pzw9PbVhwwatX79ezZo106xZs9S4cWMdOnToivcJ/Dei7AC4LA8PDz377LOaMGGC04nIFxs+fLg2b96sP/3pT/L09CzTdmvVqqXQ0NCrPtnWw8ND8fHxWrhwoZYuXSpvb2/1799fkvTNN9/o559/1ksvvaQ77rhDTZo0cTo5uTz+/e9/67HHHlPPnj3VvHlz2e12pxOJL/jtpfBbt25V06ZNS93mLbfcor1796p+/fpOBa9hw4aO8mWz2XT77bfrhRde0Jdffilvb29HYQNQNpQdAL9rwIAB8vT01OzZs0td3717d508eVJTpkwpdf28efP08MMP6+OPP9b333+vvXv36umnn9bevXvVu3dvp7knTpxQRkaG01JQUHDZfPHx8Tp27JieffZZDR482HGFV0REhLy9vTVr1iwdPHhQa9eu1YsvvngFPwGpUaNGWrx4sfbt26dt27YpNja2xJVkkrRixQq98847+vbbbzV58mR98cUXGj16dKnbHDVqlE6dOqXBgwdr+/bt+v777/XRRx8pPj5eRUVF2rZtm6ZOnaodO3bo6NGjWrVqlU6ePHnJ8gSgdJQdAL/Ly8tLo0eP1vTp00s9EmOz2VSnTp1Sr9iSpLZt2yo3N1cPPfSQmjdvro4dO2rr1q1as2aN4xyaCxo3bqzQ0FCnJS0t7bL5IiIiFBMTo9OnTzudM3T99dcrKSlJK1asULNmzfTSSy/plVdeuYKfgDR//nydPn1at9xyi4YOHarHHnus1O//eeGFF7Rs2TLdfPPNWrRokd599101a9as1G2GhYXp3//+t4qKinT33XerZcuWGjNmjAICAuTh4SE/Pz+lpKSoZ8+euummmzRhwgS9+uqrl/2oEEBJNmO4hhEAAFgXR3YAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAIClUXYAAICl/T/eW9kFikhhAwAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of MAE values from mae1 to mae10\n", + "mae_values = [mae1, mae2, mae3, mae4, mae5, mae6, mae7, mae8, mae9, mae10]\n", + "\n", + "# List of corresponding labels for each MAE value\n", + "labels = ['MAE1', 'MAE2', 'MAE3', 'MAE4', 'MAE5', 'MAE6', 'MAE7', 'MAE8', 'MAE9', 'MAE10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, mae_values, color='orange')\n", + "plt.xlabel('MAE Variables')\n", + "plt.ylabel('MAE Values')\n", + "plt.title('Bar Graph of MAE')\n", + "plt.show()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "nrZu-K-KDCJ2", + "outputId": "69165581-da05-4554-a464-a606eb87a734" + }, + "execution_count": 119, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6NklEQVR4nO3deVRV9eL+8ecACogCOTCYqJSzlJqmoXlNozCH1JyHGwqpleZ0q6v3qmVZppU567VQ1ASHUktzyOg6hpqmpTknzoJDCqKJCvv3h1/Pr3MBZTjAYfd+rbXX6uzxOcTiPH72cCyGYRgCAAAwKafCDgAAAJCfKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsAAMDUKDsA/hLefvttWSwWXbx4Md+PtXbtWtWtW1dubm6yWCy6cuVKvh8TQNYoO0ARFxUVJYvFYjP5+PioefPmWrNmTYHnWblypdq2bStfX18VL15cpUuX1t/+9jd9/PHHSk5OLvA8Be3SpUvq0qWL3N3dNX36dC1YsEAeHh6Zrvvn/3dbtmzJsNwwDAUEBMhisahNmzaZ7uPKlSvWUnXgwIFM1+ndu3eG35G7k5ubW+7fLFBEuBR2AAD28c477ygwMFCGYSgxMVFRUVFq1aqVVq5cmeUHpT2lp6crIiJCUVFReuSRR/Tqq68qICBAV69eVVxcnEaOHKnVq1crNjY237MUph9//FFXr17Vu+++q5CQkGxt4+bmpujoaD355JM28zdu3KjTp0/L1dU1y22XLl0qi8UiPz8/LVy4UGPHjs10PVdXV3322WcZ5js7O2crI1CUUXYAk3juuefUoEED6+uIiAj5+voqJibGLmUnPT1dN2/ezHIkYMKECYqKitLQoUP18ccfy2KxWJcNHjxY586d0/z58/N0jKLg/PnzkiRvb+9sb9OqVSstXbpUU6ZMkYvL//+zHB0drfr169/z1Nvnn3+uVq1aqVKlSoqOjs6y7Li4uKhXr17ZzgSYCaexAJPy9vaWu7u7zYenJH300Udq3LixypQpI3d3d9WvX19ffPFFhu0tFosGDhyohQsXqnbt2nJ1ddXatWszPdb169c1fvx41a5dWx9++KFN0bnL399f//znP7N9jNzkrF69utzc3FS/fn1t2rQp06xXrlxR79695e3tLS8vL/Xp00fXr1/P/If4P5YuXar69evL3d1dZcuWVa9evXTmzBnr8qeeekphYWGSpMcff1wWi0W9e/e+7367d++uS5cuaf369dZ5N2/e1BdffKEePXpkud3Jkye1efNmdevWTd26dVN8fLx++OGHbL0X4K+EkR3AJJKSknTx4kUZhqHz589r6tSpSklJyfCv+cmTJ+v5559Xz549dfPmTS1atEidO3fWqlWr1Lp1a5t1v//+ey1ZskQDBw5U2bJlVbly5UyPvWXLFl25ckWvv/56jk+LZHWMnOTcuHGjFi9erEGDBsnV1VUzZsxQy5YttWPHDgUFBdms26VLFwUGBmrcuHH66aef9Nlnn8nHx0fjx4+/Z86oqCj16dNHjz/+uMaNG6fExERNnjxZW7du1e7du+Xt7a1///vfql69umbPnm09rfjwww/f92dQuXJlBQcHKyYmRs8995wkac2aNUpKSlK3bt00ZcqUTLeLiYmRh4eH2rRpI3d3dz388MNauHChGjdunOn6mY0QFS9eXJ6envfNCBRpBoAibe7cuYakDJOrq6sRFRWVYf3r16/bvL5586YRFBRktGjRwma+JMPJycn49ddf75th8uTJhiRjxYoVNvNv375tXLhwwWZKT0/P1jFyklOSsXPnTuu8EydOGG5ubkaHDh2s89566y1DkhEeHm6zfYcOHYwyZcrc8/3dvHnT8PHxMYKCgow//vjDOn/VqlWGJGP06NHWeXf/f/z444/33Of/rjtt2jSjVKlS1vfduXNno3nz5oZhGEalSpWM1q1bZ9j+kUceMXr27Gl9/a9//csoW7ascevWLZv1wsLCMv0dkWSEhobeNydQ1HEaCzCJ6dOna/369Vq/fr0+//xzNW/eXC+99JKWLVtms567u7v1vy9fvqykpCQ1bdpUP/30U4Z9NmvWTLVq1brvse/eZVWyZEmb+Xv37lW5cuVspkuXLmXrGDnJGRwcrPr161tfV6xYUe3atdO6deuUlpZms+7LL79s87pp06a6dOnSPe8U27lzp86fP69XX33V5nqi1q1bq0aNGvrmm2+y3Da7unTpoj/++EOrVq3S1atXtWrVqnuewvrll1+0d+9ede/e3Tqve/fuunjxotatW5dhfTc3N+vvx5+nDz74IM/ZAUfHaSzAJBo2bGhzgXL37t1Vr149DRw4UG3atFHx4sUlSatWrdLYsWO1Z88epaamWtfP7DqbwMDAbB27VKlSkqSUlBSb+VWqVLFehzJ//nwtWLAg28fISc6qVatmmFetWjVdv35dFy5ckJ+fn3V+xYoVbdZ74IEHJN0pVFmdzjlx4oQkqXr16hmW1ahRI9PbxnOqXLlyCgkJUXR0tK5fv660tDR16tQpy/U///xzeXh46KGHHtLRo0cl3Sk0lStX1sKFCzOc6nN2ds723WGA2TCyA5iUk5OTmjdvrnPnzunIkSOSpM2bN+v555+Xm5ubZsyYodWrV2v9+vXq0aOHDMPIsI8/j67cS40aNSRJ+/bts5lfsmRJhYSEKCQkRA899FCm22Z2jJzmzImsrinK637toUePHlqzZo1mzZql5557Lss7ugzDUExMjK5du6ZatWqpatWq1un48eP66quvMhRP4K+MkR3AxG7fvi3p/4+4fPnll3Jzc9O6detsnt0yd+7cPB2nadOm8vLy0qJFizRixAg5OeXt31E5zXm3zP3Z4cOHVaJECZUrVy5PWSSpUqVKkqRDhw6pRYsWNssOHTpkXZ5XHTp0UP/+/bVt2zYtXrw4y/XuPn/nnXfeUc2aNW2WXb58Wf369dOKFSu41Rz4P4zsACZ169YtffvttypevLj1A9HZ2VkWi8XmOpbjx49rxYoVeTpWiRIl9Oabb2rfvn0aPnx4pqMkORk5yWnOuLg4m2t5Tp06pa+++krPPvusXR6a16BBA/n4+GjWrFk2p9TWrFmjAwcOZDhllFslS5bUzJkz9fbbb6tt27ZZrnf3FNYbb7yhTp062Ux9+/ZV1apVtXDhQrtkAsyAkR3AJNasWaODBw9KuvNgu+joaB05ckTDhw+3XovSunVrTZw4US1btlSPHj10/vx5TZ8+XVWqVNEvv/ySp+MPHz5cBw4c0Icffqhvv/1WHTt2VIUKFXT58mX99NNPWrp0qXx8fLL1wMCc5gwKClJoaKjNreeSNGbMmDy9p7uKFSum8ePHq0+fPmrWrJm6d+9uvfW8cuXKGjp0qF2OI8n6nJ6spKam6ssvv9QzzzyT5c/y+eef1+TJk3X+/Hn5+PhIujPK9/nnn2e6focOHbL8SgvADCg7gEmMHj3a+t9ubm6qUaOGZs6cqf79+1vnt2jRQpGRkfrggw80ZMgQBQYGavz48Tp+/Hiey46Tk5MWLFigjh076tNPP9XUqVN1+fJllSxZUkFBQXrvvffUt2/fDHdsZSanOZs1a6bg4GCNGTNGJ0+eVK1atRQVFaVHH300T+/pz3r37q0SJUrogw8+0D//+U95eHioQ4cOGj9+fI6elpxX33zzja5cuXLPkZ+2bdvq448/1qJFizRo0CBJd0rS3//+90zXj4+Pp+zA1CyGI1yVBwC5ZLFYNGDAAE2bNq2wowBwUFyzAwAATI2yAwAATI2yAwAATI0LlAEUaVx2COB+GNkBAACmRtkBAACmxmksSenp6Tp79qxKlSqV6ZcMAgAAx2MYhq5evary5cvf82tqKDuSzp49q4CAgMKOAQAAcuHUqVOqUKFClsspO5JKlSol6c4P6+5j9QEAgGNLTk5WQECA9XM8K5QdyXrqytPTk7IDAEARc79LULhAGQAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmJpLYQeAg4q2FHaCjHoYhZ0AAFAEMbIDAABMjbIDAABMjbIDAABMjbIDAABMjQuUAQD5ixseUMgY2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZG2QEAAKZWqGVn06ZNatu2rcqXLy+LxaIVK1bYLDcMQ6NHj5a/v7/c3d0VEhKiI0eO2Kzz+++/q2fPnvL09JS3t7ciIiKUkpJSgO8CAAA4skItO9euXVOdOnU0ffr0TJdPmDBBU6ZM0axZs7R9+3Z5eHgoNDRUN27csK7Ts2dP/frrr1q/fr1WrVqlTZs2qV+/fgX1FgAAgIOzGIZhFHYISbJYLFq+fLnat28v6c6oTvny5fWPf/xDr7/+uiQpKSlJvr6+ioqKUrdu3XTgwAHVqlVLP/74oxo0aCBJWrt2rVq1aqXTp0+rfPny2Tp2cnKyvLy8lJSUJE9Pz3x5f0VOtKWwE2TUwyF+VQHkFH9PkE+y+/ntsNfsxMfHKyEhQSEhIdZ5Xl5eatSokeLi4iRJcXFx8vb2thYdSQoJCZGTk5O2b99e4JkBAIDjcSnsAFlJSEiQJPn6+trM9/X1tS5LSEiQj4+PzXIXFxeVLl3auk5mUlNTlZqaan2dnJxsr9gAAMDBOOzITn4aN26cvLy8rFNAQEBhRwIAAPnEYcuOn5+fJCkxMdFmfmJionWZn5+fzp8/b7P89u3b+v33363rZGbEiBFKSkqyTqdOnbJzegAA4CgctuwEBgbKz89PsbGx1nnJycnavn27goODJUnBwcG6cuWKdu3aZV3n+++/V3p6uho1apTlvl1dXeXp6WkzAQAAcyrUa3ZSUlJ09OhR6+v4+Hjt2bNHpUuXVsWKFTVkyBCNHTtWVatWVWBgoEaNGqXy5ctb79iqWbOmWrZsqb59+2rWrFm6deuWBg4cqG7dumX7TiwAAGBuhVp2du7cqebNm1tfDxs2TJIUFhamqKgovfnmm7p27Zr69eunK1eu6Mknn9TatWvl5uZm3WbhwoUaOHCgnn76aTk5Oaljx46aMmVKgb8XAADgmBzmOTuFiefsZILnYgCwF/6eIJ8U+efsAAAA2ANlBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmBplBwAAmJpDl520tDSNGjVKgYGBcnd318MPP6x3331XhmFY1zEMQ6NHj5a/v7/c3d0VEhKiI0eOFGJqAADgSBy67IwfP14zZ87UtGnTdODAAY0fP14TJkzQ1KlTretMmDBBU6ZM0axZs7R9+3Z5eHgoNDRUN27cKMTkAADAUbgUdoB7+eGHH9SuXTu1bt1aklS5cmXFxMRox44dku6M6kyaNEkjR45Uu3btJEnz58+Xr6+vVqxYoW7duhVadgAA4BgcemSncePGio2N1eHDhyVJP//8s7Zs2aLnnntOkhQfH6+EhASFhIRYt/Hy8lKjRo0UFxeX5X5TU1OVnJxsMwEAAHNy6JGd4cOHKzk5WTVq1JCzs7PS0tL03nvvqWfPnpKkhIQESZKvr6/Ndr6+vtZlmRk3bpzGjBmTf8EBAIDDcOiRnSVLlmjhwoWKjo7WTz/9pHnz5umjjz7SvHnz8rTfESNGKCkpyTqdOnXKTokBAICjceiRnTfeeEPDhw+3XnvzyCOP6MSJExo3bpzCwsLk5+cnSUpMTJS/v791u8TERNWtWzfL/bq6usrV1TVfswMAAMfg0CM7169fl5OTbURnZ2elp6dLkgIDA+Xn56fY2Fjr8uTkZG3fvl3BwcEFmhUAADgmhx7Zadu2rd577z1VrFhRtWvX1u7duzVx4kSFh4dLkiwWi4YMGaKxY8eqatWqCgwM1KhRo1S+fHm1b9++cMMDAACH4NBlZ+rUqRo1apReffVVnT9/XuXLl1f//v01evRo6zpvvvmmrl27pn79+unKlSt68skntXbtWrm5uRVicgAA4Cgsxp8fR/wXlZycLC8vLyUlJcnT07Ow4ziGaEthJ8iox1/+VxUomvh7gnyS3c9vh75mBwAAIK8oOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNQoOwAAwNTyXHbS0tK0Z88eXb582R55AAAA7CrHZWfIkCGKjIyUdKfoNGvWTI899pgCAgK0YcMGe+cDAADIkxyXnS+++EJ16tSRJK1cuVLx8fE6ePCghg4dqn//+992DwgAAJAXOS47Fy9elJ+fnyRp9erV6ty5s6pVq6bw8HDt3bvX7gEBAADyIsdlx9fXV/v371daWprWrl2rZ555RpJ0/fp1OTs72z0gAABAXrjkdIM+ffqoS5cu8vf3l8ViUUhIiCRp+/btqlGjht0DAgAA5EWOy87bb7+toKAgnTp1Sp07d5arq6skydnZWcOHD7d7QAAAgLzIcdmRpE6dOkmSbty4YZ0XFhZmn0QAAAB2lONrdtLS0vTuu+/qwQcfVMmSJXXs2DFJ0qhRo6y3pAMAADiKHJed9957T1FRUZowYYKKFy9unR8UFKTPPvvMruEAAADyKsdlZ/78+Zo9e7Z69uxpc/dVnTp1dPDgQbuGAwAAyKscl50zZ86oSpUqGeanp6fr1q1bdgkFAABgLzkuO7Vq1dLmzZszzP/iiy9Ur149u4QCAACwlxzfjTV69GiFhYXpzJkzSk9P17Jly3To0CHNnz9fq1atyo+MAAAAuZbjkZ127dpp5cqV+u677+Th4aHRo0frwIEDWrlypfVpygAAAI4iV8/Zadq0qdavX2/vLAAAAHaX45EdAACAoiTHIztOTk6yWCxZLk9LS8tTIAAAAHvKcdlZvny5zetbt25p9+7dmjdvnsaMGWO3YAAAAPaQ47LTrl27DPM6deqk2rVra/HixYqIiLBLMAAAAHuw2zU7TzzxhGJjY+21OwAAALuwS9n5448/NGXKFD344IP22B0AAIDd5Pg01gMPPGBzgbJhGLp69apKlCihzz//3K7hAAAA8irHZeeTTz6xKTtOTk4qV66cGjVqpAceeMCu4QAAAPIqx2Wnd+/e+RADAAAgf2Sr7Pzyyy/Z3uGjjz6a6zAAAAD2lq2yU7duXVksFhmGcc/1LBYLDxUEAAAOJVtlJz4+Pr9zAAAA5ItslZ1KlSrldw4AAIB8kevn7Ozfv19r167V119/bTPZ25kzZ9SrVy+VKVNG7u7ueuSRR7Rz507rcsMwNHr0aPn7+8vd3V0hISE6cuSI3XMAAICiKcd3Yx07dkwdOnTQ3r17ba7juXs7uj2v2bl8+bKaNGmi5s2ba82aNSpXrpyOHDlic4v7hAkTNGXKFM2bN0+BgYEaNWqUQkNDtX//frm5udktCwAAKJpyPLIzePBgBQYG6vz58ypRooR+/fVXbdq0SQ0aNNCGDRvsGm78+PEKCAjQ3Llz1bBhQwUGBurZZ5/Vww8/LOnOqM6kSZM0cuRItWvXTo8++qjmz5+vs2fPasWKFXbNAgAAiqYcl524uDi98847Klu2rJycnOTk5KQnn3xS48aN06BBg+wa7uuvv1aDBg3UuXNn+fj4qF69evr000+ty+Pj45WQkKCQkBDrPC8vLzVq1EhxcXFZ7jc1NVXJyck2EwAAMKccl520tDSVKlVKklS2bFmdPXtW0p2LmA8dOmTXcMeOHdPMmTNVtWpVrVu3Tq+88ooGDRqkefPmSZISEhIkSb6+vjbb+fr6WpdlZty4cfLy8rJOAQEBds0NAAAcR46v2QkKCtLPP/+swMBANWrUSBMmTFDx4sU1e/ZsPfTQQ3YNl56ergYNGuj999+XJNWrV0/79u3TrFmzFBYWluv9jhgxQsOGDbO+Tk5OpvAAAGBSOR7ZGTlypNLT0yVJ77zzjuLj49W0aVOtXr1aU6ZMsWs4f39/1apVy2ZezZo1dfLkSUmSn5+fJCkxMdFmncTEROuyzLi6usrT09NmAgAA5pTtkZ0GDRropZdeUo8ePazloEqVKjp48KB+//33DN+Gbg9NmjTJcGrs8OHD1uf+BAYGys/PT7Gxsapbt66kO6M027dv1yuvvGLXLAAAoGjK9shOnTp19Oabb8rf318vvviizZ1XpUuXtnvRkaShQ4dq27Ztev/993X06FFFR0dr9uzZGjBggKQ7t7sPGTJEY8eO1ddff629e/fqxRdfVPny5dW+fXu75wEAAEVPtstOZGSkEhISNH36dJ08eVJPP/20qlSpovfff19nzpzJl3CPP/64li9frpiYGAUFBendd9/VpEmT1LNnT+s6b775pl577TX169dPjz/+uFJSUrR27VqesQMAACRJFuN+3+6Zhd9++01z587VggULdPbsWT377LOKiIjQCy+8YO+M+S45OVleXl5KSkri+p27ou0/UpdnPXL1qwqgsPH3BPkku5/fuf66iIcfflhjx47V8ePHFRMTo23btqlz58653R0AAEC+yPGt53+2YcMGzZ07V19++aVcXFzUt29fe+UCAACwixyXndOnTysqKkpRUVE6duyYmjZtqhkzZqhz585yd3fPj4wAAAC5lu2ys2TJEs2ZM0exsbHy8fFRWFiYwsPDVaVKlfzMBwAAkCfZLju9evVS69attXz5crVq1UpOTrm+3AcAAKDAZLvsnD59Wj4+PvmZBQAAwO6yPTxD0QEAAEUR56IAAICpUXYAAICpUXYAAICpZbvs7NixQ2lpaVkuT01N1ZIlS+wSCgAAwF6yXXaCg4N16dIl62tPT08dO3bM+vrKlSvq3r27fdMBAADkUbbLzv9+X2hm3x+ay+8UBQAAyDd2vWbHYnHAb7YFAAB/aVygDAAATC1HXwS6f/9+JSQkSLpzyurgwYNKSUmRJF28eNH+6QAAAPIoR2Xn6aeftrkup02bNpLunL4yDIPTWAAAwOFku+zEx8fnZw4AAIB8ke2yU6lSpfuus2/fvjyFAQAAsLc8X6B89epVzZ49Ww0bNlSdOnXskQkAAMBucl12Nm3apLCwMPn7++ujjz5SixYttG3bNntmAwAAyLMcXaCckJCgqKgoRUZGKjk5WV26dFFqaqpWrFihWrVq5VdGAACAXMv2yE7btm1VvXp1/fLLL5o0aZLOnj2rqVOn5mc2AACAPMv2yM6aNWs0aNAgvfLKK6patWp+ZgIAALCbbI/sbNmyRVevXlX9+vXVqFEjTZs2jQcJAgAAh5ftsvPEE0/o008/1blz59S/f38tWrRI5cuXV3p6utavX6+rV6/mZ04AAIBcyfHdWB4eHgoPD9eWLVu0d+9e/eMf/9AHH3wgHx8fPf/88/mREQAAINfy9Jyd6tWra8KECTp9+rRiYmLslQkAAMBu7PKt587Ozmrfvr2+/vpre+wOAADAbrJ9N1Z4ePh917FYLIqMjMxTIAAAAHvKdtmJiopSpUqVVK9ePZtvPgcAAHBk2S47r7zyimJiYhQfH68+ffqoV69eKl26dH5mAwAAyLNsX7Mzffp0nTt3Tm+++aZWrlypgIAAdenSRevWrWOkBwAAOKwcXaDs6uqq7t27a/369dq/f79q166tV199VZUrV1ZKSkp+ZQQAAMi1XN+N5eTkJIvFIsMwlJaWZs9MAAAAdpOjspOamqqYmBg988wzqlatmvbu3atp06bp5MmTKlmyZH5lBAAAyLVsX6D86quvatGiRQoICFB4eLhiYmJUtmzZ/MwGAACQZ9kuO7NmzVLFihX10EMPaePGjdq4cWOm6y1btsxu4QAAAPIq22XnxRdflMViyc8sAAAAdpejhwoCAAAUNXb5biwAAABHRdkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmVqTKzgcffCCLxaIhQ4ZY5924cUMDBgxQmTJlVLJkSXXs2FGJiYmFFxIAADiUIlN2fvzxR/3nP//Ro48+ajN/6NChWrlypZYuXaqNGzfq7NmzeuGFFwopJQAAcDRFouykpKSoZ8+e+vTTT/XAAw9Y5yclJSkyMlITJ05UixYtVL9+fc2dO1c//PCDtm3bVoiJAQCAoygSZWfAgAFq3bq1QkJCbObv2rVLt27dsplfo0YNVaxYUXFxcVnuLzU1VcnJyTYTAAAwJ5fCDnA/ixYt0k8//aQff/wxw7KEhAQVL15c3t7eNvN9fX2VkJCQ5T7HjRunMWPG2DsqAABwQA49snPq1CkNHjxYCxculJubm932O2LECCUlJVmnU6dO2W3fAADAsTh02dm1a5fOnz+vxx57TC4uLnJxcdHGjRs1ZcoUubi4yNfXVzdv3tSVK1dstktMTJSfn1+W+3V1dZWnp6fNBAAAzMmhT2M9/fTT2rt3r828Pn36qEaNGvrnP/+pgIAAFStWTLGxserYsaMk6dChQzp58qSCg4MLIzIAAHAwDl12SpUqpaCgIJt5Hh4eKlOmjHV+RESEhg0bptKlS8vT01OvvfaagoOD9cQTTxRGZAAA4GAcuuxkxyeffCInJyd17NhRqampCg0N1YwZMwo7FgAAcBAWwzCMwg5R2JKTk+Xl5aWkpCSu37kr2lLYCTLq8Zf/VQWKJv6eIJ9k9/PboS9QBgAAyCvKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDWHLjvjxo3T448/rlKlSsnHx0ft27fXoUOHbNa5ceOGBgwYoDJlyqhkyZLq2LGjEhMTCykxAABwNA5ddjZu3KgBAwZo27ZtWr9+vW7duqVnn31W165ds64zdOhQrVy5UkuXLtXGjRt19uxZvfDCC4WYGgAAOBKLYRhGYYfIrgsXLsjHx0cbN27U3/72NyUlJalcuXKKjo5Wp06dJEkHDx5UzZo1FRcXpyeeeCJb+01OTpaXl5eSkpLk6emZn2+h6Ii2FHaCjHoUmV9VAH/G3xPkk+x+fjv0yM7/SkpKkiSVLl1akrRr1y7dunVLISEh1nVq1KihihUrKi4uLsv9pKamKjk52WYCAADmVGTKTnp6uoYMGaImTZooKChIkpSQkKDixYvL29vbZl1fX18lJCRkua9x48bJy8vLOgUEBORndAAAUIiKTNkZMGCA9u3bp0WLFuV5XyNGjFBSUpJ1OnXqlB0SAgAAR+RS2AGyY+DAgVq1apU2bdqkChUqWOf7+fnp5s2bunLlis3oTmJiovz8/LLcn6urq1xdXfMzMgAAcBAOPbJjGIYGDhyo5cuX6/vvv1dgYKDN8vr166tYsWKKjY21zjt06JBOnjyp4ODggo4LAAAckEOP7AwYMEDR0dH66quvVKpUKet1OF5eXnJ3d5eXl5ciIiI0bNgwlS5dWp6ennrttdcUHByc7TuxAACAuTl02Zk5c6Yk6amnnrKZP3fuXPXu3VuS9Mknn8jJyUkdO3ZUamqqQkNDNWPGjAJOCgAAHJVDl53sPALIzc1N06dP1/Tp0wsgEQAAKGoc+podAACAvKLsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU6PsAAAAU3Mp7AAAAMCOoi2FnSCjHkahHp6RHQAAYGqM7AD46+FfvsBfCiM7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1Cg7AADA1FwKOwAAAA4p2lLYCTLqYRR2giLJNGVn+vTp+vDDD5WQkKA6depo6tSpatiwYWHHArKnqP5RLaq5iyp+3kCumKLsLF68WMOGDdOsWbPUqFEjTZo0SaGhoTp06JB8fHwKOx4KEh8GAID/YYqyM3HiRPXt21d9+vSRJM2aNUvffPON5syZo+HDhxduOD58AQAoVEX+AuWbN29q165dCgkJsc5zcnJSSEiI4uLiCjEZAABwBEV+ZOfixYtKS0uTr6+vzXxfX18dPHgw021SU1OVmppqfZ2UlCRJSk5Otn/A6/bfZZ5l532S237IXbDIXbDIXbDMnDtXu72zX8O4zxkLo4g7c+aMIcn44YcfbOa/8cYbRsOGDTPd5q233jIkMTExMTExMZlgOnXq1D27QpEf2SlbtqycnZ2VmJhoMz8xMVF+fn6ZbjNixAgNGzbM+jo9PV2///67ypQpI4vFAa+x0Z32GhAQoFOnTsnT07Ow42QbuQsWuQsWuQsWuQtWUchtGIauXr2q8uXL33O9Il92ihcvrvr16ys2Nlbt27eXdKe8xMbGauDAgZlu4+rqKldXV5t53t7e+ZzUPjw9PR32l+5eyF2wyF2wyF2wyF2wHD23l5fXfdcp8mVHkoYNG6awsDA1aNBADRs21KRJk3Tt2jXr3VkAAOCvyxRlp2vXrrpw4YJGjx6thIQE1a1bV2vXrs1w0TIAAPjrMUXZkaSBAwdmedrKDFxdXfXWW29lOP3m6MhdsMhdsMhdsMhdsIpq7sxYDON+92sBAAAUXUX+oYIAAAD3QtkBAACmRtkBAACmRtkBAACmRtnJZ71795bFYtHLL7+cYdmAAQNksVjUu3dvm/lxcXFydnZW69atM2xz/PhxWSyWTKdt27ZJks6dO6cePXqoWrVqcnJy0pAhQ4pE7mXLlumZZ55RuXLl5OnpqeDgYK1bt87hc2/ZskVNmjRRmTJl5O7urho1auiTTz7JUe7Cyv5nW7dulYuLi+rWrevwuTds2JDp8oSEBIfNLN35Xr5///vfqlSpklxdXVW5cmXNmTMnW5kLM/vdY/7vVLt2bYfNLEkLFy5UnTp1VKJECfn7+ys8PFyXLl3KVubCzj59+nTVrFlT7u7uql69uubPn+9QGbP7ObN06VLVqFFDbm5ueuSRR7R69eos30d+ouwUgICAAC1atEh//PGHdd6NGzcUHR2tihUrZlg/MjJSr732mjZt2qSzZ89mus/vvvtO586ds5nq168v6c4f1HLlymnkyJGqU6dOkcm9adMmPfPMM1q9erV27dql5s2bq23bttq9e7dD5/bw8NDAgQO1adMmHThwQCNHjtTIkSM1e/bsHOUujOx3XblyRS+++KKefvrpHGcuzNyHDh2yWe7j4+PQmbt06aLY2FhFRkbq0KFDiomJUfXq1bOdubCyT5482Wb+qVOnVLp0aXXu3NlhM2/dulUvvviiIiIi9Ouvv2rp0qXasWOH+vbtm+3MhZV95syZGjFihN5++239+uuvGjNmjAYMGKCVK1c6TMbsfM788MMP6t69uyIiIrR79261b99e7du31759+7J8H/nFNM/ZcWSPPfaYfvvtNy1btkw9e/aUdGcUo2LFigoMDLRZNyUlRYsXL9bOnTuVkJCgqKgo/etf/8qwzzJlymT53V+VK1fW5MmTJSnH/2oszNyTJk2yef3+++/rq6++0sqVK1WvXj2HzV2vXj2bfJUrV9ayZcu0efNm9evXL9u5CyP7XS+//LJ69OghZ2dnrVixIkeZCzO3j49Prr/qpaAzr127Vhs3btSxY8dUunRpSXd+V4pCdi8vL5tH8q9YsUKXL1/O0VPqCzpzXFycKleurEGDBkmSAgMD1b9/f40fPz7bmQsr+4IFC9S/f3917dpVkvTQQw/pxx9/1Pjx49W2bVuHyJidz5nJkyerZcuWeuONNyRJ7777rtavX69p06Zp1qxZmW6TXxjZKSDh4eGaO3eu9fWcOXMy/UOxZMkS1ahRQ9WrV1evXr00Z86c+391fT4qzNzp6em6evWq9YOhqOTevXu3fvjhBzVr1ixX2xd09rlz5+rYsWN66623cpW3sHJLUt26deXv769nnnlGW7dudejMX3/9tRo0aKAJEybowQcfVLVq1fT666/b/EvcUbP/r8jISIWEhKhSpUoOmzk4OFinTp3S6tWrZRiGEhMT9cUXX6hVq1Y52k9hZE9NTZWbm5vNPHd3d+3YsUO3bt1yiIzZERcXp5CQEJt5oaGhiouLs/ux7oeyU0B69eqlLVu26MSJEzpx4oS2bt2qXr16ZVgvMjLSOr9ly5ZKSkrSxo0bM6zXuHFjlSxZ0mYyW+6PPvpIKSkp6tKlS5HIXaFCBbm6uqpBgwYaMGCAXnrppRznLujsR44c0fDhw/X555/LxSVvA70Fmdvf31+zZs3Sl19+qS+//FIBAQF66qmn9NNPPzls5mPHjmnLli3at2+fli9frkmTJumLL77Qq6++mqPMhZH9z86ePas1a9bk6ve7IDM3adJECxcuVNeuXVW8eHH5+fnJy8tL06dPz3Hugs4eGhqqzz77TLt27ZJhGNq5c6c+++wz3bp1SxcvXnSIjNmRkJCQ4WubfH19s31tnT1xGquAlCtXTq1bt1ZUVJQMw1Dr1q1VtmxZm3UOHTqkHTt2aPny5ZIkFxcXde3aVZGRkXrqqads1l28eLFq1qxp2tzR0dEaM2aMvvrqqxxdh1GYuTdv3qyUlBRt27ZNw4cPV5UqVdS9e3eHzZ6WlqYePXpozJgxqlatWo5zFlZuSapevbrNtS6NGzfWb7/9pk8++UQLFixwyMzp6emyWCxauHCh9ZTQxIkT1alTJ82YMUPu7u7Zzl3Q2f9s3rx58vb2Vvv27XOUt6Az79+/X4MHD9bo0aMVGhqqc+fO6Y033tDLL7+syMhIh84+atQoJSQk6IknnpBhGPL19VVYWJgmTJggJ6esxyiK6udMQaDsFKDw8HDr93dl9q+LyMhI3b59W+XLl7fOMwxDrq6umjZtms0584CAAFWpUiX/Q6vgcy9atEgvvfSSli5dmmEI1JFz3z0v/sgjjygxMVFvv/12rspOQWW/evWqdu7cqd27d1uPlZ6eLsMw5OLiom+//VYtWrRwuNxZadiwobZs2ZKjvAWZ2d/fXw8++KDN+jVr1pRhGDp9+rSqVq3qsNn/vO2cOXP097//XcWLF89x3oLMPG7cODVp0sR6vcijjz4qDw8PNW3aVGPHjpW/v7/DZnd3d9ecOXP0n//8R4mJifL399fs2bNVqlQplStXziEyZoefn58SExNt5iUmJt73Wrz8wGmsAtSyZUvdvHlTt27dUmhoqM2y27dva/78+fr444+1Z88e6/Tzzz+rfPnyiomJKaTUBZs7JiZGffr0UUxMTKa3RDpq7v+Vnp6u1NRUh87u6empvXv32uzj5ZdfVvXq1bVnzx41atTIIXNnZc+ePbn6ACuozE2aNNHZs2eVkpJinXf48GE5OTmpQoUKOc5dkNnv2rhxo44ePaqIiIhc5S3IzNevX88wCuLs7CxJub4+paB/3sWKFVOFChXk7OysRYsWqU2bNvcc2SmMjPcSHBys2NhYm3nr169XcHCwXY+THYzsFCBnZ2cdOHDA+t9/tmrVKl2+fFkRERE2zVqSOnbsqMjISJtnKFy6dCnDeU9vb2/rRW179uyRdOeq+wsXLmjPnj0qXry4atWq5bC5o6OjFRYWpsmTJ6tRo0bW9dzd3TPs25FyT58+XRUrVlSNGjUk3bmF/qOPPrLeBZIbBZU9KCjIZr6Pj0+m8x0t96RJkxQYGKjatWvrxo0b+uyzz/T999/r22+/ddjMPXr00Lvvvqs+ffpozJgxunjxot544w2Fh4fn+BRWQWe/KzIyUo0aNcr170dBZm7btq369u2rmTNnWk9jDRkyRA0bNrQZ1XDE7IcPH9aOHTvUqFEjXb58WRMnTtS+ffs0b948h8ko3f9zZvDgwWrWrJk+/vhjtW7dWosWLdLOnTtz9ViOPDOQr8LCwox27dplubxdu3ZGWFiY0aZNG6NVq1aZrrN9+3ZDkvHzzz8b8fHxhqRMp5iYGOs2mS2vVKmSQ+du1qxZpsvDwsIcOveUKVOM2rVrGyVKlDA8PT2NevXqGTNmzDDS0tKynbuwsv+vt956y6hTp47D5x4/frzx8MMPG25ubkbp0qWNp556yvj+++8dOrNhGMaBAweMkJAQw93d3ahQoYIxbNgw4/r169nOXZjZr1y5Yri7uxuzZ8/OUd7CzDxlyhSjVq1ahru7u+Hv72/07NnTOH36tMNn379/v1G3bl3D3d3d8PT0NNq1a2ccPHjQoTIaRvY+Z5YsWWJUq1bNKF68uFG7dm3jm2++yTJnfrIYRiHe1wwAAJDPuGYHAACYGmUHAACYGmUHAACYGmUHAACYGmUHAACYGmUHAACYGmUHAACYGmUHACRFRUXJ29s7R9tUrlxZkyZNuuc6FotFK1asyHUuAHlH2QFwX71795bFYrF5lPxdAwYMkMViUe/evTMsi4uLk7Ozc6bfc3b8+HFZLJZMp23btmVYPzExUcWKFdOiRYsyzRgREaHHHnss52/u/3Tt2lWHDx/O9fYAHBdlB0C2BAQEaNGiRfrjjz+s827cuKHo6GhVrFgx020iIyP12muvadOmTTp79mym63z33Xc6d+6czVS/fv0M6/n6+qp169aaM2dOhmXXrl3TkiVLcv0Flbdu3ZK7u7t8fHxytT0Ax0bZAZAtjz32mAICArRs2TLrvGXLlqlixYqqV69ehvVTUlK0ePFivfLKK2rdurWioqIy3W+ZMmXk5+dnMxUrVizTdSMiIhQbG6uTJ0/azF+6dKlu376tnj17au3atXryySfl7e2tMmXKqE2bNvrtt9+s694dUVq8eLGaNWsmNzc3LVy4MMNprN9++03t2rWTr6+vSpYsqccff1zfffddhkxXr15V9+7d5eHhoQcffFDTp0+/149Rp06dUpcuXeTt7a3SpUurXbt2On78uHX5hg0b1LBhQ3l4eMjb21tNmjTRiRMn7rlPAPdG2QGQbeHh4Zo7d6719Zw5c9SnT59M112yZIlq1Kih6tWrq1evXpozZ47y+lV8rVq1kq+vb4biNHfuXL3wwgvy9vbWtWvXNGzYMO3cuVOxsbFycnJShw4dlJ6ebrPN8OHDNXjwYB04cEChoaEZjpWSkqJWrVopNjZWu3fvVsuWLdW2bdsMRevDDz9UnTp1tHv3bus+169fn2n+W7duKTQ0VKVKldLmzZu1detWlSxZUi1bttTNmzd1+/ZttW/fXs2aNdMvv/yiuLg49evXTxaLJU8/N+Avr1C+fhRAkXL3W5XPnz9vuLq6GsePHzeOHz9uuLm5GRcuXLB+q/KfNW7c2Jg0aZJhGIZx69Yto2zZssZ///tf6/K736zs7u5ueHh42Ez3Mnz4cCMwMNBIT083DMMwjh49algsFuO7777LdP0LFy4Ykoy9e/faHPdutrvmzp1reHl53fPYtWvXNqZOnWp9XalSJaNly5Y263Tt2tV47rnnrK8lGcuXLzcMwzAWLFhgVK9e3ZrdMAwjNTXVcHd3N9atW2dcunTJkGRs2LDhnjkA5AwjOwCyrVy5ctZTUnPnzlXr1q1VtmzZDOsdOnRIO3bsUPfu3SVJLi4u6tq1qyIjIzOsu3jxYu3Zs8dmupfw8HDFx8frv//9r6Q7ozqVK1dWixYtJElHjhxR9+7d9dBDD8nT01OVK1eWpAwjMg0aNLjncVJSUvT666+rZs2a8vb2VsmSJXXgwIEM+wkODs7w+sCBA5nu8+eff9bRo0dVqlQplSxZUiVLllTp0qV148YN/fbbbypdurR69+6t0NBQtW3bVpMnT9a5c+fumRPA/bkUdgAARUt4eLgGDhwoSVlenxIZGanbt2+rfPny1nmGYcjV1VXTpk2Tl5eXdX5AQICqVKmS7eNXrVpVTZs21dy5c/XUU09p/vz56tu3r/VUT9u2bVWpUiV9+umnKl++vNLT0xUUFKSbN2/a7MfDw+Oex3n99de1fv16ffTRR6pSpYrc3d3VqVOnDPvJiZSUFNWvX18LFy7MsKxcuXKS7pS3QYMGae3atVq8eLFGjhyp9evX64knnsj1cYG/OsoOgBy5e32JxWLJ9FqX27dva/78+fr444/17LPP2ixr3769YmJiMr2FPSciIiL0yiuv6Pnnn9eZM2est71funRJhw4d0qeffqqmTZtKkrZs2ZKrY2zdulW9e/dWhw4dJN0pKn++kPiu/71Nftu2bapZs2am+3zssce0ePFi+fj4yNPTM8tj16tXT/Xq1dOIESMUHBys6Ohoyg6QB5zGApAjzs7OOnDggPbv3y9nZ+cMy1etWqXLly8rIiJCQUFBNlPHjh0znMq6dOmSEhISbKYbN27cM0Pnzp1VrFgx9e/fX88++6wCAgIkSQ888IDKlCmj2bNn6+jRo/r+++81bNiwXL3PqlWratmyZdqzZ49+/vln9ejRI8NFztKdUjRhwgQdPnxY06dP19KlSzV48OBM99mzZ0+VLVtW7dq10+bNmxUfH68NGzZo0KBBOn36tOLj4zVixAjFxcXpxIkT+vbbb3XkyJEsyxOA7KHsAMgxT0/PLEcmIiMjFRISYnOq6q6OHTtq586d+uWXX6zzQkJC5O/vbzPd74nDJUqUULdu3XT58mWFh4db5zs5OWnRokXatWuXgoKCNHToUH344Ye5eo8TJ07UAw88oMaNG6tt27YKDQ3N9KGF//jHP7Rz507Vq1dPY8eO1cSJEzMd8bqbe9OmTapYsaJeeOEF1axZUxEREbpx44Y8PT1VokQJHTx4UB07dlS1atXUr18/DRgwQP3798/VewBwh8Uw8ngvKAAAgANjZAcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJgaZQcAAJja/wPwsxxbql1RiQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of MAPE values from mape1 to mape10\n", + "mape_values = [mape1, mape2, mape3, mape4, mape5, mape6, mape7, mape8, mape9, mape10]\n", + "\n", + "# List of corresponding labels for each MAPE value\n", + "labels = ['MAPE1', 'MAPE2', 'MAPE3', 'MAPE4', 'MAPE5', 'MAPE6', 'MAPE7', 'MAPE8', 'MAPE9', 'MAPE10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, mape_values, color='purple')\n", + "plt.xlabel('MAPE Variables')\n", + "plt.ylabel('MAPE Values')\n", + "plt.title('Bar Graph of MAPE')\n", + "plt.show()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "_c4Pe76fDNM-", + "outputId": "0e3d2f74-9042-4e2d-92c6-5ce61e967bd4" + }, + "execution_count": 120, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABH10lEQVR4nO3de3zP9f//8ft7YydsDrNTDXNoctZkn+2rTI1Zjv3KYRFGKvEpreNKRIdFiLJahFEYUipEWiEscqr0kdIHc9jmEJtNNuz1+8PF+9O7bWzs8J7X7Xq5vC4fr+fr+Xq+Hq/l0+69Xs/X62UxDMMQAACAiThUdAEAAADljQAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAE4Ib38ssvy2Kx6MSJE2V+rNWrV6tNmzZycXGRxWLR6dOny/yYAEqOAARUYomJibJYLDaLl5eXOnXqpC+//LLc6/niiy/Uo0cPeXt7y8nJSbVr19add96pKVOmKCsrq9zrKW8nT55U37595erqqvj4eH344YeqVq1aoX3//s9u48aNBbYbhiF/f39ZLBZ179690DFOnz5tDVp79uwptM+QIUNs/n64u7urdevWmjJlinJzc639LofEopb09PRr+IkA9qtKRRcA4PpNmDBBAQEBMgxDGRkZSkxM1D333KMvvviiyF+epSk/P1/Dhg1TYmKiWrZsqccee0z+/v46c+aMUlJSNGbMGK1atUrJycllXktF+uGHH3TmzBm98sorCg8PL9Y+Li4uWrhwoTp06GDTvn79eh0+fFjOzs5F7rt06VJZLBb5+PhowYIFevXVVwvt5+zsrA8++EDSpdC0bNkyPf300/rhhx+UlJRk0/e9995T9erVC4xRs2bNYp0PUFkQgIAbQGRkpNq1a2ddHzZsmLy9vbVo0aJSCUD5+fnKy8uTi4tLodsnTZqkxMREPfnkk5oyZYosFot12xNPPKG0tDTNnz//uo5RGRw7dkxSycLCPffco6VLl+rtt99WlSr/+1fywoULFRQUdMXbdh999JHuuece1a9fXwsXLiwyAFWpUkUDBw60rj/22GMKDg7W4sWLNXXqVPn5+Vm33X///fL09Cx2/UBlxS0w4AZUs2ZNubq62vxClaTJkycrNDRUderUkaurq4KCgvTxxx8X2N9isWjUqFFasGCBmjdvLmdnZ61evbrQY509e1YTJ05U8+bN9eabb9qEn8t8fX313HPPFfsY11JnYGCgXFxcFBQUpA0bNhRa6+nTpzVkyBDVrFlTHh4eio6O1tmzZwv/If7D0qVLFRQUJFdXV3l6emrgwIE6cuSIdXtYWJgGDx4sSbr99ttlsVg0ZMiQq44bFRWlkydPau3atda2vLw8ffzxx3rggQeK3C81NVXfffed+vfvr/79+2v//v3avHlzsc7FwcFBYWFhkqQDBw4Uax/gRsMVIOAGkJmZqRMnTsgwDB07dkzvvPOOsrOzbf6rX5KmT5+unj17asCAAcrLy1NSUpL69OmjFStWqFu3bjZ9v/nmGy1ZskSjRo2Sp6enGjRoUOixN27cqNOnT+vpp5+Wo6Njieou6hglqXP9+vVavHixHn/8cTk7O+vdd99V165dtXXrVrVo0cKmb9++fRUQEKC4uDjt2LFDH3zwgby8vDRx4sQr1pmYmKjo6GjdfvvtiouLU0ZGhqZPn65NmzZp586dqlmzpl588UUFBgZq5syZ1luSjRo1uurPoEGDBgoJCdGiRYsUGRkpSfryyy+VmZmp/v376+233y50v0WLFqlatWrq3r27XF1d1ahRIy1YsEChoaFXPaYk/fHHH5KkOnXq2LT/+eefBfpWqVKFW2C48RgAKq25c+cakgoszs7ORmJiYoH+Z8+etVnPy8szWrRoYdx111027ZIMBwcH45dffrlqDdOnTzckGcuXL7dpv3DhgnH8+HGbJT8/v1jHKEmdkoxt27ZZ2w4ePGi4uLgY9957r7Vt3LhxhiRj6NChNvvfe++9Rp06da54fnl5eYaXl5fRokUL46+//rK2r1ixwpBkjB071tp2+Z/HDz/8cMUx/9l3xowZRo0aNazn3adPH6NTp06GYRhG/fr1jW7duhXYv2XLlsaAAQOs6y+88ILh6elpnD9/3qbf4MGDjWrVqln/Gezbt894/fXXDYvFYrRq1cra7/LPqLAlMDDwqucDVDbcAgNuAPHx8Vq7dq3Wrl2rjz76SJ06ddJDDz2kTz75xKafq6ur9c+nTp1SZmam7rjjDu3YsaPAmB07dlSzZs2ueuzLT3f9c+Lszz//rLp169osJ0+eLNYxSlJnSEiIgoKCrOv16tVTr169tGbNGl28eNGm76OPPmqzfscdd+jkyZNXfEJt27ZtOnbsmB577DGb+UndunVT06ZNtXLlyiL3La6+ffvqr7/+0ooVK3TmzBmtWLHiire/fvrpJ/3888+KioqytkVFRenEiRNas2ZNgf45OTnWfwaNGzfWCy+8oJCQEH366acF+i5btsz6d+nyMnfu3Os+R8DecAsMuAG0b9/eZhJ0VFSU2rZtq1GjRql79+5ycnKSJK1YsUKvvvqqdu3aZfMIdGHzdgICAop17Bo1akiSsrOzbdobN25sndcyf/58ffjhh8U+RknqbNKkSYG2W265RWfPntXx48fl4+Njba9Xr55Nv1q1akm6FLLc3d0LreXgwYOSpMDAwALbmjZtWugj7CVVt25dhYeHa+HChTp79qwuXryo+++/v8j+H330kapVq6aGDRtq3759ki49TdagQQMtWLCgwG1CFxcXffHFF5IuPREWEBCgm2++udCx77zzTiZBwxQIQMANyMHBQZ06ddL06dP1+++/q3nz5vruu+/Us2dP3XnnnXr33Xfl6+urqlWrau7cuVq4cGGBMf5+FeZKmjZtKknavXu3evXqZW2vXr269VHwokJCYccoaZ0lUdQcJcMwrmvc0vDAAw9o+PDhSk9PV2RkZJFzbgzD0KJFi5STk1Po1bNjx44pOzvb5oqco6NjsR/LB8yCAATcoC5cuCDpf1dmli1bJhcXF61Zs8bm3TLXe3vjjjvukIeHh5KSkhQbGysHh+u7s17SOn///fcCbb/99pvc3NxUt27d66pFkurXry9J2rt3r+666y6bbXv37rVuv1733nuvHnnkEX3//fdavHhxkf0uvx9owoQJuvXWW222nTp1Sg8//LCWL19eYAI8AFvMAQJuQOfPn9dXX30lJycn6y9JR0dHWSwWm3kxBw4c0PLly6/rWG5ubnr22We1e/duPf/884VeTSnJFZaS1pmSkmIzN+jQoUP67LPP1KVLlxI/lVaYdu3aycvLSwkJCTa347788kvt2bOnwO2ma1W9enW99957evnll9WjR48i+12+/fXMM8/o/vvvt1mGDx+uJk2aaMGCBaVSE3Aj4woQcAP48ssv9euvv0q6dAtk4cKF+v333/X8889b57Z069ZNU6dOVdeuXfXAAw/o2LFjio+PV+PGjfXTTz9d1/Gff/557dmzR2+++aa++uor3Xfffbr55pt16tQp7dixQ0uXLpWXl1exXnJY0jpbtGihiIgIm8fgJWn8+PHXdU6XVa1aVRMnTlR0dLQ6duyoqKgo62PwDRo00JNPPlkqx5FkfY9QUXJzc7Vs2TJ17ty5yJ9lz549NX36dB07dkxeXl4lruHjjz8u9E3QnTt3lre3d4nHA+wVAQi4AYwdO9b6ZxcXFzVt2lTvvfeeHnnkEWv7XXfdpdmzZ+uNN97Q6NGjFRAQoIkTJ+rAgQPXHYAcHBz04Ycf6r777tOsWbP0zjvv6NSpU6pevbpatGih1157TcOHDy/0F+s/lbTOjh07KiQkROPHj1dqaqqaNWumxMREtWrV6rrO6e+GDBkiNzc3vfHGG3ruuedUrVo13XvvvZo4cWK5vh9n5cqVOn369BWvEPXo0UNTpkxRUlKSHn/88RIfY8SIEYW2f/vttwQg3FAshj3M/gOAa2CxWDRy5EjNmDGjoksBUMkwBwgAAJgOAQgAAJgOAQgAAJgOk6ABVFpMYQRwrbgCBAAATIcABAAATIdbYIXIz8/X0aNHVaNGjUI/vggAAOyPYRg6c+aM/Pz8rvpZHgJQIY4ePSp/f/+KLgMAAFyDQ4cO6eabb75iHwJQIWrUqCHp0g/w8mcEAACAfcvKypK/v7/19/iVEIAKcfm2l7u7OwEIAIBKpjjTV5gEDQAATIcABAAATIcABAAATIcABAAATIcABAAATKdCA1BcXJxuv/121ahRQ15eXurdu7f27t171f2WLl2qpk2bysXFRS1bttSqVatsthuGobFjx8rX11eurq4KDw/X77//XlanAQAAKpkKDUDr16/XyJEj9f3332vt2rU6f/68unTpopycnCL32bx5s6KiojRs2DDt3LlTvXv3Vu/evbV7925rn0mTJuntt99WQkKCtmzZomrVqikiIkLnzp0rj9MCAAB2zmLY0eeUjx8/Li8vL61fv1533nlnoX369eunnJwcrVixwtr2r3/9S23atFFCQoIMw5Cfn5+eeuopPf3005KkzMxMeXt7KzExUf37979qHVlZWfLw8FBmZibvAQIAoJIoye9vu5oDlJmZKUmqXbt2kX1SUlIUHh5u0xYREaGUlBRJ0v79+5Wenm7Tx8PDQ8HBwdY+AADA3OzmTdD5+fkaPXq0/u///k8tWrQosl96erq8vb1t2ry9vZWenm7dfrmtqD7/lJubq9zcXOt6VlbWNZ0DAACoHOzmCtDIkSO1e/duJSUllfux4+Li5OHhYV34ECoAADc2uwhAo0aN0ooVK/Ttt99e9eutPj4+ysjIsGnLyMiQj4+PdfvltqL6/FNsbKwyMzOty6FDh671VAAAQCVQoQHIMAyNGjVKn376qb755hsFBARcdZ+QkBAlJyfbtK1du1YhISGSpICAAPn4+Nj0ycrK0pYtW6x9/snZ2dn64VM+gAoAwI2vQucAjRw5UgsXLtRnn32mGjVqWOfoeHh4yNXVVZI0aNAg3XTTTYqLi5MkPfHEE+rYsaOmTJmibt26KSkpSdu2bdPMmTMlXfoC7OjRo/Xqq6+qSZMmCggI0EsvvSQ/Pz/17t27Qs4TAADYlwoNQO+9954kKSwszKZ97ty5GjJkiCQpNTVVDg7/u1AVGhqqhQsXasyYMXrhhRfUpEkTLV++3Gbi9LPPPqucnBw9/PDDOn36tDp06KDVq1fLxcWlzM8JAADYP7t6D5C94D1AhRtvGV/RJdgYZ4yr6BIAAHak0r4HCAAAoDwQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOlUaADasGGDevToIT8/P1ksFi1fvvyK/YcMGSKLxVJgad68ubXPyy+/XGB706ZNy/hMAABAZVKhASgnJ0etW7dWfHx8sfpPnz5daWlp1uXQoUOqXbu2+vTpY9OvefPmNv02btxYFuUDAIBKqkpFHjwyMlKRkZHF7u/h4SEPDw/r+vLly3Xq1ClFR0fb9KtSpYp8fHxKrU4AAHBjqdRzgGbPnq3w8HDVr1/fpv3333+Xn5+fGjZsqAEDBig1NfWK4+Tm5iorK8tmAQAAN64KvQJ0PY4ePaovv/xSCxcutGkPDg5WYmKiAgMDlZaWpvHjx+uOO+7Q7t27VaNGjULHiouL0/jx48ujbACApPEW+/p37jhjXEWXgHJWaa8AzZs3TzVr1lTv3r1t2iMjI9WnTx+1atVKERERWrVqlU6fPq0lS5YUOVZsbKwyMzOty6FDh8q4egAAUJEq5RUgwzA0Z84cPfjgg3Jycrpi35o1a+qWW27Rvn37iuzj7OwsZ2fn0i4TAADYqUp5BWj9+vXat2+fhg0bdtW+2dnZ+uOPP+Tr61sOlQEAgMqgQgNQdna2du3apV27dkmS9u/fr127dlknLcfGxmrQoEEF9ps9e7aCg4PVokWLAtuefvpprV+/XgcOHNDmzZt17733ytHRUVFRUWV6LgAAoPKo0Ftg27ZtU6dOnazrMTExkqTBgwcrMTFRaWlpBZ7gyszM1LJlyzR9+vRCxzx8+LCioqJ08uRJ1a1bVx06dND333+vunXrlt2JAACASqVCA1BYWJgMwyhye2JiYoE2Dw8PnT17tsh9kpKSSqM0AABwA6uUc4AAAACuBwEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYToUGoA0bNqhHjx7y8/OTxWLR8uXLr9h/3bp1slgsBZb09HSbfvHx8WrQoIFcXFwUHBysrVu3luFZAACAyqZCA1BOTo5at26t+Pj4Eu23d+9epaWlWRcvLy/rtsWLFysmJkbjxo3Tjh071Lp1a0VEROjYsWOlXT4AAKikqlTkwSMjIxUZGVni/by8vFSzZs1Ct02dOlXDhw9XdHS0JCkhIUErV67UnDlz9Pzzz19PuQAA4AZRKecAtWnTRr6+vurcubM2bdpkbc/Ly9P27dsVHh5ubXNwcFB4eLhSUlKKHC83N1dZWVk2CwAAuHFVqgDk6+urhIQELVu2TMuWLZO/v7/CwsK0Y8cOSdKJEyd08eJFeXt72+zn7e1dYJ7Q38XFxcnDw8O6+Pv7l+l5AACAilWht8BKKjAwUIGBgdb10NBQ/fHHH3rrrbf04YcfXvO4sbGxiomJsa5nZWURggAAuIFVqgBUmPbt22vjxo2SJE9PTzk6OiojI8OmT0ZGhnx8fIocw9nZWc7OzmVaJwAAsB+V6hZYYXbt2iVfX19JkpOTk4KCgpScnGzdnp+fr+TkZIWEhFRUiQAAwM5U6BWg7Oxs7du3z7q+f/9+7dq1S7Vr11a9evUUGxurI0eOaP78+ZKkadOmKSAgQM2bN9e5c+f0wQcf6JtvvtFXX31lHSMmJkaDBw9Wu3bt1L59e02bNk05OTnWp8IAAAAqNABt27ZNnTp1sq5fnoczePBgJSYmKi0tTampqdbteXl5euqpp3TkyBG5ubmpVatW+vrrr23G6Nevn44fP66xY8cqPT1dbdq00erVqwtMjAYAAOZlMQzDqOgi7E1WVpY8PDyUmZkpd3f3ii7Hboy3jK/oEmyMM8ZVdAkArhH/PkFZKMnv70o/BwgAAKCkCEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0ShyADh06pMOHD1vXt27dqtGjR2vmzJklPviGDRvUo0cP+fn5yWKxaPny5Vfs/8knn6hz586qW7eu3N3dFRISojVr1tj0efnll2WxWGyWpk2blrg2AABw4ypxAHrggQf07bffSpLS09PVuXNnbd26VS+++KImTJhQorFycnLUunVrxcfHF6v/hg0b1LlzZ61atUrbt29Xp06d1KNHD+3cudOmX/PmzZWWlmZdNm7cWKK6AADAja1KSXfYvXu32rdvL0lasmSJWrRooU2bNumrr77So48+qrFjxxZ7rMjISEVGRha7/7Rp02zWX3/9dX322Wf64osv1LZtW2t7lSpV5OPjU+xxAQCAuZT4CtD58+fl7OwsSfr666/Vs2dPSVLTpk2VlpZWutVdRX5+vs6cOaPatWvbtP/+++/y8/NTw4YNNWDAAKWmppZrXQAAwL6VOAA1b95cCQkJ+u6777R27Vp17dpVknT06FHVqVOn1Au8ksmTJys7O1t9+/a1tgUHBysxMVGrV6/We++9p/379+uOO+7QmTNnihwnNzdXWVlZNgsAALhxlTgATZw4Ue+//77CwsIUFRWl1q1bS5I+//xz662x8rBw4UKNHz9eS5YskZeXl7U9MjJSffr0UatWrRQREaFVq1bp9OnTWrJkSZFjxcXFycPDw7r4+/uXxykAAIAKUuI5QGFhYTpx4oSysrJUq1Yta/vDDz8sNze3Ui2uKElJSXrooYe0dOlShYeHX7FvzZo1dcstt2jfvn1F9omNjVVMTIx1PSsrixAEAMAN7JreA2QYhrZv367333/femvJycmpXALQokWLFB0drUWLFqlbt25X7Z+dna0//vhDvr6+RfZxdnaWu7u7zQIAAG5cJb4CdPDgQXXt2lWpqanKzc1V586dVaNGDU2cOFG5ublKSEgo9ljZ2dk2V2b279+vXbt2qXbt2qpXr55iY2N15MgRzZ8/X9Kl216DBw/W9OnTFRwcrPT0dEmSq6urPDw8JElPP/20evToofr16+vo0aMaN26cHB0dFRUVVdJTBQAAN6gSXwF64okn1K5dO506dUqurq7W9nvvvVfJycklGmvbtm1q27at9RH2mJgYtW3b1voofVpams0TXDNnztSFCxc0cuRI+fr6WpcnnnjC2ufw4cOKiopSYGCg+vbtqzp16uj7779X3bp1S3qqAADgBlXiK0DfffedNm/eLCcnJ5v2Bg0a6MiRIyUaKywsTIZhFLk9MTHRZn3dunVXHTMpKalENQAAAPMp8RWg/Px8Xbx4sUD74cOHVaNGjVIpCgAAoCyVOAB16dLF5o3MFotF2dnZGjdunO65557SrA0AAKBMlPgW2JQpUxQREaFmzZrp3LlzeuCBB/T777/L09NTixYtKosaAQAASlWJA9DNN9+sH3/8UUlJSfrpp5+UnZ2tYcOGacCAATaTogEAAOxViQOQdOljowMHDiztWgAAAMpFiQPQ5XfyFGXQoEHXXAwAAEB5KHEA+vs7d6RLX4c/e/as9U3QBCAAAGDvSvwU2KlTp2yW7Oxs7d27Vx06dGASNAAAqBSu6Vtg/9SkSRO98cYbBa4OAQAA2KNSCUDSpYnRR48eLa3hAAAAykyJ5wB9/vnnNuuGYSgtLU0zZszQ//3f/5VaYQAAAGWlxAGod+/eNusWi0V169bVXXfdpSlTppRWXQAAAGWmxAEoPz+/LOoAAAAoN6U2BwgAAKCyKNYVoJiYmGIPOHXq1GsuBgAAoDwUKwDt3LmzWINZLJbrKgYAAKA8FCsAffvtt2VdBwAAQLlhDhAAADCda/oa/LZt27RkyRKlpqYqLy/PZtsnn3xSKoUBAACUlRJfAUpKSlJoaKj27NmjTz/9VOfPn9cvv/yib775Rh4eHmVRIwAAQKkqcQB6/fXX9dZbb+mLL76Qk5OTpk+frl9//VV9+/ZVvXr1yqJGAACAUlXiAPTHH3+oW7dukiQnJyfl5OTIYrHoySef1MyZM0u9QAAAgNJW4gBUq1YtnTlzRpJ00003affu3ZKk06dP6+zZs6VbHQAAQBko8SToO++8U2vXrlXLli3Vp08fPfHEE/rmm2+0du1a3X333WVRIwAAQKkqdgDavXu3WrRooRkzZujcuXOSpBdffFFVq1bV5s2bdd9992nMmDFlVigAAEBpKXYAatWqlW6//XY99NBD6t+/vyTJwcFBzz//fJkVBwAAUBaKPQdo/fr1at68uZ566in5+vpq8ODB+u6778qyNgAAgDJR7AB0xx13aM6cOUpLS9M777yjAwcOqGPHjrrllls0ceJEpaenl2WdAAAApabET4FVq1ZN0dHRWr9+vX777Tf16dNH8fHxqlevnnr27FkWNQIAAJSq6/oWWOPGjfXCCy9ozJgxqlGjhlauXFladQEAAJSZa/oWmCRt2LBBc+bM0bJly+Tg4KC+fftq2LBhpVkbAABAmShRADp69KgSExOVmJioffv2KTQ0VG+//bb69u2ratWqlVWNAAAAparYASgyMlJff/21PD09NWjQIA0dOlSBgYFlWRsAAECZKHYAqlq1qj7++GN1795djo6OZVkTAABAmSr2JOjPP/9cvXr1KtXws2HDBvXo0UN+fn6yWCxavnz5VfdZt26dbrvtNjk7O6tx48ZKTEws0Cc+Pl4NGjSQi4uLgoODtXXr1lKrGQAAVH7X9RTY9crJyVHr1q0VHx9frP779+9Xt27d1KlTJ+3atUujR4/WQw89pDVr1lj7LF68WDExMRo3bpx27Nih1q1bKyIiQseOHSur0wAAAJXMNT8FVhoiIyMVGRlZ7P4JCQkKCAjQlClTJEm33nqrNm7cqLfeeksRERGSpKlTp2r48OGKjo627rNy5UrNmTOHz3YAAABJFXwFqKRSUlIUHh5u0xYREaGUlBRJUl5enrZv327Tx8HBQeHh4dY+hcnNzVVWVpbNAgAAblyVKgClp6fL29vbps3b21tZWVn666+/dOLECV28eLHQPlf6VEdcXJw8PDysi7+/f5nUDwAA7EOxA9Bjjz2m7Oxs6/qiRYuUk5NjXT99+rTuueee0q2unMTGxiozM9O6HDp0qKJLAgAAZajYAej999/X2bNnreuPPPKIMjIyrOu5ubk2k5HLgo+Pj80xJSkjI0Pu7u5ydXWVp6enHB0dC+3j4+NT5LjOzs5yd3e3WQAAwI2r2AHIMIwrrpeHkJAQJScn27StXbtWISEhkiQnJycFBQXZ9MnPz1dycrK1DwAAQIXOAcrOztauXbu0a9cuSZcec9+1a5dSU1MlXbo1NWjQIGv/Rx99VP/973/17LPP6tdff9W7776rJUuW6Mknn7T2iYmJ0axZszRv3jzt2bNHI0aMUE5OjvWpMAAAgAp9DH7btm3q1KmTdT0mJkaSNHjwYCUmJiotLc0ahiQpICBAK1eu1JNPPqnp06fr5ptv1gcffGB9BF6S+vXrp+PHj2vs2LFKT09XmzZttHr16gITowEAgHmVKACNHTtWbm5uki49cv7aa6/Jw8NDkmzmBxVXWFjYFW+lFfaW57CwMO3cufOK444aNUqjRo0qcT0AAMAcih2A7rzzTu3du9e6Hhoaqv/+978F+gAAANi7YgegdevWlWEZAAAA5adEt8CysrK0ZcsW5eXlqX379qpbt25Z1QUAAFBmih2Adu3apXvuucf6RuUaNWpoyZIlNhOQAQAAKoNiPwb/3HPPKSAgQJs2bdL27dt19913M9EYAABUSsW+ArR9+3Z99dVXuu222yRJc+bMUe3atZWVlcWbkwEAQKVS7CtAf/75p26++Wbres2aNVWtWjWdPHmyTAoDAAAoKyWaBP2f//zH5qvqhmFoz549OnPmjLWtVatWpVcdAABAGShRALr77rsLvLiwe/fuslgsMgxDFotFFy9eLNUCAQAASluxA9D+/fvLsg4AAIByU+wAVL9+/av22b1793UVAwAAUB6u+2vwZ86c0cyZM9W+fXu1bt26NGoCAAAoU9ccgDZs2KDBgwfL19dXkydP1l133aXvv/++NGsDAAAoEyWaBJ2enq7ExETNnj1bWVlZ6tu3r3Jzc7V8+XI1a9asrGoEAAAoVcW+AtSjRw8FBgbqp59+0rRp03T06FG98847ZVkbAABAmSj2FaAvv/xSjz/+uEaMGKEmTZqUZU0AAABlqthXgDZu3KgzZ84oKChIwcHBmjFjhk6cOFGWtQEAAJSJYgegf/3rX5o1a5bS0tL0yCOPKCkpSX5+fsrPz9fatWtt3gYNAABgz0r8FFi1atU0dOhQbdy4UT///LOeeuopvfHGG/Ly8lLPnj3LokYAAIBSdV3vAQoMDNSkSZN0+PBhLVq0qLRqAgAAKFPX/SJESXJ0dFTv3r31+eefl8ZwAAAAZarYT4ENHTr0qn0sFotmz559XQUBAACUtWIHoMTERNWvX19t27Yt8EV4AACAyqTYAWjEiBFatGiR9u/fr+joaA0cOFC1a9cuy9oAAADKRLHnAMXHxystLU3PPvusvvjiC/n7+6tv375as2YNV4QAAEClUqJJ0M7OzoqKitLatWv1n//8R82bN9djjz2mBg0aKDs7u6xqBAAAKFXX/BSYg4ODLBaLDMPQxYsXS7MmAACAMlWiAJSbm6tFixapc+fOuuWWW/Tzzz9rxowZSk1NVfXq1cuqRgAAgFJV7EnQjz32mJKSkuTv76+hQ4dq0aJF8vT0LMvaAAAAykSxA1BCQoLq1aunhg0bav369Vq/fn2h/T755JNSKw4AAKAsFDsADRo0SBaLpSxrAQAAKBclehEiAADAjaBUvgUGAABQmRCAAACA6dhFAIqPj1eDBg3k4uKi4OBgbd26tci+YWFhslgsBZZu3bpZ+wwZMqTA9q5du5bHqQAAgEqg2HOAysrixYsVExOjhIQEBQcHa9q0aYqIiNDevXvl5eVVoP8nn3yivLw86/rJkyfVunVr9enTx6Zf165dNXfuXOu6s7Nz2Z0EAACoVCr8CtDUqVM1fPhwRUdHq1mzZkpISJCbm5vmzJlTaP/atWvLx8fHuqxdu1Zubm4FApCzs7NNv1q1apXH6QAAgEqgQgNQXl6etm/frvDwcGubg4ODwsPDlZKSUqwxZs+erf79+6tatWo27evWrZOXl5cCAwM1YsQInTx5ssgxcnNzlZWVZbMAAIAbV4UGoBMnTujixYvy9va2aff29lZ6evpV99+6dat2796thx56yKa9a9eumj9/vpKTkzVx4kStX79ekZGRRX6zLC4uTh4eHtbF39//2k8KAADYvQqfA3Q9Zs+erZYtW6p9+/Y27f3797f+uWXLlmrVqpUaNWqkdevW6e677y4wTmxsrGJiYqzrWVlZhCAAAG5gFXoFyNPTU46OjsrIyLBpz8jIkI+PzxX3zcnJUVJSkoYNG3bV4zRs2FCenp7at29fodudnZ3l7u5uswAAgBtXhQYgJycnBQUFKTk52dqWn5+v5ORkhYSEXHHfpUuXKjc3VwMHDrzqcQ4fPqyTJ0/K19f3umsGAACVX4U/BRYTE6NZs2Zp3rx52rNnj0aMGKGcnBxFR0dLuvQNstjY2AL7zZ49W71791adOnVs2rOzs/XMM8/o+++/14EDB5ScnKxevXqpcePGioiIKJdzAgAA9q3C5wD169dPx48f19ixY5Wenq42bdpo9erV1onRqampcnCwzWl79+7Vxo0b9dVXXxUYz9HRUT/99JPmzZun06dPy8/PT126dNErr7zCu4AAAIAkOwhAkjRq1CiNGjWq0G3r1q0r0BYYGCjDMArt7+rqqjVr1pRmeQAA4AZT4bfAAAAAyhsBCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmI5dBKD4+Hg1aNBALi4uCg4O1tatW4vsm5iYKIvFYrO4uLjY9DEMQ2PHjpWvr69cXV0VHh6u33//vaxPAwAAVBIVHoAWL16smJgYjRs3Tjt27FDr1q0VERGhY8eOFbmPu7u70tLSrMvBgwdttk+aNElvv/22EhIStGXLFlWrVk0RERE6d+5cWZ8OAACoBCo8AE2dOlXDhw9XdHS0mjVrpoSEBLm5uWnOnDlF7mOxWOTj42NdvL29rdsMw9C0adM0ZswY9erVS61atdL8+fN19OhRLV++vBzOCAAA2LsKDUB5eXnavn27wsPDrW0ODg4KDw9XSkpKkftlZ2erfv368vf3V69evfTLL79Yt+3fv1/p6ek2Y3p4eCg4OLjIMXNzc5WVlWWzAACAG1eFBqATJ07o4sWLNldwJMnb21vp6emF7hMYGKg5c+bos88+00cffaT8/HyFhobq8OHDkmTdryRjxsXFycPDw7r4+/tf76kBAAA7VuG3wEoqJCREgwYNUps2bdSxY0d98sknqlu3rt5///1rHjM2NlaZmZnW5dChQ6VYMQAAsDcVGoA8PT3l6OiojIwMm/aMjAz5+PgUa4yqVauqbdu22rdvnyRZ9yvJmM7OznJ3d7dZAADAjatCA5CTk5OCgoKUnJxsbcvPz1dycrJCQkKKNcbFixf1888/y9fXV5IUEBAgHx8fmzGzsrK0ZcuWYo8JAABubFUquoCYmBgNHjxY7dq1U/v27TVt2jTl5OQoOjpakjRo0CDddNNNiouLkyRNmDBB//rXv9S4cWOdPn1ab775pg4ePKiHHnpI0qUnxEaPHq1XX31VTZo0UUBAgF566SX5+fmpd+/eFXWaAADAjlR4AOrXr5+OHz+usWPHKj09XW3atNHq1autk5hTU1Pl4PC/C1WnTp3S8OHDlZ6erlq1aikoKEibN29Ws2bNrH2effZZ5eTk6OGHH9bp06fVoUMHrV69usALEwEAgDlZDMMwKroIe5OVlSUPDw9lZmYyH+hvxlvGV3QJNsYZ4yq6BADXiH+foCyU5Pd3pXsKDAAA4HoRgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOnYRQCKj49XgwYN5OLiouDgYG3durXIvrNmzdIdd9yhWrVqqVatWgoPDy/Qf8iQIbJYLDZL165dy/o0AABAJVHhAWjx4sWKiYnRuHHjtGPHDrVu3VoRERE6duxYof3XrVunqKgoffvtt0pJSZG/v7+6dOmiI0eO2PTr2rWr0tLSrMuiRYvK43QAAEAlUOEBaOrUqRo+fLiio6PVrFkzJSQkyM3NTXPmzCm0/4IFC/TYY4+pTZs2atq0qT744APl5+crOTnZpp+zs7N8fHysS61atcrjdAAAQCVQoQEoLy9P27dvV3h4uLXNwcFB4eHhSklJKdYYZ8+e1fnz51W7dm2b9nXr1snLy0uBgYEaMWKETp48WeQYubm5ysrKslkAAMCNq0ID0IkTJ3Tx4kV5e3vbtHt7eys9Pb1YYzz33HPy8/OzCVFdu3bV/PnzlZycrIkTJ2r9+vWKjIzUxYsXCx0jLi5OHh4e1sXf3//aTwoAANi9KhVdwPV44403lJSUpHXr1snFxcXa3r9/f+ufW7ZsqVatWqlRo0Zat26d7r777gLjxMbGKiYmxrqelZVFCAIA4AZWoVeAPD095ejoqIyMDJv2jIwM+fj4XHHfyZMn64033tBXX32lVq1aXbFvw4YN5enpqX379hW63dnZWe7u7jYLAAC4cVVoAHJyclJQUJDNBObLE5pDQkKK3G/SpEl65ZVXtHr1arVr1+6qxzl8+LBOnjwpX1/fUqkbAABUbhX+FFhMTIxmzZqlefPmac+ePRoxYoRycnIUHR0tSRo0aJBiY2Ot/SdOnKiXXnpJc+bMUYMGDZSenq709HRlZ2dLkrKzs/XMM8/o+++/14EDB5ScnKxevXqpcePGioiIqJBzBAAA9qXC5wD169dPx48f19ixY5Wenq42bdpo9erV1onRqampcnD4X0577733lJeXp/vvv99mnHHjxunll1+Wo6OjfvrpJ82bN0+nT5+Wn5+funTpoldeeUXOzs7lem4AAMA+VXgAkqRRo0Zp1KhRhW5bt26dzfqBAweuOJarq6vWrFlTSpUBAIAbUYXfAgMAAChvBCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6dvEiRACoaOMt4yu6BBvjjHEVXQJwQ+MKEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0egwcA4AbHax4K4goQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHbsIQPHx8WrQoIFcXFwUHBysrVu3XrH/0qVL1bRpU7m4uKhly5ZatWqVzXbDMDR27Fj5+vrK1dVV4eHh+v3338vyFAAAQCVS4QFo8eLFiomJ0bhx47Rjxw61bt1aEREROnbsWKH9N2/erKioKA0bNkw7d+5U79691bt3b+3evdvaZ9KkSXr77beVkJCgLVu2qFq1aoqIiNC5c+fK67QAAIAdq/AANHXqVA0fPlzR0dFq1qyZEhIS5Obmpjlz5hTaf/r06erataueeeYZ3XrrrXrllVd02223acaMGZIuXf2ZNm2axowZo169eqlVq1aaP3++jh49quXLl5fjmQEAAHtVpSIPnpeXp+3btys2Ntba5uDgoPDwcKWkpBS6T0pKimJiYmzaIiIirOFm//79Sk9PV3h4uHW7h4eHgoODlZKSov79+5f+icCujbeMr+gSbIwzxhWrH3WXjuLWXVnx8y5f/LxvHBUagE6cOKGLFy/K29vbpt3b21u//vprofukp6cX2j89Pd26/XJbUX3+KTc3V7m5udb1zMxMSVJWVlYJzqb44jziymTcaxWbGXv1TpLOyb5uIRb3nw91lw7qLl/UXb6ou3yV1e/Xy+MahnH1zkYFOnLkiCHJ2Lx5s037M888Y7Rv377QfapWrWosXLjQpi0+Pt7w8vIyDMMwNm3aZEgyjh49atOnT58+Rt++fQsdc9y4cYYkFhYWFhYWlhtgOXTo0FUzSIVeAfL09JSjo6MyMjJs2jMyMuTj41PoPj4+Plfsf/l/MzIy5Ovra9OnTZs2hY4ZGxtrc1stPz9ff/75p+rUqSOLxVLi8yoPWVlZ8vf316FDh+Tu7l7R5RQbdZcv6i5f1F2+qLt8VYa6DcPQmTNn5Ofnd9W+FRqAnJycFBQUpOTkZPXu3VvSpfCRnJysUaNGFbpPSEiIkpOTNXr0aGvb2rVrFRISIkkKCAiQj4+PkpOTrYEnKytLW7Zs0YgRIwod09nZWc7OzjZtNWvWvK5zKy/u7u52+xfxSqi7fFF3+aLu8kXd5cve6/bw8ChWvwoNQJIUExOjwYMHq127dmrfvr2mTZumnJwcRUdHS5IGDRqkm266SXFxl+bNPPHEE+rYsaOmTJmibt26KSkpSdu2bdPMmTMlSRaLRaNHj9arr76qJk2aKCAgQC+99JL8/PysIQsAAJhbhQegfv366fjx4xo7dqzS09PVpk0brV692jqJOTU1VQ4O/3taPzQ0VAsXLtSYMWP0wgsvqEmTJlq+fLlatGhh7fPss88qJydHDz/8sE6fPq0OHTpo9erVcnFxKffzAwAA9qfCA5AkjRo1qshbXuvWrSvQ1qdPH/Xp06fI8SwWiyZMmKAJEyaUVol2x9nZWePGjStw687eUXf5ou7yRd3li7rLV2WtuygWwyjOs2IAAAA3jgp/EzQAAEB5IwABAADTIQABAADTIQABAADTIQCVgyFDhshisejRRx8tsG3kyJGyWCwaMmSITXtKSoocHR3VrVu3AvscOHBAFovFutSpU0ddunTRzp07rX3CwsJs+lxe/l7Da6+9ptDQULm5uRX64kd7rPvAgQMaNmyYAgIC5OrqqkaNGmncuHHKy8uz67olqWfPnqpXr55cXFzk6+urBx98UEePHrX7ui/Lzc1VmzZtZLFYtGvXLruvu0GDBgW2v/HGG3ZftyStXLlSwcHBcnV1Va1atWzeYWaPda9bt67Q7RaLRT/88IPd1i1Jv/32m3r16iVPT0+5u7urQ4cO+vbbb+365y1JO3bsUOfOnVWzZk05OzvLYrFo2LBhdlXj1X7HSJdeddOtWze5ubnJy8tLzzzzjC5cuFBo39JGACon/v7+SkpK0l9//WVtO3funBYuXKh69eoV6D979mz9+9//1oYNG2x+Sf7d119/rbS0NK1Zs0bZ2dmKjIzU6dOnrduHDx+utLQ0m2XSpEnW7Xl5eerTp0+Rb8i2x7p//fVX5efn6/3339cvv/yit956SwkJCXrhhRfsum5J6tSpk5YsWaK9e/dq2bJl+uOPP3T//ffbfd2XPfvss0W+Xt5e654wYYLN9n//+992X/eyZcv04IMPKjo6Wj/++KM2bdqkBx54wK7rDg0NLbDtoYceUkBAgNq1a2e3dUtS9+7ddeHCBX3zzTfavn27Wrdure7du9t8PNve6j569KjCw8PVuHFjbdmyRZ07d5aTk5M+/PBDu6lRuvrvmIsXL6pbt27Ky8vT5s2bNW/ePCUmJmrs2LGF9i91V/1aGK7b4MGDjV69ehktWrQwPvroI2v7ggULjFatWhm9evUyBg8ebG0/c+aMUb16dePXX381+vXrZ7z22ms24+3fv9+QZOzcudPadvkjsKtXrzYMwzA6duxoPPHEE8Wqb+7cuYaHh0elq/uySZMmGQEBAZWu7s8++8ywWCxGXl6e3de9atUqo2nTpsYvv/xSYEx7rbt+/frGW2+9VeR2e6z7/Pnzxk033WR88MEHlaruf8rLyzPq1q1rTJgwwa7rPn78uCHJ2LBhg7UtKyvLkGSsXbvWbut+//33DS8vL+PixYvWGjt16mRIMiZPnmwXNf5dUb9jVq1aZTg4OBjp6enWtvfee89wd3c3cnNzizX29eAKUDkaOnSo5s6da12fM2eO9ZMff7dkyRI1bdpUgYGBGjhwoObMmSPjKq9rcnV1lSSbW0Glxd7rzszMVO3atStV3X/++acWLFig0NBQVa1a1a7rzsjI0PDhw/Xhhx/Kzc2tyH72VrckvfHGG6pTp47atm2rN998s9BL6/ZU944dO3TkyBE5ODiobdu28vX1VWRkpHbv3m3Xdf/T559/rpMnTxZajz3VXadOHQUGBmr+/PnKycnRhQsX9P7778vLy0tBQUF2W3dubq6cnJxsvpLg6OhorcseaiyOlJQUtWzZ0vrlB0mKiIhQVlaWfvnll1I7TlEIQOVo4MCB2rhxow4ePKiDBw9q06ZNGjhwYIF+s2fPtrZ37dpVmZmZWr9+fZHjnj59Wq+88oqqV6+u9u3bW9vfffddVa9e3WZZsGDBDVX3vn379M477+iRRx6pFHU/99xzqlatmurUqaPU1FR99tlndl23YRgaMmSIHn30UZtbGYWxp7ol6fHHH1dSUpK+/fZbPfLII3r99df17LPP2nXd//3vfyVJL7/8ssaMGaMVK1aoVq1aCgsL059//mm3dRd2zIiICN18880FttlT3RaLRV9//bV27typGjVqyMXFRVOnTtXq1atVq1Ytu637rrvuUnp6ut58803l5eUpLy/PGhh+++03u6ixONLT023CjyTr+t9vQZYVu/gUhlnUrVtX3bp1U2JiogzDULdu3eTp6WnTZ+/evdq6das+/fRTSVKVKlXUr18/zZ49W2FhYTZ9Q0ND5eDgoJycHDVs2FCLFy+2+cs0YMAAvfjiizb7/PMvW2Wu+8iRI+ratav69Omj4cOHV4q6n3nmGQ0bNkwHDx7U+PHjNWjQIK1YsUIWi8Uu637nnXd05swZxcbGFvj5/pM91S1d+tDyZa1atZKTk5MeeeQRxcXF2bzK357qzs/PlyS9+OKLuu+++yRJc+fO1c0336ylS5faBH17qvvvDh8+rDVr1mjJkiUFttlb3YZhaOTIkfLy8tJ3330nV1dXffDBB+rRo4d++OEH+fr62mXdzZs317x58xQTE6PY2FgZhqGGDRvK29tbnp6edlFjZUAAKmdDhw61fvcsPj6+wPbZs2frwoULNpNNDcOQs7OzZsyYIQ8PD2v74sWL1axZM9WpU6fQGfYeHh5q3LjxDVn30aNH1alTJ4WGhmrmzJmVpm5PT095enrqlltu0a233ip/f399//33CgkJscu6v/nmG6WkpBT49k+7du00YMAAzZs3zy7rLkxwcLAuXLigAwcOKDAw0C7rvvwLt1mzZtY2Z2dnNWzYUKmpqQX620vdfzd37lzVqVNHPXv2LLKPvdT9zTffaMWKFTp16pTc3d0lXbqqsXbtWs2bN0/PP/+8XdYtSQ888IAeeOABZWRkKCYmRllZWVq1apWio6OVmJhoFzVejY+Pj7Zu3WrTlpGRYd1W1rgFVs66du2qvLw8nT9/XhERETbbLly4oPnz52vKlCnatWuXdfnxxx/l5+enRYsW2fT39/dXo0aNiny88Eat+8iRIwoLC1NQUJDmzp1rcx/cnuv+p8v/tZ+bm2u3db/99tv68ccfrcdYtWqVpEv/Ynzttdfstu7C7Nq1Sw4ODvLy8rLbuoOCguTs7Ky9e/da286fP68DBw6ofv36dlv3ZYZhaO7cuRo0aFCBuW32WPfZs2clqcC/QxwcHKz//7THuv/O29tbVatW1eHDh+Xi4qKnn37a7mosSkhIiH7++WcdO3bM2rZ27Vq5u7vb/EdAWeEKUDlzdHTUnj17rH/+u8v/JTJs2DCbFC5J9913n2bPnl3ouyiKcvbs2QL3UZ2dna33tlNTU/Xnn38qNTVVFy9etL7bpXHjxqpevbpd1n05/NSvX1+TJ0/W8ePHrX0K+y8Ge6l7y5Yt+uGHH9ShQwfVqlVLf/zxh1566SU1atSowNUfe6r7n4/PXv570ahRo0Lnd9hL3SkpKdqyZYs6deqkGjVqKCUlRU8++aQGDhxYYG6HPdXt7u6uRx99VOPGjZO/v7/q16+vN998U5LUp08fu637sm+++Ub79+/XQw89dMWx7KXukJAQ1apVS4MHD9bYsWPl6uqqWbNmaf/+/YW+H8de6pakGTNmKDQ0VNWrV9evv/6qn376SW+99Zbq1KljNzVe7XdMly5d1KxZMz344IOaNGmS0tPTNWbMGI0cObJ8vjhf1o+Z4X+PURbl8iOK3bt3N+65555C+2zZssWQZPz444+FPqL4Tx07djQkFVgiIiJs6iqsz7fffmu3dc+dO7fQ7X//q2yPdf/0009Gp06djNq1axvOzs5GgwYNjEcffdQ4fPiwXdf9T4WNaY91b9++3QgODjY8PDwMFxcX49ZbbzVef/1149y5c3Zdt2FceoT8qaeeMry8vIwaNWoY4eHhxu7du+2+bsMwjKioKCM0NLTQMey17h9++MHo0qWLUbt2baNGjRrGv/71L2PVqlV2X/eDDz5o1K5d23BycjJq1apl3HbbbXZX49V+xxiGYRw4cMCIjIw0XF1dDU9PT+Opp54yzp8/X+RxS5PFMK7y7BsAAMANhjlAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAFBMFotFy5cvL3b/l19+WW3atLlinyFDhqh3797XVReAkiMAAbiqIUOGyGKxFPqa/JEjR8pisWjIkCEFtqWkpMjR0bHQzwocOHBAFovFutSpU0ddunTRzp07rX3CwsJs+lxeinpdf48ePdS1a9dCt3333XeyWCz66aefinnWBaWlpSkyMvKa9wdgPwhAAIrF399fSUlJ+uuvv6xt586d08KFCwt8M+yy2bNn69///rc2bNigo0ePFtrn66+/VlpamtasWaPs7GxFRkbq9OnT1u3Dhw9XWlqazTJp0qRCxxo2bJjWrl2rw4cPF9g2d+5ctWvXTq1atSrBWV+Sl5cn6dL35srlG0UAyhwBCECx3HbbbfL399cnn3xibfvkk09Ur149tW3btkD/7OxsLV68WCNGjFC3bt2UmJhY6Lh16tSRj4+P2rVrp8mTJysjI0Nbtmyxbndzc5OPj4/N4u7uXuhY3bt3V926dQscKzs7W0uXLtWwYcN08uRJRUVF6aabbpKbm5tatmxZ4CvYYWFhGjVqlEaPHi1PT0/rV7X/eQvsueee0y233CI3Nzc1bNhQL730ks6fP1+grvfff1/+/v5yc3NT3759lZmZWWj9kpSfn6+4uDgFBATI1dVVrVu31scff2zdfurUKQ0YMEB169aVq6urmjRporlz5xY5HoDCEYAAFNvQoUNtftnOmTNH0dHRhfZdsmSJmjZtqsDAQA0cOFBz5szR1T496OrqKul/V1xKqkqVKho0aJASExNtjrV06VJdvHhRUVFROnfunIKCgrRy5Urt3r1bDz/8sB588EFt3brVZqx58+bJyclJmzZtUkJCQqHHq1GjhhITE/Wf//xH06dP16xZs/TWW2/Z9Nm3b5+WLFmiL774QqtXr9bOnTv12GOPFXkOcXFxmj9/vhISEvTLL79Yv2K/fv16SdJLL72k//znP/ryyy+1Z88evffee/L09LymnxdgauXyyVUAldrlL2IfO3bMcHZ2Ng4cOGAcOHDAcHFxMY4fP2792vTfhYaGGtOmTTMMwzDOnz9veHp62nwF+p9fnD516pRx7733GtWrVzfS09MNw7j0xemqVasa1apVs1k++uijImvds2dPgS9O33HHHcbAgQOL3Kdbt27GU089ZV3v2LGj0bZt2wL9JBmffvppkeO8+eabRlBQkHV93LhxhqOjo3H48GFr25dffmk4ODgYaWlphmHYfm383Llzhpubm7F582abcYcNG2ZERUUZhmEYPXr0MKKjo4usAUDxVKng/AWgEqlbt671dpZhGOrWrVuhVx/27t2rrVu36tNPP5V06cpMv379NHv2bIWFhdn0DQ0NlYODg3JyctSwYUMtXrxY3t7e1u0DBgzQiy++aLPP37f/U9OmTRUaGqo5c+YoLCxM+/bt03fffacJEyZIki5evKjXX39dS5Ys0ZEjR5SXl6fc3Fy5ubnZjBMUFHTVn8fixYv19ttv648//lB2drYuXLhQ4PZcvXr1dNNNN1nXQ0JClJ+fr71798rHx8em7759+3T27Fl17tzZpj0vL896m3HEiBG67777tGPHDnXp0kW9e/dWaGjoVWsFYIsABKBEhg4dqlGjRkmS4uPjC+0ze/ZsXbhwQX5+ftY2wzDk7OysGTNmyMPDw9q+ePFiNWvWTHXq1FHNmjULjOXh4aHGjRuXqMZhw4bp3//+t+Lj4zV37lw1atRIHTt2lCS9+eabmj59uqZNm6aWLVuqWrVqGj16dIHbbtWqVbviMVJSUjRgwACNHz9eERER8vDwUFJSkqZMmVKiWv8uOztbkrRy5Uqb0CTJOvk6MjJSBw8e1KpVq7R27VrdfffdGjlypCZPnnzNxwXMiDlAAEqka9euysvL0/nz562Tg//uwoULmj9/vqZMmaJdu3ZZlx9//FF+fn4FJhz7+/urUaNGhYafa9W3b185ODho4cKFmj9/voYOHSqLxSJJ2rRpk3r16qWBAweqdevWatiwoX777bcSH2Pz5s2qX7++XnzxRbVr105NmjTRwYMHC/RLTU21eQLu+++/l4ODgwIDAwv0bdasmZydnZWamqrGjRvbLP7+/tZ+devW1eDBg/XRRx9p2rRpmjlzZonrB8yOK0AASsTR0VF79uyx/vmfVqxYoVOnTmnYsGE2V3ok6b777tPs2bOLfI9PYc6ePav09HSbNmdnZ9WqVavIfapXr65+/fopNjZWWVlZNu8oatKkiT7++GNt3rxZtWrV0tSpU5WRkaFmzZoVu6bL46SmpiopKUm33367Vq5cab3l93cuLi4aPHiwJk+erKysLD3++OPq27dvgdtf0qVJ1U8//bSefPJJ5efnq0OHDsrMzNSmTZvk7u6uwYMHa+zYsQoKClLz5s2Vm5urFStW6NZbby1R7QC4AgTgGri7uxf5KPrs2bMVHh5eIPxIlwLQtm3bSvQywlmzZsnX19dmiYqKuup+w4YN06lTpxQREWFzK27MmDG67bbbFBERobCwMPn4+FzTm5h79uypJ598UqNGjVKbNm20efNmvfTSSwX6NW7cWP/v//0/3XPPPerSpYtatWqld999t8hxX3nlFb300kuKi4vTrbfeqq5du2rlypUKCAiQJDk5OSk2NlatWrXSnXfeKUdHRyUlJZW4fsDsLIZxledSAQAAbjBcAQIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKbz/wGv+ZTScaIQRQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of precision values from precision1 to precision10\n", + "precision_values = [precision1, precision2, precision3, precision4, precision5, precision6, precision7, precision8, precision9, precision10]\n", + "\n", + "# List of corresponding labels for each precision value\n", + "labels = ['Precision1', 'Precision2', 'Precision3', 'Precision4', 'Precision5', 'Precision6', 'Precision7', 'Precision8', 'Precision9', 'Precision10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, precision_values, color='red')\n", + "plt.xlabel('Precision Variables')\n", + "plt.ylabel('Precision Values')\n", + "plt.title('Bar Graph of Precision')\n", + "plt.show()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "ZDPV0M5rDTi6", + "outputId": "9db63164-3f42-47be-d302-d80d381d9b91" + }, + "execution_count": 121, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHHklEQVR4nO3deZyNdeP/8fcZZmM2g1kwQ5YQsowlqUTDWLMUbsSQtFiSuVu4yVgqlYQ7W7nTVLdusiRL1omS9CXi5r6z3sKNsWaMZTbn8/ujn3M7zdAczswcl9fz8TiPh3Odz3Vd73PNcN6u6zrXZTPGGAEAAFiEV2EHAAAAcCfKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQCPMXr0aNlsNp0+fTrf17Vy5UrVqVNHfn5+stlsOnfuXL6v0x369OmjChUquDTP+vXrZbPZtH79+nzJBHgayg1QAJKSkmSz2ZweYWFhatasmVasWFHgeZYuXar27dsrPDxcPj4+Cg0N1UMPPaSJEyfq/PnzBZ6noJ05c0Zdu3aVv7+/pk2bpk8//VTFixfPdezvf3Z+fn66++67NWjQIJ04caKAkwPIi6KFHQC4k4wdO1Z33XWXjDE6ceKEkpKS1KZNGy1dulTt2rXL9/Xb7Xb169dPSUlJqlWrlgYMGKCoqCilpaVp06ZNGjlypL766islJyfne5bCtGXLFqWlpWncuHGKjY3N0zxXf3bp6en67rvvNGPGDH311VfatWuXihUrls+J/2fWrFmy2+0uzfPQQw/p8uXL8vHxyadUgGeh3AAFqHXr1qpfv77jeb9+/RQeHq5//OMfbik3drtdmZmZ8vPzy/X1t99+W0lJSRo6dKgmTpwom83meG3IkCE6fvy4Pvnkk1tax+3g5MmTkqSQkJA8z3Ptz+6pp55SyZIl9e677+rLL79U9+7dc53n4sWL190jdLO8vb1dnsfLy+u2/nkBruKwFFCIQkJC5O/vr6JFnf+f8c477+j+++9XyZIl5e/vr5iYGC1YsCDH/DabTYMGDdKcOXNUo0YN+fr6auXKlbmu69KlS3rrrbdUo0YNTZgwwanYXBUZGalXXnklz+u4mZxVq1aVn5+fYmJi9O233+aa9dy5c+rTp49CQkIUHBysvn376tKlS7lvxN+ZP3++YmJi5O/vr1KlSumJJ57Q0aNHHa8//PDDio+PlyQ1aNBANptNffr0ydOyr9W8eXNJ0sGDByX9di5MQECADhw4oDZt2igwMFA9e/aU9FshnDx5smrUqCE/Pz+Fh4frmWee0a+//ppjuStWrFDTpk0VGBiooKAgNWjQQJ999pnj9dzOuZk7d65iYmIc89SqVUtTpkxxvH69c27+aFtd+76OHj2qjh07KiAgQKVLl9aLL76oK1euuLzdgIJAuQEKUGpqqk6fPq1Tp07pX//6l5577jlduHBBTzzxhNO4KVOmqG7duho7dqzeeOMNFS1aVF26dNHy5ctzLPPrr7/W0KFD1a1bN02ZMuW6J5t+9913OnfunLp3764iRYq4lPt663Al5zfffKMXXnhBTzzxhMaOHaszZ86oVatW2rVrV46xXbt2VVpamsaPH6+uXbsqKSlJY8aM+cOcSUlJ6tq1q4oUKaLx48erf//+WrRokR544AHHCcMjRozQ008/Lem3Q02ffvqpnnnmGZe2hyQdOHBAklSyZEnHtOzsbMXFxSksLEzvvPOOHnvsMUnSM888o5deeklNmjTRlClT1LdvX82ZM0dxcXHKyspyyt+2bVudPXtWw4cP15tvvqk6depct7BK0po1a9S9e3eVKFFCb731lt588009/PDD2rhx4y1vq6uuXLmiuLg4lSxZUu+8846aNm2qiRMn6oMPPnB1swEFwwDIdx999JGRlOPh6+trkpKScoy/dOmS0/PMzExTs2ZN07x5c6fpkoyXl5f517/+9YcZpkyZYiSZxYsXO03Pzs42p06dcnrY7fY8rcOVnJLMjz/+6Jh26NAh4+fnZzp16uSYlpiYaCSZJ5980mn+Tp06mZIlS97w/WVmZpqwsDBTs2ZNc/nyZcf0ZcuWGUlm1KhRjmlXfx5btmy54TKvHbt27Vpz6tQpc+TIETN37lxTsmRJ4+/vb/773/8aY4yJj483ksywYcOc5t+wYYORZObMmeM0feXKlU7Tz507ZwIDA02jRo2c8htjnH4e8fHxpnz58o7nQ4YMMUFBQSY7O/u672HdunVGklm3bp3L2+rq+xo7dqzTMuvWrWtiYmKuu06gMLHnBihA06ZN05o1a7RmzRr9/e9/V7NmzfTUU09p0aJFTuP8/f0df/7111+VmpqqBx98UNu2bcuxzKZNm+qee+75w3Vf/RZUQECA0/SdO3eqdOnSTo8zZ87kaR2u5GzcuLFiYmIcz6Ojo9WhQwetWrUqx+GNZ5991un5gw8+qDNnztzwm1w//vijTp48qQEDBjidX9K2bVtVq1Yt171JroiNjVXp0qUVFRWlP/3pTwoICNAXX3yhsmXLOo177rnnnJ7Pnz9fwcHBatGihU6fPu14xMTEKCAgQOvWrZP02x6YtLQ0DRs2LMf5MbkdQrwqJCREFy9e1Jo1a/L8Xm5mW+X2M/nPf/6T53UCBYkTioEC1LBhQ6cTirt37666detq0KBBateunePbLMuWLdNrr72m7du3KyMjwzE+tw+5u+66K0/rDgwMlCRduHDBaXrlypUdH4yffPKJPv300zyvw5WcVapUyTHt7rvv1qVLl3Tq1ClFREQ4pkdHRzuNK1GihKTfClRQUFCuWQ4dOiRJqlq1ao7XqlWrpu+++y7X+fJq2rRpuvvuu1W0aFGFh4eratWq8vJy/v9h0aJFVa5cOadp+/btU2pqqsLCwnJd7tWTm68e5qpZs6ZLuQYMGKDPP/9crVu3VtmyZdWyZUt17dpVrVq1uu48rm4rPz8/lS5d2mlaiRIlcj1nCPAElBugEHl5ealZs2aaMmWK9u3bpxo1amjDhg169NFH9dBDD2n69OmKjIyUt7e3PvroI6cTS6+6du/JjVSrVk2StGvXLnXo0MExPSAgwPF16OsVgNzW4WpOV1zvnCBjzC0t91b8vpjmxtfXN0fhsdvtCgsL05w5c3Kd5/elwVVhYWHavn27Vq1apRUrVmjFihX66KOP1Lt3b3388ce3tOyrXD1HCyhslBugkGVnZ0v63x6VhQsXys/PT6tWrZKvr69j3EcffXRL63nwwQcVHBysuXPnavjw4Tk+hF3las59+/blmLZ3714VK1bslj/gJal8+fKSpD179ji+yXTVnj17HK8XtEqVKmnt2rVq0qTJDYtopUqVJP1WPitXruzSOnx8fNS+fXu1b99edrtdAwYM0Pvvv69XX30112V56rYC3IVzboBClJWVpdWrV8vHx0fVq1eX9Nv/km02m9N5KL/88osWL158S+sqVqyYXn75Ze3atUvDhg3LdS+IK3tGXM25adMmp3Nxjhw5oi+//FItW7Z0y56B+vXrKywsTDNnznQ6RLZixQr9/PPPatu27S2v42Z07dpVV65c0bhx43K8lp2d7fhmUsuWLRUYGKjx48crPT3dadyNfi6/Pz/Ky8tL9957ryQ5bYdreeq2AtyFPTdAAVqxYoV2794t6bdzLT777DPt27dPw4YNc5xL0rZtW7377rtq1aqVevTooZMnT2ratGmqXLmy/vnPf97S+ocNG6aff/5ZEyZM0OrVq/XYY4+pXLly+vXXX7Vt2zbNnz9fYWFhebrgm6s5a9asqbi4OD3//PPy9fXV9OnTJSlPX/HOC29vb7311lvq27evmjZtqu7du+vEiROOr64PHTrULetxVdOmTfXMM89o/Pjx2r59u1q2bClvb2/t27dP8+fP15QpU/T4448rKChIkyZN0lNPPaUGDRqoR48eKlGihHbs2KFLly5d9xDTU089pbNnz6p58+YqV66cDh06pPfee0916tRxFObf89RtBbhN4X5ZC7gz5PZVcD8/P1OnTh0zY8YMp6/6GmPMhx9+aKpUqWJ8fX1NtWrVzEcffeT4mvS1JJmBAwe6nOeLL74wbdq0MaVLlzZFixY1ISEh5oEHHjATJkww586dy/M6XM3597//3TG+bt26jq8mX3V13lOnTjlNv7r9Dh48+Ifvbd68eaZu3brG19fXhIaGmp49ezq+rv375bnyVfA/GhsfH2+KFy9+3dc/+OADExMTY/z9/U1gYKCpVauWefnll82xY8ecxi1ZssTcf//9xt/f3wQFBZmGDRuaf/zjH07rufar4AsWLDAtW7Y0YWFhxsfHx0RHR5tnnnnGHD9+3DHm918Fvyov2+p67yu3nzPgKWzGFOIZegDuCDabTQMHDtTUqVMLOwqAOwDn3AAAAEuh3AAAAEuh3AAAAEvh21IA8h2n9gEoSOy5AQAAlkK5AQAAlnLHHZay2+06duyYAgMDb3inXQAA4DmMMUpLS1OZMmX+8PYxd1y5OXbsmKKiogo7BgAAuAlHjhxRuXLlbjjmjis3gYGBkn7bOFcvdw8AADzb+fPnFRUV5fgcv5E7rtxcPRQVFBREuQEA4DaTl1NKOKEYAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYCuUGAABYSqGWm2+//Vbt27dXmTJlZLPZtHjx4j+cZ/369apXr558fX1VuXJlJSUl5XtOAABw+yjUcnPx4kXVrl1b06ZNy9P4gwcPqm3btmrWrJm2b9+uF154QU899ZRWrVqVz0kBAMDtolBvnNm6dWu1bt06z+Nnzpypu+66SxMnTpQkVa9eXd99950mTZqkuLi4/IoJAABuI7fVOTebNm1SbGys07S4uDht2rSpkBIBAABPU6h7blyVkpKi8PBwp2nh4eE6f/68Ll++LH9//xzzZGRkKCMjw/H8/Pnz+Z4TAAAUnttqz83NGD9+vIKDgx2PqKiowo7kmWw2z3sAAHATbqtyExERoRMnTjhNO3HihIKCgnLdayNJw4cPV2pqquNx5MiRgogKAAAKyW11WKpx48b66quvnKatWbNGjRs3vu48vr6+8vX1ze9oAADAQxRqublw4YL279/veH7w4EFt375doaGhio6O1vDhw3X06FF98sknkqRnn31WU6dO1csvv6wnn3xSX3/9tT7//HMtX768sN4CgNuBJx7mNKawE8Aq+P3OoVDLzY8//qhmzZo5nickJEiS4uPjlZSUpOPHj+vw4cOO1++66y4tX75cQ4cO1ZQpU1SuXDn97W9/42vgAOBJ+LBFIbMZc2f9xM+fP6/g4GClpqYqKCiosON4Dv4xgpXx+12w2N4F6w7Z3q58ft9WJxQDAAD8EcoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwFMoNAACwlKKFHQC4I9lshZ0gJ2P+eMztmhvAHYU9NwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFK4zg0AeCquKwTcFPbcAAAAS6HcAAAAS+GwlLuxGxkAgELFnhsAAGAp7LnB7Y09ZQCA32HPDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTKDQAAsBTuLQUAgMS96iyEPTcAAMBSKDcAAMBSKDcAAMBSCr3cTJs2TRUqVJCfn58aNWqkzZs333D85MmTVbVqVfn7+ysqKkpDhw5Venp6AaUFAACerlDLzbx585SQkKDExERt27ZNtWvXVlxcnE6ePJnr+M8++0zDhg1TYmKifv75Z3344YeaN2+e/vKXvxRwcgAA4KkKtdy8++676t+/v/r27at77rlHM2fOVLFixTR79uxcx3///fdq0qSJevTooQoVKqhly5bq3r37H+7tAQAAd45CKzeZmZnaunWrYmNj/xfGy0uxsbHatGlTrvPcf//92rp1q6PM/Oc//9FXX32lNm3aXHc9GRkZOn/+vNMDAABYV6Fd5+b06dO6cuWKwsPDnaaHh4dr9+7duc7To0cPnT59Wg888ICMMcrOztazzz57w8NS48eP15gxY9yaHQAAeK5CP6HYFevXr9cbb7yh6dOna9u2bVq0aJGWL1+ucePGXXee4cOHKzU11fE4cuRIASYGAAAFrdD23JQqVUpFihTRiRMnnKafOHFCERERuc7z6quvqlevXnrqqackSbVq1dLFixf19NNPa8SIEfLyytnVfH195evr6/43AAAAPFKh7bnx8fFRTEyMkpOTHdPsdruSk5PVuHHjXOe5dOlSjgJTpEgRSZLhEtUAAECFfG+phIQExcfHq379+mrYsKEmT56sixcvqm/fvpKk3r17q2zZsho/frwkqX379nr33XdVt25dNWrUSPv379err76q9u3bO0oOAAC4sxVquenWrZtOnTqlUaNGKSUlRXXq1NHKlSsdJxkfPnzYaU/NyJEjZbPZNHLkSB09elSlS5dW+/bt9frrrxfWWwAAAB7GZu6w4znnz59XcHCwUlNTFRQU5P4V3K53lSW3+5C7YJG7YJG7YFk5t4tc+fy+rb4tBQAA8EcoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFJcLjcrV67Ud99953g+bdo01alTRz169NCvv/7q1nAAAACucrncvPTSSzp//rwkaefOnfrzn/+sNm3a6ODBg0pISHB7QAAAAFcUdXWGgwcP6p577pEkLVy4UO3atdMbb7yhbdu2qU2bNm4PCAAA4AqX99z4+Pjo0qVLkqS1a9eqZcuWkqTQ0FDHHh0AAIDC4vKemwceeEAJCQlq0qSJNm/erHnz5kmS9u7dq3Llyrk9IAAAgCtc3nMzdepUFS1aVAsWLNCMGTNUtmxZSdKKFSvUqlUrtwcEAABwhc0YYwo7REE6f/68goODlZqaqqCgIPevwGZz/zJvVV5+xOR2H3IXLHIXLHIXLCvndpErn983dZ2bAwcOaOTIkerevbtOnjwp6bc9N//6179uZnEAAABu43K5+eabb1SrVi393//9nxYtWqQLFy5Iknbs2KHExES3BwQAAHCFy+Vm2LBheu2117RmzRr5+Pg4pjdv3lw//PCDW8MBAAC4yuVys3PnTnXq1CnH9LCwMJ0+fdotoQAAAG6Wy+UmJCREx48fzzH9p59+cnxzCgAAoLC4XG7+9Kc/6ZVXXlFKSopsNpvsdrs2btyoF198Ub17986PjAAAAHnmcrl54403VK1aNUVFRenChQu655579NBDD+n+++/XyJEj8yMjAABAnt30dW4OHz6sXbt26cKFC6pbt66qVKni7mz5guvcXAe53YfcBYvcBYvcBcvKuV3kyue3y7dfuCo6OlrR0dE3OzsAAEC+cLncPPnkkzd8ffbs2TcdBgAA4Fa5XG5+/fVXp+dZWVnatWuXzp07p+bNm7stGAAAwM1wudx88cUXOabZ7XY999xzqlSpkltCAQAA3KyburdUjoV4eSkhIUGTJk1yx+IAAABumlvKjfTbzTSzs7PdtTgAAICb4vJhqYSEBKfnxhgdP35cy5cvV3x8vNuCAQAA3AyXy81PP/3k9NzLy0ulS5fWxIkT//CbVAAAAPnN5XKzbt06twaYNm2aJkyYoJSUFNWuXVvvvfeeGjZseN3x586d04gRI7Ro0SKdPXtW5cuX1+TJk9WmTRu35gIAALenm76InzvMmzdPCQkJmjlzpho1aqTJkycrLi5Oe/bsUVhYWI7xmZmZatGihcLCwrRgwQKVLVtWhw4dUkhISMGHBwAAHilPt1+oW7eubHm8vPO2bdvyvPJGjRqpQYMGmjp1qqTfvlIeFRWlwYMHa9iwYTnGz5w5UxMmTNDu3bvl7e2d5/Vci9svXAe53YfcBYvcBYvcBcvKuV3k9tsvdOzY0R25nGRmZmrr1q0aPny4Y5qXl5diY2O1adOmXOdZsmSJGjdurIEDB+rLL79U6dKl1aNHD73yyisqUqSI2zMCAIDbT57KTWJiottXfPr0aV25ckXh4eFO08PDw7V79+5c5/nPf/6jr7/+Wj179tRXX32l/fv3a8CAAcrKyrpuxoyMDGVkZDienz9/3n1vAgAAeBy3XeemINjtdoWFhemDDz5QTEyMunXrphEjRmjmzJnXnWf8+PEKDg52PKKiogowMQAAKGgul5srV67onXfeUcOGDRUREaHQ0FCnR16VKlVKRYoU0YkTJ5ymnzhxQhEREbnOExkZqbvvvtvpEFT16tWVkpKizMzMXOcZPny4UlNTHY8jR47kOSMAALj9uFxuxowZo3fffVfdunVTamqqEhIS1LlzZ3l5eWn06NF5Xo6Pj49iYmKUnJzsmGa325WcnKzGjRvnOk+TJk20f/9+2e12x7S9e/cqMjJSPj4+uc7j6+uroKAgpwcAALAw46KKFSuaZcuWGWOMCQgIMPv37zfGGDNlyhTTvXt3l5Y1d+5c4+vra5KSksy///1v8/TTT5uQkBCTkpJijDGmV69eZtiwYY7xhw8fNoGBgWbQoEFmz549ZtmyZSYsLMy89tpreV5namqqkWRSU1Ndyppnv50j7lkPcpOb3J73IDe57/TcLnLl89vl69ykpKSoVq1akqSAgAClpqZKktq1a6dXX33VpWV169ZNp06d0qhRo5SSkqI6depo5cqVjpOMDx8+LC+v/+1cioqK0qpVqzR06FDde++9Klu2rIYMGaJXXnnF1bcBAAAsyuVyU65cOR0/flzR0dGqVKmSVq9erXr16mnLli3y9fV1OcCgQYM0aNCgXF9bv359jmmNGzfWDz/84PJ6AADAncHlc246derkOE9m8ODBevXVV1WlShX17t2be0sBAIBCl6crFEvS1KlT9cQTT+S41cGmTZu0adMmValSRe3bt8+PjG7FFYqvg9zuQ+6CRe6CRe6CZeXcLnLl8zvP5SY4OFhZWVnq1KmT+vXrp+bNm7slbEGj3FwHud2H3AWL3AWL3AXLyrld5Mrnd54PS6WkpGjmzJk6duyYWrRoobvuukvjxo3jujEAAMCj5Lnc+Pv7q3fv3lq3bp327dunXr166cMPP9Rdd92lVq1aaf78+crKysrPrAAAAH/opm6/ULFiRY0dO1YHDx7UihUrVLJkSfXp00dly5Z1dz4AAACX3NK9pWw2m4oWLSqbzSZjDHtuAABAobupcnPkyBGNHTtWFStWVIsWLXTs2DHNmjVLx48fd3c+AAAAl+T5In6ZmZlatGiRZs+era+//lqRkZGKj4/Xk08+qYoVK+ZnRgAAgDzLc7mJiIjQpUuX1K5dOy1dulRxcXFOt0YAAADwBHkuNyNHjlSvXr1UunTp/MwDAABwS/JcbhISEvIzBwAAgFtwXAkAAFgK5QYAAFgK5QYAAFgK5QYAAFhKnk8ovurKlStKSkpScnKyTp48Kbvd7vT6119/7bZwAAAArnK53AwZMkRJSUlq27atatasKZsn3modAADcsVwuN3PnztXnn3+uNm3a5EceAACAW+LyOTc+Pj6qXLlyfmQBAAC4ZS6Xmz//+c+aMmWKjDH5kQcAAOCWuHxY6rvvvtO6deu0YsUK1ahRQ97e3k6vL1q0yG3hAAAAXOVyuQkJCVGnTp3yIwsAAMAtc7ncfPTRR/mRAwAAwC1cLjdXnTp1Snv27JEkVa1albuFAwAAj+DyCcUXL17Uk08+qcjISD300EN66KGHVKZMGfXr10+XLl3Kj4wAAAB55nK5SUhI0DfffKOlS5fq3LlzOnfunL788kt98803+vOf/5wfGQEAAPLMZlz8TnepUqW0YMECPfzww07T161bp65du+rUqVPuzOd258+fV3BwsFJTUxUUFOT+FXjiFZvz8iMmt/uQu2CRu2CRu2BZObeLXPn8dnnPzaVLlxQeHp5jelhYGIelAABAoXO53DRu3FiJiYlKT093TLt8+bLGjBmjxo0buzUcAACAq1z+ttSUKVMUFxencuXKqXbt2pKkHTt2yM/PT6tWrXJ7QAAAAFe4XG5q1qypffv2ac6cOdq9e7ckqXv37urZs6f8/f3dHhAAAMAVN3Wdm2LFiql///7uzgIAAHDL8lRulixZotatW8vb21tLliy54dhHH33ULcEAAABuRp6+Cu7l5aWUlBSFhYXJy+v65yDbbDZduXLFrQHdja+CXwe53YfcBYvcBYvcBcvKuV3kyud3nvbc2O32XP8MAADgaVz+Knhuzp07547FAAAA3DKXy81bb72lefPmOZ536dJFoaGhKlu2rHbs2OHWcAAAAK5yudzMnDlTUVFRkqQ1a9Zo7dq1WrlypVq3bq2XXnrJ7QEBAABc4fJXwVNSUhzlZtmyZeratatatmypChUqqFGjRm4PCAAA4AqX99yUKFFCR44ckSStXLlSsbGxkiRjjMd/UwoAAFify3tuOnfurB49eqhKlSo6c+aMWrduLUn66aefVLlyZbcHBAAAcIXL5WbSpEmqUKGCjhw5orffflsBAQGSpOPHj2vAgAFuDwgAAOCKPF3Ez0q4iN91kNt9yF2wyF2wyF2wrJzbRW6/iB+3XwAAALcLbr/gbrdrgya3+5C7YJG7YJG7YFk5t4u4/QIAALhjueX2CwAAAJ7C5XLz/PPP669//WuO6VOnTtULL7zgjkwAAAA3zeVys3DhQjVp0iTH9Pvvv18LFixwSygAAICb5XK5OXPmjIKDg3NMDwoK0unTp90SCgAA4Ga5XG4qV66slStX5pi+YsUKVaxY0S2hAAAAbpbLVyhOSEjQoEGDdOrUKTVv3lySlJycrIkTJ2ry5MnuzgcAAOASl8vNk08+qYyMDL3++usaN26cJKlChQqaMWOGevfu7faAAAAArril2y+cOnVK/v7+jvtL3Q64iN91kNt9yF2wyF2wyF2wrJzbRa58ft/UdW6ys7O1du1aLVq0SFe70bFjx3ThwoWbWRwAAIDbuHxY6tChQ2rVqpUOHz6sjIwMtWjRQoGBgXrrrbeUkZGhmTNn5kdOAACAPHF5z82QIUNUv359/frrr/L393dM79Spk5KTk90aDgAAwFUu77nZsGGDvv/+e/n4+DhNr1Chgo4ePeq2YAAAADfD5T03drs91zt///e//1VgYKBbQgEAANwsl8tNy5Ytna5nY7PZdOHCBSUmJqpNmzY3FWLatGmqUKGC/Pz81KhRI23evDlP882dO1c2m00dO3a8qfUCAADrcbncvPPOO9q4caPuuecepaenq0ePHo5DUm+99ZbLAebNm6eEhAQlJiZq27Ztql27tuLi4nTy5MkbzvfLL7/oxRdf1IMPPujyOgEAgHXd1HVusrOzNW/ePO3YsUMXLlxQvXr11LNnT6cTjPOqUaNGatCggaZOnSrpt8NeUVFRGjx4sIYNG5brPFeuXNFDDz2kJ598Uhs2bNC5c+e0ePHiPK2P69xcB7ndh9wFi9wFi9wFy8q5XeTK57dLJxRnZWWpWrVqWrZsmXr27KmePXveUtDMzExt3bpVw4cPd0zz8vJSbGysNm3adN35xo4dq7CwMPXr108bNmy44ToyMjKUkZHheH7+/PlbygwAADybS4elvL29lZ6e7raVnz59WleuXFF4eLjT9PDwcKWkpOQ6z3fffacPP/xQs2bNytM6xo8fr+DgYMcjKirqlnMDAADP5fI5NwMHDtRbb72l7Ozs/MhzQ2lpaerVq5dmzZqlUqVK5Wme4cOHKzU11fE4cuRIPqcEAACFyeXr3GzZskXJyclavXq1atWqpeLFizu9vmjRojwvq1SpUipSpIhOnDjhNP3EiROKiIjIMf7AgQP65Zdf1L59e8c0u90uSSpatKj27NmjSpUqOc3j6+srX1/fPGcCAAC3N5fLTUhIiB577DG3rNzHx0cxMTFKTk52fJ3bbrcrOTlZgwYNyjG+WrVq2rlzp9O0kSNHKi0tTVOmTOGQEwAAcL3cfPTRR24NkJCQoPj4eNWvX18NGzbU5MmTdfHiRfXt21eS1Lt3b5UtW1bjx4+Xn5+fatas6TR/SEiIJOWYDgAA7kx5Ljd2u10TJkzQkiVLlJmZqUceeUSJiYk39fXva3Xr1k2nTp3SqFGjlJKSojp16mjlypWOk4wPHz4sL6+bunk5AAC4A+X5Ojfjxo3T6NGjFRsbK39/f61atUrdu3fX7Nmz8zujW3Gdm+sgt/uQu2CRu2CRu2BZObeLXPn8zvMukU8++UTTp0/XqlWrtHjxYi1dulRz5sxxnNALAADgCfJcbg4fPux076jY2FjZbDYdO3YsX4IBAADcjDyXm+zsbPn5+TlN8/b2VlZWlttDAQAA3Kw8n1BsjFGfPn2crhmTnp6uZ5991ulaN65c5wYAAMDd8lxu4uPjc0x74okn3BoGAADgVuW53Lj7+jYAAAD5gQvIAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS6HcAAAAS/GIcjNt2jRVqFBBfn5+atSokTZv3nzdsbNmzdKDDz6oEiVKqESJEoqNjb3heAAAcGcp9HIzb948JSQkKDExUdu2bVPt2rUVFxenkydP5jp+/fr16t69u9atW6dNmzYpKipKLVu21NGjRws4OQAA8EQ2Y4wpzACNGjVSgwYNNHXqVEmS3W5XVFSUBg8erGHDhv3h/FeuXFGJEiU0depU9e7d+w/Hnz9/XsHBwUpNTVVQUNAt58/BZnP/Mm9VXn7E5HYfchcschcschcsK+d2kSuf34W65yYzM1Nbt25VbGysY5qXl5diY2O1adOmPC3j0qVLysrKUmhoaK6vZ2Rk6Pz5804PAABgXYVabk6fPq0rV64oPDzcaXp4eLhSUlLytIxXXnlFZcqUcSpI1xo/fryCg4Mdj6ioqFvODQAAPFehn3NzK958803NnTtXX3zxhfz8/HIdM3z4cKWmpjoeR44cKeCUAACgIBUtzJWXKlVKRYoU0YkTJ5ymnzhxQhERETec95133tGbb76ptWvX6t57773uOF9fX/n6+rolLwAA8HyFuufGx8dHMTExSk5Odkyz2+1KTk5W48aNrzvf22+/rXHjxmnlypWqX79+QUQFAAC3iULdcyNJCQkJio+PV/369dWwYUNNnjxZFy9eVN++fSVJvXv3VtmyZTV+/HhJ0ltvvaVRo0bps88+U4UKFRzn5gQEBCggIKDQ3gcAAPAMhV5uunXrplOnTmnUqFFKSUlRnTp1tHLlSsdJxocPH5aX1/92MM2YMUOZmZl6/PHHnZaTmJio0aNHF2R0AADggQr9OjcFjevcXAe53YfcBYvcBYvcBcvKuV1021znBgAAwN0oNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFIoNwAAwFI8otxMmzZNFSpUkJ+fnxo1aqTNmzffcPz8+fNVrVo1+fn5qVatWvrqq68KKCkAAPB0hV5u5s2bp4SEBCUmJmrbtm2qXbu24uLidPLkyVzHf//99+revbv69eunn376SR07dlTHjh21a9euAk4OAAA8kc0YYwozQKNGjdSgQQNNnTpVkmS32xUVFaXBgwdr2LBhOcZ369ZNFy9e1LJlyxzT7rvvPtWpU0czZ878w/WdP39ewcHBSk1NVVBQkPveyFU2m/uXeavy8iMmt/uQu2CRu2CRu2BZObeLXPn8LtQ9N5mZmdq6datiY2Md07y8vBQbG6tNmzblOs+mTZucxktSXFzcdccDAIA7S9HCXPnp06d15coVhYeHO00PDw/X7t27c50nJSUl1/EpKSm5js/IyFBGRobjeWpqqqTfGuAd43Z9r+QuWOQuWOQuWOQuWPmQ++rndl4OOBVquSkI48eP15gxY3JMj4qKKoQ0hSQ4uLAT3BxyFyxyFyxyFyxyF6x8zJ2WlqbgP1h+oZabUqVKqUiRIjpx4oTT9BMnTigiIiLXeSIiIlwaP3z4cCUkJDie2+12nT17ViVLlpTNE49T6rd2GhUVpSNHjuTPeUH5hNwFi9wFi9wFi9wF63bIbYxRWlqaypQp84djC7Xc+Pj4KCYmRsnJyerYsaOk38pHcnKyBg0alOs8jRs3VnJysl544QXHtDVr1qhx48a5jvf19ZWvr6/TtJCQEHfEz3dBQUEe+0t2I+QuWOQuWOQuWOQuWJ6e+4/22FxV6IelEhISFB8fr/r166thw4aaPHmyLl68qL59+0qSevfurbJly2r8+PGSpCFDhqhp06aaOHGi2rZtq7lz5+rHH3/UBx98UJhvAwAAeIhCLzfdunXTqVOnNGrUKKWkpKhOnTpauXKl46Thw4cPy8vrf1/quv/++/XZZ59p5MiR+stf/qIqVapo8eLFqlmzZmG9BQAA4EEKvdxI0qBBg657GGr9+vU5pnXp0kVdunTJ51SFx9fXV4mJiTkOp3k6chcschcschcsches2zX39RT6RfwAAADcqdBvvwAAAOBOlBsAAGAplBsAAGAplBsPYLPZtHjxYrePzW/kLljkLljkLljkzl+3S063MXASHx9vJBlJxtvb21SqVMmMGTPGZGVl5ds6jx8/btLT029p7K3kXrhwoWnRooUJDQ01ksxPP/3k8bkzMzPNyy+/bGrWrGmKFStmIiMjTa9evczRo0c9OrcxxiQmJpqqVauaYsWKmZCQEPPII4+YH374weNzX+uZZ54xksykSZM8Pve18159xMXFeXxuY4z597//bdq3b2+CgoJMsWLFTP369c2hQ4c8Ovfvt/XVx9tvv+3RudPS0szAgQNN2bJljZ+fn6levbqZMWPGTWe50Vh3fs6kpKSY+Ph4ExkZafz9/U1cXJzZu3evW3K6U14+Zy5fvmwGDBhgQkNDTfHixU3nzp1NSkrKTa2PcvM78fHxplWrVub48ePml19+MdOnTzc2m8288cYbOcZmZGQUQsLc3UruTz75xIwZM8bMmjXLpXLjDjeb+9y5cyY2NtbMmzfP7N6922zatMk0bNjQxMTEeHRuY4yZM2eOWbNmjTlw4IDZtWuX6devnwkKCjInT5706NxXLVq0yNSuXduUKVMmT+XGHW4l97XzXn2cPXvW43Pv37/fhIaGmpdeesls27bN7N+/33z55ZfmxIkTHp372u18/PhxM3v2bGOz2cyBAwc8Onf//v1NpUqVzLp168zBgwfN+++/b4oUKWK+/PJLj8p5Lbvdbu677z7z4IMPms2bN5vdu3ebp59+2kRHR5sLFy64PfetyMvnzLPPPmuioqJMcnKy+fHHH819991n7r///ptaH+Xmd+Lj402HDh2cprVo0cLcd999jtdee+01ExkZaSpUqGCMMebw4cOmS5cuJjg42JQoUcI8+uij5uDBg07L+PDDD80999xjfHx8TEREhBk4cKDjNUnmiy++MMb89os8cOBAExERYXx9fU10dLTTL/y1Y40x5p///Kdp1qyZ8fLyMt7e3qZ///4mLS3Nkbt06dImKirK1KhRwwQEBBibzWYCAwNNZmZmjtyxsbE5fuluh9xXt/fmzZuNJHPo0KHbKndqaqqRZNauXevxuYODg42fn59ZtWqVKV++vKPceHJub29v4+3tfdv9vfT29jY+Pj63Xe7f/3536NDBNG/e3ONze3l5GX9/f6ftXa9ePTNixAi35776WXI1t5+fnylatKgJCwszPXr0cHzO+Pv7m2LFipkJEyaY0qVLGx8fH+Pj4+PYvsnJyUaS2bVrl9P2lWSCg4Pdvn39/PxMaGio0/Y15n+fmxMmTDAREREmNDTUDBgwwGRmZprfO3jwYK7l5ty5c8bb29vMnz/fMe3nn382ksymTZtyLOePcM5NHvj7+yszM1OSlJycrD179mjNmjVatmyZsrKyFBcXp8DAQG3YsEEbN25UQECAWrVq5ZhnxowZGjhwoJ5++mnt3LlTS5YsUeXKlXNd11//+lctWbJEn3/+ufbs2aM5c+aoQoUKuY69ePGi4uLiVKJECbVr104NGjTQ2rVrHRdE9Pf315UrV5SSkqK9e/eqefPmeu+995SVlaW//e1vOXIXL15ckpSVlXVb5b66vU+fPi2bzaYFCxbcNrnj4uI0ffp0BQcHa9u2bR6d+5tvvlHVqlVVo0YNPf/88zL//xJZnv570rp1a/n6+mrVqlW6++679fTTT+vMmTMenTsgIEBFixbVM888o82bN6ty5cpq0KCBFi9e7NG5f//73aJFCy1btkz9+vXz+NydOnVSxYoV5eXlpVatWmn16tXau3evLl26lC+5r1y54si9ZcsWNWzYUOfOndP//d//OT5nWrRoIZvNpr179yooKEhNmzaVl5eXXnjhBQUEBKhfv36SJD8/P6ftGx4ergceeMDt23fLli2aP3++0/a9at26dTpw4IDWrVunjz/+WElJSUpKSsp1mbnZunWrsrKyFBsb65hWrVo1RUdHa9OmTXlejoPLdcjirt1zY7fbzZo1a4yvr6958cUXTXx8vAkPD3faTfjpp5+aqlWrGrvd7piWkZFh/P39zapVq4wxxpQpU8aMGDHiuuvUNS158ODBpnnz5k7Lu97YDz74wJQoUcJcuHDBkXv58uXGZrOZzz//3Pj6+poaNWqY4sWLO+Xu0qWLadSoUY7ce/bsMZLM9OnTb6vcV7d35cqVTY8ePW6L3EuXLjXFihUzkkxoaKjZvHmzx+d+4403TIsWLUx6errx9/c3YWFhZtKkSR6f+x//+If58ssvzdatW42Pj4+JiooyDRo08Ojcx44dM5JMsWLFzNtvv238/PxM3759jc1mM6VKlfLY3L//e+nt7W0CAgLM5cuXPXp72+12k56ebnr37u04F6Zo0aLm448/zpfc8fHxpnbt2qZEiRImLS3N8TnTuXNnI8mULl3aZGRkmPj4eFO+fHnz8ccfO3J26dLFdOvWzfHvXunSpU2XLl1MZGSkGTZsmHnzzTeNJNOyZUu3b9+rli9fbry8vBznw1zNmZ2d7RhzNefvXW/PzZw5c4yPj0+O8Q0aNDAvv/xyrjlvxCNuv+Bpli1bpoCAAGVlZclut6tHjx4aPXq0Bg4cqFq1asnHx8cxdseOHdq/f78CAwOdlpGenq4DBw7o5MmTOnbsmB555JE8rbtPnz5q0aKFqlatqlatWqldu3Zq2bJlrmN//vln1a5d27HHZdmyZVq7dq2MMerevbt69uyp7OxsnTt3TtWrV3fkjoyM1A8//KBjx4455Tb//3/iR44cua1yS9Lly5eVnp6usWPHqnLlyrdNbpvNpqpVq+qxxx7z6O1dvHhxpaeny9/fXyVLlnT8OS0tzaNz/357Z2VlqX///ho1apQkeWzuq//jzszM1JgxY5SRkaEGDRro6NGjWr16tcfmzm1733///Tp//rzH/55kZWUpKytLfn5+ysjIUOfOnfXcc8/p0qVL+ZL7n//8p2w2m0qWLOn4nBk/frwWLVqk6OhoR84aNWpo586djs+ZzMxM2e12LVu2TOnp6RoyZIiWLFmi48eP6+2331aLFi3UunVrx7/n7t6+ktSkSRPZ7Xbt2bPHcR/IGjVqqEiRIo4xkZGR2rlzZ562W37gsFQumjVrpu3bt2vfvn26fPmyPv74Y8cP9tofsCRduHBBMTEx2r59u9Nj79696tGjh/z9/V1ad7169XTw4EGNGzdOly9fVteuXfX444/nOfeGDRskSatXr9bHH38sb29veXl5OeW22WzKzs7OkXv58uWSpNatW982ubds2aLGjRuratWq+vbbbxUWFnZb5N6+fbt27NihvXv3asWKFfL29vbo3EOHDpUxRunp6bp8+bJsNpvOnj2rxMREj86d29/L559/XqGhoR6de8uWLSpSpIgGDRrk9O9J9erVPTr3tdt61qxZkqTXXnvN4/89+eGHH2S32/X+++9r586d2rt3rz744AM99thj+ZY7KipK9evXz/Vz5trt5e3t7fQ506NHD8ef9+7dq2HDhumHH36QJC1YsEArV67UmTNnVLFiRbfkzKvf/xtms9lkt9vzPH9ERIQyMzN17tw5p+knTpxQRESEy3koN7koXry4KleurOjoaBUteuOdW/Xq1dO+ffsUFhamypUrOz2Cg4MVGBioChUqKDk5Oc/rDwoKUrdu3TRr1izNmzdPCxcu1NmzZ3OMq169unbs2KGLFy86ch8/flxeXl6qUaPGDdcRGBiYI/fVY66BgYG3Re7y5cvrL3/5i44fP64NGzborrvuui1y5/Z7IkkhISEem7t///7auXOnduzY4XiUKVNGL7/8ssqWLeuxuXPb3mlpafr1118VFhbmsbnLlSunhg0b6vTp006/J4cOHVLx4sU9Nve123vVqlWKiYnRAw884PF/L0NCQpSdna1y5co5bW9/f3/5+fnlS+4SJUpo3759KlmypONzZuPGjZKkgIAAp7HXfs6EhITI398/18+ZrVu3at++ffrxxx/VoUMHt+T8/fa9mtPLy0tVq1bN83b5IzExMfL29nba1nv27NHhw4fVuHFjl5fHYalb1LNnT02YMEEdOnTQ2LFjVa5cOR06dEiLFi3Syy+/rHLlymn06NF69tlnFRYWptatWystLU0bN27U4MGDcyzv3XffVWRkpOrWrSsvLy/Nnz9fERERCgkJyXXdiYmJio+PV1ZWls6cOaPBgwerV69ejl2F1xMWFiZjjDp06KAXX3xRkhy7EL///ntJ0tChQ/XKK694ZO5HH31U2dnZOnDggMaNG6fhw4drwIABKlOmjEaOHKlBgwZ5ZO527dqpfPny6tSpkzIzM7V48WIZY3T06FGNGjVK48aN88jcffv2zfH7bbPZFBERoddff91jf7/btWunsmXLqkuXLsrMzNS8efO0f/9+Va5cWS+//LIGDx7skbk7dOigtm3bavTo0QoPD9fJkydVpUoVLV26VK+88oomTpzosbnHjh2r4OBgzZ07V40bN9Z///tfj/93sFevXqpdu7aGDBmiPXv2aPv27br33nv1ySefqGvXrvmyvaOionTy5EnFx8dr9OjROnXqlAYPHqxKlSrluDP3tZ8zpUqV0uXLl7V+/XotWrRI99xzj6pVq6YBAwZo5MiRmj59umJjY1WqVCm99957bt2+1+bMy/a91tmzZ3X48GEdO3ZM0m/FRfptj01ERISCg4PVr18/JSQkKDQ0VEFBQRo8eLAaN26s++67L8/ruYo9N7eoWLFi+vbbbxUdHa3OnTurevXq6tevn9LT0xUUFCRJio+P1+TJkzV9+nTVqFFD7dq10759+3JdXmBgoN5++23Vr19fDRo00C+//KKvvvpKXl45f1TFihXTqlWrdPbsWS1btkybN2/WI488oqlTp/5h7iJFijhy/+lPf1K7du00fPhwSdLAgQNVt25dnT171mNzlyxZUhs3blRKSor69++vDz/8UDExMYqMjFSlSpU8Nnd0dLQ+//xzPfbYY+revbuWLFmitLQ0bdiwQX/5y188Ovfvf7+vrsvTf78XLlzo2N5r165VTEyMNmzYoKeeesqjc0+ePFmSNGXKFH322Wf6/PPPtXDhQr3++usenbtz586KiYlRZmamypcvf9v8O3jkyBEdOHBAL774ov7+979rxowZev3115WUlJQvuYsUKeLI3aBBAz3++ON65JFH1KhRo1zf49Wcy5cv15YtWxx/D8+fP69evXppxIgRKl68uLy8vLRu3bp82b7X5szL9r3WkiVLVLduXbVt21aS9Kc//Ul169bVzJkzHWMmTZqkdu3a6bHHHtNDDz2kiIgILVq0yKX1XGUzNzrrCAAA4DbDnhsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAAGAplBsAbmGz2bR48WK3j/VEDz/8sF544YU8j1+/fr1sNluO++ZcKykpKdcrxAJwHeUGsJg+ffrIZrPJZrPJx8dHlStX1tixY5WdnZ2v6z1+/Lhat27t9rE3Y+LEiSpRooTS09NzvHbp0iUFBQXpr3/9600vf9GiRRo3btytRASQjyg3gAW1atVKx48f1759+/TnP/9Zo0eP1oQJE3Idm5mZ6ZZ1RkRE5LgnjjvG3oxevXrp4sWLuV66fcGCBcrMzNQTTzzh8nKvbqvQ0FAFBgbeck4A+YNyA1iQr6+vIiIiVL58eT333HOKjY3VkiVLJP22Z6djx456/fXXVaZMGcedfY8cOaKuXbsqJCREoaGh6tChg3755Ren5c6ePVs1atSQr6+vIiMjNWjQIMdr1x5qyszM1KBBgxQZGSk/Pz+VL19e48ePz3Ws9NtNW5s3by5/f3+VLFlSTz/9tC5cuOB4/Wrmd955R5GRkSpZsqQGDhyorKysXN9/WFiY2rdvr9mzZ+d4bfbs2erYsaNCQ0P1yiuv6O6771axYsVUsWJFvfrqq07LHD16tOrUqaO//e1vuuuuu+Tn5ycp52GpTz/9VPXr11dgYKAiIiLUo0cPnTx5Mse6N27cqHvvvVd+fn667777tGvXrlzzX/Xll1+qXr168vPzU8WKFTVmzBjHHjhjjEaPHq3o6Gj5+vqqTJkyev7552+4POBOQbkB7gD+/v5Oe2iSk5O1Z88erVmzRsuWLVNWVpbi4uIUGBioDRs2aOPGjQoICFCrVq0c882YMUMDBw7U008/rZ07d2rJkiWqXLlyruv761//qiVLlujzzz/Xnj17NGfOHFWoUCHXsRcvXlRcXJxKlCihLVu2aP78+Vq7dq1TcZKkdevW6cCBA1q3bp0+/vhjJSUlKSkp6brvuV+/fvr666916NAhx7T//Oc/+vbbb9WvXz9Jv91AMCkpSf/+9781ZcoUzZo1S5MmTXJazv79+7Vw4UItWrRI27dvz3VdWVlZGjdunHbs2KHFixfrl19+UZ8+fXKMe+mllzRx4kRt2bJFpUuXVvv27a9b0DZs2KDevXtryJAh+ve//633339fSUlJev311yVJCxcu1KRJk/T+++9r3759Wrx4sWrVqnXd7QHcUQwAS4mPjzcdOnQwxhhjt9vNmjVrjK+vr3nxxRcdr4eHh5uMjAzHPJ9++qmpWrWqsdvtjmkZGRnG39/frFq1yhhjTJkyZcyIESOuu15J5osvvjDGGDN48GDTvHlzp+Vdb+wHH3xgSpQoYS5cuOB4ffny5cbLy8ukpKQ4MpcvX95kZ2c7xnTp0sV069btunmys7NN2bJlTWJiomPaq6++aqKjo82VK1dynWfChAkmJibG8TwxMdF4e3ubkydPOo1r2rSpGTJkyHXXvWXLFiPJpKWlGWOMWbdunZFk5s6d6xhz5swZ4+/vb+bNm2eMMeajjz4ywcHBjtcfeeQR88Ybbzgt99NPPzWRkZHGGGMmTpxo7r77bpOZmXndHMCdij03gAUtW7ZMAQEB8vPzU+vWrdWtWzeNHj3a8XqtWrXk4+PjeL5jxw7t379fgYGBCggIUEBAgEJDQ5Wenq4DBw7o5MmTOnbsmB555JE8rb9Pnz7avn27qlatqueff16rV6++7tiff/5ZtWvXVvHixR3TmjRpIrvdrj179jim1ahRQ0WKFHE8j4yMzPXQz1VFihRRfHy8kpKSZIyR3W7Xxx9/rL59+8rL67d/+ubNm6cmTZooIiJCAQEBGjlypA4fPuy0nPLly6t06dI3fL9bt25V+/btFR0drcDAQDVt2lSSciyrcePGjj+HhoaqatWq+vnnn3Nd5o4dOzR27FjHzyMgIED9+/fX8ePHdenSJXXp0kWXL19WxYoV1b9/f33xxRf5ftI4cLsoWtgBALhfs2bNNGPGDPn4+KhMmTIqWtT5r/q1RUKSLly4oJiYGM2ZMyfHskqXLu0oA3lVr149HTx4UCtWrNDatWvVtWtXxcbGasGCBa6/mf/P29vb6bnNZpPdbr/hPE8++aTGjx+vr7/+Wna7XUeOHFHfvn0lSZs2bVLPnj01ZswYxcXFKTg4WHPnztXEiROdlvH7bfV7Vw+rxcXFac6cOSpdurQOHz6suLi4WzpZ+8KFCxozZow6d+6c4zU/Pz9FRUVpz549Wrt2rdasWaMBAwZowoQJ+uabb3JsK+BOQ7kBLKh48eLXPR8mN/Xq1dO8efMUFhamoKCgXMdUqFBBycnJatasWZ6WGRQUpG7duqlbt256/PHH1apVK509e1ahoaFO46pXr66kpCRdvHjRUSQ2btwoLy8vx8nON6tSpUpq2rSpZs+eLWOMYmNjVb58eUnS999/r/Lly2vEiBGO8deen5NXu3fv1pkzZ/Tmm28qKipKkvTjjz/mOvaHH35QdHS0JOnXX3/V3r17Vb169VzH1qtXT3v27Lnhz9Hf31/t27dX+/btNXDgQFWrVk07d+5UvXr1XH4fgJVQbgCoZ8+emjBhgjp06KCxY8eqXLlyOnTokBYtWqSXX35Z5cqV0+jRo/Xss88qLCxMrVu3VlpamjZu3KjBgwfnWN67776ryMhI1a1bV15eXpo/f74iIiJyvUhdz549lZiYqPj4eI0ePVqnTp3S4MGD1atXL4WHh9/ye+vXr5/69+8vSU4nIFepUkWHDx/W3Llz1aBBAy1fvlxffPGFy8uPjo6Wj4+P3nvvPT377LPatWvXda+BM3bsWJUsWVLh4eEaMWKESpUqpY4dO+Y6dtSoUWrXrp2io6P1+OOPy8vLSzt27NCuXbv02muvKSkpSVeuXFGjRo1UrFgx/f3vf5e/v7+jvAF3Ms65AaBixYrp22+/VXR0tDp37qzq1aurX79+Sk9Pd+zJiY+P1+TJkzV9+nTVqFFD7dq10759+3JdXmBgoN5++23Vr19fDRo00C+//KKvvvoq18NbxYoV06pVq3T27Fk1aNBAjz/+uB555BFNnTrVLe/tsccek6+vr4oVK+ZUJB599FENHTpUgwYNUp06dfT999/r1VdfdXn5pUuXVlJSkubPn6977rlHb775pt55551cx7755psaMmSIYmJilJKSoqVLlzqd+3StuLg4LVu2TKtXr1aDBg103333adKkSY7yEhISolmzZqlJkya69957tXbtWi1dulQlS5Z0+T0AVmMzxpjCDgEAAOAu7LkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACWQrkBAACW8v8A1rYhCY9bpSkAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of recall values from recall1 to recall10\n", + "recall_values = [recall1, recall2, recall3, recall4, recall5, recall6, recall7, recall8, recall9, recall10]\n", + "\n", + "# List of corresponding labels for each recall value\n", + "labels = ['Recall1', 'Recall2', 'Recall3', 'Recall4', 'Recall5', 'Recall6', 'Recall7', 'Recall8', 'Recall9', 'Recall10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, recall_values, color='cyan')\n", + "plt.xlabel('Recall Variables')\n", + "plt.ylabel('Recall Values')\n", + "plt.title('Bar Graph of Recall')\n", + "plt.show()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "39LBleNeDeuw", + "outputId": "3c6c40bc-f1da-44fb-da14-25ec6d6cf278" + }, + "execution_count": 122, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/z0lEQVR4nO3deVxU9eL/8feAMOACroAhV3HfEg03MjQTxSyXFjPNRKX8WdoieUu7JlrdyMqtcmlx75qWmtfSXMKsa1KmiFtqaiJkCuKGIELC+f3h17nOBY1RluH4ej4e83jEZ87ynoM5b89qMQzDEAAAgEm4lHYAAACAokS5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AQAApkK5AVBmTZgwQRaLRWlpacW+rrVr16ply5by8PCQxWLR2bNni32dxcVisWjChAm2n+fPny+LxaLExMRSywQUJcoN4ISufNlc/fLx8VHnzp319ddfl3ieL7/8Uj179pSvr6/c3d1VtWpVdezYUZMnT1Z6enqJ5ylpp06d0iOPPCJPT0/NmDFDixYtUoUKFQqc9n9/d+XKlZO/v78GDx6sY8eOlXBy4NZUrrQDALi2V199VYGBgTIMQykpKZo/f7569OihL7/8Uvfff3+xrz8vL0+RkZGaP3++br/9dj399NMKCAjQ+fPnFRcXp3HjxmnNmjWKjY0t9iyl6eeff9b58+f12muvKSwsrFDzXPndXbx4UT/++KPmz5+vzZs3a8+ePfLw8CjmxMCtjXIDOLF7771XrVu3tv0cGRkpX19fffrpp0VSbvLy8pSTk3PNL9u33npL8+fP16hRozR58mRZLBbbe88995yOHz+uhQsX3tQ6yoLU1FRJUuXKlQs9z9W/uyeeeELVq1fXpEmTtGrVKj3yyCPFERPA/+GwFFCGVK5cWZ6enipXzv7fJe+8847uvPNOVatWTZ6engoODtayZcvyzW+xWDRy5Ej961//UrNmzWS1WrV27doC13XhwgVNmjRJzZo109tvv21XbK6oWbOmXnrppUKv40ZyNmrUSB4eHgoODtb3339fYNazZ89q8ODBqly5sry9vTVkyBBduHCh4I34Pz7//HMFBwfL09NT1atX18CBA+0OH919992KiIiQJLVp00YWi0WDBw8u1LKvFhoaKkk6fPiw3fj+/fv18MMPq2rVqvLw8FDr1q21atWqAj/jqFGjVKdOHVmtVtWqVUuDBg2ynW+Uk5Oj8ePHKzg4WN7e3qpQoYJCQ0P17bffOpwVKOvYcwM4sXPnziktLU2GYSg1NVXvvfeeMjIyNHDgQLvppk+frl69eumxxx5TTk6OlixZor59++qrr77SfffdZzftxo0b9dlnn2nkyJGqXr266tSpU+C6N2/erLNnz2r06NFydXV1KPe11uFIzu+++05Lly7Vs88+K6vVqpkzZ6p79+7aunWrmjdvbjftI488osDAQMXExCg+Pl4ff/yxfHx8NGnSpOvmnD9/voYMGaI2bdooJiZGKSkpmj59un744Qft2LFDlStX1j/+8Q81atRIH374oe1QU7169RzaHpJsJ+tWqVLFNrZ371516NBB/v7+GjNmjCpUqKDPPvtMffr00fLly/XAAw9IkjIyMhQaGqp9+/Zp6NChuuOOO5SWlqZVq1bp999/V/Xq1ZWenq6PP/5Y/fv315NPPqnz589rzpw5Cg8P19atW9WyZUuHMwNllgHA6cybN8+QlO9ltVqN+fPn55v+woULdj/n5OQYzZs3N+655x67cUmGi4uLsXfv3r/MMH36dEOSsXLlSrvxS5cuGSdPnrR75eXlFWodjuSUZGzbts02dvToUcPDw8N44IEHbGPR0dGGJGPo0KF28z/wwANGtWrVrvv5cnJyDB8fH6N58+ZGVlaWbfyrr74yJBnjx4+3jV35ffz888/XXebV037zzTfGyZMnjeTkZGPZsmVGjRo1DKvVaiQnJ9um7dKli3H77bcbFy9etI3l5eUZd955p9GgQQPb2Pjx4w1JxooVK/Kt78q2v3TpkpGdnW333pkzZwxfX99820eSER0dnS/zkSNH/vLzAWUBh6UAJzZjxgxt2LBBGzZs0CeffKLOnTvriSee0IoVK+ym8/T0tP33mTNndO7cOYWGhio+Pj7fMjt16qSmTZv+5bqvXAVVsWJFu/Hdu3erRo0adq9Tp04Vah2O5AwJCVFwcLDt57/97W/q3bu31q1bp9zcXLtphw8fbvdzaGioTp06dd0rubZt26bU1FQ9/fTTducD3XfffWrcuLFWr159zXkLIywsTDVq1FBAQIAefvhhVahQQatWrVKtWrUkSadPn9bGjRv1yCOP6Pz580pLS1NaWppOnTql8PBwHTx40HZ4bPny5QoKCrLtybnalcOFrq6ucnd3l3T5PKfTp0/r0qVLat26dYHbFzAzDksBTqxt27Z2JxT3799frVq10siRI3X//ffbvsy++uorvf7660pISFB2drZt+oLOkwkMDCzUuitVqiTp8iGRq9WvX18bNmyQJC1cuFCLFi0q9DocydmgQYN8Yw0bNtSFCxd08uRJ+fn52cb/9re/2U135dDPmTNn5OXlVWCWo0ePSpIaNWqU773GjRtr8+bNBc5XWDNmzFDDhg117tw5zZ07V99//72sVqvt/UOHDskwDL3yyit65ZVXClxGamqq/P39dfjwYT300EN/uc4FCxZo8uTJ2r9/v/7880/beGF/54BZUG6AMsTFxUWdO3fW9OnTdfDgQTVr1kz/+c9/1KtXL3Xs2FEzZ85UzZo15ebmpnnz5mnx4sX5lnH13pPrady4sSRpz5496t27t228YsWKtsuhr1UAClqHozkdca1zggzDuKnl3oyri2mfPn101113acCAATpw4IAqVqyovLw8SdLo0aMVHh5e4DLq169f6PV98sknGjx4sPr06aO///3v8vHxkaurq2JiYvKdxAyYHeUGKGMuXbok6b97VJYvXy4PDw+tW7fObs/AvHnzbmo9oaGh8vb21pIlSzR27Fi5uNzcUWxHcx48eDDf2K+//qry5curRo0aN5VFkmrXri1JOnDggO655x679w4cOGB7vyhcKRmdO3fW+++/rzFjxqhu3bqSJDc3t7+8d069evW0Z8+e606zbNky1a1bVytWrLDbExYdHX3zHwAoYzjnBihD/vzzT61fv17u7u5q0qSJpMtfnBaLxe48lMTERK1cufKm1lW+fHm9+OKL2rNnj8aMGVPgXhBH9ow4mjMuLs7uXJHk5GT9+9//Vrdu3Ry+eqsgrVu3lo+Pj2bPnm13iOzrr7/Wvn378l29dbPuvvtutW3bVtOmTdPFixfl4+Oju+++Wx988IGOHz+eb/qTJ0/a/vuhhx7Szp079cUXX+Sb7srv4Mo2ufp38tNPPykuLq5IPwdQFrDnBnBiX3/9tfbv3y/p8vkXixcv1sGDBzVmzBjbuST33XefpkyZou7du2vAgAFKTU3VjBkzVL9+fe3ateum1j9mzBjt27dPb7/9ttavX6+HHnpItWrV0pkzZxQfH6/PP/9cPj4+hbpBn6M5mzdvrvDwcLtLwSVp4sSJN/WZrnBzc9OkSZM0ZMgQderUSf3797ddCl6nTh2NGjWqSNZztb///e/q27ev5s+fr+HDh2vGjBm66667dPvtt+vJJ59U3bp1lZKSori4OP3+++/auXOnbb5ly5apb9++Gjp0qIKDg3X69GmtWrVKs2fPVlBQkO6//36tWLFCDzzwgO677z4dOXJEs2fPVtOmTfOdNwWYXmleqgWgYAVdCu7h4WG0bNnSmDVrlt2l14ZhGHPmzDEaNGhgWK1Wo3Hjxsa8efNsl0lfTZIxYsQIh/N88cUXRo8ePYwaNWoY5cqVMypXrmzcddddxttvv22cPXu20OtwNOcnn3xim75Vq1bGt99+azfdlXlPnjxpN+7Ipc1Lly41WrVqZVitVqNq1arGY489Zvz+++8FLs+RS8ELmjY3N9eoV6+eUa9ePePSpUuGYRjG4cOHjUGDBhl+fn6Gm5ub4e/vb9x///3GsmXL7OY9deqUMXLkSMPf399wd3c3atWqZURERBhpaWmGYVy+JPyNN94wateubdteX331lREREWHUrl3bblniUnCYnMUwSvGMOwAogMVi0YgRI/T++++XdhQAZRDn3AAAAFOh3AAAAFOh3AAAAFPhaikATodTAQHcDPbcAAAAU6HcAAAAU7nlDkvl5eXpjz/+UKVKlQp8WB8AAHA+hmHo/Pnzuu222/7ycTC3XLn5448/FBAQUNoxAADADUhOTlatWrWuO80tV24qVaok6fLGuXL7egAA4NzS09MVEBBg+x6/nluu3Fw5FOXl5UW5AQCgjCnMKSWcUAwAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEylVMvN999/r549e+q2226TxWLRypUr/3KeTZs26Y477pDValX9+vU1f/78Ys8JAADKjlItN5mZmQoKCtKMGTMKNf2RI0d03333qXPnzkpISNDzzz+vJ554QuvWrSvmpAAAoKwo1Qdn3nvvvbr33nsLPf3s2bMVGBioyZMnS5KaNGmizZs3a+rUqQoPDy+umAAAoAwpU+fcxMXFKSwszG4sPDxccXFx15wnOztb6enpdi8AAGBeZarcnDhxQr6+vnZjvr6+Sk9PV1ZWVoHzxMTEyNvb2/YKCAgoiagAAKCUlKlycyPGjh2rc+fO2V7JycmlHckpWZzwBQDAjSjVc24c5efnp5SUFLuxlJQUeXl5ydPTs8B5rFarrFZrScQDAABOoEztuQkJCVFsbKzd2IYNGxQSElJKiQAAgLMp1XKTkZGhhIQEJSQkSLp8qXdCQoKSkpIkXT6kNGjQINv0w4cP12+//aYXX3xR+/fv18yZM/XZZ59p1KhRpREfAFCA0j6kzWFulGq52bZtm1q1aqVWrVpJkqKiotSqVSuNHz9eknT8+HFb0ZGkwMBArV69Whs2bFBQUJAmT56sjz/+mMvAAQCAjcUwDKO0Q5Sk9PR0eXt769y5c/Ly8irtOE7DGf9lc0v9wUSx4s93yWJ7l6xbZXs78v1dps65AQAA+CuUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCrlSjsAAADOwFLaAQpglHaAMoo9NwAAwFQoNwAAwFQ4LAWUgrK6+7us5gZwa2HPDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXucwMATor7CgE3hj03AADAVCg3AADAVCg3AADAVDjnBmUa5yQAAP4Xe24AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICplHq5mTFjhurUqSMPDw+1a9dOW7duve7006ZNU6NGjeTp6amAgACNGjVKFy9eLKG0AADA2ZVquVm6dKmioqIUHR2t+Ph4BQUFKTw8XKmpqQVOv3jxYo0ZM0bR0dHat2+f5syZo6VLl+rll18u4eTXZnHCFwAAt5JSLTdTpkzRk08+qSFDhqhp06aaPXu2ypcvr7lz5xY4/ZYtW9ShQwcNGDBAderUUbdu3dS/f/+/3NsDAABuHaVWbnJycrR9+3aFhYX9N4yLi8LCwhQXF1fgPHfeeae2b99uKzO//fab1qxZox49epRIZgAA4PzKldaK09LSlJubK19fX7txX19f7d+/v8B5BgwYoLS0NN11110yDEOXLl3S8OHDr3tYKjs7W9nZ2baf09PTi+YDAAAAp1TqJxQ7YtOmTXrjjTc0c+ZMxcfHa8WKFVq9erVee+21a84TExMjb29v2ysgIKAEEwMAgJJmMQzDKI0V5+TkqHz58lq2bJn69OljG4+IiNDZs2f173//O988oaGhat++vd5++23b2CeffKJhw4YpIyNDLi75u1pBe24CAgJ07tw5eXl5Fe2HknOewFuYXzC5iw65Sxa5Sxa5S5aZczsqPT1d3t7ehfr+LrU9N+7u7goODlZsbKxtLC8vT7GxsQoJCSlwngsXLuQrMK6urpKka3U0q9UqLy8vuxcAADCvUjvnRpKioqIUERGh1q1bq23btpo2bZoyMzM1ZMgQSdKgQYPk7++vmJgYSVLPnj01ZcoUtWrVSu3atdOhQ4f0yiuvqGfPnraSAwAAbm2lWm769eunkydPavz48Tpx4oRatmyptWvX2k4yTkpKsttTM27cOFksFo0bN07Hjh1TjRo11LNnT/3zn/8srY8AAACcTKmdc1NaHDlmdyPK6rFPchcdcpcscpcscpcsM+d2VJk45wYAAKA4UG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpOFxusrKydOHCBdvPR48e1bRp07R+/foiDQYAAHAjHC43vXv31sKFCyVJZ8+eVbt27TR58mT17t1bs2bNKvKAAAAAjnC43MTHxys0NFSStGzZMvn6+uro0aNauHCh3n333SIPCAAA4AiHy82FCxdUqVIlSdL69ev14IMPysXFRe3bt9fRo0eLPCAAAIAjHC439evX18qVK5WcnKx169apW7dukqTU1FR5eXkVeUAAAABHOFxuxo8fr9GjR6tOnTpq27atQkJCJF3ei9OqVasiDwgAAOAIi2EYhqMznThxQsePH1dQUJBcXC73o61bt8rLy0uNGzcu8pBFKT09Xd7e3jp37lyx7GmyFPkSb15hfsHkLjrkLlnkLlnkLllmzu0oR76/b+g+N35+fqpUqZI2bNigrKwsSVKbNm2cvtgAAADzc7jcnDp1Sl26dFHDhg3Vo0cPHT9+XJIUGRmpF154ocgDAgAAOMLhcjNq1Ci5ubkpKSlJ5cuXt43369dPa9euLdJwAAAAjirn6Azr16/XunXrVKtWLbvxBg0acCk4AAAodQ7vucnMzLTbY3PF6dOnZbVaiyQUAADAjXK43ISGhtoevyBJFotFeXl5euutt9S5c+ciDQcAAOAoh8vNW2+9pQ8//FD33nuvcnJy9OKLL6p58+b6/vvvNWnSJIcDzJgxQ3Xq1JGHh4fatWunrVu3Xnf6s2fPasSIEapZs6asVqsaNmyoNWvWOLxeAABgTg6Xm+bNm+vXX3/VXXfdpd69eyszM1MPPvigduzYoXr16jm0rKVLlyoqKkrR0dGKj49XUFCQwsPDlZqaWuD0OTk56tq1qxITE7Vs2TIdOHBAH330kfz9/R39GAAAwKRu6CZ+RaVdu3Zq06aN3n//fUlSXl6eAgIC9Mwzz2jMmDH5pp89e7befvtt7d+/X25ubje0Tm7iVzByFx1ylyxylyxylywz53aUI9/fDl8t9f3331/3/Y4dOxZqOTk5Odq+fbvGjh1rG3NxcVFYWJji4uIKnGfVqlUKCQnRiBEj9O9//1s1atTQgAED9NJLL8nV1bXAebKzs5WdnW37OT09vVD5AABA2eRwubn77rvzjVks/+2Nubm5hVpOWlqacnNz5evrazfu6+ur/fv3FzjPb7/9po0bN+qxxx7TmjVrdOjQIT399NP6888/FR0dXeA8MTExmjhxYqEyAQCAss/hc27OnDlj90pNTdXatWvVpk0brV+/vjgy2uTl5cnHx0cffvihgoOD1a9fP/3jH//Q7NmzrznP2LFjde7cOdsrOTm5WDMCAIDS5fCeG29v73xjXbt2lbu7u6KiorR9+/ZCLad69epydXVVSkqK3XhKSor8/PwKnKdmzZpyc3OzOwTVpEkTnThxQjk5OXJ3d883j9Vq5f47AADcQm7owZkF8fX11YEDBwo9vbu7u4KDgxUbG2sby8vLU2xsrEJCQgqcp0OHDjp06JDy8vJsY7/++qtq1qxZYLEBAAC3Hof33OzatcvuZ8MwdPz4cb355ptq2bKlQ8uKiopSRESEWrdurbZt22ratGnKzMzUkCFDJEmDBg2Sv7+/YmJiJElPPfWU3n//fT333HN65plndPDgQb3xxht69tlnHf0YAADApBwuNy1btpTFYtH/XkHevn17zZ0716Fl9evXTydPntT48eN14sQJtWzZUmvXrrWdZJyUlCQXl//uXAoICNC6des0atQotWjRQv7+/nruuef00ksvOfoxAACASTl8n5v/fTimi4uLatSoIQ8PjyINVly4z03ByF10yF2yyF2yyF2yzJzbUcV6n5vatWvfcDAAAIDiVqhy8+677xZ6gZz/AgAASlOhDksFBgYWbmEWi3777bebDlWcOCxVMHIXHXKXLHKXLHKXLDPndlSRH5Y6cuRIkQQDAAAobkV2nxsAAABn4PAJxZL0+++/a9WqVUpKSlJOTo7de1OmTCmSYAAAADfC4XITGxurXr16qW7dutq/f7+aN2+uxMREGYahO+64ozgyAgAAFJrDh6XGjh2r0aNHa/fu3fLw8NDy5cuVnJysTp06qW/fvsWREQAAoNAcLjf79u3ToEGDJEnlypVTVlaWKlasqFdffVWTJk0q8oAAAACOcLjcVKhQwXaeTc2aNXX48GHbe2lpaUWXDAAA4AY4fM5N+/bttXnzZjVp0kQ9evTQCy+8oN27d2vFihVq3759cWQEAAAotEKXm9OnT6tq1aqaMmWKMjIyJEkTJ05URkaGli5dqgYNGnClFAAAKHWFfnCmh4eH+vTpo8jISHXt2rW4cxUb7lBcMHIXHXKXLHKXLHKXLDPndpQj39+FPufmo48+0smTJ9W9e3fVqVNHEyZMUGJi4s1mBQAAKFKFLjePP/64YmNjdejQIUVERGjBggWqX7++unbtqqVLl+a7mR8AAEBpcPhqqcDAQE2cOFFHjhzR2rVr5ePjo6FDh6pmzZo8ERwAAJS6Qp9zcz3Lly/XsGHDdPbsWeXm5hZFrmLDOTcFI3fRIXfJInfJInfJMnNuRxX5U8ELcvToUc2bN08LFixQcnKyOnfurMjIyBtdHAAAQJFwqNxkZ2dr+fLlmjt3rjZt2iR/f38NHjxYQ4YMUZ06dYopIgAAQOEVutw8/fTTWrJkiS5cuKDevXtrzZo16tq1qywWZ9whBgAAblWFLjebN29WdHS0Bg4cqGrVqhVnJgAAgBtW6HKza9eu4swBAABQJBy+FBwAAMCZUW4AAICpUG4AAICpUG4AAICpFOqEYkdOJm7RosUNhwEAALhZhSo3LVu2lMVi0bWe1HDlPYvF4vSPXwAAAOZWqHJz5MiR4s4BAABQJApVbmrXrl3cOQAAAIpEocrNqlWrCr3AXr163XAYAACAm1WoctOnT59CLYxzbgAAQGkrVLnJy8sr7hwAAABFgvvcAAAAUyn0gzOvlpmZqe+++05JSUnKycmxe+/ZZ58tkmAAAAA3wuFys2PHDvXo0UMXLlxQZmamqlatqrS0NJUvX14+Pj6UGwAAUKocPiw1atQo9ezZU2fOnJGnp6d+/PFHHT16VMHBwXrnnXeKIyMAAEChOVxuEhIS9MILL8jFxUWurq7Kzs5WQECA3nrrLb388svFkREAAKDQHC43bm5ucnG5PJuPj4+SkpIkSd7e3kpOTi7adAAAAA5y+JybVq1a6eeff1aDBg3UqVMnjR8/XmlpaVq0aJGaN29eHBkBAAAKzeE9N2+88YZq1qwpSfrnP/+pKlWq6KmnntLJkyf1wQcfFHlAAAAAR1iMaz3q26TS09Pl7e2tc+fOycvLq8iXbynyJd68wvyCyV10yF2yyF2yyF2yzJzbUY58fzu85+bIkSM6ePBgvvGDBw8qMTHR0cUBAAAUKYfLzeDBg7Vly5Z84z/99JMGDx5cFJkAAABumMPlZseOHerQoUO+8fbt2yshIaEoMgEAANwwh8uNxWLR+fPn842fO3eOJ4IDAIBS53C56dixo2JiYuyKTG5urmJiYnTXXXcVaTgAAABHOXyfm0mTJqljx45q1KiRQkNDJUn/+c9/lJ6ero0bNxZ5QAAAAEc4vOemadOm2rVrlx555BGlpqbq/PnzGjRokPbv389N/AAAQKnjPjdFrKzeb4DcRYfcJYvcJYvcJcvMuR1VrPe5kS4fhho4cKDuvPNOHTt2TJK0aNEibd68+UYWBwAAUGQcLjfLly9XeHi4PD09FR8fr+zsbEmXr5Z64403ijwgAACAIxwuN6+//rpmz56tjz76SG5ubrbxDh06KD4+vkjDAQAAOMrhcnPgwAF17Ngx37i3t7fOnj1bFJkAAABumMPlxs/PT4cOHco3vnnzZtWtW7dIQgEAANwoh8vNk08+qeeee04//fSTLBaL/vjjD/3rX//S6NGj9dRTTxVHRgAAgEJz+CZ+Y8aMUV5enrp06aILFy6oY8eOslqtGj16tJ555pniyAgAAFBoN3yfm5ycHB06dEgZGRlq2rSpKlasqKysLHl6ehZ1xiLFfW4KRu6iQ+6SRe6SRe6SZebcjir2+9xIkru7u5o2baq2bdvKzc1NU6ZMUWBg4I0uDgAAoEgUutxkZ2dr7Nixat26te68806tXLlSkjRv3jwFBgZq6tSpGjVq1A2FmDFjhurUqSMPDw+1a9dOW7duLdR8S5YskcViUZ8+fW5ovQAAwHwKXW7Gjx+vWbNmqU6dOkpMTFTfvn01bNgwTZ06VVOmTFFiYqJeeuklhwMsXbpUUVFRio6OVnx8vIKCghQeHq7U1NTrzpeYmKjRo0fbHt4JAAAgOVBuPv/8cy1cuFDLli3T+vXrlZubq0uXLmnnzp169NFH5erqekMBpkyZoieffFJDhgxR06ZNNXv2bJUvX15z58695jy5ubl67LHHNHHiRC4/BwAAdgpdbn7//XcFBwdLkpo3by6r1apRo0bJYrnxU5lycnK0fft2hYWF/TeQi4vCwsIUFxd3zfleffVV+fj4KDIy8obXDQAAzKnQl4Ln5ubK3d39vzOWK6eKFSve1MrT0tKUm5srX19fu3FfX1/t37+/wHk2b96sOXPmKCEhoVDryM7Otj3/Srp8tjUAADCvQpcbwzA0ePBgWa1WSdLFixc1fPhwVahQwW66FStWFG3Cq5w/f16PP/64PvroI1WvXr1Q88TExGjixInFlgkAADiXQpebiIgIu58HDhx40yuvXr26XF1dlZKSYjeekpIiPz+/fNMfPnxYiYmJ6tmzp20sLy9P0uU9SQcOHFC9evXs5hk7dqyioqJsP6enpysgIOCmswMAAOdU6HIzb968Il+5u7u7goODFRsba7ucOy8vT7GxsRo5cmS+6Rs3bqzdu3fbjY0bN07nz5/X9OnTCywtVqvVtrcJAACYn8OPXyhqUVFRioiIUOvWrdW2bVtNmzZNmZmZGjJkiCRp0KBB8vf3V0xMjDw8PNS8eXO7+StXrixJ+cYBAMCtqdTLTb9+/XTy5EmNHz9eJ06cUMuWLbV27VrbScZJSUlycbnhGykDAIBbzA0/W6qs4tlSBSN30SF3ySJ3ySJ3yTJzbkeVyLOlAAAAnBHlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmIpTlJsZM2aoTp068vDwULt27bR169ZrTvvRRx8pNDRUVapUUZUqVRQWFnbd6QEAwK2l1MvN0qVLFRUVpejoaMXHxysoKEjh4eFKTU0tcPpNmzapf//++vbbbxUXF6eAgAB169ZNx44dK+HkAADAGVkMwzBKM0C7du3Upk0bvf/++5KkvLw8BQQE6JlnntGYMWP+cv7c3FxVqVJF77//vgYNGvSX06enp8vb21vnzp2Tl5fXTef/X5YiX+LNK8wvmNxFh9wli9wli9wly8y5HeXI93ep7rnJycnR9u3bFRYWZhtzcXFRWFiY4uLiCrWMCxcu6M8//1TVqlULfD87O1vp6el2LwAAYF6lWm7S0tKUm5srX19fu3FfX1+dOHGiUMt46aWXdNttt9kVpKvFxMTI29vb9goICLjp3AAAwHmV+jk3N+PNN9/UkiVL9MUXX8jDw6PAacaOHatz587ZXsnJySWcEgAAlKRypbny6tWry9XVVSkpKXbjKSkp8vPzu+6877zzjt5880198803atGixTWns1qtslqtRZIXAAA4v1Ldc+Pu7q7g4GDFxsbaxvLy8hQbG6uQkJBrzvfWW2/ptdde09q1a9W6deuSiAoAAMqIUt1zI0lRUVGKiIhQ69at1bZtW02bNk2ZmZkaMmSIJGnQoEHy9/dXTEyMJGnSpEkaP368Fi9erDp16tjOzalYsaIqVqxYap8DAAA4h1IvN/369dPJkyc1fvx4nThxQi1bttTatWttJxknJSXJxeW/O5hmzZqlnJwcPfzww3bLiY6O1oQJE0oyOgAAcEKlfp+bksZ9bgpG7qJD7pJF7pJF7pJl5tyOKjP3uQEAAChqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqlBsAAGAqTlFuZsyYoTp16sjDw0Pt2rXT1q1brzv9559/rsaNG8vDw0O333671qxZU0JJAQCAsyv1crN06VJFRUUpOjpa8fHxCgoKUnh4uFJTUwucfsuWLerfv78iIyO1Y8cO9enTR3369NGePXtKODkAAHBGFsMwjNIM0K5dO7Vp00bvv/++JCkvL08BAQF65plnNGbMmHzT9+vXT5mZmfrqq69sY+3bt1fLli01e/bsv1xfenq6vL29de7cOXl5eRXdB/k/liJf4s0rzC+Y3EWH3CWL3CWL3CXLzLkd5cj3d6nuucnJydH27dsVFhZmG3NxcVFYWJji4uIKnCcuLs5uekkKDw+/5vQAAODWUq40V56Wlqbc3Fz5+vrajfv6+mr//v0FznPixIkCpz9x4kSB02dnZys7O9v287lz5yRdboC3irL6Scldsshdsshdsshdsooj95Xv7cIccCrVclMSYmJiNHHixHzjAQEBpZCmdHiXdoAbRO6SRe6SRe6SRe6SVZy5z58/L2/v66+hVMtN9erV5erqqpSUFLvxlJQU+fn5FTiPn5+fQ9OPHTtWUVFRtp/z8vJ0+vRpVatWTRaLMx6pvNxOAwIClJycXCznBRUXcpcscpcscpcscpesspDbMAydP39et912219OW6rlxt3dXcHBwYqNjVWfPn0kXS4fsbGxGjlyZIHzhISEKDY2Vs8//7xtbMOGDQoJCSlweqvVKqvVajdWuXLloohf7Ly8vJz2D9n1kLtkkbtkkbtkkbtkOXvuv9pjc0WpH5aKiopSRESEWrdurbZt22ratGnKzMzUkCFDJEmDBg2Sv7+/YmJiJEnPPfecOnXqpMmTJ+u+++7TkiVLtG3bNn344Yel+TEAAICTKPVy069fP508eVLjx4/XiRMn1LJlS61du9Z20nBSUpJcXP57Udedd96pxYsXa9y4cXr55ZfVoEEDrVy5Us2bNy+tjwAAAJxIqZcbSRo5cuQ1D0Nt2rQp31jfvn3Vt2/fYk5VeqxWq6Kjo/MdTnN25C5Z5C5Z5C5Z5C5ZZTX3tZT6TfwAAACKUqk/fgEAAKAoUW4AAICpUG4AAICpUG7KMIvFopUrV0qSEhMTZbFYlJCQUKqZCoPcJa+sZi+Lucti5ivKYvaymPmKspC9LGQsCOXmBg0ePFgWi0UWi0Vubm4KDAzUiy++qIsXL5Z2NJtnn31WwcHBslqtatmypSTnz71z5071799fAQEB8vT0VJMmTTR9+nSnz33q1Cl1795dt912m6xWqwICAjRy5Eilp6c7ffarnTp1SrVq1ZLFYtGAAQOcPveVfAW9nDWzJM2fP18tWrSQh4eHfHx8NGLECKf/czJ//vwyub1//vlndenSRZUrV1aVKlUUHh6unTt3Ov32li4/FPrqbVy5cmWNHj3aqTIW9D3zv3bt2qXQ0FB5eHgoICBAb731VrHncopLwcuq7t27a968efrzzz+1fft2RUREyGKxaNKkSaUdzWbo0KH66aeftGvXLtuYM+fevn27fHx89MknnyggIEBbtmzRsGHDdPvttzt1bhcXF/Xu3Vuvv/66atSooUOHDmnEiBE6ffq03N3dnTr71SIjI9WiRQsdO3ZMknP/Wbli3rx56t69u6TLN/k8e/asFixY4LSZp0yZosmTJ+vtt99Wu3btlJmZqcTERK1YscKpt3e/fv1s2/mK4OBgZWVl6ZdffnHKzBkZGerevbt69eqlmTNn6tKlS4qOjlZ4eLi6devm1Nt7586d+uabb1S/fn0tXLhQv//+u0aNGqX33ntPrq6uTpHxioK+Z65IT09Xt27dFBYWptmzZ2v37t0aOnSoKleurGHDhhVbJvbc3ASr1So/Pz8FBASoT58+CgsL04YNGyRdfoxETEyMAgMD5enpqaCgIC1btsxu/r179+r++++Xl5eXKlWqpNDQUB0+fFjS5X9tdO3aVdWrV5e3t7c6deqk+Ph4h/K9++67GjFihOrWrVtmcg8dOlTTp09Xp06dVLduXQ0cOFBDhgxRUlKSU+euUqWKnnrqKbVu3Vq1a9dWly5d9PTTT+s///mP02/zK2bNmqWzZ89q9OjRtrGykLty5cry8/OTn5+fPD095enp6bSZz5w5o3HjxmnhwoUaMGCA6tWrpxYtWqhXr15Ov72vbNcrL1dXVx0/flyBgYFOm3n//v06ffq0Xn31VTVq1EjNmjVTdHS0UlJSlJGR4dTbe+nSpapSpYqaNWumkJAQ9e3bV7NmzdKlS5e0bt06p8goXft75op//etfysnJ0dy5c9WsWTM9+uijevbZZzVlyhSH1uMoyk0R2bNnj7Zs2SJ3d3dJl59GvnDhQs2ePVt79+7VqFGjNHDgQH333XeSpGPHjqljx46yWq3auHGjtm/frqFDh+rSpUuSLj/1NCIiQps3b9aPP/6oBg0aqEePHjp//vwtl/vcuXP5bizl7Ln/+OMPrVixQp06dcr3njNm/+WXX/Tqq69q4cKFdncEd/bckjRixAhVr15dbdu21cGDB50684YNG5SXl6djx46pSZMmqlWrlh555BElJyeXme19xcKFC1WuXDm7hxg6W+ZGjRqpWrVqmjNnjnJycpSVlaU5c+aoSZMmqlixolNv7+zsbLm6utqNnThxQnl5ecrJyXGKjIURFxenjh072rardPlw24EDB3TmzJkiW08+Bm5IRESE4erqalSoUMGwWq2GJMPFxcVYtmyZcfHiRaN8+fLGli1b7OaJjIw0+vfvbxiGYYwdO9YIDAw0cnJyCrW+3Nxco1KlSsaXX35pG5NkfPHFF4ZhGMaRI0cMScaOHTvyzRsdHW0EBQWVudyGYRg//PCDUa5cOaNr165lIvejjz5qeHp6GpKMnj17GllZWU6/zS9evGi0aNHCWLRokWEYhvHtt98akoz+/fs7dW7DMIxXX33V2Lx5sxEfH2+8+eabhouLi+Hi4uK0mWNiYgw3NzejUaNGxtq1a424uDijS5cuRqNGjYzHH3/c6bf31Zo0aWI0atTI6TPv3r3bqFevnu3PRqNGjYzExESn//9y3bp1tkxXZ5RkPP/8806R8WpXf89crWvXrsawYcPsxvbu3WtIMn755ZdC5boRnHNzEzp37qxZs2YpMzNTU6dOVbly5fTQQw9p7969unDhgrp27Wo3fU5Ojlq1aiVJSkhIUGhoqNzc3ApcdkpKisaNG6dNmzYpNTVVubm5unDhgpKSkm6Z3Hv27FHv3r0VHR2tQ4cOlYncU6dOVXR0tH799VeNHTtWUVFRkpx7m48dO1ZNmjTRwIED873nzLkl6ZVXXrH9d6tWrbR48WIdOHBACQkJTpk5Ly9Pf/75p959911169ZNkvTpp5/aDo04+/a+Ii4uTvv27dP999+vgIAAp82clZWlyMhIdejQQZ9++qlyc3P1zjvv6L777lOrVq2cent369ZNrVu31o4dO5SVlSV3d3fdcccdio+PV/v27XXo0KFSz+jMKDc3oUKFCqpfv74kae7cuQoKCtKcOXNsD/FcvXq1/P397ea5cnjF09PzusuOiIjQqVOnNH36dNWuXVtWq1UhISG23ZFmz/3LL7+oS5cuGjZsmMaNG6fBgweXidxXzkdo3LixqlatqtDQUD3yyCNOnX3jxo3avXu37Vi98X9PZFmyZIkaNmzotLkLUqNGDe3atUsBAQGyWq1Ol7lmzZqSpKZNm9plrl69ujIzM+Xj41MmtvfHH3+sli1bqlq1ajp79qzTZl68eLESExMVFxdnO9y6ePFiValSRdWqVVOVKlWcNrskNWvWTP7+/po5c6aqVKmi3377Tc2bN9fu3btVp04dp8j4V/z8/JSSkmI3duVnPz+/IlvP/6LcFBEXFxe9/PLLioqK0q+//iqr1aqkpKQCz7mQpBYtWtiu6CioVf/www+aOXOmevToIUlKTk5WWlraLZF77969uueeexQREaF//vOfZSb3/8rLy5Mk5ebmOnX25cuXKysry/bzzz//rKFDh+ree++1fQZnzF2Q06dPy83NzfaXu7Nl7tChgyTpwIEDqlWrli1zWlqagoKC7KZ1tuxXZGRk6LPPPlNMTIy2bdvm1JkvXLggFxcXWSwWu4wWi8VW4p01+9WunNe0dOlSVa1aVXPmzNFLL73kVBmvJSQkRP/4xz/sMmzYsEGNGjVSlSpVinRdV+OE4iLUt29fubq66oMPPtDo0aM1atQoLViwQIcPH1Z8fLzee+89LViwQJJs90B59NFHtW3bNh08eFCLFi3SgQMHJEkNGjTQokWLtG/fPv3000967LHH/rKF/69Dhw4pISFBJ06cUFZWlhISEnT69Gm7Lyxny71nzx517txZ3bp1U1RUlE6cOKETJ04UeF8HZ8q9Zs0azZs3T3v27FFiYqJWr16t4cOHq0OHDvlOXHS27PXq1VPz5s1tr8DAQEmSt7d3vhO5nSn3l19+qY8//lh79uzRoUOHNGvWLO3atSvfVRvOlLlhw4bq3bu3nnvuOW3ZskV79uxRRESEGjduXOC/Yp0p+xVLly7VpUuXCjyM6WyZu3btqjNnzmjEiBHat2+f9u7dqyFDhqhcuXK2vWjOml26/Pdhenq69u7dq9dee01vvvmmPvzwQ6fKWND3TEJCgm3vz4ABA+Tu7q7IyEjt3btXS5cu1fTp022H7ItNsZ3NY3IRERFG7969843HxMQYNWrUMDIyMoxp06YZjRo1Mtzc3IwaNWoY4eHhxnfffWebdufOnUa3bt2M8uXLG5UqVTJCQ0ONw4cPG4ZhGPHx8Ubr1q0NDw8Po0GDBsbnn39u1K5d25g6daptfv3FiV6dOnWynYB29atr165Omzs6OrrAzBUqVHDq7b1x40YjJCTE8Pb2ti3jpZdeMs6cOVMm/qxc7eoTip0599dff220bNnSqFixolGhQgUjKCjIaN++vdGrVy+nzWwYhnHu3Dlj6NChRuXKlY2qVasaDzzwgJGUlFRm/pyEhIQYAwYMMAyjbPw9uH79eqNDhw6Gt7e3UaVKFeOee+4x4uLiykR2Pz8/o1y5coaHh4fRrl07Y82aNU6X8VrfM0eOHLHLcNdddxlWq9Xw9/c33nzzzXzbvahZ/i88AACAKXBYCgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBgAAmArlBkCps1gsWrlypSQpMTFRFotFCQkJJZ7jRtY9ePBg9enT57rT3H333Xr++edvKhuAwqPcALewwYMHy2KxyGKxyM3NTYGBgXrxxRcLfNyFs7j99ts1fPjwAt9btGiRrFbrDT8fJyAgQMePH7c9OBFA2US5AW5x3bt31/Hjx/Xbb79p6tSp+uCDDxQdHV3asa4pMjJSS5YssXvY5xXz5s1Tr169VL16dYeXm5OTI1dXV/n5+alcOZ4pDJRllBvgFme1WuXn56eAgAD16dNHYWFh2rBhg+39vLw8xcTEKDAwUJ6engoKCtKyZcvslrF3717df//98vLyUqVKlRQaGqrDhw9LuvyU8a5du6p69ery9vZWp06dFB8ff8N5Bw4cqKysLC1fvtxu/MiRI9q0aZMiIyN1+PBh9e7dW76+vqpYsaLatGmjb775xm76OnXq6LXXXtOgQYPk5eWlYcOG5TsslZubq8jISNtnb9SokaZPn15grokTJ6pGjRry8vLS8OHDbQ8OLEh2drZGjx4tf39/VahQQe3atdOmTZts7x89elQ9e/ZUlSpVVKFCBTVr1kxr1qy5sQ0G3IIoNwBs9uzZoy1btsjd3d02FhMTo4ULF2r27Nnau3evRo0apYEDB+q7776TJB07dkwdO3aU1WrVxo0btX37dg0dOlSXLl2SJJ0/f14RERHavHmzfvzxRzVo0EA9evTQ+fPnbyhj9erV1bt3b82dO9dufP78+apVq5a6deumjIwM9ejRQ7GxsdqxY4e6d++unj17KikpyW6ed955R0FBQdqxY4deeeWVfOvKy8tTrVq19Pnnn+uXX37R+PHj9fLLL+uzzz6zmy42Nlb79u3Tpk2b9Omnn2rFihWaOHHiNT/DyJEjFRcXpyVLlmjXrl3q27evunfvroMHD0qSRowYoezsbH3//ffavXu3Jk2aVODT5QFcQ7E/mhOA04qIiDBcXV2NChUqGFar1ZBkuLi4GMuWLTMMwzAuXrxolC9f3tiyZYvdfJGRkUb//v0NwzCMsWPHGoGBgUZOTk6h1pmbm2tUqlTJ+PLLL21jcuCp5YZhGGvXrjUsFovx22+/GYZhGHl5eUbt2rWNcePGXXOeZs2aGe+9957t59q1axt9+vSxm6Yw6x4xYoTx0EMP2X6OiIgwqlatamRmZtrGZs2aZVSsWNHIzc01DOPyk5Ofe+45wzAM4+jRo4arq6tx7Ngxu+V26dLFGDt2rGEYhnH77bcbEyZMuGYGANfHgWXgFte5c2fNmjVLmZmZmjp1qsqVK6eHHnpIknTo0CFduHBBXbt2tZsnJydHrVq1kiQlJCQoNDRUbm5uBS4/JSVF48aN06ZNm5Samqrc3FxduHAh314UR3Tt2lW1atXSvHnz9Oqrryo2NlZJSUkaMmSIJCkjI0MTJkzQ6tWrdfz4cV26dElZWVn51tm6deu/XNeMGTM0d+5cJSUlKSsrSzk5OWrZsqXdNEFBQSpfvrzt55CQEGVkZCg5OVm1a9e2m3b37t3Kzc1Vw4YN7cazs7NVrVo1SdKzzz6rp556SuvXr1dYWJgeeughtWjRotDbB7jVUW6AW1yFChVUv359SdLcuXMVFBSkOXPmKDIyUhkZGZKk1atXy9/f324+q9UqSfL09Lzu8iMiInTq1ClNnz5dtWvXltVqVUhIyHXPSfkrLi4uGjx4sBYsWKAJEyZo3rx56ty5s+rWrStJGj16tDZs2KB33nlH9evXl6enpx5++OF866xQocJ117NkyRKNHj1akydPVkhIiCpVqqS3335bP/300w1nz8jIkKurq7Zv3y5XV1e7964cenriiScUHh6u1atXa/369YqJidHkyZP1zDPP3PB6gVsJ5QaAjYuLi15++WVFRUVpwIABatq0qaxWq5KSktSpU6cC52nRooUWLFigP//8s8C9Nz/88INmzpypHj16SJKSk5Nv+FLtqw0ZMkSvv/66VqxYoS+++EIff/yx3ToHDx6sBx54QNLlQpGYmOjwOn744Qfdeeedevrpp21jV06UvtrOnTuVlZVlK3o//vijKlasqICAgHzTtmrVSrm5uUpNTVVoaOg11x0QEKDhw4dr+PDhGjt2rD766CPKDVBInFAMwE7fvn3l6uqqGTNmqFKlSho9erRGjRqlBQsW6PDhw4qPj9d7772nBQsWSLp8cmx6eroeffRRbdu2TQcPHtSiRYt04MABSVKDBg20aNEi7du3Tz/99JMee+yxv9zbUxiBgYG65557NGzYMFmtVj344IO29xo0aKAVK1YoISFBO3fu1IABA5SXl+fwOho0aKBt27Zp3bp1+vXXX/XKK6/o559/zjddTk6OIiMj9csvv2jNmjWKjo7WyJEj5eKS/6/Yhg0b6rHHHtOgQYO0YsUKHTlyRFu3blVMTIxWr14tSXr++ee1bt06HTlyRPHx8fr222/VpEkTh/MDtyrKDQA75cqV08iRI/XWW28pMzNTr732ml555RXFxMSoSZMm6t69u1avXq3AwEBJUrVq1bRx40ZlZGSoU6dOCg4O1kcffWTbizNnzhydOXNGd9xxhx5//HE9++yz8vHxKZKskZGROnPmjAYMGCAPDw/b+JQpU1SlShXdeeed6tmzp8LDw3XHHXc4vPz/9//+nx588EH169dP7dq106lTp+z24lzRpUsXNWjQQB07dlS/fv3Uq1cvTZgw4ZrLnTdvngYNGqQXXnhBjRo1Up8+ffTzzz/rb3/7m6TLl6CPGDHCtr0bNmyomTNnOpwfuFVZDMMwSjsEAABAUWHPDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMBXKDQAAMJX/D3PqyuT3IxkKAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "13cZXvb0DsvK" + }, + "execution_count": null, + "outputs": [] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.16" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/Python File/Stock_Price_Prediction_LOCAL_19716.ipynb b/Python File/Stock_Price_Prediction_LOCAL_19716.ipynb new file mode 100644 index 0000000..19803fe --- /dev/null +++ b/Python File/Stock_Price_Prediction_LOCAL_19716.ipynb @@ -0,0 +1,7142 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "qCDSjVhXLr_Z" + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.metrics import mean_squared_error, mean_absolute_error, mean_absolute_percentage_error, accuracy_score, precision_score, confusion_matrix, recall_score, f1_score" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "SOQbXSiB-g5G", + "outputId": "55ee6ec8-9146-4ebf-c2fe-b4b06bc3a5c4" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n" + ] + } + ], + "source": [ + "from google.colab import drive\n", + "drive.mount('/content/drive')\n", + "df = pd.read_csv('drive/My Drive/Colab Notebooks/Stock Price Prediction RNN/SBIN.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "Sc4id6VxL8BS", + "outputId": "78207ea2-5b80-47a2-a1b1-0548765b6455" + }, + "outputs": [ + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "summary": "{\n \"name\": \"df\",\n \"rows\": 7074,\n \"fields\": [\n {\n \"column\": \"Date\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 7074,\n \"samples\": [\n \"11-08-2016\",\n \"30-10-2007\",\n \"17-01-2017\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Open\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 154.7732294451065,\n \"min\": 13.478195,\n \"max\": 703.650024,\n \"num_unique_values\": 4758,\n \"samples\": [\n 174.399994,\n 31.0324,\n 187.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"High\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 156.34507839355788,\n \"min\": 13.935802,\n \"max\": 728.349976,\n \"num_unique_values\": 5403,\n \"samples\": [\n 473.0,\n 495.450012,\n 78.321663\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Low\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 152.98051601861624,\n \"min\": 13.214009,\n \"max\": 694.200012,\n \"num_unique_values\": 5488,\n \"samples\": [\n 60.2957,\n 22.677523,\n 16.983376\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 154.63054905628158,\n \"min\": 13.346102,\n \"max\": 725.25,\n \"num_unique_values\": 5975,\n \"samples\": [\n 633.599976,\n 241.100006,\n 107.834999\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Adj Close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 152.90324918554683,\n \"min\": 9.53141,\n \"max\": 725.25,\n \"num_unique_values\": 6575,\n \"samples\": [\n 12.345289,\n 223.836212,\n 16.758821\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Volume\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 34627439.399630256,\n \"min\": 0.0,\n \"max\": 446948261.0,\n \"num_unique_values\": 6948,\n \"samples\": [\n 29959130.0,\n 1648453.0,\n 14077470.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", + "type": "dataframe", + "variable_name": "df" + }, + "text/html": [ + "\n", + "
    \n", + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    DateOpenHighLowCloseAdj CloseVolume
    001-01-199618.69114718.97892218.54018418.82324012.40993143733533.0
    102-01-199618.89400518.96476717.73819218.22410612.01493156167280.0
    203-01-199618.32789218.56848917.64383917.73819211.69457768296318.0
    304-01-199617.50231217.83254217.22397217.67686311.65414286073880.0
    405-01-199617.73819217.78536617.45985217.57779311.58882776613039.0
    \n", + "
    \n", + "
    \n", + "\n", + "
    \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
    \n", + "\n", + "\n", + "
    \n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
    \n", + "\n", + "
    \n", + "
    \n" + ], + "text/plain": [ + " Date Open High Low Close Adj Close \\\n", + "0 01-01-1996 18.691147 18.978922 18.540184 18.823240 12.409931 \n", + "1 02-01-1996 18.894005 18.964767 17.738192 18.224106 12.014931 \n", + "2 03-01-1996 18.327892 18.568489 17.643839 17.738192 11.694577 \n", + "3 04-01-1996 17.502312 17.832542 17.223972 17.676863 11.654142 \n", + "4 05-01-1996 17.738192 17.785366 17.459852 17.577793 11.588827 \n", + "\n", + " Volume \n", + "0 43733533.0 \n", + "1 56167280.0 \n", + "2 68296318.0 \n", + "3 86073880.0 \n", + "4 76613039.0 " + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load the dataset\n", + "#df = pd.read_csv('/content/SBIN.NS.csv')\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "7LaYGXsfN-8y" + }, + "outputs": [], + "source": [ + "# Drop the 'Date' and 'Adj Close' columns\n", + "df.drop(['Date', 'Adj Close'], axis=1, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "pqbTBdnBOKJc", + "outputId": "42ed663c-ae0f-43d7-a7bd-18bb37dfef6f" + }, + "outputs": [ + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "summary": "{\n \"name\": \"df\",\n \"rows\": 7074,\n \"fields\": [\n {\n \"column\": \"Open\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 154.7732294451065,\n \"min\": 13.478195,\n \"max\": 703.650024,\n \"num_unique_values\": 4758,\n \"samples\": [\n 174.399994,\n 31.0324,\n 187.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"High\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 156.34507839355788,\n \"min\": 13.935802,\n \"max\": 728.349976,\n \"num_unique_values\": 5403,\n \"samples\": [\n 473.0,\n 495.450012,\n 78.321663\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Low\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 152.98051601861624,\n \"min\": 13.214009,\n \"max\": 694.200012,\n \"num_unique_values\": 5488,\n \"samples\": [\n 60.2957,\n 22.677523,\n 16.983376\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 154.63054905628158,\n \"min\": 13.346102,\n \"max\": 725.25,\n \"num_unique_values\": 5975,\n \"samples\": [\n 633.599976,\n 241.100006,\n 107.834999\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Volume\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 34627439.399630256,\n \"min\": 0.0,\n \"max\": 446948261.0,\n \"num_unique_values\": 6948,\n \"samples\": [\n 29959130.0,\n 1648453.0,\n 14077470.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", + "type": "dataframe", + "variable_name": "df" + }, + "text/html": [ + "\n", + "
    \n", + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    OpenHighLowCloseVolume
    018.69114718.97892218.54018418.82324043733533.0
    118.89400518.96476717.73819218.22410656167280.0
    218.32789218.56848917.64383917.73819268296318.0
    317.50231217.83254217.22397217.67686386073880.0
    417.73819217.78536617.45985217.57779376613039.0
    \n", + "
    \n", + "
    \n", + "\n", + "
    \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
    \n", + "\n", + "\n", + "
    \n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
    \n", + "\n", + "
    \n", + "
    \n" + ], + "text/plain": [ + " Open High Low Close Volume\n", + "0 18.691147 18.978922 18.540184 18.823240 43733533.0\n", + "1 18.894005 18.964767 17.738192 18.224106 56167280.0\n", + "2 18.327892 18.568489 17.643839 17.738192 68296318.0\n", + "3 17.502312 17.832542 17.223972 17.676863 86073880.0\n", + "4 17.738192 17.785366 17.459852 17.577793 76613039.0" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "id": "dydEPoNeM6eN" + }, + "outputs": [], + "source": [ + "# Handle missing values\n", + "from sklearn.impute import SimpleImputer\n", + "imputer = SimpleImputer(strategy='mean')\n", + "df = pd.DataFrame(imputer.fit_transform(df), columns=df.columns)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "OQ3cGqgTMBwt" + }, + "outputs": [], + "source": [ + "# Select features and target variable\n", + "X = df[['Open', 'High', 'Low', 'Volume']]\n", + "y = df['Close']" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "9Oz-bwJOMEWD" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "id": "ugapDyXODtn3" + }, + "outputs": [], + "source": [ + "# Scale the features using Min-Max scaling\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "997ZEgibCZIO", + "outputId": "879af72c-3e7c-4b8c-ba28-452fa8ba3cd6" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(5659, 4)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "bmtt76RuCeyG", + "outputId": "855f34ec-4914-4e1f-c9b1-6f8753612100" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(1415, 4)" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_test.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "CeJkUJ92Ciqd", + "outputId": "21c5949c-e787-40df-b816-7cc9e830e401" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(5659,)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7HGC7VuTCjWc", + "outputId": "cbda22d6-bec9-45d7-80ac-c74ad14b7c0d" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(1415,)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_test.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "c6Ek8jRlO2_I" + }, + "source": [ + "## 1. LINEAR REGRESSION" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "id": "RdZ1SpzdMHAJ" + }, + "outputs": [], + "source": [ + "# Create a linear regression model\n", + "model1 = LinearRegression()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 241 + }, + "id": "mPM035IzMY04", + "outputId": "084d9520-1d31-4287-a9d1-6f9eeea60f9b" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    Close
    5286257.350006
    3408129.464996
    5477279.350006
    6906588.500000
    53021.644367
    \n", + "

    " + ], + "text/plain": [ + "5286 257.350006\n", + "3408 129.464996\n", + "5477 279.350006\n", + "6906 588.500000\n", + "530 21.644367\n", + "Name: Close, dtype: float64" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_train.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "qBhQ9HbYMI3d", + "outputId": "daac2bc7-a480-4013-8e06-717bb8c1fa65" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    LinearRegression()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "LinearRegression()" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model1.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "id": "X269co2kMS4z" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred1 = model1.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "id": "QK8GvDYPOd0Y" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse1 = np.sqrt(mean_squared_error(y_test, pred1))\n", + "mae1 = mean_absolute_error(y_test, pred1)\n", + "mape1 = mean_absolute_percentage_error(y_test, pred1)\n", + "accuracy1 = accuracy_score(y_test > pred1, y_test > pred1.round())\n", + "precision1 = precision_score(y_test > pred1, y_test > pred1.round())\n", + "confusion1 = confusion_matrix(y_test > pred1, y_test > pred1.round())\n", + "recall1 = recall_score(y_test > pred1, y_test > pred1.round())\n", + "f11 = f1_score(y_test > pred1, y_test > pred1.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dEi49xtEOtne", + "outputId": "60b53406-81c4-4531-cbb0-77b9ffde8890" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 1.6881364643681482\n", + "MAE: 0.9433353485344729\n", + "MAPE: 0.006085435990853812\n", + "Accuracy: 0.8296819787985866\n", + "Precision: 0.8623595505617978\n", + "Confusion Matrix:\n", + " [[560 98]\n", + " [143 614]]\n", + "Recall: 0.8110964332892999\n", + "F1 Score: 0.8359428182437032\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse1)\n", + "print(\"MAE:\", mae1)\n", + "print(\"MAPE:\", mape1)\n", + "print(\"Accuracy:\", accuracy1)\n", + "print(\"Precision:\", precision1)\n", + "print(\"Confusion Matrix:\\n\", confusion1)\n", + "print(\"Recall:\", recall1)\n", + "print(\"F1 Score:\", f11)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GxtMzlg-gR2P" + }, + "source": [ + "## 2. SVR" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "id": "o7K9r7EXWRjQ" + }, + "outputs": [], + "source": [ + "from sklearn.svm import SVR\n", + "from sklearn.model_selection import GridSearchCV" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "id": "0xQewd7QWTtq" + }, + "outputs": [], + "source": [ + "# Create an SVR model\n", + "model2 = SVR()\n", + "param_grid = {'C':[0.1, 1], 'epsilon':[0.01, 0.1, 0.5], 'kernel':['sigmoid']}\n", + "GV_SVR = GridSearchCV(model2, param_grid = param_grid, scoring = 'accuracy', n_jobs = -1)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "id": "DuNes3s6U2IV" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 191 + }, + "id": "22SaCsQmfhgP", + "outputId": "7867aa8e-a7dc-49e4-d0aa-310423e9c696" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.10/dist-packages/sklearn/model_selection/_search.py:1103: UserWarning: One or more of the test scores are non-finite: [nan nan nan nan nan nan]\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "text/html": [ + "
    GridSearchCV(estimator=SVR(), n_jobs=-1,\n",
    +              "             param_grid={'C': [0.1, 1], 'epsilon': [0.01, 0.1, 0.5],\n",
    +              "                         'kernel': ['sigmoid']},\n",
    +              "             scoring='accuracy')
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "GridSearchCV(estimator=SVR(), n_jobs=-1,\n", + " param_grid={'C': [0.1, 1], 'epsilon': [0.01, 0.1, 0.5],\n", + " 'kernel': ['sigmoid']},\n", + " scoring='accuracy')" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "GV_SVR.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "id": "OQ1nL4oYfkAC" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred2 = GV_SVR.predict(X_test)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "U6-EppR68Jsu", + "outputId": "cfa67a46-ab8c-478d-c13e-fe884ef7ebae" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'C': 0.1, 'epsilon': 0.01, 'kernel': 'sigmoid'}" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "GV_SVR.best_params_" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "id": "nRYTwydsfpjb" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics with grid search\n", + "rmse2 = np.sqrt(mean_squared_error(y_test, pred2))\n", + "mae2 = mean_absolute_error(y_test, pred2)\n", + "mape2 = mean_absolute_percentage_error(y_test, pred2)\n", + "accuracy2 = accuracy_score(y_test > pred2, y_test > pred2.round())\n", + "precision2 = precision_score(y_test > pred2, y_test > pred2.round())\n", + "confusion2 = confusion_matrix(y_test > pred2, y_test > pred2.round())\n", + "recall2 = recall_score(y_test > pred2, y_test > pred2.round())\n", + "f12 = f1_score(y_test > pred2, y_test > pred2.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "656J5oz5fzq6", + "outputId": "c62c2076-2a10-43da-935d-c593c2d7be79" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 158.5191296342117\n", + "MAE: 127.61818666535594\n", + "MAPE: 2.6724681150799072\n", + "Accuracy: 0.9985865724381625\n", + "Precision: 0.9970457902511078\n", + "Confusion Matrix:\n", + " [[738 2]\n", + " [ 0 675]]\n", + "Recall: 1.0\n", + "F1 Score: 0.9985207100591716\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics with grid search\n", + "print(\"RMSE:\", rmse2)\n", + "print(\"MAE:\", mae2)\n", + "print(\"MAPE:\", mape2)\n", + "print(\"Accuracy:\", accuracy2)\n", + "print(\"Precision:\", precision2)\n", + "print(\"Confusion Matrix:\\n\", confusion2)\n", + "print(\"Recall:\", recall2)\n", + "print(\"F1 Score:\", f12)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "tIlc-wCE8Jsv", + "outputId": "fc6a39f5-b546-444e-a522-8bbcf889be14" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    SVR()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "SVR()" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#fitting without grid search\n", + "model2.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "id": "f3u1h6Dk8Jsv" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred2_1 = model2.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "id": "F-NgJx2d8Jsv" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics without grid search\n", + "rmse2_1 = np.sqrt(mean_squared_error(y_test, pred2_1))\n", + "mae2_1 = mean_absolute_error(y_test, pred2_1)\n", + "mape2_1 = mean_absolute_percentage_error(y_test, pred2_1)\n", + "accuracy2_1 = accuracy_score(y_test > pred2_1, y_test > pred2_1.round())\n", + "precision2_1 = precision_score(y_test > pred2_1, y_test > pred2_1.round())\n", + "confusion2_1 = confusion_matrix(y_test > pred2_1, y_test > pred2_1.round())\n", + "recall2_1 = recall_score(y_test > pred2_1, y_test > pred2_1.round())\n", + "f12_1 = f1_score(y_test > pred2_1, y_test > pred2_1.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "_BB1EERE8Jsv", + "outputId": "11c94daf-d2db-4447-a5b9-b753e648b56c" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 147.71103599153602\n", + "MAE: 110.99419106508152\n", + "MAPE: 1.9715076513294716\n", + "Accuracy: 0.9992932862190813\n", + "Precision: 1.0\n", + "Confusion Matrix:\n", + " [[727 0]\n", + " [ 1 687]]\n", + "Recall: 0.998546511627907\n", + "F1 Score: 0.9992727272727273\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics without grid search\n", + "print(\"RMSE:\", rmse2_1)\n", + "print(\"MAE:\", mae2_1)\n", + "print(\"MAPE:\", mape2_1)\n", + "print(\"Accuracy:\", accuracy2_1)\n", + "print(\"Precision:\", precision2_1)\n", + "print(\"Confusion Matrix:\\n\", confusion2_1)\n", + "print(\"Recall:\", recall2_1)\n", + "print(\"F1 Score:\", f12_1)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hcIfVMWdgcKt" + }, + "source": [ + "## 3. Random Forest" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "id": "f7raXT_hf2ij" + }, + "outputs": [], + "source": [ + "from sklearn.ensemble import RandomForestRegressor\n", + "# Create a Random Forest model\n", + "model3 = RandomForestRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "id": "TadNM7MEU7fh" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "fF002Yepgk55", + "outputId": "4ff3a76e-04be-452e-8927-a7739bc306fb" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    RandomForestRegressor()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "RandomForestRegressor()" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model3.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "id": "8nRU_pzEgnCt" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred3 = model3.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "id": "4aKEXGVUgsry" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse3 = np.sqrt(mean_squared_error(y_test, pred3))\n", + "mae3 = mean_absolute_error(y_test, pred3)\n", + "mape3 = mean_absolute_percentage_error(y_test, pred3)\n", + "accuracy3 = accuracy_score(y_test > pred3, y_test > pred3.round())\n", + "precision3 = precision_score(y_test > pred3, y_test > pred3.round())\n", + "confusion3 = confusion_matrix(y_test > pred3, y_test > pred3.round())\n", + "recall3 = recall_score(y_test > pred3, y_test > pred3.round())\n", + "f13 = f1_score(y_test > pred3, y_test > pred3.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8pPzsCY1g305", + "outputId": "bc5eeab1-5d75-4be3-b26f-70c4fe533a47" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 2.2227552163641375\n", + "MAE: 1.2618627107561857\n", + "MAPE: 0.008011786688180922\n", + "Accuracy: 0.8537102473498234\n", + "Precision: 0.8575624082232012\n", + "Confusion Matrix:\n", + " [[624 97]\n", + " [110 584]]\n", + "Recall: 0.8414985590778098\n", + "F1 Score: 0.8494545454545455\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse3)\n", + "print(\"MAE:\", mae3)\n", + "print(\"MAPE:\", mape3)\n", + "print(\"Accuracy:\", accuracy3)\n", + "print(\"Precision:\", precision3)\n", + "print(\"Confusion Matrix:\\n\", confusion3)\n", + "print(\"Recall:\", recall3)\n", + "print(\"F1 Score:\", f13)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mZsLwLivhLGH" + }, + "source": [ + "## 4. Gradient Boosting Models (GBM)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "id": "TI8idoxOg6jF" + }, + "outputs": [], + "source": [ + "import xgboost as xgb\n", + "# Create an XGBoost model\n", + "model4 = xgb.XGBRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "id": "7r9xJDtOVBEA" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 254 + }, + "id": "2gpbDxshhexj", + "outputId": "2cdbacc9-909a-43c9-cf04-cc4f70015e43" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
    +              "             colsample_bylevel=None, colsample_bynode=None,\n",
    +              "             colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
    +              "             enable_categorical=False, eval_metric=None, feature_types=None,\n",
    +              "             gamma=None, grow_policy=None, importance_type=None,\n",
    +              "             interaction_constraints=None, learning_rate=None, max_bin=None,\n",
    +              "             max_cat_threshold=None, max_cat_to_onehot=None,\n",
    +              "             max_delta_step=None, max_depth=None, max_leaves=None,\n",
    +              "             min_child_weight=None, missing=nan, monotone_constraints=None,\n",
    +              "             multi_strategy=None, n_estimators=None, n_jobs=None,\n",
    +              "             num_parallel_tree=None, random_state=None, ...)
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + " colsample_bylevel=None, colsample_bynode=None,\n", + " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", + " enable_categorical=False, eval_metric=None, feature_types=None,\n", + " gamma=None, grow_policy=None, importance_type=None,\n", + " interaction_constraints=None, learning_rate=None, max_bin=None,\n", + " max_cat_threshold=None, max_cat_to_onehot=None,\n", + " max_delta_step=None, max_depth=None, max_leaves=None,\n", + " min_child_weight=None, missing=nan, monotone_constraints=None,\n", + " multi_strategy=None, n_estimators=None, n_jobs=None,\n", + " num_parallel_tree=None, random_state=None, ...)" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model4.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "id": "Jj9DXdUPhh9V" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred4 = model4.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "id": "TdH60Sllhn5O" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse4 = np.sqrt(mean_squared_error(y_test, pred4))\n", + "mae4 = mean_absolute_error(y_test, pred4)\n", + "mape4 = mean_absolute_percentage_error(y_test, pred4)\n", + "accuracy4 = accuracy_score(y_test > pred4, y_test > pred4.round())\n", + "precision4 = precision_score(y_test > pred4, y_test > pred4.round())\n", + "confusion4 = confusion_matrix(y_test > pred4, y_test > pred4.round())\n", + "recall4 = recall_score(y_test > pred4, y_test > pred4.round())\n", + "f14 = f1_score(y_test > pred4, y_test > pred4.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "qpnLeFyZhwB3", + "outputId": "1637d31a-e785-4414-dfe5-f7fa4fd282e9" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 2.733930065274145\n", + "MAE: 1.502457380471909\n", + "MAPE: 0.010026410639661481\n", + "Accuracy: 0.8840989399293286\n", + "Precision: 0.8948106591865358\n", + "Confusion Matrix:\n", + " [[613 75]\n", + " [ 89 638]]\n", + "Recall: 0.8775790921595599\n", + "F1 Score: 0.8861111111111111\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse4)\n", + "print(\"MAE:\", mae4)\n", + "print(\"MAPE:\", mape4)\n", + "print(\"Accuracy:\", accuracy4)\n", + "print(\"Precision:\", precision4)\n", + "print(\"Confusion Matrix:\\n\", confusion4)\n", + "print(\"Recall:\", recall4)\n", + "print(\"F1 Score:\", f14)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "d8nSGoyuh9dx" + }, + "source": [ + "## 5. Extreme Gradient Boosting (XGBoost)" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "id": "DyhhdlZAhx94" + }, + "outputs": [], + "source": [ + "import xgboost as xgb\n", + "# Create an XGBoost model\n", + "model5 = xgb.XGBRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "id": "Z_AD0lVOVHwB" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 254 + }, + "id": "RAIwxIp5iH9Z", + "outputId": "cc66ca33-11cc-4e5d-e7e1-f39b41466c28" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
    +              "             colsample_bylevel=None, colsample_bynode=None,\n",
    +              "             colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
    +              "             enable_categorical=False, eval_metric=None, feature_types=None,\n",
    +              "             gamma=None, grow_policy=None, importance_type=None,\n",
    +              "             interaction_constraints=None, learning_rate=None, max_bin=None,\n",
    +              "             max_cat_threshold=None, max_cat_to_onehot=None,\n",
    +              "             max_delta_step=None, max_depth=None, max_leaves=None,\n",
    +              "             min_child_weight=None, missing=nan, monotone_constraints=None,\n",
    +              "             multi_strategy=None, n_estimators=None, n_jobs=None,\n",
    +              "             num_parallel_tree=None, random_state=None, ...)
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + " colsample_bylevel=None, colsample_bynode=None,\n", + " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", + " enable_categorical=False, eval_metric=None, feature_types=None,\n", + " gamma=None, grow_policy=None, importance_type=None,\n", + " interaction_constraints=None, learning_rate=None, max_bin=None,\n", + " max_cat_threshold=None, max_cat_to_onehot=None,\n", + " max_delta_step=None, max_depth=None, max_leaves=None,\n", + " min_child_weight=None, missing=nan, monotone_constraints=None,\n", + " multi_strategy=None, n_estimators=None, n_jobs=None,\n", + " num_parallel_tree=None, random_state=None, ...)" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model5.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "id": "XmJds5fYiKT3" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred5 = model5.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": { + "id": "lZ1A0-L8iNCM" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse5 = np.sqrt(mean_squared_error(y_test, pred5))\n", + "mae5 = mean_absolute_error(y_test, pred5)\n", + "mape5 = mean_absolute_percentage_error(y_test, pred5)\n", + "accuracy5 = accuracy_score(y_test > pred5, y_test > pred5.round())\n", + "precision5 = precision_score(y_test > pred5, y_test > pred5.round())\n", + "confusion5 = confusion_matrix(y_test > pred5, y_test > pred5.round())\n", + "recall5 = recall_score(y_test > pred5, y_test > pred5.round())\n", + "f15 = f1_score(y_test > pred5, y_test > pred5.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7IkE-RAmiWNo", + "outputId": "d69e485e-0462-409a-f9aa-59e5ca7c4bef" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 2.733930065274145\n", + "MAE: 1.502457380471909\n", + "MAPE: 0.010026410639661481\n", + "Accuracy: 0.8840989399293286\n", + "Precision: 0.8948106591865358\n", + "Confusion Matrix:\n", + " [[613 75]\n", + " [ 89 638]]\n", + "Recall: 0.8775790921595599\n", + "F1 Score: 0.8861111111111111\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse5)\n", + "print(\"MAE:\", mae5)\n", + "print(\"MAPE:\", mape5)\n", + "print(\"Accuracy:\", accuracy5)\n", + "print(\"Precision:\", precision5)\n", + "print(\"Confusion Matrix:\\n\", confusion5)\n", + "print(\"Recall:\", recall5)\n", + "print(\"F1 Score:\", f15)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "A_J776rtiovq" + }, + "source": [ + "## 6. AdaBoostRegressor" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": { + "id": "HNq66cXRiYPJ" + }, + "outputs": [], + "source": [ + "from sklearn.ensemble import AdaBoostRegressor\n", + "# Create an AdaBoost model\n", + "model6 = AdaBoostRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": { + "id": "qPHH6rG0VW4V" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "P0oB5wjQivBr", + "outputId": "827e151d-e13e-4924-ef50-c5e1d13f6161" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    AdaBoostRegressor()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "AdaBoostRegressor()" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model6.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": { + "id": "Bf1m5ukOi2VM" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred6 = model6.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": { + "id": "oFWSqC4ai6gd" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse6 = np.sqrt(mean_squared_error(y_test, pred6))\n", + "mae6 = mean_absolute_error(y_test, pred6)\n", + "mape6 = mean_absolute_percentage_error(y_test, pred6)\n", + "accuracy6 = accuracy_score(y_test > pred6, y_test > pred6.round())\n", + "precision6 = precision_score(y_test > pred6, y_test > pred6.round())\n", + "confusion6 = confusion_matrix(y_test > pred6, y_test > pred6.round())\n", + "recall6 = recall_score(y_test > pred6, y_test > pred6.round())\n", + "f16 = f1_score(y_test > pred6, y_test > pred6.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "BsajWJGBjC80", + "outputId": "076cff01-ff0a-449b-d86c-df9f1363fecd" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 10.504089217159294\n", + "MAE: 8.746118088217727\n", + "MAPE: 0.20512996006219347\n", + "Accuracy: 0.9943462897526502\n", + "Precision: 0.9939879759519038\n", + "Confusion Matrix:\n", + " [[911 3]\n", + " [ 5 496]]\n", + "Recall: 0.9900199600798403\n", + "F1 Score: 0.992\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse6)\n", + "print(\"MAE:\", mae6)\n", + "print(\"MAPE:\", mape6)\n", + "print(\"Accuracy:\", accuracy6)\n", + "print(\"Precision:\", precision6)\n", + "print(\"Confusion Matrix:\\n\", confusion6)\n", + "print(\"Recall:\", recall6)\n", + "print(\"F1 Score:\", f16)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Q9DzOt3CkWFX" + }, + "source": [ + "## 7. Decision Tree" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "id": "23DZ2biSjF9a" + }, + "outputs": [], + "source": [ + "from sklearn.tree import DecisionTreeRegressor\n", + "# Create a Decision Tree model\n", + "model7 = DecisionTreeRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": { + "id": "Ajo2RAVAVb7H" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "6mQEQf-ykc9F", + "outputId": "78dc7661-96e4-46af-b65a-c705018c58a3" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    DecisionTreeRegressor()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "DecisionTreeRegressor()" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model7.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": { + "id": "BFJ9q_tvkgRC" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred7 = model7.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": { + "id": "9IxfYZbYkjv1" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse7 = np.sqrt(mean_squared_error(y_test, pred7))\n", + "mae7 = mean_absolute_error(y_test, pred7)\n", + "mape7 = mean_absolute_percentage_error(y_test, pred7)\n", + "accuracy7 = accuracy_score(y_test > pred7, y_test > pred7.round())\n", + "precision7 = precision_score(y_test > pred7, y_test > pred7.round())\n", + "confusion7 = confusion_matrix(y_test > pred7, y_test > pred7.round())\n", + "recall7 = recall_score(y_test > pred7, y_test > pred7.round())\n", + "f17 = f1_score(y_test > pred7, y_test > pred7.round())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AnZXMYb8kooV", + "outputId": "93527d46-9366-49ce-b895-7a12ae87f742" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 3.136698143876249\n", + "MAE: 1.6416165234385407\n", + "MAPE: 0.010224639636659394\n", + "Accuracy: 0.8600706713780919\n", + "Precision: 0.8687845303867403\n", + "Confusion Matrix:\n", + " [[588 95]\n", + " [103 629]]\n", + "Recall: 0.8592896174863388\n", + "F1 Score: 0.864010989010989\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse7)\n", + "print(\"MAE:\", mae7)\n", + "print(\"MAPE:\", mape7)\n", + "print(\"Accuracy:\", accuracy7)\n", + "print(\"Precision:\", precision7)\n", + "print(\"Confusion Matrix:\\n\", confusion7)\n", + "print(\"Recall:\", recall7)\n", + "print(\"F1 Score:\", f17)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LH-B-Xd6k5UD" + }, + "source": [ + "## 8. KNeighborsRegressor(KNN)" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": { + "id": "JVDSed7yktFY" + }, + "outputs": [], + "source": [ + "from sklearn.neighbors import KNeighborsRegressor\n", + "from sklearn.model_selection import GridSearchCV\n", + "# Create a KNN model\n", + "model8 = KNeighborsRegressor()\n", + "param_grid = {'n_neighbors':[3, 5, 7, 9, 11, 15, 20, 23, 25, 30, 60, 70, 150]}\n", + "GV_KNN = GridSearchCV(model8, param_grid, cv=5, scoring='neg_mean_squared_error')" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": { + "id": "XJHb5SxrVgVp" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "9fn64o-ZlBka", + "outputId": "bc388b6b-cf36-4a91-eb52-8fe7a861308b" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    KNeighborsRegressor()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "KNeighborsRegressor()" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model8.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "id": "hbfbbjcSlDn7" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred8 = model8.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "id": "hnWyNv3blHdL" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse8 = np.sqrt(mean_squared_error(y_test, pred8))\n", + "mae8 = mean_absolute_error(y_test, pred8)\n", + "mape8 = mean_absolute_percentage_error(y_test, pred8)\n", + "accuracy8 = accuracy_score(y_test > pred8, y_test > pred8.round())\n", + "precision8 = precision_score(y_test > pred8, y_test > pred8.round())\n", + "confusion8 = confusion_matrix(y_test > pred8, y_test > pred8.round())\n", + "recall8 = recall_score(y_test > pred8, y_test > pred8.round())\n", + "f18 = f1_score(y_test > pred8, y_test > pred8.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IPoDRkcMlMAr", + "outputId": "5aee40b5-c7c1-4fad-f419-37d08a504146" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 148.73183825029315\n", + "MAE: 109.35229571264969\n", + "MAPE: 1.75024316976612\n", + "Accuracy: 0.9908127208480565\n", + "Precision: 0.9887820512820513\n", + "Confusion Matrix:\n", + " [[785 7]\n", + " [ 6 617]]\n", + "Recall: 0.9903691813804173\n", + "F1 Score: 0.9895749799518845\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse8)\n", + "print(\"MAE:\", mae8)\n", + "print(\"MAPE:\", mape8)\n", + "print(\"Accuracy:\", accuracy8)\n", + "print(\"Precision:\", precision8)\n", + "print(\"Confusion Matrix:\\n\", confusion8)\n", + "print(\"Recall:\", recall8)\n", + "print(\"F1 Score:\", f18)" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "5qW5X1Xe8Js7", + "outputId": "6abf26c0-873e-42e2-9aab-c2bd93a5ae84" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    KNeighborsRegressor(n_neighbors=150)
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "KNeighborsRegressor(n_neighbors=150)" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "GV_KNN.fit(X_train, y_train)\n", + "pred8_1 = GV_KNN.predict(X_test)\n", + "GV_KNN.best_estimator_" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": { + "id": "voNSUlHk8Js7" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics with grid search\n", + "rmse8_1 = np.sqrt(mean_squared_error(y_test, pred8_1))\n", + "mae8_1 = mean_absolute_error(y_test, pred8_1)\n", + "mape8_1 = mean_absolute_percentage_error(y_test, pred8_1)\n", + "accuracy8_1 = accuracy_score(y_test > pred8_1, y_test > pred8_1.round())\n", + "precision8_1 = precision_score(y_test > pred8_1, y_test > pred8_1.round())\n", + "confusion8_1 = confusion_matrix(y_test > pred8_1, y_test > pred8_1.round())\n", + "recall8_1 = recall_score(y_test > pred8_1, y_test > pred8_1.round())\n", + "f18_1 = f1_score(y_test > pred8_1, y_test > pred8_1.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VMnot_fX8Js8", + "outputId": "71c354e6-71e6-4d31-ee2f-2a03f65d24fe" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 137.20694663964096\n", + "MAE: 101.08872313712585\n", + "MAPE: 1.7323302969000884\n", + "Accuracy: 0.9985865724381625\n", + "Precision: 1.0\n", + "Confusion Matrix:\n", + " [[865 0]\n", + " [ 2 548]]\n", + "Recall: 0.9963636363636363\n", + "F1 Score: 0.9981785063752276\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics with grid search\n", + "print(\"RMSE:\", rmse8_1)\n", + "print(\"MAE:\", mae8_1)\n", + "print(\"MAPE:\", mape8_1)\n", + "print(\"Accuracy:\", accuracy8_1)\n", + "print(\"Precision:\", precision8_1)\n", + "print(\"Confusion Matrix:\\n\", confusion8_1)\n", + "print(\"Recall:\", recall8_1)\n", + "print(\"F1 Score:\", f18_1)" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 524 + }, + "id": "Swebseye8Js8", + "outputId": "c501acf3-094c-4ba6-f0d7-1a0901cdb2e0" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1AAAAH7CAYAAADCX341AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVWElEQVR4nO3de3iU9Z3//9fMJDM5TjBASJAgEa2agihHU/uluqWEGq2stqtWLZ7qwgYU2FW0VSn2W7G6rWhRaO1e4G+Rou631AI1bsrJWoJRECFEUCEFNBkSjMmEkOPM/fsDZsiQBCaQ5L5n8nxc11wy9/3Jnfd8QoFXPyebYRiGAAAAAABnZDe7AAAAAACIFAQoAAAAAAgTAQoAAAAAwkSAAgAAAIAwEaAAAAAAIEwEKAAAAAAIEwEKAAAAAMJEgAIAAACAMBGgAAAAACBMMWYXYCa/36/y8nIlJyfLZrOZXQ4AAAAAkxiGobq6Og0ePFh2+2nGmYwueOqpp4yxY8caSUlJxsCBA40bb7zR2LNnT0ibb33rW4akkNe//uu/hrQ5cOCAcd111xnx8fHGwIEDjf/4j/8wWlpaQtps3LjRuPLKKw2n02kMHz7cWLZsWbt6Fi9ebFxwwQWGy+Uyxo8fb7z33ntd+TjGoUOH2tXKixcvXrx48eLFixevvvs6dOjQaTNEl0agNm/erPz8fI0bN06tra36yU9+osmTJ6u0tFSJiYnBdj/+8Y/15JNPBt8nJCQEf+3z+ZSXl6f09HRt2bJFFRUV+tGPfqTY2Fg99dRTkqSysjLl5eVp+vTpevXVV7V+/Xrdd999ysjIUG5uriTptdde09y5c7V06VJNmDBBixYtUm5urvbu3au0tLSwPk9ycrIk6dChQ3K73V3pCgAAAABRxOv1KjMzM5gROmMzDMM4229SVVWltLQ0bd68WRMnTpQkXXPNNbriiiu0aNGiDr/mrbfe0vXXX6/y8nINGjRIkrR06VLNmzdPVVVVcjqdmjdvntatW6eSkpLg1916662qqalRQUGBJGnChAkaN26cFi9eLOn4dLzMzEzNmjVLjzzySFj1e71epaSkqLa2lgAFAAAA9GHhZoNz2kSitrZWkpSamhpy/dVXX9WAAQM0YsQIPfroozp27FjwXlFRkUaOHBkMT5KUm5srr9er3bt3B9tMmjQp5Jm5ubkqKiqSJDU3N2vbtm0hbex2uyZNmhRs05GmpiZ5vd6QFwAAAACE66w3kfD7/Zo9e7auvvpqjRgxInj9hz/8oS644AINHjxYO3fu1Lx587R371798Y9/lCR5PJ6Q8CQp+N7j8Zy2jdfrVUNDg7766iv5fL4O2+zZs6fTmhcuXKgFCxac7UcGAAAA0MeddYDKz89XSUmJ3n333ZDr999/f/DXI0eOVEZGhr797W9r3759Gj58+NlX2g0effRRzZ07N/g+MM8RAAAAAMJxVgFq5syZWrt2rd555x0NGTLktG0nTJggSfrss880fPhwpaenq7i4OKTN4cOHJUnp6enB/wautW3jdrsVHx8vh8Mhh8PRYZvAMzricrnkcrnC+5AAAAAAcIourYEyDEMzZ87U6tWrtWHDBmVlZZ3xa3bs2CFJysjIkCTl5ORo165dqqysDLYpLCyU2+1WdnZ2sM369etDnlNYWKicnBxJktPp1JgxY0La+P1+rV+/PtgGAAAAALpbl0ag8vPztXLlSr355ptKTk4OrllKSUlRfHy89u3bp5UrV+q6665T//79tXPnTs2ZM0cTJ07U5ZdfLkmaPHmysrOzdeedd+qZZ56Rx+PRY489pvz8/ODo0PTp07V48WI9/PDDuueee7Rhwwa9/vrrWrduXbCWuXPnatq0aRo7dqzGjx+vRYsWqb6+XnfffXd39Q0AAAAAhOjSNuY2m63D68uWLdNdd92lQ4cO6Y477lBJSYnq6+uVmZmpf/7nf9Zjjz0WshXggQMHNGPGDG3atEmJiYmaNm2ann76acXEnMxzmzZt0pw5c1RaWqohQ4bo8ccf11133RXyfRcvXqxnn31WHo9HV1xxhV544YXglMFwsI05AAAAACn8bHBO50BFOgIUAAAAAKmXzoECAAAAgL6EAAUAAAAAYSJAAQAAAECYCFAAAAAAECYCFAAAAACEqUvnQKFn+PyGisuqVVnXqLTkOI3PSpXD3vGW8QAAAADMQ4AyWUFJhRasKVVFbWPwWkZKnObfkK0pIzJMrAwAAADAqZjCZ6KCkgrNWLE9JDxJkqe2UTNWbFdBSYVJlQEAAADoCAHKJD6/oQVrStXRKcaBawvWlMrn77PnHAMAAACWQ4AySXFZdbuRp7YMSRW1jSouq+69ogAAAACcFgHKJJV1nYens2kHAAAAoOcRoEySlhzXre0AAAAA9DwClEnGZ6UqIyVOnW1WbtPx3fjGZ6X2ZlkAAAAAToMAZRKH3ab5N2RLUrsQFXg//4ZszoMCAAAALIQAZaIpIzK05I7RSk8JnaaXnhKnJXeM5hwoAAAAwGI4SNdkU0Zk6DvZ6Zr8683ad6Re/zH5a5pxzUWMPAEAAAAWxAiUBTjsNg0+L16SdP558YQnAAAAwKIIUBaRHHd8MNDb0GpyJQAAAAA6Q4CyiGRXrCSprrHF5EoAAAAAdIYAZRGBEai6RkagAAAAAKsiQFmEO/74CJSXAAUAAABYFgHKIk6OQDGFDwAAALAqApRFJMcxAgUAAABYHQHKIhiBAgAAAKyPAGURbCIBAAAAWB8ByiLccWxjDgAAAFgdAcoiAgGKg3QBAAAA6yJAWURgCl9Di08tPr/J1QAAAADoCAHKIpJOBChJOso6KAAAAMCSCFAWEeuwK8HpkMRGEgAAAIBVEaAsJDCNz8tGEgAAAIAlEaAs5ORhugQoAAAAwIoIUBbCWVAAAACAtRGgLCQ5eBYUAQoAAACwIgKUhbiDI1BM4QMAAACsiABlIckcpgsAAABYGgHKQhiBAgAAAKyNAGUhbCIBAAAAWBsBykLc8Sc2kWhiBAoAAACwIgKUhTACBQAAAFgbAcpCkl2BTSQYgQIAAACsiABlIYxAAQAAANZGgLKQ4DbmBCgAAADAkghQFuKOZxtzAAAAwMoIUBYSGIFqavWrqdVncjUAAAAATkWAspAkV0zw16yDAgAAAKyHAGUhDrstGKIIUAAAAID1EKAsxh3HOigAAADAqghQFhNYB8UIFAAAAGA9BCiLCZwFxWG6AAAAgPUQoCyGw3QBAAAA6yJAWczJw3QZgQIAAACshgBlMScP02UECgAAALAaApTFMAIFAAAAWBcBymJYAwUAAABYFwHKYk5uY84IFAAAAGA1BCiLcTMCBQAAAFgWAcpi3BykCwAAAFgWAcpiggfpMoUPAAAAsBwClMUkMwIFAAAAWFaXAtTChQs1btw4JScnKy0tTVOnTtXevXs7bGsYhr773e/KZrPpT3/6U8i9gwcPKi8vTwkJCUpLS9NDDz2k1tbQwLBp0yaNHj1aLpdLF110kZYvX97ue7z44osaNmyY4uLiNGHCBBUXF3fl41jSyV34WmQYhsnVAAAAAGirSwFq8+bNys/P19atW1VYWKiWlhZNnjxZ9fX17douWrRINput3XWfz6e8vDw1Nzdry5YteuWVV7R8+XI98cQTwTZlZWXKy8vTtddeqx07dmj27Nm677779PbbbwfbvPbaa5o7d67mz5+v7du3a9SoUcrNzVVlZWVXPpLluOOPj0C1+Aw1tfpNrgYAAABAWzbjHIY5qqqqlJaWps2bN2vixInB6zt27ND111+vDz74QBkZGVq9erWmTp0qSXrrrbd0/fXXq7y8XIMGDZIkLV26VPPmzVNVVZWcTqfmzZundevWqaSkJPjMW2+9VTU1NSooKJAkTZgwQePGjdPixYslSX6/X5mZmZo1a5YeeeSRsOr3er1KSUlRbW2t3G732XZDtzIMQ8N/8hf5Dan4p99WWnKc2SUBAAAAUS/cbHBOa6Bqa2slSampqcFrx44d0w9/+EO9+OKLSk9Pb/c1RUVFGjlyZDA8SVJubq68Xq92794dbDNp0qSQr8vNzVVRUZEkqbm5Wdu2bQtpY7fbNWnSpGCbjjQ1Ncnr9Ya8rMZmsynJdWIjiQbWQQEAAABWctYByu/3a/bs2br66qs1YsSI4PU5c+boG9/4hm688cYOv87j8YSEJ0nB9x6P57RtvF6vGhoadOTIEfl8vg7bBJ7RkYULFyolJSX4yszMDP8D9yIO0wUAAACs6awDVH5+vkpKSrRq1argtT//+c/asGGDFi1a1B21dbtHH31UtbW1wdehQ4fMLqlDgXVQ7MQHAAAAWMtZBaiZM2dq7dq12rhxo4YMGRK8vmHDBu3bt0/9+vVTTEyMYmKOT0W7+eabdc0110iS0tPTdfjw4ZDnBd4Hpvx11sbtdis+Pl4DBgyQw+HosE1H0wYDXC6X3G53yMuKTu7ER4ACAAAArKRLAcowDM2cOVOrV6/Whg0blJWVFXL/kUce0c6dO7Vjx47gS5Kee+45LVu2TJKUk5OjXbt2heyWV1hYKLfbrezs7GCb9evXhzy7sLBQOTk5kiSn06kxY8aEtPH7/Vq/fn2wTSRzc5guAAAAYEkxXWmcn5+vlStX6s0331RycnJwvVFKSori4+OVnp7e4QjQ0KFDg2Fr8uTJys7O1p133qlnnnlGHo9Hjz32mPLz8+VyuSRJ06dP1+LFi/Xwww/rnnvu0YYNG/T6669r3bp1wWfOnTtX06ZN09ixYzV+/HgtWrRI9fX1uvvuu8+6M6yCNVAAAACANXUpQC1ZskSSgtPxApYtW6a77rorrGc4HA6tXbtWM2bMUE5OjhITEzVt2jQ9+eSTwTZZWVlat26d5syZo+eff15DhgzR73//e+Xm5gbb3HLLLaqqqtITTzwhj8ejK664QgUFBe02lohETOEDAAAArOmczoGKdFY8B0qS/vPtvVq88TPd9Y1h+tn3vm52OQAAAEDU65VzoNAzklkDBQAAAFgSAcqCAmugOEgXAAAAsBYClAWdXAPFCBQAAABgJQQoC+IgXQAAAMCaCFAWFByBamIECgAAALASApQFBQ/SZQ0UAAAAYCkEKAsKbCJxtKlVfXiXeQAAAMByCFAWFJjC5/MbOtbsM7kaAAAAAAEEKAuKj3Uoxm6TxEYSAAAAgJUQoCzIZrOxlTkAAABgQQQoiwoepkuAAgAAACyDAGVRgREoL1P4AAAAAMsgQFmUO47DdAEAAACrIUBZFGugAAAAAOshQFlUcA0Uh+kCAAAAlkGAsihGoAAAAADrIUBZlDsYoBiBAgAAAKyCAGVR7vjAJhKMQAEAAABWQYCyqGRGoAAAAADLIUBZFAfpAgAAANZDgLIoRqAAAAAA6yFAWRQH6QIAAADWQ4CyqMAIFFP4AAAAAOsgQFlUYA3U0aZW+f2GydUAAAAAkAhQlhUYgTIM6Wgz0/gAAAAAKyBAWVRcrENOx/EfD+ugAAAAAGsgQFmYOz6wEx/roAAAAAArIEBZWDI78QEAAACWQoCysOBOfA2MQAEAAABWQICyMA7TBQAAAKyFAGVhJw/TZQQKAAAAsAIClIWdPEyXESgAAADACghQFhbYRMLLCBQAAABgCQQoC2MNFAAAAGAtBCgLYxtzAAAAwFoIUBbmjuMgXQAAAMBKCFAWxggUAAAAYC0EKAtzc5AuAAAAYCkEKAtjBAoAAACwFgKUhbnjWQMFAAAAWAkBysICI1D1zT61+vwmVwMAAACAAGVhgXOgJOloE9P4AAAAALMRoCws1mFXXOzxHxHroAAAAADzEaAsLjCNz8s6KAAAAMB0BCiLO3mYLiNQAAAAgNkIUBbHVuYAAACAdRCgLC6Zw3QBAAAAyyBAWZw7OAJFgAIAAADMRoCyuJOH6TKFDwAAADAbAcrigmugOAcKAAAAMB0ByuKSXYERKKbwAQAAAGYjQFncyU0kGIECAAAAzEaAsjgO0gUAAACsgwBlce54zoECAAAArIIAZXGBKXysgQIAAADMR4CyuOAaKEagAAAAANMRoCyOg3QBAAAA6yBAWVwgQDW2+NXi85tcDQAAANC3EaAsLunEFD6JjSQAAAAAsxGgLM5htynR6ZDEND4AAADAbASoCBA8C4rDdAEAAABTdSlALVy4UOPGjVNycrLS0tI0depU7d27N6TNv/7rv2r48OGKj4/XwIEDdeONN2rPnj0hbQ4ePKi8vDwlJCQoLS1NDz30kFpbQ8PBpk2bNHr0aLlcLl100UVavnx5u3pefPFFDRs2THFxcZowYYKKi4u78nEiBluZAwAAANbQpQC1efNm5efna+vWrSosLFRLS4smT56s+vr6YJsxY8Zo2bJl+vjjj/X222/LMAxNnjxZPp9PkuTz+ZSXl6fm5mZt2bJFr7zyipYvX64nnngi+IyysjLl5eXp2muv1Y4dOzR79mzdd999evvtt4NtXnvtNc2dO1fz58/X9u3bNWrUKOXm5qqysvJc+8RyAofpspU5AAAAYC6bYRjG2X5xVVWV0tLStHnzZk2cOLHDNjt37tSoUaP02Wefafjw4Xrrrbd0/fXXq7y8XIMGDZIkLV26VPPmzVNVVZWcTqfmzZundevWqaSkJPicW2+9VTU1NSooKJAkTZgwQePGjdPixYslSX6/X5mZmZo1a5YeeeSRDmtpampSU1NT8L3X61VmZqZqa2vldrvPtht63F3LirVpb5We/f7l+sHYTLPLAQAAAKKO1+tVSkrKGbPBOa2Bqq2tlSSlpqZ2eL++vl7Lli1TVlaWMjOP/8O/qKhII0eODIYnScrNzZXX69Xu3buDbSZNmhTyrNzcXBUVFUmSmpubtW3btpA2drtdkyZNCrbpyMKFC5WSkhJ8BWqyuuAaKEagAAAAAFOddYDy+/2aPXu2rr76ao0YMSLk3ksvvaSkpCQlJSXprbfeUmFhoZxOpyTJ4/GEhCdJwfcej+e0bbxerxoaGnTkyBH5fL4O2wSe0ZFHH31UtbW1wdehQ4fO7sP3MtZAAQAAANZw1gEqPz9fJSUlWrVqVbt7t99+uz788ENt3rxZX/va1/Qv//IvamxsPKdCu4PL5ZLb7Q55RYLAYbqcAwUAAACY66wC1MyZM7V27Vpt3LhRQ4YMaXc/JSVFF198sSZOnKj/+Z//0Z49e7R69WpJUnp6ug4fPhzSPvA+PT39tG3cbrfi4+M1YMAAORyODtsEnhFNGIECAAAArKFLAcowDM2cOVOrV6/Whg0blJWVFdbXGIYR3LwhJydHu3btCtktr7CwUG63W9nZ2cE269evD3lOYWGhcnJyJElOp1NjxowJaeP3+7V+/fpgm2jiDgYoRqAAAAAAM3UpQOXn52vFihVauXKlkpOT5fF45PF41NDQIEnav3+/Fi5cqG3btungwYPasmWLfvCDHyg+Pl7XXXedJGny5MnKzs7WnXfeqY8++khvv/22HnvsMeXn58vlckmSpk+frv379+vhhx/Wnj179NJLL+n111/XnDlzgrXMnTtXL7/8sl555RV9/PHHmjFjhurr63X33Xd3V99YxslNJBiBAgAAAMwU05XGS5YskSRdc801IdeXLVumu+66S3Fxcfrb3/6mRYsW6auvvtKgQYM0ceJEbdmyRWlpaZIkh8OhtWvXasaMGcrJyVFiYqKmTZumJ598Mvi8rKwsrVu3TnPmzNHzzz+vIUOG6Pe//71yc3ODbW655RZVVVXpiSeekMfj0RVXXKGCgoJ2G0tEg2RGoAAAAABLOKdzoCJduHu9m+39f1TrB0uLlDUgURv/4xqzywEAAACiTq+cA4XewSYSAAAAgDUQoCJAcA1UA1P4AAAAADMRoCJAYASq2edXY4vP5GoAAACAvosAFQGSnDGy2Y7/mo0kAAAAAPMQoCKA3W5Tkot1UAAAAIDZCFARwn1iHRQjUAAAAIB5CFARIrAOisN0AQAAAPMQoCIEh+kCAAAA5iNARYiTU/gYgQIAAADMQoCKEIxAAQAAAOYjQEWIk4fpMgIFAAAAmIUAFSFObiLBCBQAAABgFgJUhHDHs405AAAAYDYCVIQ4uQaKKXwAAACAWQhQESKZg3QBAAAA0xGgIgQH6QIAAADmI0BFCDfbmAMAAACmI0BFCA7SBQAAAMxHgIoQbddAGYZhcjUAAABA30SAihCBNVCtfkMNLT6TqwEAAAD6JgJUhEhwOuSw2ySxDgoAAAAwCwEqQthsNs6CAgAAAExGgIogJ7cyZwQKAAAAMAMBKoIkuzhMFwAAADATASqCJLkckqQNHx9W0b4v5fOzGx8AAADQm2LMLgDhKSip0Eef10qSXik6oFeKDigjJU7zb8jWlBEZJlcHAAAA9A2MQEWAgpIKzVixXU2t/pDrntpGzVixXQUlFSZVBgAAAPQtBCiL8/kNLVhTqo4m6wWuLVhTynQ+AAAAoBcQoCyuuKxaFbWNnd43JFXUNqq4rLr3igIAAAD6KAKUxVXWdR6ezqYdAAAAgLNHgLK4tOS4bm0HAAAA4OwRoCxufFaqMlLiZOvkvk1SRkqcxmel9mZZAAAAQJ9EgLI4h92m+TdkS1K7EBV4P/+GbDnsnUUsAAAAAN2FABUBpozI0JI7Ris9JXSaXnpKnJbcMZpzoAAAAIBeQoCKEFNGZOjdef+kb1+WJkmaesVgvTvvnwhPAAAAQC8iQEUQh92mbwwfIElqavUzbQ8AAADoZQSoCHPhwERJ0v6qepMrAQAAAPoeAlSEuWhgkiSp7Ei9fH7D5GoAAACAvoUAFWEG94uXK8auZp9fn391zOxyAAAAgD6FABVhHHabsgYcn8a3r+qoydUAAAAAfQsBKgINPzGNj3VQAAAAQO8iQEWg4QMZgQIAAADMQICKQMPTjo9A7atkBAoAAADoTQSoCHThgBNT+I4wAgUAAAD0JgJUBAqcBXXkaLNqjjWbXA0AAADQdxCgIlCiK0YZKXGSpH1sJAEAAAD0GgJUhAqMQu1nIwkAAACg1xCgIlRgK3NGoAAAAIDeQ4CKUCcDFCNQAAAAQG8hQEUoAhQAAADQ+whQESqwBurgl8fU4vObXA0AAADQNxCgIlS6O04JToda/YYOVh8zuxwAAACgTyBARSi73RYchdpXyTQ+AAAAoDcQoCLYhQOOr4Paf4Sd+AAAAIDeQICKYMGNJBiBAgAAAHoFASqCDU87MYWPnfgAAACAXkGAimCBKXz7quplGIbJ1QAAAADRjwAVwbIGJMpmk2obWlRd32x2OQAAAEDUI0BFsHinQ+f3i5d0fBQKAAAAQM8iQEW44EYSrIMCAAAAelyXAtTChQs1btw4JScnKy0tTVOnTtXevXuD96urqzVr1ixdcsklio+P19ChQ/XAAw+otrY25DkHDx5UXl6eEhISlJaWpoceekitra0hbTZt2qTRo0fL5XLpoosu0vLly9vV8+KLL2rYsGGKi4vThAkTVFxc3JWPExUCZ0HtJ0ABAAAAPa5LAWrz5s3Kz8/X1q1bVVhYqJaWFk2ePFn19cenj5WXl6u8vFz/+Z//qZKSEi1fvlwFBQW69957g8/w+XzKy8tTc3OztmzZoldeeUXLly/XE088EWxTVlamvLw8XXvttdqxY4dmz56t++67T2+//XawzWuvvaa5c+dq/vz52r59u0aNGqXc3FxVVlaea59ElJMjUEzhAwAAAHqazTiH7duqqqqUlpamzZs3a+LEiR22eeONN3THHXeovr5eMTExeuutt3T99dervLxcgwYNkiQtXbpU8+bNU1VVlZxOp+bNm6d169appKQk+Jxbb71VNTU1KigokCRNmDBB48aN0+LFiyVJfr9fmZmZmjVrlh555JGw6vd6vUpJSVFtba3cbvfZdoOpivZ9qdte3qoL+ido80PXml0OAAAAEJHCzQbntAYqMDUvNTX1tG3cbrdiYmIkSUVFRRo5cmQwPElSbm6uvF6vdu/eHWwzadKkkOfk5uaqqKhIktTc3Kxt27aFtLHb7Zo0aVKwTUeamprk9XpDXpFu+IkpfIeqj6mp1WdyNQAAAEB0O+sA5ff7NXv2bF199dUaMWJEh22OHDmin//857r//vuD1zweT0h4khR87/F4TtvG6/WqoaFBR44ckc/n67BN4BkdWbhwoVJSUoKvzMzM8D+wRQ1MdinZFSO/IR348pjZ5QAAAABR7awDVH5+vkpKSrRq1aoO73u9XuXl5Sk7O1s/+9nPzvbbdKtHH31UtbW1wdehQ4fMLumc2Ww2XZh2Yh1UJRtJAAAAAD0p5my+aObMmVq7dq3eeecdDRkypN39uro6TZkyRcnJyVq9erViY2OD99LT09vtlnf48OHgvcB/A9fatnG73YqPj5fD4ZDD4eiwTeAZHXG5XHK5XF37sBFg+MBEfXSohq3MAQAAgB7WpREowzA0c+ZMrV69Whs2bFBWVla7Nl6vV5MnT5bT6dSf//xnxcXFhdzPycnRrl27QnbLKywslNvtVnZ2drDN+vXrQ76usLBQOTk5kiSn06kxY8aEtPH7/Vq/fn2wTV8S2IlvPzvxAQAAAD2qSwEqPz9fK1as0MqVK5WcnCyPxyOPx6OGhgZJJ8NTfX29/uu//kterzfYxuc7vsHB5MmTlZ2drTvvvFMfffSR3n77bT322GPKz88Pjg5Nnz5d+/fv18MPP6w9e/bopZde0uuvv645c+YEa5k7d65efvllvfLKK/r44481Y8YM1dfX6+677+6uvokYgY0kGIECAAAAelaXpvAtWbJEknTNNdeEXF+2bJnuuusubd++Xe+9954k6aKLLgppU1ZWpmHDhsnhcGjt2rWaMWOGcnJylJiYqGnTpunJJ58Mts3KytK6des0Z84cPf/88xoyZIh+//vfKzc3N9jmlltuUVVVlZ544gl5PB5dccUVKigoaLexRF/Q9iwowzBks9lMrggAAACITud0DlSki4ZzoCSpqdWnyx4vkN+Qin/ybaW54878RQAAAACCeuUcKFiDK8ahoakJkqTPmMYHAAAA9BgCVJRoO40PAAAAQM8gQEWJC09sJLGfESgAAACgxxCgogQjUAAAAEDPI0BFieFpJwJUJSNQAAAAQE8hQEWJwAjUFzUNamj2mVwNAAAAEJ0IUFEiNdGpfgmxkqSyI0zjAwAAAHoCASqKnFwHxTQ+AAAAoCcQoKLI8BM78RGgAAAAgJ5BgIoiF54YgdrPTnwAAABAjyBARRGm8AEAAAA9iwAVRYYHD9Otl99vmFwNAAAAEH0IUFEkMzVBMXabGlp88ngbzS4HAAAAiDoEqCgS67Drgv4JkpjGBwAAAPQEAlSUuXDA8Wl8f/rwCxXt+1I+pvIBAAAA3SbG7ALQfQpKKrRl/5eSpP+3/Qv9v+1fKCMlTvNvyNaUERkmVwcAAABEPkagokRBSYVmrNiu+iZfyHVPbaNmrNiugpIKkyoDAAAAogcBKgr4/IYWrClVR5P1AtcWrCllOh8AAABwjghQUaC4rFoVtZ3vumdIqqhtVHFZde8VBQAAAEQhAlQUqKwLb8vycNsBAAAA6BgBKgqkJcd1azsAAAAAHSNARYHxWanKSImTrZP7NkkZKXEan5Xam2UBAAAAUYcAFQUcdpvm35AtSe1CVOD9/Buy5bB3FrEAAAAAhIMAFSWmjMjQkjtGKz0ldJreILdLS+4YzTlQAAAAQDfgIN0oMmVEhr6Tna7ismr926vb9NWxFv3n90fpm18baHZpAAAAQFRgBCrKOOw25Qzvr5zh/SVJu8q9JlcEAAAARA8CVJQaNaSfJGnn5zWm1gEAAABEEwJUlLo8GKBqzS0EAAAAiCIEqCg1ckiKbDbpi5oGHTnaZHY5AAAAQFQgQEWpJFeMhg9MksQ0PgAAAKC7EKCi2OVDUiRJHx1iGh8AAADQHQhQUYyNJAAAAIDuRYCKYoERqJ2f18owDJOrAQAAACIfASqKXZbhVozdpi/rm/VFTYPZ5QAAAAARjwAVxeJiHbo0I1kS25kDAAAA3YEAFeUC50F9dKjG1DoAAACAaECAinKjAjvxsZEEAAAAcM4IUFEuMAJV8oVXfj8bSQAAAADnggAV5S5OS1JcrF1Hm1q1/8hRs8sBAAAAIhoBKsrFOOwaMZgDdQEAAIDuQIDqAy7nQF0AAACgWxCg+oBRmYGNJBiBAgAAAM4FAaoPGHViBKq0wqvmVr+5xQAAAAARjADVB1zQP0Ep8bFqbvXrk8N1ZpcDAAAARCwCVB9gs9l0OedBAQAAAOeMANVHBALUTnbiAwAAAM4aAaqPCOzExwgUAAAAcPYIUH1EYCOJTyuPqqHZZ24xAAAAQIQiQPUR6SlxSkt2yec3tLucaXwAAADA2SBA9SEnp/ERoAAAAICzQYDqQ0YFNpJgHRQAAABwVghQfcjlmf0kSTsZgQIAAADOCgGqD7n8/OMjUGVH6lV7rMXkagAAAIDIQ4DqQ85LdGpoaoIkaecXNeYWAwAAAEQgAlQfEzxQl2l8AAAAQJcRoPqYwHlQHx2qMbUOAAAAIBIRoPqYUWwkAQAAAJw1AlQfM+J8t+w2yeNtVKW30exyAAAAgIhCgOpjEpwxujgtWRIH6gIAAABdRYDqgy7nQF0AAADgrHQpQC1cuFDjxo1TcnKy0tLSNHXqVO3duzekze9+9ztdc801crvdstlsqqmpafec6upq3X777XK73erXr5/uvfdeHT16NKTNzp079X/+z/9RXFycMjMz9cwzz7R7zhtvvKFLL71UcXFxGjlypP7yl7905eP0WYEDdRmBAgAAALqmSwFq8+bNys/P19atW1VYWKiWlhZNnjxZ9fX1wTbHjh3TlClT9JOf/KTT59x+++3avXu3CgsLtXbtWr3zzju6//77g/e9Xq8mT56sCy64QNu2bdOzzz6rn/3sZ/rd734XbLNlyxbddtttuvfee/Xhhx9q6tSpmjp1qkpKSrrykfqkUSdGoLYdqNabH36hon1fyuc3TK4KAAAAsD6bYRhn/S/nqqoqpaWlafPmzZo4cWLIvU2bNunaa6/VV199pX79+gWvf/zxx8rOztb777+vsWPHSpIKCgp03XXX6fPPP9fgwYO1ZMkS/fSnP5XH45HT6ZQkPfLII/rTn/6kPXv2SJJuueUW1dfXa+3atcFnX3XVVbriiiu0dOnSsOr3er1KSUlRbW2t3G732XZDxFnzUblm/eHDkGsZKXGaf0O2pozIMKkqAAAAwDzhZoNzWgNVW3t8ClhqamrYX1NUVKR+/foFw5MkTZo0SXa7Xe+9916wzcSJE4PhSZJyc3O1d+9effXVV8E2kyZNCnl2bm6uioqKOv3eTU1N8nq9Ia++pqCkQg+cEp4kyVPbqBkrtqugpMKEqgAAAIDIcNYByu/3a/bs2br66qs1YsSIsL/O4/EoLS0t5FpMTIxSU1Pl8XiCbQYNGhTSJvD+TG0C9zuycOFCpaSkBF+ZmZlh1x0NfH5DC9aUqqMhx8C1BWtKmc4HAAAAdOKsA1R+fr5KSkq0atWq7qynRz366KOqra0Nvg4dOmR2Sb2quKxaFbWdn/1kSKqobVRxWXXvFQUAAABEkJiz+aKZM2cGN38YMmRIl742PT1dlZWVIddaW1tVXV2t9PT0YJvDhw+HtAm8P1ObwP2OuFwuuVyuLtUbTSrrwjs4N9x2AAAAQF/TpREowzA0c+ZMrV69Whs2bFBWVlaXv2FOTo5qamq0bdu24LUNGzbI7/drwoQJwTbvvPOOWlpagm0KCwt1ySWX6Lzzzgu2Wb9+fcizCwsLlZOT0+Wa+oq05LhubQcAAAD0NV0KUPn5+VqxYoVWrlyp5ORkeTweeTweNTQ0BNt4PB7t2LFDn332mSRp165d2rFjh6qrj08Lu+yyyzRlyhT9+Mc/VnFxsf7+979r5syZuvXWWzV48GBJ0g9/+EM5nU7de++92r17t1577TU9//zzmjt3bvD7PPjggyooKNCvfvUr7dmzRz/72c/0wQcfaObMmefcKdFqfFaqMlLiZOvkvk3Hd+MbnxX+piAAAABAX9Klbcxtto7/6b1s2TLdddddkqSf/exnWrBgwWnbVFdXa+bMmVqzZo3sdrtuvvlmvfDCC0pKSgq237lzp/Lz8/X+++9rwIABmjVrlubNmxfyzDfeeEOPPfaY/vGPf+jiiy/WM888o+uuuy7cj9MntzEvKKnQjBXbJandZhI2SUvuGM1W5gAAAOhzws0G53QOVKTriwFKOh6iFqwpDdlQItZh029uu5LwBAAAgD4p3GxwVptIILJNGZGh72Snq7isWmVHjuqJN3erxWfo/H4JZpcGAAAAWNo5HaSLyOWw25QzvL9+OOECXTfy+KjTyuKDJlcFAAAAWBsBCrpt/FBJ0p93fKGjTa0mVwMAAABYFwEKuurCVF04IFH1zT6t+ajc7HIAAAAAyyJAQTabLTgKtfI9pvEBAAAAnSFAQZJ085ghcjrs2vVFrXZ9Xmt2OQAAAIAlEaAgSUpNdGrKiHRJ0h/eZxQKAAAA6AgBCkGBaXxvfshmEgAAAEBHCFAIYjMJAAAA4PQIUAhqu5nEHzgTCgAAAGiHAIUQgc0kdn5eq5Iv2EwCAAAAaIsAhRBtN5NYySgUAAAAEIIAhXbabiZRz2YSAAAAQBABCu203Uziz2wmAQAAAAQRoNBO280kXn5nv97c8YWK9n0pn98wuTIAAADAXDFmFwBr6pcQK0naf6ReD67aIUnKSInT/BuyNWVEhomVAQAAAOZhBArtFJRU6OH/2dnuuqe2UTNWbFdBSYUJVQEAAADmI0AhhM9vaMGaUnU0WS9wbcGaUqbzAQAAoE8iQCFEcVm1KmobO71vSKqobVRxWXXvFQUAAABYBAEKISrrOg9PZ9MOAAAAiCYEKIRIS47r1nYAAABANCFAIcT4rFRlpMTJdpo26W6Xxmel9lpNAAAAgFUQoBDCYbdp/g3ZktRpiMpIiZf9dAkLAAAAiFIEKLQzZUSGltwxWukpodP0BiQ55bBLHx6q0X+9W2ZSdQAAAIB5OEgXHZoyIkPfyU5XcVm1KusalZYcp/FZqVr53gE9/uZuLXxrjy4f0o+pfAAAAOhTGIFCpxx2m3KG99eNV5yvnOH95bDbdMdVF2jqFYPl8xvKX7ldlV524wMAAEDfQYBCl9hsNj1100hdMihZVXVNmrnyQ7X4/GaXBQAAAPQKAhS6LMEZoyV3jFaSK0bF/6jWMwV7zC4JAAAA6BUEKJyVCwcm6T9/cLkk6eW/lekvuypMrggAAADoeQQonLUpIzL0rxMvlCQ9/D87ta/qqMkVAQAAAD2LAIVz8lDuJRqflaqjTa2asWKbjjW3ml0SAAAA0GMIUDgnMQ67Fv/wSqUlu/TJ4aN65P/tkmEYZpcFAAAA9AgCFM5ZWnKcXrx9tBx2m/78Ubn+e+sBs0sCAAAAegQBCt1i3LBUPfrdSyVJP19bqu0HvzK5IgAAAKD7EaDQbe79ZpbyRmaoxWfo31Zs15dHm8wuCQAAAOhWBCh0G5vNpl9+/3JdODBRHm+jHlj1oXx+1kMBAAAgehCg0K2SXDH67R1jlOB06O+ffalfF+41uyQAAACg2xCg0O0uHpSsp28+fsjuixv36a+lh02uCAAAAOgeBCj0iO+NGqy7vjFMkjTn9R3aX3VURfu+1Js7vlDRvi+Z2gcAAICIFGN2AYheP7nuMu38vEbbD9Zo8nPvqLVNaMpIidP8G7I1ZUSGiRUCAAAAXcMIFHqMM8auH4zNlKSQ8CRJntpGzVixXQUlFWaUBgAAAJwVAhR6jM9v6IX1n3Z4LxCnFqwpZTofAAAAIgYBCj2muKxaFbWNnd43JFXUNqq4rLr3igIAAADOAQEKPaayrvPwdDbtAAAAALMRoNBj0pLjurUdAAAAYDYCFHrM+KxUZaTEyXaaNv0TnRqfldprNQEAAADnggCFHuOw2zT/hmxJ6jRE1Ta06O+fHem9ogAAAIBzQIBCj5oyIkNL7hit9JTQaXrpKXEaeb5brX5D9/1/H2jjnkqTKgQAAADCZzMMo8/uIe31epWSkqLa2lq53W6zy4lqPr+h4rJqVdY1Ki05TuOzUuXzG5r1h+16e/dhOR12vXj7aH0ne5DZpQIAAKAPCjcbEKAIUKZq8fk1e9UOrdtVoRi7TYt/eKWmjMgwuywAAAD0MeFmA6bwwVSxDruev/UK3XjFYLX6DeWv/FBrPio3uywAAACgQwQomC7GYdev/+UK3TT6fPn8hh5c9aH+9OEXZpcFAAAAtEOAgiU47DY9+/1RumVspvyGNOf1HfqfbZ+bXRYAAAAQggAFy3DYbVp400jdPmGoDEN66H8+0qrig2aXBQAAAAQRoGApdrtN/3fqCN31jWEyDOmRP+7Sf289YHZZAAAAgCQCFCzIZjt+AO9938ySJD3+pxIt+3uZyVUBAAAABChYlM1m00/zLtP0bw2XJC1YU6qX39lvclUAAADo6whQsCybzaZ5Uy7RA/90kSTpF3/5WC9u/MzkqgAAANCXEaBgaTabTXMnX6K53/maJOnZt/fq+b9+anJVAAAA6KsIUIgID3z7Yj085RJJ0nN//US/+t+9MgzD5KoAAADQ13QpQC1cuFDjxo1TcnKy0tLSNHXqVO3duzekTWNjo/Lz89W/f38lJSXp5ptv1uHDh0PaHDx4UHl5eUpISFBaWpoeeughtba2hrTZtGmTRo8eLZfLpYsuukjLly9vV8+LL76oYcOGKS4uThMmTFBxcXFXPg4izL9dc5F+et1lkqTfbPhMTxfsIUQBAACgV3UpQG3evFn5+fnaunWrCgsL1dLSosmTJ6u+vj7YZs6cOVqzZo3eeOMNbd68WeXl5brpppuC930+n/Ly8tTc3KwtW7bolVde0fLly/XEE08E25SVlSkvL0/XXnutduzYodmzZ+u+++7T22+/HWzz2muvae7cuZo/f762b9+uUaNGKTc3V5WVlefSH7C4H0+8UPNvyJYk/Xbzfv3fdR8TogAAANBrbMY5/OuzqqpKaWlp2rx5syZOnKja2loNHDhQK1eu1Pe//31J0p49e3TZZZepqKhIV111ld566y1df/31Ki8v16BBgyRJS5cu1bx581RVVSWn06l58+Zp3bp1KikpCX6vW2+9VTU1NSooKJAkTZgwQePGjdPixYslSX6/X5mZmZo1a5YeeeSRsOr3er1KSUlRbW2t3G732XYDTPDfWw/o8T8d//0xLecCPX59tt7/x1eqrGtUWnKcxmelymG3mVwlAAAAIkW42eCc1kDV1tZKklJTUyVJ27ZtU0tLiyZNmhRsc+mll2ro0KEqKiqSJBUVFWnkyJHB8CRJubm58nq92r17d7BN22cE2gSe0dzcrG3btoW0sdvtmjRpUrBNR5qamuT1ekNeiEx3XnWBnr5ppGw26ZWiA7p8wf/qtpe36sFVO3Tby1v1zV9uUEFJhdllAgAAIMqcdYDy+/2aPXu2rr76ao0YMUKS5PF45HQ61a9fv5C2gwYNksfjCbZpG54C9wP3TtfG6/WqoaFBR44ckc/n67BN4BkdWbhwoVJSUoKvzMzMrn9wWMat44fqR1ddIEk61uwLueepbdSMFdsJUQAAAOhWZx2g8vPzVVJSolWrVnVnPT3q0UcfVW1tbfB16NAhs0vCOfD5Df1v6eEO7wXmpS5YUyqfnzVSAAAA6B5nFaBmzpyptWvXauPGjRoyZEjwenp6upqbm1VTUxPS/vDhw0pPTw+2OXVXvsD7M7Vxu92Kj4/XgAED5HA4OmwTeEZHXC6X3G53yAuRq7isWhW1jZ3eNyRV1DaquKy694oCAABAVOtSgDIMQzNnztTq1au1YcMGZWVlhdwfM2aMYmNjtX79+uC1vXv36uDBg8rJyZEk5eTkaNeuXSG75RUWFsrtdis7OzvYpu0zAm0Cz3A6nRozZkxIG7/fr/Xr1wfbIPpV1nUens6mHQAAAHAmMV1pnJ+fr5UrV+rNN99UcnJycL1RSkqK4uPjlZKSonvvvVdz585Vamqq3G63Zs2apZycHF111VWSpMmTJys7O1t33nmnnnnmGXk8Hj322GPKz8+Xy+WSJE2fPl2LFy/Www8/rHvuuUcbNmzQ66+/rnXr1gVrmTt3rqZNm6axY8dq/PjxWrRokerr63X33Xd3V9/A4tKS47q1HQAAAHAmXQpQS5YskSRdc801IdeXLVumu+66S5L03HPPyW636+abb1ZTU5Nyc3P10ksvBds6HA6tXbtWM2bMUE5OjhITEzVt2jQ9+eSTwTZZWVlat26d5syZo+eff15DhgzR73//e+Xm5gbb3HLLLaqqqtITTzwhj8ejK664QgUFBe02lkD0Gp+VqoyUOHlqG9XZKiebJJ/P35tlAQAAIIqd0zlQkY5zoCJfQUmFZqzYLkkhIcrW5n2M3aanb75c3x8z5NQvBwAAACT10jlQgNmmjMjQkjtGKz0ldJpeekqcXrj1Ct0warBa/Yb+442P9OvCT9SH//8CAAAAdANGoBiBigo+v6HismpV1jUqLTlO47NS5bDb5Pcb+lXhXr24cZ8k6aYrz9fCm0fKFeMwuWIAAABYSbjZoEtroACrcthtyhnev911u92mh3IvVeZ5Cfrpn0r0xw+/UHltg357x1ilJMSaUCkAAAAiGVP40CfcOn6olt01TkmuGG3dX62blvxdh6qPSTo+elW070u9ueMLFe37koN3AQAA0Cmm8DGFr0/Z4/Hq7mXvq6K2UQOSnLrn6iz999YDIQfyZqTEaf4N2ZoyIsPESgEAANCbws0GBCgCVJ9z2Nuoe5a/r93l3g7v2078d8kdowlRAAAAfQS78AGdGOSO0x9+fJVcMR3/9g/8PwoL1pQynQ8AAAAhCFDok3aXe9XU2vkBu4akitpGFZdV915RAAAAsDwCFPqkyrrGMzfqQjsAAAD0DQQo9ElpyXFnbtSFdgAAAOgbCFDok8ZnpSojJS64YURH+sXHanxWaq/VBAAAAOsjQKFPcthtmn9DtiR1GqJqGlr0f9eVqsXn56woAAAASGIbc7Yx7+MKSiq0YE1pu3Ogrhx6nv6yq0KS9LVBSao51qLKuqaQNpwVBQAAED04ByoMBChIks9vqLisWpV1jUpLjtP4rFQ57DYVlHj04KoPO9ytj7OiAAAAoku42SCmF2sCLMlhtylneP9217+TPUjJcTFqOtrc7p6h4yFqwZpSfSc7XQ776VZTAQAAIFqwBgroRHFZtY50EJ4COCsKAACg7yFAAZ3grCgAAACcigAFdCLcM6BWbD2gjyu8PVwNAAAArIAABXQinLOiJOn9f3yl7z7/N/3bq9u011PXK7UBAADAHAQooBOnOyvKduI1/4Zs3TBqsGw26S+7PJry/DuauXK7PqskSAEAAEQjtjFnG3OcQWdnRbU9B2qvp07Pr/9Ef9nlkSTZbNKNowbrgW9frAsHJplSNwAAAMLHOVBhIEAhXJ2dFXWq0nKvFv31E/1v6WFJkt0mTb3yfD3wTxdr2IDE3i4bAAAAYSJAhYEAhZ5S8kWtFv31E/3140pJx6cD3jz6fM36p4uVmZpgcnUAAAA4FQEqDAQo9LSPDtXoub9+ok17qyRJMXabfjB2iPKvvUhDzjsZpMId4QIAAEDPIECFgQCF3rL94Fd6rvAT/e3TI5KkWIdNt4zLVP61F+mjQzVnXGMFAACAnkWACgMBCr3tg39U67m/fqK/f/alpOMjUq3+9v8TDIw9LbljNCEKAACgF4SbDdjGHOhFY4el6tX7rtKq+6/SuGHndRieJClwdcGaUvk6aQMAAIDeR4ACTHDVhf019ztfO20bQ1JFbaM27a3snaIAAABwRjFmFwD0VZV1TWG1u/eVDzQ0NUHZGW5lD3YH/5uREiebjY0mAAAAehMBCjBJWnJc2G0PVh/TwepjKtjtCV7rlxB7PEwFgtVgt4YPTFKsg4FlAACAnkKAAkwyPitVGSlx8tQ2qqNVTjZJ6SlxWjvrm9p7uE6l5V6VVnhVWu7VZ5VHVXOsRVv2fakt+74Mfo3TYdfX0pPaBKsUXZaRrOS42F77XAAAANGMXfjYhQ8mKiip0IwV2yUpJESdaRe+plafPj18NBioAuHqaFNrh9+n7RTAr58YrUp3MwUQAAAggG3Mw0CAghUUlFR0yzlQfr+hz79qUGlFbchoVXmb57Z1XkJsyJqq7IwUXTgwkSmAAACgTyJAhYEABavw+Q0Vl1Wrsq5RaclxGp+VKoe9e0aHvqpv1scVJwNVaYVXn1Ye7XB7dGeMXZcMSg5ZV3VpOlMAAQBA9CNAhYEAhb6qscWnzyqPBgPV7vJafVxR1+kUwAv6J7TbsIIpgAAAIJoQoMJAgAJO8vsNHfrqWMj0v9IKb8jUwrZSE53ttla/cECiYpgCCAAAIhABKgwEKODMqgNTANvuAljV+RTAS9OTQ4LVpRluJbnY8BMAAFgbASoMBCjg7DS2BHYBDN2wor7Z12H7Yf0T2m1YMcjtYgogAACwDAJUGAhQQPfx+w0drD4WMv2vtNwrj/f0UwAD26pnZ7iVxRRAAABgEgJUGAhQQM/78miTPq6oCxmt2ldV3+EUQFdgCmCb0apL091KZAogAADoYQSoMBCgAHM0tvj0yeG6kJGqjys6ngJos0nD+ie227AiLZkpgAAAoPsQoMJAgAKsIzAFcHe5N2S06rC3qcP2/ROdIYHq64PdyhqQ1G3nZwEAgL6FABUGAhRgfUeONrXbBXBf1VF1MANQcbF2XZLuDt0FMD2ZKYAAAOCMCFBhIEABkamxxae9nrqQDSs+rvDqWCdTALP6J+qytqNVGW4NZAogAABogwAVBgIUED38fkMHqo8fBLy7vDYYrirrOp4COCDJqcvajFQxBRAAgL6NABUGAhQQ/arqTkwBbDNatf80UwAvTXefsgtgshKcTAEEACDaEaDCQIAC+qaGZp/2BncBrD2xC2CdGlo6mQI4oKNdAONMqBwAAPQUAlQYCFAAAnx+Qwe+rA+OVO0+MVpV1ekUQFdIoAocBMwUQAAAIhMBKgwEKABnUlnXePwg4OAugLXaf6ReHf3J2XYK4NeDuwC6Fe909H7hAACgSwhQYSBAATgbx5pb2+0CuKeTKYD2wBTAwSkho1UDk10mVA4AADpDgAoDAQpAd/H5Df3jy/qQ86p2l3t15GjHUwAHJrvarasa1v/spgD6/IaKy6pVWdeotOQ4jc9KjaiphJFePwAgOhCgwkCAAtDTKusaQ0JVaYVXZZ1MAYyPdejSjORTDgI+/RTAgpIKLVhTqoraxuC1jJQ4zb8hW1NGZPTER+pWkV4/ACB6EKDCQIACYIZjza3a46kLCVZ7PF41tvjbtbXbpAsHJrUbrRqQ5FJBSYVmrNiuU/8QD4zdLLljtKVDSKTXDwCILgSoMBCgAFiFz2+o7Eh9yEhVaXmtjhxt7rD9wCSnvI2tamptH7qk4yEkPSVO7877J0tOh/P5DX3zlxtCRp7asnr9AIDoQ4AKAwEKgNVV1jUe31L9RKj6uNyrsi87ngLYGZvteCCx2Wwn/nviuo7fsAXb2NrcO9k+0EaBa6c8T8Fntr138nu0bR/Q1OrrNBy2NemyNA1PS1KiM0aJrhgluRxKdMUE3ye6HEpyxSjBGaMkV4ziYu0h3wcAgHARoMJAgAIQieqbWvXy3/Zr0V8/NbsUy7Hb1CZgHQ9XicGA5TgRwo6/b3s/0eVoE9JilHDiXnysg0AGAH1EuNkgphdrAgB0g0RXjCZk9Zd05gC19I7RGn3BeZIhGZIMQzJOrDoygteMkBGtQJu296WTX68299q1P+X5p94PPGfX5zV6/M3dZ6z/5tHn67wEp+qbW3W0yadjTa062tSq+uZW1Tf5VN/UevzVfHwLeb8h1TW2qq6x9YzPDofdJiU6jweqQLgKhLNEV5vA5WwbxmKU6HR0eC/BSSADgEhHgAKACDQ+K1UZKXHy1Da224RBOrmG6DvZ6ZZcQzTy/BS9tGnfGet/5vujwqrf7zd0rKVNwGry6WhTq441n3xfHwxex8NYfaf3fapvbpVhnAhkTa2qa2qV1PGW9F1hs0kJsW3C2BnC1+lGxxJdMUqIdchuwZ8vAEQzAhQARCCH3ab5N2RrxortskkhISTwz+n5N2RbMjxJ3V+/3W5T0omAkdYN9fn9hhpafCEjXScDWZuRrxNh62jb922CWtv3/hMjdPXNPtU3+1RZd+6BTJISQgKXI7geLLBmLOE068faBrPA11r19wwAWAVroFgDBSCCRfo5SpFef7gMw1Bjiz8YtI6HsZPBLDANsf6U+yeD2cn7gWv+HvrbOz44QtY2jIWGr0AYSwj82hkYHWsT1E60J5ABiBRsIhEGAhSAaODzGyouq1ZlXaPSkuM0Pis1ov7RGun1m8EwDDW1tg9kIYErMHJ2YjTs2IlpjW3XkwUDWbNPvh5KZHGx9g438+hwuqLzNGvLTqw9i3HYe6ROAOixAPXOO+/o2Wef1bZt21RRUaHVq1dr6tSpwfuHDx/WvHnz9L//+7+qqanRxIkT9Zvf/EYXX3xxsE1jY6P+/d//XatWrVJTU5Nyc3P10ksvadCgQcE2Bw8e1IwZM7Rx40YlJSVp2rRpWrhwoWJiTs463LRpk+bOnavdu3crMzNTjz32mO66666wPwsBCgCAk4EsELzCWT/WdppioH3g1/VNrWrtoUDmirEH14IlOsNYK9Z2ymIHYS2WQAbghB7bha++vl6jRo3SPffco5tuuinknmEYmjp1qmJjY/Xmm2/K7Xbr17/+tSZNmqTS0lIlJiZKkubMmaN169bpjTfeUEpKimbOnKmbbrpJf//73yVJPp9PeXl5Sk9P15YtW1RRUaEf/ehHio2N1VNPPSVJKisrU15enqZPn65XX31V69ev13333aeMjAzl5uZ29WMBANBn2Ww2xcU6FBfrUP+k7nlmU6uv8/DVZlri0abWE5t/dBzM6puPj541+/wnnutXU2uzvqzvnjqdgUB22s08Tre2LDS8OWMIZEC0O6cpfDabLWQE6pNPPtEll1yikpISff3rX5ck+f1+paen66mnntJ9992n2tpaDRw4UCtXrtT3v/99SdKePXt02WWXqaioSFdddZXeeustXX/99SovLw+OSi1dulTz5s1TVVWVnE6n5s2bp3Xr1qmkpCRYz6233qqamhoVFBR0WG9TU5Oamk4u2vV6vcrMzGQECgAAi2s+MUIWzvqwtvc7W2/W3OrvkTqdDvspo2Pt148lBLfEbzOdsZONPlwxjh6pE0B7ppwDFQgncXFxwWt2u10ul0vvvvuu7rvvPm3btk0tLS2aNGlSsM2ll16qoUOHBgNUUVGRRo4cGTKlLzc3VzNmzNDu3bt15ZVXqqioKOQZgTazZ8/utL6FCxdqwYIF3fRpAQBAb3HG2OWMceq8RGe3PK/Fd5pAdtrdFduEseaTa8uaTgSyZp9fzcf8qjnW0i11xjpsnWzmEXow9Kmbd4QcFN2mvSvGzllkwDnq1gAVCEKPPvqofvvb3yoxMVHPPfecPv/8c1VUVEiSPB6PnE6n+vXrF/K1gwYNksfjCbZpG54C9wP3TtfG6/WqoaFB8fHx7ep79NFHNXfu3OD7wAgUAADoW2IddvVLcKpfQvcFsmNNvjbTFU8GsZO7K/rarC0LvX/q2WSNLf4TzzVU29Ci2obuCWQxdlvo4c7tdlI8EcxOWTvW0cYeSQQy9FHdGqBiY2P1xz/+Uffee69SU1PlcDg0adIkffe735UVNvtzuVxyuVxmlwEAAKJMrMOulAS7UhJiu+V5rT6/6pt9JzbnOGX9WJvzyNquHzva3Hpid8WT68cCI2YNLb7jz/Ub8ja2ytvY2i11Ok4JZKfdSbGDnRdPDWRxsQQyWF+3H6Q7ZswY7dixQ7W1tWpubtbAgQM1YcIEjR07VpKUnp6u5uZm1dTUhIxCHT58WOnp6cE2xcXFIc89fPhw8F7gv4Frbdu43e4OR58AAAAiRYzDrpR4u1LiuyeQ+fxGyJTDztaPne48slN/HXhuXWOr6ropkNltCq4BO+1Ois5TR8dCN/oIbOyR4HQQyNDtuj1ABaSkpEiSPv30U33wwQf6+c9/Lul4wIqNjdX69et18803S5L27t2rgwcPKicnR5KUk5OjX/ziF6qsrFRa2vEz5QsLC+V2u5WdnR1s85e//CXkexYWFgafAQAAgOMcdpvccbFyx3VPIPP7DR1rOSV8tVkrdrTplLB2mvVjgeAmSX5DqmtqVV1T9wQyWzCQOUKCWGDtWGebd5xcW9bmvStGCbEO2Tmnrs/rcoA6evSoPvvss+D7srIy7dixQ6mpqRo6dKjeeOMNDRw4UEOHDtWuXbv04IMPaurUqZo8ebKk48Hq3nvv1dy5c5Wamiq3261Zs2YpJydHV111lSRp8uTJys7O1p133qlnnnlGHo9Hjz32mPLz84NT8KZPn67Fixfr4Ycf1j333KMNGzbo9ddf17p167qjXwAAANAJu92mpBOjQYPO3PyM/H5DDSGBrP16srbrxwLryTpeb3b814YhGYZ09EQbqemMdZyJzSYlxLbdPbHt+rGT68lOHTFL6GxjD2dMnw1kkXyIepe3Md+0aZOuvfbadtenTZum5cuX64UXXtCzzz6rw4cPKyMjQz/60Y/0+OOPy+k8uUgzcJDuH/7wh5CDdAPT8yTpwIEDmjFjhjZt2qTExERNmzZNTz/9dLuDdOfMmaPS0lINGTJEjz/+OAfpAgAA9HGGcTyQhRwGfcr6sVN3XOzsPLLA+x46G1oJTkcHOyl2fPBzp2vL2oyiRUIIKSip0II1paqobQxey0iJ0/wbsjVlRIZpdYWbDc7pHKhIR4ACAADAmRiGocYWf6dTEo+dGsya22zm0cHasvqmngtk8bGOkEB1pt0VTxfWEp0OxTi693DogpIKzVixXad+/EDsW3LHaNNClCnnQAEAAADRxmazKd7pULzToYHJ576js2EYamr169Qt7YObdLQJX0dPrBdru36s7aja0RMBzXcikTW0+NTQ4tORo83nXKckuWLsp9lJMXTzjsBmHm3vB0fOnMd3WVywprRdeJIkQ8dD1II1pfpOdrqlR9IIUAAAAEAvstlsiot1KC7WoQFJ3RfI2p8v1v48slN3Xgw9SPpk2xbf8ZjT1OpXU2uzvqzvnkB22s8hqaK2UcVl1coZ3r/Hv9/ZIkABAAAAEaxtIOuf1D3PbGr1hawBC27e0em29+3XjwWmN9Y3+dTs84f9vSvrGs/cyEQEKAAAAAAhXDEOuWIcSk10nrlxGJpb/dq8t1I//u9tZ2yblhzXLd+zp3TvqjAAAAAAOIUzxq5/umyQMlLi1NnqJpuO78Y3Piu1N0vrMgIUAAAAgB7nsNs0/4ZsSWoXogLv59+QbekNJCQCFAAAAIBeMmVEhpbcMVrpKaHT9NJT4kzdwrwrWAMFAAAAoNdMGZGh72Snq7isWpV1jUpLPj5tz+ojTwEEKAAAAAC9ymG3WXqr8tNhCh8AAAAAhIkABQAAAABhIkABAAAAQJgIUAAAAAAQJgIUAAAAAISJAAUAAAAAYSJAAQAAAECYCFAAAAAAECYCFAAAAACEiQAFAAAAAGEiQAEAAABAmAhQAAAAABAmAhQAAAAAhCnG7ALMZBiGJMnr9ZpcCQAAAAAzBTJBICN0pk8HqLq6OklSZmamyZUAAAAAsIK6ujqlpKR0et9mnCliRTG/36/y8nIlJyfLZrN1yzO9Xq8yMzN16NAhud3ubnkmwkPfm4v+Nxf9by7631z0v7nof3PR/93HMAzV1dVp8ODBsts7X+nUp0eg7Ha7hgwZ0iPPdrvd/CY2CX1vLvrfXPS/ueh/c9H/5qL/zUX/d4/TjTwFsIkEAAAAAISJAAUAAAAAYSJAdTOXy6X58+fL5XKZXUqfQ9+bi/43F/1vLvrfXPS/ueh/c9H/va9PbyIBAAAAAF3BCBQAAAAAhIkABQAAAABhIkABAAAAQJgIUAAAAAAQJgIUAAAAAISJANWNXnzxRQ0bNkxxcXGaMGGCiouLzS4pKi1cuFDjxo1TcnKy0tLSNHXqVO3duzekTWNjo/Lz89W/f38lJSXp5ptv1uHDh02qOHo9/fTTstlsmj17dvAafd+zvvjiC91xxx3q37+/4uPjNXLkSH3wwQfB+4Zh6IknnlBGRobi4+M1adIkffrppyZWHD18Pp8ef/xxZWVlKT4+XsOHD9fPf/5ztd3Mlv7vPu+8845uuOEGDR48WDabTX/6059C7ofT19XV1br99tvldrvVr18/3XvvvTp69GgvforIdbr+b2lp0bx58zRy5EglJiZq8ODB+tGPfqTy8vKQZ9D/Z+9Mv//bmj59umw2mxYtWhRynf7vOQSobvLaa69p7ty5mj9/vrZv365Ro0YpNzdXlZWVZpcWdTZv3qz8/Hxt3bpVhYWFamlp0eTJk1VfXx9sM2fOHK1Zs0ZvvPGGNm/erPLyct10000mVh193n//ff32t7/V5ZdfHnKdvu85X331la6++mrFxsbqrbfeUmlpqX71q1/pvPPOC7Z55pln9MILL2jp0qV67733lJiYqNzcXDU2NppYeXT45S9/qSVLlmjx4sX6+OOP9ctf/lLPPPOMfvOb3wTb0P/dp76+XqNGjdKLL77Y4f1w+vr222/X7t27VVhYqLVr1+qdd97R/fff31sfIaKdrv+PHTum7du36/HHH9f27dv1xz/+UXv37tX3vve9kHb0/9k70+//gNWrV2vr1q0aPHhwu3v0fw8y0C3Gjx9v5OfnB9/7fD5j8ODBxsKFC02sqm+orKw0JBmbN282DMMwampqjNjYWOONN94Itvn4448NSUZRUZFZZUaVuro64+KLLzYKCwuNb33rW8aDDz5oGAZ939PmzZtnfPOb3+z0vt/vN9LT041nn302eK2mpsZwuVzGH/7wh94oMarl5eUZ99xzT8i1m266ybj99tsNw6D/e5IkY/Xq1cH34fR1aWmpIcl4//33g23eeustw2azGV988UWv1R4NTu3/jhQXFxuSjAMHDhiGQf93p876//PPPzfOP/98o6SkxLjggguM5557LniP/u9ZjEB1g+bmZm3btk2TJk0KXrPb7Zo0aZKKiopMrKxvqK2tlSSlpqZKkrZt26aWlpaQn8ell16qoUOH8vPoJvn5+crLywvpY4m+72l//vOfNXbsWP3gBz9QWlqarrzySr388svB+2VlZfJ4PCH9n5KSogkTJtD/3eAb3/iG1q9fr08++USS9NFHH+ndd9/Vd7/7XUn0f28Kp6+LiorUr18/jR07Nthm0qRJstvteu+993q95mhXW1srm82mfv36SaL/e5rf79edd96phx56SF//+tfb3af/e1aM2QVEgyNHjsjn82nQoEEh1wcNGqQ9e/aYVFXf4Pf7NXv2bF199dUaMWKEJMnj8cjpdAb/EA8YNGiQPB6PCVVGl1WrVmn79u16//33292j73vW/v37tWTJEs2dO1c/+clP9P777+uBBx6Q0+nUtGnTgn3c0Z9F9P+5e+SRR+T1enXppZfK4XDI5/PpF7/4hW6//XZJov97UTh97fF4lJaWFnI/JiZGqamp/Dy6WWNjo+bNm6fbbrtNbrdbEv3f0375y18qJiZGDzzwQIf36f+eRYBCRMvPz1dJSYneffdds0vpEw4dOqQHH3xQhYWFiouLM7ucPsfv92vs2LF66qmnJElXXnmlSkpKtHTpUk2bNs3k6qLf66+/rldffVUrV67U17/+de3YsUOzZ8/W4MGD6X/0WS0tLfqXf/kXGYahJUuWmF1On7Bt2zY9//zz2r59u2w2m9nl9ElM4esGAwYMkMPhaLfT2OHDh5Wenm5SVdFv5syZWrt2rTZu3KghQ4YEr6enp6u5uVk1NTUh7fl5nLtt27apsrJSo0ePVkxMjGJiYrR582a98MILiomJ0aBBg+j7HpSRkaHs7OyQa5dddpkOHjwoScE+5s+invHQQw/pkUce0a233qqRI0fqzjvv1Jw5c7Rw4UJJ9H9vCqev09PT223k1Nraqurqan4e3SQQng4cOKDCwsLg6JNE//ekv/3tb6qsrNTQoUODfxcfOHBA//7v/65hw4ZJov97GgGqGzidTo0ZM0br168PXvP7/Vq/fr1ycnJMrCw6GYahmTNnavXq1dqwYYOysrJC7o8ZM0axsbEhP4+9e/fq4MGD/DzO0be//W3t2rVLO3bsCL7Gjh2r22+/Pfhr+r7nXH311e227P/kk090wQUXSJKysrKUnp4e0v9er1fvvfce/d8Njh07Jrs99K9Nh8Mhv98vif7vTeH0dU5OjmpqarRt27Zgmw0bNsjv92vChAm9XnO0CYSnTz/9VH/961/Vv3//kPv0f8+58847tXPnzpC/iwcPHqyHHnpIb7/9tiT6v8eZvYtFtFi1apXhcrmM5cuXG6Wlpcb9999v9OvXz/B4PGaXFnVmzJhhpKSkGJs2bTIqKiqCr2PHjgXbTJ8+3Rg6dKixYcMG44MPPjBycnKMnJwcE6uOXm134TMM+r4nFRcXGzExMcYvfvEL49NPPzVeffVVIyEhwVixYkWwzdNPP23069fPePPNN42dO3caN954o5GVlWU0NDSYWHl0mDZtmnH++ecba9euNcrKyow//vGPxoABA4yHH3442Ib+7z51dXXGhx9+aHz44YeGJOPXv/618eGHHwZ3eQunr6dMmWJceeWVxnvvvWe8++67xsUXX2zcdtttZn2kiHK6/m9ubja+973vGUOGDDF27NgR8ndxU1NT8Bn0/9k70+//U526C59h0P89iQDVjX7zm98YQ4cONZxOpzF+/Hhj69atZpcUlSR1+Fq2bFmwTUNDg/Fv//ZvxnnnnWckJCQY//zP/2xUVFSYV3QUOzVA0fc9a82aNcaIESMMl8tlXHrppcbvfve7kPt+v994/PHHjUGDBhkul8v49re/bezdu9ekaqOL1+s1HnzwQWPo0KFGXFycceGFFxo//elPQ/7BSP93n40bN3b4Z/20adMMwwivr7/88kvjtttuM5KSkgy3223cfffdRl1dnQmfJvKcrv/Lyso6/bt448aNwWfQ/2fvTL//T9VRgKL/e47NMNocoQ4AAAAA6BRroAAAAAAgTAQoAAAAAAgTAQoAAAAAwkSAAgAAAIAwEaAAAAAAIEwEKAAAAAAIEwEKAAAAAMJEgAIAAACAMBGgAAAAACBMBCgAAAAACBMBCgAAAADC9P8D/+8PbuAfWTAAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "results = GV_KNN.cv_results_\n", + "mse = -results['mean_test_score']\n", + "k_values = results['param_n_neighbors'].data\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(k_values, mse, marker='o', linestyle='-')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3aOBO56I8Js8" + }, + "source": [ + "The code shows that the elboq point occurs around n=30." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "X5XtlzMXljps" + }, + "source": [ + "## 9. Artificial Neural Networks (ANN)" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": { + "id": "bJk1-9VhlRL6" + }, + "outputs": [], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": { + "id": "sZVPMR9Wlo7-" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vd1fDjQiltP4", + "outputId": "54545c64-073b-41c5-d03a-cc9cbff204f2" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" + ] + } + ], + "source": [ + "# Create an ANN model\n", + "model9 = Sequential()\n", + "model9.add(Dense(32, activation='relu', input_shape=(X_train.shape[1],)))\n", + "model9.add(Dense(16, activation='relu'))\n", + "model9.add(Dense(1, activation='linear'))" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": { + "id": "ZIf94WLMlv04" + }, + "outputs": [], + "source": [ + "# Compile the model\n", + "model9.compile(loss='mean_squared_error', optimizer='adam')" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "FX5DTKqslxWf", + "outputId": "d2353bcd-1508-469b-e4a4-9344af25a2cc" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model9.fit(X_train_scaled, y_train, epochs=100, batch_size=32, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OVW2qpNsmGVq", + "outputId": "36e4620e-9823-4b12-d6d2-509c0bcf2a88" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m45/45\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step\n" + ] + } + ], + "source": [ + "# Make predictions on the test set\n", + "pred9 = model9.predict(X_test_scaled).flatten()" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": { + "id": "CqRmjMj2maJY" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse9 = np.sqrt(mean_squared_error(y_test, pred9))\n", + "mae9 = mean_absolute_error(y_test, pred9)\n", + "mape9 = mean_absolute_percentage_error(y_test, pred9)\n", + "accuracy9 = accuracy_score(y_test > pred9, y_test > pred9.round())\n", + "precision9 = precision_score(y_test > pred9, y_test > pred9.round())\n", + "confusion9 = confusion_matrix(y_test > pred9, y_test > pred9.round())\n", + "recall9 = recall_score(y_test > pred9, y_test > pred9.round())\n", + "f19 = f1_score(y_test > pred9, y_test > pred9.round())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5zuwkC1emmh3", + "outputId": "3154af15-1dba-4edc-9b4e-f012f6ff6886" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 2.7525331773064208\n", + "MAE: 1.7070852219826735\n", + "MAPE: 0.011166669166884299\n", + "Accuracy: 0.901060070671378\n", + "Precision: 0.9446640316205533\n", + "Confusion Matrix:\n", + " [[558 42]\n", + " [ 98 717]]\n", + "Recall: 0.8797546012269939\n", + "F1 Score: 0.9110546378653113\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse9)\n", + "print(\"MAE:\", mae9)\n", + "print(\"MAPE:\", mape9)\n", + "print(\"Accuracy:\", accuracy9)\n", + "print(\"Precision:\", precision9)\n", + "print(\"Confusion Matrix:\\n\", confusion9)\n", + "print(\"Recall:\", recall9)\n", + "print(\"F1 Score:\", f19)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vjSMQNcOnFPJ" + }, + "source": [ + "## 10. LSTM(Long Short term Memory)" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": { + "id": "nCoyUanhnDKw" + }, + "outputs": [], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import LSTM, Dense" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": { + "id": "ThcXESVEVv0U" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": { + "id": "uACvajfImrbB" + }, + "outputs": [], + "source": [ + "# Reshape the input data for LSTM\n", + "n_features = X_train_scaled.shape[1]\n", + "n_steps = 10\n", + "n_samples_train = X_train_scaled.shape[0] - n_steps + 1\n", + "n_samples_test = X_test_scaled.shape[0] - n_steps + 1\n", + "\n", + "# Reshape the input data\n", + "X_train_reshaped = np.array([X_train_scaled[i:i+n_steps, :] for i in range(n_samples_train)])\n", + "X_test_reshaped = np.array([X_test_scaled[i:i+n_steps, :] for i in range(n_samples_test)])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "r066pVYpnXH5", + "outputId": "faddb972-58cc-43a7-eb04-4829ec65f019" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/layers/rnn/rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(**kwargs)\n" + ] + } + ], + "source": [ + "# Create an LSTM model\n", + "model = Sequential()\n", + "model.add(LSTM(64, activation='relu', input_shape=(n_steps, n_features)))\n", + "model.add(Dense(1))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": { + "id": "YpSfHu6gov35" + }, + "outputs": [], + "source": [ + "# Compile the model\n", + "model.compile(loss='mean_squared_error', optimizer='adam')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0vHjcluaoxzP", + "outputId": "8ca3e888-84d1-4c79-e045-cfa9d3e76d5f" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 88, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model.fit(X_train_reshaped, y_train[n_steps-1:], epochs=100, batch_size=32, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "gEE06_TjozYv", + "outputId": "5a39a4df-0a56-45f5-ac4b-c2b00f0f15d0" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m44/44\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 9ms/step\n" + ] + } + ], + "source": [ + "# Make predictions on the test set\n", + "y_pred = model.predict(X_test_reshaped).flatten()" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": { + "id": "7k6C8DrxpB_Q" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse10 = np.sqrt(mean_squared_error(y_test[n_steps-1:], y_pred))\n", + "mae10 = mean_absolute_error(y_test[n_steps-1:], y_pred)\n", + "mape10 = mean_absolute_percentage_error(y_test[n_steps-1:], y_pred)\n", + "accuracy10 = accuracy_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "precision10 = precision_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "recall10 = recall_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "f110 = f1_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "confusion10 = confusion_matrix(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "i_6-UUDhpi0c", + "outputId": "af51da10-aedc-479d-80ca-96880408422c" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 11.43451426022395\n", + "MAE: 9.387460991819042\n", + "MAPE: 0.1689158970124316\n", + "Accuracy: 0.9957325746799431\n", + "Precision: 0.9965277777777778\n", + "Recall: 0.9930795847750865\n", + "F1 Score: 0.9948006932409013\n", + "Confusion Matrix:\n", + " [[826 2]\n", + " [ 4 574]]\n" + ] + } + ], + "source": [ + "# Print evaluation metrics\n", + "print(\"RMSE:\", rmse10)\n", + "print(\"MAE:\", mae10)\n", + "print(\"MAPE:\", mape10)\n", + "print(\"Accuracy:\", accuracy10)\n", + "print(\"Precision:\", precision10)\n", + "print(\"Recall:\", recall10)\n", + "print(\"F1 Score:\", f110)\n", + "print(\"Confusion Matrix:\\n\", confusion10)" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "qpWPtph9CGip", + "outputId": "746d4c8b-bd76-4873-d9b3-b21e078b15bd" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABE9klEQVR4nO3deXhM9+LH8c8kZBFJrNmKiKWiqP0GRauClqqtiqvXllu9FbXVbWmLul2Utm6L4rYlVENUieqGNIq217XH0qo1liJBySIIkvP7w2N+HQkyMjGT0/freeZ5mu85c84nyan55DvnnLEYhmEIAADApNycHQAAAKAoUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAOM2rr74qi8WiM2fOFPm+Vq5cqQYNGsjLy0sWi0VpaWlFvs/ibN68ebJYLDp8+LCzowCFRtkBisD1F4o/PgICAtSmTRt9++23dz3Pl19+qc6dOyswMFAeHh4qV66cWrdurXfffVcZGRl3Pc/d9vvvv+vJJ5+Ut7e3PvjgAy1YsEA+Pj63fd7MmTNlsVgUERFxF1ICKColnB0AMLN//etfCgsLk2EYSk1N1bx589SxY0d9+eWXeuyxx4p8/7m5uYqKitK8efNUr149DRkyRJUrV1ZmZqY2bNigV155Rd98840SExOLPIszbd68WZmZmXrttdcUGRlZ4OfFxsaqatWq2rRpkw4cOKAaNWoUYUrX8re//U29e/eWp6ens6MAhUbZAYrQo48+qiZNmli/joqKUmBgoBYtWuSQspObm6vLly/Ly8sr3+VTpkzRvHnzNHLkSL377ruyWCzWZcOHD9fJkyf1ySefFGofxcGpU6ckSWXKlCnwc5KTk/Xf//5Xy5Yt0zPPPKPY2FhNmDChiBIWTlZWVoFmquzh7u4ud3d3h24TcBbexgLuojJlysjb21slStj+nfHOO++oRYsWKl++vLy9vdW4cWN9/vnneZ5vsVg0dOhQxcbGqk6dOvL09NTKlSvz3deFCxc0efJk1alTR2+//bZN0bkuODhYL774YoH3cSc5a9WqJS8vLzVu3Fjr16/PN2taWpoGDBigMmXKyN/fXwMHDtSFCxfy/yHeYMmSJWrcuLG8vb1VoUIFPfXUUzp+/Lh1+UMPPaT+/ftLkpo2bSqLxaIBAwbcdruxsbEqW7asOnXqpCeeeEKxsbE3zT5y5EhVrVpVnp6eqlSpkvr162dzHtKlS5f06quv6t5775WXl5eCg4PVvXt3HTx4UJK0du1aWSwWrV271mbbhw8flsVi0bx586xjAwYMUOnSpXXw4EF17NhRvr6+6tu3ryTphx9+UM+ePVWlShV5enqqcuXKGjlypC5evJgn96+//qonn3xSFStWlLe3t2rVqqWXX37Zuvxm5+x8++23atWqlXx8fOTr66tOnTrp559/tlknJSVFAwcOVKVKleTp6ang4GB16dKF83/gNMzsAEUoPT1dZ86ckWEYOnXqlKZPn67z58/rqaeeslnv/fff1+OPP66+ffvq8uXLiouLU8+ePfXVV1+pU6dONuuuWbNGn332mYYOHaoKFSqoatWq+e77xx9/VFpamkaPHm33X+g324c9OdetW6fFixdr2LBh8vT01MyZM/XII49o06ZNqlu3rs26Tz75pMLCwjRp0iRt27ZNH3/8sQICAjR58uRb5pw3b54GDhyopk2batKkSUpNTdX777+vn376Sdu3b1eZMmX08ssvq1atWvrwww+tbytWr179tj+D2NhYde/eXR4eHurTp49mzZqlzZs3q2nTptZ1zp8/r1atWmnPnj0aNGiQGjVqpDNnzmjFihX67bffVKFCBeXk5Oixxx5TYmKievfureHDhyszM1MJCQnavXt3gbLc6OrVq+rQoYNatmypd955R6VKlZJ0rfhduHBBzz77rMqXL69NmzZp+vTp+u2337RkyRLr83fu3KlWrVqpZMmSGjx4sKpWraqDBw/qyy+/1BtvvHHT/S5YsED9+/dXhw4dNHnyZF24cEGzZs1Sy5YttX37dutx0qNHD/3888967rnnVLVqVZ06dUoJCQk6evToTY9XoEgZABwuJibGkJTn4enpacybNy/P+hcuXLD5+vLly0bdunWNhx9+2GZckuHm5mb8/PPPt83w/vvvG5KM5cuX24xfvXrVOH36tM0jNze3QPuwJ6ckY8uWLdaxI0eOGF5eXka3bt2sYxMmTDAkGYMGDbJ5frdu3Yzy5cvf8vu7fPmyERAQYNStW9e4ePGidfyrr74yJBnjx4+3jl3/fWzevPmW27xuy5YthiQjISHBMAzDyM3NNSpVqmQMHz7cZr3x48cbkoxly5bl2cb1n+ncuXMNScbUqVNvus73339vSDK+//57m+XJycmGJCMmJsY61r9/f0OSMWbMmDzbu/H3YxiGMWnSJMNisRhHjhyxjrVu3drw9fW1GftjHsP4/59ZcnKyYRiGkZmZaZQpU8Z4+umnbZ6TkpJi+Pv7W8fPnTtnSDLefvvtPFkAZ+FtLKAIffDBB0pISFBCQoI+/fRTtWnTRn//+9+1bNkym/W8vb2t/33u3Dmlp6erVatW2rZtW55tPvjgg7rvvvtuu+/rV1mVLl3aZnzXrl2qWLGizeP3338v0D7sydm8eXM1btzY+nWVKlXUpUsXrVq1Sjk5OTbr/uMf/7D5ulWrVvr9999veaXYli1bdOrUKQ0ZMsTmfKJOnTopPDxcX3/99U2fezuxsbEKDAxUmzZtJF17W65Xr16Ki4uzyb506VLVr19f3bp1y7ON628bLl26VBUqVNBzzz1303XuxLPPPptn7I+/n6ysLJ05c0YtWrSQYRjavn27JOn06dNav369Bg0apCpVqhQ4T0JCgtLS0tSnTx+dOXPG+nB3d1dERIS+//57awYPDw+tXbtW586du+PvD3Ak3sYCitBf/vIXmxOU+/Tpo4YNG2ro0KF67LHH5OHhIUn66quv9PrrryspKUnZ2dnW9fN78QkLCyvQvn19fSVde6vlj2rUqKGEhARJ0ieffKIFCxYUeB/25KxZs2aesXvvvVcXLlzQ6dOnFRQUZB2/8UW3bNmykq4VKj8/v3yzHDlyRJJUq1atPMvCw8P1448/5vu828nJyVFcXJzatGmj5ORk63hERITeffddJSYmqn379pKkgwcPqkePHrfc3sGDB1WrVq0852kVRokSJVSpUqU840ePHtX48eO1YsWKPEUjPT1dknTo0CFJyvNW4u3s379fkvTwww/nu/z678nT01OTJ0/W888/r8DAQDVr1kyPPfaY+vXrZ/M7B+4myg5wF7m5ualNmzZ6//33tX//ftWpU0c//PCDHn/8cbVu3VozZ85UcHCwSpYsqZiYGC1cuDDPNv741/uthIeHS5J2796tLl26WMdLly5tvfz6ZoUgv33Ym9MeNzunyDCMQm33TqxZs0YnT55UXFyc4uLi8iyPjY21lh1HudmMyo0zYNd5enrKzc0tz7rt2rXT2bNn9eKLLyo8PFw+Pj46fvy4BgwYoNzc3EJlvP78BQsW5Fta/ljmRowYoc6dO2v58uVatWqVxo0bp0mTJmnNmjVq2LBhoXIAd4KyA9xlV69elfT/My5Lly6Vl5eXVq1aZXNPk5iYmELtp1WrVvL391dcXJzGjh2b58XRXvbmvD4T8Ef79u1TqVKlVLFixUJlkaTQ0FBJ0t69e/PMNuzdu9e63F6xsbEKCAjQBx98kGfZsmXLFB8fr9mzZ8vb21vVq1fX7t27b7m96tWra+PGjbpy5YpKliyZ7zrXZ7JuvKvz9dmrgti1a5f27dun+fPnq1+/ftbx67N411WrVk2Sbpv7RtdPpA4ICCjQvYqqV6+u559/Xs8//7z279+vBg0a6N1339Wnn35q134BR+CcHeAuunLlilavXi0PDw/Vrl1b0rVZDYvFYvNX/OHDh7V8+fJC7atUqVJ64YUXtHv3bo0ZMybfWRJ7Zk7szblhwwabc3mOHTumL774Qu3bt3fI/VuaNGmigIAAzZ492+YttW+//VZ79uzJc3VYQVy8eFHLli3TY489pieeeCLPY+jQocrMzNSKFSskXbvqaMeOHYqPj8+zres/2x49eujMmTOaMWPGTdcJDQ2Vu7t7nkvzZ86cWeDs13+mf/ydGoah999/32a9ihUrqnXr1po7d66OHj2ab578dOjQQX5+fnrzzTd15cqVPMtPnz4t6dotDy5dumSzrHr16vL19bX5PQF3EzM7QBH69ttv9euvv0q6dmO7hQsXav/+/RozZoz1HIdOnTpp6tSpeuSRR/TXv/5Vp06d0gcffKAaNWpo586dhdr/mDFjtGfPHr399ttavXq1evTooUqVKuncuXPatm2blixZooCAgALdMNDenHXr1lWHDh1sLj2XpIkTJxbqe7quZMmSmjx5sgYOHKgHH3xQffr0sV56XrVqVY0cOdLuba5YsUKZmZl6/PHH813erFkzVaxYUbGxserVq5f++c9/6vPPP1fPnj01aNAgNW7cWGfPntWKFSs0e/Zs1a9fX/369dMnn3yiUaNGadOmTWrVqpWysrL03XffaciQIerSpYv8/f3Vs2dPTZ8+XRaLRdWrV9dXX31lvRliQYSHh6t69eoaPXq0jh8/Lj8/Py1dujTfk4SnTZumli1bqlGjRho8eLDCwsJ0+PBhff3110pKSsp3+35+fpo1a5b+9re/qVGjRurdu7cqVqyoo0eP6uuvv9YDDzygGTNmaN++fWrbtq2efPJJ3XfffSpRooTi4+OVmpqq3r17F/j7ARzKadeBASaW36XnXl5eRoMGDYxZs2bZXOJrGIYxZ84co2bNmoanp6cRHh5uxMTEWC/L/iNJRnR0tN154uPjjY4dOxoVK1Y0SpQoYZQpU8Zo2bKl8fbbbxtpaWkF3oe9OT/99FPr+g0bNsxzafX1554+fdpm/MbLnm9l8eLFRsOGDQ1PT0+jXLlyRt++fY3ffvst3+3d7tLzzp07G15eXkZWVtZN1xkwYIBRsmRJ48yZM4ZhGMbvv/9uDB061LjnnnsMDw8Po1KlSkb//v2tyw3j2iXhL7/8shEWFmaULFnSCAoKMp544gnj4MGD1nVOnz5t9OjRwyhVqpRRtmxZ45lnnjF2796d76XnPj4++Wb75ZdfjMjISKN06dJGhQoVjKefftrYsWNHnm0YhmHs3r3b6Natm1GmTBnDy8vLqFWrljFu3Lg8P7Mbfwfff/+90aFDB8Pf39/w8vIyqlevbgwYMMB6m4EzZ84Y0dHRRnh4uOHj42P4+/sbERERxmeffXbLnz1QlCyG4YQzAAGYmsViUXR0dL5v3QDA3cY5OwAAwNQoOwAAwNQoOwAAwNS4GguAw3EqIABXwswOAAAwNcoOAAAwNd7G0rXPfDlx4oR8fX0L9SnEAADg7jEMQ5mZmQoJCbnlR+JQdiSdOHFClStXdnYMAABwB44dO6ZKlSrddDllR5Kvr6+kaz+s67fwBwAAri0jI0OVK1e2vo7fDGVHsr515efnR9kBAKCYud0pKJygDAAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATM2pZWf9+vXq3LmzQkJCZLFYtHz5cpvlhmFo/PjxCg4Olre3tyIjI7V//36bdc6ePau+ffvKz89PZcqUUVRUlM6fP38XvwsAAODKnFp2srKyVL9+fX3wwQf5Lp8yZYqmTZum2bNna+PGjfLx8VGHDh106dIl6zp9+/bVzz//rISEBH311Vdav369Bg8efLe+BQAA4OIshmEYzg4hXfsQr/j4eHXt2lXStVmdkJAQPf/88xo9erQkKT09XYGBgZo3b5569+6tPXv26L777tPmzZvVpEkTSdLKlSvVsWNH/fbbbwoJCSnQvjMyMuTv76/09HQ+CBQAgGKioK/fLnvOTnJyslJSUhQZGWkd8/f3V0REhDZs2CBJ2rBhg8qUKWMtOpIUGRkpNzc3bdy48abbzs7OVkZGhs0DAACYk8uWnZSUFElSYGCgzXhgYKB1WUpKigICAmyWlyhRQuXKlbOuk59JkybJ39/f+qhcubKD0wMAAFfhsmWnKI0dO1bp6enWx7Fjx5wd6a6zWJz3cNVsAIoXV/53DK6lhLMD3ExQUJAkKTU1VcHBwdbx1NRUNWjQwLrOqVOnbJ539epVnT171vr8/Hh6esrT09PxoQG4PGe+ULnGGZL4M3PW8e/sY99lZ3bCwsIUFBSkxMRE61hGRoY2btyo5s2bS5KaN2+utLQ0bd261brOmjVrlJubq4iIiLueGQAAuB6nzuycP39eBw4csH6dnJyspKQklStXTlWqVNGIESP0+uuvq2bNmgoLC9O4ceMUEhJivWKrdu3aeuSRR/T0009r9uzZunLlioYOHarevXsX+EosAMCt/VlnA2AeTi07W7ZsUZs2baxfjxo1SpLUv39/zZs3Ty+88IKysrI0ePBgpaWlqWXLllq5cqW8vLysz4mNjdXQoUPVtm1bubm5qUePHpo2bdpd/14AAIBrcpn77DjTn/E+O6583gJ/RaIoufKx76pc9f9Jfpf2c9Xf5Z0q9vfZAQAAcATKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMLUSzg4AAICZWCzO27dhOG/froyZHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGpcjQUUc6565Yer5gLw58PMDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDVuKggALsJZN2LkJowwO2Z2AACAqTGzAxQQf3UDQPHEzA4AADA1yg4AADA1yg4AADA1yg4AADA1yg4AADA1yg4AADA1yg4AADA17rNTxJx1bxaJ+7MAACAxswMAAEyOsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEzNpctOTk6Oxo0bp7CwMHl7e6t69ep67bXXZPzhmmrDMDR+/HgFBwfL29tbkZGR2r9/vxNTAwAAV+LSZWfy5MmaNWuWZsyYoT179mjy5MmaMmWKpk+fbl1nypQpmjZtmmbPnq2NGzfKx8dHHTp00KVLl5yYHAAAuAqXvqngf//7X3Xp0kWdOnWSJFWtWlWLFi3Spk2bJF2b1Xnvvff0yiuvqEuXLpKkTz75RIGBgVq+fLl69+7ttOwAAMA1uPTMTosWLZSYmKh9+/ZJknbs2KEff/xRjz76qCQpOTlZKSkpioyMtD7H399fERER2rBhw023m52drYyMDJsHAAAwJ5ee2RkzZowyMjIUHh4ud3d35eTk6I033lDfvn0lSSkpKZKkwMBAm+cFBgZal+Vn0qRJmjhxYtEFBwAALsOlZ3Y+++wzxcbGauHChdq2bZvmz5+vd955R/Pnzy/UdseOHav09HTr49ixYw5KDAAAXI1Lz+z885//1JgxY6zn3tSrV09HjhzRpEmT1L9/fwUFBUmSUlNTFRwcbH1eamqqGjRocNPtenp6ytPTs0izAwAA1+DSMzsXLlyQm5ttRHd3d+Xm5kqSwsLCFBQUpMTEROvyjIwMbdy4Uc2bN7+rWQEAgGty6Zmdzp0764033lCVKlVUp04dbd++XVOnTtWgQYMkSRaLRSNGjNDrr7+umjVrKiwsTOPGjVNISIi6du3q3PAAAMAluHTZmT59usaNG6chQ4bo1KlTCgkJ0TPPPKPx48db13nhhReUlZWlwYMHKy0tTS1bttTKlSvl5eXlxOQAAMBVWIw/3o74TyojI0P+/v5KT0+Xn5+fQ7dtsTh0c3a51W/WVXNJzstGLvsVx2PMVXNJHGM3ctVcEseYvYqqaRT09dulz9kBAAAoLMoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNbvLzsWLF3XhwgXr10eOHNF7772n1atXOzQYAACAI9hddrp06aJPPvlEkpSWlqaIiAi9++676tKli2bNmuXwgAAAAIVhd9nZtm2bWrVqJUn6/PPPFRgYqCNHjuiTTz7RtGnTHB4QAACgMOwuOxcuXJCvr68kafXq1erevbvc3NzUrFkzHTlyxOEBAQAACsPuslOjRg0tX75cx44d06pVq9S+fXtJ0qlTp+Tn5+fwgAAAAIVhd9kZP368Ro8erapVq+ovf/mLmjdvLunaLE/Dhg0dHhAAAKAwLIZhGPY+KSUlRSdPnlT9+vXl5natL23atEl+fn4KDw93eMiilpGRIX9/f6Wnpzt8dspicejm7HKr36yr5pKcl41c9iuOx5ir5pI4xm7kqrkkjjF72d80Cqagr993dJ+doKAg+fr6KiEhQRcvXpQkNW3atFgWHQAAYG52l53ff/9dbdu21b333quOHTvq5MmTkqSoqCg9//zzDg8IAABQGHaXnZEjR6pkyZI6evSoSpUqZR3v1auXVq5c6dBwAAAAhVXC3iesXr1aq1atUqVKlWzGa9asyaXnAADA5dg9s5OVlWUzo3Pd2bNn5enp6ZBQAAAAjmJ32WnVqpX14yIkyWKxKDc3V1OmTFGbNm0cGg4AAKCw7H4ba8qUKWrbtq22bNmiy5cv64UXXtDPP/+ss2fP6qeffiqKjAAAAHfM7pmdunXrat++fWrZsqW6dOmirKwsde/eXdu3b1f16tWLIiMAAMAdu6ObCpoNNxW8u4rrTa/IlVdxPMZcNZfEMXYjV80lcYzZy9k3FbT7baz169ffcnnr1q3t3SQAAECRsbvsPPTQQ3nGLH+oijk5OYUKBAAA4Eh2n7Nz7tw5m8epU6e0cuVKNW3aVKtXry6KjAAAAHfM7pkdf3//PGPt2rWTh4eHRo0apa1btzokGAAAgCPc0QeB5icwMFB79+511OYAAAAcwu6ZnZ07d9p8bRiGTp48qbfeeksNGjRwVC4AAACHsLvsNGjQQBaLRTdesd6sWTPNnTvXYcEAAAAcwe6yk5ycbPO1m5ubKlasKC8vL4eFAgAAcBS7z9kJDQ21eVSuXLlIi87x48f11FNPqXz58vL29la9evW0ZcsW63LDMDR+/HgFBwfL29tbkZGR2r9/f5HlAQAAxUuBZnamTZtW4A0OGzbsjsPc6Ny5c3rggQfUpk0bffvtt6pYsaL279+vsmXLWteZMmWKpk2bpvnz5yssLEzjxo1Thw4d9MsvvzDbBAAACvZxEWFhYQXbmMWiQ4cOFTrUdWPGjNFPP/2kH374Id/lhmEoJCREzz//vEaPHi1JSk9PV2BgoObNm6fevXsXaD98XMTdVVxvZ06uvIrjMeaquSSOsRu5ai6JY8xexeLjIm48T+duWbFihTp06KCePXtq3bp1uueeezRkyBA9/fTT1lwpKSmKjIy0Psff318RERHasGHDTctOdna2srOzrV9nZGQU7TcCAACcxmH32SkKhw4d0qxZs1SzZk2tWrVKzz77rIYNG6b58+dLklJSUiRdu8fPHwUGBlqX5WfSpEny9/e3PipXrlx03wQAAHAqu6/GkqTffvtNK1as0NGjR3X58mWbZVOnTnVIMEnKzc1VkyZN9Oabb0qSGjZsqN27d2v27Nnq37//HW937NixGjVqlPXrjIwMCg8AACZld9lJTEzU448/rmrVqunXX39V3bp1dfjwYRmGoUaNGjk0XHBwsO677z6bsdq1a2vp0qWSpKCgIElSamqqgoODreukpqbe8gaHnp6e8vT0dGhWAADgmux+G2vs2LEaPXq0du3aJS8vLy1dulTHjh3Tgw8+qJ49ezo03AMPPJDnIyj27dun0NBQSddOnA4KClJiYqJ1eUZGhjZu3KjmzZs7NAsAACimDDuVLl3aOHDggGEYhlGmTBlj9+7dhmEYRlJSkhEaGmrv5m5p06ZNRokSJYw33njD2L9/vxEbG2uUKlXK+PTTT63rvPXWW0aZMmWML774wti5c6fRpUsXIywszLh48WKB95Oenm5IMtLT0x2a3zAM49o56M55FMdczsxGrj/HMeaquTjGik8ujjHH57pTBX39tvttLB8fH+t5OsHBwTp48KDq1KkjSTpz5owje5iaNm2q+Ph4jR07Vv/6178UFham9957T3379rWu88ILLygrK0uDBw9WWlqaWrZsqZUrV3KPHQAAIKmA99n5o65du6pTp056+umnNXr0aH3xxRcaMGCAli1bprJly+q7774rqqxFhvvs3F23O+Jc9T4Q5MqrOB5jrppL4hi7kavmkjjG7GVf0yg4h95nR5LOnj2rcuXKaerUqTp//rwkaeLEiTp//rwWL16smjVrOvRKLAAAAEcocNkJCQlR165dFRUVpXbt2km69pbW7NmziywcAABAYRX4aqyPPvpIp0+f1iOPPKKqVavq1Vdf1eHDh4swGgAAQOEVuOz87W9/U2Jiog4cOKD+/ftr/vz5qlGjhtq1a6fFixfnubkgAACAK7D7PjthYWGaOHGikpOTtXLlSgUEBGjQoEEKDg526CeeAwAAOILdV2PlZ+nSpdZLv3NychyR667iaqy7q7heLUCuvIrjMeaquSSOsRu5ai6JY8xexeZqrBsdOXJEMTExmj9/vo4dO6Y2bdooKirqTjcHAABQJOwqO9nZ2Vq6dKnmzp2rtWvX6p577tGAAQM0cOBAVa1atYgiAgAA3LkCl50hQ4YoLi5OFy5cUJcuXfTNN9+oXbt2sjhzvg4AAOA2Clx2fvzxR02YMEFPPfWUypcvX5SZAAAAHKbAZWfnzp1FmQMAAKBI2H3pOQAAQHFC2QEAAKZG2QEAAKZG2QEAAKZmd9mpWrWq/vWvf+no0aNFkQcAAMCh7C47I0aM0LJly1StWjW1a9dOcXFxys7OLopsAAAAhXZHZScpKUmbNm1S7dq19dxzzyk4OFhDhw7Vtm3biiIjAADAHbvjc3YaNWqkadOm6cSJE5owYYI+/vhjNW3aVA0aNNDcuXPlgM8XBQAAKLQ7/iDQK1euKD4+XjExMUpISFCzZs0UFRWl3377TS+99JK+++47LVy40JFZAQAA7GZ32dm2bZtiYmK0aNEiubm5qV+/fvr3v/+t8PBw6zrdunVT06ZNHRoUAADgTthddpo2bap27dpp1qxZ6tq1q0qWLJlnnbCwMPXu3dshAQEAAArD7rJz6NAhhYaG3nIdHx8fxcTE3HEoAAAAR7H7BOVTp05p48aNecY3btyoLVu2OCQUAACAo9hddqKjo3Xs2LE848ePH1d0dLRDQgEAADiK3WXnl19+UaNGjfKMN2zYUL/88otDQgEAADiK3WXH09NTqampecZPnjypEiXu+Ep2AACAImF32Wnfvr3Gjh2r9PR061haWppeeukltWvXzqHhAAAACsvuqZh33nlHrVu3VmhoqBo2bChJSkpKUmBgoBYsWODwgAAAAIVhd9m55557tHPnTsXGxmrHjh3y9vbWwIED1adPn3zvuQMAAOBMd3SSjY+PjwYPHuzoLAAAAA53x2cU//LLLzp69KguX75sM/74448XOhQAAICj3NEdlLt166Zdu3bJYrFYP93cYrFIknJychybEAAAoBDsvhpr+PDhCgsL06lTp1SqVCn9/PPPWr9+vZo0aaK1a9cWQUQAAIA7Z/fMzoYNG7RmzRpVqFBBbm5ucnNzU8uWLTVp0iQNGzZM27dvL4qcAAAAd8TumZ2cnBz5+vpKkipUqKATJ05IkkJDQ7V3717HpgMAACgku2d26tatqx07digsLEwRERGaMmWKPDw89OGHH6patWpFkREAAOCO2V12XnnlFWVlZUmS/vWvf+mxxx5Tq1atVL58eS1evNjhAQEAAArDYly/nKoQzp49q7Jly1qvyCpuMjIy5O/vr/T0dPn5+Tl02878kdzqN+uquSTnZSOX/YrjMeaquSSOsRu5ai6JY8xehW8a+Svo67dd5+xcuXJFJUqU0O7du23Gy5UrV2yLDgAAMDe7yk7JkiVVpUoV7qUDAACKDbuvxnr55Zf10ksv6ezZs0WRBwAAwKHsPkF5xowZOnDggEJCQhQaGiofHx+b5du2bXNYOAAAgMKyu+x07dq1CGIAAAAUDbvLzoQJE4oiBwAAQJGw+5wdAACA4sTumR03N7dbXmbOlVoAAMCV2F124uPjbb6+cuWKtm/frvnz52vixIkOCwYAAOAIDrmDsiQtXLhQixcv1hdffOGIzd1V3EH57iqud/gkV17F8Rhz1VwSx9iNXDWXxDFmr2J1B+VbadasmRITEx21OQAAAIdwSNm5ePGipk2bpnvuuccRmwMAAHAYu8/ZufEDPw3DUGZmpkqVKqVPP/3UoeEAAAAKy+6y8+9//9um7Li5ualixYqKiIhQ2bJlHRoOAACgsOwuOwMGDCiCGAAAAEXD7nN2YmJitGTJkjzjS5Ys0fz58x0SCgAAwFHsLjuTJk1ShQoV8owHBATozTffdEgoAAAAR7G77Bw9elRhYWF5xkNDQ3X06FGHhAIAAHAUu8tOQECAdu7cmWd8x44dKl++vENCAQAAOIrdZadPnz4aNmyYvv/+e+Xk5CgnJ0dr1qzR8OHD1bt376LICAAAcMfsvhrrtdde0+HDh9W2bVuVKHHt6bm5uerXrx/n7AAAAJdj98yOh4eHFi9erL179yo2NlbLli3TwYMHNXfuXHl4eBRFRqu33npLFotFI0aMsI5dunRJ0dHRKl++vEqXLq0ePXooNTW1SHMAAIDiw+6Znetq1qypmjVrOjLLLW3evFn/+c9/dP/999uMjxw5Ul9//bWWLFkif39/DR06VN27d9dPP/1017IBAADXZffMTo8ePTR58uQ841OmTFHPnj0dEupG58+fV9++ffXRRx/Z3KU5PT1dc+bM0dSpU/Xwww+rcePGiomJ0X//+1/973//K5IsAACgeLG77Kxfv14dO3bMM/7oo49q/fr1Dgl1o+joaHXq1EmRkZE241u3btWVK1dsxsPDw1WlShVt2LDhptvLzs5WRkaGzQMAAJiT3W9jnT9/Pt9zc0qWLFkkpSEuLk7btm3T5s2b8yxLSUmRh4eHypQpYzMeGBiolJSUm25z0qRJmjhxoqOjAgAAF2T3zE69evW0ePHiPONxcXG67777HBLqumPHjmn48OGKjY2Vl5eXw7Y7duxYpaenWx/Hjh1z2LYBAIBrsXtmZ9y4cerevbsOHjyohx9+WJKUmJioRYsW5fuZWYWxdetWnTp1So0aNbKO5eTkaP369ZoxY4ZWrVqly5cvKy0tzWZ2JzU1VUFBQTfdrqenpzw9PR2aFQAAuCa7y07nzp21fPlyvfnmm/r888/l7e2t+++/X999950efPBBh4Zr27atdu3aZTM2cOBAhYeH68UXX1TlypVVsmRJJSYmqkePHpKkvXv36ujRo2revLlDswAAgOLpji4979Spkzp16pRnfPfu3apbt26hQ13n6+ubZ3s+Pj4qX768dTwqKkqjRo1SuXLl5Ofnp+eee07NmzdXs2bNHJYDAAAUX3d8n53rMjMztWjRIn388cfaunWrcnJyHJGrwP7973/Lzc1NPXr0UHZ2tjp06KCZM2fe1QwAAMB1WQzDMO7kievXr9fHH3+sZcuWKSQkRN27d1ePHj3UtGlTR2cschkZGfL391d6err8/Pwcum2LxaGbs8utfrOumktyXjZy2a84HmOumkviGLuRq+aSOMbsdWdN4/YK+vpt18xOSkqK5s2bpzlz5igjI0NPPvmksrOztXz5codfiQUAAOAIBb70vHPnzqpVq5Z27typ9957TydOnND06dOLMhsAAEChFXhm59tvv9WwYcP07LPP3tXPxAIAACiMAs/s/Pjjj8rMzFTjxo0VERGhGTNm6MyZM0WZDQAAoNAKXHaaNWumjz76SCdPntQzzzyjuLg4hYSEKDc3VwkJCcrMzCzKnAAAAHfkjq/Gkq7dwG/OnDlasGCB0tLS1K5dO61YscKR+e4Krsa6u4rr1QLkyqs4HmOumkviGLuRq+aSOMbs5eyrsez+bKw/qlWrlqZMmaLffvtNixYtKsymAAAAikShZnbMgpmdu6u4/uVBrryK4zHmqrkkjrEbuWouiWPMXsV6ZgcAAMDVUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpuXTZmTRpkpo2bSpfX18FBASoa9eu2rt3r806ly5dUnR0tMqXL6/SpUurR48eSk1NdVJiAADgaly67Kxbt07R0dH63//+p4SEBF25ckXt27dXVlaWdZ2RI0fqyy+/1JIlS7Ru3TqdOHFC3bt3d2JqAADgSiyGYRjODlFQp0+fVkBAgNatW6fWrVsrPT1dFStW1MKFC/XEE09Ikn799VfVrl1bGzZsULNmzQq03YyMDPn7+ys9PV1+fn4OzWyxOHRzdrnVb9ZVc0nOy0Yu+xXHY8xVc0kcYzdy1VwSx5i9iqppFPT126Vndm6Unp4uSSpXrpwkaevWrbpy5YoiIyOt64SHh6tKlSrasGHDTbeTnZ2tjIwMmwcAADCnYlN2cnNzNWLECD3wwAOqW7euJCklJUUeHh4qU6aMzbqBgYFKSUm56bYmTZokf39/66Ny5cpFGR0AADhRsSk70dHR2r17t+Li4gq9rbFjxyo9Pd36OHbsmAMSAgAAV1TC2QEKYujQofrqq6+0fv16VapUyToeFBSky5cvKy0tzWZ2JzU1VUFBQTfdnqenpzw9PYsyMgAAcBEuPbNjGIaGDh2q+Ph4rVmzRmFhYTbLGzdurJIlSyoxMdE6tnfvXh09elTNmze/23EBAIALcumZnejoaC1cuFBffPGFfH19refh+Pv7y9vbW/7+/oqKitKoUaNUrlw5+fn56bnnnlPz5s0LfCUWAAAwN5cuO7NmzZIkPfTQQzbjMTExGjBggCTp3//+t9zc3NSjRw9lZ2erQ4cOmjlz5l1OCgAAXFWxus9OUeE+O3dXcb0PBLnyKo7HmKvmkjjGbuSquSSOMXtxnx0AAIAiRNkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmZpqy88EHH6hq1ary8vJSRESENm3a5OxIAADABZii7CxevFijRo3ShAkTtG3bNtWvX18dOnTQqVOnnB0NAAA4mSnKztSpU/X0009r4MCBuu+++zR79myVKlVKc+fOdXY0AADgZMW+7Fy+fFlbt25VZGSkdczNzU2RkZHasGGDE5MBAABXUMLZAQrrzJkzysnJUWBgoM14YGCgfv3113yfk52drezsbOvX6enpkqSMjIyiC+oErvrtkMs+rppLct1s5LIPueznqtn+bLmuv24bhnHL9Yp92bkTkyZN0sSJE/OMV65c2Qlpio6/v7MT5I9c9nHVXJLrZiOXfchlP1fN9mfNlZmZKf9b7KTYl50KFSrI3d1dqampNuOpqakKCgrK9zljx47VqFGjrF/n5ubq7NmzKl++vCwWS5HmLaiMjAxVrlxZx44dk5+fn7Pj2HDVbOSyj6vmklw3G7nsQy77uWo2V81lGIYyMzMVEhJyy/WKfdnx8PBQ48aNlZiYqK5du0q6Vl4SExM1dOjQfJ/j6ekpT09Pm7EyZcoUcdI74+fn51IH1h+5ajZy2cdVc0mum41c9iGX/Vw1myvmutWMznXFvuxI0qhRo9S/f381adJEf/nLX/Tee+8pKytLAwcOdHY0AADgZKYoO7169dLp06c1fvx4paSkqEGDBlq5cmWek5YBAMCfjynKjiQNHTr0pm9bFUeenp6aMGFCnrfbXIGrZiOXfVw1l+S62chlH3LZz1WzuWqugrIYt7teCwAAoBgr9jcVBAAAuBXKDgAAMDXKDgAAMDXKDgAAMDXKjgtav369OnfurJCQEFksFi1fvtzZkTRp0iQ1bdpUvr6+CggIUNeuXbV3795ise8PP/xQDz30kPz8/GSxWJSWllZ0Yf9g1qxZuv/++6034WrevLm+/fbbu7Jve7z11luyWCwaMWKEU3O8+uqrslgsNo/w8HCnZrru+PHjeuqpp1S+fHl5e3urXr162rJli7NjqWrVqnl+ZhaLRdHR0U7NlZOTo3HjxiksLEze3t6qXr26Xnvttdt+fpGz97ts2TK1b9/eejf9pKSkIs37R5mZmRoxYoRCQ0Pl7e2tFi1aaPPmzXdt/9fd7vXHMAyNHz9ewcHB8vb2VmRkpPbv33/Xc9qLsuOCsrKyVL9+fX3wwQfOjmK1bt06RUdH63//+58SEhJ05coVtW/fXllZWS6/7wsXLuiRRx7RSy+9VMRJbVWqVElvvfWWtm7dqi1btujhhx9Wly5d9PPPP9/VHLeyefNm/ec//9H999/v7CiSpDp16ujkyZPWx48//ujsSDp37pweeOABlSxZUt9++61++eUXvfvuuypbtqyzo2nz5s02P6+EhARJUs+ePZ2aa/LkyZo1a5ZmzJihPXv2aPLkyZoyZYqmT5/u0vvNyspSy5YtNXny5CLNmZ+///3vSkhI0IIFC7Rr1y61b99ekZGROn78+F3NcbvXnylTpmjatGmaPXu2Nm7cKB8fH3Xo0EGXLl26qzntZsClSTLi4+OdHSOPU6dOGZKMdevWFZt9f//994Yk49y5c0UTrADKli1rfPzxx07b/x9lZmYaNWvWNBISEowHH3zQGD58uFPzTJgwwahfv75TM+TnxRdfNFq2bOnsGAUyfPhwo3r16kZubq5Tc3Tq1MkYNGiQzVj37t2Nvn37Fov9JicnG5KM7du3OzDdzV24cMFwd3c3vvrqK5vxRo0aGS+//PJdyZCfG19/cnNzjaCgIOPtt9+2jqWlpRmenp7GokWLnJCw4JjZwR1JT0+XJJUrV+5Pte87lZOTo7i4OGVlZal58+bOjiNJio6OVqdOnRQZGensKFb79+9XSEiIqlWrpr59++ro0aPOjqQVK1aoSZMm6tmzpwICAtSwYUN99NFHzo6Vx+XLl/Xpp59q0KBBTv9A4xYtWigxMVH79u2TJO3YsUM//vijHn30UVPut7CuXr2qnJwceXl52Yx7e3u7xOzmdcnJyUpJSbH5N8Pf318RERHasGGDE5PdnmnuoIy7Jzc3VyNGjNADDzygunXr/mn2fSd27dql5s2b69KlSypdurTi4+N13333OTuW4uLitG3bNqecE3AzERERmjdvnmrVqqWTJ09q4sSJatWqlXbv3i1fX1+n5Tp06JBmzZqlUaNG6aWXXtLmzZs1bNgweXh4qH///k7LdaPly5crLS1NAwYMcHYUjRkzRhkZGQoPD5e7u7tycnL0xhtvqG/fvqbcb2H5+vqqefPmeu2111S7dm0FBgZq0aJF2rBhg2rUqOHseFYpKSmSlOejmAIDA63LXBVlB3aLjo7W7t27nfIXhzP3fSdq1aqlpKQkpaen6/PPP1f//v21bt06pxaeY8eOafjw4UpISMjzl6Qz/fGv7/vvv18REREKDQ3VZ599pqioKKflys3NVZMmTfTmm29Kkho2bKjdu3dr9uzZLlV25syZo0cffVQhISHOjqLPPvtMsbGxWrhwoerUqaOkpCSNGDFCISEhRfozc9Z+HWHBggUaNGiQ7rnnHrm7u6tRo0bq06ePtm7d6uxo5uDs99Fwa3Kxc3aio6ONSpUqGYcOHSp2+3aFc3batm1rDB482Gn7NwzDiI+PNyQZ7u7u1ockw2KxGO7u7sbVq1edmu+PmjRpYowZM8apGapUqWJERUXZjM2cOdMICQlxUqK8Dh8+bLi5uRnLly93dhTDMAyjUqVKxowZM2zGXnvtNaNWrVrFYr93+5ydPzp//rxx4sQJwzAM48knnzQ6dux41zNcd+Prz8GDB/P9ubRu3doYNmzY3Q1nJ87ZQYEYhqGhQ4cqPj5ea9asUVhY2J9i346Wm5ur7Oxsp2Zo27atdu3apaSkJOujSZMm6tu3r5KSkuTu7u7UfNedP39eBw8eVHBwsFNzPPDAA3ludbBv3z6FhoY6KVFeMTExCggIUKdOnZwdRdK1KyDd3GxfXtzd3ZWbm2vK/TqSj4+PgoODde7cOa1atUpdunRxdiSrsLAwBQUFKTEx0TqWkZGhjRs3usy5iDfD21gu6Pz58zpw4ID16+TkZCUlJalcuXKqUqWKUzJFR0dr4cKF+uKLL+Tr62t9f9bf31/e3t4uve+UlBSlpKRYf6a7du2Sr6+vqlSpUqQnOY8dO1aPPvqoqlSposzMTC1cuFBr167VqlWrimyfBeHr65vnfCcfHx+VL1/eqedBjR49Wp07d1ZoaKhOnDihCRMmyN3dXX369HFaJkkaOXKkWrRooTfffFNPPvmkNm3apA8//FAffvihU3Ndl5ubq5iYGPXv318lSrjGP+mdO3fWG2+8oSpVqqhOnTravn27pk6dqkGDBrn0fs+ePaujR4/qxIkTkmQtuUFBQQoKCiqy3JK0atUqGYahWrVq6cCBA/rnP/+p8PBwDRw4sEj3e6Pbvf6MGDFCr7/+umrWrKmwsDCNGzdOISEh6tq1613NaTcnzywhH9ffbrnx0b9/f6dlyi+PJCMmJsbl9z1hwgSnZB80aJARGhpqeHh4GBUrVjTatm1rrF69ukj3eadc4dLzXr16GcHBwYaHh4dxzz33GL169TIOHDjg1EzXffnll0bdunUNT09PIzw83Pjwww+dHclq1apVhiRj7969zo5ilZGRYQwfPtyoUqWK4eXlZVSrVs14+eWXjezsbJfeb0xMTL7/VkyYMKFIcxuGYSxevNioVq2a4eHhYQQFBRnR0dFGWlpake/3Rrd7/cnNzTXGjRtnBAYGGp6enkbbtm1d6ti7GYthFPEtLQEAAJyIc3YAAICpUXZQrMXGxqp06dL5PurUqePseABcxA8//HDTfytKly7t7HgoYryNhWItMzNTqamp+S4rWbKkS10xA8B5Ll68eMvPmXKlm/fB8Sg7AADA1HgbCwAAmBplBwAAmBplBwAAmBplBwAc4PDhw7JYLEpKSirwcwYMGHDbO88+9NBDGjFiRKGyAX92lB3gT2LDhg1yd3d3mc9PcoZ69erpH//4R77LFixYIE9PT505c+aOtl25cmWdPHnSqR+5ASB/lB3gT2LOnDl67rnntH79eutn/zjL5cuXnbLfqKgoxcXF6eLFi3mWxcTE6PHHH1eFChXs3u7ly5fl7u6uoKAgl/l8KgD/j7ID/AmcP39eixcv1rPPPqtOnTpp3rx5edb58ssv1bRpU3l5ealChQrq1q2bdVl2drZefPFFVa5cWZ6enqpRo4bmzJkjSZo3b57KlCljs63ly5fLYrFYv3711VfVoEEDffzxxwoLC5OXl5ckaeXKlWrZsqXKlCmj8uXL67HHHtPBgwdttvXbb7+pT58+KleunHx8fNSkSRNt3LhRhw8flpubm7Zs2WKz/nvvvafQ0NB8P+n6qaee0sWLF7V06VKb8eTkZK1du1ZRUVE6ePCgunTposDAQJUuXVpNmzbVd999Z7N+1apV9dprr6lfv37y8/PT4MGD87yNlZOTo6ioKIWFhcnb21u1atXS+++/n89vR5o4caIqVqwoPz8//eMf/7hlGczOztbo0aN1zz33yMfHRxEREVq7dq11+ZEjR9S5c2eVLVtWPj4+qlOnjr755pubbg/4M6DsAH8Cn332mcLDw1WrVi099dRTmjt3rv54i62vv/5a3bp1U8eOHbV9+3YlJibqL3/5i3V5v379tGjRIk2bNk179uzRf/7zH7vvOnvgwAEtXbpUy5YtsxaCrKwsjRo1Slu2bFFiYqLc3NzUrVs3a1E5f/68HnzwQR0/flwrVqzQjh079MILLyg3N1dVq1ZVZGSkYmJibPYTExOjAQMGyM0t7z9vFSpUUJcuXTR37lyb8Xnz5qlSpUpq3769zp8/r44dOyoxMVHbt2/XI488os6dO+vo0aM2z3nnnXdUv359bd++XePGjcuzr9zcXFWqVElLlizRL7/8ovHjx+ull17SZ599ZrNeYmKi9uzZo7Vr12rRokVatmyZJk6ceNOf49ChQ7VhwwbFxcVp586d6tmzpx555BHt379fkhQdHa3s7GytX79eu3bt0uTJk7lDMODEDyEFcJe0aNHCeO+99wzDMIwrV64YFSpUML7//nvr8ubNmxt9+/bN97l79+41JBkJCQn5Lo+JiTH8/f1txuLj440//vMyYcIEo2TJksapU6dumfP06dOGJGPXrl2GYRjGf/7zH8PX19f4/fff811/8eLFRtmyZY1Lly4ZhmEYW7duNSwWi5GcnHzTfaxcudKwWCzGoUOHDMO49inOoaGhxiuvvHLT59SpU8eYPn269evQ0FCja9euNuskJycbkozt27ffdDvR0dFGjx49rF/379/fKFeunJGVlWUdmzVrllG6dGkjJyfHMAzbT6Q/cuSI4e7ubhw/ftxmu23btjXGjh1rGIZh1KtXz3j11VdvmgH4M2JmBzC5vXv3atOmTerTp48kqUSJEurVq5f1bShJSkpKUtu2bfN9flJSktzd3fXggw8WKkdoaKgqVqxoM7Z//3716dNH1apVk5+fn6pWrSpJ1lmUpKQkNWzYUOXKlct3m127dpW7u7vi4+MlXZuhadOmjXU7+WnXrp0qVapknRFKTEzU0aNHNXDgQEnXZpNGjx6t2rVrq0yZMipdurT27NmTZ2anSZMmt/2eP/jgAzVu3FgVK1ZU6dKl9eGHH+bZTv369VWqVCnr182bN9f58+d17NixPNvbtWuXcnJydO+999p8rtO6deusb/8NGzZMr7/+uh544AFNmDBBO3fuvG1OwOwoO4DJzZkzR1evXlVISIhKlCihEiVKaNasWVq6dKnS09MlSd7e3jd9/q2WSZKbm5vNW2KSdOXKlTzr+fj45Bnr3Lmzzp49q48++kgbN27Uxo0bJf3/Ccy327eHh4f69eunmJgYXb58WQsXLtSgQYNum3fAgAGaP3++cnNzFRMTozZt2qhatWqSpNGjRys+Pl5vvvmmfvjhByUlJalevXp5zqPJ7/v5o7i4OI0ePVpRUVFavXq1kpKSNHDgwEKdnH3+/Hm5u7tr69atSkpKsj727NljPR/o73//uw4dOqS//e1v2rVrl5o0aaLp06ff8T4BM6DsACZ29epVffLJJ3r33XdtXhx37NihkJAQLVq0SJJ0//33KzExMd9t1KtXT7m5uVq3bl2+yytWrKjMzExlZWVZxwpyr5nff/9de/fu1SuvvKK2bduqdu3aOnfunM06999/v5KSknT27Nmbbufvf/+7vvvuO82cOVNXr15V9+7db7vvgQMH6tixY1q2bJni4+MVFRVlXfbTTz9pwIAB6tatm+rVq6egoCAdPnz4ttu80U8//aQWLVpoyJAhatiwoWrUqJHn5GtJ2rFjh83VYf/73/9UunRpVa5cOc+6DRs2VE5Ojk6dOqUaNWrYPIKCgqzrVa5cWf/4xz+0bNkyPf/88/roo4/szg+YCWUHMLGvvvpK586dU1RUlOrWrWvz6NGjh/WtrAkTJmjRokWaMGGC9uzZYz2xVbp25VH//v01aNAgLV++3Hrl0vUTbSMiIlSqVCm99NJLOnjwoBYuXJjv1V43Klu2rMqXL68PP/xQBw4c0Jo1azRq1Cibdfr06aOgoCB17dpVP/30kw4dOqSlS5dqw4YN1nVq166tZs2a6cUXX1SfPn1uOxskSWFhYXr44Yc1ePBgeXp62hSkmjVrWk+i3rFjh/7617/me2XX7dSsWVNbtmzRqlWrtG/fPo0bN06bN2/Os97ly5cVFRWlX375Rd98840mTJigoUOH5nuC9b333qu+ffuqX79+WrZsmZKTk7Vp0yZNmjRJX3/9tSRpxIgRWrVqlZKTk7Vt2zZ9//33ql27tt35ATOh7AAmNmfOHEVGRsrf3z/Psh49emjLli3auXOnHnroIS1ZskQrVqxQgwYN9PDDD2vTpk3WdWfNmqUnnnhCQ4YMUXh4uJ5++mnrTE65cuX06aef6ptvvlG9evW0aNEivfrqq7fN5ubmpri4OG3dulV169bVyJEj9fbbb9us4+HhodWrVysgIEAdO3ZUvXr19NZbb8nd3d1mvaioKF2+fPm2b2Hd+Jxz587pr3/9q/VSeEmaOnWqypYtqxYtWqhz587q0KGDGjVqVODtXvfMM8+oe/fu6tWrlyIiIvT7779ryJAhedZr27atatasqdatW6tXr156/PHHb/nzi4mJUb9+/fT888+rVq1a6tq1qzZv3qwqVapIunbJe3R0tGrXrq1HHnlE9957r2bOnGl3fsBMLMaNb7YDQDHz2muvacmSJZyMCyBfzOwAKLbOnz+v3bt3a8aMGXruueecHQeAi6LsACi2hg4dqsaNG+uhhx6y6y0sAH8uvI0FAABMjZkdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgav8H/GzqtXu8YtUAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of accuracies from accuracy1 to accuracy10\n", + "accuracies = [accuracy1*100, accuracy2*100, accuracy2_1*100, accuracy3*100, accuracy4*100, accuracy5*100, accuracy6*100, accuracy7*100, accuracy8*100, accuracy8_1*100, accuracy9*100, accuracy10*100]\n", + "\n", + "# List of corresponding labels for each accuracy\n", + "labels = ['1', '2', '2_1', '3', '4', '5', '6', '7', '8', '8_1', '9', '10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, accuracies, color='blue')\n", + "plt.xlabel('Accuracy Variables')\n", + "plt.ylabel('Accuracy Values')\n", + "plt.title('Bar Graph of Accuracies')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "RFaaCNH6Cfoa", + "outputId": "e624dad4-1663-4a68-90ec-b569e5b0b46a" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIKElEQVR4nO3dfVxUZf7/8fdwN+ANICh3BUpmqWlKoGZZ3lHepWmYeZPhzdpWWqmblbumZW2k3Wi5pNaWZGm2Vpq1SZqpVOIdhltmZqlpJmipIBoocP3+8Mv8HEEDBWY4vZ6Px3k8mutcc53PnDkO785cZ47NGGMEAABgUR6uLgAAAKAqEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAWM7jjz8um82mX3/9tcq3lZqaqtatW8vX11c2m01Hjx6t8m0CqBjCDlCDpKSkyGazOS0hISHq3Lmzli9fXu31fPjhh+rdu7dCQ0Pl4+OjoKAg3XjjjXr++eeVm5tb7fVUt99++00DBgyQn5+fkpOT9eabb6p27dpl9j37vfPy8tIll1yiYcOGaf/+/aX6d+rUSTabTU2aNClzvJUrVzrGevfdd53Wff311+rfv78aNmwoX19fXXLJJbrppps0a9Ysp36NGjUqdTyVLN27d7/AvQK4Hy9XFwCg4qZOnaro6GgZY5Sdna2UlBT17NlTH374oW655ZYq335xcbFGjhyplJQUtWzZUvfdd58iIyN17Ngxpaena9KkSfr444+1atWqKq/FlTZt2qRjx47pySefVHx8fLmeU/Le5efna/369UpJSdEXX3yhb775Rr6+vk59fX199cMPP2jjxo1q27at07oFCxbI19dX+fn5Tu3r1q1T586dFRUVpVGjRiksLEz79u3T+vXr9eKLL+r+++936t+6dWv97W9/K1VnREREuV4PUBMQdoAaqEePHoqLi3M8HjlypEJDQ/X2229XStgpLi7WyZMnS/3xLTF9+nSlpKRo3Lhxev7552Wz2RzrHnzwQR04cEDz58+/qG3UBAcPHpQkBQYGlvs5Z753f/nLX1S/fn1NmzZNy5Yt04ABA5z6Nm7cWIWFhXr77bedwk5+fr6WLFmiXr166b333nN6zj//+U8FBARo06ZNpeoqqfdMl1xyie68885y1w/URHyNBVhAYGCg/Pz85OXl/P8vzz33nK677joFBwfLz89PsbGxpb7ykCSbzaYxY8ZowYIFuuqqq2S325Wamlrmtk6cOKFp06bpqquu0rPPPusUdEqEh4frkUceKfc2LqTOK6+8Ur6+voqNjVVaWlqZtR49elTDhg1TYGCgAgICNHz4cJ04caLsnXiWxYsXKzY2Vn5+fqpfv77uvPNOp6+bOnXqpMTERElSmzZtZLPZNGzYsHKNfaYbbrhBkvTjjz+WuX7QoEF65513VFxc7Gj78MMPdeLEiVLhqGScq666qswAFhISUuH6ACsg7AA1UE5Ojn799VcdOnRI27Zt07333qu8vLxS/4f+4osvKiYmRlOnTtXTTz8tLy8v3X777frvf/9baszPPvtM48aN0x133KEXX3xRjRo1KnPbX3zxhY4ePapBgwbJ09OzQnWfaxsVqXPt2rUaO3as7rzzTk2dOlW//fabunfvrm+++aZU3wEDBujYsWNKSkrSgAEDlJKSoieeeOIP60xJSdGAAQPk6emppKQkjRo1Su+//746dOjgmID8j3/8Q3fffbek019Nvfnmm/rrX/9aof0hSXv27JEk1atXr8z1gwcP1oEDB7RmzRpH28KFC9W1a9cyw0vDhg2VkZFR5v4oy6lTp/Trr7+WWn7//fcKvxbAbRkANca8efOMpFKL3W43KSkppfqfOHHC6fHJkydNixYtTJcuXZzaJRkPDw+zbdu2P6zhxRdfNJLM0qVLndoLCwvNoUOHnJbi4uJybaMidUoymzdvdrT99NNPxtfX1/Tr18/RNmXKFCPJjBgxwun5/fr1M8HBwed9fSdPnjQhISGmRYsW5vfff3e0f/TRR0aSmTx5sqOt5P3YtGnTecc8s++nn35qDh06ZPbt22feffdd06BBA2O3282+ffuc+nfs2NFcddVVxhhj4uLizMiRI40xxhw5csT4+PiYN954w6xevdpIMosXL3Y8b8WKFcbT09N4enqa9u3bm4cffth88skn5uTJk6VqatiwYZnHkySTlJT0h68JqCk4swPUQMnJyVq5cqVWrlypt956S507d9Zf/vIXvf/++079/Pz8HP995MgR5eTk6IYbbtCWLVtKjdmxY0c1b978D7ddcpVVnTp1nNq//vprNWjQwGn57bffyrWNitTZvn17xcbGOh5HRUXp1ltv1SeffKKioiKnvvfcc4/T4xtuuEG//fbbea8U27x5sw4ePKj77rvPaT5Rr1691LRp0zLPNlVEfHy8GjRooMjISPXv31+1a9fWsmXLdOmll57zOYMHD9b777+vkydP6t1335Wnp6f69etXZt+bbrpJ6enp6tOnj7Zu3arp06erW7duuuSSS7Rs2bJS/du1a+c4ls5cBg0adFGvE3AnTFAGaqC2bds6TVAeNGiQYmJiNGbMGN1yyy3y8fGRJH300Ud66qmnlJmZqYKCAkf/subZREdHl2vbdevWlSTl5eU5tV9++eVauXKlJGn+/Pl68803y72NitRZ1qXYV1xxhU6cOKFDhw4pLCzM0R4VFeXUr+SroiNHjsjf37/MWn766SdJ0pVXXllqXdOmTfXFF1+U+bzySk5O1hVXXKGcnBy9/vrrSktLk91uP+9zBg4cqIceekjLly/XggULdMsttzjeh7K0adPGEY62bt2qJUuWaMaMGerfv78yMzOdAmf9+vXLfSUZUFNxZgewAA8PD3Xu3FkHDhzQzp07JUmff/65+vTpI19fX7388sv6+OOPtXLlSg0ePFjGmFJjnHl25XyaNm0qSaXmhNSpU0fx8fGKj4/XZZddVuZzy9pGReusiHPNKbrYcS9G27ZtFR8fr4SEBC1btkwtWrTQ4MGDS4XHM4WHh6tTp056/vnnlZaWpsGDB5drWz4+PmrTpo2efvppzZ49W6dOndLixYsr66UANQZhB7CIwsJCSf//jMt7770nX19fffLJJxoxYoR69OhRKf8Hf8MNNyggIECLFi1yukLoQlW0zpIwd6bvv/9etWrVUoMGDS66noYNG0qSduzYUWrdjh07HOsrQ8kE6F9++UX/+te/ztt38ODB+vzzz+Xv76+ePXtWeFslZwIPHDhwQbUCNRlhB7CAU6dOacWKFfLx8VGzZs0knf5DarPZnOax7NmzR0uXLr2obdWqVUsPP/ywvvnmGz366KNlniWpyJmTitaZnp7uNJdn3759+uCDD3TzzTdX+OqwssTFxSkkJERz5sxx+kpt+fLl2r59u3r16nXR2zhTp06d1LZtW82cObPUDwSeqX///poyZYpefvllx9eUZVm9enWZ+//jjz+WVPbXc4DVMWcHqIGWL1+u7777TtLpH4pbuHChdu7cqUcffdQxF6VXr1564YUX1L17dw0ePFgHDx5UcnKyLr/8cv3vf/+7qO0/+uij2r59u5599lmtWLFCCQkJuvTSS3XkyBFt2bJFixcvVkhISLl+MLCidbZo0ULdunXTAw88ILvdrpdfflmSynVJeXl4e3tr2rRpGj58uDp27KhBgwYpOzvbcan8uHHjKmU7Z5owYYJuv/12paSklJpUXSIgIECPP/74H451//3368SJE+rXr5+aNm2qkydPat26dXrnnXfUqFEjDR8+3Kn//v379dZbb5Uap06dOurbt++FvBzA/bjyUjAAFVPWpee+vr6mdevWZvbs2U6XehtjzGuvvWaaNGli7Ha7adq0qZk3b57jsuwzSTKjR4+ucD1LliwxPXv2NA0aNDBeXl4mMDDQdOjQwTz77LPm6NGj5d5GRet86623HP1jYmLM6tWrnfqVPPfQoUNO7SX7b/fu3X/42t555x0TExNj7Ha7CQoKMkOGDDE///xzmeNV5NLzsvoWFRWZxo0bm8aNG5vCwkJjjPOl5+dS1qXny5cvNyNGjDBNmzY1derUMT4+Pubyyy83999/v8nOznZ6/vkuPW/YsOEfviagprAZ48KZegBQATabTaNHj/7D+S0AcCbm7AAAAEsj7AAAAEsj7AAAAEvjaiwANQZTDAFcCM7sAAAASyPsAAAAS+NrLEnFxcX65ZdfVLdu3TJvPAgAANyPMUbHjh1TRESEPDzOff6GsCPpl19+UWRkpKvLAAAAF2Dfvn269NJLz7mesCOpbt26kk7vrJKf2gcAAO4tNzdXkZGRjr/j50LYkRxfXfn7+xN2AACoYf5oCgoTlAEAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKW5NOykpaWpd+/eioiIkM1m09KlS0v12b59u/r06aOAgADVrl1bbdq00d69ex3r8/PzNXr0aAUHB6tOnTpKSEhQdnZ2Nb4KAADgzlwado4fP65WrVopOTm5zPU//vijOnTooKZNm2rNmjX63//+p8cee0y+vr6OPuPGjdOHH36oxYsXa+3atfrll1902223VddLAAAAbs5mjDGuLkI6/euHS5YsUd++fR1tAwcOlLe3t958880yn5OTk6MGDRpo4cKF6t+/vyTpu+++U7NmzZSenq5rr722XNvOzc1VQECAcnJy+AVlAABqiPL+/XbbOTvFxcX673//qyuuuELdunVTSEiI2rVr5/RVV0ZGhk6dOqX4+HhHW9OmTRUVFaX09PRzjl1QUKDc3FynBQAAWJPbhp2DBw8qLy9PzzzzjLp3764VK1aoX79+uu2227R27VpJUlZWlnx8fBQYGOj03NDQUGVlZZ1z7KSkJAUEBDgW7ngOAIB1uW3YKS4uliTdeuutGjdunFq3bq1HH31Ut9xyi+bMmXNRY0+cOFE5OTmOZd++fZVRMgAAcENue9fz+vXry8vLS82bN3dqb9asmb744gtJUlhYmE6ePKmjR486nd3Jzs5WWFjYOce22+2y2+1VUjcAAHAvbntmx8fHR23atNGOHTuc2r///ns1bNhQkhQbGytvb2+tWrXKsX7Hjh3au3ev2rdvX631AgAA9+TSMzt5eXn64YcfHI93796tzMxMBQUFKSoqShMmTNAdd9yhG2+8UZ07d1Zqaqo+/PBDrVmzRpIUEBCgkSNHavz48QoKCpK/v7/uv/9+tW/fvtxXYv2Z2Z6wuWS7ZopbXAAIAPiTcGnY2bx5szp37ux4PH78eElSYmKiUlJS1K9fP82ZM0dJSUl64IEHdOWVV+q9995Thw4dHM+ZMWOGPDw8lJCQoIKCAnXr1k0vv/xytb8WAADgntzmd3Zc6c/6Ozuc2QEA1GQ1/nd2AAAAKgNhBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWJqXqwsAALg32xM2l23bTDEu2zasgzM7AADA0gg7AADA0vgaC27HVafMOV0OANbEmR0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBpLg07aWlp6t27tyIiImSz2bR06dJz9r3nnntks9k0c+ZMp/bDhw9ryJAh8vf3V2BgoEaOHKm8vLyqLRwAANQYLg07x48fV6tWrZScnHzefkuWLNH69esVERFRat2QIUO0bds2rVy5Uh999JHS0tJ09913V1XJAACghvFy5cZ79OihHj16nLfP/v37df/99+uTTz5Rr169nNZt375dqamp2rRpk+Li4iRJs2bNUs+ePfXcc8+VGY4AAMCfi1vP2SkuLtbQoUM1YcIEXXXVVaXWp6enKzAw0BF0JCk+Pl4eHh7asGHDOcctKChQbm6u0wIAAKzJrcPOtGnT5OXlpQceeKDM9VlZWQoJCXFq8/LyUlBQkLKyss45blJSkgICAhxLZGRkpdYNAADch9uGnYyMDL344otKSUmRzWar1LEnTpyonJwcx7Jv375KHR8AALgPtw07n3/+uQ4ePKioqCh5eXnJy8tLP/30k/72t7+pUaNGkqSwsDAdPHjQ6XmFhYU6fPiwwsLCzjm23W6Xv7+/0wIAAKzJpROUz2fo0KGKj493auvWrZuGDh2q4cOHS5Lat2+vo0ePKiMjQ7GxsZKkzz77TMXFxWrXrl211wwAANyPS8NOXl6efvjhB8fj3bt3KzMzU0FBQYqKilJwcLBTf29vb4WFhenKK6+UJDVr1kzdu3fXqFGjNGfOHJ06dUpjxozRwIEDuRILAABIcvHXWJs3b1ZMTIxiYmIkSePHj1dMTIwmT55c7jEWLFigpk2bqmvXrurZs6c6dOigV155papKBgAANYxLz+x06tRJxphy99+zZ0+ptqCgIC1cuLASqwIA1AS2Jyr34pWKMFPK/7cLrue2E5QBAAAqA2EHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYmkvDTlpamnr37q2IiAjZbDYtXbrUse7UqVN65JFH1LJlS9WuXVsRERG666679MsvvziNcfjwYQ0ZMkT+/v4KDAzUyJEjlZeXV82vBAAAuCuXhp3jx4+rVatWSk5OLrXuxIkT2rJlix577DFt2bJF77//vnbs2KE+ffo49RsyZIi2bdumlStX6qOPPlJaWpruvvvu6noJAADAzXm5cuM9evRQjx49ylwXEBCglStXOrX961//Utu2bbV3715FRUVp+/btSk1N1aZNmxQXFydJmjVrlnr27KnnnntOERERVf4aAACAe6tRc3ZycnJks9kUGBgoSUpPT1dgYKAj6EhSfHy8PDw8tGHDhnOOU1BQoNzcXKcFAABYU40JO/n5+XrkkUc0aNAg+fv7S5KysrIUEhLi1M/Ly0tBQUHKyso651hJSUkKCAhwLJGRkVVaOwAAcJ0aEXZOnTqlAQMGyBij2bNnX/R4EydOVE5OjmPZt29fJVQJAADckUvn7JRHSdD56aef9NlnnznO6khSWFiYDh486NS/sLBQhw8fVlhY2DnHtNvtstvtVVYzAABwH259Zqck6OzcuVOffvqpgoODnda3b99eR48eVUZGhqPts88+U3Fxsdq1a1fd5QIAADfk0jM7eXl5+uGHHxyPd+/erczMTAUFBSk8PFz9+/fXli1b9NFHH6moqMgxDycoKEg+Pj5q1qyZunfvrlGjRmnOnDk6deqUxowZo4EDB3IlFgAAkOTisLN582Z17tzZ8Xj8+PGSpMTERD3++ONatmyZJKl169ZOz1u9erU6deokSVqwYIHGjBmjrl27ysPDQwkJCXrppZeqpX4AAOD+XBp2OnXqJGPMOdefb12JoKAgLVy4sDLLAgAAFuLWc3YAAAAuFmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYWqWEnaNHj1bGMAAAAJWuwmFn2rRpeueddxyPBwwYoODgYF1yySXaunVrhcZKS0tT7969FRERIZvNpqVLlzqtN8Zo8uTJCg8Pl5+fn+Lj47Vz506nPocPH9aQIUPk7++vwMBAjRw5Unl5eRV9WQAAwKIqHHbmzJmjyMhISdLKlSu1cuVKLV++XD169NCECRMqNNbx48fVqlUrJScnl7l++vTpeumllzRnzhxt2LBBtWvXVrdu3ZSfn+/oM2TIEG3btk0rV67URx99pLS0NN19990VfVkAAMCivCr6hKysLEfY+eijjzRgwADdfPPNatSokdq1a1ehsXr06KEePXqUuc4Yo5kzZ2rSpEm69dZbJUnz589XaGioli5dqoEDB2r79u1KTU3Vpk2bFBcXJ0maNWuWevbsqeeee04REREVfXkAAMBiKnxmp169etq3b58kKTU1VfHx8ZJOh5OioqJKK2z37t3KyspyjC9JAQEBateundLT0yVJ6enpCgwMdAQdSYqPj5eHh4c2bNhQabUAAICaq8Jndm677TYNHjxYTZo00W+//eY4M/PVV1/p8ssvr7TCsrKyJEmhoaFO7aGhoY51WVlZCgkJcVrv5eWloKAgR5+yFBQUqKCgwPE4Nze3ssoGAABupsJndmbMmKExY8aoefPmWrlyperUqSNJOnDggO67775KL7AqJCUlKSAgwLGUfC0HAACsp8Jndry9vfXQQw+Vah83blylFFQiLCxMkpSdna3w8HBHe3Z2tlq3bu3oc/DgQafnFRYW6vDhw47nl2XixIkaP36843Fubi6BBwAAi7qg39l588031aFDB0VEROinn36SJM2cOVMffPBBpRUWHR2tsLAwrVq1ytGWm5urDRs2qH379pKk9u3b6+jRo8rIyHD0+eyzz1RcXHzeydJ2u13+/v5OCwAAsKYKh53Zs2dr/Pjx6tGjh44ePeqYlBwYGKiZM2dWaKy8vDxlZmYqMzNT0ulJyZmZmdq7d69sNpvGjh2rp556SsuWLdPXX3+tu+66SxEREerbt68kqVmzZurevbtGjRqljRs36ssvv9SYMWM0cOBArsQCAACSLiDszJo1S6+++qr+8Y9/yNPT09EeFxenr7/+ukJjbd68WTExMYqJiZEkjR8/XjExMZo8ebIk6eGHH9b999+vu+++W23atFFeXp5SU1Pl6+vrGGPBggVq2rSpunbtqp49e6pDhw565ZVXKvqyAACARVV4zs7u3bsd4eRMdrtdx48fr9BYnTp1kjHmnOttNpumTp2qqVOnnrNPUFCQFi5cWKHtAgCAP48Kn9mJjo52fO10ptTUVDVr1qwyagIAAKg0FT6zM378eI0ePVr5+fkyxmjjxo16++23lZSUpH//+99VUSMAAMAFq3DY+ctf/iI/Pz9NmjRJJ06c0ODBgxUREaEXX3xRAwcOrIoaAQAALliFw450+uabQ4YM0YkTJ5SXl1fqV4wBAADcxQWFnRK1atVSrVq1KqsWAACASlfhsBMdHS2bzXbO9bt27bqoggAAACpThcPO2LFjnR6fOnVKX331lVJTUzVhwoTKqgsAAKBSVDjsPPjgg2W2Jycna/PmzRddEAAAQGW6oHtjlaVHjx567733Kms4AACASlFpYefdd99VUFBQZQ0HAABQKSr8NVZMTIzTBGVjjLKysnTo0CG9/PLLlVocAADAxapw2Cm543gJDw8PNWjQQJ06dVLTpk0rqy4AAIBKUeGwM2XKlKqoAwAAoEqUK+zk5uaWe0B/f/8LLgYAAKCylSvsBAYGnveHBKXTc3dsNpuKiooqpTAAAIDKUK6ws3r16qquAwAAoEqUK+x07NixqusAAACoEhd8I9ATJ05o7969OnnypFP71VdffdFFAQAAVJYKh51Dhw5p+PDhWr58eZnrmbMDAADcSYV/QXns2LE6evSoNmzYID8/P6WmpuqNN95QkyZNtGzZsqqoEQAA4IJV+MzOZ599pg8++EBxcXHy8PBQw4YNddNNN8nf319JSUnq1atXVdQJAABwQSp8Zuf48eMKCQmRJNWrV0+HDh2SJLVs2VJbtmyp3OoAAAAuUoXDzpVXXqkdO3ZIklq1aqW5c+dq//79mjNnjsLDwyu9QAAAgItR4a+xHnzwQR04cEDS6VtHdO/eXQsWLJCPj49SUlIquz4AAICLUu6w079/f/3lL3/RkCFDHL+mHBsbq59++knfffedoqKiVL9+/SorFAAA4EKU+2usI0eOqFevXoqKitLkyZO1a9cuSVKtWrV0zTXXEHQAAIBbKnfYWbVqlXbt2qWRI0fqrbfeUpMmTdSlSxctXLhQBQUFVVkjAADABavQBOWGDRvq8ccf165du7Ry5UpFRERo1KhRCg8P1+jRo5WRkVFVdQIAAFyQCl+NVaJLly566623lJWVpaSkJC1atEjt2rWrzNoAAAAu2gXfG0uSdu/erZSUFKWkpCgnJ0fx8fGVVRcAAEClqPCZnfz8fL311lvq0qWLmjRpovnz52vkyJHavXu3UlNTq6JGAACAC1buMzsbN27U66+/rnfeeUf5+fnq16+fUlNT1bVrV8el6AAAAO6m3GHn2muvVatWrfTkk09qyJAhqlevXlXWBQAAUCnKHXY2b96sa665piprAQAAqHTlnrPjiqBTVFSkxx57TNHR0fLz81Pjxo315JNPyhjj6GOM0eTJkxUeHi4/Pz/Fx8dr586d1V4rAABwTxd86Xl1mDZtmmbPnq1//etf2r59u6ZNm6bp06dr1qxZjj7Tp0/XSy+9pDlz5mjDhg2qXbu2unXrpvz8fBdWDgAA3MVFXXpe1datW6dbb71VvXr1kiQ1atRIb7/9tjZu3Cjp9FmdmTNnatKkSbr11lslSfPnz1doaKiWLl2qgQMHuqx2AADgHtz6zM51112nVatW6fvvv5ckbd26VV988YV69Ogh6fTv/GRlZTn9vk9AQIDatWun9PT0c45bUFCg3NxcpwUAAFhTucPOwYMHz7u+sLDQccalsjz66KMaOHCgmjZtKm9vb8XExGjs2LEaMmSIJCkrK0uSFBoa6vS80NBQx7qyJCUlKSAgwLFERkZWat0AAMB9lDvshIeHOwWeli1bat++fY7Hv/32m9q3b1+pxf3nP//RggULtHDhQm3ZskVvvPGGnnvuOb3xxhsXNe7EiROVk5PjWM58HQAAwFrKPWfnzCugJGnPnj06derUeftcrAkTJjjO7kinA9ZPP/2kpKQkJSYmKiwsTJKUnZ2t8PBwx/Oys7PVunXrc45rt9tlt9srtVYAAOCeKnXOTmX/kvKJEyfk4eFcoqenp4qLiyVJ0dHRCgsL06pVqxzrc3NztWHDhko/ywQAAGomt74aq3fv3vrnP/+pqKgoXXXVVfrqq6/0wgsvaMSIEZJOh6uxY8fqqaeeUpMmTRQdHa3HHntMERER6tu3r2uLBwAAbqHcYcdms+nYsWPy9fWVMUY2m015eXmOK5mq4oqmWbNm6bHHHtN9992ngwcPKiIiQn/96181efJkR5+HH35Yx48f1913362jR4+qQ4cOSk1Nla+vb6XXAwAAah6bKedEGw8PD6evqUoCz9mPi4qKKr/KKpabm6uAgADl5OTI39/f1eVUG9sTrrmBq5ly/kPOXesC/qxc9W9SOv+/S3etC9WnvH+/y31mZ/Xq1ZVSGAAAQHUqd9jp2LFjVdYBAABQJcoddgoLC1VUVOR0yXZ2drbmzJmj48ePq0+fPurQoUOVFAkAAHChyh12Ro0aJR8fH82dO1eSdOzYMbVp00b5+fkKDw/XjBkz9MEHH6hnz55VViwAAEBFlft3dr788kslJCQ4Hs+fP19FRUXauXOntm7dqvHjx+vZZ5+tkiIBAAAuVLnDzv79+9WkSRPH41WrVikhIUEBAQGSpMTERG3btq3yKwQAALgI5Q47vr6++v333x2P169fr3bt2jmtz8vLq9zqAAAALlK5w07r1q315ptvSpI+//xzZWdnq0uXLo71P/74oyIiIiq/QgAAgItQ7gnKkydPVo8ePfSf//xHBw4c0LBhw5xuvrlkyRJdf/31VVIkAADAharQ7+xkZGRoxYoVCgsL0+233+60vnXr1mrbtm2lFwgAAHAxKnQj0GbNmqlZs2Zlrrv77rsrpSAAAIDKVO6wk5aWVq5+N9544wUXAwAAUNnKHXY6derkuPHnue4dWlNvBAoAAKyr3GGnXr16qlu3roYNG6ahQ4eqfv36VVkXAABApSj3pecHDhzQtGnTlJ6erpYtW2rkyJFat26d/P39FRAQ4FgAAADcSbnDjo+Pj+644w598skn+u6773T11VdrzJgxioyM1D/+8Q8VFhZWZZ0AAAAXpNxh50xRUVGaPHmyPv30U11xxRV65plnlJubW9m1AQAAXLQKh52CggItXLhQ8fHxatGiherXr6///ve/CgoKqor6AAAALkq5Jyhv3LhR8+bN06JFi9SoUSMNHz5c//nPfwg5AADArZU77Fx77bWKiorSAw88oNjYWEnSF198Uapfnz59Kq86AACAi1ShX1Deu3evnnzyyXOu53d2AACAuyl32CkuLq7KOgAAAKrEBV2NdS6///57ZQ4HAABw0Sol7BQUFOj5559XdHR0ZQwHAABQacoddgoKCjRx4kTFxcXpuuuu09KlSyVJ8+bNU3R0tGbOnKlx48ZVVZ0AAAAXpNxzdiZPnqy5c+cqPj5e69at0+23367hw4dr/fr1euGFF3T77bfL09OzKmsFAACosHKHncWLF2v+/Pnq06ePvvnmG1199dUqLCzU1q1bHXdDBwAAcDfl/hrr559/dvy+TosWLWS32zVu3DiCDgAAcGvlDjtFRUXy8fFxPPby8lKdOnWqpCgAAIDKUu6vsYwxGjZsmOx2uyQpPz9f99xzj2rXru3U7/3336/cCgEAAC5CucNOYmKi0+M777yz0osBAACobOUOO/PmzavKOgAAAKpEpf6CMgAAgLtx+7Czf/9+3XnnnQoODpafn59atmypzZs3O9YbYzR58mSFh4fLz89P8fHx2rlzpwsrBgAA7sStw86RI0d0/fXXy9vbW8uXL9e3336r559/XvXq1XP0mT59ul566SXNmTNHGzZsUO3atdWtWzfl5+e7sHIAAOAuyj1nxxWmTZumyMhIp/lCZ95/yxijmTNnatKkSbr11lslSfPnz1doaKiWLl2qgQMHVnvNAADAvbj1mZ1ly5YpLi5Ot99+u0JCQhQTE6NXX33VsX737t3KyspSfHy8oy0gIEDt2rVTenr6OcctKChQbm6u0wIAAKzJrcPOrl27NHv2bDVp0kSffPKJ7r33Xj3wwAN64403JElZWVmSpNDQUKfnhYaGOtaVJSkpSQEBAY4lMjKy6l4EAABwKbcOO8XFxbrmmmv09NNPKyYmRnfffbdGjRqlOXPmXNS4EydOVE5OjmPZt29fJVUMAADcjVuHnfDwcDVv3typrVmzZtq7d68kKSwsTJKUnZ3t1Cc7O9uxrix2u13+/v5OCwAAsCa3DjvXX3+9duzY4dT2/fffq2HDhpJOT1YOCwvTqlWrHOtzc3O1YcMGtW/fvlprBQAA7smtr8YaN26crrvuOj399NMaMGCANm7cqFdeeUWvvPKKJMlms2ns2LF66qmn1KRJE0VHR+uxxx5TRESE+vbt69riAQCAW3DrsNOmTRstWbJEEydO1NSpUxUdHa2ZM2dqyJAhjj4PP/ywjh8/rrvvvltHjx5Vhw4dlJqaKl9fXxdWDgAA3IVbhx1JuuWWW3TLLbecc73NZtPUqVM1derUaqwKAADUFG49ZwcAAOBiEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAICl1aiw88wzz8hms2ns2LGOtvz8fI0ePVrBwcGqU6eOEhISlJ2d7boiAQCAW6kxYWfTpk2aO3eurr76aqf2cePG6cMPP9TixYu1du1a/fLLL7rttttcVCUAAHA3NSLs5OXlaciQIXr11VdVr149R3tOTo5ee+01vfDCC+rSpYtiY2M1b948rVu3TuvXr3dhxQAAwF3UiLAzevRo9erVS/Hx8U7tGRkZOnXqlFN706ZNFRUVpfT09HOOV1BQoNzcXKcFAABYk5erC/gjixYt0pYtW7Rp06ZS67KysuTj46PAwECn9tDQUGVlZZ1zzKSkJD3xxBOVXSoAAHBDbn1mZ9++fXrwwQe1YMEC+fr6Vtq4EydOVE5OjmPZt29fpY0NAADci1uHnYyMDB08eFDXXHONvLy85OXlpbVr1+qll16Sl5eXQkNDdfLkSR09etTpednZ2QoLCzvnuHa7Xf7+/k4LAACwJrf+Gqtr1676+uuvndqGDx+upk2b6pFHHlFkZKS8vb21atUqJSQkSJJ27NihvXv3qn379q4oGQAAuBm3Djt169ZVixYtnNpq166t4OBgR/vIkSM1fvx4BQUFyd/fX/fff7/at2+va6+91hUlAwAAN+PWYac8ZsyYIQ8PDyUkJKigoEDdunXTyy+/7OqyAACAm6hxYWfNmjVOj319fZWcnKzk5GTXFAQAANyaW09QBgAAuFiEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGluH3aSkpLUpk0b1a1bVyEhIerbt6927Njh1Cc/P1+jR49WcHCw6tSpo4SEBGVnZ7uoYgAA4E7cPuysXbtWo0eP1vr167Vy5UqdOnVKN998s44fP+7oM27cOH344YdavHix1q5dq19++UW33XabC6sGAADuwsvVBfyR1NRUp8cpKSkKCQlRRkaGbrzxRuXk5Oi1117TwoUL1aVLF0nSvHnz1KxZM61fv17XXnutK8oGAABuwu3P7JwtJydHkhQUFCRJysjI0KlTpxQfH+/o07RpU0VFRSk9Pb3MMQoKCpSbm+u0AAAAa6pRYae4uFhjx47V9ddfrxYtWkiSsrKy5OPjo8DAQKe+oaGhysrKKnOcpKQkBQQEOJbIyMiqLh0AALhIjQo7o0eP1jfffKNFixZd1DgTJ05UTk6OY9m3b18lVQgAANyN28/ZKTFmzBh99NFHSktL06WXXupoDwsL08mTJ3X06FGnszvZ2dkKCwsrcyy73S673V7VJQMAADfg9md2jDEaM2aMlixZos8++0zR0dFO62NjY+Xt7a1Vq1Y52nbs2KG9e/eqffv21V0uAABwM25/Zmf06NFauHChPvjgA9WtW9cxDycgIEB+fn4KCAjQyJEjNX78eAUFBcnf31/333+/2rdvz5VYAADA/cPO7NmzJUmdOnVyap83b56GDRsmSZoxY4Y8PDyUkJCggoICdevWTS+//HI1VwoAANyR24cdY8wf9vH19VVycrKSk5OroSIAAFCTuP2cHQAAgItB2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJbm9jcCBQAAlcP2hM0l2zVT/vim3lWJMzsAAMDSOLMD4E/nz/p/t8CfFWd2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApXm5ugAAwGm2J2wu2a6ZYlyyXaC6EHaAGs5VfyCl8/+RdNe6gKrGse9+LBN2kpOT9eyzzyorK0utWrXSrFmz1LZtW1eXBQvhAwwAaiZLhJ133nlH48eP15w5c9SuXTvNnDlT3bp1044dOxQSEuLS2vgDCQCAa1ligvILL7ygUaNGafjw4WrevLnmzJmjWrVq6fXXX3d1aQAAwMVqfNg5efKkMjIyFB8f72jz8PBQfHy80tPTXVgZAABwBzX+a6xff/1VRUVFCg0NdWoPDQ3Vd999V+ZzCgoKVFBQ4Hick5MjScrNza38AvMrf8jy+sPX46LaqKvizlsbdZXiru8ldVVcjTzG3LUuyX2PsYsc15g/mLZharj9+/cbSWbdunVO7RMmTDBt27Yt8zlTpkwxklhYWFhYWFgssOzbt++8WaHGn9mpX7++PD09lZ2d7dSenZ2tsLCwMp8zceJEjR8/3vG4uLhYhw8fVnBwsGw2100oPltubq4iIyO1b98++fv7u7ocB+qqGOqqOHetjboqxl3rkty3NuqqGGOMjh07poiIiPP2q/Fhx8fHR7GxsVq1apX69u0r6XR4WbVqlcaMGVPmc+x2u+x2u1NbYGBgFVd64fz9/d3q4CpBXRVDXRXnrrVRV8W4a12S+9ZGXeUXEBDwh31qfNiRpPHjxysxMVFxcXFq27atZs6cqePHj2v48OGuLg0AALiYJcLOHXfcoUOHDmny5MnKyspS69atlZqaWmrSMgAA+POxRNiRpDFjxpzza6uaym63a8qUKaW+cnM16qoY6qo4d62NuirGXeuS3Lc26qoaNmP+6HotAACAmqvG/6ggAADA+RB2AACApRF2AACApRF2AACApRF2KsGwYcNks9lks9nk7e2t6OhoPfzww8rP//83ISlZv379eqfnFhQUOH65ec2aNY72tWvXqkuXLgoKClKtWrXUpEkTJSYm6uTJk5KkNWvWOMY8e8nKypIk9e3b16k9ODjYpXWNHj1a+fn5evXVV3XDDTc42tu0aaONGzdWyz4p2Xa9evVUr149xcfHO237j97L999/32nczMzMaqm7c+fOTu12u129evVy+TF25v7y8vKSzWZTkyZNXF5Xhw4dSq3z8vJyeV2SNHjwYKd13t7e6t+/v8trCwsLK3N99+7dXVLXnj17Sm3XbrcrMjJS48aNU35+fpW/VzNnztSVV14pPz8/p+1Kf/xZkZaW5jTu0qVLq3R/nVlHhw4dFB0dLV9fX7Vq1colx9O2bduUkJCgRo0ayWazaebMmSpLcnKyGjVqJF9fX7Vr187p87gyEXYqSffu3XXgwAHt2rVLM2bM0Ny5czVlyhSnPpGRkZo3b55T25IlS1SnTh2ntm+//Vbdu3dXXFyc0tLS9PXXX2vWrFny8fFRUVGRU98dO3bowIEDTktISIgkqbCwUI0aNdLs2bPVoEED9e3bt9rq6tevnzp37qytW7dq8+bNev311/XWW29pypQpWrNmjQYNGiRJCg8PV25urm6++Wbt37+/yvdJybZXr16t9PR0RUZGOm1bOv97efz4cUlSUFCQzlaVddvtdsXExGjt2rVKS0vTnXfeqY8//lh33XVXlb+X56urZH9t3LhR9evXV7NmzbRnzx6XH/uS5Onp6XT81apVy+V1nTx5UitWrFCDBg30wQcf6Msvv9SUKVP0ySefuLy2zp07O/2bffHFFyVJHh7Ofyaqoq4bbrjB6b2qW7euXn75ZUnSwoULJUnBwcFKSEjQa6+9pnfeeUd///vfq3R/LFy4UI8++qimTJmi7du3O223RHk+K+rXr6+zVWbdAwYMUOfOnbV//37t2rVLMTExWrdunWJjY/Xtt9/qnnvukXQ6zFbn8XTixAlddtlleuaZZ85566Z33nlH48eP15QpU7Rlyxa1atVK3bp108GDB8vsf1Eq53acf26JiYnm1ltvdWq77bbbTExMjOOxJDNp0iTj7+9vTpw44Wi/6aabzGOPPWYkmdWrVxtjjJkxY4Zp1KjRebe5evVqI8kcOXKkXHU1bNjQzJgxo9rqGjRoUIX2SZ06dcwbb7xR5fvkbIWFhaZu3bqObZf3vRwzZoyRZNLT0x3t1fVelggICDBhYWFOdbniGOvTp4+57rrrzL///W+TmJhowsPDXX7sX3/99cbLy8upzR3+Tc6ePdvUqVPH9O7d2+1qO/sYmzFjhvHy8jKtWrWq8rp69uzp1H7m/hg9enSp7Y4fP95cf/31Vbo/Ro8ebbp06eLUVrJdYyr2uS/JLFq0yNFemXWfXUd4eLhp1apVqTpatGhRrcfTmUr+/pytbdu2ZvTo0Y7HRUVFJiIiwiQlJZVr3IrgzE4V+Oabb7Ru3Tr5+Pg4tcfGxqpRo0Z67733JEl79+5VWlqahg4d6tQvLCxMBw4cUFpaWqXWdeDAAZfVdb59EhUVpYKCAgUFBVX7Pjlx4oROnTpV5pma89XdsmVLSdKqVaskVe97aYzRv//9b+Xk5JS6p5srjrEdO3YoJCREI0eO1JEjR3T48GG3OPYLCwvVsGFDRUZGqnPnzkpLS3N5XcuWLVNISIj+97//KTQ0VC1atNCDDz7olp8XycnJ8vb2lq+vb7XWdfa/ueuuu07S6XsylZyp/vjjj3XddddV6f647rrrlJGR4fhaZdeuXfr444/Vs2fPctVdIjY2VpKUnp4uqerfx+PHj2vPnj2l6sjOznbp8XS2kydPKiMjQ/Hx8Y42Dw8PxcfHO/ZVpar0+PQnlJiYaDw9PU3t2rWN3W43koyHh4d59913HX0kmSVLlpiZM2eazp07G2OMeeKJJ0y/fv3MkSNHnJJ1YWGhGTZsmJFkwsLCTN++fc2sWbNMTk6OY7ySZF27dm2npXnz5mXWJala6/Ly8nJs84+2ff311xtfX1/z+++/V/k+Odu9995rLrvsMvP7779X6L2cO3eukWTatGlTre/lmfvTZrO5/Bjr3r27kWRq1arl2F+SXF5Xz549jYeHh/Hz8zPe3t6OuubOnevSuq688krj4eFhbDabU23u8F6eeez7+PhU6+dFWcvZ2/X09DQeHh5Gkrnnnnuq5bPixRdfNN7e3o7Ps3vuuafM/fVHn/v6vzMrVfE+ltR2Zh2SzKxZs0xRUZFZsWKF4zO5Oo+nM5V1Zmf//v1Gklm3bp1T+4QJE0zbtm3LHOdiEHYqQWJioomPjzc7d+40mZmZJjEx0YwcOdKpT8lB/+uvvxpfX1/z448/mujoaPPhhx+WOthK/Pzzz2b+/Plm9OjRJjw83Fx66aXml19+Mcb8/4Nty5YtZufOnY5lz549ZdYVHh5u2rRpU2119e7d21x33XXm008/NcuWLTMJCQllbvvOO+80AQEBxm63V8s+OVNSUpKpV6+e2bp1a4Xfy5KwU111JyYmmq5du5pPP/3ULFq0yMTFxRlvb2+n7VT3MZabm2tq165tWrdu7dhfjRs3NlFRUaX2lyuP/czMTDN06FBTt25dM2nSJJfW1aRJE1OrVi3TtWtXR21xcXHGz8/PrfZZQkKCCQwMrLbPi3bt2jk+K/r162fuuOMOx/NL+tx3330mLS3N+Pj4mPDwcFOvXr0q3R+rV682oaGh5tVXXzX/+9//zPvvv28iIyPN1KlTyzzGzve5L8n4+PhUyfvYr18/06FDB0cdd9xxh4mKijIeHh7G09PTXHHFFUaS8fb2rtbj6UyEHYs4+zvToqIi06JFC/Pvf//b0VZy0BtjTP/+/U2nTp1MeHi4KSwsPOfBdqbDhw+b+vXrm8mTJxtjLmzOzvPPP19tdZ09Z+dc+6RWrVpm06ZN1bZPSjz77LMmICDAbNq06Zz77Hx1l4Sd+Pj4an8vS+qqV6+e0/9JVfcx9tVXXzn+L9LT09PpzJPNZjM//PCDS+o61/7y9/d3nIlzVV033nijCQ8Pd6rto48+MpLMnDlzXFpbyT7Ly8sz/v7+5oUXXqi2z4sz5+yc/W+uQ4cOpbbbrFkzI8mcPHmyyvZHhw4dzEMPPeTU9uabbxo/Pz9TVFRUoc99SaZ9+/ZV8j6eq47Zs2ebn3/+2RQXFxtJ5tJLL3Xsv+r8rDWm7LBTUFBgPD09He9ribvuusv06dOnXONWBHN2qoCHh4f+/ve/a9KkSfr9999LrR8xYoTWrFmju+66S56enuUas169egoPD3fM8K9pdZ297enTp0uSJk+erLi4uGrdJ9OnT9eTTz6p1NRUxcXFVajus916660uey+vvvpq/fDDDy47xpo2bao+ffqoc+fOyszMVGZmpm699VY1b95cwcHBZV6F4qpj3xij2rVra9u2bS79N3n99dcrNzdXxhhH2w8//KDAwEA9/vjjbvF5sXjxYhUUFOiuu+5yyefF2f/mTpw4UWq727dvl5eXV6krxS5mu2c7ceJEqfFLXueZ79+56j5b165dq+V9LKnjiSeeUFBQkAoLCyVJ7dq1k+S6f4Nn8/HxUWxsrGPeoyQVFxdr1apVat++faVtp4Rl7nrubm6//XZNmDBBycnJeuihh5zWde/eXYcOHZK/v3+Zz507d64yMzPVr18/NW7cWPn5+Zo/f762bdumWbNmOfU9ePCg0+9zSKcv0fT29lZxcbFycnKUmZmpkydPav/+/erQoYOMMVVeV35+vvLz851+s6Jv376aMGGC+vfvr08//VSSFBISoqysLLVu3Vq7d+9WREREle6TadOmafLkyVq4cKEaNWrkqK9OnTqlLsEsceZ7OWLECEnSvn37JJ2+rPSzzz5T48aNq7Tur7/+Wna7Xbt27VJBQYE+/vhjffHFF6pbt67LjjFfX1/Vq1dPNptNLVq0kCQFBgaqcePGysnJ0auvvuqyY3/r1q3y8/PTrl27dPToUT377LM6fPiwAgMDXfpv8t5779Wzzz6rr7/+Wt9//7127typp59+WuPGjdMrr7zi0tpKvPbaa+rbt6+Cg4Or7XOsoKDA6bPihhtukKenp5KTk9W7d29t2bJFn3/+uVq1aiVPT081atRIsbGxZf6xrqz90bt3b73wwguKiYlRu3bt9MMPP+ixxx5T7969zxkSztxfJZd87969W9LpwPDZZ58pMjLyovfXmXX//vvvys/P16lTp+Tt7a0NGzbIy+v0n/a//e1v2rFjh6TTPwciVd/xdPLkSX377beS5Pj7k5mZqTp16ujyyy+XJI0fP16JiYmKi4tT27ZtNXPmTB0/flzDhw8vs7aLUunniv6EyroE0ZjTc0IaNGhg8vLynE7Dnu3s04hbtmwxd955p4mOjjZ2u90EBwebG2+80SxbtszxnPNN7Cu5HDohIaHM9dHR0S6rKykpyTHJ8OxlypQpVb5PGjZseN5t/9F7OWfOnPM+v6rqvvrqq03t2rWNr6+vqVevnmnfvr1ZtGiRy4+xs/dXyWNX19WsWTPj5+dnfHx8TGhoqOnZs6fZsmWLy+sy5vTk6Xr16hm73W4uu+wy889//tMUFha6vLaSeWGSzIoVKxzPdVVd9957r2nQoIE5evSokU5PlvX19TWRkZHmvvvuc3yFUlX749SpU+bxxx83jRs3LnO7f/RZ8fHHH5c5fmJiYpXWvWbNGtOsWTPj6elpbDabGThwoEuOp927d5e5vmPHjk7bnzVrlomKijI+Pj6mbdu2Zv369WXWebFsxpRxPg4AAMAimLMDAAAsjbAD/J/PP//cMXenrAUApNM/yHe+z4q9e/e6ukScha+xgP/z+++/O90j62wlk+oA/LkVFhY63aj0bI0aNXJMEoZ7IOwAAABL42ssAABgaYQdAABgaYQdAABgaYQdACjD448/rtatW1foOTabTUuXLj3n+j179shmsykzM/OiagNQMYQdAE6GDRsmm80mm80mb29vRUdH6+GHHy71s/AlfdavX+/UXlBQoODgYNlsNq1Zs8bRvnbtWnXp0kVBQUGqVauWmjRposTERJ08eVKStGbNGseYZy9n3kqgREZGRpnbL9G1a1fddtttF7wfHnroIaf79gCouQg7AErp3r27Dhw4oF27dmnGjBmaO3eupkyZUqpfZGSk5s2b59S2ZMmSUr9L9O2336p79+6Ki4tTWlqavv76a82aNUs+Pj4qKipy6rtjxw4dOHDAaQkJCSm17djYWLVq1Uqvv/56qXV79uzR6tWrNXLkyAq/dmOMCgsLVadOHQUHB1f4+QDcD2EHQCl2u11hYWGKjIxU3759FR8fr5UrV5bql5iYqEWLFjnd5fn1119XYmKiU78VK1YoLCxM06dPV4sWLdS4cWN1795dr776qvz8/Jz6hoSEKCwszGk5192tR44cqXfeeafUnbFTUlIUHh6u7t27680331RcXJzq1q2rsLAwDR48WAcPHnT0LTmjtHz5csXGxsput+uLL74o9TXWpk2bdNNNN6l+/foKCAhQx44dtWXLllI1HThwQD169JCfn58uu+wyvfvuu+fe0ZK++eYb9ejRQ3Xq1FFoaKiGDh2qX3/91bH+3XffVcuWLeXn56fg4GDFx8dX6t2ngT8Dwg6A8/rmm2+0bt06+fj4lFoXGxurRo0a6b333pN0+pdl09LSNHToUKd+YWFhOnDggNLS0iq1tiFDhqigoMApUBhj9MYbb2jYsGHy9PTUqVOn9OSTT2rr1q1aunSp9uzZo2HDhpUa69FHH9Uzzzyj7du36+qrry61/tixY0pMTNQXX3yh9evXq0mTJurZs6eOHTvm1O+xxx5TQkKCtm7dqiFDhmjgwIHavn17mfUfPXpUXbp0UUxMjDZv3qzU1FRlZ2drwIABkk4Hp0GDBmnEiBHavn271qxZo9tuu038PBpQQVVye1EANVZiYqLx9PQ0tWvXNna73UgyHh4e5t1333Xqp/+7k/LMmTNN586djTHGPPHEE6Zfv36l7qRcWFhohg0b5rh7dd++fc2sWbNMTk6OY7ySOynXrl3baWnevPl56x04cKDTnZRXrVplJJmdO3eW2X/Tpk1Gkjl27JjTdpcuXerUb8qUKaZVq1bn3G5RUZGpW7eu+fDDD532yT333OPUr127dubee+81xvz/O0F/9dVXxhhjnnzySXPzzTc79d+3b5+RZHbs2GEyMjKMJLNnz57z7gMA58eZHQCldO7cWZmZmdqwYYMSExM1fPhwJSQklNn3zjvvVHp6unbt2qWUlBSNGDGiVB9PT0/NmzdPP//8s6ZPn65LLrlETz/9tK666iodOHDAqe/nn3+uzMxMx/Lxxx+ft9YRI0YoLS1NP/74o6TTX6N17NjRcXuPjIwM9e7dW1FRUapbt646duwoSaXuXxQXF3fe7WRnZ2vUqFFq0qSJAgIC5O/vr7y8vFLjtG/fvtTjc53Z2bp1q1avXu10X6WmTZtKkn788Ue1atVKXbt2VcuWLXX77bfr1Vdf1ZEjR85bJ4DSCDsASqldu7Yuv/xyxwTgDRs26LXXXiuzb3BwsG655RaNHDlS+fn56tGjxznHveSSSzR06FD961//0rZt25Sfn685c+Y49YmOjtbll1/uWBo2bHjeWrt27aqoqCilpKQoNzdX77//vmNi8vHjx9WtWzf5+/trwYIF2rRpk5YsWSJJjqvAznzN55OYmKjMzEy9+OKLWrdunTIzMxUcHFxqnIrIy8tT7969ncJdZmamdu7cqRtvvFGenp5auXKlli9frubNm2vWrFm68sortXv37gveJvBnRNgBcF4eHh76+9//rkmTJjlNRD7TiBEjtGbNGt11113y9PQs17j16tVTeHj4RU+29fDw0PDhw/XGG29o4cKF8vHxUf/+/SVJ3333nX777Tc988wzuuGGG9S0aVOnyckV8eWXX+qBBx5Qz549ddVVV8lutztNJC5x9qXw69evV7Nmzcoc85prrtG2bdvUqFEjp4B3+eWXO8KXzWbT9ddfryeeeEJfffWVfHx8HIENQPkQdgD8odtvv12enp5KTk4uc3337t116NAhTZ06tcz1c+fO1b333qsVK1boxx9/1LZt2/TII49o27Zt6t27t1PfgwcPKisry2k5derUeesbPny49u/fr7///e8aNGiQ4wqvqKgo+fj4aNasWdq1a5eWLVumJ5988gL2gNSkSRO9+eab2r59uzZs2KAhQ4aUupJMkhYvXqzXX39d33//vaZMmaKNGzdqzJgxZY45evRoHT58WIMGDdKmTZv0448/6pNPPtHw4cNVVFSkDRs26Omnn9bmzZu1d+9evf/++zp06NA5wxOAshF2APwhLy8vjRkzRtOnTy/zTIzNZlP9+vXLvGJLktq2bau8vDzdc889uuqqq9SxY0etX79eS5cudcyhKXHllVcqPDzcacnIyDhvfVFRUYqPj9eRI0ec5gw1aNBAKSkpWrx4sZo3b65nnnlGzz333AXsAem1117TkSNHdM0112jo0KF64IEHyvz9nyeeeEKLFi3S1Vdfrfnz5+vtt99W8+bNyxwzIiJCX375pYqKinTzzTerZcuWGjt2rAIDA+Xh4SF/f3+lpaWpZ8+euuKKKzRp0iQ9//zz5/2qEEBpNmO4hhEAAFgXZ3YAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAICl/T/87OzQb65QZQAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of RMSE values from rmse1 to rmse10\n", + "rmse_values = [rmse1, rmse2, rmse2_1, rmse3, rmse4, rmse5, rmse6, rmse7, rmse8, rmse8_1, rmse9, rmse10]\n", + "\n", + "# List of corresponding labels for each RMSE value\n", + "labels = ['RMSE1', 'RMSE2', 'RMSE2_1', 'RMSE3', 'RMSE4', 'RMSE5', 'RMSE6', 'RMSE7', 'RMSE8', 'RMSE8_1', 'RMSE9', 'RMSE10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, rmse_values, color='green')\n", + "plt.xlabel('RMSE Variables')\n", + "plt.ylabel('RMSE Values')\n", + "plt.title('Bar Graph of RMSE')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "nrZu-K-KDCJ2", + "outputId": "d0dd5f18-77bd-41f4-c21b-09e71322b318" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/MUlEQVR4nO3deVxUZf//8fcACogCorIlKuW+pOYWmbdLFK6pueR2h2JqqZl5l+l9m2V5Z1qZS6RZKFmCS6mlpUWYW+GuZUmuuAuWKYomopzfH36dX3MDCjoww+n1fDzO4+Fc5zrn+swMMm/Ouc4Zi2EYhgAAAEzKxdEFAAAAFCbCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDoC/hVdeeUUWi0W///57oY+1evVqNWjQQB4eHrJYLDp37lyhjwkgb4QdoJiLjY2VxWKxWfz9/dW6dWutWrWqyOtZsWKFOnXqpICAAJUsWVJ+fn76xz/+obffflvnz58v8nqK2pkzZ9SzZ095enoqOjpaH3/8sby8vHLt+9f3buPGjTnWG4ahkJAQWSwWdezYMdd9nDt3zhqqkpOTc+3Tv3//HD8jNxYPD4/bf7JAMeHm6AIA2Merr76q0NBQGYahtLQ0xcbGqn379lqxYkWeH5T2lJ2drYEDByo2Nlb16tXT0KFDFRISogsXLigpKUnjxo3TV199pcTExEKvxZG2bt2qCxcu6LXXXlN4eHi+tvHw8FBcXJwefPBBm/Z169bp+PHjcnd3z3PbJUuWyGKxKDAwUAsWLNDEiRNz7efu7q4PP/wwR7urq2u+agSKM8IOYBLt2rVT48aNrY8HDhyogIAAxcfH2yXsZGdn68qVK3keCZgyZYpiY2P13HPP6e2335bFYrGue/bZZ3Xq1CnNnz//jsYoDk6fPi1J8vX1zfc27du315IlSzRjxgy5uf3/X8txcXFq1KjRTU+9ffLJJ2rfvr0qV66suLi4PMOOm5ub+vXrl++aADPhNBZgUr6+vvL09LT58JSkt956Sw888IDKlSsnT09PNWrUSJ9++mmO7S0Wi4YPH64FCxaoTp06cnd31+rVq3Md69KlS5o8ebLq1KmjN9980ybo3BAUFKQXX3wx32PcTp01atSQh4eHGjVqpPXr1+da67lz59S/f3/5+vrKx8dHAwYM0KVLl3J/Ef/HkiVL1KhRI3l6eqp8+fLq16+fTpw4YV3fqlUrRUZGSpKaNGkii8Wi/v3733K/vXv31pkzZ5SQkGBtu3Llij799FP16dMnz+2OHj2qDRs2qFevXurVq5dSUlL0ww8/5Ou5AH8nHNkBTCI9PV2///67DMPQ6dOnNXPmTGVkZOT4a3769Ol69NFH1bdvX125ckULFy5Ujx49tHLlSnXo0MGm75o1a7R48WINHz5c5cuXV5UqVXIde+PGjTp37pyef/75Ap8WyWuMgtS5bt06LVq0SCNGjJC7u7vee+89tW3bVlu2bFHdunVt+vbs2VOhoaGaNGmSduzYoQ8//FD+/v6aPHnyTeuMjY3VgAED1KRJE02aNElpaWmaPn26vv/+e+3cuVO+vr76z3/+oxo1amjOnDnW04r33HPPLV+DKlWqKCwsTPHx8WrXrp0kadWqVUpPT1evXr00Y8aMXLeLj4+Xl5eXOnbsKE9PT91zzz1asGCBHnjggVz753aEqGTJkvL29r5ljUCxZgAo1ubNm2dIyrG4u7sbsbGxOfpfunTJ5vGVK1eMunXrGm3atLFpl2S4uLgYv/zyyy1rmD59uiHJWL58uU371atXjd9++81myc7OztcYBalTkrFt2zZr25EjRwwPDw+ja9eu1raXX37ZkGRERUXZbN+1a1ejXLlyN31+V65cMfz9/Y26desaf/75p7V95cqVhiRj/Pjx1rYb78fWrVtvus//7fvuu+8aZcqUsT7vHj16GK1btzYMwzAqV65sdOjQIcf29erVM/r27Wt9/O9//9soX768kZWVZdMvMjIy158RSUZERMQt6wSKO05jASYRHR2thIQEJSQk6JNPPlHr1q315JNPaunSpTb9PD09rf8+e/as0tPT1aJFC+3YsSPHPlu2bKnatWvfcuwbV1mVLl3apn337t2qUKGCzXLmzJl8jVGQOsPCwtSoUSPr40qVKqlz5876+uuvde3aNZu+Tz31lM3jFi1a6MyZMze9Umzbtm06ffq0hg4dajOfqEOHDqpZs6a+/PLLPLfNr549e+rPP//UypUrdeHCBa1cufKmp7B++ukn7d69W71797a29e7dW7///ru+/vrrHP09PDysPx9/Xd544407rh1wdpzGAkyiadOmNhOUe/furYYNG2r48OHq2LGjSpYsKUlauXKlJk6cqF27dikzM9PaP7d5NqGhofkau0yZMpKkjIwMm/aqVata56HMnz9fH3/8cb7HKEid1apVy9FWvXp1Xbp0Sb/99psCAwOt7ZUqVbLpV7ZsWUnXA1Vep3OOHDkiSapRo0aOdTVr1sz1svGCqlChgsLDwxUXF6dLly7p2rVr6t69e579P/nkE3l5eenuu+/WgQMHJF0PNFWqVNGCBQtynOpzdXXN99VhgNlwZAcwKRcXF7Vu3VqnTp3S/v37JUkbNmzQo48+Kg8PD7333nv66quvlJCQoD59+sgwjBz7+OvRlZupWbOmJOnnn3+2aS9durTCw8MVHh6uu+++O9dtcxujoHUWRF5ziu50v/bQp08frVq1SrNnz1a7du3yvKLLMAzFx8fr4sWLql27tqpVq2ZdDh8+rM8//zxH8AT+zjiyA5jY1atXJf3/Iy6fffaZPDw89PXXX9vcu2XevHl3NE6LFi3k4+OjhQsXauzYsXJxubO/owpa540w91f79u1TqVKlVKFChTuqRZIqV64sSdq7d6/atGljs27v3r3W9Xeqa9euGjJkiDZt2qRFixbl2e/G/XdeffVV1apVy2bd2bNnNXjwYC1fvpxLzYH/w5EdwKSysrL0zTffqGTJktYPRFdXV1ksFpt5LIcPH9by5cvvaKxSpUpp9OjR+vnnnzVmzJhcj5IU5MhJQetMSkqymctz7Ngxff7553rkkUfsctO8xo0by9/fX7Nnz7Y5pbZq1SolJyfnOGV0u0qXLq1Zs2bplVdeUadOnfLsd+MU1gsvvKDu3bvbLIMGDVK1atW0YMECu9QEmAFHdgCTWLVqlX799VdJ129sFxcXp/3792vMmDHWuSgdOnTQ1KlT1bZtW/Xp00enT59WdHS0qlatqp9++umOxh8zZoySk5P15ptv6ptvvlG3bt1UsWJFnT17Vjt27NCSJUvk7++frxsGFrTOunXrKiIiwubSc0maMGHCHT2nG0qUKKHJkydrwIABatmypXr37m299LxKlSp67rnn7DKOJOt9evKSmZmpzz77TA8//HCer+Wjjz6q6dOn6/Tp0/L395d0/SjfJ598kmv/rl275vmVFoAZEHYAkxg/frz13x4eHqpZs6ZmzZqlIUOGWNvbtGmjmJgYvfHGGxo5cqRCQ0M1efJkHT58+I7DjouLiz7++GN169ZNH3zwgWbOnKmzZ8+qdOnSqlu3rv773/9q0KBBOa7Yyk1B62zZsqXCwsI0YcIEHT16VLVr11ZsbKzuvffeO3pOf9W/f3+VKlVKb7zxhl588UV5eXmpa9eumjx5coHulnynvvzyS507d+6mR346deqkt99+WwsXLtSIESMkXQ9J//znP3Ptn5KSQtiBqVkMZ5iVBwC3yWKxaNiwYXr33XcdXQoAJ8WcHQAAYGqEHQAAYGqEHQAAYGpMUAZQrDHtEMCtcGQHAACYGmEHAACYGqexJGVnZ+vkyZMqU6ZMrl8yCAAAnI9hGLpw4YKCg4Nv+jU1hB1JJ0+eVEhIiKPLAAAAt+HYsWOqWLFinusJO5LKlCkj6fqLdeO2+gAAwLmdP39eISEh1s/xvBB2JOupK29vb8IOAADFzK2moDBBGQAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmJqbowuAg8RZHDd2H8NxYwMA/nY4sgMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEzNoWFn/fr16tSpk4KDg2WxWLR8+XLruqysLL344ouqV6+evLy8FBwcrCeeeEInT5602ccff/yhvn37ytvbW76+vho4cKAyMjKK+JkAAABn5dCwc/HiRdWvX1/R0dE51l26dEk7duzQSy+9pB07dmjp0qXau3evHn30UZt+ffv21S+//KKEhAStXLlS69ev1+DBg4vqKQAAACdnMQzDcHQRkmSxWLRs2TJ16dIlzz5bt25V06ZNdeTIEVWqVEnJycmqXbu2tm7dqsaNG0uSVq9erfbt2+v48eMKDg7O19jnz5+Xj4+P0tPT5e3tbY+n4/ziLI4bu49T/MgBAIq5/H5+F6s5O+np6bJYLPL19ZUkJSUlydfX1xp0JCk8PFwuLi7avHmzg6oEAADOxM3RBeTX5cuX9eKLL6p3797W9Jaamip/f3+bfm5ubvLz81Nqamqe+8rMzFRmZqb18fnz5wunaAAA4HDF4shOVlaWevbsKcMwNGvWrDve36RJk+Tj42NdQkJC7FAlAABwRk4fdm4EnSNHjighIcHmnFxgYKBOnz5t0//q1av6448/FBgYmOc+x44dq/T0dOty7NixQqsfAAA4llOfxroRdPbv36/vvvtO5cqVs1kfFhamc+fOafv27WrUqJEkac2aNcrOzlazZs3y3K+7u7vc3d0LtXYAAOAcHBp2MjIydODAAevjlJQU7dq1S35+fgoKClL37t21Y8cOrVy5UteuXbPOw/Hz81PJkiVVq1YttW3bVoMGDdLs2bOVlZWl4cOHq1evXvm+EgsAAJibQy89X7t2rVq3bp2jPTIyUq+88opCQ0Nz3e67775Tq1atJF2/qeDw4cO1YsUKubi4qFu3bpoxY4ZKly6d7zq49LyIcek5AMAO8vv57dAjO61atdLNslZ+cpifn5/i4uLsWRYAADARp5+gDAAAcCcIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNTcHF0AkEOcxTHj9jEcMy4AoFBxZAcAAJgaYQcAAJgaYQcAAJgac3YAADfHPDoUcxzZAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApubQsLN+/Xp16tRJwcHBslgsWr58uc16wzA0fvx4BQUFydPTU+Hh4dq/f79Nnz/++EN9+/aVt7e3fH19NXDgQGVkZBThswAAAM7MzZGDX7x4UfXr11dUVJQee+yxHOunTJmiGTNm6KOPPlJoaKheeuklRUREaM+ePfLw8JAk9e3bV6dOnVJCQoKysrI0YMAADR48WHFxcUX9dAAARSnO4rix+xiOGxsF5tCw065dO7Vr1y7XdYZhaNq0aRo3bpw6d+4sSZo/f74CAgK0fPly9erVS8nJyVq9erW2bt2qxo0bS5Jmzpyp9u3b66233lJwcHCRPRcAAOCcnHbOTkpKilJTUxUeHm5t8/HxUbNmzZSUlCRJSkpKkq+vrzXoSFJ4eLhcXFy0efPmPPedmZmp8+fP2ywAAMCcnDbspKamSpICAgJs2gMCAqzrUlNT5e/vb7Pezc1Nfn5+1j65mTRpknx8fKxLSEiInasHAADOwmnDTmEaO3as0tPTrcuxY8ccXRIAACgkTht2AgMDJUlpaWk27WlpadZ1gYGBOn36tM36q1ev6o8//rD2yY27u7u8vb1tFgAAYE5OG3ZCQ0MVGBioxMREa9v58+e1efNmhYWFSZLCwsJ07tw5bd++3dpnzZo1ys7OVrNmzYq8ZgAA4HwcejVWRkaGDhw4YH2ckpKiXbt2yc/PT5UqVdLIkSM1ceJEVatWzXrpeXBwsLp06SJJqlWrltq2batBgwZp9uzZysrK0vDhw9WrVy+uxAIAAJIcHHa2bdum1q1bWx+PGjVKkhQZGanY2FiNHj1aFy9e1ODBg3Xu3Dk9+OCDWr16tfUeO5K0YMECDR8+XA899JBcXFzUrVs3zZgxo8ifCwAAcE4WwzD+9ndGOn/+vHx8fJSenv73mb/jzDfjclRt3CQMyJ2z/p905t9jKBL5/fx22jk7AAAA9kDYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApubUYefatWt66aWXFBoaKk9PT91zzz167bXXZBiGtY9hGBo/fryCgoLk6emp8PBw7d+/34FVAwAAZ3LHYefatWvatWuXzp49a496bEyePFmzZs3Su+++q+TkZE2ePFlTpkzRzJkzrX2mTJmiGTNmaPbs2dq8ebO8vLwUERGhy5cv270eAABQ/BQ47IwcOVIxMTGSrgedli1b6r777lNISIjWrl1r1+J++OEHde7cWR06dFCVKlXUvXt3PfLII9qyZYuk60d1pk2bpnHjxqlz58669957NX/+fJ08eVLLly+3ay0AAKB4KnDY+fTTT1W/fn1J0ooVK5SSkqJff/1Vzz33nP7zn//YtbgHHnhAiYmJ2rdvnyTpxx9/1MaNG9WuXTtJUkpKilJTUxUeHm7dxsfHR82aNVNSUlKe+83MzNT58+dtFgAAYE4FDju///67AgMDJUlfffWVevTooerVqysqKkq7d++2a3FjxoxRr169VLNmTZUoUUINGzbUyJEj1bdvX0lSamqqJCkgIMBmu4CAAOu63EyaNEk+Pj7WJSQkxK51AwAA51HgsBMQEKA9e/bo2rVrWr16tR5++GFJ0qVLl+Tq6mrX4hYvXqwFCxYoLi5OO3bs0EcffaS33npLH3300R3td+zYsUpPT7cux44ds1PFAADA2bgVdIMBAwaoZ8+eCgoKksVisZ5C2rx5s2rWrGnX4l544QXr0R1Jqlevno4cOaJJkyYpMjLSeoQpLS1NQUFB1u3S0tLUoEGDPPfr7u4ud3d3u9YKAACcU4HDziuvvKK6devq2LFj6tGjhzU0uLq6asyYMXYt7tKlS3JxsT345OrqquzsbElSaGioAgMDlZiYaA0358+f1+bNm/X000/btRYAAFA8FTjsSFL37t0lyeby7sjISPtU9BedOnXSf//7X1WqVEl16tTRzp07NXXqVEVFRUmSLBaLRo4cqYkTJ6patWoKDQ3VSy+9pODgYHXp0sXu9QAAgOKnwHN2rl27ptdee0133XWXSpcurUOHDkmSXnrpJesl6fYyc+ZMde/eXUOHDlWtWrX0/PPPa8iQIXrttdesfUaPHq1nnnlGgwcPVpMmTZSRkaHVq1fLw8PDrrUAAIDiqcBh57///a9iY2M1ZcoUlSxZ0tpet25dffjhh3YtrkyZMpo2bZqOHDmiP//8UwcPHtTEiRNtxrVYLHr11VeVmpqqy5cv69tvv1X16tXtWgcAACi+Chx25s+frzlz5qhv3742V1/Vr19fv/76q12LAwAAuFMFDjsnTpxQ1apVc7RnZ2crKyvLLkUBAADYS4HDTu3atbVhw4Yc7Z9++qkaNmxol6IAAADspcBXY40fP16RkZE6ceKEsrOztXTpUu3du1fz58/XypUrC6NGAACA21bgIzudO3fWihUr9O2338rLy0vjx49XcnKyVqxYYb2bMgAAgLO4rfvstGjRQgkJCfauBQAAwO4KfGQHAACgOCnwkR0XFxdZLJY811+7du2OCgIAALCnAoedZcuW2TzOysrSzp079dFHH2nChAl2KwwAAMAeChx2OnfunKOte/fuqlOnjhYtWqSBAwfapTAAAAB7sNucnfvvv1+JiYn22h0AAIBd2CXs/Pnnn5oxY4buuusue+wOAADAbgp8Gqts2bI2E5QNw9CFCxdUqlQpffLJJ3YtDgAA4E4VOOy88847NmHHxcVFFSpUULNmzVS2bFm7FgcAAHCnChx2+vfvXwhlAAAAFI58hZ2ffvop3zu89957b7sYAAAAe8tX2GnQoIEsFosMw7hpP4vFwk0FAQCAU8lX2ElJSSnsOgAAAApFvsJO5cqVC7sOAACAQnFb33ouSXv27NHRo0d15coVm/ZHH330josCAACwlwKHnUOHDqlr167avXu3zTyeG5ejM2cHAAA4kwLfQfnZZ59VaGioTp8+rVKlSumXX37R+vXr1bhxY61du7YQSgQAALh9BT6yk5SUpDVr1qh8+fJycXGRi4uLHnzwQU2aNEkjRozQzp07C6NOAACA21LgIzvXrl1TmTJlJEnly5fXyZMnJV2fxLx37177VgcAAHCHCnxkp27duvrxxx8VGhqqZs2aacqUKSpZsqTmzJmju+++uzBqBAAAuG0FDjvjxo3TxYsXJUmvvvqqOnbsqBYtWqhcuXJatGiR3QsEAAC4E/kOO40bN9aTTz6pPn36yNvbW5JUtWpV/frrr/rjjz9yfBs6AACAM8j3nJ369etr9OjRCgoK0hNPPGFz5ZWfnx9BBwAAOKV8h52YmBilpqYqOjpaR48e1UMPPaSqVavq9ddf14kTJwqzRgAAgNtWoKuxSpUqpf79+2vt2rXat2+fevXqpffff19VqlRRhw4dtHTp0sKqEwAA4LYU+NLzG+655x5NnDhRhw8fVnx8vDZt2qQePXrYszYAAIA7dtvfjSVJa9eu1bx58/TZZ5/Jzc1NgwYNslddAAAAdlHgsHP8+HHFxsYqNjZWhw4dUosWLfTee++pR48e8vT0LIwaAQAAblu+w87ixYs1d+5cJSYmyt/fX5GRkYqKilLVqlULsz4AAIA7ku+w069fP3Xo0EHLli1T+/bt5eJy29N9AAAAiky+w87x48fl7+9fmLUAAADYXb4PzxB0AABAccS5KAAAYGqEHQAAYGqEHQAAYGr5DjtbtmzRtWvX8lyfmZmpxYsX26UoAAAAe8l32AkLC9OZM2esj729vXXo0CHr43Pnzql37972rQ4AAOAO5TvsGIZx08d5tQEAADiSXefsWCwWe+4OAADgjjn9BOUTJ06oX79+KleunDw9PVWvXj1t27bNut4wDI0fP15BQUHy9PRUeHi49u/f78CKAQCAMynQF4Hu2bNHqampkq6HjF9//VUZGRmSpN9//93uxZ09e1bNmzdX69attWrVKlWoUEH79+9X2bJlrX2mTJmiGTNm6KOPPlJoaKheeuklRUREaM+ePfLw8LB7TQAAoHgpUNh56KGHbObldOzYUdL101eGYdj9NNbkyZMVEhKiefPmWdtCQ0Ot/zYMQ9OmTdO4cePUuXNnSdL8+fMVEBCg5cuXq1evXnatBwAAFD/5DjspKSmFWUeuvvjiC0VERKhHjx5at26d7rrrLg0dOlSDBg2y1pSamqrw8HDrNj4+PmrWrJmSkpLyDDuZmZnKzMy0Pj5//nzhPhEAAOAw+Q47lStXvmWfn3/++Y6K+V+HDh3SrFmzNGrUKP373//W1q1bNWLECJUsWVKRkZHWU2oBAQE22wUEBFjX5WbSpEmaMGGCXWsFAADO6Y4nKF+4cEFz5sxR06ZNVb9+fXvUZJWdna377rtPr7/+uho2bKjBgwdr0KBBmj179h3td+zYsUpPT7cux44ds1PFAADA2dx22Fm/fr0iIyMVFBSkt956S23atNGmTZvsWZuCgoJUu3Ztm7ZatWrp6NGjkqTAwEBJUlpamk2ftLQ067rcuLu7y9vb22YBAADmVKCwk5qaqjfeeEPVqlVTjx495O3trczMTC1fvlxvvPGGmjRpYtfimjdvrr1799q07du3z3pKLTQ0VIGBgUpMTLSuP3/+vDZv3qywsDC71gIAAIqnfIedTp06qUaNGvrpp580bdo0nTx5UjNnzizM2vTcc89p06ZNev3113XgwAHFxcVpzpw5GjZsmKTrV4GNHDlSEydO1BdffKHdu3friSeeUHBwsLp06VKotQEAgOIh3xOUV61apREjRujpp59WtWrVCrMmqyZNmmjZsmUaO3asXn31VYWGhmratGnq27evtc/o0aN18eJFDR48WOfOndODDz6o1atXc48dAAAgqQBhZ+PGjYqJiVGjRo1Uq1Yt/fOf/yyS+9h07NjRej+f3FgsFr366qt69dVXC70WAABQ/OT7NNb999+vDz74QKdOndKQIUO0cOFCBQcHKzs7WwkJCbpw4UJh1gkAAHBbCnw1lpeXl6KiorRx40bt3r1b//rXv/TGG2/I399fjz76aGHUCAAAcNvu6D47NWrU0JQpU3T8+HHFx8fbqyYAAAC7scu3nru6uqpLly764osv7LE7AAAAu8n3BOWoqKhb9rFYLIqJibmjggAAAOwp32EnNjZWlStXVsOGDW2++RwAAMCZ5TvsPP3004qPj1dKSooGDBigfv36yc/PrzBrAwAAuGP5nrMTHR2tU6dOafTo0VqxYoVCQkLUs2dPff311xzpAQAATqtAE5Td3d3Vu3dvJSQkaM+ePapTp46GDh2qKlWqKCMjo7BqBAAAuG23fTWWi4uLLBaLDMPQtWvX7FkTAACA3RQo7GRmZio+Pl4PP/ywqlevrt27d+vdd9/V0aNHVbp06cKqEQAA4Lble4Ly0KFDtXDhQoWEhCgqKkrx8fEqX758YdYGAABwx/IddmbPnq1KlSrp7rvv1rp167Ru3bpc+y1dutRuxQEAANypfIedJ554QhaLpTBrAQAAsLsC3VQQAACguLHLd2MBAAA4K8IOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwtWIVdt544w1ZLBaNHDnS2nb58mUNGzZM5cqVU+nSpdWtWzelpaU5rkgAAOBUik3Y2bp1q95//33de++9Nu3PPfecVqxYoSVLlmjdunU6efKkHnvsMQdVCQAAnE2xCDsZGRnq27evPvjgA5UtW9banp6erpiYGE2dOlVt2rRRo0aNNG/ePP3www/atGmTAysGAADOoliEnWHDhqlDhw4KDw+3ad++fbuysrJs2mvWrKlKlSopKSkpz/1lZmbq/PnzNgsAADAnN0cXcCsLFy7Ujh07tHXr1hzrUlNTVbJkSfn6+tq0BwQEKDU1Nc99Tpo0SRMmTLB3qQAAwAk59ZGdY8eO6dlnn9WCBQvk4eFht/2OHTtW6enp1uXYsWN22zcAAHAuTh12tm/frtOnT+u+++6Tm5ub3NzctG7dOs2YMUNubm4KCAjQlStXdO7cOZvt0tLSFBgYmOd+3d3d5e3tbbMAAABzcurTWA899JB2795t0zZgwADVrFlTL774okJCQlSiRAklJiaqW7dukqS9e/fq6NGjCgsLc0TJAADAyTh12ClTpozq1q1r0+bl5aVy5cpZ2wcOHKhRo0bJz89P3t7eeuaZZxQWFqb777/fESUDAAAn49RhJz/eeecdubi4qFu3bsrMzFRERITee+89R5cFAACcRLELO2vXrrV57OHhoejoaEVHRzumIAAA4NSceoIyAADAnSLsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAU3PqsDNp0iQ1adJEZcqUkb+/v7p06aK9e/fa9Ll8+bKGDRumcuXKqXTp0urWrZvS0tIcVDEAAHA2Th121q1bp2HDhmnTpk1KSEhQVlaWHnnkEV28eNHa57nnntOKFSu0ZMkSrVu3TidPntRjjz3mwKoBAIAzcXN0ATezevVqm8exsbHy9/fX9u3b9Y9//EPp6emKiYlRXFyc2rRpI0maN2+eatWqpU2bNun+++93RNkAAMCJOPWRnf+Vnp4uSfLz85Mkbd++XVlZWQoPD7f2qVmzpipVqqSkpCSH1AgAAJyLUx/Z+avs7GyNHDlSzZs3V926dSVJqampKlmypHx9fW36BgQEKDU1Nc99ZWZmKjMz0/r4/PnzhVIzAABwvGJzZGfYsGH6+eeftXDhwjve16RJk+Tj42NdQkJC7FAhAABwRsUi7AwfPlwrV67Ud999p4oVK1rbAwMDdeXKFZ07d86mf1pamgIDA/Pc39ixY5Wenm5djh07VlilAwAAB3PqsGMYhoYPH65ly5ZpzZo1Cg0NtVnfqFEjlShRQomJida2vXv36ujRowoLC8tzv+7u7vL29rZZAACAOTn1nJ1hw4YpLi5On3/+ucqUKWOdh+Pj4yNPT0/5+Pho4MCBGjVqlPz8/OTt7a1nnnlGYWFhXIkFAAAkOXnYmTVrliSpVatWNu3z5s1T//79JUnvvPOOXFxc1K1bN2VmZioiIkLvvfdeEVcKAACclVOHHcMwbtnHw8ND0dHRio6OLoKKAABAcePUc3YAAADuFGEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYmpujCwAAAEUkzuKYcfsYjhn3/3BkBwAAmBpHdgD8vTjqL1vJ4X/dAn9XHNkBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACm5uboAuwlOjpab775plJTU1W/fn3NnDlTTZs2dXRZAJB/cRbHjNvHcMy4ZuWo91HivcyDKcLOokWLNGrUKM2ePVvNmjXTtGnTFBERob1798rf39/R5cEsnPWDyFl/sTprXQD+dkwRdqZOnapBgwZpwIABkqTZs2fryy+/1Ny5czVmzBjHFscvfAAAHKrYz9m5cuWKtm/frvDwcGubi4uLwsPDlZSU5MDKAACAMyj2R3Z+//13Xbt2TQEBATbtAQEB+vXXX3PdJjMzU5mZmdbH6enpkqTz58/bv8BL9t9lvt3s+ThrXZLjaqOugiuOP2POWpfEz9j/cta6JH7GCqowPl/1/z+3DeMWZzKMYu7EiROGJOOHH36waX/hhReMpk2b5rrNyy+/bEhiYWFhYWFhMcFy7Nixm2aFYn9kp3z58nJ1dVVaWppNe1pamgIDA3PdZuzYsRo1apT1cXZ2tv744w+VK1dOFosD59j8xfnz5xUSEqJjx47J29vb0eXYcNbaqKtgnLUuyXlro66Coa6Cc9banLUuwzB04cIFBQcH37RfsQ87JUuWVKNGjZSYmKguXbpIuh5eEhMTNXz48Fy3cXd3l7u7u02br69vIVd6e7y9vZ3qB+uvnLU26ioYZ61Lct7aqKtgqKvgnLU2Z6zLx8fnln2KfdiRpFGjRikyMlKNGzdW06ZNNW3aNF28eNF6dRYAAPj7MkXYefzxx/Xbb79p/PjxSk1NVYMGDbR69eock5YBAMDfjynCjiQNHz48z9NWxZG7u7tefvnlHKfbnIGz1kZdBeOsdUnOWxt1FQx1FZyz1uasdeWXxTBudb0WAABA8VXsbyoIAABwM4QdAABgaoQdAABgaoQdAABgaoSdQtC/f39ZLBY99dRTOdYNGzZMFotF/fv3t2lPSkqSq6urOnTokGObw4cPy2Kx5Lps2rRJknTq1Cn16dNH1atXl4uLi0aOHOk0tS1dulTBwcGyWCwqWbKkwsLC9PXXXxfJuA8//LAqVKggb2/vHOPeyvr16xUSEmLd7/Lly4vk9dq4caOaN2+ucuXKydPTUzVr1tQ777xjsx9HvI9/9f3338vNzU0NGjRweF1r167NdX1qaqrDa5Oufxfff/7zH1WuXFnu7u6qUqWK5s6d69C6boz5v0udOnUc/nr94x//kMVikZubm4KCghQVFaUzZ84U+rgLFixQ/fr1VapUqRzj3sovv/yiypUrW/c7bdq0Inu9oqOjVatWLXl6eqpGjRpq0aKF037+LFmyRDVr1pSHh4fq1aunr776Ktd+hYGwU0hCQkK0cOFC/fnnn9a2y5cvKy4uTpUqVcrRPyYmRs8884zWr1+vkydP5rrPb7/9VqdOnbJZGjVqJOn6L9QKFSpo3Lhxql+/vlPVtn79egUHBysgIEAeHh568MEH1alTJ+3cubPQx3344Yf11Vdfafv27WrdurV13Py4ePGi/Pz8VL58eUmy+fLYwqzby8tLw4cP1/r165WcnKxx48Zp3LhxmjNnjs0+ivp9vOHcuXN64okn9NBDD+W6D0fVtXfvXpv1/v7+TlFbz549lZiYqJiYGO3du1fx8fGqUaOGQ+uaPn26TfuxY8fk5+enHj16OLSu77//Xhs2bJCvr69KlSqlTz75RFu2bNGgQYMKfdwnnnhCAwcO1C+//KIlS5ZYx82PS5cuqUyZMtavHLpy5UqRvF6zZs3S2LFj9corr+iXX37RhAkTtGnTJpUvX97pPn9++OEH9e7dWwMHDtTOnTvVpUsXdenSRT///HMer6p9meY+O87mvvvu08GDB7V06VL17dtX0vUjDZUqVVJoaKhN34yMDC1atEjbtm1TamqqYmNj9e9//zvHPsuVK5fn931VqVJF06dPlySbvxqdobZp06apf//+qlixog4ePKgGDRqoWrVqWrFihZKTkwt13L96/fXX9fnnn2vFihVq2LBhnq/PDe3atdOiRYsUGhqqzz//XJs2bdLjjz8uqXBfr4YNG9rUV6VKFS1dulQbNmzQ4MGDre1F/T7e8NRTT6lPnz5ydXXNcbTLkXX5+/vf8mtfirq21atXa926dTp06JD8/PwkXX8/HV2Xj4+PzS32ly9frrNnz+a463xR15WUlKTSpUurZcuWOnjwoFJTUzVkyBBNnjy50MetUqWKRowYIUkKDQ21jpsfTZo0UePGjXXu3Dl99dVX2r17t3VdYdb98ccfa8iQIdbfS3fffbdee+01paamKiQkxKk+f6ZPn662bdvqhRdekCS99tprSkhI0LvvvqvZs2fnuo09cWSnEEVFRWnevHnWx3Pnzs31KywWL16smjVrqkaNGurXr5/mzp1766+rL6a13Rj3woUL8vPzK9LXJDs72zru7VizZo3130VZ986dO/XDDz+oZcuWOdYV9fs4b948HTp0SC+//PJN+zni56tBgwYKCgrSww8/rO+//94pavviiy/UuHFjTZkyRXfddZeqV6+u559/3uYvbkfU9b9iYmIUHh6uypUrO7SusLAwXbx4UWlpaRowYIDef/99ffrpp2rfvn2hj3vs2DF99dVXMgxDaWlp1nELqnTp0tq8ebP1cWHWnZmZKQ8PD5s2Nzc3nT17VpGRkU71+ZOUlKTw8HCbtoiICCUlJdl9rNwQdgpRv379tHHjRh05ckRHjhzR999/r379+uXoFxMTY21v27at0tPTtW7duhz9HnjgAZUuXdpmKW619evXT+vWrVN6errCwsKK9DV56623lJGRoZ49e+bZ52aSk5OL9PWqWLGi3N3d1bhxYw0bNkxPPvlkjj5F+T7u379fY8aM0SeffCI3t5sfFC7KuoKCgjR79mx99tln+uyzzxQSEqJWrVppx44dDq/t0KFD2rhxo37++WctW7ZM06ZN06effqqhQ4c6tK6/OnnypFatWpXrz1dR19W8eXP94x//0NatWzV69Ght2LBBJUqU0OjRowt93AULFujxxx9XyZIlFRgYKB8fH0VHR+f6mtyMl5eXUlJSiuT1ioiI0Icffqjt27fLMAxt27ZN+/btk2EYatu2rVN9/qSmpub4CqeAgIAcc+sKC6exClGFChXUoUMHxcbGyjAMdejQwTr/44a9e/dqy5YtWrZsmaTrqfzxxx9XTEyMWrVqZdN30aJFqlWrVrGuLSEhQYZhqEuXLlqxYkWRjRsXF6cJEybo888/z3UuR340atSoSF+vDRs2KCMjQ5s2bdKYMWNUtWpV9e7d26ZPUb2P165dU58+fTRhwgRVr179pnUXZV2SVKNGDZs5MA888IAOHjyod955Rx9//LFDa8vOzpbFYtGCBQusp42mTp2q7t2767333pOnp6dD6vqrjz76SL6+vurSpUuu64uyrj179mjLli2qWbOm4uLiNHToUO3evVs9evQo9HGfffZZjR8/XhERETp16pReeOEFPfXUU4qJicl1m7y4urqqdu3aRfJ6vfTSS0pNTdX9998vwzAUEBCgqlWr6ueff3bqzx9HIOwUsqioKOt3duX2V0JMTIyuXr2q4OBga5thGHJ3d9e7775rc149JCREVatWLba1nThxQk8++aTGjRunjz76SOvXry+ScRcuXKgnn3xSS5YsyXEYtSAeeughxcbGSiqa1+vGufV69eopLS1Nr7zySo6wIxXN+3jhwgVt27ZNO3futI6VnZ0twzDk5uamb775Rm3atCnyuvLStGlTbdy4Mc/1RVVbUFCQ7rrrLpv+tWrVkmEYOn78uKpVq+aQuv667dy5c/XPf/5TJUuWzLNfUdU1adIk+fv7q2rVqrr33ns1duxYDRo0SLt27dK//vWvQh23efPm1vkk9957r7y8vNSiRQtNnDhRQUFBeb42uWnatGmR/K7w9PTU3Llz9f777ystLU1BQUF68MEH5ebmpgoVKjjV509gYKDS0tJs2tLS0m45F89eOI1VyNq2basrV64oKytLERERNuuuXr2q+fPn6+2339auXbusy48//qjg4GDFx8ebpraUlBTt2LFD8fHxeumll4ps3Pj4eA0YMEDx8fG5XlZZEA0bNnTYe5mdnW1zNdhfFcX76O3trd27d9vs46mnnlKNGjW0a9cuNWvWzCF15WXXrl03/YAqqtqaN2+ukydPKiMjw9q2b98+ubi4qGLFig6r64Z169bpwIEDGjhw4E37FVVdly5dksVisRk3KytLknLMWbP3uC4uth+Hrq6uknRb81dq1apVpO9jiRIlVLFiRbm6uiolJUUBAQFycXFxqs+fsLAwJSYm2rQlJCQoLCzMruPkhSM7hczV1VXJycnWf//VypUrdfbsWQ0cONAmQUtSt27dFBMTY3OvhDNnzuQ4v+nr62udoLZr1y5J12fX//bbb9q1a5dKliyp2rVrO7S2uLg4bdiwQfXq1VOzZs3022+/ae3atfLw8Cj0cSMjIzV9+nQ1a9bM2s/T0zPHvnOTkZGhP/74QxcuXJAkHT16VIsWLVLZsmULte7o6GhVqlRJNWvWlHT9Evq33nrLeqXI/yqq97Fu3bo27f7+/rm2F3Vd06ZNU2hoqOrUqaPLly/rww8/1Jo1a/TNN9/kWldR1tanTx+99tprGjBggCZMmKDff/9dL7zwgqKiomxOYRV1XTfExMSoWbNmeb6HRV1Xp06dtGzZMnl7e+vQoUM6deqUQkJCVLlyZYWEhBTquIMGDdKsWbOsp7FGjhyppk2b2hz1yMuVK1esvyuuXLmiU6dOadGiRfLy8irU12vfvn3asmWLmjVrprNnz2rq1Kk6e/asNRg60+fPs88+q5YtW+rtt99Whw4dtHDhQm3bti3HLTUKjQG7i4yMNDp37pzn+s6dOxuRkZFGx44djfbt2+faZ/PmzYYk48cffzRSUlIMSbku8fHx1m1yW1+5cmWH19ayZctc10dGRjp83Jv57rvvHFL3jBkzjDp16hilSpUyvL29jYYNGxrvvfeece3aNes+HfUz9lcvv/yyUb9+fZs2R9Q1efJk45577jE8PDwMPz8/o1WrVsaaNWty7NdRr1lycrIRHh5ueHp6GhUrVjRGjRplXLp0yeF1nTt3zvD09DTmzJmT6z4dVVfTpk2NMmXKGJ6enkZQUJDRt29f4/jx44U+7owZM4zatWvnOe7N5DVGy5YtC7XuPXv2GA0aNDA8PT0Nb29vo3PnzkaXLl2c9vNn8eLFRvXq1Y2SJUsaderUMb788st8vb72YPm/IgEAAEyJOTsAAMDUCDv4Wzp69GiOe0b8dTl69KijSwTgJG72u2LDhg2OLg/5wGks/C1dvXpVhw8fznN9lSpVbnnjPAB/DwcOHMhz3V133ZXrZHM4F8IOAAAwNU5jAQAAUyPsAAAAUyPsAAAAUyPsAICk2NhY+fr6FmibKlWqaNq0aTftY7FYtHz58tuuC8CdI+wAuKX+/fvLYrHY3D7+hmHDhslisah///451iUlJcnV1TXX7yU7fPiwLBZLrsumTZty9E9LS1OJEiW0cOHCXGscOHCg7rvvvoI/uf/z+OOPa9++fbe9PQDnRdgBkC8hISFauHCh/vzzT2vb5cuXFRcXp0qVKuW6TUxMjJ555hmtX79eJ0+ezLXPt99+q1OnTtksjRo1ytEvICBAHTp00Ny5c3Osu3jxohYvXnzLL7TMS1ZWljw9PeXv739b2wNwboQdAPly3333KSQkREuXLrW2LV26VJUqVVLDhg1z9M/IyNCiRYv09NNPq0OHDoqNjc11v+XKlVNgYKDNUqJEiVz7Dhw4UImJiTlu+rhkyRJdvXpVffv21erVq/Xggw/K19dX5cqVU8eOHXXw4EFr3xtHlBYtWqSWLVvKw8NDCxYsyHEa6+DBg+rcubMCAgJUunRpNWnSRN9++22Omi5cuKDevXvLy8tLd911l6Kjo2/2MurYsWPq2bOnfH195efnp86dO9vc82nt2rVq2rSpvLy85Ovrq+bNm+vIkSM33SeAmyPsAMi3qKgozZs3z/p47ty5GjBgQK59Fy9erJo1a6pGjRrq16+f5s6dqzu9rVf79u0VEBCQIzjNmzdPjz32mHx9fXXx4kWNGjVK27ZtU2JiolxcXNS1a1dlZ2fbbDNmzBg9++yzSk5OVkRERI6xMjIy1L59eyUmJmrnzp1q27atOnXqlCNovfnmm6pfv7527txp3WdCQkKu9WdlZSkiIkJlypTRhg0b9P3336t06dJq27atrly5oqtXr6pLly5q2bKlfvrpJyUlJWnw4MGyWCx39LoBf3tF9pWjAIqtG9+Affr0acPd3d04fPiwcfjwYcPDw8P47bffrN+k/FcPPPCAMW3aNMMwDCMrK8soX7688d1331nX3/g2ZU9PT8PLy8tmuZkxY8YYoaGhRnZ2tmEYhnHgwAHDYrEY3377ba79f/vtN0OSsXv3bptxb9R2w7x58wwfH5+bjl2nTh1j5syZ1seVK1c22rZta9Pn8ccfN9q1a2d9LMlYtmyZYRiG8fHHHxs1atSw1m4YhpGZmWl4enoaX3/9tXHmzBlDkrF27dqb1gGgYDiyAyDfKlSoYD0lNW/ePHXo0EHly5fP0W/v3r3asmWLevfuLUlyc3PT448/rpiYmBx9Fy1apF27dtksNxMVFaWUlBR99913kq4f1alSpYratGkjSdq/f7969+6tu+++W97e3qpSpYok5Tgi07hx45uOk5GRoeeff161atWSr6+vSpcureTk5Bz7CQsLy/E4OTk5133++OOPOnDggMqUKWP9biU/Pz9dvnxZBw8elJ+fn/r376+IiAh16tRJ06dP16lTp25aJ4Bb48t/ABRIVFSUhg8fLkl5zk+JiYnR1atXFRwcbG0zDEPu7u5699135ePjY20PCQlR1apV8z1+tWrV1KJFC82bN0+tWrXS/PnzNWjQIOupnk6dOqly5cr64IMPFBwcrOzsbNWtW1dXrlyx2Y+Xl9dNx3n++eeVkJCgt956S1WrVpWnp6e6d++eYz8FkZGRoUaNGmnBggU51lWoUEHS9fA2YsQIrV69WosWLdK4ceOUkJCg+++//7bHBf7uCDsACuTG/BKLxZLrXJerV69q/vz5evvtt/XII4/YrOvSpYvi4+NzvYS9IAYOHKinn35ajz76qE6cOGG97P3MmTPau3evPvjgA7Vo0UKStHHjxtsa4/vvv1f//v3VtWtXSdeDSm5fHvu/l8lv2rRJtWrVynWf9913nxYtWiR/f395e3vnOXbDhg3VsGFDjR07VmFhYYqLiyPsAHeA01gACsTV1VXJycnas2ePXF1dc6xfuXKlzp49q4EDB6pu3bo2S7du3XKcyjpz5oxSU1NtlsuXL9+0hh49eqhEiRIaMmSIHnnkEYWEhEiSypYtq3LlymnOnDk6cOCA1qxZo1GjRt3W86xWrZqWLl2qXbt26ccff1SfPn1yTHKWroeiKVOmaN++fYqOjtaSJUv07LPP5rrPvn37qnz58urcubM2bNiglJQUrV27ViNGjNDx48eVkpKisWPHKikpSUeOHNE333yj/fv35xmeAOQPYQdAgXl7e+d5ZCImJkbh4eE2p6pu6Natm7Zt26affvrJ2hYeHq6goCCb5VZ3HC5VqpR69eqls2fPKioqytru4uKihQsXavv27apbt66ee+45vfnmm7f1HKdOnaqyZcvqgQceUKdOnRQREZHrTQv/9a9/adu2bWrYsKEmTpyoqVOn5nrE60bd69evV6VKlfTYY4+pVq1aGjhwoC5fvixvb2+VKlVKv/76q7p166bq1atr8ODBGjZsmIYMGXJbzwHAdRbDuMNrQQEAAJwYR3YAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICp/T+WRF7HOqAsCAAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of MAE values from mae1 to mae10\n", + "mae_values = [mae1, mae2, mae2_1, mae3, mae4, mae5, mae6, mae7, mae8, mae8_1, mae9, mae10]\n", + "\n", + "# List of corresponding labels for each MAE value\n", + "labels = ['MAE1', 'MAE2', 'MAE2_1', 'MAE3', 'MAE4', 'MAE5', 'MAE6', 'MAE7', 'MAE8', 'MAE8_1', 'MAE9', 'MAE10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, mae_values, color='orange')\n", + "plt.xlabel('MAE Variables')\n", + "plt.ylabel('MAE Values')\n", + "plt.title('Bar Graph of MAE')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 100, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "_c4Pe76fDNM-", + "outputId": "c1784b34-6746-42fd-9f66-b7c1cfd50a21" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA930lEQVR4nO3deVwV9f7H8fcB9QAKuCDigopLmrtiFtxSLBMRt25XDTM3sjK9pXazbNGWX6GVqaVplso1U9zSyjXSXErKXFMzywpxAbVUEE1AmN8fPjzXIwflKHgO0+v5eMzj4XznOzOfMwfl7cx3ZiyGYRgCAAAwCQ9XFwAAAFCUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcASryXXnpJFotFf/zxR7Hva/Xq1WrRooW8vLxksVh0+vTpYt8nAOcQbgA3Fh8fL4vFYjcFBgaqffv2WrVq1U2v5/PPP1fXrl1VpUoVlSlTRhUrVlTbtm01YcIEZWRk3PR6brY///xTvXr1kre3t6ZOnaqPPvpIZcuWddj38u/u66+/zrfcMAwFBwfLYrGoS5cuDrdx+vRpW4jat2+fwz4DBgyw+/nw8/NT8+bNNWHCBGVlZdn6XQqABU1paWnXcUQA91TK1QUAuLZXXnlFISEhMgxDx44dU3x8vDp37qzPP/+8wF+MRSkvL0+xsbGKj49X06ZN9fjjjys4OFhnzpxRUlKSXnjhBa1cuVJr164t9lpc6fvvv9eZM2f06quvqkOHDoVax8vLS/PmzdOdd95p175hwwYdPnxYVqu1wHUXLVoki8WioKAgffzxx/q///s/h/2sVqs+/PBDSRcD0ZIlS/Sf//xH33//vRISEuz6Tps2TeXKlcu3jfLlyxfq8wAlAeEGKAGioqLUunVr23xsbKyqVKmi+fPnF0m4ycvLU3Z2try8vBwuf+ONNxQfH68RI0ZowoQJslgstmVPPvmkUlNTNWfOnBvaR0lw/PhxSc4Fgc6dO2vRokV65513VKrU//7JnTdvnkJDQ696KW3u3Lnq3LmzatWqpXnz5hUYbkqVKqW+ffva5h9//HHdfvvtWrBggd5++21Vq1bNtuxf//qXAgICCl0/UBJxWQoogcqXLy9vb2+7X5aS9NZbbyk8PFyVKlWSt7e3QkNDtXjx4nzrWywWDRs2TB9//LEaN24sq9Wq1atXO9zXuXPnNH78eDVu3FhvvvmmXbC5pGrVqnrmmWcKvY/rqbNBgwby8vJSaGioNm7c6LDW06dPa8CAASpfvrz8/f01cOBAnTt3zvFBvMKiRYsUGhoqb29vBQQEqG/fvjpy5IhteUREhPr37y9Juu2222SxWDRgwIBrbjcmJkZ//vmnEhMTbW3Z2dlavHix+vTpU+B6KSkp2rRpkx544AE98MAD+v3337V58+ZCfRYPDw9FRERIkpKTkwu1DmAmnLkBSoD09HT98ccfMgxDx48f17vvvqvMzEy7/61L0uTJk9WtWzc9+OCDys7OVkJCgnr27Knly5crOjraru+6deu0cOFCDRs2TAEBAapdu7bDfX/99dc6ffq0/vOf/8jT09OpugvahzN1btiwQQsWLNATTzwhq9Wq9957T506ddKWLVvUpEkTu769evVSSEiI4uLitH37dn344YcKDAzU+PHjr1pnfHy8Bg4cqNtuu01xcXE6duyYJk+erG+++UY7duxQ+fLl9fzzz6tBgwaaMWOG7TJh3bp1r3kMateurbCwMM2fP19RUVGSpFWrVik9PV0PPPCA3nnnHYfrzZ8/X2XLllWXLl3k7e2tunXr6uOPP1Z4ePg19ylJv/76qySpUqVKdu0nT57M17dUqVJcloK5GADc1uzZsw1J+Sar1WrEx8fn63/u3Dm7+ezsbKNJkybG3XffbdcuyfDw8DD27t17zRomT55sSDKWLVtm137hwgXjxIkTdlNeXl6h9uFMnZKMrVu32toOHjxoeHl5Gffdd5+tbezYsYYkY9CgQXbr33fffUalSpWu+vmys7ONwMBAo0mTJsZff/1la1++fLkhyRgzZoyt7dL38f333191m1f2nTJliuHr62v73D179jTat29vGIZh1KpVy4iOjs63ftOmTY0HH3zQNv/cc88ZAQEBRk5Ojl2//v37G2XLlrV9BwcOHDBef/11w2KxGM2aNbP1u3SMHE0NGjS45ucBShIuSwElwNSpU5WYmKjExETNnTtX7du318MPP6xPPvnErp+3t7ftz6dOnVJ6erruuusubd++Pd8227Vrp0aNGl1z35fugrpyEOru3btVuXJlu+nPP/8s1D6cqTMsLEyhoaG2+Zo1a6p79+5as2aNcnNz7fo+9thjdvN33XWX/vzzz6veybV161YdP35cjz/+uN14oOjoaDVs2FArVqwocN3C6tWrl/766y8tX75cZ86c0fLly696SeqHH37Q7t27FRMTY2uLiYnRH3/8oTVr1uTrf/bsWdt3UK9ePT333HMKCwvT0qVL8/VdsmSJ7Wfp0jR79uwb/oyAO+GyFFACtGnTxm5AcUxMjFq2bKlhw4apS5cuKlOmjCRp+fLl+r//+z/t3LnT7jZgR+NkQkJCCrVvX19fSVJmZqZde7169WzjSObMmaOPPvqo0Ptwps769evna7vlllt07tw5nThxQkFBQbb2mjVr2vWrUKGCpIsBys/Pz2EtBw8elCQ1aNAg37KGDRs6vI3bWZUrV1aHDh00b948nTt3Trm5ufrXv/5VYP+5c+eqbNmyqlOnjg4cOCDp4l1XtWvX1scff5zv0p2Xl5c+//xzSRfvnAoJCVGNGjUcbrtt27YMKIbpEW6AEsjDw0Pt27fX5MmT9csvv6hx48batGmTunXrprZt2+q9995T1apVVbp0ac2ePVvz5s3Lt43Lz55cTcOGDSVJe/bsUffu3W3t5cqVs90OXVAAcLQPZ+t0RkFjggzDuKHtFoU+ffpo8ODBSktLU1RUVIFjXAzD0Pz583X27FmHZ72OHz+uzMxMuzNpnp6ehb41Hfg7INwAJdSFCxck/e+MypIlS+Tl5aU1a9bYPTvlRi853HXXXfL391dCQoJGjx4tD48bu5rtbJ2//PJLvraff/5ZPj4+qly58g3VIkm1atWSJO3fv19333233bL9+/fblt+o++67T48++qi+/fZbLViwoMB+l55/88orr+jWW2+1W3bq1Ck98sgjWrZsWb7B5AD+hzE3QAmUk5OjL774QmXKlLH9AvT09JTFYrEbh5KcnKxly5bd0L58fHw0atQo7dmzR88++6zDsyDOnBlxts6kpCS7sTiHDh3Sp59+qo4dOzp995YjrVu3VmBgoKZPn253iWzVqlXat29fvktA16tcuXKaNm2aXnrpJXXt2rXAfpcuST399NP617/+ZTcNHjxY9evX18cff1wkNQFmxZkboARYtWqVfvrpJ0kXL0vMmzdPv/zyi5599lnbWJLo6Gi9/fbb6tSpk/r06aPjx49r6tSpqlevnn744Ycb2v+zzz6rffv26c0339QXX3yh+++/XzVq1NCpU6e0fft2LVq0SIGBgYV6QJ+zdTZp0kSRkZF2t4JL0ssvv3xDn+mS0qVLa/z48Ro4cKDatWunmJgY263gtWvX1ogRI4pkP5Jsz8kpSFZWlpYsWaJ77723wGPZrVs3TZ48WcePH1dgYKDTNSxevNjhE4rvvfdeValSxentAe6IcAOUAGPGjLH92cvLSw0bNtS0adP06KOP2trvvvtuzZw5U+PGjdPw4cMVEhKi8ePHKzk5+YbDjYeHhz766CPdf//9+uCDD/Tuu+/q1KlTKleunJo0aaLXXntNgwcPdvhL80rO1tmuXTuFhYXp5ZdfVkpKiho1aqT4+Hg1a9bshj7T5QYMGCAfHx+NGzdOzzzzjMqWLav77rtP48ePv6nPf1mxYoVOnz591TM7Xbt21YQJE5SQkKAnnnjC6X0MGTLEYftXX31FuIFpWAx3GGkHAA5YLBYNHTpUU6ZMcXUpAEoQxtwAAABTIdwAAABTIdwAAABTYUAxALfFkEAA14MzNwAAwFQINwAAwFT+dpel8vLydPToUfn6+jp8SR8AAHA/hmHozJkzqlat2jVfA/O3CzdHjx5VcHCwq8sAAADX4dChQwW+9f6Sv1248fX1lXTx4Fx6bD0AAHBvGRkZCg4Otv0ev5q/Xbi5dCnKz8+PcAMAQAlTmCElDCgGAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmUsrVBcA1aj+7wtUlKHlctKtLAACYEGduAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqbg03MTFxem2226Tr6+vAgMD1aNHD+3fv/+q68THx8tisdhNXl5eN6liAADg7lwabjZs2KChQ4fq22+/VWJionJyctSxY0edPXv2quv5+fkpNTXVNh08ePAmVQwAANxdKVfufPXq1Xbz8fHxCgwM1LZt29S2bdsC17NYLAoKCiru8gAAQAnkVmNu0tPTJUkVK1a8ar/MzEzVqlVLwcHB6t69u/bu3Vtg36ysLGVkZNhNAADAvNwm3OTl5Wn48OH6xz/+oSZNmhTYr0GDBpo1a5Y+/fRTzZ07V3l5eQoPD9fhw4cd9o+Li5O/v79tCg4OLq6PAAAA3IDFMAzD1UVI0pAhQ7Rq1Sp9/fXXqlGjRqHXy8nJ0a233qqYmBi9+uqr+ZZnZWUpKyvLNp+RkaHg4GClp6fLz8+vSGoviWo/u8LVJSh5XLSrSwAAlBAZGRny9/cv1O9vl465uWTYsGFavny5Nm7c6FSwkaTSpUurZcuWOnDggMPlVqtVVqu1KMoEAAAlgEsvSxmGoWHDhmnp0qVat26dQkJCnN5Gbm6udu/erapVqxZDhQAAoKRx6ZmboUOHat68efr000/l6+urtLQ0SZK/v7+8vb0lSf369VP16tUVFxcnSXrllVd0xx13qF69ejp9+rTefPNNHTx4UA8//LDLPgcAAHAfLg0306ZNkyRFRETYtc+ePVsDBgyQJKWkpMjD438nmE6dOqXBgwcrLS1NFSpUUGhoqDZv3qxGjRrdrLIBAIAbc5sBxTeLMwOSzIwBxQCAksSZ399ucys4AABAUSDcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAU3FpuImLi9Ntt90mX19fBQYGqkePHtq/f/8111u0aJEaNmwoLy8vNW3aVCtXrrwJ1QIAgJLApeFmw4YNGjp0qL799lslJiYqJydHHTt21NmzZwtcZ/PmzYqJiVFsbKx27NihHj16qEePHtqzZ89NrBwAALgri2EYhquLuOTEiRMKDAzUhg0b1LZtW4d9evfurbNnz2r58uW2tjvuuEMtWrTQ9OnTr7mPjIwM+fv7Kz09XX5+fkVWe0lT+9kVri5ByeOiXV0CAKCEcOb3t1uNuUlPT5ckVaxYscA+SUlJ6tChg11bZGSkkpKSHPbPyspSRkaG3QQAAMzLbcJNXl6ehg8frn/84x9q0qRJgf3S0tJUpUoVu7YqVaooLS3NYf+4uDj5+/vbpuDg4CKtGwAAuBe3CTdDhw7Vnj17lJCQUKTbHT16tNLT023ToUOHinT7AADAvZRydQGSNGzYMC1fvlwbN25UjRo1rto3KChIx44ds2s7duyYgoKCHPa3Wq2yWq1FVisAAHBvLj1zYxiGhg0bpqVLl2rdunUKCQm55jphYWFau3atXVtiYqLCwsKKq0wAAFCCuPTMzdChQzVv3jx9+umn8vX1tY2b8ff3l7e3tySpX79+ql69uuLi4iRJTz75pNq1a6cJEyYoOjpaCQkJ2rp1q2bMmOGyz4Hi4Q53dEnc1QUAJY1Lz9xMmzZN6enpioiIUNWqVW3TggULbH1SUlKUmppqmw8PD9e8efM0Y8YMNW/eXIsXL9ayZcuuOggZAAD8fbj0zE1hHrGzfv36fG09e/ZUz549i6EiAABQ0rnN3VIAAABFgXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMpZSrCwAA/L3VfnaFq0tQ8rhoV5eAIsSZGwAAYCqEGwAAYCpOh5tDhw7p8OHDtvktW7Zo+PDhmjFjRpEWBgAAcD2cDjd9+vTRV199JUlKS0vTvffeqy1btuj555/XK6+8UuQFAgAAOMPpcLNnzx61adNGkrRw4UI1adJEmzdv1scff6z4+Piirg8AAMApToebnJwcWa1WSdKXX36pbt26SZIaNmyo1NTUoq0OAADASU6Hm8aNG2v69OnatGmTEhMT1alTJ0nS0aNHValSpSIvEAAAwBlOh5vx48fr/fffV0REhGJiYtS8eXNJ0meffWa7XAUAAOAqTj/ELyIiQn/88YcyMjJUoUIFW/sjjzwiHx+fIi0OAADAWdf1nBvDMLRt2za9//77OnPmjCSpTJkyhBsAAOByTp+5OXjwoDp16qSUlBRlZWXp3nvvla+vr8aPH6+srCxNnz69OOoEAAAoFKfP3Dz55JNq3bq1Tp06JW9vb1v7fffdp7Vr1xZpcQAAAM5y+szNpk2btHnzZpUpU8auvXbt2jpy5EiRFQYAAHA9nD5zk5eXp9zc3Hzthw8flq+vb5EUBQAAcL2cDjcdO3bUpEmTbPMWi0WZmZkaO3asOnfuXJS1AQAAOM3py1ITJkxQZGSkGjVqpPPnz6tPnz765ZdfFBAQoPnz5xdHjQAAAIXmdLipUaOGdu3apYSEBP3www/KzMxUbGysHnzwQbsBxgAAAK7gdLiRpFKlSqlv375FXQsAAMANczrczJkz56rL+/Xrd93FAAAA3Cinw82TTz5pN5+Tk6Nz587ZnlBMuAEAAK7k9N1Sp06dspsyMzO1f/9+3XnnnQwoBgAALndd75a6Uv369TVu3Lh8Z3UAAAButiIJN9LFQcZHjx4tqs0BAABcF6fH3Hz22Wd284ZhKDU1VVOmTNE//vGPIisMAADgejgdbnr06GE3b7FYVLlyZd19992aMGFCUdUFAABwXZwON3l5ecVRBwAAQJEosjE3AAAA7qBQZ25GjhxZ6A2+/fbb110MAADAjSpUuNmxY0ehNmaxWJza+caNG/Xmm29q27ZtSk1N1dKlS/ON6bnc+vXr1b59+3ztqampCgoKcmrfAADAnAoVbr766qti2fnZs2fVvHlzDRo0SP/85z8Lvd7+/fvl5+dnmw8MDCyO8gAAQAl0XS/OLCpRUVGKiopyer3AwECVL1++6AsCAAAl3nWFm61bt2rhwoVKSUlRdna23bJPPvmkSAq7mhYtWigrK0tNmjTRSy+9dNXn62RlZSkrK8s2n5GRUez1AQAA13H6bqmEhASFh4dr3759Wrp0qXJycrR3716tW7dO/v7+xVGjTdWqVTV9+nQtWbJES5YsUXBwsCIiIrR9+/YC14mLi5O/v79tCg4OLtYaAQCAazl95ub111/XxIkTNXToUPn6+mry5MkKCQnRo48+qqpVqxZHjTYNGjRQgwYNbPPh4eH69ddfNXHiRH300UcO1xk9erTd3V4ZGRkEHAAATMzpMze//vqroqOjJUllypTR2bNnZbFYNGLECM2YMaPIC7yWNm3a6MCBAwUut1qt8vPzs5sAAIB5OR1uKlSooDNnzkiSqlevrj179kiSTp8+rXPnzhVtdYWwc+fOYj9jBAAASg6nL0u1bdtWiYmJatq0qXr27Kknn3xS69atU2Jiou655x6ntpWZmWl31uX333/Xzp07VbFiRdWsWVOjR4/WkSNHNGfOHEnSpEmTFBISosaNG+v8+fP68MMPtW7dOn3xxRfOfgwAAGBShQ43e/bsUZMmTTRlyhSdP39ekvT888+rdOnS2rx5s+6//3698MILTu1869atdg/luzQ2pn///oqPj1dqaqpSUlJsy7Ozs/XUU0/pyJEj8vHxUbNmzfTll186fLAfAAD4eyp0uGnWrJluu+02Pfzww3rggQckSR4eHnr22Weve+cREREyDKPA5fHx8Xbzo0aN0qhRo657fwAAwPwKPeZmw4YNaty4sZ566ilVrVpV/fv316ZNm4qzNgAAAKcVOtzcddddmjVrllJTU/Xuu+8qOTlZ7dq10y233KLx48crLS2tOOsEAAAoFKfvlipbtqwGDhyoDRs26Oeff1bPnj01depU1axZU926dSuOGgEAAArN6XBzuXr16um5557TCy+8IF9fX61YsaKo6gIAALgu1/3izI0bN2rWrFlasmSJPDw81KtXL8XGxhZlbQAAAE5zKtwcPXpU8fHxio+P14EDBxQeHq533nlHvXr1UtmyZYurRgAAgEIrdLiJiorSl19+qYCAAPXr10+DBg2ye88TAACAOyh0uCldurQWL16sLl26yNPTszhrAgAAuG6FDjefffZZcdYBAABQJG7obikAAAB3Q7gBAACmQrgBAACmQrgBAACmUuhw8/jjjyszM9M2P3/+fJ09e9Y2f/r0aXXu3LloqwMAAHBSocPN+++/r3PnztnmH330UR07dsw2n5WVpTVr1hRtdQAAAE4qdLgxDOOq8wAAAO6AMTcAAMBUCDcAAMBUnHpx5pgxY+Tj4yNJys7O1muvvSZ/f39JshuPAwAA4CqFDjdt27bV/v37bfPh4eH67bff8vUBAABwpUKHm/Xr1xdjGQAAAEXDqctSGRkZ+u6775Sdna02bdqocuXKxVUXAADAdSl0uNm5c6c6d+6stLQ0SZKvr68WLlyoyMjIYisOAADAWYW+W+qZZ55RSEiIvvnmG23btk333HOPhg0bVpy1AQAAOK3QZ262bdumL774Qq1atZIkzZo1SxUrVlRGRob8/PyKrUAAAABnFPrMzcmTJ1WjRg3bfPny5VW2bFn9+eefxVIYAADA9XBqQPGPP/5oG3MjXXwFw759+3TmzBlbW7NmzYquOgAAACc5FW7uueeefO+U6tKliywWiwzDkMViUW5ubpEWCAAA4IxCh5vff/+9OOsAAAAoEoUON7Vq1bpmnz179txQMQAAADfqhl+ceebMGc2YMUNt2rRR8+bNi6ImAACA63bd4Wbjxo3q37+/qlatqrfeekt33323vv3226KsDQAAwGlODShOS0tTfHy8Zs6cqYyMDPXq1UtZWVlatmyZGjVqVFw1AgAAFFqhz9x07dpVDRo00A8//KBJkybp6NGjevfdd4uzNgAAAKcV+szNqlWr9MQTT2jIkCGqX79+cdYEAABw3Qp95ubrr7/WmTNnFBoaqttvv11TpkzRH3/8UZy1AQAAOK3Q4eaOO+7QBx98oNTUVD366KNKSEhQtWrVlJeXp8TERLunFAMAALiK03dLlS1bVoMGDdLXX3+t3bt366mnntK4ceMUGBiobt26FUeNAAAAhXZDz7lp0KCB3njjDR0+fFjz588vqpoAAACu2w0/xE+SPD091aNHD3322WdFsTkAAIDrVui7pQYNGnTNPhaLRTNnzryhggAAAG5EocNNfHy8atWqpZYtW+Z7MzgAAIC7KHS4GTJkiObPn6/ff/9dAwcOVN++fVWxYsXirA0AAMBphR5zM3XqVKWmpmrUqFH6/PPPFRwcrF69emnNmjWcyQEAAG7DqQHFVqtVMTExSkxM1I8//qjGjRvr8ccfV+3atZWZmVlcNQIAABTadd8t5eHhIYvFIsMwlJubW5Q1AQAAXDenwk1WVpbmz5+ve++9V7fccot2796tKVOmKCUlReXKlSuuGgEAAAqt0AOKH3/8cSUkJCg4OFiDBg3S/PnzFRAQUJy1AQAAOK3Q4Wb69OmqWbOm6tSpow0bNmjDhg0O+33yySdFVhwAAICzCh1u+vXrJ4vFUpy1AAAA3DCnHuIHAADg7ork3VIAAADugnADAABMhXADAABMhXADAABMxaXhZuPGjeratauqVasmi8WiZcuWXXOd9evXq1WrVrJarapXrx4DnQEAgB2XhpuzZ8+qefPmmjp1aqH6//7774qOjlb79u21c+dODR8+XA8//LDWrFlTzJUCAICSotC3gheHqKgoRUVFFbr/9OnTFRISogkTJkiSbr31Vn399deaOHGiIiMji6tMAABQgpSoMTdJSUnq0KGDXVtkZKSSkpIKXCcrK0sZGRl2EwAAMK8SFW7S0tJUpUoVu7YqVaooIyNDf/31l8N14uLi5O/vb5uCg4NvRqkAAMBFSlS4uR6jR49Wenq6bTp06JCrSwIAAMXIpWNunBUUFKRjx47ZtR07dkx+fn7y9vZ2uI7VapXVar0Z5QEAADdQos7chIWFae3atXZtiYmJCgsLc1FFAADA3bg03GRmZmrnzp3auXOnpIu3eu/cuVMpKSmSLl5S6tevn63/Y489pt9++02jRo3STz/9pPfee08LFy7UiBEjXFE+AABwQy4NN1u3blXLli3VsmVLSdLIkSPVsmVLjRkzRpKUmppqCzqSFBISohUrVigxMVHNmzfXhAkT9OGHH3IbOAAAsHHpmJuIiAgZhlHgckdPH46IiNCOHTuKsSoAAFCSlagxNwAAANdCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKbiFuFm6tSpql27try8vHT77bdry5YtBfaNj4+XxWKxm7y8vG5itQAAwJ25PNwsWLBAI0eO1NixY7V9+3Y1b95ckZGROn78eIHr+Pn5KTU11TYdPHjwJlYMAADcmcvDzdtvv63Bgwdr4MCBatSokaZPny4fHx/NmjWrwHUsFouCgoJsU5UqVW5ixQAAwJ25NNxkZ2dr27Zt6tChg63Nw8NDHTp0UFJSUoHrZWZmqlatWgoODlb37t21d+/eAvtmZWUpIyPDbgIAAObl0nDzxx9/KDc3N9+ZlypVqigtLc3hOg0aNNCsWbP06aefau7cucrLy1N4eLgOHz7ssH9cXJz8/f1tU3BwcJF/DgAA4D5cflnKWWFhYerXr59atGihdu3a6ZNPPlHlypX1/vvvO+w/evRopaen26ZDhw7d5IoBAMDNVMqVOw8ICJCnp6eOHTtm137s2DEFBQUVahulS5dWy5YtdeDAAYfLrVarrFbrDdcKAABKBpeeuSlTpoxCQ0O1du1aW1teXp7Wrl2rsLCwQm0jNzdXu3fvVtWqVYurTAAAUIK49MyNJI0cOVL9+/dX69at1aZNG02aNElnz57VwIEDJUn9+vVT9erVFRcXJ0l65ZVXdMcdd6hevXo6ffq03nzzTR08eFAPP/ywKz8GAABwEy4PN71799aJEyc0ZswYpaWlqUWLFlq9erVtkHFKSoo8PP53gunUqVMaPHiw0tLSVKFCBYWGhmrz5s1q1KiRqz4CAABwIy4PN5I0bNgwDRs2zOGy9evX281PnDhREydOvAlVAQCAkqjE3S0FAABwNYQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKqVcXQAAlDS1n13h6hIkScnjol1dAuCWOHMDAABMhXADAABMhXADAABMhTE3AACYBOPBLuLMDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBW3CDdTp05V7dq15eXlpdtvv11btmy5av9FixapYcOG8vLyUtOmTbVy5cqbVCkAAHB3Lg83CxYs0MiRIzV27Fht375dzZs3V2RkpI4fP+6w/+bNmxUTE6PY2Fjt2LFDPXr0UI8ePbRnz56bXDkAAHBHLg83b7/9tgYPHqyBAweqUaNGmj59unx8fDRr1iyH/SdPnqxOnTrp6aef1q233qpXX31VrVq10pQpU25y5QAAwB2VcuXOs7OztW3bNo0ePdrW5uHhoQ4dOigpKcnhOklJSRo5cqRdW2RkpJYtW1acpQIlXu1nV7i6BCWPi75mn5JSZ0nAsSxaHM+Sw6Xh5o8//lBubq6qVKli116lShX99NNPDtdJS0tz2D8tLc1h/6ysLGVlZdnm09PTJUkZGRk3UnqBmoxdUyzbdcaelyOv2Scv69xNqOTqrvUduEON0rXr5DsvvML8vSsJdbpDjVLJqNMs37lUMup0hxql4vkde2mbhmFcs69Lw83NEBcXp5dffjlfe3BwsAuquTn8J7m6gsKhzqJTEmqUqLOolYQ6S0KNEnUWteKs88yZM/L3979qH5eGm4CAAHl6eurYsWN27ceOHVNQUJDDdYKCgpzqP3r0aLvLWHl5eTp58qQqVaoki8Vyg5+g6GVkZCg4OFiHDh2Sn5+fq8txqCTUKFFnUSsJdZaEGiXqLGoloc6SUKPk3nUahqEzZ86oWrVq1+zr0nBTpkwZhYaGau3aterRo4eki+Fj7dq1GjZsmMN1wsLCtHbtWg0fPtzWlpiYqLCwMIf9rVarrFarXVv58uWLovxi5efn53Y/WFcqCTVK1FnUSkKdJaFGiTqLWkmosyTUKLlvndc6Y3OJyy9LjRw5Uv3791fr1q3Vpk0bTZo0SWfPntXAgQMlSf369VP16tUVFxcnSXryySfVrl07TZgwQdHR0UpISNDWrVs1Y8YMV34MAADgJlwebnr37q0TJ05ozJgxSktLU4sWLbR69WrboOGUlBR5ePzvjvXw8HDNmzdPL7zwgp577jnVr19fy5YtU5MmTVz1EQAAgBtxebiRpGHDhhV4GWr9+vX52nr27KmePXsWc1WuYbVaNXbs2HyX0txJSahRos6iVhLqLAk1StRZ1EpCnSWhRqnk1HktFqMw91QBAACUEC5/QjEAAEBRItwAAABTIdwAAABTIdwAAABTIdxcpwEDBshiseixxx7Lt2zo0KGyWCwaMGCAXXtSUpI8PT0VHZ3/xWfJycmyWCy2qVKlSurYsaN27Nhh6xMREWHX59J0eQ2vvfaawsPD5ePjo/Lly7tVnZfqSE5OVmxsrEJCQuTt7S1/f39ZLBb169fvph6vK+uoW7euxo4dq+zs7Hz7k/J/5+fPn9eAAQPUtGlTeXh4uOw779atm2rWrCkvLy9VrVpVdevWdZvv3FENWVlZatGixVX7uLLO2rVrF/qzuPp4rlixQrfffrs8PT1lsVgUEhLiNjWuX7++wH8H/vnPf7pNnZL0888/q3v37goICJCfn5+qVKnidt/5pX9/atSoofLly6tSpUp65JFHlJmZ6Va/cxxJSUlRdHS0fHx8FBgYqKeffloXLlxw2LeoEG5uQHBwsBISEvTXX3/Z2s6fP6958+apZs2a+frPnDlT//73v7Vx40YdPXrU4Ta//PJLpaamas2aNcrMzFRUVJROnz5tWz548GClpqbaTW+88YZteXZ2tnr27KkhQ4a4VZ29evVSjRo1lJCQoF27dikvL0/vv/++tm/frtzcXHl4eGj79u039Xj99NNPtjr27t2riRMnavr06Xruuecc7uvKY5mbmytvb28NGTJEnp6e8vb2vinH8srvvH379lq4cKH279+vJUuW6MyZMypTpozLv/Mr67xk1KhRtsenBwUFuWWdr7zyisOfXXeqc8mSJXrooYc0cOBAde/eXUFBQTp+/Ljb1BgeHp5vWf369eXp6al169a5TZ2S1KVLF124cEHr1q3Ttm3bVKFCBVksFs2fP99t6jx37pwsFotOnDihDRs2aPXq1dq7d68eeught/udc7nc3FxFR0crOztbmzdv1n//+1/Fx8drzJgxDvsXGQPXpX///kb37t2NJk2aGHPnzrW1f/zxx0azZs2M7t27G/3797e1nzlzxihXrpzx008/Gb179zZee+01u+39/vvvhiRjx44dtrZvvvnGkGSsXr3aMAzDaNeunfHkk08Wqr7Zs2cb/v7+blPntepo3LixUa5cOZcdr0veeOMNIyQkxOGyq32GChUqGEFBQS79zi+5++67DUlG48aN3e5nc+XKlUbDhg2NvXv3GpKMiIgIl/9sXqlWrVrGxIkTbfPu8nfocjk5OUb16tWNDz/80G1rvFJ2drZhtVqNhg0bulWdJ06cMCQZGzdutLX16dPHkGTUrl3bbeoMCwszypQpY3fsfvjhB0OS0bBhQ5d/x5d+51xp5cqVhoeHh5GWlmZrmzZtmuHn52dkZWUVatvXgzM3N2jQoEGaPXu2bX7WrFm2V0dcbuHChWrYsKEaNGigvn37atasWdd8bfulMwEFXSYpiXUWVEdOTo7dQ6NcdbzS09NVsWJFpz9DvXr18vVzxWc4efKkfvvtN1WsWFGxsbFu8Z1fcuzYMQ0ePFgfffSRfHx8bO3u8rN5uXHjxqlSpUpq2bKl9uzZI8Mw3KrO7du368iRI/Lw8FDLli21YMECJSUlKSoqym1qvNJnn32mrKws1axZ062OZaVKldSgQQPNmTNHZ8+e1YULF7R//36VKVNGDz/8sNvUeekM9+XH7tI2WrZs6ZKaCiMpKUlNmza1vXVAkiIjI5WRkaG9e/cW2X7yKbbYZHKX/qd0/Phxw2q1GsnJyUZycrLh5eVlnDhxIl+KDg8PNyZNmmQYxsX/dQUEBBhfffWVbfmVKfrUqVPGfffdZ5QrV86WeNu1a2eULl3aKFu2rN10+f8sLrnyzI2r6yxVqpQRGhrqsI7vvvvOKFWqlBEWFuay42UYhvHLL78Yfn5+xowZMxwuv9qx7N27d74zNzfzM4waNcrw8fExJBkBAQFGVFSUy7/zy+vMy8szOnXqZLz66qt224yIiHCrOg3DMCZMmGB89dVXxq5du4xp06YZpUuXNurWretWdc6fP9+QZNSsWdNYvHix0aVLF6N69epGhQoV3KbGK0VFRRnVq1d3i3+Prqzz0KFDRmhoqGGxWAxPT0/D29vb7X42u3fvblgsFmPMmDGG1Wo1du3aZXTq1MmQZDz//PMu/44LOnMzePBgo2PHjnZtZ8+eNSQZK1euzNe/qLjF6xdKssqVKys6Olrx8fEyDEPR0dEKCAiw67N//35t2bJFS5culSSVKlVKvXv31syZMxUREWHXNzw8XB4eHjp79qzq1KmjBQsW2CXeBx98UM8//7zdOpcvd9c6R40apezs7Hx13H333erTp4+qVaumW265xWXH68iRI+rUqZN69uypwYMHO30svby8btqxdPQZnn76acXGxurgwYPq27evtm/froCAALf52Xz33Xd15swZjR49ulDH05V/h0aOHGn7c7NmzfTRRx8pKSlJfn5+blNnXl6eJOn555/X/fffr88//1ytWrVSUlKSGjVq5BY1Xu7w4cNas2aN2rZtK8m9vnPDMDR06FAFBgZq06ZN8vb2Vp8+ffTtt9/qwoULblNn+fLl1apVK73//vvKyspSq1at1KZNG1mtVvn6+rqkJndGuCkCgwYNsr0ba+rUqfmWz5w5UxcuXLANopQu/oWyWq2aMmWK3SvcFyxYoEaNGqlSpUoOR577+/s7vATi7nX6+fnZBqldqiM3N1e5ubm65557lJ6eflPqcOTo0aNq3769wsPDC/12+SuP5cKFC+2W3+zPEBAQoICAAN1yyy1q27atFi9erG+//dZtfjbXrVunpKSkfO+rWb9+vfr37+82dTpSuXJlGYah5ORkt6mzatWqkqRGjRrZ2jw8PFSnTh3Vrl1b8fHxLq/xcrNnz1alSpUUHBysjIwMSe7z7+a6deu0fPlynTp1Sn5+fpKkO+64Q4cPH9Z///tft6lTkmrUqKGtW7dq7ty5euGFF3T06FFlZ2erTp06SkpKcklN1xIUFKQtW7bYtR07dsy2rLgw5qYIdOrUSdnZ2crJyVFkZKTdsgsXLmjOnDmaMGGCdu7caZt27dqlatWqaf78+Xb9g4ODVbdu3QJvqTNDnZ06ddJff/2l1NRU3XnnnZo9e7YsFstNr0O6eMYmIiJCoaGhmj17tt0b6K/1GdzhWF5NVlaW29T5zjvvaNeuXbZ9rFy5UpJ022236bXXXnObOh05efKkJCkwMNBt6gwNDZXVatX+/fttbXl5eUpOTlb79u3dosZLDMPQ7Nmz1a9fP7u/X+5yLM+dOydJDv/u5+XluU2dl4uJiVFOTo4yMjLk5eWle++91+U1FSQsLEy7d+/W8ePHbW2JiYny8/OzC+dFjTM3RcDT01P79u2z/flyl/5HEBsba5eWJen+++/XzJkzHT5LoSDnzp1TWlqaXZvValWFChUkXXyewMmTJ5WSkqLc3FydPHlSZ86cUWZmpsqVK+eyOv/66y/l5ORIktLS0lS2bFk1bNhQb7/9tk6cOKHz58/rr7/+uqnH61KwqVWrlt566y2dOHHC1uda/6O49J3/9NNP2r17t06ePKmcnBydPHlS77777k37DN99952+//573XnnnapQoYJ+/fVXbdiwQT4+PgoLC3Obn80rb1MtV66cJKls2bKqUaOGJLlFnUlJSfruu+/Uvn17+fr6KikpSVu2bFFwcLDt75g71Onn56fHHntMY8eOVXBwsNLT07Vr1y5JUu/evdWnTx+X13jJunXr9Pvvv+vhhx/WuHHjbO3u8rMZFhamChUqqH///hozZoy8vb21detWnTt3TtHR0W5TpyT99ttv2r59u8qVK6cRI0boxRdf1Pjx4+2Ciat/5+zcuVOSVK9ePZUrV04dO3ZUo0aN9NBDD+mNN95QWlqaXnjhBQ0dOrR43zxebKN5TO7S4NKCXBrc1aVLF6Nz584O+3z33XeGJGPXrl0Ob8u7Urt27QxJ+abIyEi7uhz1uXwgmavqDAwMNAzj4sAzR8sl3dTjdbU6HHH0ndeqVcvh+jfrM/zwww9G+/btjYoVKxpWq9WoXbu2ccstt9j9TFzJVT+bl7t8QLE71blt2zbj9ttvN/z9/Q0vLy/j1ltvNVq1amV07drVreo0jIu3Vj/11FNGYGCgUapUKaNy5crGnj173KpGwzCMmJgYIzw83DAM9/138/vvvzc6duxoVKxY0fD19TUCAgKMO+64w63q7N+/v1GjRg2jYsWKRpkyZYxmzZoZc+bMcfmxK8zvnOTkZCMqKsrw9vY2AgICjKeeesrIyckpcL9FwWIY17g3DAAAoARhzA0AADAVwg1QgKioKJUrV87h9Prrr7u6PABAAbgsBRTgyJEjdu+VuVzFihWv+SRjAIBrEG4AAICpcFkKAACYCuEGAACYCuEGAACYCuEGACRZLBYtW7as0P1feukltWjR4qp9BgwYoB49etxQXQCcR7gB/uYGDBggi8Xi8JHsQ4cOlcVi0YABA/ItS0pKkqenp6Kjo/MtS05OlsVisU2VKlVSx44dtWPHDlufiIgIuz6XpoIeDd+1a1d16tTJ4bJNmzbJYrHohx9+KOSnzi81NVVRUVHXvT4A90G4AaDg4GAlJCTY3fp+/vx5zZs3L997oS6ZOXOm/v3vf2vjxo06evSowz5ffvmlUlNTtWbNGmVmZioqKsr2dnhJGjx4sFJTU+2mN954w+G2YmNjlZiYqMOHD+dbNnv2bLVu3VrNmjVz4lNflJ2dLeni+8SK9V03AG4awg0AtWrVSsHBwfrkk09sbZ988olq1qypli1b5uufmZmpBQsWaMiQIYqOjlZ8fLzD7VaqVElBQUFq3bq13nrrLR07dkzfffedbbmPj4+CgoLsJj8/P4fb6tKliypXrpxvX5mZmVq0aJFiY2P1559/KiYmRtWrV5ePj4+aNm2a7y3IERERGjZsmIYPH66AgADbm56vvCz1zDPP6JZbbpGPj4/q1KmjF1980fby18u9//77Cg4Olo+Pj3r16qX09HSH9UsX3zIdFxenkJAQeXt7q3nz5lq8eLFt+alTp/Tggw+qcuXK8vb2Vv369TV79uwCtwfAMcINAEnSoEGD7H6Rzpo1SwMHDnTYd+HChWrYsKEaNGigvn37atasWbrWI7O8vb0l/e9MibNKlSqlfv36KT4+3m5fixYtUm5urmJiYnT+/HmFhoZqxYoV2rNnjx555BE99NBD2rJli922/vvf/6pMmTL65ptvNH36dIf78/X1VXx8vH788UdNnjxZH3zwgSZOnGjX58CBA1q4cKE+//xzrV69Wjt27NDjjz9e4GeIi4vTnDlzNH36dO3du1cjRoxQ3759tWHDBknSiy++qB9//FGrVq3Svn37NG3aNAUEBFzX8QL+1or1tZwA3N6lNzUfP37csFqtRnJyspGcnGx4eXkZJ06csL1t+HLh4eHGpEmTDMMwjJycHCMgIMDuLcBXvnH41KlTxn333WeUK1fOSEtLMwzj4huHS5cubZQtW9Zumjt3boG17tu3L98bh++66y6jb9++Ba4THR1tPPXUU7b5du3aGS1btszXT5KxdOnSArfz5ptvGqGhobb5sWPHGp6ensbhw4dtbatWrTI8PDyM1NRUwzDs34J9/vx5w8fHx9i8ebPddmNjY42YmBjDMAyja9euxsCBAwusAUDhlHJxtgLgJipXrmy7xGQYhqKjox2eNdi/f7+2bNmipUuXSrp4RqV3796aOXOmIiIi7PqGh4fLw8NDZ8+eVZ06dbRgwQJVqVLFtvzBBx/U888/b7fO5cuv1LBhQ4WHh2vWrFmKiIjQgQMHtGnTJr3yyiuSpNzcXL3++utauHChjhw5ouzsbGVlZcnHx8duO6Ghodc8HgsWLNA777yjX3/9VZmZmbpw4UK+S2Y1a9ZU9erVbfNhYWHKy8vT/v37FRQUZNf3wIEDOnfunO6991679uzsbNulvyFDhuj+++/X9u3b1bFjR/Xo0UPh4eHXrBWAPcINAJtBgwZp2LBhkqSpU6c67DNz5kxduHBB1apVs7UZhiGr1aopU6bI39/f1r5gwQI1atRIlSpVUvny5fNty9/fX/Xq1XOqxtjYWP373//W1KlTNXv2bNWtW1ft2rWTJL355puaPHmyJk2apKZNm6ps2bIaPnx4vkthZcuWveo+kpKS9OCDD+rll19WZGSk/P39lZCQoAkTJjhV6+UyMzMlSStWrLALRJJsA5mjoqJ08OBBrVy5UomJibrnnns0dOhQvfXWW9e9X+DviDE3AGw6deqk7Oxs5eTk2AbaXu7ChQuaM2eOJkyYoJ07d9qmXbt2qVq1avkG7wYHB6tu3boOg8316tWrlzw8PDRv3jzNmTNHgwYNksVikSR988036t69u/r27avmzZurTp06+vnnn53ex+bNm1WrVi09//zzat26terXr6+DBw/m65eSkmJ3p9i3334rDw8PNWjQIF/fRo0ayWq1KiUlRfXq1bObgoODbf0qV66s/v37a+7cuZo0aZJmzJjhdP3A3x1nbgDYeHp6at++fbY/X2n58uU6deqUYmNj7c7QSNL999+vmTNnFvicGkfOnTuntLQ0uzar1aoKFSoUuE65cuXUu3dvjR49WhkZGXbP4Klfv74WL16szZs3q0KFCnr77bd17NgxNWrUqNA1XdpOSkqKEhISdNttt2nFihW2y3CX8/LyUv/+/fXWW28pIyNDTzzxhHr16pXvkpR0cYDyf/7zH40YMUJ5eXm68847lZ6erm+++UZ+fn7q37+/xowZo9DQUDVu3FhZWVlavny5br31VqdqB8CZGwBX8PPzK/B27JkzZ6pDhw75go10Mdxs3brVqQfpffDBB6patardFBMTc831YmNjderUKUVGRtpdHnvhhRfUqlUrRUZGKiIiQkFBQdf1hOBu3bppxIgRGjZsmFq0aKHNmzfrxRdfzNevXr16+uc//6nOnTurY8eOatasmd57770Ct/vqq6/qxRdfVFxcnG699VZ16tRJK1asUEhIiCSpTJkyGj16tJo1a6a2bdvK09NTCQkJTtcP/N1ZDOMa928CAACUIJy5AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApvL/s2EKz3IU2acAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of MAPE values from mape1 to mape10\n", + "mape_values = [mape1, mape2, mape2_1, mape3, mape4, mape5, mape6, mape7, mape8, mape8_1, mape9, mape10]\n", + "\n", + "# List of corresponding labels for each MAPE value\n", + "labels = ['MAPE1', 'MAPE2', 'MAPE2_1', 'MAPE3', 'MAPE4', 'MAPE5', 'MAPE6', 'MAPE7', 'MAPE8', 'MAPE2_1', 'MAPE9', 'MAPE10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, mape_values)\n", + "plt.xlabel('MAPE Variables')\n", + "plt.ylabel('MAPE Values')\n", + "plt.title('Bar Graph of MAPE')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "bCF5ZehcARcw", + "outputId": "ed3103b5-2636-48c5-82ba-60f8b3dfd729" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Length of labels: 12\n", + "Length of mape_values: 10\n" + ] + } + ], + "source": [ + "print(\"Length of labels:\", len(labels))\n", + "print(\"Length of mape_values:\", len(mape_values))" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "ZDPV0M5rDTi6", + "outputId": "2b5b43fb-f025-41ff-dc55-6193541132e0" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAHHCAYAAABdm0mZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQuUlEQVR4nO3deXhMZ/8G8Hsmy0wiO9mQCKJ2QWyhKEJQKdqSl5BQpWqpSjdqSdBKVW2trRRRr1YssdcSabRoWkopbUWoilYSQSUiss7z+8Mv583IhJmYmMlxf65rrsucOct3nvPkzO2sCiGEABEREZHMKE1dABEREVFlYMghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEisxEVFQWFQoEbN25U+rL279+Pli1bQq1WQ6FQ4Pbt25W+TGMYMWIEfHx8DJrm8OHDUCgUOHz4cKXURGSuGHKInoCYmBgoFAqtl5ubG7p164Z9+/Y98Xp2796N4OBguLu7w9raGi4uLujSpQsWLFiA7OzsJ17Pk3bz5k0MHjwYNjY2WLZsGTZs2IBq1arpHPfBdadWq/HMM89gwoQJyMjIeMKVE5EhLE1dANHTZPbs2ahbty6EEMjIyEBMTAz69u2L3bt3o1+/fpW+fI1Gg1GjRiEmJgbNmzfHuHHj4OXlhTt37iApKQnTp0/HN998g4SEhEqvxZROnDiBO3fuYM6cOQgMDNRrmpJ1l5eXh6NHj2LFihX45ptvcO7cOdja2lZyxf+zevVqaDQag6bp0qUL7t27B2tr60qqisg8MeQQPUF9+vRBmzZtpPejRo2Cu7s7vv76a6OEHI1Gg4KCAqjVap2ff/zxx4iJicHkyZOxYMECKBQK6bNJkyYhLS0NX3755WMtoyq4fv06AMDJyUnvaUqvu1dffRXVq1fHwoULsXPnTgwZMkTnNHfv3i13D1FFWVlZGTyNUqms0uuLqKJ4uIrIhJycnGBjYwNLS+3/b3zyySfo2LEjqlevDhsbG/j7+2Pr1q1lplcoFJgwYQI2btyIpk2bQqVSYf/+/TqXlZubi3nz5qFp06aYP3++VsAp4enpiffee0/vZVSkzoYNG0KtVsPf3x/ff/+9zlpv376NESNGwMnJCY6Ojhg5ciRyc3N1N+IDtmzZAn9/f9jY2KBGjRoYNmwY/vnnH+nz5557DuHh4QCAtm3bQqFQYMSIEXrNu7Tu3bsDAC5fvgzg/rkydnZ2uHTpEvr27Qt7e3uEhoYCuB8MFy9ejKZNm0KtVsPd3R2vvfYa/v333zLz3bdvH7p27Qp7e3s4ODigbdu2+Oqrr6TPdZ2Ts2nTJvj7+0vTNG/eHEuWLJE+L++cnEe1Venv9c8//2DAgAGws7ODq6sr3n77bRQXFxvcbkRPEkMO0ROUlZWFGzduIDMzE7/99htef/115OTkYNiwYVrjLVmyBK1atcLs2bMxd+5cWFpaYtCgQdi7d2+ZeX777beYPHkyQkJCsGTJknJPSj169Chu376NIUOGwMLCwqC6y1uGIXV+9913ePPNNzFs2DDMnj0bN2/eRO/evXHu3Lky4w4ePBh37txBdHQ0Bg8ejJiYGMyaNeuRdcbExGDw4MGwsLBAdHQ0Ro8ejbi4ODz77LPSicXTpk3DmDFjANw/BLVhwwa89tprBrUHAFy6dAkAUL16dWlYUVERgoKC4Obmhk8++QQvvfQSAOC1117DO++8g06dOmHJkiUYOXIkNm7ciKCgIBQWFmrV//zzz+PWrVuYOnUqPvroI7Rs2bLc4AoA8fHxGDJkCJydnTFv3jx89NFHeO6553Ds2LHHbqsSxcXFCAoKQvXq1fHJJ5+ga9euWLBgAVatWmVosxE9WYKIKt26desEgDIvlUolYmJiyoyfm5ur9b6goEA0a9ZMdO/eXWs4AKFUKsVvv/32yBqWLFkiAIgdO3ZoDS8qKhKZmZlaL41Go9cyDKkTgPj555+lYVeuXBFqtVoMHDhQGhYZGSkAiFdeeUVr+oEDB4rq1as/9PsVFBQINzc30axZM3Hv3j1p+J49ewQAMXPmTGlYyfo4ceLEQ+dZetxDhw6JzMxMcfXqVbFp0yZRvXp1YWNjI/7++28hhBDh4eECgJgyZYrW9EeOHBEAxMaNG7WG79+/X2v47du3hb29vWjfvr1W/UIIrfURHh4u6tSpI72fNGmScHBwEEVFReV+h8TERAFAJCYmGtxWJd9r9uzZWvNs1aqV8Pf3L3eZROaAe3KInqBly5YhPj4e8fHx+O9//4tu3brh1VdfRVxcnNZ4NjY20r///fdfZGVloXPnzjh16lSZeXbt2hVNmjR55LJLrpqys7PTGn727Fm4urpqvW7evKnXMgypMyAgAP7+/tJ7b29v9O/fHwcOHChz2GPs2LFa7zt37oybN28+9Mqvn3/+GdevX8e4ceO0zj95/vnn0ahRI517lwwRGBgIV1dXeHl54T//+Q/s7Oywfft21KpVS2u8119/Xev9li1b4OjoiJ49e+LGjRvSy9/fH3Z2dkhMTARwf4/MnTt3MGXKlDLnz+g6tFjCyckJd+/eRXx8vN7fpSJtpWud/Pnnn3ovk8gUeOIx0RPUrl07rROPhwwZglatWmHChAno16+fdPXLnj178MEHH+D06dPIz8+Xxtf1Y1e3bl29lm1vbw8AyMnJ0Rru6+sr/UB++eWX2LBhg97LMKTOBg0alBn2zDPPIDc3F5mZmfDw8JCGe3t7a43n7OwM4H6QcnBw0FnLlStXAAANGzYs81mjRo1w9OhRndPpa9myZXjmmWdgaWkJd3d3NGzYEEql9v8TLS0tUbt2ba1hKSkpyMrKgpubm875lpwEXXL4q1mzZgbVNW7cOGzevBl9+vRBrVq10KtXLwwePBi9e/cudxpD20qtVsPV1VVrmLOzs85ziojMCUMOkQkplUp069YNS5YsQUpKCpo2bYojR47ghRdeQJcuXbB8+XJ4enrCysoK69at0zoBtUTpvSkP06hRIwDAuXPn0L9/f2m4nZ2ddBl1eUFA1zIMrdMQ5Z0zJIR4rPk+jgcDqi4qlapM8NFoNHBzc8PGjRt1TvNgeDCUm5sbTp8+jQMHDmDfvn3Yt28f1q1bh7CwMKxfv/6x5l3C0HO4iMwFQw6RiRUVFQH43x6Wbdu2Qa1W48CBA1CpVNJ469ate6zldO7cGY6Ojti0aROmTp1a5sfYUIbWmZKSUmbYhQsXYGtr+9g/9ABQp04dAEBycrJ05VOJ5ORk6fMnrX79+jh06BA6der00EBav359APdDqK+vr0HLsLa2RnBwMIKDg6HRaDBu3Dh8/vnnmDFjhs55mWtbERkbz8khMqHCwkIcPHgQ1tbWaNy4MYD7/2tWKBRa56n89ddf2LFjx2Mty9bWFu+++y7OnTuHKVOm6NwrYsieEkPrTEpK0jpX5+rVq9i5cyd69epllD0Fbdq0gZubG1auXKl16Gzfvn34448/8Pzzzz/2Mipi8ODBKC4uxpw5c8p8VlRUJF3J1KtXL9jb2yM6Ohp5eXla4z1svTx4/pRSqUSLFi0AQKsdSjPXtiIyNu7JIXqC9u3bh/PnzwO4fy7GV199hZSUFEyZMkU61+T555/HwoUL0bt3bwwdOhTXr1/HsmXL4Ovri19//fWxlj9lyhT88ccfmD9/Pg4ePIiXXnoJtWvXxr///otTp05hy5YtcHNz0+vGcYbW2axZMwQFBeGNN96ASqXC8uXLAUCvS8P1YWVlhXnz5mHkyJHo2rUrhgwZgoyMDOmS98mTJxtlOYbq2rUrXnvtNURHR+P06dPo1asXrKyskJKSgi1btmDJkiV4+eWX4eDggEWLFuHVV19F27ZtMXToUDg7O+PMmTPIzc0t99DTq6++ilu3bqF79+6oXbs2rly5gs8++wwtW7aUgvODzLWtiIzOtBd3ET0ddF1CrlarRcuWLcWKFSu0LhEWQog1a9aIBg0aCJVKJRo1aiTWrVsnXV5dGgAxfvx4g+vZvn276Nu3r3B1dRWWlpbCyclJPPvss2L+/Pni9u3bei/D0Dr/+9//SuO3atVKuqS5RMm0mZmZWsNL2u/y5cuP/G6xsbGiVatWQqVSCRcXFxEaGipd5v3g/Ay5hPxR44aHh4tq1aqV+/mqVauEv7+/sLGxEfb29qJ58+bi3XffFdeuXdMab9euXaJjx47CxsZGODg4iHbt2omvv/5aazmlLyHfunWr6NWrl3BzcxPW1tbC29tbvPbaayItLU0a58FLyEvo01blfS9d65nI3CiEMOGZfET0VFAoFBg/fjyWLl1q6lKI6CnCc3KIiIhIlhhyiIiISJYYcoiIiEiWeHUVEVU6nvpHRKbAPTlEREQkSww5REREJEtP3eEqjUaDa9euwd7e/qFP9iUiIiLzIYTAnTt3ULNmTb0fS/PUhZxr167By8vL1GUQERFRBVy9ehW1a9fWa9ynLuTY29sDuN9IJbfRJyIiIvOWnZ0NLy8v6XdcH09dyCk5ROXg4MCQQ0REVMUYcqoJTzwmIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWTJpyPn+++8RHByMmjVrQqFQYMeOHY+c5vDhw2jdujVUKhV8fX0RExNT6XUSERFR1WPSkHP37l34+flh2bJleo1/+fJlPP/88+jWrRtOnz6NN998E6+++ioOHDhQyZUSERFRVWPSB3T26dMHffr00Xv8lStXom7duliwYAEAoHHjxjh69CgWLVqEoKCgyiqTiIiIqqAqdU5OUlISAgMDtYYFBQUhKSnJRBURERGRuTLpnhxDpaenw93dXWuYu7s7srOzce/ePdjY2JSZJj8/H/n5+dL77OzsSq+TiIiITK9K7cmpiOjoaDg6OkovLy8vU5dEpSkUpnsRUdXCbQUZqEqFHA8PD2RkZGgNy8jIgIODg869OAAwdepUZGVlSa+rV68+iVLND8MEEdHThdv9qnW4KiAgAN98843WsPj4eAQEBJQ7jUqlgkqlquzSiMhcmXKDK4Tplk1Ept2Tk5OTg9OnT+P06dMA7l8ifvr0aaSmpgK4vxcmLCxMGn/s2LH4888/8e677+L8+fNYvnw5Nm/ejMmTJ5uifCIiIjJjJt2T8/PPP6Nbt27S+4iICABAeHg4YmJikJaWJgUeAKhbty727t2LyZMnY8mSJahduza++OILXj5ORGRMptr7xT1fZGQKIZ6uXpWdnQ1HR0dkZWXBwcHB1OU8Oea6y95c6yL5YB8znLmGHHOty1zJrO9X5Pe7Sp14TERERKQvhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlS1MXQEREVKXJ7GnfcsI9OURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkS5amLoCIDKRQmGa5Qjz8c3Oti4ieWtyTQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJsBEhGZgqlungjwBor01OCeHCIiIpIl7skxNt7anoiIyCxwTw4RERHJEvfkEOnC8yWIiKo87skhIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZMnnIWbZsGXx8fKBWq9G+fXscP378oeMvXrwYDRs2hI2NDby8vDB58mTk5eU9oWqJiIioqjBpyImNjUVERAQiIyNx6tQp+Pn5ISgoCNevX9c5/ldffYUpU6YgMjISf/zxB9asWYPY2Fi8//77T7hyIiIiMncmDTkLFy7E6NGjMXLkSDRp0gQrV66Era0t1q5dq3P8H374AZ06dcLQoUPh4+ODXr16YciQIY/c+0NERERPH5OFnIKCApw8eRKBgYH/K0apRGBgIJKSknRO07FjR5w8eVIKNX/++Se++eYb9O3bt9zl5OfnIzs7W+tFRERE8mdpqgXfuHEDxcXFcHd31xru7u6O8+fP65xm6NChuHHjBp599lkIIVBUVISxY8c+9HBVdHQ0Zs2aZdTaiYiIyPyZ/MRjQxw+fBhz587F8uXLcerUKcTFxWHv3r2YM2dOudNMnToVWVlZ0uvq1atPsGIiIiIyFZPtyalRowYsLCyQkZGhNTwjIwMeHh46p5kxYwaGDx+OV199FQDQvHlz3L17F2PGjMG0adOgVJbNbCqVCiqVyvhfgIiIiMyayfbkWFtbw9/fHwkJCdIwjUaDhIQEBAQE6JwmNze3TJCxsLAAAAghKq9YIiIiqnJMticHACIiIhAeHo42bdqgXbt2WLx4Me7evYuRI0cCAMLCwlCrVi1ER0cDAIKDg7Fw4UK0atUK7du3x8WLFzFjxgwEBwdLYYeIiIgIMHHICQkJQWZmJmbOnIn09HS0bNkS+/fvl05GTk1N1dpzM336dCgUCkyfPh3//PMPXF1dERwcjA8//NBUX4GIiIjMlEI8Zcd5srOz4ejoiKysLDg4OBh/AQqF8eepj0etRlPVBTy8NtZVlrmuS9ZlOPYxw7Auw1XVPlYBFfn9rlJXVxERERHpiyGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGTJ4JCzf/9+HD16VHq/bNkytGzZEkOHDsW///5r1OKIiIiIKsrgkPPOO+8gOzsbAHD27Fm89dZb6Nu3Ly5fvoyIiAijF0hERERUEZaGTnD58mU0adIEALBt2zb069cPc+fOxalTp9C3b1+jF0hERERUEQbvybG2tkZubi4A4NChQ+jVqxcAwMXFRdrDQ0RERGRqBu/JefbZZxEREYFOnTrh+PHjiI2NBQBcuHABtWvXNnqBRERERBVh8J6cpUuXwtLSElu3bsWKFStQq1YtAMC+ffvQu3dvoxdIREREVBEKIYQwdRFPUnZ2NhwdHZGVlQUHBwfjL0ChMP489fGo1WiquoCH18a6yjLXdcm6DMc+ZhjWZbiq2scqoCK/3xW6T86lS5cwffp0DBkyBNevXwdwf0/Ob7/9VpHZERERERmdwSHnu+++Q/PmzfHTTz8hLi4OOTk5AIAzZ84gMjLS6AUSERERVYTBIWfKlCn44IMPEB8fD2tra2l49+7d8eOPPxq1OCIiIqKKMjjknD17FgMHDiwz3M3NDTdu3DBKUURERESPy+CQ4+TkhLS0tDLDf/nlF+lKKyIiIiJTMzjk/Oc//8F7772H9PR0KBQKaDQaHDt2DG+//TbCwsIqo0YiIiIigxkccubOnYtGjRrBy8sLOTk5aNKkCbp06YKOHTti+vTplVEjERERkcEqfJ+c1NRUnDt3Djk5OWjVqhUaNGhg7NoqBe+TYwJV8T4O5loXwD72IHOtC2AfMxTrMlxV7WMVUJHfb4Mf61DC29sb3t7eFZ2ciIiIqFIZHHJeeeWVh36+du3aChdDREREZCwGh5x///1X631hYSHOnTuH27dvo3v37kYrjIiIiOhxGBxytm/fXmaYRqPB66+/jvr16xulKCIiIqLHVaFnV5WZiVKJiIgILFq0yBizIyIiInpsRgk5wP2HdhYVFRlrdkRERESPxeDDVREREVrvhRBIS0vD3r17ER4ebrTCiIiIiB6HwSHnl19+0XqvVCrh6uqKBQsWPPLKKyIiIqInxeCQk5iYaNQCli1bhvnz5yM9PR1+fn747LPP0K5du3LHv337NqZNm4a4uDjcunULderUweLFi9G3b1+j1kVERERVW4VvBmgMsbGxiIiIwMqVK9G+fXssXrwYQUFBSE5OhpubW5nxCwoK0LNnT7i5uWHr1q2oVasWrly5AicnpydfPBEREZk1vR7r0KpVKyj0vD30qVOn9F54+/bt0bZtWyxduhTA/UvRvby8MHHiREyZMqXM+CtXrsT8+fNx/vx5WFlZ6b2c0vhYBxOoircdN9e6APaxB5lrXQD7mKFYl+Gqah+rgEp7rMOAAQMepy6dCgoKcPLkSUydOlUaplQqERgYiKSkJJ3T7Nq1CwEBARg/fjx27twJV1dXDB06FO+99x4sLCx0TpOfn4/8/HzpfXZ2tnG/CBEREZklvUJOZGSk0Rd848YNFBcXw93dXWu4u7s7zp8/r3OaP//8E99++y1CQ0PxzTff4OLFixg3bhwKCwvLrTE6OhqzZs0yev1ERERk3ox2n5wnQaPRwM3NDatWrYK/vz9CQkIwbdo0rFy5stxppk6diqysLOl19erVJ1gxERERmYrBJx4XFxdj0aJF2Lx5M1JTU1FQUKD1+a1bt/SaT40aNWBhYYGMjAyt4RkZGfDw8NA5jaenJ6ysrLQOTTVu3Bjp6ekoKCiAtbV1mWlUKhVUKpVeNREREZF8GLwnZ9asWVi4cCFCQkKQlZWFiIgIvPjii1AqlYiKitJ7PtbW1vD390dCQoI0TKPRICEhAQEBATqn6dSpEy5evAiNRiMNu3DhAjw9PXUGHCIiInqKCQPVq1dP7NmzRwghhJ2dnbh48aIQQoglS5aIIUOGGDSvTZs2CZVKJWJiYsTvv/8uxowZI5ycnER6eroQQojhw4eLKVOmSOOnpqYKe3t7MWHCBJGcnCz27Nkj3NzcxAcffKD3MrOysgQAkZWVZVCtert/TvmTf5lrXY+qjXVVnXXJutjHWJd51VWV+1gFVOT32+DDVenp6WjevDkAwM7ODllZWQCAfv36YcaMGQbNKyQkBJmZmZg5cybS09PRsmVL7N+/XzoZOTU1FUrl/3Y2eXl54cCBA5g8eTJatGiBWrVqYdKkSXjvvfcM/RpEREQkcwaHnNq1ayMtLQ3e3t6oX78+Dh48iNatW+PEiRMVOvdlwoQJmDBhgs7PDh8+XGZYQEAAfvzxR4OXQ0RERE8Xg8/JGThwoHQezcSJEzFjxgw0aNAAYWFhfHYVERERmQ297ngMAEuXLsWwYcPKPEIhKSkJSUlJaNCgAYKDgyujRqPiHY9N4GG1sa6yzHVdsi7DsY8ZhnUZrqr2sQqoyO+33iHH0dERhYWFGDhwIEaNGoXu3bs/VrGmwpBjAlXxj9Bc6wLYxx5krnUB7GOGYl2Gq6p9rAIq8vut9+Gq9PR0rFy5EteuXUPPnj1Rt25dzJkzhzfXIyIiIrOkd8ixsbFBWFgYEhMTkZKSguHDh2PNmjWoW7cuevfujS1btqCwsLAyayUiIiLSW4Ue61CvXj3Mnj0bly9fxr59+1C9enWMGDECtWrVMnZ9RERERBXyWM+uUigUsLS0hEKhgBCCe3KIiIjIbFQo5Fy9ehWzZ89GvXr10LNnT1y7dg2rV69GWlqasesjIiIiqhC9bwZYUFCAuLg4rF27Ft9++y08PT0RHh6OV155BfXq1avMGomIiIgMpnfI8fDwQG5uLvr164fdu3cjKChI65ELREREROZE75Azffp0DB8+HK6urpVZDxEREZFR6B1yIiIiKrMOIiIiIqPi8SYiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJb1PPC5RXFyMmJgYJCQk4Pr169BoNFqff/vtt0YrjoiIiKiiDA45kyZNQkxMDJ5//nk0a9YMClM+yp2IiIioHAaHnE2bNmHz5s3o27dvZdRDREREZBQGn5NjbW0NX1/fyqiFiIiIyGgMDjlvvfUWlixZAiFEZdRDREREZBQGH646evQoEhMTsW/fPjRt2hRWVlZan8fFxRmtOCIiIqKKMjjkODk5YeDAgZVRCxEREZHRGBxy1q1bVxl1EBERERmVwSGnRGZmJpKTkwEADRs25NPJiYiIyKwYfOLx3bt38corr8DT0xNdunRBly5dULNmTYwaNQq5ubmVUSMRERGRwQwOOREREfjuu++we/du3L59G7dv38bOnTvx3Xff4a233qqMGomIiIgMphAGXgteo0YNbN26Fc8995zW8MTERAwePBiZmZnGrM/osrOz4ejoiKysLDg4OBh/Aaa6A/SjVqMp70z9sNpYV1nmui5Zl+HYxwzDugxXVftYBVTk99vgPTm5ublwd3cvM9zNzY2Hq4iIiMhsGBxyAgICEBkZiby8PGnYvXv3MGvWLAQEBBi1OCIiIqKKMvjqqiVLliAoKAi1a9eGn58fAODMmTNQq9U4cOCA0QskIiIiqgiDQ06zZs2QkpKCjRs34vz58wCAIUOGIDQ0FDY2NkYvkIiIiKgiKnSfHFtbW4wePdrYtRAREREZjV4hZ9euXejTpw+srKywa9euh477wgsvGKUwIiIioseh1yXkSqUS6enpcHNzg1JZ/rnKCoUCxcXFRi3Q2HgJuQlUxUsczbUugH3sQeZaF8A+ZijWZbiq2scqoCK/33rtydFoNDr/TURERGSuDL6EXJfbt28bYzZERERERmNwyJk3bx5iY2Ol94MGDYKLiwtq1aqFM2fOGLU4IiIioooyOOSsXLkSXl5eAID4+HgcOnQI+/fvR58+ffDOO+8YvUAiIiKiijD4EvL09HQp5OzZsweDBw9Gr1694OPjg/bt2xu9QCIiIqKKMHhPjrOzM65evQoA2L9/PwIDAwEAQgizv7KKiIiInh4G78l58cUXMXToUDRo0AA3b95Enz59AAC//PILfH19jV4gERERUUUYHHIWLVoEHx8fXL16FR9//DHs7OwAAGlpaRg3bpzRCyQiIiKqCL1uBignvBmgCVTFm1WZa10A+9iDzLUugH3MUKzLcFW1j1VApd0MkI91ICIioqqGj3UwNv5Po6yq+D8Nc60LYB97kLnWBbCPGYp1Ga6q9rEK4GMdiIiIiP6fUR7rQERERGRuDA45b7zxBj799NMyw5cuXYo333zTGDURERERPTaDQ862bdvQqVOnMsM7duyIrVu3GqUoIiIiosdlcMi5efMmHB0dywx3cHDAjRs3jFIUERER0eMyOOT4+vpi//79ZYbv27cP9erVM0pRRERERI/L4DseR0REYMKECcjMzET37t0BAAkJCViwYAEWL15s7PqIiIiIKsTgkPPKK68gPz8fH374IebMmQMA8PHxwYoVKxAWFmb0AomIiIgq4rEe65CZmQkbGxvp+VVVAW8GaAJV8WZV5loXwD72IHOtC2AfMxTrMlxV7WMVUJHf7wrdJ6eoqAiHDh1CXFwcSjLStWvXkJOTU5HZERERERmdwYerrly5gt69eyM1NRX5+fno2bMn7O3tMW/ePOTn52PlypWVUScRERGRQQzekzNp0iS0adMG//77L2xsbKThAwcOREJCglGLIyIiIqoog/fkHDlyBD/88AOsra21hvv4+OCff/4xWmFEREREj8PgPTkajUbnk8b//vtv2NvbG6UoIiIiosdlcMjp1auX1v1wFAoFcnJyEBkZib59+1aoiGXLlsHHxwdqtRrt27fH8ePH9Zpu06ZNUCgUGDBgQIWWS0RERPJlcMj55JNPcOzYMTRp0gR5eXkYOnSodKhq3rx5BhcQGxuLiIgIREZG4tSpU/Dz80NQUBCuX7/+0On++usvvP322+jcubPByyQiIiL5q9B9coqKihAbG4szZ84gJycHrVu3RmhoqNaJyPpq37492rZti6VLlwK4fzjMy8sLEydOxJQpU3ROU1xcjC5duuCVV17BkSNHcPv2bezYsUOv5fE+OSZQFe/jYK51AexjDzLXugD2MUOxLsNV1T5WARX5/TboxOPCwkI0atQIe/bsQWhoKEJDQytUaImCggKcPHkSU6dOlYYplUoEBgYiKSmp3Olmz54NNzc3jBo1CkeOHHnoMvLz85Gfny+9z87OfqyaiYiIqGow6HCVlZUV8vLyjLbwGzduoLi4GO7u7lrD3d3dkZ6ernOao0ePYs2aNVi9erVey4iOjoajo6P08vLyeuy6iYiIyPwZfE7O+PHjMW/ePBQVFVVGPQ91584dDB8+HKtXr0aNGjX0mmbq1KnIysqSXlevXq3kKomIiMgcGHyfnBMnTiAhIQEHDx5E8+bNUa1aNa3P4+Li9J5XjRo1YGFhgYyMDK3hGRkZ8PDwKDP+pUuX8NdffyE4OFgaptFoAACWlpZITk5G/fr1taZRqVRQqVR610RERETyYHDIcXJywksvvWSUhVtbW8Pf3x8JCQnSZeAajQYJCQmYMGFCmfEbNWqEs2fPag2bPn067ty5gyVLlvBQFBEREUkMDjnr1q0zagEREREIDw9HmzZt0K5dOyxevBh3797FyJEjAQBhYWGoVasWoqOjoVar0axZM63pnZycAKDMcCIiInq66R1yNBoN5s+fj127dqGgoAA9evRAZGRkhS4bLy0kJASZmZmYOXMm0tPT0bJlS+zfv186GTk1NRVKZYUelk5ERERPMb3vkzNnzhxERUUhMDAQNjY2OHDgAIYMGYK1a9dWdo1GxfvkmEBVvI+DudYFsI89yFzrAtjHDMW6DFdV+1gFVOT3W+9dJF9++SWWL1+OAwcOYMeOHdi9ezc2btwonfhLREREZE70Djmpqalaz6YKDAyEQqHAtWvXKqUwIiIiosehd8gpKiqCWq3WGmZlZYXCwkKjF0VERET0uPQ+8VgIgREjRmjdcyYvLw9jx47VuleOIffJISIiIqoseoec8PDwMsOGDRtm1GKIiIiIjEXvkGPs++MQERERVSbegIaIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZMksQs6yZcvg4+MDtVqN9u3b4/jx4+WOu3r1anTu3BnOzs5wdnZGYGDgQ8cnIiKip5PJQ05sbCwiIiIQGRmJU6dOwc/PD0FBQbh+/brO8Q8fPowhQ4YgMTERSUlJ8PLyQq9evfDPP/884cqJiIjInCmEEMKUBbRv3x5t27bF0qVLAQAajQZeXl6YOHEipkyZ8sjpi4uL4ezsjKVLlyIsLOyR42dnZ8PR0RFZWVlwcHB47PrLUCiMP099PGo1mqou4OG1sa6yzHVdsi7DsY8ZhnUZrqr2sQqoyO+3SffkFBQU4OTJkwgMDJSGKZVKBAYGIikpSa955ObmorCwEC4uLjo/z8/PR3Z2ttaLiIiI5M+kIefGjRsoLi6Gu7u71nB3d3ekp6frNY/33nsPNWvW1ApKpUVHR8PR0VF6eXl5PXbdREREZP5Mfk7O4/joo4+wadMmbN++HWq1Wuc4U6dORVZWlvS6evXqE66SiIiITMHSlAuvUaMGLCwskJGRoTU8IyMDHh4eD532k08+wUcffYRDhw6hRYsW5Y6nUqmgUqmMUi8RERFVHSbdk2NtbQ1/f38kJCRIwzQaDRISEhAQEFDudB9//DHmzJmD/fv3o02bNk+iVCIiIqpiTLonBwAiIiIQHh6ONm3aoF27dli8eDHu3r2LkSNHAgDCwsJQq1YtREdHAwDmzZuHmTNn4quvvoKPj4907o6dnR3s7OxM9j2IiIjIvJg85ISEhCAzMxMzZ85Eeno6WrZsif3790snI6empkKp/N8OpxUrVqCgoAAvv/yy1nwiIyMRFRX1JEsnIiIiM2by++Q8abxPjglUxfs4mGtdAPvYg8y1LoB9zFCsy3BVtY9VQJW7Tw4RERFRZWHIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlkyi5CzbNky+Pj4QK1Wo3379jh+/PhDx9+yZQsaNWoEtVqN5s2b45tvvnlClRIREVFVYfKQExsbi4iICERGRuLUqVPw8/NDUFAQrl+/rnP8H374AUOGDMGoUaPwyy+/YMCAARgwYADOnTv3hCsnIiIic6YQQghTFtC+fXu0bdsWS5cuBQBoNBp4eXlh4sSJmDJlSpnxQ0JCcPfuXezZs0ca1qFDB7Rs2RIrV6585PKys7Ph6OiIrKwsODg4GO+LlFAojD9PfTxqNZqqLuDhtbGussx1XbIuw7GPGYZ1Ga6q9rEKqMjvt0n35BQUFODkyZMIDAyUhimVSgQGBiIpKUnnNElJSVrjA0BQUFC54xMREdHTydKUC79x4waKi4vh7u6uNdzd3R3nz5/XOU16errO8dPT03WOn5+fj/z8fOl9VlYWgPuJUFbM+fuYa22syzCsy3DmWhvrMoy51gWYb22VUFfJ77YhB6BMGnKehOjoaMyaNavMcC8vLxNUU4kcHU1dQfnMtTbWZRjWZThzrY11GcZc6wLMt7ZKrOvOnTtw1HP+Jg05NWrUgIWFBTIyMrSGZ2RkwMPDQ+c0Hh4eBo0/depURERESO81Gg1u3bqF6tWrQ2HK45UPyM7OhpeXF65evVo55wpVkLnWBZhvbazLMKzLcOZaG+syDOsyjBACd+7cQc2aNfWexqQhx9raGv7+/khISMCAAQMA3A8hCQkJmDBhgs5pAgICkJCQgDfffFMaFh8fj4CAAJ3jq1QqqFQqrWFOTk7GKL9SODg4mFWnKmGudQHmWxvrMgzrMpy51sa6DMO69KfvHpwSJj9cFRERgfDwcLRp0wbt2rXD4sWLcffuXYwcORIAEBYWhlq1aiE6OhoAMGnSJHTt2hULFizA888/j02bNuHnn3/GqlWrTPk1iIiIyMyYPOSEhIQgMzMTM2fORHp6Olq2bIn9+/dLJxenpqZCqfzfRWAdO3bEV199henTp+P9999HgwYNsGPHDjRr1sxUX4GIiIjMkMlDDgBMmDCh3MNThw8fLjNs0KBBGDRoUCVX9WSpVCpERkaWObRmauZaF2C+tbEuw7Auw5lrbazLMKyr8pn8ZoBERERElcHkj3UgIiIiqgwMOURERCRLDDlEREQkSww5JqJQKLBjxw6jj/u4TFmXubbJo5hr3azLMOZal6HLexrazFzb41HMpW5zqeOJECTCw8MFAAFAWFlZifr164tZs2aJwsLCSltmWlqayMvLM1ld27ZtEz179hQuLi4CgPjll1+06tJn2fp8B0OkpqaKiIgI0axZM2Frays8PT3F8OHDxT///FNm3PKWXdE2KygoEO+++65eyy6vlg8++EAEBAQIGxsb4ejoaJS69BEZGSkaNmwobG1thZOTk+jRo4f48ccfTd7HSnvttdcEALFo0SKT11V63iWvoKAgvftzZdb2+++/i+DgYOHg4CBsbW1FmzZtxJUrV0zeZg+2V8lrxowZYtiwYXot15jbi5J53blzR4wfP17UqlVLqNVq0bhxY7FixQq9lvs47aXPch9W9+effy66du0q7O3ttdqzdB1Xr1416vZVCCHS09NFeHi4cHNzE2q1WgQFBYkLFy7oVbMxlff7U9q9e/fEuHHjhIuLi6hWrZp48cUXRXp6usHLYsgR9zt77969RVpamvjrr7/E8uXLhUKhEHPnzi0zbn5+vizq+vLLL8WsWbPE6tWrdXYyU7TJ7du3RWBgoIiNjRXnz58XSUlJol27dsLf31/veVS0bmMse+bMmWLhwoUiIiJCZ8iprPbcuHGjiI+PF5cuXRLnzp0To0aNEg4ODuL69euPnPZJrOe4uDjh5+cnatasKRYtWqTXNJVZV+l5l7xu3bpVoemNWdvFixeFi4uLeOedd8SpU6fExYsXxc6dO0VGRoZJ6xJCaLVVWlqaWLt2rVAoFOLSpUsm3X6OHj1a1K9fXyQmJorLly+Lzz//XFhYWIidO3c+ctrHqftxliuEEIsWLRLR0dEiOjpaABA9evSo9PbTaDSiQ4cOonPnzuL48ePi/PnzYsyYMcLb21vk5ORUeL4V8ajfHyGEGDt2rPDy8hIJCQni559/Fh06dBAdO3Y0eFkMOeJ+Z+/fv7/WsJ49e4oOHTpIn33wwQfC09NT+Pj4CCHu73UYNGiQcHR0FM7OzuKFF14Qly9f1prHmjVrRJMmTYS1tbXw8PAQ48ePlz4DILZv3y6EuN9xx48fLzw8PIRKpRLe3t5i7ty50rJLj9uzZ0/RokUL4eHhIZRKpbCxsRG2traiTp06Ul116tQRlpaWwsbGRqhUKuHo6CjGjRsnCgoKytTl6uqq1clKlhUeHi6Cg4O16lKr1cLLy0urLmdnZ6lNDh48KM1PoVCIOnXqiHPnzmm1c8uWLYW7u7s0TrNmzaS6dLVJ9erVBQBRq1YtrT/60uMKIcSvv/4qunXrJpRKpbCyshKjR48Wd+7ckdrM1dVVeHl5iaZNmwo7OzuhUCiEvb29KCgoKHddHj9+XAAQV65cMWhddu/eXSgUiie+LkvqysrKkv5naA59TKlUiiFDhog6deqIRYsWmbwuR0dHoVQqK/Q3WdKPH+x/AQEBwsHBQep/bdq0ER4eHtLfxssvvyxq1qwp1Gq1UCgUwsrKSgwbNkyqSwgh2rZtKxwdHc16e1FSV//+/UX37t0FANGtWzfRv39/rboUCoWwtrYWrVu3lrafAISbm5u03F69eglLS0tpD8Z//vMf6W9WCCE6duwo7O3thYWFhVAqlUKlUkl1lXzHpk2bipkzZ2q1h7W1tXjuued0tp0QxtlWlLRl6e1+69atxbRp0wzaVgwYMEAAEEqlUquP9ezZU6ttP/jgA+Hq6irUarVQq9XC0dFR1K1bV2ub9dJLL4n+/fuL+fPnCw8PD1GtWjXh7Ows1REaGioAiHPnzkl1FBcXixo1aohu3brp7OsPaz+1Wi1cXFy02q/k76N0HS4uLlr9qbTLly/rDDm3b98WVlZWYsuWLdKwP/74QwAQSUlJZebzMDwnpxw2NjYoKCgAACQkJCA5ORnx8fHYs2cPCgsLERQUBHt7exw5cgTHjh2DnZ0devfuLU2zYsUKjB8/HmPGjMHZs2exa9cu+Pr66lzWp59+il27dmHz5s1ITk7Gxo0b4ePjo3Nca2tr/P7777C2toZarcazzz4LZ2dn+Pn5SXVZWVlBpVLhhRdeQM+ePWFnZ4d169YhJiamTF2rV68utw3+/PNPrbratGkDCwsLqU0AICoqCnv27MHt27fRt29f2NraYtu2bVizZg1u3LiBjh07Sm1y/vx5nD59GvXr18c333yDTz75BMnJyYiJiSm3TaZNmwYAWLNmTbltcvfuXQQFBcHZ2Rn9+vVD27ZtcejQIekGkzY2NiguLkZ6ejouXLiA7t2747PPPkNhYSG++OKLctfljRs3oFAosHXrVoPW5enTp2Fra/vE1+WuXbvg4+ODVatWlXm+iyn62OjRo9GqVSu8+eabaNeuXbnt9aTreuaZZ2Bra4u8vDxs3rwZr7/+Om7evFnhuu7evYtTp05BqVSiX79+sLS0xPnz59GuXTtpexEfH4/MzEwEBwdj9+7d6NixIzZu3IgvvvgCALBs2TKcOHECHTt2RNu2bZGXl4fdu3frPBfClNuLXbt2wd3dHXv37sWoUaPKratHjx7w8fGBnZ2dtP0EgGnTpqGwsBA9e/bEkSNH0LVrV+zcuRNdunTBtm3b8PrrrwO4v/386aefUFBQgEGDBmHTpk0YPnw4YmJitLYXHTt2xNq1a7F9+3bExsZi3bp1sLCwQOfOnctdV8bYVgwcOBD16tWDUqlE7969cfDgQVy4cAG5ubkGbSt++OEHAEDXrl211qONjY00XkJCAn777TcIIfDss8/ihx9+gKOjIzIzM9G1a1dpmxUfH49vv/0Wly5dwpgxY1BYWIicnBzMmDEDu3btkh5qqVarpXkrlUoUFhbi+PHjevf1kvY7ceIEtmzZotV+JRITE3Hp0iUkJiZi/fr1Zdbbo5w8eRKFhYUIDAyUhjVq1Aje3t5ISkrSez4AeE6OENp7cjQajYiPjxcqlUq8/fbbIjw8XLi7u2vtJtywYYNo2LCh0Gg00rD8/HxhY2MjDhw4IIQQombNmmLatGnlLhOl0vHEiRNF9+7dteZXui4AIi4uTsTHxwtLS0uhUqlEaGioVNfevXuFUqkUS5cuFQ0bNhRhYWGiTp06oqioSKqrc+fOIiQkpExdDybpkrrCw8NF3bp1Rffu3UVxcbHONin9HV555RWhVCq1Ev2OHTsEALFp0yYhhBA2NjbCwcFBFBUVSeMMGjRIhISE6GyT5557TrRq1UoMHTr0oe23atUq4ezsLHJycqQ227t3r1AoFGLz5s1CpVKJpk2bimrVqmmty0GDBon27duXuy59fX3F0KFDDV6XjRs3Fg4ODk90Xe7evVtUq1ZNKBQKUbNmTWkvlCn72Ny5c0XPnj2lZerak2OKur7++muxc+dO8euvv4rt27eLxo0bi7Zt2+pVV0ltJeNqNBrx5ptvCgBi0qRJ0t/Gjh07hFKpFOnp6WLDhg3CwcFBeHt7S30/Pz9fWFhYiK5duwohhPDw8BAAhK2trVi4cKH45ZdfRHR0tFAoFOLw4cMmb7PS5s2bJ5ydncW9e/e09jZMnDhRdOvWTRw8eFDn9rPkO2zYsEG4u7sLJycn6TBJfn6+UKlUQqFQiPT0dFGzZk3RvHlzqa4SJduLknnl5eWJRo0aCQDCwsJCWFtbi/Xr15f792msbUVeXp4ICwuT9phaWlqK9evXG7ytaNWqlQAg+vbtK4TQ/v0paVt3d3exfPlyqe6S3589e/ZIfaykP7m5uYmioiKpjtLb14KCAuHt7S0GDRokAIjNmzeLjz76SAAQLi4uOvv6w9qvREl/KjlfJjw8vNz19qDy9uRs3LhRWFtblxm/bdu24t133y23fXUxi8c6mIM9e/bAzs4OhYWF0Gg0GDp0KKKiojB+/Hg0b94c1tbW0rhnzpzBxYsXYW9vrzWPvLw8XLp0CdevX8e1a9fQo0cPvZY9YsQI9OzZEw0bNkTv3r3Rr18/9OrVS6oLAAYPHgwAaNCgAWrUqAFLS0uprk6dOkGj0eDo0aO4ePEiLl26BCGE9L/5vLw8WFhY4O+//zaortTUVFy+fBmWlpZQKBTo3r27VptkZGRotYlGo4GHh0eZ+fz000/o1q0b7t27hxYtWkh7gwDA09MTZ8+eLTPNsGHD8Oyzz0KpVKJdu3Y4ePCg1CYP+uOPP+Dn54dq1apJbXbo0CEIITBkyBCEhoaiqKgIt2/fRuPGjaV16enpiR9//BHXrl0rsy7v3buHvLw8zJ49G76+vgaty7Vr1+LevXt44403nti67NatG06fPo0bN25g9erV0jJK1/Uk+5iXlxciIyNx6tQpKBSKh7bXk+773bp1k5bfvHlztGjRAvXr19e7rhJDhgyBRqNBUVER3N3d8eGHH0p/G8899xw0Gg2Sk5Nx5swZ3LlzB3fv3tXaw1ZcXIy0tDRcv34d6enpAID+/ftj8uTJAICWLVvihx9+wMqVK03eZqWtXbsWoaGhWnsE9uzZA2tra9y7dw+JiYlo1KgROnfujLi4OJ3bz+vXr0OhUEjPKASAgoICCCGkv8lmzZrBy8vroduLzz77DLm5ubC3t4ezszPq1q2L1157DTVr1tTaC1DCWNuKwsJCFBYWQq1WIz8/Hy+++CJef/115ObmGrStWL9+PQBg3759sLGxgUajkX5/vvzySwD3+2hKSopUd8nvT0hICDQaDerWrQulUoni4mK4urri5s2b0nq7c+eO1F5WVlaIi4uT9sD95z//Qc+ePdGxY0ecOHHioX29vPYDIPWn5ORkaX02bdpUr+38k8DDVf+v5EciJSUF9+7dw/r166UVWXqFAkBOTg78/f1x+vRprdeFCxcwdOhQrV2N+mjdujUuX76MOXPm4N69exg8eDBefvllqS4AWL58Oe7du4fevXtLnefBunJzc+Hv74/g4GA899xzWnU1atSoQm1y6tQpfPbZZxgxYgROnDiB8PBwncsuLCyEvb29VnscOXIEABAYGCi1SemOD9y/PFGj0ZSZV3R0NJ555hksXboUxcXFWm2iT90lyz548CDWr18PKysrKJVKrboVCgWKioq01uWJEycQEBCAhg0b4vvvv4ebm5sBLXZ/Xc6fPx8qleqJrstq1arB19cXHTp0wJo1a2Bpqf3/lyfdx3799Vdcv34d3t7esLS0hKWlJa5cuYK33nrLpHXpUq9ePdSoUUPvukosXLgQKSkpmDhxIho3bvzQ7UX16tW16jp9+jTCw8Ph6uoq/W0olUo0adJEa9rGjRsjNTXVbNrsyJEjSE5Oxquvvqo1vFu3bvj1119x7tw5bNy4Ec8++yzCwsJw+PBhne3h7u6ONm3aaLXHyZMnAUDreUlWVlZa05beXuTn5+P999/H8uXL8ffff+Pjjz9GgwYNoNFoMGzYMJ31P6gi24off/wRGo0Gn3/+Oc6ePYsLFy5g1apVeOmll/RaZonWrVvjq6++AgB4eHjA0tISPXr0kH5/SpT3+1NS9xdffIHTp09j4MCBqFOnjtbvz4Pb15JtHXA/rO7fvx9FRUUIDw9/aF831MPWmz48PDxQUFCA27dvaw3PyMjQ+R/ph2HI+X8lPxIlG+WHad26NVJSUuDm5gZfX1+tl6OjI+zt7eHj4yOdt6IPBwcHhISEYPXq1YiNjcW2bduQn58vdXBXV1dYWlqicePGOHPmDIqKiqRpjx07BqVSiS5duiAlJQVqtRp2dnZadalUKlhaWhpUV7Vq1dCqVSuMHz8ea9as0arrQX5+fsjJyZHa0dfXF2lpaVAqlfD394e9vT3s7Oxw48aNhy6zqKgIgwcPRkpKChITE/Hqq69qtcmtW7fKTFPSJnfv3pXqLll206ZNH7o8e3t7aV3WqVMH77//PtLS0nDkyBHUrVu3QuvSxsYG1tbWJl2XujYoT7KPqdVq/Prrr1o/YjVr1sQ777xj0rp0tdfff/9d5pyc8uoq3f88PT3h7e2Npk2bavW/0nU1bNgQrVu3RnZ2NlQqlVZdTk5OsLS0lPqYp6endO5KiQsXLqBOnTpm02Zr1qyBv78//Pz8tOop+btv2rQphg4dKtV15coV6Zy8EiXtceHCBXh6epbZXrRq1Qo+Pj5IS0sr871LKy4uRmFhIZRKpVZ79OjRAxkZGZW2rXByckJRURFq166ttd23sbGBWq02aFtRsr5atWqFrVu3Yt++fcjOzn5o3SW/P5cuXYJSqUSPHj3g6+sLBwcHWFlZ6b3NcnR0REpKCn7++WcMGjTooX1dVx0lSvd1Y/H394eVlZXWd0hOTkZqaioCAgIMmhcPV1VAaGgo5s+fj/79+2P27NmoXbs2rly5gri4OLz77ruoXbs2oqKiMHbsWLi5uaFPnz64c+cOjh07hokTJ5aZ38KFC+Hp6YlWrVpBqVRiy5Yt8PDwkHb/PrjsyMhIHD16FPXq1UNiYiImTpyI4cOH4/XXX8fnn3+OxMRE+Pr64vLly1JdJZ2ypK5q1aqhSZMmuHLlCgCU2bgCwMWLF/H111/rVdfChQvx1Vdfwc/PD/Pnz4eVlRXefvttPPPMMygsLARwPwglJSXh008/ldqk5H8VJT7++GOkpaUhJCQEW7duRbNmzaBUKhEbGwsPDw84OTnpXB+RkZEIDw9HYWEhbt68KbVJ6d3huri5uUEIgRdeeAFFRUW4dOkS5syZg6lTp2LcuHGoWbMmpk+fjgkTJjxyXaampmLJkiVITU1FYWEhdu7ciZiYGLi7u1fquvzpp58wZswY2Nra4vDhw7h58yb++eefMuvnSfexOnXqaLWXlZVVmf+FmaKupKQkjB07FjY2Nti/fz+SkpLg6+uLlJSUR9ZVkf4XGhqKt99+G8ePH8eRI0ek7cXhw4el/3VHRUVhzJgx+Oqrr9CwYUM0b94c//3vf7F7924cPnwYX3/9tUnbzM3NDZ07d0ZsbCxeeOGFMm1QXl1qtbrM/+pDQ0Px8ccfIzU1Fc8//zymTJmCP/74A1FRUXjxxRfh7u6OqKgojBo1CkIIpKSkSH2oNFtbW3Tt2hUjR47E6NGj0bVrV/z88884ePAgHBwcKm1bMXz4cPj5+WHSpElITk7G6dOn0aJFC3z55ZcYPHgwFixY8MhtRXp6OubPny8FmoyMDKxcuRLu7u6PrPu9995DtWrVMHz4cPTq1Qu5ubk4fPgwfvrpJ3h7e2utt/bt2yM3NxenTp3CsWPH4OHhAVdXVwD3TyN488030bRpU9y8eRPnz583qK9HRUUhMzNT7/Yr7datW0hNTcW1a9cA/O/3x8PDAx4eHnB0dMSoUaMQEREBFxcXODg4YOLEiQgICECHDh30Xg4AnngshO5LyB/1WVpamggLCxM1atQQKpVK1KtXT4wePVpkZWVJ46xcuVI0bNhQWFlZCU9PTzFx4kTpMzxwMlfLli1FtWrVhIODg+jRo4c4deqUzktChbh/CV/JJaEPXsKXlpYm6tevL6ytrbXqGjt2rHSS48qVK6UTHXW9Sk489vPzM6iub7/9Vmu+9vb2YsSIEVKblMyzdJv4+flJdZVXDwDRunVrcerUKZ3tV9Im5V0WWrJsLy8vrXU5adIk0bVrV5GWliZefPHFcpedmJio17rUdZM5AGLVqlWVti4/++wzYWdnJy3L1tZWvPDCC2VOPDZFH3uwvXSdePyk6/r000+Fra2tVh8dPXq0SE9P16uukr5kaP8bPHiw8PLy0tpeNGvWTHTq1Eka58G/yxo1aogdO3aU6e+mWpcWFhYCgBgzZoxW3y858VhXXcHBwdLfXOm60tLSRHBwsLCyspIuoW7UqJHWzTc7dOgg7OzstPpQyd9sybzS0tJEx44dpUvRlUqlaNCggTh58qRWjcbcVoSFhQkXFxehVCqFhYWFsLCwEL6+vmLBggVCo9Hota2IjIzUua2IiorS2bal61ar1cLJyUk0aNBAVK9eXVpvDRo0kE5gLllvzs7OQqFQSHUsWbJE1K5dW+pf06dPF8uXLy+3rz+s/R51CXlpJe1XYt26dTq/f2RkpDROyc0AnZ2dha2trRg4cKBIS0sThlL8/5cgIiIikhWek0NERESyxJBDpIe5c+fCzs5O56tPnz6mLo+IzMTGjRvL3VY86uRmMj4eriLSw61bt3RebQDcv5qqVq1aT7giIjJHd+7c0bqHWGlWVlY6r5ajysOQQ0RERLLEw1VEREQkSww5REREJEsMOURERCRLDDlEZBQKhQI7duww+rjm6LnnnsObb76p9/iHDx+GQqEo8yye0mJiYnTeZZaIKo4hh0hmRowYAYVCAYVCAWtra/j6+mL27Nlazy+qDGlpaXpfTm/IuBWxYMECODs7Iy8vr8xnubm5cHBwwKefflrh+cfFxWHOnDmPUyIRPQEMOUQy1Lt3b6SlpSElJQVvvfUWoqKiMH/+fJ3jPvgAxYry8PDQeoK0scatiOHDh+Pu3buIi4sr89nWrVtRUFCg95OqSytpKxcXF9jb2z92nURUuRhyiGRIpVLBw8MDderUweuvv47AwEDs2rULwP09PQMGDMCHH36ImjVrSk8Pvnr1KgYPHgwnJye4uLigf//++Ouvv7Tmu3btWjRt2hQqlQqenp6YMGGC9FnpQ1AFBQWYMGECPD09oVarUadOHURHR+scFwDOnj2L7t27w8bGBtWrV8eYMWOQk5MjfV5S8yeffAJPT09Ur14d48ePlx7++iA3NzcEBwdj7dq1ZT5bu3YtBgwYABcXF7z33nt45plnYGtri3r16mHGjBla84yKikLLli3xxRdfoG7dulCr1QDKHq7asGED2rRpA3t7e3h4eGDo0KG4fv16mWUfO3YMLVq0gFqtRocOHXDu3Dmd9ZfYuXMnWrduDbVajXr16mHWrFnSHjkhBKKiouDt7Q2VSoWaNWvijTfeeOj8iJ42DDlETwEbGxutPTYJCQlITk5GfHw89uzZg8LCQgQFBcHe3h5HjhzBsWPHYGdnh969e0vTrVixAuPHj8eYMWNw9uxZ7Nq1C76+vjqX9+mnn2LXrl3YvHkzkpOTsXHjRvj4+Ogc9+7duwgKCoKzszNOnDiBLVu24NChQ1oBCgASExNx6dIlJCYmYv369YiJiUFMTEy533nUqFH49ttvceXKFWnYn3/+ie+//x6jRo0CANjb2yMmJga///47lixZgtWrV2PRokVa87l48SK2bduGuLg4nD59WueyCgsLMWfOHJw5cwY7duzAX3/9hREjRpQZ75133sGCBQtw4sQJuLq6Ijg4uNygduTIEYSFhWHSpEn4/fff8fnnnyMmJgYffvghAGDbtm1YtGgRPv/8c6SkpGDHjh1o3rx5ue1B9FQy+JGeRGTWSj8FWKPRiPj4eKFSqcTbb78tfe7u7i7y8/OlaTZs2CAaNmwoNBqNNCw/P1/Y2NiIAwcOCCGEqFmzppg2bVq5y0WppxVPnDhRdO/eXWt+5Y27atUq4ezsLHJycqTP9+7dK5RKpUhPT5dqrlOnjigqKpLGGTRokAgJCSm3nqKiIlGrVi2tJxvPmDFDeHt7i+LiYp3TzJ8/X/j7+0vvIyMjhZWVlbh+/brWeF27dhWTJk0qd9knTpwQAKSnMycmJgoAYtOmTdI4N2/eFDY2NiI2NlYIcf/JzI6OjtLnPXr0EHPnztWa74YNG4Snp6cQQogFCxaIZ555RhQUFJRbB9HTjntyiGRoz549sLOzg1qtRp8+fRASEoKoqCjp8+bNm8Pa2lp6f+bMGVy8eBH29vbSc3ZcXFyQl5eHS5cu4fr167h27Rp69Oih1/JHjBiB06dPo2HDhnjjjTdw8ODBcsf9448/4Ofnh2rVqknDOnXqBI1Gg+TkZGlY06ZNYWFhIb339PTUeUiohIWFBcLDwxETEwMhBDQaDdavX4+RI0dCqby/6YuNjUWnTp3g4eEBOzs7TJ8+HampqVrzqVOnDlxdXR/6fU+ePIng4GB4e3vD3t4eXbt2BYAy8woICJD+7eLigoYNG+KPP/7QOc8zZ85g9uzZWs8+Gj16NNLS0pCbm4tBgwbh3r17qFevHkaPHo3t27dX+snlRFWNpakLICLj69atG1asWAFra2vUrFkTlpbaf+qlAwUA5OTkwN/fHxs3biwzL1dXVykU6Kt169a4fPky9u3bh0OHDmHw4MEIDAzE1q1bDf8y/8/KykrrvUKhgEajeeg0r7zyCqKjo/Htt99Co9Hg6tWrGDlyJAAgKSkJoaGhmDVrFoKCguDo6IhNmzZhwYIFWvN4sK0eVHK4LSgoCBs3boSrqytSU1MRFBT0WCd15+TkYNasWXjxxRfLfKZWq+Hl5YXk5GQcOnQI8fHxGDduHObPn4/vvvuuTFsRPa0YcohkqFq1auWeL6NL69atERsbCzc3Nzg4OOgcx8fHBwkJCejWrZte83RwcEBISAhCQkLw8ssvo3fv3rh16xZcXFy0xmvcuDFiYmJw9+5dKVAcO3YMSqVSOim6ourXr4+uXbti7dq1EEIgMDBQekDiDz/8gDp16mDatGnS+KXP39HX+fPncfPmTXz00Ufw8vICAPz88886x/3xxx/h7e0NAPj3339x4cIFNG7cWOe4rVu3RnJy8kPXo42NDYKDgxEcHIzx48ejUaNGOHv2LFq3bm3w9yCSI4YcIkJoaCjmz5+P/v37Y/bs2ahduzauXLmCuLg4vPvuu6hduzaioqIwduxYuLm5oU+fPrhz5w6OHTuGiRMnlpnfwoUL4enpiVatWkGpVGLLli3w8PDQebO70NBQREZGIjw8HFFRUcjMzMTEiRMxfPhwuLu7P/Z3GzVqFEaPHg0AWicqN2jQAKmpqdi0aRPatm2LvXv3Yvv27QbP39vbG9bW1vjss88wduxYnDt3rtx76MyePRvVq1eHu7s7pk2bhho1amDAgAE6x505cyb69esHb29vvPzyy1AqlThz5gzOnTuHDz74ADExMSguLkb79u1ha2uL//73v7CxseFTrolK4Tk5RARbW1t8//338Pb2xosvvojGjRtj1KhRyMvLk/bshIeHY/HixVi+fDmaNm2Kfv36ISUlRef87O3t8fHHH6NNmzZo27Yt/vrrL3zzzTc6D3vZ2triwIEDuHXrFtq2bYuXX34ZPXr0wNKlS43y3V566SWoVCrY2tpqBYoXXngBkydPxoQJE9CyZUv88MMPmDFjhsHzd3V1RUxMDLZs2YImTZrgo48+wieffKJz3I8++giTJk2Cv78/0tPTsXv3bq1zo0oLCgrCnj17cPDgQbRt2xYdOnTAokWLpBDj5OSE1atXo1OnTmjRogUOHTqE3bt3o3r16gZ/ByK5UgghhKmLICIiIjI27skhIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZ+j+kAJmILEPk8AAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of precision values from precision1 to precision10\n", + "precision_values = [precision1, precision2, precision2_1, precision3, precision4, precision5, precision6, precision7, precision8, precision8_1, precision9, precision10]\n", + "\n", + "# List of corresponding labels for each precision value\n", + "labels = ['Precision1', 'Precision2', 'Precision2_1', 'Precision3', 'Precision4', 'Precision5', 'Precision6', 'Precision7', 'Precision8', 'Precision8_1', 'Precision9', 'Precision10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, precision_values, color='red')\n", + "plt.xlabel('Precision Variables')\n", + "plt.ylabel('Precision Values')\n", + "plt.title('Bar Graph of Precision')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "39LBleNeDeuw", + "outputId": "66c1cd08-96bb-46bb-afd3-7792e2b71345" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFVUlEQVR4nO3df3zO9eL/8ee1za7NMD83msUwSjKaH01Gq62hRDkSObZZOYo4dnxEYeQci/Krg/TD73OKQh3FEc1RiSizQsjv0WHzc2Njy/b+/uG767hs2DWba3t73G+363Zr773f1+u59/V2Xc/evy6LYRiGAAAATMLF2QEAAABKEuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGQLk1btw4WSwWnTp1qtTHWrNmjVq0aCEPDw9ZLBadO3eu1McsLRaLRePGjbP9vGDBAlksFh0+fNhpmYCSRLkByqD8D5urHz4+PgoLC9O///3v257n888/V9euXeXr6yt3d3dVr15dHTp00JQpU5SRkXHb89xup0+f1jPPPCNPT0/NmjVLixcvlpeXV6HzXvvaubm5yc/PT9HR0frtt99uc3LgzuTm7AAAru/1119XQECADMNQamqqFixYoC5duujzzz/XE088Uerj5+XlKTY2VgsWLND999+vl156Sf7+/jp//rw2b96s0aNHa/Xq1UpMTCz1LM70ww8/6Pz585owYYLCw8OLtEz+a3fp0iV9//33WrBggTZu3KidO3fKw8OjlBMDdzbKDVCGde7cWa1atbL9HBsbK19fX3300UclUm7y8vKUk5Nz3Q/byZMna8GCBRo2bJimTJkii8Vi+93QoUN1/PhxLVq06JbGKA/S0tIkSVWrVi3yMle/ds8//7xq1qypSZMmaeXKlXrmmWdKIyaA/4/DUkA5UrVqVXl6esrNzf7/S9566y21a9dONWrUkKenp4KDg7Vs2bICy1ssFg0ePFj//Oc/dd9998lqtWrNmjWFjpWVlaVJkybpvvvu05tvvmlXbPLVqVNHr7zySpHHKE7OJk2ayMPDQ8HBwfrmm28KzXru3DlFR0eratWq8vb2VkxMjLKysgpfidf45JNPFBwcLE9PT9WsWVN9+/a1O3z08MMPKyoqSpLUunVrWSwWRUdHF+m5rxYaGipJOnDggN30PXv26A9/+IOqV68uDw8PtWrVSitXriz0bxw2bJjq168vq9WqunXrql+/frbzjXJycjR27FgFBwfL29tbXl5eCg0N1X/+8x+HswLlHXtugDIsPT1dp06dkmEYSktL09///ndduHBBffv2tZtvxowZevLJJ/Xcc88pJydHS5YsUc+ePfXFF1/o8ccft5t3/fr1+vjjjzV48GDVrFlT9evXL3TsjRs36ty5cxo+fLhcXV0dyn29MRzJ+fXXX2vp0qUaMmSIrFarZs+erU6dOmnr1q1q1qyZ3bzPPPOMAgIClJCQoKSkJH3wwQfy8fHRpEmTbphzwYIFiomJUevWrZWQkKDU1FTNmDFD3333nbZv366qVavqtddeU5MmTfTee+/ZDjU1bNjQofUhyXaybrVq1WzTdu3apYceekh+fn4aOXKkvLy89PHHH6t79+5avny5nnrqKUnShQsXFBoaqt27d6t///564IEHdOrUKa1cuVLHjh1TzZo1lZGRoQ8++EC9e/fWCy+8oPPnz2vu3LmKjIzU1q1b1aJFC4czA+WWAaDMmT9/viGpwMNqtRoLFiwoMH9WVpbdzzk5OUazZs2MRx55xG66JMPFxcXYtWvXTTPMmDHDkGR89tlndtMvX75snDx50u6Rl5dXpDEcySnJ+PHHH23Tjhw5Ynh4eBhPPfWUbVp8fLwhyejfv7/d8k899ZRRo0aNG/59OTk5ho+Pj9GsWTPj4sWLtulffPGFIckYO3asbVr+6/HDDz/c8Dmvnverr74yTp48aRw9etRYtmyZUatWLcNqtRpHjx61zfvoo48a999/v3Hp0iXbtLy8PKNdu3ZGYGCgbdrYsWMNScaKFSsKjJe/7i9fvmxkZ2fb/e7s2bOGr69vgfUjyYiPjy+Q+dChQzf9+4DygMNSQBk2a9YsrVu3TuvWrdM//vEPhYWF6fnnn9eKFSvs5vP09LT999mzZ5Wenq7Q0FAlJSUVeM6OHTuqadOmNx07/yqoSpUq2U3fsWOHatWqZfc4ffp0kcZwJGdISIiCg4NtP999993q1q2bvvzyS+Xm5trNO3DgQLufQ0NDdfr06RteyfXjjz8qLS1NL730kt35QI8//rjuuecerVq16rrLFkV4eLhq1aolf39//eEPf5CXl5dWrlypunXrSpLOnDmj9evX65lnntH58+d16tQpnTp1SqdPn1ZkZKT27dtnOzy2fPlyBQUF2fbkXC3/cKGrq6vc3d0lXTnP6cyZM7p8+bJatWpV6PoFzIzDUkAZ1qZNG7sTinv37q2WLVtq8ODBeuKJJ2wfZl988YX++te/Kjk5WdnZ2bb5CztPJiAgoEhjV65cWdKVQyJXa9SokdatWydJWrRokRYvXlzkMRzJGRgYWGBa48aNlZWVpZMnT6p27dq26XfffbfdfPmHfs6ePasqVaoUmuXIkSOSpCZNmhT43T333KONGzcWulxRzZo1S40bN1Z6errmzZunb775Rlar1fb7/fv3yzAMjRkzRmPGjCn0OdLS0uTn56cDBw6oR48eNx1z4cKFmjJlivbs2aPff//dNr2orzlgFpQboBxxcXFRWFiYZsyYoX379um+++7Tt99+qyeffFIdOnTQ7NmzVadOHVWoUEHz58/Xhx9+WOA5rt57ciP33HOPJGnnzp3q1q2bbXqlSpVsl0NfrwAUNoajOR1xvXOCDMO4pee9FVcX0+7du6t9+/bq06eP9u7dq0qVKikvL0+SNHz4cEVGRhb6HI0aNSryeP/4xz8UHR2t7t276//+7//k4+MjV1dXJSQkFDiJGTA7yg1Qzly+fFnS//aoLF++XB4eHvryyy/t9gzMnz//lsYJDQ2Vt7e3lixZolGjRsnF5daOYjuac9++fQWm/frrr6pYsaJq1ap1S1kkqV69epKkvXv36pFHHrH73d69e22/Lwn5JSMsLEwzZ87UyJEj1aBBA0lShQoVbnrvnIYNG2rnzp03nGfZsmVq0KCBVqxYYbcnLD4+/tb/AKCc4ZwboBz5/ffftXbtWrm7u+vee++VdOWD02Kx2J2HcvjwYX322We3NFbFihU1YsQI7dy5UyNHjix0L4gje0Yczbl582a7c0WOHj2qf/3rX3rsscccvnqrMK1atZKPj4/mzJljd4js3//+t3bv3l3g6q1b9fDDD6tNmzaaPn26Ll26JB8fHz388MN69913dfz48QLznzx50vbfPXr00E8//aRPP/20wHz5r0H+Orn6NdmyZYs2b95con8HUB6w5wYow/79739rz549kq6cf/Hhhx9q3759GjlypO1ckscff1xTp05Vp06d1KdPH6WlpWnWrFlq1KiRfv7551saf+TIkdq9e7fefPNNrV27Vj169FDdunV19uxZJSUl6ZNPPpGPj0+RbtDnaM5mzZopMjLS7lJwSRo/fvwt/U35KlSooEmTJikmJkYdO3ZU7969bZeC169fX8OGDSuRca72f//3f+rZs6cWLFiggQMHatasWWrfvr3uv/9+vfDCC2rQoIFSU1O1efNmHTt2TD/99JNtuWXLlqlnz57q37+/goODdebMGa1cuVJz5sxRUFCQnnjiCa1YsUJPPfWUHn/8cR06dEhz5sxR06ZNC5w3BZieMy/VAlC4wi4F9/DwMFq0aGG88847dpdeG4ZhzJ071wgMDDSsVqtxzz33GPPnz7ddJn01ScagQYMczvPpp58aXbp0MWrVqmW4ubkZVatWNdq3b2+8+eabxrlz54o8hqM5//GPf9jmb9mypfGf//zHbr78ZU+ePGk33ZFLm5cuXWq0bNnSsFqtRvXq1Y3nnnvOOHbsWKHP58il4IXNm5ubazRs2NBo2LChcfnyZcMwDOPAgQNGv379jNq1axsVKlQw/Pz8jCeeeMJYtmyZ3bKnT582Bg8ebPj5+Rnu7u5G3bp1jaioKOPUqVOGYVy5JHzixIlGvXr1bOvriy++MKKioox69erZPZe4FBwmZzEMJ55xBwCFsFgsGjRokGbOnOnsKADKIc65AQAApkK5AQAApkK5AQAApsLVUgDKHE4FBHAr2HMDAABMhXIDAABM5Y47LJWXl6f//ve/qly5cqFf1gcAAMoewzB0/vx53XXXXTf9Opg7rtz897//lb+/v7NjAACAYjh69Kjq1q17w3nuuHJTuXJlSVdWTv7t6wEAQNmWkZEhf39/2+f4jdxx5Sb/UFSVKlUoNwAAlDNFOaWEE4oBAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpOLXcfPPNN+ratavuuusuWSwWffbZZzddZsOGDXrggQdktVrVqFEjLViwoNRzAgCA8sOp5SYzM1NBQUGaNWtWkeY/dOiQHn/8cYWFhSk5OVl//vOf9fzzz+vLL78s5aQAAKC8cOoXZ3bu3FmdO3cu8vxz5sxRQECApkyZIkm69957tXHjRk2bNk2RkZGlFRMAAJQj5eqcm82bNys8PNxuWmRkpDZv3uykRAAAoKxx6p4bR504cUK+vr5203x9fZWRkaGLFy/K09OzwDLZ2dnKzs62/ZyRkVHqOQEAgPOUqz03xZGQkCBvb2/bw9/f39mRnMLixEd5zAUAKL/KVbmpXbu2UlNT7aalpqaqSpUqhe61kaRRo0YpPT3d9jh69OjtiAoAKGH8jxCKqlwdlgoJCdHq1avtpq1bt04hISHXXcZqtcpqtZZ2NAAAyhRnFjPDiWNLTt5zc+HCBSUnJys5OVnSlUu9k5OTlZKSIunKXpd+/frZ5h84cKAOHjyoESNGaM+ePZo9e7Y+/vhjDRs2zBnxAZQDHPp0HOsL5Z1Ty82PP/6oli1bqmXLlpKkuLg4tWzZUmPHjpUkHT9+3FZ0JCkgIECrVq3SunXrFBQUpClTpuiDDz7gMnAAAGBjMQzD2XuPbquMjAx5e3srPT1dVapUcXac26as7p4sq7lgHmxjjnPWOrvZ+iqrucoqs237jnx+l6sTigEAAG6GcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEzFzdkBAAAozyxOHNtw4thlGeUGKGec9UZ6szfRspoLwJ2Hw1IAAMBUKDcAAMBUKDcAAMBUKDcAAMBUKDcAAMBUuFoKAJyAy4eB0sOeGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCpcLQUUgitZAKD8Ys8NAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFaeXm1mzZql+/fry8PBQ27ZttXXr1hvOP336dDVp0kSenp7y9/fXsGHDdOnSpduU9uYsTnoAAIArnFpuli5dqri4OMXHxyspKUlBQUGKjIxUWlpaofN/+OGHGjlypOLj47V7927NnTtXS5cu1auvvnqbkwMAgLLKqeVm6tSpeuGFFxQTE6OmTZtqzpw5qlixoubNm1fo/Js2bdJDDz2kPn36qH79+nrsscfUu3fvm+7tAQAAdw6nlZucnBxt27ZN4eHh/wvj4qLw8HBt3ry50GXatWunbdu22crMwYMHtXr1anXp0uW642RnZysjI8PuAQAAzMvNWQOfOnVKubm58vX1tZvu6+urPXv2FLpMnz59dOrUKbVv316GYejy5csaOHDgDQ9LJSQkaPz48SWaHQAAlF1OP6HYERs2bNDEiRM1e/ZsJSUlacWKFVq1apUmTJhw3WVGjRql9PR02+Po0aO3MTEAALjdnLbnpmbNmnJ1dVVqaqrd9NTUVNWuXbvQZcaMGaM//vGPev755yVJ999/vzIzMzVgwAC99tprcnEp2NWsVqusVmvJ/wEAAKBMctqeG3d3dwUHBysxMdE2LS8vT4mJiQoJCSl0maysrAIFxtXVVZJkGEbphQUAAOWG0/bcSFJcXJyioqLUqlUrtWnTRtOnT1dmZqZiYmIkSf369ZOfn58SEhIkSV27dtXUqVPVsmVLtW3bVvv379eYMWPUtWtXW8kBAAB3NqeWm169eunkyZMaO3asTpw4oRYtWmjNmjW2k4xTUlLs9tSMHj1aFotFo0eP1m+//aZatWqpa9eu+tvf/uasPwEAAJQxFuMOO56TkZEhb29vpaenq0qVKiX+/M66W/DNXkRn3sX4RtnIVVBZfS3J5Ti2MceQy3HldRsrDkc+v8vV1VIAAAA3Q7kBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACm4nC5uXjxorKysmw/HzlyRNOnT9fatWtLNBgAAEBxOFxuunXrpkWLFkmSzp07p7Zt22rKlCnq1q2b3nnnnRIPCAAA4AiHy01SUpJCQ0MlScuWLZOvr6+OHDmiRYsW6e233y7xgAAAAI5wuNxkZWWpcuXKkqS1a9fq6aeflouLix588EEdOXKkxAMCAAA4wuFy06hRI3322Wc6evSovvzySz322GOSpLS0NFWpUqXEAwIAADjC4XIzduxYDR8+XPXr11ebNm0UEhIi6cpenJYtW5Z4QAAAAEdYDMMwHF3oxIkTOn78uIKCguTicqUfbd26VVWqVNE999xT4iFLUkZGhry9vZWenl4qe5osJf6MRXOzF9FZuaQbZyNXQWX1tSSX49jGHEMux5XXbaw4HPn8LtZ9bmrXrq3KlStr3bp1unjxoiSpdevWZb7YAAAA83O43Jw+fVqPPvqoGjdurC5duuj48eOSpNjYWP3lL38p8YAAAACOcLjcDBs2TBUqVFBKSooqVqxom96rVy+tWbOmRMMBAAA4ys3RBdauXasvv/xSdevWtZseGBjIpeAAAMDpHN5zk5mZabfHJt+ZM2dktVpLJBQAAEBxOVxuQkNDbV+/IEkWi0V5eXmaPHmywsLCSjQcAACAoxwuN5MnT9Z7772nzp07KycnRyNGjFCzZs30zTffaNKkSQ4HmDVrlurXry8PDw+1bdtWW7duveH8586d06BBg1SnTh1ZrVY1btxYq1evdnhcAABgTg6Xm2bNmunXX39V+/bt1a1bN2VmZurpp5/W9u3b1bBhQ4eea+nSpYqLi1N8fLySkpIUFBSkyMhIpaWlFTp/Tk6OIiIidPjwYS1btkx79+7V+++/Lz8/P0f/DAAAYFLFuolfSWnbtq1at26tmTNnSpLy8vLk7++vl19+WSNHjiww/5w5c/Tmm29qz549qlChQrHG5CZ+t195vMlUWc0lsY1dq6zmktjGHEUux5XXbaw4HPn8dvhqqW+++eaGv+/QoUORnicnJ0fbtm3TqFGjbNNcXFwUHh6uzZs3F7rMypUrFRISokGDBulf//qXatWqpT59+uiVV16Rq6troctkZ2crOzvb9nNGRkaR8gEAgPLJ4XLz8MMPF5hmsfyvH+bm5hbpeU6dOqXc3Fz5+vraTff19dWePXsKXebgwYNav369nnvuOa1evVr79+/XSy+9pN9//13x8fGFLpOQkKDx48cXKRMAACj/HD7n5uzZs3aPtLQ0rVmzRq1bt9batWtLI6NNXl6efHx89N577yk4OFi9evXSa6+9pjlz5lx3mVGjRik9Pd32OHr0aKlmBAAAzuXwnhtvb+8C0yIiIuTu7q64uDht27atSM9Ts2ZNubq6KjU11W56amqqateuXegyderUUYUKFewOQd177706ceKEcnJy5O7uXmAZq9XK/XcAALiDFOuLMwvj6+urvXv3Fnl+d3d3BQcHKzEx0TYtLy9PiYmJCgkJKXSZhx56SPv371deXp5t2q+//qo6deoUWmwAAMCdx+E9Nz///LPdz4Zh6Pjx43rjjTfUokULh54rLi5OUVFRatWqldq0aaPp06crMzNTMTExkqR+/frJz89PCQkJkqQXX3xRM2fO1NChQ/Xyyy9r3759mjhxooYMGeLonwEAAEzK4XLTokULWSwWXXsF+YMPPqh58+Y59Fy9evXSyZMnNXbsWJ04cUItWrTQmjVrbCcZp6SkyMXlfzuX/P399eWXX2rYsGFq3ry5/Pz8NHToUL3yyiuO/hkAAMCkHL7PzbVfjuni4qJatWrJw8OjRIOVFu5zc/uVx/swlNVcEtvYtcpqLoltzFHkclx53caKo1Tvc1OvXr1iBwMAAChtRSo3b7/9dpGfkPNfAACAMxXpsFRAQEDRnsxi0cGDB285VGnisNTtVx53m5bVXBLb2LXKai6JbcxR5HJced3GiqPED0sdOnSoRIIBAACUthK7zw0AAEBZ4PAJxZJ07NgxrVy5UikpKcrJybH73dSpU0skGAAAQHE4XG4SExP15JNPqkGDBtqzZ4+aNWumw4cPyzAMPfDAA6WREQAAoMgcPiw1atQoDR8+XDt27JCHh4eWL1+uo0ePqmPHjurZs2dpZAQAACgyh8vN7t271a9fP0mSm5ubLl68qEqVKun111/XpEmTSjwgAACAIxwuN15eXrbzbOrUqaMDBw7Yfnfq1KmSSwYAAFAMDp9z8+CDD2rjxo2699571aVLF/3lL3/Rjh07tGLFCj344IOlkREAAKDIilxuzpw5o+rVq2vq1Km6cOGCJGn8+PG6cOGCli5dqsDAQK6UAgAATlfkL8708PBQ9+7dFRsbq4iIiNLOVWq4Q/HtVx7voFlWc0lsY9cqq7kktjFHkctx5XUbKw5HPr+LfM7N+++/r5MnT6pTp06qX7++xo0bp8OHD99qVgAAgBJV5HLzxz/+UYmJidq/f7+ioqK0cOFCNWrUSBEREVq6dGmBm/kBAAA4g8NXSwUEBGj8+PE6dOiQ1qxZIx8fH/Xv31916tThG8EBAIDTFfmcmxtZvny5BgwYoHPnzik3N7ckcpUazrm5/crjMeGymktiG7tWWc0lsY05ilyOK6/bWHGU+LeCF+bIkSOaP3++Fi5cqKNHjyosLEyxsbHFfToAAIAS4VC5yc7O1vLlyzVv3jxt2LBBfn5+io6OVkxMjOrXr19KEQEAAIquyOXmpZde0pIlS5SVlaVu3bpp9erVioiIkMXizB1fAAAA9opcbjZu3Kj4+Hj17dtXNWrUKM1MAAAAxVbkcvPzzz+XZg4AAIAS4fCl4AAAAGUZ5QYAAJgK5QYAAJgK5QYAAJhKkU4oduRk4ubNmxc7DAAAwK0qUrlp0aKFLBaLrvdNDfm/s1gsZf7rFwAAgLkVqdwcOnSotHMAAACUiCKVm3r16pV2DgAAgBJRpHKzcuXKIj/hk08+WewwAAAAt6pI5aZ79+5FejLOuQEAAM5WpHKTl5dX2jkAAABKBPe5AQAAplLkL868WmZmpr7++mulpKQoJyfH7ndDhgwpkWAAAADF4XC52b59u7p06aKsrCxlZmaqevXqOnXqlCpWrCgfHx/KDQAAcCqHD0sNGzZMXbt21dmzZ+Xp6anvv/9eR44cUXBwsN56663SyAgAAFBkDpeb5ORk/eUvf5GLi4tcXV2VnZ0tf39/TZ48Wa+++mppZAQAACgyh8tNhQoV5OJyZTEfHx+lpKRIkry9vXX06NGSTQcAAOAgh8+5admypX744QcFBgaqY8eOGjt2rE6dOqXFixerWbNmpZERAACgyBzeczNx4kTVqVNHkvS3v/1N1apV04svvqiTJ0/q3XffLfGAAAAAjrAY1/uqb5PKyMiQt7e30tPTVaVKlRJ/fkuJP2PR3OxFdFYu6cbZyFVQWX0tyeU4tjHHkMtx5XUbKw5HPr8d3nNz6NAh7du3r8D0ffv26fDhw44+HQAAQIlyuNxER0dr06ZNBaZv2bJF0dHRJZEJAACg2BwuN9u3b9dDDz1UYPqDDz6o5OTkksgEAABQbA6XG4vFovPnzxeYnp6ezjeCAwAAp3O43HTo0EEJCQl2RSY3N1cJCQlq3759iYYDAABwlMP3uZk0aZI6dOigJk2aKDQ0VJL07bffKiMjQ+vXry/xgAAAAI5weM9N06ZN9fPPP+uZZ55RWlqazp8/r379+mnPnj3cxA8AADgd97kpYdyHoaDyeB+GsppLYhu7VlnNJbGNOYpcjiuv21hxlOp9bqQrh6H69u2rdu3a6bfffpMkLV68WBs3bizO0wEAAJQYh8vN8uXLFRkZKU9PTyUlJSk7O1vSlaulJk6cWOIBAQAAHOFwufnrX/+qOXPm6P3331eFChVs0x966CElJSWVaDgAAABHOVxu9u7dqw4dOhSY7u3trXPnzpVEJgAAgGJzuNzUrl1b+/fvLzB948aNatCgQYmEAgAAKC6Hy80LL7ygoUOHasuWLbJYLPrvf/+rf/7znxo+fLhefPHF0sgIAABQZA7fxG/kyJHKy8vTo48+qqysLHXo0EFWq1XDhw/Xyy+/XBoZAQAAiqzY97nJycnR/v37deHCBTVt2lSVKlXSxYsX5enpWdIZSxT3ubn9yuN9GMpqLolt7FplNZfENuYocjmuvG5jxVHq97mRJHd3dzVt2lRt2rRRhQoVNHXqVAUEBBT36QAAAEpEkctNdna2Ro0apVatWqldu3b67LPPJEnz589XQECApk2bpmHDhpVWTgAAgCIpcrkZO3as3nnnHdWvX1+HDx9Wz549NWDAAE2bNk1Tp07V4cOH9corrxQrxKxZs1S/fn15eHiobdu22rp1a5GWW7JkiSwWi7p3716scQEAgPkUudx88sknWrRokZYtW6a1a9cqNzdXly9f1k8//aRnn31Wrq6uxQqwdOlSxcXFKT4+XklJSQoKClJkZKTS0tJuuNzhw4c1fPhw2zeTAwAASA6Um2PHjik4OFiS1KxZM1mtVg0bNkwWy62dsjR16lS98MILiomJUdOmTTVnzhxVrFhR8+bNu+4yubm5eu655zR+/HjurQMAAOwUudzk5ubK3d3d9rObm5sqVap0S4Pn5ORo27ZtCg8P/18gFxeFh4dr8+bN113u9ddfl4+Pj2JjY286RnZ2tjIyMuweAADAvIp8nxvDMBQdHS2r1SpJunTpkgYOHCgvLy+7+VasWFHkwU+dOqXc3Fz5+vraTff19dWePXsKXWbjxo2aO3eukpOTizRGQkKCxo8fX+RMAACgfCtyuYmKirL7uW/fviUe5mbOnz+vP/7xj3r//fdVs2bNIi0zatQoxcXF2X7OyMiQv79/aUUEAABOVuRyM3/+/BIfvGbNmnJ1dVVqaqrd9NTUVNWuXbvA/AcOHNDhw4fVtWtX27S8vDxJVw6T7d27Vw0bNrRbxmq12vY2AQAA8yv2TfxKgru7u4KDg5WYmGiblpeXp8TERIWEhBSY/5577tGOHTuUnJxsezz55JMKCwtTcnIye2QAAIDj3y1V0uLi4hQVFaVWrVqpTZs2mj59ujIzMxUTEyNJ6tevn/z8/JSQkCAPDw81a9bMbvmqVatKUoHpAADgzuT0ctOrVy+dPHlSY8eO1YkTJ9SiRQutWbPGdpJxSkqKXFycuoMJAACUI8X+4szyii/OvP3K4xe7ldVcEtvYtcpqLoltzFHkclx53caK47Z8cSYAAEBZRLkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmUibKzaxZs1S/fn15eHiobdu22rp163Xnff/99xUaGqpq1aqpWrVqCg8Pv+H8AADgzuL0crN06VLFxcUpPj5eSUlJCgoKUmRkpNLS0gqdf8OGDerdu7f+85//aPPmzfL399djjz2m33777TYnBwAAZZHFMAzDmQHatm2r1q1ba+bMmZKkvLw8+fv76+WXX9bIkSNvunxubq6qVaummTNnql+/fjedPyMjQ97e3kpPT1eVKlVuOf+1LCX+jEVzsxfRWbmkG2cjV0Fl9bUkl+PYxhxDLseV122sOBz5/HbqnpucnBxt27ZN4eHhtmkuLi4KDw/X5s2bi/QcWVlZ+v3331W9evVCf5+dna2MjAy7BwAAMC+nlptTp04pNzdXvr6+dtN9fX114sSJIj3HK6+8orvuusuuIF0tISFB3t7etoe/v/8t5wYAAGWX08+5uRVvvPGGlixZok8//VQeHh6FzjNq1Cilp6fbHkePHr3NKQEAwO3k5szBa9asKVdXV6WmptpNT01NVe3atW+47FtvvaU33nhDX331lZo3b37d+axWq6xWa4nkBQAAZZ9T99y4u7srODhYiYmJtml5eXlKTExUSEjIdZebPHmyJkyYoDVr1qhVq1a3IyoAACgnnLrnRpLi4uIUFRWlVq1aqU2bNpo+fboyMzMVExMjSerXr5/8/PyUkJAgSZo0aZLGjh2rDz/8UPXr17edm1OpUiVVqlTJaX8HAAAoG5xebnr16qWTJ09q7NixOnHihFq0aKE1a9bYTjJOSUmRi8v/djC98847ysnJ0R/+8Ae754mPj9e4ceNuZ3QAAFAGOf0+N7cb97m5/crjfRjKai6JbexaZTWXxDbmKHI5rrxuY8VRbu5zAwAAUNIoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFTKRLmZNWuW6tevLw8PD7Vt21Zbt2694fyffPKJ7rnnHnl4eOj+++/X6tWrb1NSAABQ1jm93CxdulRxcXGKj49XUlKSgoKCFBkZqbS0tELn37Rpk3r37q3Y2Fht375d3bt3V/fu3bVz587bnBwAAJRFFsMwDGcGaNu2rVq3bq2ZM2dKkvLy8uTv76+XX35ZI0eOLDB/r169lJmZqS+++MI27cEHH1SLFi00Z86cm46XkZEhb29vpaenq0qVKiX3h/x/lhJ/xqK52YvorFzSjbORq6Cy+lqSy3FsY44hl+PK6zZWHI58fjt1z01OTo62bdum8PBw2zQXFxeFh4dr8+bNhS6zefNmu/klKTIy8rrzAwCAO4ubMwc/deqUcnNz5evrazfd19dXe/bsKXSZEydOFDr/iRMnCp0/Oztb2dnZtp/T09MlXWmAZlKW/5qymo1cjiGX48pqNnI5pqzmksputtLIlf+5XZQDTk4tN7dDQkKCxo8fX2C6v7+/E9KUHm9nB7iBspqNXI4hl+PKajZyOaas5pLKbrbSzHX+/Hl5e994BKeWm5o1a8rV1VWpqal201NTU1W7du1Cl6ldu7ZD848aNUpxcXG2n/Py8nTmzBnVqFFDFoszj0jay8jIkL+/v44ePVoq5wIVV1nNJZXdbORyDLkcV1azkcsx5HKMYRg6f/687rrrrpvO69Ry4+7uruDgYCUmJqp79+6SrpSPxMREDR48uNBlQkJClJiYqD//+c+2aevWrVNISEih81utVlmtVrtpVatWLYn4paJKlSplamPKV1ZzSWU3G7kcQy7HldVs5HIMuYruZnts8jn9sFRcXJyioqLUqlUrtWnTRtOnT1dmZqZiYmIkSf369ZOfn58SEhIkSUOHDlXHjh01ZcoUPf7441qyZIl+/PFHvffee878MwAAQBnh9HLTq1cvnTx5UmPHjtWJEyfUokULrVmzxnbScEpKilxc/ndRV7t27fThhx9q9OjRevXVVxUYGKjPPvtMzZo1c9afAAAAyhCnlxtJGjx48HUPQ23YsKHAtJ49e6pnz56lnOr2slqtio+PL3AIzdnKai6p7GYjl2PI5biymo1cjiFX6XH6TfwAAABKktO/fgEAAKAkUW4AAICpUG4AAICpUG7KGYvFos8++0ySdPjwYVksFiUnJzs1Uz5nZSvL6+RGympucjmurGYjV9kY91aVldxlJUdRUG4cEB0dLYvFIovFogoVKiggIEAjRozQpUuXnB3NLlv+w8fHp9SzXT2uJP3pT3/SiBEj7L7PS5J++ukn9e7dW/7+/vL09NS9996rGTNmlGq2G41b1Nfy+PHj6tOnjxo3biwXFxe7m0eWhrFjx9pyubi4yM3NTa6urqpbt64GDx7stO9EuzpX/vp6+eWX5efnJ4vFonPnzjkll1T4tp//WLJkidNyXbvOatWqpVq1aslqtcrHx0eDBg1yeq7rPdLS0kp83KK+V0jSDz/8oEcffVRVq1ZVtWrVFBkZqZ9++qnEMxVl3CeffLJI7xWXLl1SdHS07r//frm5udluTFtS3n77bVksFgUEBEiSHn/8cVuOxMREtWvXTpUrV1bt2rX1yiuv6PLlyyU6flEMGTJEwcHBslqtatGiRaHz/PzzzwoNDZWHh4f8/f01efLkUslCuXFQp06ddPz4cR08eFDTpk3Tu+++q/j4eGfHknQlW//+/TVhwgR17NhRp0+fvi3Z8teJJPXv31/vvvuupk2bZjfPtm3b5OPjo3/84x/atWuXXnvtNY0aNUozZ84s1WzXG3f37t1Fei2zs7NVq1YtjR49WkFBQaWaNV+nTp20e/duTZgwQW+88Ya8vLzUvn17ffXVVxo4cOBtyXC9XFevrzlz5pSZS0U7deokSXrrrbc0b948Va5cWYMGDSrxD5ji5Dp+/LhGjhyp3NxcZWZmKjo6Wl999ZUiIyOdmuvgwYP68ccf7dZXZGSkOnbsKB8fn1Ib92bvFRcuXFCnTp109913a8uWLdq4caMqV66syMhI/f7776WS60bjrlu3TpGRkTd9r8jNzZWnp6eGDBmi8PDwUsnYqVMnbd26VZI0fPhwvfvuu3rxxRfVpUsXderUSdu3b9fSpUu1cuVKjRw5slQy3Ez//v3Vq1evQn+XkZGhxx57TPXq1dO2bdv05ptvaty4caVyE17KjYOsVqtq164tf39/de/eXeHh4Vq3bp2kK18dkZCQoICAAHl6eiooKEjLli2zW37Xrl164oknVKVKFVWuXFmhoaE6cOCApCv/1xAREaGaNWvK29tbHTt2VFJSkkPZ5s6dq9GjR+vhhx+2/cMs7Wz560SS2rZtq/DwcG3cuNFu3AkTJui9997TkCFDlJSUpL59+yomJkYrVqwo1XXSv39/zZgxQx07dlSDBg1s46akpBTptQwLC9N7772nKVOmKCcn57a8llarVffcc49ee+01DR8+XBEREfr111/10ksv6ZtvvnHaNnb1+jp+/LiqVq0qV1dXu/XlzG1fkho2bKiYmBhFRERo06ZN8vDwcGq2/K9/mTJlij755BN17txZP/zwg5o3b64nnnjCqbkCAgIUHBxsW1/ffPON1q9fr5iYGKe+VzRp0kRnzpzRli1btGPHDt13332Kj49Xamqqvvrqq1Lbhvbs2aMzZ87o9ddfV5MmTWzjXrp0Sbm5uTd9r2jWrJkWLFigmTNnFtirU1Kvo9VqVa1atSRJYWFhCg8P17///W81b95co0eP1ieffKLo6GgdPHhQU6dO1eLFi0slx/W8/fbbGjRokBo0aFDo7//5z38qJydH8+bN03333adnn31WQ4YM0dSpUx0apygoN7dg586d2rRpk9zd3SVd+QbyRYsWac6cOdq1a5eGDRumvn376uuvv5Yk/fbbb+rQoYOsVqvWr1+vbdu2qX///rbdh+fPn1dUVJQ2btyo77//XoGBgerSpYvOnz/vcLa0tDRlZmaWerZr/0/qyJEj2rRpkypUqCBJmjdv3nXHTU9Pl6en521bJ/nS09ML7HEoymu5e/duHTt27JbWl6O583NJ0ooVK1SzZk2nb2O//PKLxowZY9tNL0lTp051ei5JGjRokKpWrarPP/9c6enpMgzD6f8u161bp7y8PG3ZskX/+te/tHPnTj3zzDMaOXJkmVhn+dtYenq6KlasqEOHDjn1vWLmzJmqWrWqGjdurL59+2rt2rWaO3euGjVqpL59+5ba+mjSpIlq1KihuXPnKicnRxcvXtTcuXPl7e2tihUrFlhfN3qv+Pbbb3Xq1KlSfR3379+vTZs2yWKxyMPDwy7HBx98IMMwFBsb65TPn+vZvHmzOnToYFt3khQZGam9e/fq7NmzJTaOJMlAkUVFRRmurq6Gl5eXYbVaDUmGi4uLsWzZMuPSpUtGxYoVjU2bNtktExsba/Tu3dswDMMYNWqUERAQYOTk5BRpvNzcXKNy5crG559/bpsmyfj0008NwzCMQ4cOGZKM7du3F5pNUqlne+SRR2zj5o/p4uJizJ4925BkeHh4FDpuRESE4ebmZvTq1avU1klhvvvuO8PNzc2IiIhw+LWsXbu20bhx41taXzfL3bVr10JfR0lGly5dnLaNXZ3LYrHY1te4ceMMSWVi23d3dzfc3d0NSYbFYjHc3NyMKVOmOH2d5WfKX2cTJ040wsLCDIvFYnz99ddOy3Xttu/n52cMGDCgTLxX7Nixw2jYsKFtviZNmhgvvfRSqb9X5I/r4uJiuLi4GE2aNDF69Ojh8HtFYGCg4efnd0vr69rcYWFhhqurq1GxYkW79Td69GjDYrEYVqvV+Pbbb41jx44ZoaGhhiTj4Ycfvi3/Bq8VHx9vBAUFFZgeERFhDBgwwG7arl27DEnGL7/8UqRcRVUmvn6hPAkLC9M777yjzMxMTZs2TW5uburRo4d27dqlrKwsRURE2M2fk5Ojli1bSpKSk5MVGhpq+z+Va6Wmpmr06NHasGGD0tLSlJubq6ysLKWkpDicLSoqSkePHi31bJmZmbZxAwMDFRYWpgYNGqhz586Srpxkd+24+ScQxsfHa9OmTaW6Tq62c+dOdevWTfHx8dq/f7/Dr2VWVpaM/39D79J8La/ONXHiROXm5qpfv34aNmyYU7exsLAw+fv767ffflOdOnXk5uamjh072tZNWdn281/Lu+66S5MnT3b6OmvevLmmTp2qiIgI3X333Ro1apTat2+vDh06KDIy0nZo73bnunp9nTlzRp9//rkeffRRvffee05/r7h48aLthPrGjRvr3nvv1aJFi9StW7dS24YuXryo2NhYPfTQQ/roo4+Um5urt956S4mJierYsaPefffdIr9XXLx40fZt2iX5OoaFhem1115TWFiYunbtKh8fH02YMEHZ2dl68803FRoaKkm2PSPffvutgoODSzxHeUC5cZCXl5caNWok6cpu1KCgIM2dO9f2xZ2rVq2Sn5+f3TL5h0A8PT1v+NxRUVE6ffq0ZsyYoXr16slqtSokJKTAuR5FydatWzdNnjy51LPl5eXZjTt48GDFx8dr6dKltmWvHnffvn3q27ev+vTpo9GjR6tHjx6luk7y/fLLL3r00Uc1YMAAjR49WtHR0Q6/ls8995ztd6X5Wl6d66OPPlJQUJBOnjypESNGaODAgVq0aJGaN29ut8zt2Ma8vLyUlJSkHTt2SLpyrsG8efNsv+/Ro4fGjBlz23PlZ7v2tXzkkUeUmpoqyXn/Lr28vGzbzAcffKDHH3/cbhsbNGhQgZPEb1euq9dXzZo15e/vr3r16kly7nvFd999pylTpmjz5s1ycXGR1WqVr6+vKlaseMMP2lvdhj788EMdPnzYNm7+tIoVKyojI8Oh94oRI0YoMzPzltZXYbm9vLxUv359SdK4ceMUFRWluXPnqkePHnrzzTe1bNkyNWnSRMeOHVPnzp318ccfq3Xr1iWeo7hq165t+zeZL//n/HOxSgrl5ha4uLjo1VdfVVxcnH799VdZrValpKTY/m/2Ws2bN9fChQv1+++/F9qev/vuO82ePVtdunSRJB09etR23NZR+ZeCjx49ulSz5V+WmC9/nQwdOlTSlf+DyB93165dio6OVmxsrO3yv9uxTnbt2qVHHnlEUVFR+tvf/lboPEV5LT09PVW5cuXblvvaXPPnz5d05f4STz/9dKHzl3au5cuX6+LFi5Kk1atXa+LEiUpPT5e7u7vatGlj+wC43bmulr/OBgwYoKpVq+rixYtO/Xf50EMPSbpS7PNfy++//96W1dnrLCsrS1lZWcrNzVXTpk2d/l5RuXJlubu7KzAw0HbZ+OXLl+Xi4qI9e/aU2vrIysqSi4uLbcz8jBaLxbbH9urcN3qvqFKlivLy8m5pfd1MYTmysrLUrFkzffzxx/L391e3bt1sewZv57/B6wkJCdFrr71ml2HdunVq0qSJqlWrVqJjcULxLerZs6dcXV317rvvavjw4Ro2bJgWLlyoAwcOKCkpSX//+9+1cOFCSbLdp+TZZ5/Vjz/+qH379mnx4sXau3evJCkwMFCLFy/W7t27tWXLFj333HM3bdvX2r9/v5KTk3XixAlZrVbl5eUpPj5ew4YNu23Z8teJJNvhlL/97W/q0KGDgoOD5e3trbffflsnTpzQs88+W6rrZOfOnQoLC9Njjz2muLg4nThxQidOnCj0/j/Xey0///xzffTRRzp48KC2bNmi5ORkRURElGru1atXa/78+dq5c6dat26t33//XVFRUapbt64mTpzotG2sYcOGatasmZo1a6a4uDjbG9TLL7+s+Ph4p+U6ceKEPvjgA+3cuVP79+/X6dOnlZmZqVatWjn932Xjxo3VrVs3DR06VH5+fsrLy1Pnzp1Vs2ZNzZs3z6nvF5Jse04qVap029/HCnuvyMzM1JkzZ/TMM8/otdde08SJExUTEyMPDw9dvny51NZHRESEzp49q0GDBmn37t3atWuXYmJiZLFYVLNmzUJzX7u+1qxZo48++kjbtm3T3r17lZycrI4dO5ba65ifo3fv3urXr5+GDBmip59+WgkJCRo6dKhmz57ttM+fixcvKjk5WcnJyba9P3369JG7u7tiY2O1a9cuLV26VDNmzFBcXJxD4xRJiZ7BY3JRUVFGt27dCkxPSEgwatWqZVy4cMGYPn260aRJE6NChQpGrVq1jMjISLuTBn/66SfjscceMypWrGhUrlzZCA0NNQ4cOGAYhmEkJSUZrVq1Mjw8PIzAwEDjk08+MerVq2dMmzbNtrxucFJlt27djI4dO9qdhJr/2LVrV6lka926tW2dXJ1txIgRhiRj06ZNxvTp040aNWoUmqtevXqltk4M48qJbYWN6+XlVeTX8nbm7tq1q9GtWzdj/fr1RkhIiOHt7W14eHgYNWrUMCpWrGgcO3bMKdtYfq5rvfDCC4Ykp+XK3/ZDQkKMFi1aGJUqVTK8vLyMoKAgo3v37k79d3n1OktPTzf69+9vVK1a1fD09DTc3d2NPXv2OD2XYRhGSEiI0adPn1J/Hyvqe0WTJk0MNzc3o0KFCoabm5tRqVIl45FHHjE2b95cqu8VhmEYa9euNR566CHD29vbqFatmvHII48YXbp0uaX3CkklkjssLMzo1q1bgdwJCQlGhQoVjCpVqhhubm6Gh4eH4ebmdlv/Dea73ufPoUOH7DK0b9/esFqthp+fn/HGG28UWLclwfL/AwMAAJgCh6UAAICpUG5wR7vvvvtUqVKlQh///Oc/nR0PQBnRuXPn675XTJw40dnxcA0OS+GOduTIket+X42vr6/t6igAd7bffvvNdqXgtapXr67q1avf5kS4EcoNAAAwFQ5LAQAAU6HcAAAAU6HcAAAAU6HcAHA6i8Wizz77TNKVr5ewWCxKTk6+7TmKM3Z0dLS6d+9+w3kefvhh/fnPf76lbACKjnID3MGio6NlsVhksVhUoUIFBQQEaMSIEYV+PUVZcf/99xf4ssl8ixcvltVqLfZ34vj7++v48eO2L0QEUD5RboA7XKdOnXT8+HEdPHhQ06ZN07vvvqv4+Hhnx7qu2NhYLVmypNDLcufPn68nn3yywHcBFUVOTo5cXV1Vu3ZtubnxncJAeUa5Ae5wVqtVtWvXlr+/v7p3767w8HCtW7fO9vu8vDwlJCQoICBAnp6eCgoK0rJly+yeY9euXXriiSdUpUoVVa5cWaGhoTpw4IAk6YcfflBERIRq1qwpb29vdezYUUlJScXO27dvX128eFHLly+3m37o0CFt2LBBsbGxOnDggLp16yZfX19VqlRJrVu31ldffWU3f/369TVhwgT169dPVapU0YABAwoclsrNzVVsbKztb2/SpIlmzJhRaK7x48erVq1aqlKligYOHGj7ssDCZGdna/jw4fLz85OXl5fatm2rDRs22H5/5MgRde3aVdWqVZOXl5fuu+8+rV69ungrDLgDUW4A2OzcuVObNm2Su7u7bVpCQoIWLVqkOXPmaNeuXRo2bJj69u2rr7/+WtKVm5t16NBBVqtV69ev17Zt29S/f39dvnxZknT+/HlFRUVp48aN+v777xUYGKguXbro/PnzxcpYs2ZNdevWTfPmzbObvmDBAtWtW1ePPfaYLly4oC5duigxMVHbt29Xp06d1LVrV6WkpNgt89ZbbykoKEjbt2/XmDFjCoyVl5enunXr6pNPPtEvv/yisWPH6tVXX9XHH39sN19iYqJ2796tDRs26KOPPtKKFSs0fvz46/4NgwcP1ubNm7VkyRL9/PPP6tmzpzp16qR9+/ZJkgYNGqTs7Gx988032rFjhyZNmqRKlSoVa30Bd6RS+TpOAOVCVFSU4erqanh5eRlWq9WQZLi4uBjLli0zDMMwLl26ZFSsWNHYtGmT3XKxsbFG7969DcMwjFGjRhkBAQFGTk5OkcbMzc01KleubHz++ee2abrJtw1fa82aNYbFYjEOHjxoGIZh5OXlGfXq1TNGjx593WXuu+8+4+9//7vt53r16hndu3e3m6coYw8aNMjo0aOH7eeoqCijevXqRmZmpm3aO++8Y1SqVMnIzc01DOPKtyUPHTrUMAzDOHLkiOHq6mr89ttvds/76KOPGqNGjTIMwzDuv/9+Y9y4cdfNAODGOLAM3OHCwsL0zjvvKDMzU9OmTZObm5t69OghSdq/f7+ysrIUERFht0xOTo5atmwpSUpOTlZoaKgqVKhQ6POnpqZq9OjR2rBhg9LS0pSbm6usrKwCe1EcERERobp162r+/Pl6/fXXlZiYqJSUFMXExEiSLly4oHHjxmnVqlU6fvy4Ll++rIsXLxYYs1WrVjcda9asWZo3b55SUlJ08eJF5eTkqEWLFnbzBAUFqWLFirafQ0JCdOHCBR09elT16tWzm3fHjh3Kzc1V48aN7aZnZ2erRo0akqQhQ4boxRdf1Nq1axUeHq4ePXqoefPmRV4/wJ2OcgPc4by8vNSoUSNJ0rx58xQUFKS5c+cqNjZWFy5ckCStWrVKfn5+dstZrVZJkqen5w2fPyoqSqdPn9aMGTNUr149Wa1WhYSE3PCclJtxcXFRdHS0Fi5cqHHjxmn+/PkKCwtTgwYNJEnDhw/XunXr9NZbb6lRo0by9PTUH/7whwJjenl53XCcJUuWaPjw4ZoyZYpCQkJUuXJlvfnmm9qyZUuxs1+4cEGurq7atm2bXF1d7X6Xf+jp+eefV2RkpFatWqW1a9cqISFBU6ZM0csvv1zscYE7CeUGgI2Li4teffVVxcXFqU+fPmratKmsVqtSUlLUsWPHQpdp3ry5Fi5cqN9//73QvTffffedZs+erS5dukiSjh49WuxLta8WExOjv/71r1qxYoU+/fRTffDBB3ZjRkdH66mnnpJ0pVAcPnzY4TG+++47tWvXTi+99JJtWv6J0lf76aefdPHiRVvR+/7771WpUiX5+/sXmLdly5bKzc1VWlqaQkNDrzu2v7+/Bg4cqIEDB2rUqFF6//33KTdAEXFCMQA7PXv2lKurq2bNmqXKlStr+PDhGjZsmBYuXKgDBw4oKSlJf//737Vw4UJJV06OzcjI0LPPPqsff/xR+/bt0+LFi7V3715JUmBgoBYvXqzdu3dry5Yteu655266t6coAgIC9Mgjj2jAgAGyWq16+umnbb8LDAzUihUrlJycrJ9++kl9+vRRXl6ew2MEBgbqxx9/1Jdffqlff/1VY8aM0Q8//FBgvpycHMXGxuqXX37R6tWrFR8fr8GDB8vFpeBbbOPGjfXcc8+pX79+WrFihQ4dOqStW7cqISFBq1atkiT9+c9/1pdffqlDhw4pKSlJ//nPf3Tvvfc6nB+4U1FuANhxc3PT4MGDNXnyZGVmZmrChAkaM2aMEhISdO+996pTp05atWqVAgICJEk1atTQ+vXrdeHCBXXs2FHBwcF6//33bXtx5s6dq7Nnz+qBBx7QH//4Rw0ZMkQ+Pj4lkjU2NlZnz55Vnz595OHhYZs+depUVatWTe3atVPXrl0VGRmpBx54wOHn/9Of/qSnn35avXr1Utu2bXX69Gm7vTj5Hn30UQUGBqpDhw7q1auXnnzySY0bN+66zzt//nz169dPf/nLX9SkSRN1795dP/zwg+6++25JVy5BHzRokG19N27cWLNnz3Y4P3CnshiGYTg7BAAAQElhzw0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADCV/wcuiWwhrgYr0QAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of recall values from recall1 to recall10\n", + "recall_values = [recall1, recall2, recall2_1, recall3, recall4, recall5, recall6, recall7, recall8, recall8_1, recall9, recall10]\n", + "\n", + "# List of corresponding labels for each recall value\n", + "labels = ['Recall1', 'Recall2', 'Recall2_1', 'Recall3', 'Recall4', 'Recall5', 'Recall6', 'Recall7', 'Recall8', 'Recall8_1', 'Recall9', 'Recall10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, recall_values, color='cyan')\n", + "plt.xlabel('Recall Variables')\n", + "plt.ylabel('Recall Values')\n", + "plt.title('Bar Graph of Recall')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": { + "id": "13cZXvb0DsvK" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "provenance": [], + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Python File/Stock_Price_Prediction_LOCAL_20502.ipynb b/Python File/Stock_Price_Prediction_LOCAL_20502.ipynb new file mode 100644 index 0000000..19803fe --- /dev/null +++ b/Python File/Stock_Price_Prediction_LOCAL_20502.ipynb @@ -0,0 +1,7142 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "qCDSjVhXLr_Z" + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.metrics import mean_squared_error, mean_absolute_error, mean_absolute_percentage_error, accuracy_score, precision_score, confusion_matrix, recall_score, f1_score" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "SOQbXSiB-g5G", + "outputId": "55ee6ec8-9146-4ebf-c2fe-b4b06bc3a5c4" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n" + ] + } + ], + "source": [ + "from google.colab import drive\n", + "drive.mount('/content/drive')\n", + "df = pd.read_csv('drive/My Drive/Colab Notebooks/Stock Price Prediction RNN/SBIN.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "Sc4id6VxL8BS", + "outputId": "78207ea2-5b80-47a2-a1b1-0548765b6455" + }, + "outputs": [ + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "summary": "{\n \"name\": \"df\",\n \"rows\": 7074,\n \"fields\": [\n {\n \"column\": \"Date\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 7074,\n \"samples\": [\n \"11-08-2016\",\n \"30-10-2007\",\n \"17-01-2017\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Open\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 154.7732294451065,\n \"min\": 13.478195,\n \"max\": 703.650024,\n \"num_unique_values\": 4758,\n \"samples\": [\n 174.399994,\n 31.0324,\n 187.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"High\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 156.34507839355788,\n \"min\": 13.935802,\n \"max\": 728.349976,\n \"num_unique_values\": 5403,\n \"samples\": [\n 473.0,\n 495.450012,\n 78.321663\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Low\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 152.98051601861624,\n \"min\": 13.214009,\n \"max\": 694.200012,\n \"num_unique_values\": 5488,\n \"samples\": [\n 60.2957,\n 22.677523,\n 16.983376\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 154.63054905628158,\n \"min\": 13.346102,\n \"max\": 725.25,\n \"num_unique_values\": 5975,\n \"samples\": [\n 633.599976,\n 241.100006,\n 107.834999\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Adj Close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 152.90324918554683,\n \"min\": 9.53141,\n \"max\": 725.25,\n \"num_unique_values\": 6575,\n \"samples\": [\n 12.345289,\n 223.836212,\n 16.758821\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Volume\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 34627439.399630256,\n \"min\": 0.0,\n \"max\": 446948261.0,\n \"num_unique_values\": 6948,\n \"samples\": [\n 29959130.0,\n 1648453.0,\n 14077470.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", + "type": "dataframe", + "variable_name": "df" + }, + "text/html": [ + "\n", + "
    \n", + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    DateOpenHighLowCloseAdj CloseVolume
    001-01-199618.69114718.97892218.54018418.82324012.40993143733533.0
    102-01-199618.89400518.96476717.73819218.22410612.01493156167280.0
    203-01-199618.32789218.56848917.64383917.73819211.69457768296318.0
    304-01-199617.50231217.83254217.22397217.67686311.65414286073880.0
    405-01-199617.73819217.78536617.45985217.57779311.58882776613039.0
    \n", + "
    \n", + "
    \n", + "\n", + "
    \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
    \n", + "\n", + "\n", + "
    \n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
    \n", + "\n", + "
    \n", + "
    \n" + ], + "text/plain": [ + " Date Open High Low Close Adj Close \\\n", + "0 01-01-1996 18.691147 18.978922 18.540184 18.823240 12.409931 \n", + "1 02-01-1996 18.894005 18.964767 17.738192 18.224106 12.014931 \n", + "2 03-01-1996 18.327892 18.568489 17.643839 17.738192 11.694577 \n", + "3 04-01-1996 17.502312 17.832542 17.223972 17.676863 11.654142 \n", + "4 05-01-1996 17.738192 17.785366 17.459852 17.577793 11.588827 \n", + "\n", + " Volume \n", + "0 43733533.0 \n", + "1 56167280.0 \n", + "2 68296318.0 \n", + "3 86073880.0 \n", + "4 76613039.0 " + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load the dataset\n", + "#df = pd.read_csv('/content/SBIN.NS.csv')\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "7LaYGXsfN-8y" + }, + "outputs": [], + "source": [ + "# Drop the 'Date' and 'Adj Close' columns\n", + "df.drop(['Date', 'Adj Close'], axis=1, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "pqbTBdnBOKJc", + "outputId": "42ed663c-ae0f-43d7-a7bd-18bb37dfef6f" + }, + "outputs": [ + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "summary": "{\n \"name\": \"df\",\n \"rows\": 7074,\n \"fields\": [\n {\n \"column\": \"Open\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 154.7732294451065,\n \"min\": 13.478195,\n \"max\": 703.650024,\n \"num_unique_values\": 4758,\n \"samples\": [\n 174.399994,\n 31.0324,\n 187.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"High\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 156.34507839355788,\n \"min\": 13.935802,\n \"max\": 728.349976,\n \"num_unique_values\": 5403,\n \"samples\": [\n 473.0,\n 495.450012,\n 78.321663\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Low\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 152.98051601861624,\n \"min\": 13.214009,\n \"max\": 694.200012,\n \"num_unique_values\": 5488,\n \"samples\": [\n 60.2957,\n 22.677523,\n 16.983376\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 154.63054905628158,\n \"min\": 13.346102,\n \"max\": 725.25,\n \"num_unique_values\": 5975,\n \"samples\": [\n 633.599976,\n 241.100006,\n 107.834999\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Volume\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 34627439.399630256,\n \"min\": 0.0,\n \"max\": 446948261.0,\n \"num_unique_values\": 6948,\n \"samples\": [\n 29959130.0,\n 1648453.0,\n 14077470.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}", + "type": "dataframe", + "variable_name": "df" + }, + "text/html": [ + "\n", + "
    \n", + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    OpenHighLowCloseVolume
    018.69114718.97892218.54018418.82324043733533.0
    118.89400518.96476717.73819218.22410656167280.0
    218.32789218.56848917.64383917.73819268296318.0
    317.50231217.83254217.22397217.67686386073880.0
    417.73819217.78536617.45985217.57779376613039.0
    \n", + "
    \n", + "
    \n", + "\n", + "
    \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
    \n", + "\n", + "\n", + "
    \n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
    \n", + "\n", + "
    \n", + "
    \n" + ], + "text/plain": [ + " Open High Low Close Volume\n", + "0 18.691147 18.978922 18.540184 18.823240 43733533.0\n", + "1 18.894005 18.964767 17.738192 18.224106 56167280.0\n", + "2 18.327892 18.568489 17.643839 17.738192 68296318.0\n", + "3 17.502312 17.832542 17.223972 17.676863 86073880.0\n", + "4 17.738192 17.785366 17.459852 17.577793 76613039.0" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "id": "dydEPoNeM6eN" + }, + "outputs": [], + "source": [ + "# Handle missing values\n", + "from sklearn.impute import SimpleImputer\n", + "imputer = SimpleImputer(strategy='mean')\n", + "df = pd.DataFrame(imputer.fit_transform(df), columns=df.columns)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "OQ3cGqgTMBwt" + }, + "outputs": [], + "source": [ + "# Select features and target variable\n", + "X = df[['Open', 'High', 'Low', 'Volume']]\n", + "y = df['Close']" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "9Oz-bwJOMEWD" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "id": "ugapDyXODtn3" + }, + "outputs": [], + "source": [ + "# Scale the features using Min-Max scaling\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "997ZEgibCZIO", + "outputId": "879af72c-3e7c-4b8c-ba28-452fa8ba3cd6" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(5659, 4)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "bmtt76RuCeyG", + "outputId": "855f34ec-4914-4e1f-c9b1-6f8753612100" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(1415, 4)" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_test.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "CeJkUJ92Ciqd", + "outputId": "21c5949c-e787-40df-b816-7cc9e830e401" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(5659,)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7HGC7VuTCjWc", + "outputId": "cbda22d6-bec9-45d7-80ac-c74ad14b7c0d" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(1415,)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_test.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "c6Ek8jRlO2_I" + }, + "source": [ + "## 1. LINEAR REGRESSION" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "id": "RdZ1SpzdMHAJ" + }, + "outputs": [], + "source": [ + "# Create a linear regression model\n", + "model1 = LinearRegression()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 241 + }, + "id": "mPM035IzMY04", + "outputId": "084d9520-1d31-4287-a9d1-6f9eeea60f9b" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    Close
    5286257.350006
    3408129.464996
    5477279.350006
    6906588.500000
    53021.644367
    \n", + "

    " + ], + "text/plain": [ + "5286 257.350006\n", + "3408 129.464996\n", + "5477 279.350006\n", + "6906 588.500000\n", + "530 21.644367\n", + "Name: Close, dtype: float64" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_train.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "qBhQ9HbYMI3d", + "outputId": "daac2bc7-a480-4013-8e06-717bb8c1fa65" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    LinearRegression()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "LinearRegression()" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model1.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "id": "X269co2kMS4z" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred1 = model1.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "id": "QK8GvDYPOd0Y" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse1 = np.sqrt(mean_squared_error(y_test, pred1))\n", + "mae1 = mean_absolute_error(y_test, pred1)\n", + "mape1 = mean_absolute_percentage_error(y_test, pred1)\n", + "accuracy1 = accuracy_score(y_test > pred1, y_test > pred1.round())\n", + "precision1 = precision_score(y_test > pred1, y_test > pred1.round())\n", + "confusion1 = confusion_matrix(y_test > pred1, y_test > pred1.round())\n", + "recall1 = recall_score(y_test > pred1, y_test > pred1.round())\n", + "f11 = f1_score(y_test > pred1, y_test > pred1.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dEi49xtEOtne", + "outputId": "60b53406-81c4-4531-cbb0-77b9ffde8890" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 1.6881364643681482\n", + "MAE: 0.9433353485344729\n", + "MAPE: 0.006085435990853812\n", + "Accuracy: 0.8296819787985866\n", + "Precision: 0.8623595505617978\n", + "Confusion Matrix:\n", + " [[560 98]\n", + " [143 614]]\n", + "Recall: 0.8110964332892999\n", + "F1 Score: 0.8359428182437032\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse1)\n", + "print(\"MAE:\", mae1)\n", + "print(\"MAPE:\", mape1)\n", + "print(\"Accuracy:\", accuracy1)\n", + "print(\"Precision:\", precision1)\n", + "print(\"Confusion Matrix:\\n\", confusion1)\n", + "print(\"Recall:\", recall1)\n", + "print(\"F1 Score:\", f11)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GxtMzlg-gR2P" + }, + "source": [ + "## 2. SVR" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "id": "o7K9r7EXWRjQ" + }, + "outputs": [], + "source": [ + "from sklearn.svm import SVR\n", + "from sklearn.model_selection import GridSearchCV" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "id": "0xQewd7QWTtq" + }, + "outputs": [], + "source": [ + "# Create an SVR model\n", + "model2 = SVR()\n", + "param_grid = {'C':[0.1, 1], 'epsilon':[0.01, 0.1, 0.5], 'kernel':['sigmoid']}\n", + "GV_SVR = GridSearchCV(model2, param_grid = param_grid, scoring = 'accuracy', n_jobs = -1)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "id": "DuNes3s6U2IV" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 191 + }, + "id": "22SaCsQmfhgP", + "outputId": "7867aa8e-a7dc-49e4-d0aa-310423e9c696" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.10/dist-packages/sklearn/model_selection/_search.py:1103: UserWarning: One or more of the test scores are non-finite: [nan nan nan nan nan nan]\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "text/html": [ + "
    GridSearchCV(estimator=SVR(), n_jobs=-1,\n",
    +              "             param_grid={'C': [0.1, 1], 'epsilon': [0.01, 0.1, 0.5],\n",
    +              "                         'kernel': ['sigmoid']},\n",
    +              "             scoring='accuracy')
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "GridSearchCV(estimator=SVR(), n_jobs=-1,\n", + " param_grid={'C': [0.1, 1], 'epsilon': [0.01, 0.1, 0.5],\n", + " 'kernel': ['sigmoid']},\n", + " scoring='accuracy')" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "GV_SVR.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "id": "OQ1nL4oYfkAC" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred2 = GV_SVR.predict(X_test)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "U6-EppR68Jsu", + "outputId": "cfa67a46-ab8c-478d-c13e-fe884ef7ebae" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'C': 0.1, 'epsilon': 0.01, 'kernel': 'sigmoid'}" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "GV_SVR.best_params_" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "id": "nRYTwydsfpjb" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics with grid search\n", + "rmse2 = np.sqrt(mean_squared_error(y_test, pred2))\n", + "mae2 = mean_absolute_error(y_test, pred2)\n", + "mape2 = mean_absolute_percentage_error(y_test, pred2)\n", + "accuracy2 = accuracy_score(y_test > pred2, y_test > pred2.round())\n", + "precision2 = precision_score(y_test > pred2, y_test > pred2.round())\n", + "confusion2 = confusion_matrix(y_test > pred2, y_test > pred2.round())\n", + "recall2 = recall_score(y_test > pred2, y_test > pred2.round())\n", + "f12 = f1_score(y_test > pred2, y_test > pred2.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "656J5oz5fzq6", + "outputId": "c62c2076-2a10-43da-935d-c593c2d7be79" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 158.5191296342117\n", + "MAE: 127.61818666535594\n", + "MAPE: 2.6724681150799072\n", + "Accuracy: 0.9985865724381625\n", + "Precision: 0.9970457902511078\n", + "Confusion Matrix:\n", + " [[738 2]\n", + " [ 0 675]]\n", + "Recall: 1.0\n", + "F1 Score: 0.9985207100591716\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics with grid search\n", + "print(\"RMSE:\", rmse2)\n", + "print(\"MAE:\", mae2)\n", + "print(\"MAPE:\", mape2)\n", + "print(\"Accuracy:\", accuracy2)\n", + "print(\"Precision:\", precision2)\n", + "print(\"Confusion Matrix:\\n\", confusion2)\n", + "print(\"Recall:\", recall2)\n", + "print(\"F1 Score:\", f12)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "tIlc-wCE8Jsv", + "outputId": "fc6a39f5-b546-444e-a522-8bbcf889be14" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    SVR()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "SVR()" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#fitting without grid search\n", + "model2.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "id": "f3u1h6Dk8Jsv" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred2_1 = model2.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "id": "F-NgJx2d8Jsv" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics without grid search\n", + "rmse2_1 = np.sqrt(mean_squared_error(y_test, pred2_1))\n", + "mae2_1 = mean_absolute_error(y_test, pred2_1)\n", + "mape2_1 = mean_absolute_percentage_error(y_test, pred2_1)\n", + "accuracy2_1 = accuracy_score(y_test > pred2_1, y_test > pred2_1.round())\n", + "precision2_1 = precision_score(y_test > pred2_1, y_test > pred2_1.round())\n", + "confusion2_1 = confusion_matrix(y_test > pred2_1, y_test > pred2_1.round())\n", + "recall2_1 = recall_score(y_test > pred2_1, y_test > pred2_1.round())\n", + "f12_1 = f1_score(y_test > pred2_1, y_test > pred2_1.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "_BB1EERE8Jsv", + "outputId": "11c94daf-d2db-4447-a5b9-b753e648b56c" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 147.71103599153602\n", + "MAE: 110.99419106508152\n", + "MAPE: 1.9715076513294716\n", + "Accuracy: 0.9992932862190813\n", + "Precision: 1.0\n", + "Confusion Matrix:\n", + " [[727 0]\n", + " [ 1 687]]\n", + "Recall: 0.998546511627907\n", + "F1 Score: 0.9992727272727273\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics without grid search\n", + "print(\"RMSE:\", rmse2_1)\n", + "print(\"MAE:\", mae2_1)\n", + "print(\"MAPE:\", mape2_1)\n", + "print(\"Accuracy:\", accuracy2_1)\n", + "print(\"Precision:\", precision2_1)\n", + "print(\"Confusion Matrix:\\n\", confusion2_1)\n", + "print(\"Recall:\", recall2_1)\n", + "print(\"F1 Score:\", f12_1)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hcIfVMWdgcKt" + }, + "source": [ + "## 3. Random Forest" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "id": "f7raXT_hf2ij" + }, + "outputs": [], + "source": [ + "from sklearn.ensemble import RandomForestRegressor\n", + "# Create a Random Forest model\n", + "model3 = RandomForestRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "id": "TadNM7MEU7fh" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "fF002Yepgk55", + "outputId": "4ff3a76e-04be-452e-8927-a7739bc306fb" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    RandomForestRegressor()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "RandomForestRegressor()" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model3.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "id": "8nRU_pzEgnCt" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred3 = model3.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "id": "4aKEXGVUgsry" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse3 = np.sqrt(mean_squared_error(y_test, pred3))\n", + "mae3 = mean_absolute_error(y_test, pred3)\n", + "mape3 = mean_absolute_percentage_error(y_test, pred3)\n", + "accuracy3 = accuracy_score(y_test > pred3, y_test > pred3.round())\n", + "precision3 = precision_score(y_test > pred3, y_test > pred3.round())\n", + "confusion3 = confusion_matrix(y_test > pred3, y_test > pred3.round())\n", + "recall3 = recall_score(y_test > pred3, y_test > pred3.round())\n", + "f13 = f1_score(y_test > pred3, y_test > pred3.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8pPzsCY1g305", + "outputId": "bc5eeab1-5d75-4be3-b26f-70c4fe533a47" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 2.2227552163641375\n", + "MAE: 1.2618627107561857\n", + "MAPE: 0.008011786688180922\n", + "Accuracy: 0.8537102473498234\n", + "Precision: 0.8575624082232012\n", + "Confusion Matrix:\n", + " [[624 97]\n", + " [110 584]]\n", + "Recall: 0.8414985590778098\n", + "F1 Score: 0.8494545454545455\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse3)\n", + "print(\"MAE:\", mae3)\n", + "print(\"MAPE:\", mape3)\n", + "print(\"Accuracy:\", accuracy3)\n", + "print(\"Precision:\", precision3)\n", + "print(\"Confusion Matrix:\\n\", confusion3)\n", + "print(\"Recall:\", recall3)\n", + "print(\"F1 Score:\", f13)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mZsLwLivhLGH" + }, + "source": [ + "## 4. Gradient Boosting Models (GBM)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "id": "TI8idoxOg6jF" + }, + "outputs": [], + "source": [ + "import xgboost as xgb\n", + "# Create an XGBoost model\n", + "model4 = xgb.XGBRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "id": "7r9xJDtOVBEA" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 254 + }, + "id": "2gpbDxshhexj", + "outputId": "2cdbacc9-909a-43c9-cf04-cc4f70015e43" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
    +              "             colsample_bylevel=None, colsample_bynode=None,\n",
    +              "             colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
    +              "             enable_categorical=False, eval_metric=None, feature_types=None,\n",
    +              "             gamma=None, grow_policy=None, importance_type=None,\n",
    +              "             interaction_constraints=None, learning_rate=None, max_bin=None,\n",
    +              "             max_cat_threshold=None, max_cat_to_onehot=None,\n",
    +              "             max_delta_step=None, max_depth=None, max_leaves=None,\n",
    +              "             min_child_weight=None, missing=nan, monotone_constraints=None,\n",
    +              "             multi_strategy=None, n_estimators=None, n_jobs=None,\n",
    +              "             num_parallel_tree=None, random_state=None, ...)
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + " colsample_bylevel=None, colsample_bynode=None,\n", + " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", + " enable_categorical=False, eval_metric=None, feature_types=None,\n", + " gamma=None, grow_policy=None, importance_type=None,\n", + " interaction_constraints=None, learning_rate=None, max_bin=None,\n", + " max_cat_threshold=None, max_cat_to_onehot=None,\n", + " max_delta_step=None, max_depth=None, max_leaves=None,\n", + " min_child_weight=None, missing=nan, monotone_constraints=None,\n", + " multi_strategy=None, n_estimators=None, n_jobs=None,\n", + " num_parallel_tree=None, random_state=None, ...)" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model4.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "id": "Jj9DXdUPhh9V" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred4 = model4.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "id": "TdH60Sllhn5O" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse4 = np.sqrt(mean_squared_error(y_test, pred4))\n", + "mae4 = mean_absolute_error(y_test, pred4)\n", + "mape4 = mean_absolute_percentage_error(y_test, pred4)\n", + "accuracy4 = accuracy_score(y_test > pred4, y_test > pred4.round())\n", + "precision4 = precision_score(y_test > pred4, y_test > pred4.round())\n", + "confusion4 = confusion_matrix(y_test > pred4, y_test > pred4.round())\n", + "recall4 = recall_score(y_test > pred4, y_test > pred4.round())\n", + "f14 = f1_score(y_test > pred4, y_test > pred4.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "qpnLeFyZhwB3", + "outputId": "1637d31a-e785-4414-dfe5-f7fa4fd282e9" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 2.733930065274145\n", + "MAE: 1.502457380471909\n", + "MAPE: 0.010026410639661481\n", + "Accuracy: 0.8840989399293286\n", + "Precision: 0.8948106591865358\n", + "Confusion Matrix:\n", + " [[613 75]\n", + " [ 89 638]]\n", + "Recall: 0.8775790921595599\n", + "F1 Score: 0.8861111111111111\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse4)\n", + "print(\"MAE:\", mae4)\n", + "print(\"MAPE:\", mape4)\n", + "print(\"Accuracy:\", accuracy4)\n", + "print(\"Precision:\", precision4)\n", + "print(\"Confusion Matrix:\\n\", confusion4)\n", + "print(\"Recall:\", recall4)\n", + "print(\"F1 Score:\", f14)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "d8nSGoyuh9dx" + }, + "source": [ + "## 5. Extreme Gradient Boosting (XGBoost)" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "id": "DyhhdlZAhx94" + }, + "outputs": [], + "source": [ + "import xgboost as xgb\n", + "# Create an XGBoost model\n", + "model5 = xgb.XGBRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "id": "Z_AD0lVOVHwB" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 254 + }, + "id": "RAIwxIp5iH9Z", + "outputId": "cc66ca33-11cc-4e5d-e7e1-f39b41466c28" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
    +              "             colsample_bylevel=None, colsample_bynode=None,\n",
    +              "             colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
    +              "             enable_categorical=False, eval_metric=None, feature_types=None,\n",
    +              "             gamma=None, grow_policy=None, importance_type=None,\n",
    +              "             interaction_constraints=None, learning_rate=None, max_bin=None,\n",
    +              "             max_cat_threshold=None, max_cat_to_onehot=None,\n",
    +              "             max_delta_step=None, max_depth=None, max_leaves=None,\n",
    +              "             min_child_weight=None, missing=nan, monotone_constraints=None,\n",
    +              "             multi_strategy=None, n_estimators=None, n_jobs=None,\n",
    +              "             num_parallel_tree=None, random_state=None, ...)
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "XGBRegressor(base_score=None, booster=None, callbacks=None,\n", + " colsample_bylevel=None, colsample_bynode=None,\n", + " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", + " enable_categorical=False, eval_metric=None, feature_types=None,\n", + " gamma=None, grow_policy=None, importance_type=None,\n", + " interaction_constraints=None, learning_rate=None, max_bin=None,\n", + " max_cat_threshold=None, max_cat_to_onehot=None,\n", + " max_delta_step=None, max_depth=None, max_leaves=None,\n", + " min_child_weight=None, missing=nan, monotone_constraints=None,\n", + " multi_strategy=None, n_estimators=None, n_jobs=None,\n", + " num_parallel_tree=None, random_state=None, ...)" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model5.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "id": "XmJds5fYiKT3" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred5 = model5.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": { + "id": "lZ1A0-L8iNCM" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse5 = np.sqrt(mean_squared_error(y_test, pred5))\n", + "mae5 = mean_absolute_error(y_test, pred5)\n", + "mape5 = mean_absolute_percentage_error(y_test, pred5)\n", + "accuracy5 = accuracy_score(y_test > pred5, y_test > pred5.round())\n", + "precision5 = precision_score(y_test > pred5, y_test > pred5.round())\n", + "confusion5 = confusion_matrix(y_test > pred5, y_test > pred5.round())\n", + "recall5 = recall_score(y_test > pred5, y_test > pred5.round())\n", + "f15 = f1_score(y_test > pred5, y_test > pred5.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7IkE-RAmiWNo", + "outputId": "d69e485e-0462-409a-f9aa-59e5ca7c4bef" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 2.733930065274145\n", + "MAE: 1.502457380471909\n", + "MAPE: 0.010026410639661481\n", + "Accuracy: 0.8840989399293286\n", + "Precision: 0.8948106591865358\n", + "Confusion Matrix:\n", + " [[613 75]\n", + " [ 89 638]]\n", + "Recall: 0.8775790921595599\n", + "F1 Score: 0.8861111111111111\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse5)\n", + "print(\"MAE:\", mae5)\n", + "print(\"MAPE:\", mape5)\n", + "print(\"Accuracy:\", accuracy5)\n", + "print(\"Precision:\", precision5)\n", + "print(\"Confusion Matrix:\\n\", confusion5)\n", + "print(\"Recall:\", recall5)\n", + "print(\"F1 Score:\", f15)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "A_J776rtiovq" + }, + "source": [ + "## 6. AdaBoostRegressor" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": { + "id": "HNq66cXRiYPJ" + }, + "outputs": [], + "source": [ + "from sklearn.ensemble import AdaBoostRegressor\n", + "# Create an AdaBoost model\n", + "model6 = AdaBoostRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": { + "id": "qPHH6rG0VW4V" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "P0oB5wjQivBr", + "outputId": "827e151d-e13e-4924-ef50-c5e1d13f6161" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    AdaBoostRegressor()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "AdaBoostRegressor()" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model6.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": { + "id": "Bf1m5ukOi2VM" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred6 = model6.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": { + "id": "oFWSqC4ai6gd" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse6 = np.sqrt(mean_squared_error(y_test, pred6))\n", + "mae6 = mean_absolute_error(y_test, pred6)\n", + "mape6 = mean_absolute_percentage_error(y_test, pred6)\n", + "accuracy6 = accuracy_score(y_test > pred6, y_test > pred6.round())\n", + "precision6 = precision_score(y_test > pred6, y_test > pred6.round())\n", + "confusion6 = confusion_matrix(y_test > pred6, y_test > pred6.round())\n", + "recall6 = recall_score(y_test > pred6, y_test > pred6.round())\n", + "f16 = f1_score(y_test > pred6, y_test > pred6.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "BsajWJGBjC80", + "outputId": "076cff01-ff0a-449b-d86c-df9f1363fecd" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 10.504089217159294\n", + "MAE: 8.746118088217727\n", + "MAPE: 0.20512996006219347\n", + "Accuracy: 0.9943462897526502\n", + "Precision: 0.9939879759519038\n", + "Confusion Matrix:\n", + " [[911 3]\n", + " [ 5 496]]\n", + "Recall: 0.9900199600798403\n", + "F1 Score: 0.992\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse6)\n", + "print(\"MAE:\", mae6)\n", + "print(\"MAPE:\", mape6)\n", + "print(\"Accuracy:\", accuracy6)\n", + "print(\"Precision:\", precision6)\n", + "print(\"Confusion Matrix:\\n\", confusion6)\n", + "print(\"Recall:\", recall6)\n", + "print(\"F1 Score:\", f16)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Q9DzOt3CkWFX" + }, + "source": [ + "## 7. Decision Tree" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "id": "23DZ2biSjF9a" + }, + "outputs": [], + "source": [ + "from sklearn.tree import DecisionTreeRegressor\n", + "# Create a Decision Tree model\n", + "model7 = DecisionTreeRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": { + "id": "Ajo2RAVAVb7H" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "6mQEQf-ykc9F", + "outputId": "78dc7661-96e4-46af-b65a-c705018c58a3" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    DecisionTreeRegressor()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "DecisionTreeRegressor()" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model7.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": { + "id": "BFJ9q_tvkgRC" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred7 = model7.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": { + "id": "9IxfYZbYkjv1" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse7 = np.sqrt(mean_squared_error(y_test, pred7))\n", + "mae7 = mean_absolute_error(y_test, pred7)\n", + "mape7 = mean_absolute_percentage_error(y_test, pred7)\n", + "accuracy7 = accuracy_score(y_test > pred7, y_test > pred7.round())\n", + "precision7 = precision_score(y_test > pred7, y_test > pred7.round())\n", + "confusion7 = confusion_matrix(y_test > pred7, y_test > pred7.round())\n", + "recall7 = recall_score(y_test > pred7, y_test > pred7.round())\n", + "f17 = f1_score(y_test > pred7, y_test > pred7.round())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AnZXMYb8kooV", + "outputId": "93527d46-9366-49ce-b895-7a12ae87f742" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 3.136698143876249\n", + "MAE: 1.6416165234385407\n", + "MAPE: 0.010224639636659394\n", + "Accuracy: 0.8600706713780919\n", + "Precision: 0.8687845303867403\n", + "Confusion Matrix:\n", + " [[588 95]\n", + " [103 629]]\n", + "Recall: 0.8592896174863388\n", + "F1 Score: 0.864010989010989\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse7)\n", + "print(\"MAE:\", mae7)\n", + "print(\"MAPE:\", mape7)\n", + "print(\"Accuracy:\", accuracy7)\n", + "print(\"Precision:\", precision7)\n", + "print(\"Confusion Matrix:\\n\", confusion7)\n", + "print(\"Recall:\", recall7)\n", + "print(\"F1 Score:\", f17)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LH-B-Xd6k5UD" + }, + "source": [ + "## 8. KNeighborsRegressor(KNN)" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": { + "id": "JVDSed7yktFY" + }, + "outputs": [], + "source": [ + "from sklearn.neighbors import KNeighborsRegressor\n", + "from sklearn.model_selection import GridSearchCV\n", + "# Create a KNN model\n", + "model8 = KNeighborsRegressor()\n", + "param_grid = {'n_neighbors':[3, 5, 7, 9, 11, 15, 20, 23, 25, 30, 60, 70, 150]}\n", + "GV_KNN = GridSearchCV(model8, param_grid, cv=5, scoring='neg_mean_squared_error')" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": { + "id": "XJHb5SxrVgVp" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "9fn64o-ZlBka", + "outputId": "bc388b6b-cf36-4a91-eb52-8fe7a861308b" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    KNeighborsRegressor()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "KNeighborsRegressor()" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model8.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "id": "hbfbbjcSlDn7" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred8 = model8.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "id": "hnWyNv3blHdL" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse8 = np.sqrt(mean_squared_error(y_test, pred8))\n", + "mae8 = mean_absolute_error(y_test, pred8)\n", + "mape8 = mean_absolute_percentage_error(y_test, pred8)\n", + "accuracy8 = accuracy_score(y_test > pred8, y_test > pred8.round())\n", + "precision8 = precision_score(y_test > pred8, y_test > pred8.round())\n", + "confusion8 = confusion_matrix(y_test > pred8, y_test > pred8.round())\n", + "recall8 = recall_score(y_test > pred8, y_test > pred8.round())\n", + "f18 = f1_score(y_test > pred8, y_test > pred8.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IPoDRkcMlMAr", + "outputId": "5aee40b5-c7c1-4fad-f419-37d08a504146" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 148.73183825029315\n", + "MAE: 109.35229571264969\n", + "MAPE: 1.75024316976612\n", + "Accuracy: 0.9908127208480565\n", + "Precision: 0.9887820512820513\n", + "Confusion Matrix:\n", + " [[785 7]\n", + " [ 6 617]]\n", + "Recall: 0.9903691813804173\n", + "F1 Score: 0.9895749799518845\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse8)\n", + "print(\"MAE:\", mae8)\n", + "print(\"MAPE:\", mape8)\n", + "print(\"Accuracy:\", accuracy8)\n", + "print(\"Precision:\", precision8)\n", + "print(\"Confusion Matrix:\\n\", confusion8)\n", + "print(\"Recall:\", recall8)\n", + "print(\"F1 Score:\", f18)" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 80 + }, + "id": "5qW5X1Xe8Js7", + "outputId": "6abf26c0-873e-42e2-9aab-c2bd93a5ae84" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    KNeighborsRegressor(n_neighbors=150)
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "KNeighborsRegressor(n_neighbors=150)" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "GV_KNN.fit(X_train, y_train)\n", + "pred8_1 = GV_KNN.predict(X_test)\n", + "GV_KNN.best_estimator_" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": { + "id": "voNSUlHk8Js7" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics with grid search\n", + "rmse8_1 = np.sqrt(mean_squared_error(y_test, pred8_1))\n", + "mae8_1 = mean_absolute_error(y_test, pred8_1)\n", + "mape8_1 = mean_absolute_percentage_error(y_test, pred8_1)\n", + "accuracy8_1 = accuracy_score(y_test > pred8_1, y_test > pred8_1.round())\n", + "precision8_1 = precision_score(y_test > pred8_1, y_test > pred8_1.round())\n", + "confusion8_1 = confusion_matrix(y_test > pred8_1, y_test > pred8_1.round())\n", + "recall8_1 = recall_score(y_test > pred8_1, y_test > pred8_1.round())\n", + "f18_1 = f1_score(y_test > pred8_1, y_test > pred8_1.round())" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VMnot_fX8Js8", + "outputId": "71c354e6-71e6-4d31-ee2f-2a03f65d24fe" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 137.20694663964096\n", + "MAE: 101.08872313712585\n", + "MAPE: 1.7323302969000884\n", + "Accuracy: 0.9985865724381625\n", + "Precision: 1.0\n", + "Confusion Matrix:\n", + " [[865 0]\n", + " [ 2 548]]\n", + "Recall: 0.9963636363636363\n", + "F1 Score: 0.9981785063752276\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics with grid search\n", + "print(\"RMSE:\", rmse8_1)\n", + "print(\"MAE:\", mae8_1)\n", + "print(\"MAPE:\", mape8_1)\n", + "print(\"Accuracy:\", accuracy8_1)\n", + "print(\"Precision:\", precision8_1)\n", + "print(\"Confusion Matrix:\\n\", confusion8_1)\n", + "print(\"Recall:\", recall8_1)\n", + "print(\"F1 Score:\", f18_1)" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 524 + }, + "id": "Swebseye8Js8", + "outputId": "c501acf3-094c-4ba6-f0d7-1a0901cdb2e0" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1AAAAH7CAYAAADCX341AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVWElEQVR4nO3de3iU9Z3//9fMJDM5TjBASJAgEa2agihHU/uluqWEGq2stqtWLZ7qwgYU2FW0VSn2W7G6rWhRaO1e4G+Rou631AI1bsrJWoJRECFEUCEFNBkSjMmEkOPM/fsDZsiQBCaQ5L5n8nxc11wy9/3Jnfd8QoFXPyebYRiGAAAAAABnZDe7AAAAAACIFAQoAAAAAAgTAQoAAAAAwkSAAgAAAIAwEaAAAAAAIEwEKAAAAAAIEwEKAAAAAMJEgAIAAACAMBGgAAAAACBMMWYXYCa/36/y8nIlJyfLZrOZXQ4AAAAAkxiGobq6Og0ePFh2+2nGmYwueOqpp4yxY8caSUlJxsCBA40bb7zR2LNnT0ibb33rW4akkNe//uu/hrQ5cOCAcd111xnx8fHGwIEDjf/4j/8wWlpaQtps3LjRuPLKKw2n02kMHz7cWLZsWbt6Fi9ebFxwwQWGy+Uyxo8fb7z33ntd+TjGoUOH2tXKixcvXrx48eLFixevvvs6dOjQaTNEl0agNm/erPz8fI0bN06tra36yU9+osmTJ6u0tFSJiYnBdj/+8Y/15JNPBt8nJCQEf+3z+ZSXl6f09HRt2bJFFRUV+tGPfqTY2Fg99dRTkqSysjLl5eVp+vTpevXVV7V+/Xrdd999ysjIUG5uriTptdde09y5c7V06VJNmDBBixYtUm5urvbu3au0tLSwPk9ycrIk6dChQ3K73V3pCgAAAABRxOv1KjMzM5gROmMzDMM4229SVVWltLQ0bd68WRMnTpQkXXPNNbriiiu0aNGiDr/mrbfe0vXXX6/y8nINGjRIkrR06VLNmzdPVVVVcjqdmjdvntatW6eSkpLg1916662qqalRQUGBJGnChAkaN26cFi9eLOn4dLzMzEzNmjVLjzzySFj1e71epaSkqLa2lgAFAAAA9GHhZoNz2kSitrZWkpSamhpy/dVXX9WAAQM0YsQIPfroozp27FjwXlFRkUaOHBkMT5KUm5srr9er3bt3B9tMmjQp5Jm5ubkqKiqSJDU3N2vbtm0hbex2uyZNmhRs05GmpiZ5vd6QFwAAAACE66w3kfD7/Zo9e7auvvpqjRgxInj9hz/8oS644AINHjxYO3fu1Lx587R371798Y9/lCR5PJ6Q8CQp+N7j8Zy2jdfrVUNDg7766iv5fL4O2+zZs6fTmhcuXKgFCxac7UcGAAAA0MeddYDKz89XSUmJ3n333ZDr999/f/DXI0eOVEZGhr797W9r3759Gj58+NlX2g0effRRzZ07N/g+MM8RAAAAAMJxVgFq5syZWrt2rd555x0NGTLktG0nTJggSfrss880fPhwpaenq7i4OKTN4cOHJUnp6enB/wautW3jdrsVHx8vh8Mhh8PRYZvAMzricrnkcrnC+5AAAAAAcIourYEyDEMzZ87U6tWrtWHDBmVlZZ3xa3bs2CFJysjIkCTl5ORo165dqqysDLYpLCyU2+1WdnZ2sM369etDnlNYWKicnBxJktPp1JgxY0La+P1+rV+/PtgGAAAAALpbl0ag8vPztXLlSr355ptKTk4OrllKSUlRfHy89u3bp5UrV+q6665T//79tXPnTs2ZM0cTJ07U5ZdfLkmaPHmysrOzdeedd+qZZ56Rx+PRY489pvz8/ODo0PTp07V48WI9/PDDuueee7Rhwwa9/vrrWrduXbCWuXPnatq0aRo7dqzGjx+vRYsWqb6+XnfffXd39Q0AAAAAhOjSNuY2m63D68uWLdNdd92lQ4cO6Y477lBJSYnq6+uVmZmpf/7nf9Zjjz0WshXggQMHNGPGDG3atEmJiYmaNm2ann76acXEnMxzmzZt0pw5c1RaWqohQ4bo8ccf11133RXyfRcvXqxnn31WHo9HV1xxhV544YXglMFwsI05AAAAACn8bHBO50BFOgIUAAAAAKmXzoECAAAAgL6EAAUAAAAAYSJAAQAAAECYCFAAAAAAECYCFAAAAACEqUvnQKFn+PyGisuqVVnXqLTkOI3PSpXD3vGW8QAAAADMQ4AyWUFJhRasKVVFbWPwWkZKnObfkK0pIzJMrAwAAADAqZjCZ6KCkgrNWLE9JDxJkqe2UTNWbFdBSYVJlQEAAADoCAHKJD6/oQVrStXRKcaBawvWlMrn77PnHAMAAACWQ4AySXFZdbuRp7YMSRW1jSouq+69ogAAAACcFgHKJJV1nYens2kHAAAAoOcRoEySlhzXre0AAAAA9DwClEnGZ6UqIyVOnW1WbtPx3fjGZ6X2ZlkAAAAAToMAZRKH3ab5N2RLUrsQFXg//4ZszoMCAAAALIQAZaIpIzK05I7RSk8JnaaXnhKnJXeM5hwoAAAAwGI4SNdkU0Zk6DvZ6Zr8683ad6Re/zH5a5pxzUWMPAEAAAAWxAiUBTjsNg0+L16SdP558YQnAAAAwKIIUBaRHHd8MNDb0GpyJQAAAAA6Q4CyiGRXrCSprrHF5EoAAAAAdIYAZRGBEai6RkagAAAAAKsiQFmEO/74CJSXAAUAAABYFgHKIk6OQDGFDwAAALAqApRFJMcxAgUAAABYHQHKIhiBAgAAAKyPAGURbCIBAAAAWB8ByiLccWxjDgAAAFgdAcoiAgGKg3QBAAAA6yJAWURgCl9Di08tPr/J1QAAAADoCAHKIpJOBChJOso6KAAAAMCSCFAWEeuwK8HpkMRGEgAAAIBVEaAsJDCNz8tGEgAAAIAlEaAs5ORhugQoAAAAwIoIUBbCWVAAAACAtRGgLCQ5eBYUAQoAAACwIgKUhbiDI1BM4QMAAACsiABlIckcpgsAAABYGgHKQhiBAgAAAKyNAGUhbCIBAAAAWBsBykLc8Sc2kWhiBAoAAACwIgKUhTACBQAAAFgbAcpCkl2BTSQYgQIAAACsiABlIYxAAQAAANZGgLKQ4DbmBCgAAADAkghQFuKOZxtzAAAAwMoIUBYSGIFqavWrqdVncjUAAAAATkWAspAkV0zw16yDAgAAAKyHAGUhDrstGKIIUAAAAID1EKAsxh3HOigAAADAqghQFhNYB8UIFAAAAGA9BCiLCZwFxWG6AAAAgPUQoCyGw3QBAAAA6yJAWczJw3QZgQIAAACshgBlMScP02UECgAAALAaApTFMAIFAAAAWBcBymJYAwUAAABYFwHKYk5uY84IFAAAAGA1BCiLcTMCBQAAAFgWAcpi3BykCwAAAFgWAcpiggfpMoUPAAAAsBwClMUkMwIFAAAAWFaXAtTChQs1btw4JScnKy0tTVOnTtXevXs7bGsYhr773e/KZrPpT3/6U8i9gwcPKi8vTwkJCUpLS9NDDz2k1tbQwLBp0yaNHj1aLpdLF110kZYvX97ue7z44osaNmyY4uLiNGHCBBUXF3fl41jSyV34WmQYhsnVAAAAAGirSwFq8+bNys/P19atW1VYWKiWlhZNnjxZ9fX17douWrRINput3XWfz6e8vDw1Nzdry5YteuWVV7R8+XI98cQTwTZlZWXKy8vTtddeqx07dmj27Nm677779PbbbwfbvPbaa5o7d67mz5+v7du3a9SoUcrNzVVlZWVXPpLluOOPj0C1+Aw1tfpNrgYAAABAWzbjHIY5qqqqlJaWps2bN2vixInB6zt27ND111+vDz74QBkZGVq9erWmTp0qSXrrrbd0/fXXq7y8XIMGDZIkLV26VPPmzVNVVZWcTqfmzZundevWqaSkJPjMW2+9VTU1NSooKJAkTZgwQePGjdPixYslSX6/X5mZmZo1a5YeeeSRsOr3er1KSUlRbW2t3G732XZDtzIMQ8N/8hf5Dan4p99WWnKc2SUBAAAAUS/cbHBOa6Bqa2slSampqcFrx44d0w9/+EO9+OKLSk9Pb/c1RUVFGjlyZDA8SVJubq68Xq92794dbDNp0qSQr8vNzVVRUZEkqbm5Wdu2bQtpY7fbNWnSpGCbjjQ1Ncnr9Ya8rMZmsynJdWIjiQbWQQEAAABWctYByu/3a/bs2br66qs1YsSI4PU5c+boG9/4hm688cYOv87j8YSEJ0nB9x6P57RtvF6vGhoadOTIEfl8vg7bBJ7RkYULFyolJSX4yszMDP8D9yIO0wUAAACs6awDVH5+vkpKSrRq1argtT//+c/asGGDFi1a1B21dbtHH31UtbW1wdehQ4fMLqlDgXVQ7MQHAAAAWMtZBaiZM2dq7dq12rhxo4YMGRK8vmHDBu3bt0/9+vVTTEyMYmKOT0W7+eabdc0110iS0tPTdfjw4ZDnBd4Hpvx11sbtdis+Pl4DBgyQw+HosE1H0wYDXC6X3G53yMuKTu7ER4ACAAAArKRLAcowDM2cOVOrV6/Whg0blJWVFXL/kUce0c6dO7Vjx47gS5Kee+45LVu2TJKUk5OjXbt2heyWV1hYKLfbrezs7GCb9evXhzy7sLBQOTk5kiSn06kxY8aEtPH7/Vq/fn2wTSRzc5guAAAAYEkxXWmcn5+vlStX6s0331RycnJwvVFKSori4+OVnp7e4QjQ0KFDg2Fr8uTJys7O1p133qlnnnlGHo9Hjz32mPLz8+VyuSRJ06dP1+LFi/Xwww/rnnvu0YYNG/T6669r3bp1wWfOnTtX06ZN09ixYzV+/HgtWrRI9fX1uvvuu8+6M6yCNVAAAACANXUpQC1ZskSSgtPxApYtW6a77rorrGc4HA6tXbtWM2bMUE5OjhITEzVt2jQ9+eSTwTZZWVlat26d5syZo+eff15DhgzR73//e+Xm5gbb3HLLLaqqqtITTzwhj8ejK664QgUFBe02lohETOEDAAAArOmczoGKdFY8B0qS/vPtvVq88TPd9Y1h+tn3vm52OQAAAEDU65VzoNAzklkDBQAAAFgSAcqCAmugOEgXAAAAsBYClAWdXAPFCBQAAABgJQQoC+IgXQAAAMCaCFAWFByBamIECgAAALASApQFBQ/SZQ0UAAAAYCkEKAsKbCJxtKlVfXiXeQAAAMByCFAWFJjC5/MbOtbsM7kaAAAAAAEEKAuKj3Uoxm6TxEYSAAAAgJUQoCzIZrOxlTkAAABgQQQoiwoepkuAAgAAACyDAGVRgREoL1P4AAAAAMsgQFmUO47DdAEAAACrIUBZFGugAAAAAOshQFlUcA0Uh+kCAAAAlkGAsihGoAAAAADrIUBZlDsYoBiBAgAAAKyCAGVR7vjAJhKMQAEAAABWQYCyqGRGoAAAAADLIUBZFAfpAgAAANZDgLIoRqAAAAAA6yFAWRQH6QIAAADWQ4CyqMAIFFP4AAAAAOsgQFlUYA3U0aZW+f2GydUAAAAAkAhQlhUYgTIM6Wgz0/gAAAAAKyBAWVRcrENOx/EfD+ugAAAAAGsgQFmYOz6wEx/roAAAAAArIEBZWDI78QEAAACWQoCysOBOfA2MQAEAAABWQICyMA7TBQAAAKyFAGVhJw/TZQQKAAAAsAIClIWdPEyXESgAAADACghQFhbYRMLLCBQAAABgCQQoC2MNFAAAAGAtBCgLYxtzAAAAwFoIUBbmjuMgXQAAAMBKCFAWxggUAAAAYC0EKAtzc5AuAAAAYCkEKAtjBAoAAACwFgKUhbnjWQMFAAAAWAkBysICI1D1zT61+vwmVwMAAACAAGVhgXOgJOloE9P4AAAAALMRoCws1mFXXOzxHxHroAAAAADzEaAsLjCNz8s6KAAAAMB0BCiLO3mYLiNQAAAAgNkIUBbHVuYAAACAdRCgLC6Zw3QBAAAAyyBAWZw7OAJFgAIAAADMRoCyuJOH6TKFDwAAADAbAcrigmugOAcKAAAAMB0ByuKSXYERKKbwAQAAAGYjQFncyU0kGIECAAAAzEaAsjgO0gUAAACsgwBlce54zoECAAAArIIAZXGBKXysgQIAAADMR4CyuOAaKEagAAAAANMRoCyOg3QBAAAA6yBAWVwgQDW2+NXi85tcDQAAANC3EaAsLunEFD6JjSQAAAAAsxGgLM5htynR6ZDEND4AAADAbASoCBA8C4rDdAEAAABTdSlALVy4UOPGjVNycrLS0tI0depU7d27N6TNv/7rv2r48OGKj4/XwIEDdeONN2rPnj0hbQ4ePKi8vDwlJCQoLS1NDz30kFpbQ8PBpk2bNHr0aLlcLl100UVavnx5u3pefPFFDRs2THFxcZowYYKKi4u78nEiBluZAwAAANbQpQC1efNm5efna+vWrSosLFRLS4smT56s+vr6YJsxY8Zo2bJl+vjjj/X222/LMAxNnjxZPp9PkuTz+ZSXl6fm5mZt2bJFr7zyipYvX64nnngi+IyysjLl5eXp2muv1Y4dOzR79mzdd999evvtt4NtXnvtNc2dO1fz58/X9u3bNWrUKOXm5qqysvJc+8RyAofpspU5AAAAYC6bYRjG2X5xVVWV0tLStHnzZk2cOLHDNjt37tSoUaP02Wefafjw4Xrrrbd0/fXXq7y8XIMGDZIkLV26VPPmzVNVVZWcTqfmzZundevWqaSkJPicW2+9VTU1NSooKJAkTZgwQePGjdPixYslSX6/X5mZmZo1a5YeeeSRDmtpampSU1NT8L3X61VmZqZqa2vldrvPtht63F3LirVpb5We/f7l+sHYTLPLAQAAAKKO1+tVSkrKGbPBOa2Bqq2tlSSlpqZ2eL++vl7Lli1TVlaWMjOP/8O/qKhII0eODIYnScrNzZXX69Xu3buDbSZNmhTyrNzcXBUVFUmSmpubtW3btpA2drtdkyZNCrbpyMKFC5WSkhJ8BWqyuuAaKEagAAAAAFOddYDy+/2aPXu2rr76ao0YMSLk3ksvvaSkpCQlJSXprbfeUmFhoZxOpyTJ4/GEhCdJwfcej+e0bbxerxoaGnTkyBH5fL4O2wSe0ZFHH31UtbW1wdehQ4fO7sP3MtZAAQAAANZw1gEqPz9fJSUlWrVqVbt7t99+uz788ENt3rxZX/va1/Qv//IvamxsPKdCu4PL5ZLb7Q55RYLAYbqcAwUAAACY66wC1MyZM7V27Vpt3LhRQ4YMaXc/JSVFF198sSZOnKj/+Z//0Z49e7R69WpJUnp6ug4fPhzSPvA+PT39tG3cbrfi4+M1YMAAORyODtsEnhFNGIECAAAArKFLAcowDM2cOVOrV6/Whg0blJWVFdbXGIYR3LwhJydHu3btCtktr7CwUG63W9nZ2cE269evD3lOYWGhcnJyJElOp1NjxowJaeP3+7V+/fpgm2jiDgYoRqAAAAAAM3UpQOXn52vFihVauXKlkpOT5fF45PF41NDQIEnav3+/Fi5cqG3btungwYPasmWLfvCDHyg+Pl7XXXedJGny5MnKzs7WnXfeqY8++khvv/22HnvsMeXn58vlckmSpk+frv379+vhhx/Wnj179NJLL+n111/XnDlzgrXMnTtXL7/8sl555RV9/PHHmjFjhurr63X33Xd3V99YxslNJBiBAgAAAMwU05XGS5YskSRdc801IdeXLVumu+66S3Fxcfrb3/6mRYsW6auvvtKgQYM0ceJEbdmyRWlpaZIkh8OhtWvXasaMGcrJyVFiYqKmTZumJ598Mvi8rKwsrVu3TnPmzNHzzz+vIUOG6Pe//71yc3ODbW655RZVVVXpiSeekMfj0RVXXKGCgoJ2G0tEg2RGoAAAAABLOKdzoCJduHu9m+39f1TrB0uLlDUgURv/4xqzywEAAACiTq+cA4XewSYSAAAAgDUQoCJAcA1UA1P4AAAAADMRoCJAYASq2edXY4vP5GoAAACAvosAFQGSnDGy2Y7/mo0kAAAAAPMQoCKA3W5Tkot1UAAAAIDZCFARwn1iHRQjUAAAAIB5CFARIrAOisN0AQAAAPMQoCIEh+kCAAAA5iNARYiTU/gYgQIAAADMQoCKEIxAAQAAAOYjQEWIk4fpMgIFAAAAmIUAFSFObiLBCBQAAABgFgJUhHDHs405AAAAYDYCVIQ4uQaKKXwAAACAWQhQESKZg3QBAAAA0xGgIgQH6QIAAADmI0BFCDfbmAMAAACmI0BFCA7SBQAAAMxHgIoQbddAGYZhcjUAAABA30SAihCBNVCtfkMNLT6TqwEAAAD6JgJUhEhwOuSw2ySxDgoAAAAwCwEqQthsNs6CAgAAAExGgIogJ7cyZwQKAAAAMAMBKoIkuzhMFwAAADATASqCJLkckqQNHx9W0b4v5fOzGx8AAADQm2LMLgDhKSip0Eef10qSXik6oFeKDigjJU7zb8jWlBEZJlcHAAAA9A2MQEWAgpIKzVixXU2t/pDrntpGzVixXQUlFSZVBgAAAPQtBCiL8/kNLVhTqo4m6wWuLVhTynQ+AAAAoBcQoCyuuKxaFbWNnd43JFXUNqq4rLr3igIAAAD6KAKUxVXWdR6ezqYdAAAAgLNHgLK4tOS4bm0HAAAA4OwRoCxufFaqMlLiZOvkvk1SRkqcxmel9mZZAAAAQJ9EgLI4h92m+TdkS1K7EBV4P/+GbDnsnUUsAAAAAN2FABUBpozI0JI7Ris9JXSaXnpKnJbcMZpzoAAAAIBeQoCKEFNGZOjdef+kb1+WJkmaesVgvTvvnwhPAAAAQC8iQEUQh92mbwwfIElqavUzbQ8AAADoZQSoCHPhwERJ0v6qepMrAQAAAPoeAlSEuWhgkiSp7Ei9fH7D5GoAAACAvoUAFWEG94uXK8auZp9fn391zOxyAAAAgD6FABVhHHabsgYcn8a3r+qoydUAAAAAfQsBKgINPzGNj3VQAAAAQO8iQEWg4QMZgQIAAADMQICKQMPTjo9A7atkBAoAAADoTQSoCHThgBNT+I4wAgUAAAD0JgJUBAqcBXXkaLNqjjWbXA0AAADQdxCgIlCiK0YZKXGSpH1sJAEAAAD0GgJUhAqMQu1nIwkAAACg1xCgIlRgK3NGoAAAAIDeQ4CKUCcDFCNQAAAAQG8hQEUoAhQAAADQ+whQESqwBurgl8fU4vObXA0AAADQNxCgIlS6O04JToda/YYOVh8zuxwAAACgTyBARSi73RYchdpXyTQ+AAAAoDcQoCLYhQOOr4Paf4Sd+AAAAIDeQICKYMGNJBiBAgAAAHoFASqCDU87MYWPnfgAAACAXkGAimCBKXz7quplGIbJ1QAAAADRjwAVwbIGJMpmk2obWlRd32x2OQAAAEDUI0BFsHinQ+f3i5d0fBQKAAAAQM8iQEW44EYSrIMCAAAAelyXAtTChQs1btw4JScnKy0tTVOnTtXevXuD96urqzVr1ixdcsklio+P19ChQ/XAAw+otrY25DkHDx5UXl6eEhISlJaWpoceekitra0hbTZt2qTRo0fL5XLpoosu0vLly9vV8+KLL2rYsGGKi4vThAkTVFxc3JWPExUCZ0HtJ0ABAAAAPa5LAWrz5s3Kz8/X1q1bVVhYqJaWFk2ePFn19cenj5WXl6u8vFz/+Z//qZKSEi1fvlwFBQW69957g8/w+XzKy8tTc3OztmzZoldeeUXLly/XE088EWxTVlamvLw8XXvttdqxY4dmz56t++67T2+//XawzWuvvaa5c+dq/vz52r59u0aNGqXc3FxVVlaea59ElJMjUEzhAwAAAHqazTiH7duqqqqUlpamzZs3a+LEiR22eeONN3THHXeovr5eMTExeuutt3T99dervLxcgwYNkiQtXbpU8+bNU1VVlZxOp+bNm6d169appKQk+Jxbb71VNTU1KigokCRNmDBB48aN0+LFiyVJfr9fmZmZmjVrlh555JGw6vd6vUpJSVFtba3cbvfZdoOpivZ9qdte3qoL+ido80PXml0OAAAAEJHCzQbntAYqMDUvNTX1tG3cbrdiYmIkSUVFRRo5cmQwPElSbm6uvF6vdu/eHWwzadKkkOfk5uaqqKhIktTc3Kxt27aFtLHb7Zo0aVKwTUeamprk9XpDXpFu+IkpfIeqj6mp1WdyNQAAAEB0O+sA5ff7NXv2bF199dUaMWJEh22OHDmin//857r//vuD1zweT0h4khR87/F4TtvG6/WqoaFBR44ckc/n67BN4BkdWbhwoVJSUoKvzMzM8D+wRQ1MdinZFSO/IR348pjZ5QAAAABR7awDVH5+vkpKSrRq1aoO73u9XuXl5Sk7O1s/+9nPzvbbdKtHH31UtbW1wdehQ4fMLumc2Ww2XZh2Yh1UJRtJAAAAAD0p5my+aObMmVq7dq3eeecdDRkypN39uro6TZkyRcnJyVq9erViY2OD99LT09vtlnf48OHgvcB/A9fatnG73YqPj5fD4ZDD4eiwTeAZHXG5XHK5XF37sBFg+MBEfXSohq3MAQAAgB7WpREowzA0c+ZMrV69Whs2bFBWVla7Nl6vV5MnT5bT6dSf//xnxcXFhdzPycnRrl27QnbLKywslNvtVnZ2drDN+vXrQ76usLBQOTk5kiSn06kxY8aEtPH7/Vq/fn2wTV8S2IlvPzvxAQAAAD2qSwEqPz9fK1as0MqVK5WcnCyPxyOPx6OGhgZJJ8NTfX29/uu//kterzfYxuc7vsHB5MmTlZ2drTvvvFMfffSR3n77bT322GPKz88Pjg5Nnz5d+/fv18MPP6w9e/bopZde0uuvv645c+YEa5k7d65efvllvfLKK/r44481Y8YM1dfX6+677+6uvokYgY0kGIECAAAAelaXpvAtWbJEknTNNdeEXF+2bJnuuusubd++Xe+9954k6aKLLgppU1ZWpmHDhsnhcGjt2rWaMWOGcnJylJiYqGnTpunJJ58Mts3KytK6des0Z84cPf/88xoyZIh+//vfKzc3N9jmlltuUVVVlZ544gl5PB5dccUVKigoaLexRF/Q9iwowzBks9lMrggAAACITud0DlSki4ZzoCSpqdWnyx4vkN+Qin/ybaW54878RQAAAACCeuUcKFiDK8ahoakJkqTPmMYHAAAA9BgCVJRoO40PAAAAQM8gQEWJC09sJLGfESgAAACgxxCgogQjUAAAAEDPI0BFieFpJwJUJSNQAAAAQE8hQEWJwAjUFzUNamj2mVwNAAAAEJ0IUFEiNdGpfgmxkqSyI0zjAwAAAHoCASqKnFwHxTQ+AAAAoCcQoKLI8BM78RGgAAAAgJ5BgIoiF54YgdrPTnwAAABAjyBARRGm8AEAAAA9iwAVRYYHD9Otl99vmFwNAAAAEH0IUFEkMzVBMXabGlp88ngbzS4HAAAAiDoEqCgS67Drgv4JkpjGBwAAAPQEAlSUuXDA8Wl8f/rwCxXt+1I+pvIBAAAA3SbG7ALQfQpKKrRl/5eSpP+3/Qv9v+1fKCMlTvNvyNaUERkmVwcAAABEPkagokRBSYVmrNiu+iZfyHVPbaNmrNiugpIKkyoDAAAAogcBKgr4/IYWrClVR5P1AtcWrCllOh8AAABwjghQUaC4rFoVtZ3vumdIqqhtVHFZde8VBQAAAEQhAlQUqKwLb8vycNsBAAAA6BgBKgqkJcd1azsAAAAAHSNARYHxWanKSImTrZP7NkkZKXEan5Xam2UBAAAAUYcAFQUcdpvm35AtSe1CVOD9/Buy5bB3FrEAAAAAhIMAFSWmjMjQkjtGKz0ldJreILdLS+4YzTlQAAAAQDfgIN0oMmVEhr6Tna7ismr926vb9NWxFv3n90fpm18baHZpAAAAQFRgBCrKOOw25Qzvr5zh/SVJu8q9JlcEAAAARA8CVJQaNaSfJGnn5zWm1gEAAABEEwJUlLo8GKBqzS0EAAAAiCIEqCg1ckiKbDbpi5oGHTnaZHY5AAAAQFQgQEWpJFeMhg9MksQ0PgAAAKC7EKCi2OVDUiRJHx1iGh8AAADQHQhQUYyNJAAAAIDuRYCKYoERqJ2f18owDJOrAQAAACIfASqKXZbhVozdpi/rm/VFTYPZ5QAAAAARjwAVxeJiHbo0I1kS25kDAAAA3YEAFeUC50F9dKjG1DoAAACAaECAinKjAjvxsZEEAAAAcM4IUFEuMAJV8oVXfj8bSQAAAADnggAV5S5OS1JcrF1Hm1q1/8hRs8sBAAAAIhoBKsrFOOwaMZgDdQEAAIDuQIDqAy7nQF0AAACgWxCg+oBRmYGNJBiBAgAAAM4FAaoPGHViBKq0wqvmVr+5xQAAAAARjADVB1zQP0Ep8bFqbvXrk8N1ZpcDAAAARCwCVB9gs9l0OedBAQAAAOeMANVHBALUTnbiAwAAAM4aAaqPCOzExwgUAAAAcPYIUH1EYCOJTyuPqqHZZ24xAAAAQIQiQPUR6SlxSkt2yec3tLucaXwAAADA2SBA9SEnp/ERoAAAAICzQYDqQ0YFNpJgHRQAAABwVghQfcjlmf0kSTsZgQIAAADOCgGqD7n8/OMjUGVH6lV7rMXkagAAAIDIQ4DqQ85LdGpoaoIkaecXNeYWAwAAAEQgAlQfEzxQl2l8AAAAQJcRoPqYwHlQHx2qMbUOAAAAIBIRoPqYUWwkAQAAAJw1AlQfM+J8t+w2yeNtVKW30exyAAAAgIhCgOpjEpwxujgtWRIH6gIAAABdRYDqgy7nQF0AAADgrHQpQC1cuFDjxo1TcnKy0tLSNHXqVO3duzekze9+9ztdc801crvdstlsqqmpafec6upq3X777XK73erXr5/uvfdeHT16NKTNzp079X/+z/9RXFycMjMz9cwzz7R7zhtvvKFLL71UcXFxGjlypP7yl7905eP0WYEDdRmBAgAAALqmSwFq8+bNys/P19atW1VYWKiWlhZNnjxZ9fX1wTbHjh3TlClT9JOf/KTT59x+++3avXu3CgsLtXbtWr3zzju6//77g/e9Xq8mT56sCy64QNu2bdOzzz6rn/3sZ/rd734XbLNlyxbddtttuvfee/Xhhx9q6tSpmjp1qkpKSrrykfqkUSdGoLYdqNabH36hon1fyuc3TK4KAAAAsD6bYRhn/S/nqqoqpaWlafPmzZo4cWLIvU2bNunaa6/VV199pX79+gWvf/zxx8rOztb777+vsWPHSpIKCgp03XXX6fPPP9fgwYO1ZMkS/fSnP5XH45HT6ZQkPfLII/rTn/6kPXv2SJJuueUW1dfXa+3atcFnX3XVVbriiiu0dOnSsOr3er1KSUlRbW2t3G732XZDxFnzUblm/eHDkGsZKXGaf0O2pozIMKkqAAAAwDzhZoNzWgNVW3t8ClhqamrYX1NUVKR+/foFw5MkTZo0SXa7Xe+9916wzcSJE4PhSZJyc3O1d+9effXVV8E2kyZNCnl2bm6uioqKOv3eTU1N8nq9Ia++pqCkQg+cEp4kyVPbqBkrtqugpMKEqgAAAIDIcNYByu/3a/bs2br66qs1YsSIsL/O4/EoLS0t5FpMTIxSU1Pl8XiCbQYNGhTSJvD+TG0C9zuycOFCpaSkBF+ZmZlh1x0NfH5DC9aUqqMhx8C1BWtKmc4HAAAAdOKsA1R+fr5KSkq0atWq7qynRz366KOqra0Nvg4dOmR2Sb2quKxaFbWdn/1kSKqobVRxWXXvFQUAAABEkJiz+aKZM2cGN38YMmRIl742PT1dlZWVIddaW1tVXV2t9PT0YJvDhw+HtAm8P1ObwP2OuFwuuVyuLtUbTSrrwjs4N9x2AAAAQF/TpREowzA0c+ZMrV69Whs2bFBWVlaXv2FOTo5qamq0bdu24LUNGzbI7/drwoQJwTbvvPOOWlpagm0KCwt1ySWX6Lzzzgu2Wb9+fcizCwsLlZOT0+Wa+oq05LhubQcAAAD0NV0KUPn5+VqxYoVWrlyp5ORkeTweeTweNTQ0BNt4PB7t2LFDn332mSRp165d2rFjh6qrj08Lu+yyyzRlyhT9+Mc/VnFxsf7+979r5syZuvXWWzV48GBJ0g9/+EM5nU7de++92r17t1577TU9//zzmjt3bvD7PPjggyooKNCvfvUr7dmzRz/72c/0wQcfaObMmefcKdFqfFaqMlLiZOvkvk3Hd+MbnxX+piAAAABAX9Klbcxtto7/6b1s2TLdddddkqSf/exnWrBgwWnbVFdXa+bMmVqzZo3sdrtuvvlmvfDCC0pKSgq237lzp/Lz8/X+++9rwIABmjVrlubNmxfyzDfeeEOPPfaY/vGPf+jiiy/WM888o+uuuy7cj9MntzEvKKnQjBXbJandZhI2SUvuGM1W5gAAAOhzws0G53QOVKTriwFKOh6iFqwpDdlQItZh029uu5LwBAAAgD4p3GxwVptIILJNGZGh72Snq7isWmVHjuqJN3erxWfo/H4JZpcGAAAAWNo5HaSLyOWw25QzvL9+OOECXTfy+KjTyuKDJlcFAAAAWBsBCrpt/FBJ0p93fKGjTa0mVwMAAABYFwEKuurCVF04IFH1zT6t+ajc7HIAAAAAyyJAQTabLTgKtfI9pvEBAAAAnSFAQZJ085ghcjrs2vVFrXZ9Xmt2OQAAAIAlEaAgSUpNdGrKiHRJ0h/eZxQKAAAA6AgBCkGBaXxvfshmEgAAAEBHCFAIYjMJAAAA4PQIUAhqu5nEHzgTCgAAAGiHAIUQgc0kdn5eq5Iv2EwCAAAAaIsAhRBtN5NYySgUAAAAEIIAhXbabiZRz2YSAAAAQBABCu203Uziz2wmAQAAAAQRoNBO280kXn5nv97c8YWK9n0pn98wuTIAAADAXDFmFwBr6pcQK0naf6ReD67aIUnKSInT/BuyNWVEhomVAQAAAOZhBArtFJRU6OH/2dnuuqe2UTNWbFdBSYUJVQEAAADmI0AhhM9vaMGaUnU0WS9wbcGaUqbzAQAAoE8iQCFEcVm1KmobO71vSKqobVRxWXXvFQUAAABYBAEKISrrOg9PZ9MOAAAAiCYEKIRIS47r1nYAAABANCFAIcT4rFRlpMTJdpo26W6Xxmel9lpNAAAAgFUQoBDCYbdp/g3ZktRpiMpIiZf9dAkLAAAAiFIEKLQzZUSGltwxWukpodP0BiQ55bBLHx6q0X+9W2ZSdQAAAIB5OEgXHZoyIkPfyU5XcVm1KusalZYcp/FZqVr53gE9/uZuLXxrjy4f0o+pfAAAAOhTGIFCpxx2m3KG99eNV5yvnOH95bDbdMdVF2jqFYPl8xvKX7ldlV524wMAAEDfQYBCl9hsNj1100hdMihZVXVNmrnyQ7X4/GaXBQAAAPQKAhS6LMEZoyV3jFaSK0bF/6jWMwV7zC4JAAAA6BUEKJyVCwcm6T9/cLkk6eW/lekvuypMrggAAADoeQQonLUpIzL0rxMvlCQ9/D87ta/qqMkVAQAAAD2LAIVz8lDuJRqflaqjTa2asWKbjjW3ml0SAAAA0GMIUDgnMQ67Fv/wSqUlu/TJ4aN65P/tkmEYZpcFAAAA9AgCFM5ZWnKcXrx9tBx2m/78Ubn+e+sBs0sCAAAAegQBCt1i3LBUPfrdSyVJP19bqu0HvzK5IgAAAKD7EaDQbe79ZpbyRmaoxWfo31Zs15dHm8wuCQAAAOhWBCh0G5vNpl9+/3JdODBRHm+jHlj1oXx+1kMBAAAgehCg0K2SXDH67R1jlOB06O+ffalfF+41uyQAAACg2xCg0O0uHpSsp28+fsjuixv36a+lh02uCAAAAOgeBCj0iO+NGqy7vjFMkjTn9R3aX3VURfu+1Js7vlDRvi+Z2gcAAICIFGN2AYheP7nuMu38vEbbD9Zo8nPvqLVNaMpIidP8G7I1ZUSGiRUCAAAAXcMIFHqMM8auH4zNlKSQ8CRJntpGzVixXQUlFWaUBgAAAJwVAhR6jM9v6IX1n3Z4LxCnFqwpZTofAAAAIgYBCj2muKxaFbWNnd43JFXUNqq4rLr3igIAAADOAQEKPaayrvPwdDbtAAAAALMRoNBj0pLjurUdAAAAYDYCFHrM+KxUZaTEyXaaNv0TnRqfldprNQEAAADnggCFHuOw2zT/hmxJ6jRE1Ta06O+fHem9ogAAAIBzQIBCj5oyIkNL7hit9JTQaXrpKXEaeb5brX5D9/1/H2jjnkqTKgQAAADCZzMMo8/uIe31epWSkqLa2lq53W6zy4lqPr+h4rJqVdY1Ki05TuOzUuXzG5r1h+16e/dhOR12vXj7aH0ne5DZpQIAAKAPCjcbEKAIUKZq8fk1e9UOrdtVoRi7TYt/eKWmjMgwuywAAAD0MeFmA6bwwVSxDruev/UK3XjFYLX6DeWv/FBrPio3uywAAACgQwQomC7GYdev/+UK3TT6fPn8hh5c9aH+9OEXZpcFAAAAtEOAgiU47DY9+/1RumVspvyGNOf1HfqfbZ+bXRYAAAAQggAFy3DYbVp400jdPmGoDEN66H8+0qrig2aXBQAAAAQRoGApdrtN/3fqCN31jWEyDOmRP+7Sf289YHZZAAAAgCQCFCzIZjt+AO9938ySJD3+pxIt+3uZyVUBAAAABChYlM1m00/zLtP0bw2XJC1YU6qX39lvclUAAADo6whQsCybzaZ5Uy7RA/90kSTpF3/5WC9u/MzkqgAAANCXEaBgaTabTXMnX6K53/maJOnZt/fq+b9+anJVAAAA6KsIUIgID3z7Yj085RJJ0nN//US/+t+9MgzD5KoAAADQ13QpQC1cuFDjxo1TcnKy0tLSNHXqVO3duzekTWNjo/Lz89W/f38lJSXp5ptv1uHDh0PaHDx4UHl5eUpISFBaWpoeeughtba2hrTZtGmTRo8eLZfLpYsuukjLly9vV8+LL76oYcOGKS4uThMmTFBxcXFXPg4izL9dc5F+et1lkqTfbPhMTxfsIUQBAACgV3UpQG3evFn5+fnaunWrCgsL1dLSosmTJ6u+vj7YZs6cOVqzZo3eeOMNbd68WeXl5brpppuC930+n/Ly8tTc3KwtW7bolVde0fLly/XEE08E25SVlSkvL0/XXnutduzYodmzZ+u+++7T22+/HWzz2muvae7cuZo/f762b9+uUaNGKTc3V5WVlefSH7C4H0+8UPNvyJYk/Xbzfv3fdR8TogAAANBrbMY5/OuzqqpKaWlp2rx5syZOnKja2loNHDhQK1eu1Pe//31J0p49e3TZZZepqKhIV111ld566y1df/31Ki8v16BBgyRJS5cu1bx581RVVSWn06l58+Zp3bp1KikpCX6vW2+9VTU1NSooKJAkTZgwQePGjdPixYslSX6/X5mZmZo1a5YeeeSRsOr3er1KSUlRbW2t3G732XYDTPDfWw/o8T8d//0xLecCPX59tt7/x1eqrGtUWnKcxmelymG3mVwlAAAAIkW42eCc1kDV1tZKklJTUyVJ27ZtU0tLiyZNmhRsc+mll2ro0KEqKiqSJBUVFWnkyJHB8CRJubm58nq92r17d7BN22cE2gSe0dzcrG3btoW0sdvtmjRpUrBNR5qamuT1ekNeiEx3XnWBnr5ppGw26ZWiA7p8wf/qtpe36sFVO3Tby1v1zV9uUEFJhdllAgAAIMqcdYDy+/2aPXu2rr76ao0YMUKS5PF45HQ61a9fv5C2gwYNksfjCbZpG54C9wP3TtfG6/WqoaFBR44ckc/n67BN4BkdWbhwoVJSUoKvzMzMrn9wWMat44fqR1ddIEk61uwLueepbdSMFdsJUQAAAOhWZx2g8vPzVVJSolWrVnVnPT3q0UcfVW1tbfB16NAhs0vCOfD5Df1v6eEO7wXmpS5YUyqfnzVSAAAA6B5nFaBmzpyptWvXauPGjRoyZEjwenp6upqbm1VTUxPS/vDhw0pPTw+2OXVXvsD7M7Vxu92Kj4/XgAED5HA4OmwTeEZHXC6X3G53yAuRq7isWhW1jZ3eNyRV1DaquKy694oCAABAVOtSgDIMQzNnztTq1au1YcMGZWVlhdwfM2aMYmNjtX79+uC1vXv36uDBg8rJyZEk5eTkaNeuXSG75RUWFsrtdis7OzvYpu0zAm0Cz3A6nRozZkxIG7/fr/Xr1wfbIPpV1nUens6mHQAAAHAmMV1pnJ+fr5UrV+rNN99UcnJycL1RSkqK4uPjlZKSonvvvVdz585Vamqq3G63Zs2apZycHF111VWSpMmTJys7O1t33nmnnnnmGXk8Hj322GPKz8+Xy+WSJE2fPl2LFy/Www8/rHvuuUcbNmzQ66+/rnXr1gVrmTt3rqZNm6axY8dq/PjxWrRokerr63X33Xd3V9/A4tKS47q1HQAAAHAmXQpQS5YskSRdc801IdeXLVumu+66S5L03HPPyW636+abb1ZTU5Nyc3P10ksvBds6HA6tXbtWM2bMUE5OjhITEzVt2jQ9+eSTwTZZWVlat26d5syZo+eff15DhgzR73//e+Xm5gbb3HLLLaqqqtITTzwhj8ejK664QgUFBe02lkD0Gp+VqoyUOHlqG9XZKiebJJ/P35tlAQAAIIqd0zlQkY5zoCJfQUmFZqzYLkkhIcrW5n2M3aanb75c3x8z5NQvBwAAACT10jlQgNmmjMjQkjtGKz0ldJpeekqcXrj1Ct0warBa/Yb+442P9OvCT9SH//8CAAAAdANGoBiBigo+v6HismpV1jUqLTlO47NS5bDb5Pcb+lXhXr24cZ8k6aYrz9fCm0fKFeMwuWIAAABYSbjZoEtroACrcthtyhnev911u92mh3IvVeZ5Cfrpn0r0xw+/UHltg357x1ilJMSaUCkAAAAiGVP40CfcOn6olt01TkmuGG3dX62blvxdh6qPSTo+elW070u9ueMLFe37koN3AQAA0Cmm8DGFr0/Z4/Hq7mXvq6K2UQOSnLrn6iz999YDIQfyZqTEaf4N2ZoyIsPESgEAANCbws0GBCgCVJ9z2Nuoe5a/r93l3g7v2078d8kdowlRAAAAfQS78AGdGOSO0x9+fJVcMR3/9g/8PwoL1pQynQ8AAAAhCFDok3aXe9XU2vkBu4akitpGFZdV915RAAAAsDwCFPqkyrrGMzfqQjsAAAD0DQQo9ElpyXFnbtSFdgAAAOgbCFDok8ZnpSojJS64YURH+sXHanxWaq/VBAAAAOsjQKFPcthtmn9DtiR1GqJqGlr0f9eVqsXn56woAAAASGIbc7Yx7+MKSiq0YE1pu3Ogrhx6nv6yq0KS9LVBSao51qLKuqaQNpwVBQAAED04ByoMBChIks9vqLisWpV1jUpLjtP4rFQ57DYVlHj04KoPO9ytj7OiAAAAoku42SCmF2sCLMlhtylneP9217+TPUjJcTFqOtrc7p6h4yFqwZpSfSc7XQ776VZTAQAAIFqwBgroRHFZtY50EJ4COCsKAACg7yFAAZ3grCgAAACcigAFdCLcM6BWbD2gjyu8PVwNAAAArIAABXQinLOiJOn9f3yl7z7/N/3bq9u011PXK7UBAADAHAQooBOnOyvKduI1/4Zs3TBqsGw26S+7PJry/DuauXK7PqskSAEAAEQjtjFnG3OcQWdnRbU9B2qvp07Pr/9Ef9nlkSTZbNKNowbrgW9frAsHJplSNwAAAMLHOVBhIEAhXJ2dFXWq0nKvFv31E/1v6WFJkt0mTb3yfD3wTxdr2IDE3i4bAAAAYSJAhYEAhZ5S8kWtFv31E/3140pJx6cD3jz6fM36p4uVmZpgcnUAAAA4FQEqDAQo9LSPDtXoub9+ok17qyRJMXabfjB2iPKvvUhDzjsZpMId4QIAAEDPIECFgQCF3rL94Fd6rvAT/e3TI5KkWIdNt4zLVP61F+mjQzVnXGMFAACAnkWACgMBCr3tg39U67m/fqK/f/alpOMjUq3+9v8TDIw9LbljNCEKAACgF4SbDdjGHOhFY4el6tX7rtKq+6/SuGHndRieJClwdcGaUvk6aQMAAIDeR4ACTHDVhf019ztfO20bQ1JFbaM27a3snaIAAABwRjFmFwD0VZV1TWG1u/eVDzQ0NUHZGW5lD3YH/5uREiebjY0mAAAAehMBCjBJWnJc2G0PVh/TwepjKtjtCV7rlxB7PEwFgtVgt4YPTFKsg4FlAACAnkKAAkwyPitVGSlx8tQ2qqNVTjZJ6SlxWjvrm9p7uE6l5V6VVnhVWu7VZ5VHVXOsRVv2fakt+74Mfo3TYdfX0pPaBKsUXZaRrOS42F77XAAAANGMXfjYhQ8mKiip0IwV2yUpJESdaRe+plafPj18NBioAuHqaFNrh9+n7RTAr58YrUp3MwUQAAAggG3Mw0CAghUUlFR0yzlQfr+hz79qUGlFbchoVXmb57Z1XkJsyJqq7IwUXTgwkSmAAACgTyJAhYEABavw+Q0Vl1Wrsq5RaclxGp+VKoe9e0aHvqpv1scVJwNVaYVXn1Ye7XB7dGeMXZcMSg5ZV3VpOlMAAQBA9CNAhYEAhb6qscWnzyqPBgPV7vJafVxR1+kUwAv6J7TbsIIpgAAAIJoQoMJAgAJO8vsNHfrqWMj0v9IKb8jUwrZSE53ttla/cECiYpgCCAAAIhABKgwEKODMqgNTANvuAljV+RTAS9OTQ4LVpRluJbnY8BMAAFgbASoMBCjg7DS2BHYBDN2wor7Z12H7Yf0T2m1YMcjtYgogAACwDAJUGAhQQPfx+w0drD4WMv2vtNwrj/f0UwAD26pnZ7iVxRRAAABgEgJUGAhQQM/78miTPq6oCxmt2ldV3+EUQFdgCmCb0apL091KZAogAADoYQSoMBCgAHM0tvj0yeG6kJGqjys6ngJos0nD+ie227AiLZkpgAAAoPsQoMJAgAKsIzAFcHe5N2S06rC3qcP2/ROdIYHq64PdyhqQ1G3nZwEAgL6FABUGAhRgfUeONrXbBXBf1VF1MANQcbF2XZLuDt0FMD2ZKYAAAOCMCFBhIEABkamxxae9nrqQDSs+rvDqWCdTALP6J+qytqNVGW4NZAogAABogwAVBgIUED38fkMHqo8fBLy7vDYYrirrOp4COCDJqcvajFQxBRAAgL6NABUGAhQQ/arqTkwBbDNatf80UwAvTXefsgtgshKcTAEEACDaEaDCQIAC+qaGZp/2BncBrD2xC2CdGlo6mQI4oKNdAONMqBwAAPQUAlQYCFAAAnx+Qwe+rA+OVO0+MVpV1ekUQFdIoAocBMwUQAAAIhMBKgwEKABnUlnXePwg4OAugLXaf6ReHf3J2XYK4NeDuwC6Fe909H7hAACgSwhQYSBAATgbx5pb2+0CuKeTKYD2wBTAwSkho1UDk10mVA4AADpDgAoDAQpAd/H5Df3jy/qQ86p2l3t15GjHUwAHJrvarasa1v/spgD6/IaKy6pVWdeotOQ4jc9KjaiphJFePwAgOhCgwkCAAtDTKusaQ0JVaYVXZZ1MAYyPdejSjORTDgI+/RTAgpIKLVhTqoraxuC1jJQ4zb8hW1NGZPTER+pWkV4/ACB6EKDCQIACYIZjza3a46kLCVZ7PF41tvjbtbXbpAsHJrUbrRqQ5FJBSYVmrNiuU/8QD4zdLLljtKVDSKTXDwCILgSoMBCgAFiFz2+o7Eh9yEhVaXmtjhxt7rD9wCSnvI2tamptH7qk4yEkPSVO7877J0tOh/P5DX3zlxtCRp7asnr9AIDoQ4AKAwEKgNVV1jUe31L9RKj6uNyrsi87ngLYGZvteCCx2Wwn/nviuo7fsAXb2NrcO9k+0EaBa6c8T8Fntr138nu0bR/Q1OrrNBy2NemyNA1PS1KiM0aJrhgluRxKdMUE3ye6HEpyxSjBGaMkV4ziYu0h3wcAgHARoMJAgAIQieqbWvXy3/Zr0V8/NbsUy7Hb1CZgHQ9XicGA5TgRwo6/b3s/0eVoE9JilHDiXnysg0AGAH1EuNkgphdrAgB0g0RXjCZk9Zd05gC19I7RGn3BeZIhGZIMQzJOrDoygteMkBGtQJu296WTX68299q1P+X5p94PPGfX5zV6/M3dZ6z/5tHn67wEp+qbW3W0yadjTa062tSq+uZW1Tf5VN/UevzVfHwLeb8h1TW2qq6x9YzPDofdJiU6jweqQLgKhLNEV5vA5WwbxmKU6HR0eC/BSSADgEhHgAKACDQ+K1UZKXHy1Da224RBOrmG6DvZ6ZZcQzTy/BS9tGnfGet/5vujwqrf7zd0rKVNwGry6WhTq441n3xfHwxex8NYfaf3fapvbpVhnAhkTa2qa2qV1PGW9F1hs0kJsW3C2BnC1+lGxxJdMUqIdchuwZ8vAEQzAhQARCCH3ab5N2RrxortskkhISTwz+n5N2RbMjxJ3V+/3W5T0omAkdYN9fn9hhpafCEjXScDWZuRrxNh62jb922CWtv3/hMjdPXNPtU3+1RZd+6BTJISQgKXI7geLLBmLOE068faBrPA11r19wwAWAVroFgDBSCCRfo5SpFef7gMw1Bjiz8YtI6HsZPBLDANsf6U+yeD2cn7gWv+HvrbOz44QtY2jIWGr0AYSwj82hkYHWsT1E60J5ABiBRsIhEGAhSAaODzGyouq1ZlXaPSkuM0Pis1ov7RGun1m8EwDDW1tg9kIYErMHJ2YjTs2IlpjW3XkwUDWbNPvh5KZHGx9g438+hwuqLzNGvLTqw9i3HYe6ROAOixAPXOO+/o2Wef1bZt21RRUaHVq1dr6tSpwfuHDx/WvHnz9L//+7+qqanRxIkT9Zvf/EYXX3xxsE1jY6P+/d//XatWrVJTU5Nyc3P10ksvadCgQcE2Bw8e1IwZM7Rx40YlJSVp2rRpWrhwoWJiTs463LRpk+bOnavdu3crMzNTjz32mO66666wPwsBCgCAk4EsELzCWT/WdppioH3g1/VNrWrtoUDmirEH14IlOsNYK9Z2ymIHYS2WQAbghB7bha++vl6jRo3SPffco5tuuinknmEYmjp1qmJjY/Xmm2/K7Xbr17/+tSZNmqTS0lIlJiZKkubMmaN169bpjTfeUEpKimbOnKmbbrpJf//73yVJPp9PeXl5Sk9P15YtW1RRUaEf/ehHio2N1VNPPSVJKisrU15enqZPn65XX31V69ev13333aeMjAzl5uZ29WMBANBn2Ww2xcU6FBfrUP+k7nlmU6uv8/DVZlri0abWE5t/dBzM6puPj541+/wnnutXU2uzvqzvnjqdgUB22s08Tre2LDS8OWMIZEC0O6cpfDabLWQE6pNPPtEll1yikpISff3rX5ck+f1+paen66mnntJ9992n2tpaDRw4UCtXrtT3v/99SdKePXt02WWXqaioSFdddZXeeustXX/99SovLw+OSi1dulTz5s1TVVWVnE6n5s2bp3Xr1qmkpCRYz6233qqamhoVFBR0WG9TU5Oamk4u2vV6vcrMzGQECgAAi2s+MUIWzvqwtvc7W2/W3OrvkTqdDvspo2Pt148lBLfEbzOdsZONPlwxjh6pE0B7ppwDFQgncXFxwWt2u10ul0vvvvuu7rvvPm3btk0tLS2aNGlSsM2ll16qoUOHBgNUUVGRRo4cGTKlLzc3VzNmzNDu3bt15ZVXqqioKOQZgTazZ8/utL6FCxdqwYIF3fRpAQBAb3HG2OWMceq8RGe3PK/Fd5pAdtrdFduEseaTa8uaTgSyZp9fzcf8qjnW0i11xjpsnWzmEXow9Kmbd4QcFN2mvSvGzllkwDnq1gAVCEKPPvqofvvb3yoxMVHPPfecPv/8c1VUVEiSPB6PnE6n+vXrF/K1gwYNksfjCbZpG54C9wP3TtfG6/WqoaFB8fHx7ep79NFHNXfu3OD7wAgUAADoW2IddvVLcKpfQvcFsmNNvjbTFU8GsZO7K/rarC0LvX/q2WSNLf4TzzVU29Ci2obuCWQxdlvo4c7tdlI8EcxOWTvW0cYeSQQy9FHdGqBiY2P1xz/+Uffee69SU1PlcDg0adIkffe735UVNvtzuVxyuVxmlwEAAKJMrMOulAS7UhJiu+V5rT6/6pt9JzbnOGX9WJvzyNquHzva3Hpid8WT68cCI2YNLb7jz/Ub8ja2ytvY2i11Ok4JZKfdSbGDnRdPDWRxsQQyWF+3H6Q7ZswY7dixQ7W1tWpubtbAgQM1YcIEjR07VpKUnp6u5uZm1dTUhIxCHT58WOnp6cE2xcXFIc89fPhw8F7gv4Frbdu43e4OR58AAAAiRYzDrpR4u1LiuyeQ+fxGyJTDztaPne48slN/HXhuXWOr6ropkNltCq4BO+1Ois5TR8dCN/oIbOyR4HQQyNDtuj1ABaSkpEiSPv30U33wwQf6+c9/Lul4wIqNjdX69et18803S5L27t2rgwcPKicnR5KUk5OjX/ziF6qsrFRa2vEz5QsLC+V2u5WdnR1s85e//CXkexYWFgafAQAAgOMcdpvccbFyx3VPIPP7DR1rOSV8tVkrdrTplLB2mvVjgeAmSX5DqmtqVV1T9wQyWzCQOUKCWGDtWGebd5xcW9bmvStGCbEO2Tmnrs/rcoA6evSoPvvss+D7srIy7dixQ6mpqRo6dKjeeOMNDRw4UEOHDtWuXbv04IMPaurUqZo8ebKk48Hq3nvv1dy5c5Wamiq3261Zs2YpJydHV111lSRp8uTJys7O1p133qlnnnlGHo9Hjz32mPLz84NT8KZPn67Fixfr4Ycf1j333KMNGzbo9ddf17p167qjXwAAANAJu92mpBOjQYPO3PyM/H5DDSGBrP16srbrxwLryTpeb3b814YhGYZ09EQbqemMdZyJzSYlxLbdPbHt+rGT68lOHTFL6GxjD2dMnw1kkXyIepe3Md+0aZOuvfbadtenTZum5cuX64UXXtCzzz6rw4cPKyMjQz/60Y/0+OOPy+k8uUgzcJDuH/7wh5CDdAPT8yTpwIEDmjFjhjZt2qTExERNmzZNTz/9dLuDdOfMmaPS0lINGTJEjz/+OAfpAgAA9HGGcTyQhRwGfcr6sVN3XOzsPLLA+x46G1oJTkcHOyl2fPBzp2vL2oyiRUIIKSip0II1paqobQxey0iJ0/wbsjVlRIZpdYWbDc7pHKhIR4ACAADAmRiGocYWf6dTEo+dGsya22zm0cHasvqmngtk8bGOkEB1pt0VTxfWEp0OxTi693DogpIKzVixXad+/EDsW3LHaNNClCnnQAEAAADRxmazKd7pULzToYHJ576js2EYamr169Qt7YObdLQJX0dPrBdru36s7aja0RMBzXcikTW0+NTQ4tORo83nXKckuWLsp9lJMXTzjsBmHm3vB0fOnMd3WVywprRdeJIkQ8dD1II1pfpOdrqlR9IIUAAAAEAvstlsiot1KC7WoQFJ3RfI2p8v1v48slN3Xgw9SPpk2xbf8ZjT1OpXU2uzvqzvnkB22s8hqaK2UcVl1coZ3r/Hv9/ZIkABAAAAEaxtIOuf1D3PbGr1hawBC27e0em29+3XjwWmN9Y3+dTs84f9vSvrGs/cyEQEKAAAAAAhXDEOuWIcSk10nrlxGJpb/dq8t1I//u9tZ2yblhzXLd+zp3TvqjAAAAAAOIUzxq5/umyQMlLi1NnqJpuO78Y3Piu1N0vrMgIUAAAAgB7nsNs0/4ZsSWoXogLv59+QbekNJCQCFAAAAIBeMmVEhpbcMVrpKaHT9NJT4kzdwrwrWAMFAAAAoNdMGZGh72Snq7isWpV1jUpLPj5tz+ojTwEEKAAAAAC9ymG3WXqr8tNhCh8AAAAAhIkABQAAAABhIkABAAAAQJgIUAAAAAAQJgIUAAAAAISJAAUAAAAAYSJAAQAAAECYCFAAAAAAECYCFAAAAACEiQAFAAAAAGEiQAEAAABAmAhQAAAAABAmAhQAAAAAhCnG7ALMZBiGJMnr9ZpcCQAAAAAzBTJBICN0pk8HqLq6OklSZmamyZUAAAAAsIK6ujqlpKR0et9mnCliRTG/36/y8nIlJyfLZrN1yzO9Xq8yMzN16NAhud3ubnkmwkPfm4v+Nxf9by7631z0v7nof3PR/93HMAzV1dVp8ODBsts7X+nUp0eg7Ha7hgwZ0iPPdrvd/CY2CX1vLvrfXPS/ueh/c9H/5qL/zUX/d4/TjTwFsIkEAAAAAISJAAUAAAAAYSJAdTOXy6X58+fL5XKZXUqfQ9+bi/43F/1vLvrfXPS/ueh/c9H/va9PbyIBAAAAAF3BCBQAAAAAhIkABQAAAABhIkABAAAAQJgIUAAAAAAQJgIUAAAAAISJANWNXnzxRQ0bNkxxcXGaMGGCiouLzS4pKi1cuFDjxo1TcnKy0tLSNHXqVO3duzekTWNjo/Lz89W/f38lJSXp5ptv1uHDh02qOHo9/fTTstlsmj17dvAafd+zvvjiC91xxx3q37+/4uPjNXLkSH3wwQfB+4Zh6IknnlBGRobi4+M1adIkffrppyZWHD18Pp8ef/xxZWVlKT4+XsOHD9fPf/5ztd3Mlv7vPu+8845uuOEGDR48WDabTX/6059C7ofT19XV1br99tvldrvVr18/3XvvvTp69GgvforIdbr+b2lp0bx58zRy5EglJiZq8ODB+tGPfqTy8vKQZ9D/Z+9Mv//bmj59umw2mxYtWhRynf7vOQSobvLaa69p7ty5mj9/vrZv365Ro0YpNzdXlZWVZpcWdTZv3qz8/Hxt3bpVhYWFamlp0eTJk1VfXx9sM2fOHK1Zs0ZvvPGGNm/erPLyct10000mVh193n//ff32t7/V5ZdfHnKdvu85X331la6++mrFxsbqrbfeUmlpqX71q1/pvPPOC7Z55pln9MILL2jp0qV67733lJiYqNzcXDU2NppYeXT45S9/qSVLlmjx4sX6+OOP9ctf/lLPPPOMfvOb3wTb0P/dp76+XqNGjdKLL77Y4f1w+vr222/X7t27VVhYqLVr1+qdd97R/fff31sfIaKdrv+PHTum7du36/HHH9f27dv1xz/+UXv37tX3vve9kHb0/9k70+//gNWrV2vr1q0aPHhwu3v0fw8y0C3Gjx9v5OfnB9/7fD5j8ODBxsKFC02sqm+orKw0JBmbN282DMMwampqjNjYWOONN94Itvn4448NSUZRUZFZZUaVuro64+KLLzYKCwuNb33rW8aDDz5oGAZ939PmzZtnfPOb3+z0vt/vN9LT041nn302eK2mpsZwuVzGH/7wh94oMarl5eUZ99xzT8i1m266ybj99tsNw6D/e5IkY/Xq1cH34fR1aWmpIcl4//33g23eeustw2azGV988UWv1R4NTu3/jhQXFxuSjAMHDhiGQf93p876//PPPzfOP/98o6SkxLjggguM5557LniP/u9ZjEB1g+bmZm3btk2TJk0KXrPb7Zo0aZKKiopMrKxvqK2tlSSlpqZKkrZt26aWlpaQn8ell16qoUOH8vPoJvn5+crLywvpY4m+72l//vOfNXbsWP3gBz9QWlqarrzySr388svB+2VlZfJ4PCH9n5KSogkTJtD/3eAb3/iG1q9fr08++USS9NFHH+ndd9/Vd7/7XUn0f28Kp6+LiorUr18/jR07Nthm0qRJstvteu+993q95mhXW1srm82mfv36SaL/e5rf79edd96phx56SF//+tfb3af/e1aM2QVEgyNHjsjn82nQoEEh1wcNGqQ9e/aYVFXf4Pf7NXv2bF199dUaMWKEJMnj8cjpdAb/EA8YNGiQPB6PCVVGl1WrVmn79u16//33292j73vW/v37tWTJEs2dO1c/+clP9P777+uBBx6Q0+nUtGnTgn3c0Z9F9P+5e+SRR+T1enXppZfK4XDI5/PpF7/4hW6//XZJov97UTh97fF4lJaWFnI/JiZGqamp/Dy6WWNjo+bNm6fbbrtNbrdbEv3f0375y18qJiZGDzzwQIf36f+eRYBCRMvPz1dJSYneffdds0vpEw4dOqQHH3xQhYWFiouLM7ucPsfv92vs2LF66qmnJElXXnmlSkpKtHTpUk2bNs3k6qLf66+/rldffVUrV67U17/+de3YsUOzZ8/W4MGD6X/0WS0tLfqXf/kXGYahJUuWmF1On7Bt2zY9//zz2r59u2w2m9nl9ElM4esGAwYMkMPhaLfT2OHDh5Wenm5SVdFv5syZWrt2rTZu3KghQ4YEr6enp6u5uVk1NTUh7fl5nLtt27apsrJSo0ePVkxMjGJiYrR582a98MILiomJ0aBBg+j7HpSRkaHs7OyQa5dddpkOHjwoScE+5s+invHQQw/pkUce0a233qqRI0fqzjvv1Jw5c7Rw4UJJ9H9vCqev09PT223k1Nraqurqan4e3SQQng4cOKDCwsLg6JNE//ekv/3tb6qsrNTQoUODfxcfOHBA//7v/65hw4ZJov97GgGqGzidTo0ZM0br168PXvP7/Vq/fr1ycnJMrCw6GYahmTNnavXq1dqwYYOysrJC7o8ZM0axsbEhP4+9e/fq4MGD/DzO0be//W3t2rVLO3bsCL7Gjh2r22+/Pfhr+r7nXH311e227P/kk090wQUXSJKysrKUnp4e0v9er1fvvfce/d8Njh07Jrs99K9Nh8Mhv98vif7vTeH0dU5OjmpqarRt27Zgmw0bNsjv92vChAm9XnO0CYSnTz/9VH/961/Vv3//kPv0f8+58847tXPnzpC/iwcPHqyHHnpIb7/9tiT6v8eZvYtFtFi1apXhcrmM5cuXG6Wlpcb9999v9OvXz/B4PGaXFnVmzJhhpKSkGJs2bTIqKiqCr2PHjgXbTJ8+3Rg6dKixYcMG44MPPjBycnKMnJwcE6uOXm134TMM+r4nFRcXGzExMcYvfvEL49NPPzVeffVVIyEhwVixYkWwzdNPP23069fPePPNN42dO3caN954o5GVlWU0NDSYWHl0mDZtmnH++ecba9euNcrKyow//vGPxoABA4yHH3442Ib+7z51dXXGhx9+aHz44YeGJOPXv/618eGHHwZ3eQunr6dMmWJceeWVxnvvvWe8++67xsUXX2zcdtttZn2kiHK6/m9ubja+973vGUOGDDF27NgR8ndxU1NT8Bn0/9k70+//U526C59h0P89iQDVjX7zm98YQ4cONZxOpzF+/Hhj69atZpcUlSR1+Fq2bFmwTUNDg/Fv//ZvxnnnnWckJCQY//zP/2xUVFSYV3QUOzVA0fc9a82aNcaIESMMl8tlXHrppcbvfve7kPt+v994/PHHjUGDBhkul8v49re/bezdu9ekaqOL1+s1HnzwQWPo0KFGXFycceGFFxo//elPQ/7BSP93n40bN3b4Z/20adMMwwivr7/88kvjtttuM5KSkgy3223cfffdRl1dnQmfJvKcrv/Lyso6/bt448aNwWfQ/2fvTL//T9VRgKL/e47NMNocoQ4AAAAA6BRroAAAAAAgTAQoAAAAAAgTAQoAAAAAwkSAAgAAAIAwEaAAAAAAIEwEKAAAAAAIEwEKAAAAAMJEgAIAAACAMBGgAAAAACBMBCgAAAAACBMBCgAAAADC9P8D/+8PbuAfWTAAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "results = GV_KNN.cv_results_\n", + "mse = -results['mean_test_score']\n", + "k_values = results['param_n_neighbors'].data\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(k_values, mse, marker='o', linestyle='-')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3aOBO56I8Js8" + }, + "source": [ + "The code shows that the elboq point occurs around n=30." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "X5XtlzMXljps" + }, + "source": [ + "## 9. Artificial Neural Networks (ANN)" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": { + "id": "bJk1-9VhlRL6" + }, + "outputs": [], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": { + "id": "sZVPMR9Wlo7-" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vd1fDjQiltP4", + "outputId": "54545c64-073b-41c5-d03a-cc9cbff204f2" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" + ] + } + ], + "source": [ + "# Create an ANN model\n", + "model9 = Sequential()\n", + "model9.add(Dense(32, activation='relu', input_shape=(X_train.shape[1],)))\n", + "model9.add(Dense(16, activation='relu'))\n", + "model9.add(Dense(1, activation='linear'))" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": { + "id": "ZIf94WLMlv04" + }, + "outputs": [], + "source": [ + "# Compile the model\n", + "model9.compile(loss='mean_squared_error', optimizer='adam')" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "FX5DTKqslxWf", + "outputId": "d2353bcd-1508-469b-e4a4-9344af25a2cc" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model9.fit(X_train_scaled, y_train, epochs=100, batch_size=32, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OVW2qpNsmGVq", + "outputId": "36e4620e-9823-4b12-d6d2-509c0bcf2a88" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m45/45\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step\n" + ] + } + ], + "source": [ + "# Make predictions on the test set\n", + "pred9 = model9.predict(X_test_scaled).flatten()" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": { + "id": "CqRmjMj2maJY" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse9 = np.sqrt(mean_squared_error(y_test, pred9))\n", + "mae9 = mean_absolute_error(y_test, pred9)\n", + "mape9 = mean_absolute_percentage_error(y_test, pred9)\n", + "accuracy9 = accuracy_score(y_test > pred9, y_test > pred9.round())\n", + "precision9 = precision_score(y_test > pred9, y_test > pred9.round())\n", + "confusion9 = confusion_matrix(y_test > pred9, y_test > pred9.round())\n", + "recall9 = recall_score(y_test > pred9, y_test > pred9.round())\n", + "f19 = f1_score(y_test > pred9, y_test > pred9.round())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5zuwkC1emmh3", + "outputId": "3154af15-1dba-4edc-9b4e-f012f6ff6886" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 2.7525331773064208\n", + "MAE: 1.7070852219826735\n", + "MAPE: 0.011166669166884299\n", + "Accuracy: 0.901060070671378\n", + "Precision: 0.9446640316205533\n", + "Confusion Matrix:\n", + " [[558 42]\n", + " [ 98 717]]\n", + "Recall: 0.8797546012269939\n", + "F1 Score: 0.9110546378653113\n" + ] + } + ], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse9)\n", + "print(\"MAE:\", mae9)\n", + "print(\"MAPE:\", mape9)\n", + "print(\"Accuracy:\", accuracy9)\n", + "print(\"Precision:\", precision9)\n", + "print(\"Confusion Matrix:\\n\", confusion9)\n", + "print(\"Recall:\", recall9)\n", + "print(\"F1 Score:\", f19)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vjSMQNcOnFPJ" + }, + "source": [ + "## 10. LSTM(Long Short term Memory)" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": { + "id": "nCoyUanhnDKw" + }, + "outputs": [], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import LSTM, Dense" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": { + "id": "ThcXESVEVv0U" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": { + "id": "uACvajfImrbB" + }, + "outputs": [], + "source": [ + "# Reshape the input data for LSTM\n", + "n_features = X_train_scaled.shape[1]\n", + "n_steps = 10\n", + "n_samples_train = X_train_scaled.shape[0] - n_steps + 1\n", + "n_samples_test = X_test_scaled.shape[0] - n_steps + 1\n", + "\n", + "# Reshape the input data\n", + "X_train_reshaped = np.array([X_train_scaled[i:i+n_steps, :] for i in range(n_samples_train)])\n", + "X_test_reshaped = np.array([X_test_scaled[i:i+n_steps, :] for i in range(n_samples_test)])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "r066pVYpnXH5", + "outputId": "faddb972-58cc-43a7-eb04-4829ec65f019" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/layers/rnn/rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(**kwargs)\n" + ] + } + ], + "source": [ + "# Create an LSTM model\n", + "model = Sequential()\n", + "model.add(LSTM(64, activation='relu', input_shape=(n_steps, n_features)))\n", + "model.add(Dense(1))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": { + "id": "YpSfHu6gov35" + }, + "outputs": [], + "source": [ + "# Compile the model\n", + "model.compile(loss='mean_squared_error', optimizer='adam')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0vHjcluaoxzP", + "outputId": "8ca3e888-84d1-4c79-e045-cfa9d3e76d5f" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 88, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train the model\n", + "model.fit(X_train_reshaped, y_train[n_steps-1:], epochs=100, batch_size=32, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "gEE06_TjozYv", + "outputId": "5a39a4df-0a56-45f5-ac4b-c2b00f0f15d0" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m44/44\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 9ms/step\n" + ] + } + ], + "source": [ + "# Make predictions on the test set\n", + "y_pred = model.predict(X_test_reshaped).flatten()" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": { + "id": "7k6C8DrxpB_Q" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse10 = np.sqrt(mean_squared_error(y_test[n_steps-1:], y_pred))\n", + "mae10 = mean_absolute_error(y_test[n_steps-1:], y_pred)\n", + "mape10 = mean_absolute_percentage_error(y_test[n_steps-1:], y_pred)\n", + "accuracy10 = accuracy_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "precision10 = precision_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "recall10 = recall_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "f110 = f1_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "confusion10 = confusion_matrix(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "i_6-UUDhpi0c", + "outputId": "af51da10-aedc-479d-80ca-96880408422c" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RMSE: 11.43451426022395\n", + "MAE: 9.387460991819042\n", + "MAPE: 0.1689158970124316\n", + "Accuracy: 0.9957325746799431\n", + "Precision: 0.9965277777777778\n", + "Recall: 0.9930795847750865\n", + "F1 Score: 0.9948006932409013\n", + "Confusion Matrix:\n", + " [[826 2]\n", + " [ 4 574]]\n" + ] + } + ], + "source": [ + "# Print evaluation metrics\n", + "print(\"RMSE:\", rmse10)\n", + "print(\"MAE:\", mae10)\n", + "print(\"MAPE:\", mape10)\n", + "print(\"Accuracy:\", accuracy10)\n", + "print(\"Precision:\", precision10)\n", + "print(\"Recall:\", recall10)\n", + "print(\"F1 Score:\", f110)\n", + "print(\"Confusion Matrix:\\n\", confusion10)" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "qpWPtph9CGip", + "outputId": "746d4c8b-bd76-4873-d9b3-b21e078b15bd" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABE9klEQVR4nO3deXhM9+LH8c8kZBFJrNmKiKWiqP0GRauClqqtiqvXllu9FbXVbWmLul2Utm6L4rYlVENUieqGNIq217XH0qo1liJBySIIkvP7w2N+HQkyMjGT0/freeZ5mu85c84nyan55DvnnLEYhmEIAADApNycHQAAAKAoUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAOM2rr74qi8WiM2fOFPm+Vq5cqQYNGsjLy0sWi0VpaWlFvs/ibN68ebJYLDp8+LCzowCFRtkBisD1F4o/PgICAtSmTRt9++23dz3Pl19+qc6dOyswMFAeHh4qV66cWrdurXfffVcZGRl3Pc/d9vvvv+vJJ5+Ut7e3PvjgAy1YsEA+Pj63fd7MmTNlsVgUERFxF1ICKColnB0AMLN//etfCgsLk2EYSk1N1bx589SxY0d9+eWXeuyxx4p8/7m5uYqKitK8efNUr149DRkyRJUrV1ZmZqY2bNigV155Rd98840SExOLPIszbd68WZmZmXrttdcUGRlZ4OfFxsaqatWq2rRpkw4cOKAaNWoUYUrX8re//U29e/eWp6ens6MAhUbZAYrQo48+qiZNmli/joqKUmBgoBYtWuSQspObm6vLly/Ly8sr3+VTpkzRvHnzNHLkSL377ruyWCzWZcOHD9fJkyf1ySefFGofxcGpU6ckSWXKlCnwc5KTk/Xf//5Xy5Yt0zPPPKPY2FhNmDChiBIWTlZWVoFmquzh7u4ud3d3h24TcBbexgLuojJlysjb21slStj+nfHOO++oRYsWKl++vLy9vdW4cWN9/vnneZ5vsVg0dOhQxcbGqk6dOvL09NTKlSvz3deFCxc0efJk1alTR2+//bZN0bkuODhYL774YoH3cSc5a9WqJS8vLzVu3Fjr16/PN2taWpoGDBigMmXKyN/fXwMHDtSFCxfy/yHeYMmSJWrcuLG8vb1VoUIFPfXUUzp+/Lh1+UMPPaT+/ftLkpo2bSqLxaIBAwbcdruxsbEqW7asOnXqpCeeeEKxsbE3zT5y5EhVrVpVnp6eqlSpkvr162dzHtKlS5f06quv6t5775WXl5eCg4PVvXt3HTx4UJK0du1aWSwWrV271mbbhw8flsVi0bx586xjAwYMUOnSpXXw4EF17NhRvr6+6tu3ryTphx9+UM+ePVWlShV5enqqcuXKGjlypC5evJgn96+//qonn3xSFStWlLe3t2rVqqWXX37Zuvxm5+x8++23atWqlXx8fOTr66tOnTrp559/tlknJSVFAwcOVKVKleTp6ang4GB16dKF83/gNMzsAEUoPT1dZ86ckWEYOnXqlKZPn67z58/rqaeeslnv/fff1+OPP66+ffvq8uXLiouLU8+ePfXVV1+pU6dONuuuWbNGn332mYYOHaoKFSqoatWq+e77xx9/VFpamkaPHm33X+g324c9OdetW6fFixdr2LBh8vT01MyZM/XII49o06ZNqlu3rs26Tz75pMLCwjRp0iRt27ZNH3/8sQICAjR58uRb5pw3b54GDhyopk2batKkSUpNTdX777+vn376Sdu3b1eZMmX08ssvq1atWvrwww+tbytWr179tj+D2NhYde/eXR4eHurTp49mzZqlzZs3q2nTptZ1zp8/r1atWmnPnj0aNGiQGjVqpDNnzmjFihX67bffVKFCBeXk5Oixxx5TYmKievfureHDhyszM1MJCQnavXt3gbLc6OrVq+rQoYNatmypd955R6VKlZJ0rfhduHBBzz77rMqXL69NmzZp+vTp+u2337RkyRLr83fu3KlWrVqpZMmSGjx4sKpWraqDBw/qyy+/1BtvvHHT/S5YsED9+/dXhw4dNHnyZF24cEGzZs1Sy5YttX37dutx0qNHD/3888967rnnVLVqVZ06dUoJCQk6evToTY9XoEgZABwuJibGkJTn4enpacybNy/P+hcuXLD5+vLly0bdunWNhx9+2GZckuHm5mb8/PPPt83w/vvvG5KM5cuX24xfvXrVOH36tM0jNze3QPuwJ6ckY8uWLdaxI0eOGF5eXka3bt2sYxMmTDAkGYMGDbJ5frdu3Yzy5cvf8vu7fPmyERAQYNStW9e4ePGidfyrr74yJBnjx4+3jl3/fWzevPmW27xuy5YthiQjISHBMAzDyM3NNSpVqmQMHz7cZr3x48cbkoxly5bl2cb1n+ncuXMNScbUqVNvus73339vSDK+//57m+XJycmGJCMmJsY61r9/f0OSMWbMmDzbu/H3YxiGMWnSJMNisRhHjhyxjrVu3drw9fW1GftjHsP4/59ZcnKyYRiGkZmZaZQpU8Z4+umnbZ6TkpJi+Pv7W8fPnTtnSDLefvvtPFkAZ+FtLKAIffDBB0pISFBCQoI+/fRTtWnTRn//+9+1bNkym/W8vb2t/33u3Dmlp6erVatW2rZtW55tPvjgg7rvvvtuu+/rV1mVLl3aZnzXrl2qWLGizeP3338v0D7sydm8eXM1btzY+nWVKlXUpUsXrVq1Sjk5OTbr/uMf/7D5ulWrVvr9999veaXYli1bdOrUKQ0ZMsTmfKJOnTopPDxcX3/99U2fezuxsbEKDAxUmzZtJF17W65Xr16Ki4uzyb506VLVr19f3bp1y7ON628bLl26VBUqVNBzzz1303XuxLPPPptn7I+/n6ysLJ05c0YtWrSQYRjavn27JOn06dNav369Bg0apCpVqhQ4T0JCgtLS0tSnTx+dOXPG+nB3d1dERIS+//57awYPDw+tXbtW586du+PvD3Ak3sYCitBf/vIXmxOU+/Tpo4YNG2ro0KF67LHH5OHhIUn66quv9PrrryspKUnZ2dnW9fN78QkLCyvQvn19fSVde6vlj2rUqKGEhARJ0ieffKIFCxYUeB/25KxZs2aesXvvvVcXLlzQ6dOnFRQUZB2/8UW3bNmykq4VKj8/v3yzHDlyRJJUq1atPMvCw8P1448/5vu828nJyVFcXJzatGmj5ORk63hERITeffddJSYmqn379pKkgwcPqkePHrfc3sGDB1WrVq0852kVRokSJVSpUqU840ePHtX48eO1YsWKPEUjPT1dknTo0CFJyvNW4u3s379fkvTwww/nu/z678nT01OTJ0/W888/r8DAQDVr1kyPPfaY+vXrZ/M7B+4myg5wF7m5ualNmzZ6//33tX//ftWpU0c//PCDHn/8cbVu3VozZ85UcHCwSpYsqZiYGC1cuDDPNv741/uthIeHS5J2796tLl26WMdLly5tvfz6ZoUgv33Ym9MeNzunyDCMQm33TqxZs0YnT55UXFyc4uLi8iyPjY21lh1HudmMyo0zYNd5enrKzc0tz7rt2rXT2bNn9eKLLyo8PFw+Pj46fvy4BgwYoNzc3EJlvP78BQsW5Fta/ljmRowYoc6dO2v58uVatWqVxo0bp0mTJmnNmjVq2LBhoXIAd4KyA9xlV69elfT/My5Lly6Vl5eXVq1aZXNPk5iYmELtp1WrVvL391dcXJzGjh2b58XRXvbmvD4T8Ef79u1TqVKlVLFixUJlkaTQ0FBJ0t69e/PMNuzdu9e63F6xsbEKCAjQBx98kGfZsmXLFB8fr9mzZ8vb21vVq1fX7t27b7m96tWra+PGjbpy5YpKliyZ7zrXZ7JuvKvz9dmrgti1a5f27dun+fPnq1+/ftbx67N411WrVk2Sbpv7RtdPpA4ICCjQvYqqV6+u559/Xs8//7z279+vBg0a6N1339Wnn35q134BR+CcHeAuunLlilavXi0PDw/Vrl1b0rVZDYvFYvNX/OHDh7V8+fJC7atUqVJ64YUXtHv3bo0ZMybfWRJ7Zk7szblhwwabc3mOHTumL774Qu3bt3fI/VuaNGmigIAAzZ492+YttW+//VZ79uzJc3VYQVy8eFHLli3TY489pieeeCLPY+jQocrMzNSKFSskXbvqaMeOHYqPj8+zres/2x49eujMmTOaMWPGTdcJDQ2Vu7t7nkvzZ86cWeDs13+mf/ydGoah999/32a9ihUrqnXr1po7d66OHj2ab578dOjQQX5+fnrzzTd15cqVPMtPnz4t6dotDy5dumSzrHr16vL19bX5PQF3EzM7QBH69ttv9euvv0q6dmO7hQsXav/+/RozZoz1HIdOnTpp6tSpeuSRR/TXv/5Vp06d0gcffKAaNWpo586dhdr/mDFjtGfPHr399ttavXq1evTooUqVKuncuXPatm2blixZooCAgALdMNDenHXr1lWHDh1sLj2XpIkTJxbqe7quZMmSmjx5sgYOHKgHH3xQffr0sV56XrVqVY0cOdLuba5YsUKZmZl6/PHH813erFkzVaxYUbGxserVq5f++c9/6vPPP1fPnj01aNAgNW7cWGfPntWKFSs0e/Zs1a9fX/369dMnn3yiUaNGadOmTWrVqpWysrL03XffaciQIerSpYv8/f3Vs2dPTZ8+XRaLRdWrV9dXX31lvRliQYSHh6t69eoaPXq0jh8/Lj8/Py1dujTfk4SnTZumli1bqlGjRho8eLDCwsJ0+PBhff3110pKSsp3+35+fpo1a5b+9re/qVGjRurdu7cqVqyoo0eP6uuvv9YDDzygGTNmaN++fWrbtq2efPJJ3XfffSpRooTi4+OVmpqq3r17F/j7ARzKadeBASaW36XnXl5eRoMGDYxZs2bZXOJrGIYxZ84co2bNmoanp6cRHh5uxMTEWC/L/iNJRnR0tN154uPjjY4dOxoVK1Y0SpQoYZQpU8Zo2bKl8fbbbxtpaWkF3oe9OT/99FPr+g0bNsxzafX1554+fdpm/MbLnm9l8eLFRsOGDQ1PT0+jXLlyRt++fY3ffvst3+3d7tLzzp07G15eXkZWVtZN1xkwYIBRsmRJ48yZM4ZhGMbvv/9uDB061LjnnnsMDw8Po1KlSkb//v2tyw3j2iXhL7/8shEWFmaULFnSCAoKMp544gnj4MGD1nVOnz5t9OjRwyhVqpRRtmxZ45lnnjF2796d76XnPj4++Wb75ZdfjMjISKN06dJGhQoVjKefftrYsWNHnm0YhmHs3r3b6Natm1GmTBnDy8vLqFWrljFu3Lg8P7Mbfwfff/+90aFDB8Pf39/w8vIyqlevbgwYMMB6m4EzZ84Y0dHRRnh4uOHj42P4+/sbERERxmeffXbLnz1QlCyG4YQzAAGYmsViUXR0dL5v3QDA3cY5OwAAwNQoOwAAwNQoOwAAwNS4GguAw3EqIABXwswOAAAwNcoOAAAwNd7G0rXPfDlx4oR8fX0L9SnEAADg7jEMQ5mZmQoJCbnlR+JQdiSdOHFClStXdnYMAABwB44dO6ZKlSrddDllR5Kvr6+kaz+s67fwBwAAri0jI0OVK1e2vo7fDGVHsr515efnR9kBAKCYud0pKJygDAAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATI2yAwAATM2pZWf9+vXq3LmzQkJCZLFYtHz5cpvlhmFo/PjxCg4Olre3tyIjI7V//36bdc6ePau+ffvKz89PZcqUUVRUlM6fP38XvwsAAODKnFp2srKyVL9+fX3wwQf5Lp8yZYqmTZum2bNna+PGjfLx8VGHDh106dIl6zp9+/bVzz//rISEBH311Vdav369Bg8efLe+BQAA4OIshmEYzg4hXfsQr/j4eHXt2lXStVmdkJAQPf/88xo9erQkKT09XYGBgZo3b5569+6tPXv26L777tPmzZvVpEkTSdLKlSvVsWNH/fbbbwoJCSnQvjMyMuTv76/09HQ+CBQAgGKioK/fLnvOTnJyslJSUhQZGWkd8/f3V0REhDZs2CBJ2rBhg8qUKWMtOpIUGRkpNzc3bdy48abbzs7OVkZGhs0DAACYk8uWnZSUFElSYGCgzXhgYKB1WUpKigICAmyWlyhRQuXKlbOuk59JkybJ39/f+qhcubKD0wMAAFfhsmWnKI0dO1bp6enWx7Fjx5wd6a6zWJz3cNVsAIoXV/53DK6lhLMD3ExQUJAkKTU1VcHBwdbx1NRUNWjQwLrOqVOnbJ539epVnT171vr8/Hh6esrT09PxoQG4PGe+ULnGGZL4M3PW8e/sY99lZ3bCwsIUFBSkxMRE61hGRoY2btyo5s2bS5KaN2+utLQ0bd261brOmjVrlJubq4iIiLueGQAAuB6nzuycP39eBw4csH6dnJyspKQklStXTlWqVNGIESP0+uuvq2bNmgoLC9O4ceMUEhJivWKrdu3aeuSRR/T0009r9uzZunLlioYOHarevXsX+EosAMCt/VlnA2AeTi07W7ZsUZs2baxfjxo1SpLUv39/zZs3Ty+88IKysrI0ePBgpaWlqWXLllq5cqW8vLysz4mNjdXQoUPVtm1bubm5qUePHpo2bdpd/14AAIBrcpn77DjTn/E+O6583gJ/RaIoufKx76pc9f9Jfpf2c9Xf5Z0q9vfZAQAAcATKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMLUSzg4AAICZWCzO27dhOG/froyZHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGqUHQAAYGpcjQUUc6565Yer5gLw58PMDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDXKDgAAMDVuKggALsJZN2LkJowwO2Z2AACAqTGzAxQQf3UDQPHEzA4AADA1yg4AADA1yg4AADA1yg4AADA1yg4AADA1yg4AADA1yg4AADA17rNTxJx1bxaJ+7MAACAxswMAAEyOsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEyNsgMAAEzNpctOTk6Oxo0bp7CwMHl7e6t69ep67bXXZPzhmmrDMDR+/HgFBwfL29tbkZGR2r9/vxNTAwAAV+LSZWfy5MmaNWuWZsyYoT179mjy5MmaMmWKpk+fbl1nypQpmjZtmmbPnq2NGzfKx8dHHTp00KVLl5yYHAAAuAqXvqngf//7X3Xp0kWdOnWSJFWtWlWLFi3Spk2bJF2b1Xnvvff0yiuvqEuXLpKkTz75RIGBgVq+fLl69+7ttOwAAMA1uPTMTosWLZSYmKh9+/ZJknbs2KEff/xRjz76qCQpOTlZKSkpioyMtD7H399fERER2rBhw023m52drYyMDJsHAAAwJ5ee2RkzZowyMjIUHh4ud3d35eTk6I033lDfvn0lSSkpKZKkwMBAm+cFBgZal+Vn0qRJmjhxYtEFBwAALsOlZ3Y+++wzxcbGauHChdq2bZvmz5+vd955R/Pnzy/UdseOHav09HTr49ixYw5KDAAAXI1Lz+z885//1JgxY6zn3tSrV09HjhzRpEmT1L9/fwUFBUmSUlNTFRwcbH1eamqqGjRocNPtenp6ytPTs0izAwAA1+DSMzsXLlyQm5ttRHd3d+Xm5kqSwsLCFBQUpMTEROvyjIwMbdy4Uc2bN7+rWQEAgGty6Zmdzp0764033lCVKlVUp04dbd++XVOnTtWgQYMkSRaLRSNGjNDrr7+umjVrKiwsTOPGjVNISIi6du3q3PAAAMAluHTZmT59usaNG6chQ4bo1KlTCgkJ0TPPPKPx48db13nhhReUlZWlwYMHKy0tTS1bttTKlSvl5eXlxOQAAMBVWIw/3o74TyojI0P+/v5KT0+Xn5+fQ7dtsTh0c3a51W/WVXNJzstGLvsVx2PMVXNJHGM3ctVcEseYvYqqaRT09dulz9kBAAAoLMoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNcoOAAAwNbvLzsWLF3XhwgXr10eOHNF7772n1atXOzQYAACAI9hddrp06aJPPvlEkpSWlqaIiAi9++676tKli2bNmuXwgAAAAIVhd9nZtm2bWrVqJUn6/PPPFRgYqCNHjuiTTz7RtGnTHB4QAACgMOwuOxcuXJCvr68kafXq1erevbvc3NzUrFkzHTlyxOEBAQAACsPuslOjRg0tX75cx44d06pVq9S+fXtJ0qlTp+Tn5+fwgAAAAIVhd9kZP368Ro8erapVq+ovf/mLmjdvLunaLE/Dhg0dHhAAAKAwLIZhGPY+KSUlRSdPnlT9+vXl5natL23atEl+fn4KDw93eMiilpGRIX9/f6Wnpzt8dspicejm7HKr36yr5pKcl41c9iuOx5ir5pI4xm7kqrkkjjF72d80Cqagr993dJ+doKAg+fr6KiEhQRcvXpQkNW3atFgWHQAAYG52l53ff/9dbdu21b333quOHTvq5MmTkqSoqCg9//zzDg8IAABQGHaXnZEjR6pkyZI6evSoSpUqZR3v1auXVq5c6dBwAAAAhVXC3iesXr1aq1atUqVKlWzGa9asyaXnAADA5dg9s5OVlWUzo3Pd2bNn5enp6ZBQAAAAjmJ32WnVqpX14yIkyWKxKDc3V1OmTFGbNm0cGg4AAKCw7H4ba8qUKWrbtq22bNmiy5cv64UXXtDPP/+ss2fP6qeffiqKjAAAAHfM7pmdunXrat++fWrZsqW6dOmirKwsde/eXdu3b1f16tWLIiMAAMAdu6ObCpoNNxW8u4rrTa/IlVdxPMZcNZfEMXYjV80lcYzZy9k3FbT7baz169ffcnnr1q3t3SQAAECRsbvsPPTQQ3nGLH+oijk5OYUKBAAA4Eh2n7Nz7tw5m8epU6e0cuVKNW3aVKtXry6KjAAAAHfM7pkdf3//PGPt2rWTh4eHRo0apa1btzokGAAAgCPc0QeB5icwMFB79+511OYAAAAcwu6ZnZ07d9p8bRiGTp48qbfeeksNGjRwVC4AAACHsLvsNGjQQBaLRTdesd6sWTPNnTvXYcEAAAAcwe6yk5ycbPO1m5ubKlasKC8vL4eFAgAAcBS7z9kJDQ21eVSuXLlIi87x48f11FNPqXz58vL29la9evW0ZcsW63LDMDR+/HgFBwfL29tbkZGR2r9/f5HlAQAAxUuBZnamTZtW4A0OGzbsjsPc6Ny5c3rggQfUpk0bffvtt6pYsaL279+vsmXLWteZMmWKpk2bpvnz5yssLEzjxo1Thw4d9MsvvzDbBAAACvZxEWFhYQXbmMWiQ4cOFTrUdWPGjNFPP/2kH374Id/lhmEoJCREzz//vEaPHi1JSk9PV2BgoObNm6fevXsXaD98XMTdVVxvZ06uvIrjMeaquSSOsRu5ai6JY8xexeLjIm48T+duWbFihTp06KCePXtq3bp1uueeezRkyBA9/fTT1lwpKSmKjIy0Psff318RERHasGHDTctOdna2srOzrV9nZGQU7TcCAACcxmH32SkKhw4d0qxZs1SzZk2tWrVKzz77rIYNG6b58+dLklJSUiRdu8fPHwUGBlqX5WfSpEny9/e3PipXrlx03wQAAHAqu6/GkqTffvtNK1as0NGjR3X58mWbZVOnTnVIMEnKzc1VkyZN9Oabb0qSGjZsqN27d2v27Nnq37//HW937NixGjVqlPXrjIwMCg8AACZld9lJTEzU448/rmrVqunXX39V3bp1dfjwYRmGoUaNGjk0XHBwsO677z6bsdq1a2vp0qWSpKCgIElSamqqgoODreukpqbe8gaHnp6e8vT0dGhWAADgmux+G2vs2LEaPXq0du3aJS8vLy1dulTHjh3Tgw8+qJ49ezo03AMPPJDnIyj27dun0NBQSddOnA4KClJiYqJ1eUZGhjZu3KjmzZs7NAsAACimDDuVLl3aOHDggGEYhlGmTBlj9+7dhmEYRlJSkhEaGmrv5m5p06ZNRokSJYw33njD2L9/vxEbG2uUKlXK+PTTT63rvPXWW0aZMmWML774wti5c6fRpUsXIywszLh48WKB95Oenm5IMtLT0x2a3zAM49o56M55FMdczsxGrj/HMeaquTjGik8ujjHH57pTBX39tvttLB8fH+t5OsHBwTp48KDq1KkjSTpz5owje5iaNm2q+Ph4jR07Vv/6178UFham9957T3379rWu88ILLygrK0uDBw9WWlqaWrZsqZUrV3KPHQAAIKmA99n5o65du6pTp056+umnNXr0aH3xxRcaMGCAli1bprJly+q7774rqqxFhvvs3F23O+Jc9T4Q5MqrOB5jrppL4hi7kavmkjjG7GVf0yg4h95nR5LOnj2rcuXKaerUqTp//rwkaeLEiTp//rwWL16smjVrOvRKLAAAAEcocNkJCQlR165dFRUVpXbt2km69pbW7NmziywcAABAYRX4aqyPPvpIp0+f1iOPPKKqVavq1Vdf1eHDh4swGgAAQOEVuOz87W9/U2Jiog4cOKD+/ftr/vz5qlGjhtq1a6fFixfnubkgAACAK7D7PjthYWGaOHGikpOTtXLlSgUEBGjQoEEKDg526CeeAwAAOILdV2PlZ+nSpdZLv3NychyR667iaqy7q7heLUCuvIrjMeaquSSOsRu5ai6JY8xexeZqrBsdOXJEMTExmj9/vo4dO6Y2bdooKirqTjcHAABQJOwqO9nZ2Vq6dKnmzp2rtWvX6p577tGAAQM0cOBAVa1atYgiAgAA3LkCl50hQ4YoLi5OFy5cUJcuXfTNN9+oXbt2sjhzvg4AAOA2Clx2fvzxR02YMEFPPfWUypcvX5SZAAAAHKbAZWfnzp1FmQMAAKBI2H3pOQAAQHFC2QEAAKZG2QEAAKZG2QEAAKZmd9mpWrWq/vWvf+no0aNFkQcAAMCh7C47I0aM0LJly1StWjW1a9dOcXFxys7OLopsAAAAhXZHZScpKUmbNm1S7dq19dxzzyk4OFhDhw7Vtm3biiIjAADAHbvjc3YaNWqkadOm6cSJE5owYYI+/vhjNW3aVA0aNNDcuXPlgM8XBQAAKLQ7/iDQK1euKD4+XjExMUpISFCzZs0UFRWl3377TS+99JK+++47LVy40JFZAQAA7GZ32dm2bZtiYmK0aNEiubm5qV+/fvr3v/+t8PBw6zrdunVT06ZNHRoUAADgTthddpo2bap27dpp1qxZ6tq1q0qWLJlnnbCwMPXu3dshAQEAAArD7rJz6NAhhYaG3nIdHx8fxcTE3HEoAAAAR7H7BOVTp05p48aNecY3btyoLVu2OCQUAACAo9hddqKjo3Xs2LE848ePH1d0dLRDQgEAADiK3WXnl19+UaNGjfKMN2zYUL/88otDQgEAADiK3WXH09NTqampecZPnjypEiXu+Ep2AACAImF32Wnfvr3Gjh2r9PR061haWppeeukltWvXzqHhAAAACsvuqZh33nlHrVu3VmhoqBo2bChJSkpKUmBgoBYsWODwgAAAAIVhd9m55557tHPnTsXGxmrHjh3y9vbWwIED1adPn3zvuQMAAOBMd3SSjY+PjwYPHuzoLAAAAA53x2cU//LLLzp69KguX75sM/74448XOhQAAICj3NEdlLt166Zdu3bJYrFYP93cYrFIknJychybEAAAoBDsvhpr+PDhCgsL06lTp1SqVCn9/PPPWr9+vZo0aaK1a9cWQUQAAIA7Z/fMzoYNG7RmzRpVqFBBbm5ucnNzU8uWLTVp0iQNGzZM27dvL4qcAAAAd8TumZ2cnBz5+vpKkipUqKATJ05IkkJDQ7V3717HpgMAACgku2d26tatqx07digsLEwRERGaMmWKPDw89OGHH6patWpFkREAAOCO2V12XnnlFWVlZUmS/vWvf+mxxx5Tq1atVL58eS1evNjhAQEAAArDYly/nKoQzp49q7Jly1qvyCpuMjIy5O/vr/T0dPn5+Tl02878kdzqN+uquSTnZSOX/YrjMeaquSSOsRu5ai6JY8xehW8a+Svo67dd5+xcuXJFJUqU0O7du23Gy5UrV2yLDgAAMDe7yk7JkiVVpUoV7qUDAACKDbuvxnr55Zf10ksv6ezZs0WRBwAAwKHsPkF5xowZOnDggEJCQhQaGiofHx+b5du2bXNYOAAAgMKyu+x07dq1CGIAAAAUDbvLzoQJE4oiBwAAQJGw+5wdAACA4sTumR03N7dbXmbOlVoAAMCV2F124uPjbb6+cuWKtm/frvnz52vixIkOCwYAAOAIDrmDsiQtXLhQixcv1hdffOGIzd1V3EH57iqud/gkV17F8Rhz1VwSx9iNXDWXxDFmr2J1B+VbadasmRITEx21OQAAAIdwSNm5ePGipk2bpnvuuccRmwMAAHAYu8/ZufEDPw3DUGZmpkqVKqVPP/3UoeEAAAAKy+6y8+9//9um7Li5ualixYqKiIhQ2bJlHRoOAACgsOwuOwMGDCiCGAAAAEXD7nN2YmJitGTJkjzjS5Ys0fz58x0SCgAAwFHsLjuTJk1ShQoV8owHBATozTffdEgoAAAAR7G77Bw9elRhYWF5xkNDQ3X06FGHhAIAAHAUu8tOQECAdu7cmWd8x44dKl++vENCAQAAOIrdZadPnz4aNmyYvv/+e+Xk5CgnJ0dr1qzR8OHD1bt376LICAAAcMfsvhrrtdde0+HDh9W2bVuVKHHt6bm5uerXrx/n7AAAAJdj98yOh4eHFi9erL179yo2NlbLli3TwYMHNXfuXHl4eBRFRqu33npLFotFI0aMsI5dunRJ0dHRKl++vEqXLq0ePXooNTW1SHMAAIDiw+6Znetq1qypmjVrOjLLLW3evFn/+c9/dP/999uMjxw5Ul9//bWWLFkif39/DR06VN27d9dPP/1017IBAADXZffMTo8ePTR58uQ841OmTFHPnj0dEupG58+fV9++ffXRRx/Z3KU5PT1dc+bM0dSpU/Xwww+rcePGiomJ0X//+1/973//K5IsAACgeLG77Kxfv14dO3bMM/7oo49q/fr1Dgl1o+joaHXq1EmRkZE241u3btWVK1dsxsPDw1WlShVt2LDhptvLzs5WRkaGzQMAAJiT3W9jnT9/Pt9zc0qWLFkkpSEuLk7btm3T5s2b8yxLSUmRh4eHypQpYzMeGBiolJSUm25z0qRJmjhxoqOjAgAAF2T3zE69evW0ePHiPONxcXG67777HBLqumPHjmn48OGKjY2Vl5eXw7Y7duxYpaenWx/Hjh1z2LYBAIBrsXtmZ9y4cerevbsOHjyohx9+WJKUmJioRYsW5fuZWYWxdetWnTp1So0aNbKO5eTkaP369ZoxY4ZWrVqly5cvKy0tzWZ2JzU1VUFBQTfdrqenpzw9PR2aFQAAuCa7y07nzp21fPlyvfnmm/r888/l7e2t+++/X999950efPBBh4Zr27atdu3aZTM2cOBAhYeH68UXX1TlypVVsmRJJSYmqkePHpKkvXv36ujRo2revLlDswAAgOLpji4979Spkzp16pRnfPfu3apbt26hQ13n6+ubZ3s+Pj4qX768dTwqKkqjRo1SuXLl5Ofnp+eee07NmzdXs2bNHJYDAAAUX3d8n53rMjMztWjRIn388cfaunWrcnJyHJGrwP7973/Lzc1NPXr0UHZ2tjp06KCZM2fe1QwAAMB1WQzDMO7kievXr9fHH3+sZcuWKSQkRN27d1ePHj3UtGlTR2cschkZGfL391d6err8/Pwcum2LxaGbs8utfrOumktyXjZy2a84HmOumkviGLuRq+aSOMbsdWdN4/YK+vpt18xOSkqK5s2bpzlz5igjI0NPPvmksrOztXz5codfiQUAAOAIBb70vHPnzqpVq5Z27typ9957TydOnND06dOLMhsAAEChFXhm59tvv9WwYcP07LPP3tXPxAIAACiMAs/s/Pjjj8rMzFTjxo0VERGhGTNm6MyZM0WZDQAAoNAKXHaaNWumjz76SCdPntQzzzyjuLg4hYSEKDc3VwkJCcrMzCzKnAAAAHfkjq/Gkq7dwG/OnDlasGCB0tLS1K5dO61YscKR+e4Krsa6u4rr1QLkyqs4HmOumkviGLuRq+aSOMbs5eyrsez+bKw/qlWrlqZMmaLffvtNixYtKsymAAAAikShZnbMgpmdu6u4/uVBrryK4zHmqrkkjrEbuWouiWPMXsV6ZgcAAMDVUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpUXYAAICpuXTZmTRpkpo2bSpfX18FBASoa9eu2rt3r806ly5dUnR0tMqXL6/SpUurR48eSk1NdVJiAADgaly67Kxbt07R0dH63//+p4SEBF25ckXt27dXVlaWdZ2RI0fqyy+/1JIlS7Ru3TqdOHFC3bt3d2JqAADgSiyGYRjODlFQp0+fVkBAgNatW6fWrVsrPT1dFStW1MKFC/XEE09Ikn799VfVrl1bGzZsULNmzQq03YyMDPn7+ys9PV1+fn4OzWyxOHRzdrnVb9ZVc0nOy0Yu+xXHY8xVc0kcYzdy1VwSx5i9iqppFPT126Vndm6Unp4uSSpXrpwkaevWrbpy5YoiIyOt64SHh6tKlSrasGHDTbeTnZ2tjIwMmwcAADCnYlN2cnNzNWLECD3wwAOqW7euJCklJUUeHh4qU6aMzbqBgYFKSUm56bYmTZokf39/66Ny5cpFGR0AADhRsSk70dHR2r17t+Li4gq9rbFjxyo9Pd36OHbsmAMSAgAAV1TC2QEKYujQofrqq6+0fv16VapUyToeFBSky5cvKy0tzWZ2JzU1VUFBQTfdnqenpzw9PYsyMgAAcBEuPbNjGIaGDh2q+Ph4rVmzRmFhYTbLGzdurJIlSyoxMdE6tnfvXh09elTNmze/23EBAIALcumZnejoaC1cuFBffPGFfH19refh+Pv7y9vbW/7+/oqKitKoUaNUrlw5+fn56bnnnlPz5s0LfCUWAAAwN5cuO7NmzZIkPfTQQzbjMTExGjBggCTp3//+t9zc3NSjRw9lZ2erQ4cOmjlz5l1OCgAAXFWxus9OUeE+O3dXcb0PBLnyKo7HmKvmkjjGbuSquSSOMXtxnx0AAIAiRNkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmRtkBAACmZpqy88EHH6hq1ary8vJSRESENm3a5OxIAADABZii7CxevFijRo3ShAkTtG3bNtWvX18dOnTQqVOnnB0NAAA4mSnKztSpU/X0009r4MCBuu+++zR79myVKlVKc+fOdXY0AADgZMW+7Fy+fFlbt25VZGSkdczNzU2RkZHasGGDE5MBAABXUMLZAQrrzJkzysnJUWBgoM14YGCgfv3113yfk52drezsbOvX6enpkqSMjIyiC+oErvrtkMs+rppLct1s5LIPueznqtn+bLmuv24bhnHL9Yp92bkTkyZN0sSJE/OMV65c2Qlpio6/v7MT5I9c9nHVXJLrZiOXfchlP1fN9mfNlZmZKf9b7KTYl50KFSrI3d1dqampNuOpqakKCgrK9zljx47VqFGjrF/n5ubq7NmzKl++vCwWS5HmLaiMjAxVrlxZx44dk5+fn7Pj2HDVbOSyj6vmklw3G7nsQy77uWo2V81lGIYyMzMVEhJyy/WKfdnx8PBQ48aNlZiYqK5du0q6Vl4SExM1dOjQfJ/j6ekpT09Pm7EyZcoUcdI74+fn51IH1h+5ajZy2cdVc0mum41c9iGX/Vw1myvmutWMznXFvuxI0qhRo9S/f381adJEf/nLX/Tee+8pKytLAwcOdHY0AADgZKYoO7169dLp06c1fvx4paSkqEGDBlq5cmWek5YBAMCfjynKjiQNHTr0pm9bFUeenp6aMGFCnrfbXIGrZiOXfVw1l+S62chlH3LZz1WzuWqugrIYt7teCwAAoBgr9jcVBAAAuBXKDgAAMDXKDgAAMDXKDgAAMDXKjgtav369OnfurJCQEFksFi1fvtzZkTRp0iQ1bdpUvr6+CggIUNeuXbV3795ise8PP/xQDz30kPz8/GSxWJSWllZ0Yf9g1qxZuv/++6034WrevLm+/fbbu7Jve7z11luyWCwaMWKEU3O8+uqrslgsNo/w8HCnZrru+PHjeuqpp1S+fHl5e3urXr162rJli7NjqWrVqnl+ZhaLRdHR0U7NlZOTo3HjxiksLEze3t6qXr26Xnvttdt+fpGz97ts2TK1b9/eejf9pKSkIs37R5mZmRoxYoRCQ0Pl7e2tFi1aaPPmzXdt/9fd7vXHMAyNHz9ewcHB8vb2VmRkpPbv33/Xc9qLsuOCsrKyVL9+fX3wwQfOjmK1bt06RUdH63//+58SEhJ05coVtW/fXllZWS6/7wsXLuiRRx7RSy+9VMRJbVWqVElvvfWWtm7dqi1btujhhx9Wly5d9PPPP9/VHLeyefNm/ec//9H999/v7CiSpDp16ujkyZPWx48//ujsSDp37pweeOABlSxZUt9++61++eUXvfvuuypbtqyzo2nz5s02P6+EhARJUs+ePZ2aa/LkyZo1a5ZmzJihPXv2aPLkyZoyZYqmT5/u0vvNyspSy5YtNXny5CLNmZ+///3vSkhI0IIFC7Rr1y61b99ekZGROn78+F3NcbvXnylTpmjatGmaPXu2Nm7cKB8fH3Xo0EGXLl26qzntZsClSTLi4+OdHSOPU6dOGZKMdevWFZt9f//994Yk49y5c0UTrADKli1rfPzxx07b/x9lZmYaNWvWNBISEowHH3zQGD58uFPzTJgwwahfv75TM+TnxRdfNFq2bOnsGAUyfPhwo3r16kZubq5Tc3Tq1MkYNGiQzVj37t2Nvn37Fov9JicnG5KM7du3OzDdzV24cMFwd3c3vvrqK5vxRo0aGS+//PJdyZCfG19/cnNzjaCgIOPtt9+2jqWlpRmenp7GokWLnJCw4JjZwR1JT0+XJJUrV+5Pte87lZOTo7i4OGVlZal58+bOjiNJio6OVqdOnRQZGensKFb79+9XSEiIqlWrpr59++ro0aPOjqQVK1aoSZMm6tmzpwICAtSwYUN99NFHzo6Vx+XLl/Xpp59q0KBBTv9A4xYtWigxMVH79u2TJO3YsUM//vijHn30UVPut7CuXr2qnJwceXl52Yx7e3u7xOzmdcnJyUpJSbH5N8Pf318RERHasGGDE5PdnmnuoIy7Jzc3VyNGjNADDzygunXr/mn2fSd27dql5s2b69KlSypdurTi4+N13333OTuW4uLitG3bNqecE3AzERERmjdvnmrVqqWTJ09q4sSJatWqlXbv3i1fX1+n5Tp06JBmzZqlUaNG6aWXXtLmzZs1bNgweXh4qH///k7LdaPly5crLS1NAwYMcHYUjRkzRhkZGQoPD5e7u7tycnL0xhtvqG/fvqbcb2H5+vqqefPmeu2111S7dm0FBgZq0aJF2rBhg2rUqOHseFYpKSmSlOejmAIDA63LXBVlB3aLjo7W7t27nfIXhzP3fSdq1aqlpKQkpaen6/PPP1f//v21bt06pxaeY8eOafjw4UpISMjzl6Qz/fGv7/vvv18REREKDQ3VZ599pqioKKflys3NVZMmTfTmm29Kkho2bKjdu3dr9uzZLlV25syZo0cffVQhISHOjqLPPvtMsbGxWrhwoerUqaOkpCSNGDFCISEhRfozc9Z+HWHBggUaNGiQ7rnnHrm7u6tRo0bq06ePtm7d6uxo5uDs99Fwa3Kxc3aio6ONSpUqGYcOHSp2+3aFc3batm1rDB482Gn7NwzDiI+PNyQZ7u7u1ockw2KxGO7u7sbVq1edmu+PmjRpYowZM8apGapUqWJERUXZjM2cOdMICQlxUqK8Dh8+bLi5uRnLly93dhTDMAyjUqVKxowZM2zGXnvtNaNWrVrFYr93+5ydPzp//rxx4sQJwzAM48knnzQ6dux41zNcd+Prz8GDB/P9ubRu3doYNmzY3Q1nJ87ZQYEYhqGhQ4cqPj5ea9asUVhY2J9i346Wm5ur7Oxsp2Zo27atdu3apaSkJOujSZMm6tu3r5KSkuTu7u7UfNedP39eBw8eVHBwsFNzPPDAA3ludbBv3z6FhoY6KVFeMTExCggIUKdOnZwdRdK1KyDd3GxfXtzd3ZWbm2vK/TqSj4+PgoODde7cOa1atUpdunRxdiSrsLAwBQUFKTEx0TqWkZGhjRs3usy5iDfD21gu6Pz58zpw4ID16+TkZCUlJalcuXKqUqWKUzJFR0dr4cKF+uKLL+Tr62t9f9bf31/e3t4uve+UlBSlpKRYf6a7du2Sr6+vqlSpUqQnOY8dO1aPPvqoqlSposzMTC1cuFBr167VqlWrimyfBeHr65vnfCcfHx+VL1/eqedBjR49Wp07d1ZoaKhOnDihCRMmyN3dXX369HFaJkkaOXKkWrRooTfffFNPPvmkNm3apA8//FAffvihU3Ndl5ubq5iYGPXv318lSrjGP+mdO3fWG2+8oSpVqqhOnTravn27pk6dqkGDBrn0fs+ePaujR4/qxIkTkmQtuUFBQQoKCiqy3JK0atUqGYahWrVq6cCBA/rnP/+p8PBwDRw4sEj3e6Pbvf6MGDFCr7/+umrWrKmwsDCNGzdOISEh6tq1613NaTcnzywhH9ffbrnx0b9/f6dlyi+PJCMmJsbl9z1hwgSnZB80aJARGhpqeHh4GBUrVjTatm1rrF69ukj3eadc4dLzXr16GcHBwYaHh4dxzz33GL169TIOHDjg1EzXffnll0bdunUNT09PIzw83Pjwww+dHclq1apVhiRj7969zo5ilZGRYQwfPtyoUqWK4eXlZVSrVs14+eWXjezsbJfeb0xMTL7/VkyYMKFIcxuGYSxevNioVq2a4eHhYQQFBRnR0dFGWlpake/3Rrd7/cnNzTXGjRtnBAYGGp6enkbbtm1d6ti7GYthFPEtLQEAAJyIc3YAAICpUXZQrMXGxqp06dL5PurUqePseABcxA8//HDTfytKly7t7HgoYryNhWItMzNTqamp+S4rWbKkS10xA8B5Ll68eMvPmXKlm/fB8Sg7AADA1HgbCwAAmBplBwAAmBplBwAAmBplBwAc4PDhw7JYLEpKSirwcwYMGHDbO88+9NBDGjFiRKGyAX92lB3gT2LDhg1yd3d3mc9PcoZ69erpH//4R77LFixYIE9PT505c+aOtl25cmWdPHnSqR+5ASB/lB3gT2LOnDl67rnntH79eutn/zjL5cuXnbLfqKgoxcXF6eLFi3mWxcTE6PHHH1eFChXs3u7ly5fl7u6uoKAgl/l8KgD/j7ID/AmcP39eixcv1rPPPqtOnTpp3rx5edb58ssv1bRpU3l5ealChQrq1q2bdVl2drZefPFFVa5cWZ6enqpRo4bmzJkjSZo3b57KlCljs63ly5fLYrFYv3711VfVoEEDffzxxwoLC5OXl5ckaeXKlWrZsqXKlCmj8uXL67HHHtPBgwdttvXbb7+pT58+KleunHx8fNSkSRNt3LhRhw8flpubm7Zs2WKz/nvvvafQ0NB8P+n6qaee0sWLF7V06VKb8eTkZK1du1ZRUVE6ePCgunTposDAQJUuXVpNmzbVd999Z7N+1apV9dprr6lfv37y8/PT4MGD87yNlZOTo6ioKIWFhcnb21u1atXS+++/n89vR5o4caIqVqwoPz8//eMf/7hlGczOztbo0aN1zz33yMfHRxEREVq7dq11+ZEjR9S5c2eVLVtWPj4+qlOnjr755pubbg/4M6DsAH8Cn332mcLDw1WrVi099dRTmjt3rv54i62vv/5a3bp1U8eOHbV9+3YlJibqL3/5i3V5v379tGjRIk2bNk179uzRf/7zH7vvOnvgwAEtXbpUy5YtsxaCrKwsjRo1Slu2bFFiYqLc3NzUrVs3a1E5f/68HnzwQR0/flwrVqzQjh079MILLyg3N1dVq1ZVZGSkYmJibPYTExOjAQMGyM0t7z9vFSpUUJcuXTR37lyb8Xnz5qlSpUpq3769zp8/r44dOyoxMVHbt2/XI488os6dO+vo0aM2z3nnnXdUv359bd++XePGjcuzr9zcXFWqVElLlizRL7/8ovHjx+ull17SZ599ZrNeYmKi9uzZo7Vr12rRokVatmyZJk6ceNOf49ChQ7VhwwbFxcVp586d6tmzpx555BHt379fkhQdHa3s7GytX79eu3bt0uTJk7lDMODEDyEFcJe0aNHCeO+99wzDMIwrV64YFSpUML7//nvr8ubNmxt9+/bN97l79+41JBkJCQn5Lo+JiTH8/f1txuLj440//vMyYcIEo2TJksapU6dumfP06dOGJGPXrl2GYRjGf/7zH8PX19f4/fff811/8eLFRtmyZY1Lly4ZhmEYW7duNSwWi5GcnHzTfaxcudKwWCzGoUOHDMO49inOoaGhxiuvvHLT59SpU8eYPn269evQ0FCja9euNuskJycbkozt27ffdDvR0dFGjx49rF/379/fKFeunJGVlWUdmzVrllG6dGkjJyfHMAzbT6Q/cuSI4e7ubhw/ftxmu23btjXGjh1rGIZh1KtXz3j11VdvmgH4M2JmBzC5vXv3atOmTerTp48kqUSJEurVq5f1bShJSkpKUtu2bfN9flJSktzd3fXggw8WKkdoaKgqVqxoM7Z//3716dNH1apVk5+fn6pWrSpJ1lmUpKQkNWzYUOXKlct3m127dpW7u7vi4+MlXZuhadOmjXU7+WnXrp0qVapknRFKTEzU0aNHNXDgQEnXZpNGjx6t2rVrq0yZMipdurT27NmTZ2anSZMmt/2eP/jgAzVu3FgVK1ZU6dKl9eGHH+bZTv369VWqVCnr182bN9f58+d17NixPNvbtWuXcnJydO+999p8rtO6deusb/8NGzZMr7/+uh544AFNmDBBO3fuvG1OwOwoO4DJzZkzR1evXlVISIhKlCihEiVKaNasWVq6dKnS09MlSd7e3jd9/q2WSZKbm5vNW2KSdOXKlTzr+fj45Bnr3Lmzzp49q48++kgbN27Uxo0bJf3/Ccy327eHh4f69eunmJgYXb58WQsXLtSgQYNum3fAgAGaP3++cnNzFRMTozZt2qhatWqSpNGjRys+Pl5vvvmmfvjhByUlJalevXp5zqPJ7/v5o7i4OI0ePVpRUVFavXq1kpKSNHDgwEKdnH3+/Hm5u7tr69atSkpKsj727NljPR/o73//uw4dOqS//e1v2rVrl5o0aaLp06ff8T4BM6DsACZ29epVffLJJ3r33XdtXhx37NihkJAQLVq0SJJ0//33KzExMd9t1KtXT7m5uVq3bl2+yytWrKjMzExlZWVZxwpyr5nff/9de/fu1SuvvKK2bduqdu3aOnfunM06999/v5KSknT27Nmbbufvf/+7vvvuO82cOVNXr15V9+7db7vvgQMH6tixY1q2bJni4+MVFRVlXfbTTz9pwIAB6tatm+rVq6egoCAdPnz4ttu80U8//aQWLVpoyJAhatiwoWrUqJHn5GtJ2rFjh83VYf/73/9UunRpVa5cOc+6DRs2VE5Ojk6dOqUaNWrYPIKCgqzrVa5cWf/4xz+0bNkyPf/88/roo4/szg+YCWUHMLGvvvpK586dU1RUlOrWrWvz6NGjh/WtrAkTJmjRokWaMGGC9uzZYz2xVbp25VH//v01aNAgLV++3Hrl0vUTbSMiIlSqVCm99NJLOnjwoBYuXJjv1V43Klu2rMqXL68PP/xQBw4c0Jo1azRq1Cibdfr06aOgoCB17dpVP/30kw4dOqSlS5dqw4YN1nVq166tZs2a6cUXX1SfPn1uOxskSWFhYXr44Yc1ePBgeXp62hSkmjVrWk+i3rFjh/7617/me2XX7dSsWVNbtmzRqlWrtG/fPo0bN06bN2/Os97ly5cVFRWlX375Rd98840mTJigoUOH5nuC9b333qu+ffuqX79+WrZsmZKTk7Vp0yZNmjRJX3/9tSRpxIgRWrVqlZKTk7Vt2zZ9//33ql27tt35ATOh7AAmNmfOHEVGRsrf3z/Psh49emjLli3auXOnHnroIS1ZskQrVqxQgwYN9PDDD2vTpk3WdWfNmqUnnnhCQ4YMUXh4uJ5++mnrTE65cuX06aef6ptvvlG9evW0aNEivfrqq7fN5ubmpri4OG3dulV169bVyJEj9fbbb9us4+HhodWrVysgIEAdO3ZUvXr19NZbb8nd3d1mvaioKF2+fPm2b2Hd+Jxz587pr3/9q/VSeEmaOnWqypYtqxYtWqhz587q0KGDGjVqVODtXvfMM8+oe/fu6tWrlyIiIvT7779ryJAhedZr27atatasqdatW6tXr156/PHHb/nzi4mJUb9+/fT888+rVq1a6tq1qzZv3qwqVapIunbJe3R0tGrXrq1HHnlE9957r2bOnGl3fsBMLMaNb7YDQDHz2muvacmSJZyMCyBfzOwAKLbOnz+v3bt3a8aMGXruueecHQeAi6LsACi2hg4dqsaNG+uhhx6y6y0sAH8uvI0FAABMjZkdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgapQdAABgav8H/GzqtXu8YtUAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of accuracies from accuracy1 to accuracy10\n", + "accuracies = [accuracy1*100, accuracy2*100, accuracy2_1*100, accuracy3*100, accuracy4*100, accuracy5*100, accuracy6*100, accuracy7*100, accuracy8*100, accuracy8_1*100, accuracy9*100, accuracy10*100]\n", + "\n", + "# List of corresponding labels for each accuracy\n", + "labels = ['1', '2', '2_1', '3', '4', '5', '6', '7', '8', '8_1', '9', '10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, accuracies, color='blue')\n", + "plt.xlabel('Accuracy Variables')\n", + "plt.ylabel('Accuracy Values')\n", + "plt.title('Bar Graph of Accuracies')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "RFaaCNH6Cfoa", + "outputId": "e624dad4-1663-4a68-90ec-b569e5b0b46a" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIKElEQVR4nO3dfVxUZf7/8fdwN+ANICh3BUpmqWlKoGZZ3lHepWmYeZPhzdpWWqmblbumZW2k3Wi5pNaWZGm2Vpq1SZqpVOIdhltmZqlpJmipIBoocP3+8Mv8HEEDBWY4vZ6Px3k8mutcc53PnDkO785cZ47NGGMEAABgUR6uLgAAAKAqEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAWM7jjz8um82mX3/9tcq3lZqaqtatW8vX11c2m01Hjx6t8m0CqBjCDlCDpKSkyGazOS0hISHq3Lmzli9fXu31fPjhh+rdu7dCQ0Pl4+OjoKAg3XjjjXr++eeVm5tb7fVUt99++00DBgyQn5+fkpOT9eabb6p27dpl9j37vfPy8tIll1yiYcOGaf/+/aX6d+rUSTabTU2aNClzvJUrVzrGevfdd53Wff311+rfv78aNmwoX19fXXLJJbrppps0a9Ysp36NGjUqdTyVLN27d7/AvQK4Hy9XFwCg4qZOnaro6GgZY5Sdna2UlBT17NlTH374oW655ZYq335xcbFGjhyplJQUtWzZUvfdd58iIyN17Ngxpaena9KkSfr444+1atWqKq/FlTZt2qRjx47pySefVHx8fLmeU/Le5efna/369UpJSdEXX3yhb775Rr6+vk59fX199cMPP2jjxo1q27at07oFCxbI19dX+fn5Tu3r1q1T586dFRUVpVGjRiksLEz79u3T+vXr9eKLL+r+++936t+6dWv97W9/K1VnREREuV4PUBMQdoAaqEePHoqLi3M8HjlypEJDQ/X2229XStgpLi7WyZMnS/3xLTF9+nSlpKRo3Lhxev7552Wz2RzrHnzwQR04cEDz58+/qG3UBAcPHpQkBQYGlvs5Z753f/nLX1S/fn1NmzZNy5Yt04ABA5z6Nm7cWIWFhXr77bedwk5+fr6WLFmiXr166b333nN6zj//+U8FBARo06ZNpeoqqfdMl1xyie68885y1w/URHyNBVhAYGCg/Pz85OXl/P8vzz33nK677joFBwfLz89PsbGxpb7ykCSbzaYxY8ZowYIFuuqqq2S325Wamlrmtk6cOKFp06bpqquu0rPPPusUdEqEh4frkUceKfc2LqTOK6+8Ur6+voqNjVVaWlqZtR49elTDhg1TYGCgAgICNHz4cJ04caLsnXiWxYsXKzY2Vn5+fqpfv77uvPNOp6+bOnXqpMTERElSmzZtZLPZNGzYsHKNfaYbbrhBkvTjjz+WuX7QoEF65513VFxc7Gj78MMPdeLEiVLhqGScq666qswAFhISUuH6ACsg7AA1UE5Ojn799VcdOnRI27Zt07333qu8vLxS/4f+4osvKiYmRlOnTtXTTz8tLy8v3X777frvf/9baszPPvtM48aN0x133KEXX3xRjRo1KnPbX3zxhY4ePapBgwbJ09OzQnWfaxsVqXPt2rUaO3as7rzzTk2dOlW//fabunfvrm+++aZU3wEDBujYsWNKSkrSgAEDlJKSoieeeOIP60xJSdGAAQPk6emppKQkjRo1Su+//746dOjgmID8j3/8Q3fffbek019Nvfnmm/rrX/9aof0hSXv27JEk1atXr8z1gwcP1oEDB7RmzRpH28KFC9W1a9cyw0vDhg2VkZFR5v4oy6lTp/Trr7+WWn7//fcKvxbAbRkANca8efOMpFKL3W43KSkppfqfOHHC6fHJkydNixYtTJcuXZzaJRkPDw+zbdu2P6zhxRdfNJLM0qVLndoLCwvNoUOHnJbi4uJybaMidUoymzdvdrT99NNPxtfX1/Tr18/RNmXKFCPJjBgxwun5/fr1M8HBwed9fSdPnjQhISGmRYsW5vfff3e0f/TRR0aSmTx5sqOt5P3YtGnTecc8s++nn35qDh06ZPbt22feffdd06BBA2O3282+ffuc+nfs2NFcddVVxhhj4uLizMiRI40xxhw5csT4+PiYN954w6xevdpIMosXL3Y8b8WKFcbT09N4enqa9u3bm4cffth88skn5uTJk6VqatiwYZnHkySTlJT0h68JqCk4swPUQMnJyVq5cqVWrlypt956S507d9Zf/vIXvf/++079/Pz8HP995MgR5eTk6IYbbtCWLVtKjdmxY0c1b978D7ddcpVVnTp1nNq//vprNWjQwGn57bffyrWNitTZvn17xcbGOh5HRUXp1ltv1SeffKKioiKnvvfcc4/T4xtuuEG//fbbea8U27x5sw4ePKj77rvPaT5Rr1691LRp0zLPNlVEfHy8GjRooMjISPXv31+1a9fWsmXLdOmll57zOYMHD9b777+vkydP6t1335Wnp6f69etXZt+bbrpJ6enp6tOnj7Zu3arp06erW7duuuSSS7Rs2bJS/du1a+c4ls5cBg0adFGvE3AnTFAGaqC2bds6TVAeNGiQYmJiNGbMGN1yyy3y8fGRJH300Ud66qmnlJmZqYKCAkf/subZREdHl2vbdevWlSTl5eU5tV9++eVauXKlJGn+/Pl68803y72NitRZ1qXYV1xxhU6cOKFDhw4pLCzM0R4VFeXUr+SroiNHjsjf37/MWn766SdJ0pVXXllqXdOmTfXFF1+U+bzySk5O1hVXXKGcnBy9/vrrSktLk91uP+9zBg4cqIceekjLly/XggULdMsttzjeh7K0adPGEY62bt2qJUuWaMaMGerfv78yMzOdAmf9+vXLfSUZUFNxZgewAA8PD3Xu3FkHDhzQzp07JUmff/65+vTpI19fX7388sv6+OOPtXLlSg0ePFjGmFJjnHl25XyaNm0qSaXmhNSpU0fx8fGKj4/XZZddVuZzy9pGReusiHPNKbrYcS9G27ZtFR8fr4SEBC1btkwtWrTQ4MGDS4XHM4WHh6tTp056/vnnlZaWpsGDB5drWz4+PmrTpo2efvppzZ49W6dOndLixYsr66UANQZhB7CIwsJCSf//jMt7770nX19fffLJJxoxYoR69OhRKf8Hf8MNNyggIECLFi1yukLoQlW0zpIwd6bvv/9etWrVUoMGDS66noYNG0qSduzYUWrdjh07HOsrQ8kE6F9++UX/+te/ztt38ODB+vzzz+Xv76+ePXtWeFslZwIPHDhwQbUCNRlhB7CAU6dOacWKFfLx8VGzZs0knf5DarPZnOax7NmzR0uXLr2obdWqVUsPP/ywvvnmGz366KNlniWpyJmTitaZnp7uNJdn3759+uCDD3TzzTdX+OqwssTFxSkkJERz5sxx+kpt+fLl2r59u3r16nXR2zhTp06d1LZtW82cObPUDwSeqX///poyZYpefvllx9eUZVm9enWZ+//jjz+WVPbXc4DVMWcHqIGWL1+u7777TtLpH4pbuHChdu7cqUcffdQxF6VXr1564YUX1L17dw0ePFgHDx5UcnKyLr/8cv3vf/+7qO0/+uij2r59u5599lmtWLFCCQkJuvTSS3XkyBFt2bJFixcvVkhISLl+MLCidbZo0ULdunXTAw88ILvdrpdfflmSynVJeXl4e3tr2rRpGj58uDp27KhBgwYpOzvbcan8uHHjKmU7Z5owYYJuv/12paSklJpUXSIgIECPP/74H451//3368SJE+rXr5+aNm2qkydPat26dXrnnXfUqFEjDR8+3Kn//v379dZbb5Uap06dOurbt++FvBzA/bjyUjAAFVPWpee+vr6mdevWZvbs2U6XehtjzGuvvWaaNGli7Ha7adq0qZk3b57jsuwzSTKjR4+ucD1LliwxPXv2NA0aNDBeXl4mMDDQdOjQwTz77LPm6NGj5d5GRet86623HP1jYmLM6tWrnfqVPPfQoUNO7SX7b/fu3X/42t555x0TExNj7Ha7CQoKMkOGDDE///xzmeNV5NLzsvoWFRWZxo0bm8aNG5vCwkJjjPOl5+dS1qXny5cvNyNGjDBNmzY1derUMT4+Pubyyy83999/v8nOznZ6/vkuPW/YsOEfviagprAZ48KZegBQATabTaNHj/7D+S0AcCbm7AAAAEsj7AAAAEsj7AAAAEvjaiwANQZTDAFcCM7sAAAASyPsAAAAS+NrLEnFxcX65ZdfVLdu3TJvPAgAANyPMUbHjh1TRESEPDzOff6GsCPpl19+UWRkpKvLAAAAF2Dfvn269NJLz7mesCOpbt26kk7vrJKf2gcAAO4tNzdXkZGRjr/j50LYkRxfXfn7+xN2AACoYf5oCgoTlAEAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKW5NOykpaWpd+/eioiIkM1m09KlS0v12b59u/r06aOAgADVrl1bbdq00d69ex3r8/PzNXr0aAUHB6tOnTpKSEhQdnZ2Nb4KAADgzlwado4fP65WrVopOTm5zPU//vijOnTooKZNm2rNmjX63//+p8cee0y+vr6OPuPGjdOHH36oxYsXa+3atfrll1902223VddLAAAAbs5mjDGuLkI6/euHS5YsUd++fR1tAwcOlLe3t958880yn5OTk6MGDRpo4cKF6t+/vyTpu+++U7NmzZSenq5rr722XNvOzc1VQECAcnJy+AVlAABqiPL+/XbbOTvFxcX673//qyuuuELdunVTSEiI2rVr5/RVV0ZGhk6dOqX4+HhHW9OmTRUVFaX09PRzjl1QUKDc3FynBQAAWJPbhp2DBw8qLy9PzzzzjLp3764VK1aoX79+uu2227R27VpJUlZWlnx8fBQYGOj03NDQUGVlZZ1z7KSkJAUEBDgW7ngOAIB1uW3YKS4uliTdeuutGjdunFq3bq1HH31Ut9xyi+bMmXNRY0+cOFE5OTmOZd++fZVRMgAAcENue9fz+vXry8vLS82bN3dqb9asmb744gtJUlhYmE6ePKmjR486nd3Jzs5WWFjYOce22+2y2+1VUjcAAHAvbntmx8fHR23atNGOHTuc2r///ns1bNhQkhQbGytvb2+tWrXKsX7Hjh3au3ev2rdvX631AgAA9+TSMzt5eXn64YcfHI93796tzMxMBQUFKSoqShMmTNAdd9yhG2+8UZ07d1Zqaqo+/PBDrVmzRpIUEBCgkSNHavz48QoKCpK/v7/uv/9+tW/fvtxXYv2Z2Z6wuWS7ZopbXAAIAPiTcGnY2bx5szp37ux4PH78eElSYmKiUlJS1K9fP82ZM0dJSUl64IEHdOWVV+q9995Thw4dHM+ZMWOGPDw8lJCQoIKCAnXr1k0vv/xytb8WAADgntzmd3Zc6c/6Ozuc2QEA1GQ1/nd2AAAAKgNhBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWJqXqwsAALg32xM2l23bTDEu2zasgzM7AADA0gg7AADA0vgaC27HVafMOV0OANbEmR0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBpLg07aWlp6t27tyIiImSz2bR06dJz9r3nnntks9k0c+ZMp/bDhw9ryJAh8vf3V2BgoEaOHKm8vLyqLRwAANQYLg07x48fV6tWrZScnHzefkuWLNH69esVERFRat2QIUO0bds2rVy5Uh999JHS0tJ09913V1XJAACghvFy5cZ79OihHj16nLfP/v37df/99+uTTz5Rr169nNZt375dqamp2rRpk+Li4iRJs2bNUs+ePfXcc8+VGY4AAMCfi1vP2SkuLtbQoUM1YcIEXXXVVaXWp6enKzAw0BF0JCk+Pl4eHh7asGHDOcctKChQbm6u0wIAAKzJrcPOtGnT5OXlpQceeKDM9VlZWQoJCXFq8/LyUlBQkLKyss45blJSkgICAhxLZGRkpdYNAADch9uGnYyMDL344otKSUmRzWar1LEnTpyonJwcx7Jv375KHR8AALgPtw07n3/+uQ4ePKioqCh5eXnJy8tLP/30k/72t7+pUaNGkqSwsDAdPHjQ6XmFhYU6fPiwwsLCzjm23W6Xv7+/0wIAAKzJpROUz2fo0KGKj493auvWrZuGDh2q4cOHS5Lat2+vo0ePKiMjQ7GxsZKkzz77TMXFxWrXrl211wwAANyPS8NOXl6efvjhB8fj3bt3KzMzU0FBQYqKilJwcLBTf29vb4WFhenKK6+UJDVr1kzdu3fXqFGjNGfOHJ06dUpjxozRwIEDuRILAABIcvHXWJs3b1ZMTIxiYmIkSePHj1dMTIwmT55c7jEWLFigpk2bqmvXrurZs6c6dOigV155papKBgAANYxLz+x06tRJxphy99+zZ0+ptqCgIC1cuLASqwIA1AS2Jyr34pWKMFPK/7cLrue2E5QBAAAqA2EHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYmkvDTlpamnr37q2IiAjZbDYtXbrUse7UqVN65JFH1LJlS9WuXVsRERG666679MsvvziNcfjwYQ0ZMkT+/v4KDAzUyJEjlZeXV82vBAAAuCuXhp3jx4+rVatWSk5OLrXuxIkT2rJlix577DFt2bJF77//vnbs2KE+ffo49RsyZIi2bdumlStX6qOPPlJaWpruvvvu6noJAADAzXm5cuM9evRQjx49ylwXEBCglStXOrX961//Utu2bbV3715FRUVp+/btSk1N1aZNmxQXFydJmjVrlnr27KnnnntOERERVf4aAACAe6tRc3ZycnJks9kUGBgoSUpPT1dgYKAj6EhSfHy8PDw8tGHDhnOOU1BQoNzcXKcFAABYU40JO/n5+XrkkUc0aNAg+fv7S5KysrIUEhLi1M/Ly0tBQUHKyso651hJSUkKCAhwLJGRkVVaOwAAcJ0aEXZOnTqlAQMGyBij2bNnX/R4EydOVE5OjmPZt29fJVQJAADckUvn7JRHSdD56aef9NlnnznO6khSWFiYDh486NS/sLBQhw8fVlhY2DnHtNvtstvtVVYzAABwH259Zqck6OzcuVOffvqpgoODnda3b99eR48eVUZGhqPts88+U3Fxsdq1a1fd5QIAADfk0jM7eXl5+uGHHxyPd+/erczMTAUFBSk8PFz9+/fXli1b9NFHH6moqMgxDycoKEg+Pj5q1qyZunfvrlGjRmnOnDk6deqUxowZo4EDB3IlFgAAkOTisLN582Z17tzZ8Xj8+PGSpMTERD3++ONatmyZJKl169ZOz1u9erU6deokSVqwYIHGjBmjrl27ysPDQwkJCXrppZeqpX4AAOD+XBp2OnXqJGPMOdefb12JoKAgLVy4sDLLAgAAFuLWc3YAAAAuFmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYWqWEnaNHj1bGMAAAAJWuwmFn2rRpeueddxyPBwwYoODgYF1yySXaunVrhcZKS0tT7969FRERIZvNpqVLlzqtN8Zo8uTJCg8Pl5+fn+Lj47Vz506nPocPH9aQIUPk7++vwMBAjRw5Unl5eRV9WQAAwKIqHHbmzJmjyMhISdLKlSu1cuVKLV++XD169NCECRMqNNbx48fVqlUrJScnl7l++vTpeumllzRnzhxt2LBBtWvXVrdu3ZSfn+/oM2TIEG3btk0rV67URx99pLS0NN19990VfVkAAMCivCr6hKysLEfY+eijjzRgwADdfPPNatSokdq1a1ehsXr06KEePXqUuc4Yo5kzZ2rSpEm69dZbJUnz589XaGioli5dqoEDB2r79u1KTU3Vpk2bFBcXJ0maNWuWevbsqeeee04REREVfXkAAMBiKnxmp169etq3b58kKTU1VfHx8ZJOh5OioqJKK2z37t3KyspyjC9JAQEBateundLT0yVJ6enpCgwMdAQdSYqPj5eHh4c2bNhQabUAAICaq8Jndm677TYNHjxYTZo00W+//eY4M/PVV1/p8ssvr7TCsrKyJEmhoaFO7aGhoY51WVlZCgkJcVrv5eWloKAgR5+yFBQUqKCgwPE4Nze3ssoGAABupsJndmbMmKExY8aoefPmWrlyperUqSNJOnDggO67775KL7AqJCUlKSAgwLGUfC0HAACsp8Jndry9vfXQQw+Vah83blylFFQiLCxMkpSdna3w8HBHe3Z2tlq3bu3oc/DgQafnFRYW6vDhw47nl2XixIkaP36843Fubi6BBwAAi7qg39l588031aFDB0VEROinn36SJM2cOVMffPBBpRUWHR2tsLAwrVq1ytGWm5urDRs2qH379pKk9u3b6+jRo8rIyHD0+eyzz1RcXHzeydJ2u13+/v5OCwAAsKYKh53Zs2dr/Pjx6tGjh44ePeqYlBwYGKiZM2dWaKy8vDxlZmYqMzNT0ulJyZmZmdq7d69sNpvGjh2rp556SsuWLdPXX3+tu+66SxEREerbt68kqVmzZurevbtGjRqljRs36ssvv9SYMWM0cOBArsQCAACSLiDszJo1S6+++qr+8Y9/yNPT09EeFxenr7/+ukJjbd68WTExMYqJiZEkjR8/XjExMZo8ebIk6eGHH9b999+vu+++W23atFFeXp5SU1Pl6+vrGGPBggVq2rSpunbtqp49e6pDhw565ZVXKvqyAACARVV4zs7u3bsd4eRMdrtdx48fr9BYnTp1kjHmnOttNpumTp2qqVOnnrNPUFCQFi5cWKHtAgCAP48Kn9mJjo52fO10ptTUVDVr1qwyagIAAKg0FT6zM378eI0ePVr5+fkyxmjjxo16++23lZSUpH//+99VUSMAAMAFq3DY+ctf/iI/Pz9NmjRJJ06c0ODBgxUREaEXX3xRAwcOrIoaAQAALliFw450+uabQ4YM0YkTJ5SXl1fqV4wBAADcxQWFnRK1atVSrVq1KqsWAACASlfhsBMdHS2bzXbO9bt27bqoggAAACpThcPO2LFjnR6fOnVKX331lVJTUzVhwoTKqgsAAKBSVDjsPPjgg2W2Jycna/PmzRddEAAAQGW6oHtjlaVHjx567733Kms4AACASlFpYefdd99VUFBQZQ0HAABQKSr8NVZMTIzTBGVjjLKysnTo0CG9/PLLlVocAADAxapw2Cm543gJDw8PNWjQQJ06dVLTpk0rqy4AAIBKUeGwM2XKlKqoAwAAoEqUK+zk5uaWe0B/f/8LLgYAAKCylSvsBAYGnveHBKXTc3dsNpuKiooqpTAAAIDKUK6ws3r16qquAwAAoEqUK+x07NixqusAAACoEhd8I9ATJ05o7969OnnypFP71VdffdFFAQAAVJYKh51Dhw5p+PDhWr58eZnrmbMDAADcSYV/QXns2LE6evSoNmzYID8/P6WmpuqNN95QkyZNtGzZsqqoEQAA4IJV+MzOZ599pg8++EBxcXHy8PBQw4YNddNNN8nf319JSUnq1atXVdQJAABwQSp8Zuf48eMKCQmRJNWrV0+HDh2SJLVs2VJbtmyp3OoAAAAuUoXDzpVXXqkdO3ZIklq1aqW5c+dq//79mjNnjsLDwyu9QAAAgItR4a+xHnzwQR04cEDS6VtHdO/eXQsWLJCPj49SUlIquz4AAICLUu6w079/f/3lL3/RkCFDHL+mHBsbq59++knfffedoqKiVL9+/SorFAAA4EKU+2usI0eOqFevXoqKitLkyZO1a9cuSVKtWrV0zTXXEHQAAIBbKnfYWbVqlXbt2qWRI0fqrbfeUpMmTdSlSxctXLhQBQUFVVkjAADABavQBOWGDRvq8ccf165du7Ry5UpFRERo1KhRCg8P1+jRo5WRkVFVdQIAAFyQCl+NVaJLly566623lJWVpaSkJC1atEjt2rWrzNoAAAAu2gXfG0uSdu/erZSUFKWkpCgnJ0fx8fGVVRcAAEClqPCZnfz8fL311lvq0qWLmjRpovnz52vkyJHavXu3UlNTq6JGAACAC1buMzsbN27U66+/rnfeeUf5+fnq16+fUlNT1bVrV8el6AAAAO6m3GHn2muvVatWrfTkk09qyJAhqlevXlXWBQAAUCnKHXY2b96sa665piprAQAAqHTlnrPjiqBTVFSkxx57TNHR0fLz81Pjxo315JNPyhjj6GOM0eTJkxUeHi4/Pz/Fx8dr586d1V4rAABwTxd86Xl1mDZtmmbPnq1//etf2r59u6ZNm6bp06dr1qxZjj7Tp0/XSy+9pDlz5mjDhg2qXbu2unXrpvz8fBdWDgAA3MVFXXpe1datW6dbb71VvXr1kiQ1atRIb7/9tjZu3Cjp9FmdmTNnatKkSbr11lslSfPnz1doaKiWLl2qgQMHuqx2AADgHtz6zM51112nVatW6fvvv5ckbd26VV988YV69Ogh6fTv/GRlZTn9vk9AQIDatWun9PT0c45bUFCg3NxcpwUAAFhTucPOwYMHz7u+sLDQccalsjz66KMaOHCgmjZtKm9vb8XExGjs2LEaMmSIJCkrK0uSFBoa6vS80NBQx7qyJCUlKSAgwLFERkZWat0AAMB9lDvshIeHOwWeli1bat++fY7Hv/32m9q3b1+pxf3nP//RggULtHDhQm3ZskVvvPGGnnvuOb3xxhsXNe7EiROVk5PjWM58HQAAwFrKPWfnzCugJGnPnj06derUeftcrAkTJjjO7kinA9ZPP/2kpKQkJSYmKiwsTJKUnZ2t8PBwx/Oys7PVunXrc45rt9tlt9srtVYAAOCeKnXOTmX/kvKJEyfk4eFcoqenp4qLiyVJ0dHRCgsL06pVqxzrc3NztWHDhko/ywQAAGomt74aq3fv3vrnP/+pqKgoXXXVVfrqq6/0wgsvaMSIEZJOh6uxY8fqqaeeUpMmTRQdHa3HHntMERER6tu3r2uLBwAAbqHcYcdms+nYsWPy9fWVMUY2m015eXmOK5mq4oqmWbNm6bHHHtN9992ngwcPKiIiQn/96181efJkR5+HH35Yx48f1913362jR4+qQ4cOSk1Nla+vb6XXAwAAah6bKedEGw8PD6evqUoCz9mPi4qKKr/KKpabm6uAgADl5OTI39/f1eVUG9sTrrmBq5ly/kPOXesC/qxc9W9SOv+/S3etC9WnvH+/y31mZ/Xq1ZVSGAAAQHUqd9jp2LFjVdYBAABQJcoddgoLC1VUVOR0yXZ2drbmzJmj48ePq0+fPurQoUOVFAkAAHChyh12Ro0aJR8fH82dO1eSdOzYMbVp00b5+fkKDw/XjBkz9MEHH6hnz55VViwAAEBFlft3dr788kslJCQ4Hs+fP19FRUXauXOntm7dqvHjx+vZZ5+tkiIBAAAuVLnDzv79+9WkSRPH41WrVikhIUEBAQGSpMTERG3btq3yKwQAALgI5Q47vr6++v333x2P169fr3bt2jmtz8vLq9zqAAAALlK5w07r1q315ptvSpI+//xzZWdnq0uXLo71P/74oyIiIiq/QgAAgItQ7gnKkydPVo8ePfSf//xHBw4c0LBhw5xuvrlkyRJdf/31VVIkAADAharQ7+xkZGRoxYoVCgsL0+233+60vnXr1mrbtm2lFwgAAHAxKnQj0GbNmqlZs2Zlrrv77rsrpSAAAIDKVO6wk5aWVq5+N9544wUXAwAAUNnKHXY6derkuPHnue4dWlNvBAoAAKyr3GGnXr16qlu3roYNG6ahQ4eqfv36VVkXAABApSj3pecHDhzQtGnTlJ6erpYtW2rkyJFat26d/P39FRAQ4FgAAADcSbnDjo+Pj+644w598skn+u6773T11VdrzJgxioyM1D/+8Q8VFhZWZZ0AAAAXpNxh50xRUVGaPHmyPv30U11xxRV65plnlJubW9m1AQAAXLQKh52CggItXLhQ8fHxatGiherXr6///ve/CgoKqor6AAAALkq5Jyhv3LhR8+bN06JFi9SoUSMNHz5c//nPfwg5AADArZU77Fx77bWKiorSAw88oNjYWEnSF198Uapfnz59Kq86AACAi1ShX1Deu3evnnzyyXOu53d2AACAuyl32CkuLq7KOgAAAKrEBV2NdS6///57ZQ4HAABw0Sol7BQUFOj5559XdHR0ZQwHAABQacoddgoKCjRx4kTFxcXpuuuu09KlSyVJ8+bNU3R0tGbOnKlx48ZVVZ0AAAAXpNxzdiZPnqy5c+cqPj5e69at0+23367hw4dr/fr1euGFF3T77bfL09OzKmsFAACosHKHncWLF2v+/Pnq06ePvvnmG1199dUqLCzU1q1bHXdDBwAAcDfl/hrr559/dvy+TosWLWS32zVu3DiCDgAAcGvlDjtFRUXy8fFxPPby8lKdOnWqpCgAAIDKUu6vsYwxGjZsmOx2uyQpPz9f99xzj2rXru3U7/3336/cCgEAAC5CucNOYmKi0+M777yz0osBAACobOUOO/PmzavKOgAAAKpEpf6CMgAAgLtx+7Czf/9+3XnnnQoODpafn59atmypzZs3O9YbYzR58mSFh4fLz89P8fHx2rlzpwsrBgAA7sStw86RI0d0/fXXy9vbW8uXL9e3336r559/XvXq1XP0mT59ul566SXNmTNHGzZsUO3atdWtWzfl5+e7sHIAAOAuyj1nxxWmTZumyMhIp/lCZ95/yxijmTNnatKkSbr11lslSfPnz1doaKiWLl2qgQMHVnvNAADAvbj1mZ1ly5YpLi5Ot99+u0JCQhQTE6NXX33VsX737t3KyspSfHy8oy0gIEDt2rVTenr6OcctKChQbm6u0wIAAKzJrcPOrl27NHv2bDVp0kSffPKJ7r33Xj3wwAN64403JElZWVmSpNDQUKfnhYaGOtaVJSkpSQEBAY4lMjKy6l4EAABwKbcOO8XFxbrmmmv09NNPKyYmRnfffbdGjRqlOXPmXNS4EydOVE5OjmPZt29fJVUMAADcjVuHnfDwcDVv3typrVmzZtq7d68kKSwsTJKUnZ3t1Cc7O9uxrix2u13+/v5OCwAAsCa3DjvXX3+9duzY4dT2/fffq2HDhpJOT1YOCwvTqlWrHOtzc3O1YcMGtW/fvlprBQAA7smtr8YaN26crrvuOj399NMaMGCANm7cqFdeeUWvvPKKJMlms2ns2LF66qmn1KRJE0VHR+uxxx5TRESE+vbt69riAQCAW3DrsNOmTRstWbJEEydO1NSpUxUdHa2ZM2dqyJAhjj4PP/ywjh8/rrvvvltHjx5Vhw4dlJqaKl9fXxdWDgAA3IVbhx1JuuWWW3TLLbecc73NZtPUqVM1derUaqwKAADUFG49ZwcAAOBiEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAICl1aiw88wzz8hms2ns2LGOtvz8fI0ePVrBwcGqU6eOEhISlJ2d7boiAQCAW6kxYWfTpk2aO3eurr76aqf2cePG6cMPP9TixYu1du1a/fLLL7rttttcVCUAAHA3NSLs5OXlaciQIXr11VdVr149R3tOTo5ee+01vfDCC+rSpYtiY2M1b948rVu3TuvXr3dhxQAAwF3UiLAzevRo9erVS/Hx8U7tGRkZOnXqlFN706ZNFRUVpfT09HOOV1BQoNzcXKcFAABYk5erC/gjixYt0pYtW7Rp06ZS67KysuTj46PAwECn9tDQUGVlZZ1zzKSkJD3xxBOVXSoAAHBDbn1mZ9++fXrwwQe1YMEC+fr6Vtq4EydOVE5OjmPZt29fpY0NAADci1uHnYyMDB08eFDXXHONvLy85OXlpbVr1+qll16Sl5eXQkNDdfLkSR09etTpednZ2QoLCzvnuHa7Xf7+/k4LAACwJrf+Gqtr1676+uuvndqGDx+upk2b6pFHHlFkZKS8vb21atUqJSQkSJJ27NihvXv3qn379q4oGQAAuBm3Djt169ZVixYtnNpq166t4OBgR/vIkSM1fvx4BQUFyd/fX/fff7/at2+va6+91hUlAwAAN+PWYac8ZsyYIQ8PDyUkJKigoEDdunXTyy+/7OqyAACAm6hxYWfNmjVOj319fZWcnKzk5GTXFAQAANyaW09QBgAAuFiEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGluH3aSkpLUpk0b1a1bVyEhIerbt6927Njh1Cc/P1+jR49WcHCw6tSpo4SEBGVnZ7uoYgAA4E7cPuysXbtWo0eP1vr167Vy5UqdOnVKN998s44fP+7oM27cOH344YdavHix1q5dq19++UW33XabC6sGAADuwsvVBfyR1NRUp8cpKSkKCQlRRkaGbrzxRuXk5Oi1117TwoUL1aVLF0nSvHnz1KxZM61fv17XXnutK8oGAABuwu3P7JwtJydHkhQUFCRJysjI0KlTpxQfH+/o07RpU0VFRSk9Pb3MMQoKCpSbm+u0AAAAa6pRYae4uFhjx47V9ddfrxYtWkiSsrKy5OPjo8DAQKe+oaGhysrKKnOcpKQkBQQEOJbIyMiqLh0AALhIjQo7o0eP1jfffKNFixZd1DgTJ05UTk6OY9m3b18lVQgAANyN28/ZKTFmzBh99NFHSktL06WXXupoDwsL08mTJ3X06FGnszvZ2dkKCwsrcyy73S673V7VJQMAADfg9md2jDEaM2aMlixZos8++0zR0dFO62NjY+Xt7a1Vq1Y52nbs2KG9e/eqffv21V0uAABwM25/Zmf06NFauHChPvjgA9WtW9cxDycgIEB+fn4KCAjQyJEjNX78eAUFBcnf31/333+/2rdvz5VYAADA/cPO7NmzJUmdOnVyap83b56GDRsmSZoxY4Y8PDyUkJCggoICdevWTS+//HI1VwoAANyR24cdY8wf9vH19VVycrKSk5OroSIAAFCTuP2cHQAAgItB2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJbm9jcCBQAAlcP2hM0l2zVT/vim3lWJMzsAAMDSOLMD4E/nz/p/t8CfFWd2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApXm5ugAAwGm2J2wu2a6ZYlyyXaC6EHaAGs5VfyCl8/+RdNe6gKrGse9+LBN2kpOT9eyzzyorK0utWrXSrFmz1LZtW1eXBQvhAwwAaiZLhJ133nlH48eP15w5c9SuXTvNnDlT3bp1044dOxQSEuLS2vgDCQCAa1ligvILL7ygUaNGafjw4WrevLnmzJmjWrVq6fXXX3d1aQAAwMVqfNg5efKkMjIyFB8f72jz8PBQfHy80tPTXVgZAABwBzX+a6xff/1VRUVFCg0NdWoPDQ3Vd999V+ZzCgoKVFBQ4Hick5MjScrNza38AvMrf8jy+sPX46LaqKvizlsbdZXiru8ldVVcjTzG3LUuyX2PsYsc15g/mLZharj9+/cbSWbdunVO7RMmTDBt27Yt8zlTpkwxklhYWFhYWFgssOzbt++8WaHGn9mpX7++PD09lZ2d7dSenZ2tsLCwMp8zceJEjR8/3vG4uLhYhw8fVnBwsGw2100oPltubq4iIyO1b98++fv7u7ocB+qqGOqqOHetjboqxl3rkty3NuqqGGOMjh07poiIiPP2q/Fhx8fHR7GxsVq1apX69u0r6XR4WbVqlcaMGVPmc+x2u+x2u1NbYGBgFVd64fz9/d3q4CpBXRVDXRXnrrVRV8W4a12S+9ZGXeUXEBDwh31qfNiRpPHjxysxMVFxcXFq27atZs6cqePHj2v48OGuLg0AALiYJcLOHXfcoUOHDmny5MnKyspS69atlZqaWmrSMgAA+POxRNiRpDFjxpzza6uaym63a8qUKaW+cnM16qoY6qo4d62NuirGXeuS3Lc26qoaNmP+6HotAACAmqvG/6ggAADA+RB2AACApRF2AACApRF2AACApRF2KsGwYcNks9lks9nk7e2t6OhoPfzww8rP//83ISlZv379eqfnFhQUOH65ec2aNY72tWvXqkuXLgoKClKtWrXUpEkTJSYm6uTJk5KkNWvWOMY8e8nKypIk9e3b16k9ODjYpXWNHj1a+fn5evXVV3XDDTc42tu0aaONGzdWyz4p2Xa9evVUr149xcfHO237j97L999/32nczMzMaqm7c+fOTu12u129evVy+TF25v7y8vKSzWZTkyZNXF5Xhw4dSq3z8vJyeV2SNHjwYKd13t7e6t+/v8trCwsLK3N99+7dXVLXnj17Sm3XbrcrMjJS48aNU35+fpW/VzNnztSVV14pPz8/p+1Kf/xZkZaW5jTu0qVLq3R/nVlHhw4dFB0dLV9fX7Vq1colx9O2bduUkJCgRo0ayWazaebMmSpLcnKyGjVqJF9fX7Vr187p87gyEXYqSffu3XXgwAHt2rVLM2bM0Ny5czVlyhSnPpGRkZo3b55T25IlS1SnTh2ntm+//Vbdu3dXXFyc0tLS9PXXX2vWrFny8fFRUVGRU98dO3bowIEDTktISIgkqbCwUI0aNdLs2bPVoEED9e3bt9rq6tevnzp37qytW7dq8+bNev311/XWW29pypQpWrNmjQYNGiRJCg8PV25urm6++Wbt37+/yvdJybZXr16t9PR0RUZGOm1bOv97efz4cUlSUFCQzlaVddvtdsXExGjt2rVKS0vTnXfeqY8//lh33XVXlb+X56urZH9t3LhR9evXV7NmzbRnzx6XH/uS5Onp6XT81apVy+V1nTx5UitWrFCDBg30wQcf6Msvv9SUKVP0ySefuLy2zp07O/2bffHFFyVJHh7Ofyaqoq4bbrjB6b2qW7euXn75ZUnSwoULJUnBwcFKSEjQa6+9pnfeeUd///vfq3R/LFy4UI8++qimTJmi7du3O223RHk+K+rXr6+zVWbdAwYMUOfOnbV//37t2rVLMTExWrdunWJjY/Xtt9/qnnvukXQ6zFbn8XTixAlddtlleuaZZ85566Z33nlH48eP15QpU7Rlyxa1atVK3bp108GDB8vsf1Eq53acf26JiYnm1ltvdWq77bbbTExMjOOxJDNp0iTj7+9vTpw44Wi/6aabzGOPPWYkmdWrVxtjjJkxY4Zp1KjRebe5evVqI8kcOXKkXHU1bNjQzJgxo9rqGjRoUIX2SZ06dcwbb7xR5fvkbIWFhaZu3bqObZf3vRwzZoyRZNLT0x3t1fVelggICDBhYWFOdbniGOvTp4+57rrrzL///W+TmJhowsPDXX7sX3/99cbLy8upzR3+Tc6ePdvUqVPH9O7d2+1qO/sYmzFjhvHy8jKtWrWq8rp69uzp1H7m/hg9enSp7Y4fP95cf/31Vbo/Ro8ebbp06eLUVrJdYyr2uS/JLFq0yNFemXWfXUd4eLhp1apVqTpatGhRrcfTmUr+/pytbdu2ZvTo0Y7HRUVFJiIiwiQlJZVr3IrgzE4V+Oabb7Ru3Tr5+Pg4tcfGxqpRo0Z67733JEl79+5VWlqahg4d6tQvLCxMBw4cUFpaWqXWdeDAAZfVdb59EhUVpYKCAgUFBVX7Pjlx4oROnTpV5pma89XdsmVLSdKqVaskVe97aYzRv//9b+Xk5JS6p5srjrEdO3YoJCREI0eO1JEjR3T48GG3OPYLCwvVsGFDRUZGqnPnzkpLS3N5XcuWLVNISIj+97//KTQ0VC1atNCDDz7olp8XycnJ8vb2lq+vb7XWdfa/ueuuu07S6XsylZyp/vjjj3XddddV6f647rrrlJGR4fhaZdeuXfr444/Vs2fPctVdIjY2VpKUnp4uqerfx+PHj2vPnj2l6sjOznbp8XS2kydPKiMjQ/Hx8Y42Dw8PxcfHO/ZVpar0+PQnlJiYaDw9PU3t2rWN3W43koyHh4d59913HX0kmSVLlpiZM2eazp07G2OMeeKJJ0y/fv3MkSNHnJJ1YWGhGTZsmJFkwsLCTN++fc2sWbNMTk6OY7ySZF27dm2npXnz5mXWJala6/Ly8nJs84+2ff311xtfX1/z+++/V/k+Odu9995rLrvsMvP7779X6L2cO3eukWTatGlTre/lmfvTZrO5/Bjr3r27kWRq1arl2F+SXF5Xz549jYeHh/Hz8zPe3t6OuubOnevSuq688krj4eFhbDabU23u8F6eeez7+PhU6+dFWcvZ2/X09DQeHh5Gkrnnnnuq5bPixRdfNN7e3o7Ps3vuuafM/fVHn/v6vzMrVfE+ltR2Zh2SzKxZs0xRUZFZsWKF4zO5Oo+nM5V1Zmf//v1Gklm3bp1T+4QJE0zbtm3LHOdiEHYqQWJioomPjzc7d+40mZmZJjEx0YwcOdKpT8lB/+uvvxpfX1/z448/mujoaPPhhx+WOthK/Pzzz2b+/Plm9OjRJjw83Fx66aXml19+Mcb8/4Nty5YtZufOnY5lz549ZdYVHh5u2rRpU2119e7d21x33XXm008/NcuWLTMJCQllbvvOO+80AQEBxm63V8s+OVNSUpKpV6+e2bp1a4Xfy5KwU111JyYmmq5du5pPP/3ULFq0yMTFxRlvb2+n7VT3MZabm2tq165tWrdu7dhfjRs3NlFRUaX2lyuP/czMTDN06FBTt25dM2nSJJfW1aRJE1OrVi3TtWtXR21xcXHGz8/PrfZZQkKCCQwMrLbPi3bt2jk+K/r162fuuOMOx/NL+tx3330mLS3N+Pj4mPDwcFOvXr0q3R+rV682oaGh5tVXXzX/+9//zPvvv28iIyPN1KlTyzzGzve5L8n4+PhUyfvYr18/06FDB0cdd9xxh4mKijIeHh7G09PTXHHFFUaS8fb2rtbj6UyEHYs4+zvToqIi06JFC/Pvf//b0VZy0BtjTP/+/U2nTp1MeHi4KSwsPOfBdqbDhw+b+vXrm8mTJxtjLmzOzvPPP19tdZ09Z+dc+6RWrVpm06ZN1bZPSjz77LMmICDAbNq06Zz77Hx1l4Sd+Pj4an8vS+qqV6+e0/9JVfcx9tVXXzn+L9LT09PpzJPNZjM//PCDS+o61/7y9/d3nIlzVV033nijCQ8Pd6rto48+MpLMnDlzXFpbyT7Ly8sz/v7+5oUXXqi2z4sz5+yc/W+uQ4cOpbbbrFkzI8mcPHmyyvZHhw4dzEMPPeTU9uabbxo/Pz9TVFRUoc99SaZ9+/ZV8j6eq47Zs2ebn3/+2RQXFxtJ5tJLL3Xsv+r8rDWm7LBTUFBgPD09He9ribvuusv06dOnXONWBHN2qoCHh4f+/ve/a9KkSfr9999LrR8xYoTWrFmju+66S56enuUas169egoPD3fM8K9pdZ297enTp0uSJk+erLi4uGrdJ9OnT9eTTz6p1NRUxcXFVajus916660uey+vvvpq/fDDDy47xpo2bao+ffqoc+fOyszMVGZmpm699VY1b95cwcHBZV6F4qpj3xij2rVra9u2bS79N3n99dcrNzdXxhhH2w8//KDAwEA9/vjjbvF5sXjxYhUUFOiuu+5yyefF2f/mTpw4UWq727dvl5eXV6krxS5mu2c7ceJEqfFLXueZ79+56j5b165dq+V9LKnjiSeeUFBQkAoLCyVJ7dq1k+S6f4Nn8/HxUWxsrGPeoyQVFxdr1apVat++faVtp4Rl7nrubm6//XZNmDBBycnJeuihh5zWde/eXYcOHZK/v3+Zz507d64yMzPVr18/NW7cWPn5+Zo/f762bdumWbNmOfU9ePCg0+9zSKcv0fT29lZxcbFycnKUmZmpkydPav/+/erQoYOMMVVeV35+vvLz851+s6Jv376aMGGC+vfvr08//VSSFBISoqysLLVu3Vq7d+9WREREle6TadOmafLkyVq4cKEaNWrkqK9OnTqlLsEsceZ7OWLECEnSvn37JJ2+rPSzzz5T48aNq7Tur7/+Wna7Xbt27VJBQYE+/vhjffHFF6pbt67LjjFfX1/Vq1dPNptNLVq0kCQFBgaqcePGysnJ0auvvuqyY3/r1q3y8/PTrl27dPToUT377LM6fPiwAgMDXfpv8t5779Wzzz6rr7/+Wt9//7127typp59+WuPGjdMrr7zi0tpKvPbaa+rbt6+Cg4Or7XOsoKDA6bPihhtukKenp5KTk9W7d29t2bJFn3/+uVq1aiVPT081atRIsbGxZf6xrqz90bt3b73wwguKiYlRu3bt9MMPP+ixxx5T7969zxkSztxfJZd87969W9LpwPDZZ58pMjLyovfXmXX//vvvys/P16lTp+Tt7a0NGzbIy+v0n/a//e1v2rFjh6TTPwciVd/xdPLkSX377beS5Pj7k5mZqTp16ujyyy+XJI0fP16JiYmKi4tT27ZtNXPmTB0/flzDhw8vs7aLUunniv6EyroE0ZjTc0IaNGhg8vLynE7Dnu3s04hbtmwxd955p4mOjjZ2u90EBwebG2+80SxbtszxnPNN7Cu5HDohIaHM9dHR0S6rKykpyTHJ8OxlypQpVb5PGjZseN5t/9F7OWfOnPM+v6rqvvrqq03t2rWNr6+vqVevnmnfvr1ZtGiRy4+xs/dXyWNX19WsWTPj5+dnfHx8TGhoqOnZs6fZsmWLy+sy5vTk6Xr16hm73W4uu+wy889//tMUFha6vLaSeWGSzIoVKxzPdVVd9957r2nQoIE5evSokU5PlvX19TWRkZHmvvvuc3yFUlX749SpU+bxxx83jRs3LnO7f/RZ8fHHH5c5fmJiYpXWvWbNGtOsWTPj6elpbDabGThwoEuOp927d5e5vmPHjk7bnzVrlomKijI+Pj6mbdu2Zv369WXWebFsxpRxPg4AAMAimLMDAAAsjbAD/J/PP//cMXenrAUApNM/yHe+z4q9e/e6ukScha+xgP/z+++/O90j62wlk+oA/LkVFhY63aj0bI0aNXJMEoZ7IOwAAABL42ssAABgaYQdAABgaYQdAABgaYQdACjD448/rtatW1foOTabTUuXLj3n+j179shmsykzM/OiagNQMYQdAE6GDRsmm80mm80mb29vRUdH6+GHHy71s/AlfdavX+/UXlBQoODgYNlsNq1Zs8bRvnbtWnXp0kVBQUGqVauWmjRposTERJ08eVKStGbNGseYZy9n3kqgREZGRpnbL9G1a1fddtttF7wfHnroIaf79gCouQg7AErp3r27Dhw4oF27dmnGjBmaO3eupkyZUqpfZGSk5s2b59S2ZMmSUr9L9O2336p79+6Ki4tTWlqavv76a82aNUs+Pj4qKipy6rtjxw4dOHDAaQkJCSm17djYWLVq1Uqvv/56qXV79uzR6tWrNXLkyAq/dmOMCgsLVadOHQUHB1f4+QDcD2EHQCl2u11hYWGKjIxU3759FR8fr5UrV5bql5iYqEWLFjnd5fn1119XYmKiU78VK1YoLCxM06dPV4sWLdS4cWN1795dr776qvz8/Jz6hoSEKCwszGk5192tR44cqXfeeafUnbFTUlIUHh6u7t27680331RcXJzq1q2rsLAwDR48WAcPHnT0LTmjtHz5csXGxsput+uLL74o9TXWpk2bdNNNN6l+/foKCAhQx44dtWXLllI1HThwQD169JCfn58uu+wyvfvuu+fe0ZK++eYb9ejRQ3Xq1FFoaKiGDh2qX3/91bH+3XffVcuWLeXn56fg4GDFx8dX6t2ngT8Dwg6A8/rmm2+0bt06+fj4lFoXGxurRo0a6b333pN0+pdl09LSNHToUKd+YWFhOnDggNLS0iq1tiFDhqigoMApUBhj9MYbb2jYsGHy9PTUqVOn9OSTT2rr1q1aunSp9uzZo2HDhpUa69FHH9Uzzzyj7du36+qrry61/tixY0pMTNQXX3yh9evXq0mTJurZs6eOHTvm1O+xxx5TQkKCtm7dqiFDhmjgwIHavn17mfUfPXpUXbp0UUxMjDZv3qzU1FRlZ2drwIABkk4Hp0GDBmnEiBHavn271qxZo9tuu038PBpQQVVye1EANVZiYqLx9PQ0tWvXNna73UgyHh4e5t1333Xqp/+7k/LMmTNN586djTHGPPHEE6Zfv36l7qRcWFhohg0b5rh7dd++fc2sWbNMTk6OY7ySOynXrl3baWnevPl56x04cKDTnZRXrVplJJmdO3eW2X/Tpk1Gkjl27JjTdpcuXerUb8qUKaZVq1bn3G5RUZGpW7eu+fDDD532yT333OPUr127dubee+81xvz/O0F/9dVXxhhjnnzySXPzzTc79d+3b5+RZHbs2GEyMjKMJLNnz57z7gMA58eZHQCldO7cWZmZmdqwYYMSExM1fPhwJSQklNn3zjvvVHp6unbt2qWUlBSNGDGiVB9PT0/NmzdPP//8s6ZPn65LLrlETz/9tK666iodOHDAqe/nn3+uzMxMx/Lxxx+ft9YRI0YoLS1NP/74o6TTX6N17NjRcXuPjIwM9e7dW1FRUapbt646duwoSaXuXxQXF3fe7WRnZ2vUqFFq0qSJAgIC5O/vr7y8vFLjtG/fvtTjc53Z2bp1q1avXu10X6WmTZtKkn788Ue1atVKXbt2VcuWLXX77bfr1Vdf1ZEjR85bJ4DSCDsASqldu7Yuv/xyxwTgDRs26LXXXiuzb3BwsG655RaNHDlS+fn56tGjxznHveSSSzR06FD961//0rZt25Sfn685c+Y49YmOjtbll1/uWBo2bHjeWrt27aqoqCilpKQoNzdX77//vmNi8vHjx9WtWzf5+/trwYIF2rRpk5YsWSJJjqvAznzN55OYmKjMzEy9+OKLWrdunTIzMxUcHFxqnIrIy8tT7969ncJdZmamdu7cqRtvvFGenp5auXKlli9frubNm2vWrFm68sortXv37gveJvBnRNgBcF4eHh76+9//rkmTJjlNRD7TiBEjtGbNGt11113y9PQs17j16tVTeHj4RU+29fDw0PDhw/XGG29o4cKF8vHxUf/+/SVJ3333nX777Tc988wzuuGGG9S0aVOnyckV8eWXX+qBBx5Qz549ddVVV8lutztNJC5x9qXw69evV7Nmzcoc85prrtG2bdvUqFEjp4B3+eWXO8KXzWbT9ddfryeeeEJfffWVfHx8HIENQPkQdgD8odtvv12enp5KTk4uc3337t116NAhTZ06tcz1c+fO1b333qsVK1boxx9/1LZt2/TII49o27Zt6t27t1PfgwcPKisry2k5derUeesbPny49u/fr7///e8aNGiQ4wqvqKgo+fj4aNasWdq1a5eWLVumJ5988gL2gNSkSRO9+eab2r59uzZs2KAhQ4aUupJMkhYvXqzXX39d33//vaZMmaKNGzdqzJgxZY45evRoHT58WIMGDdKmTZv0448/6pNPPtHw4cNVVFSkDRs26Omnn9bmzZu1d+9evf/++zp06NA5wxOAshF2APwhLy8vjRkzRtOnTy/zTIzNZlP9+vXLvGJLktq2bau8vDzdc889uuqqq9SxY0etX79eS5cudcyhKXHllVcqPDzcacnIyDhvfVFRUYqPj9eRI0ec5gw1aNBAKSkpWrx4sZo3b65nnnlGzz333AXsAem1117TkSNHdM0112jo0KF64IEHyvz9nyeeeEKLFi3S1Vdfrfnz5+vtt99W8+bNyxwzIiJCX375pYqKinTzzTerZcuWGjt2rAIDA+Xh4SF/f3+lpaWpZ8+euuKKKzRp0iQ9//zz5/2qEEBpNmO4hhEAAFgXZ3YAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAICl/T/87OzQb65QZQAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of RMSE values from rmse1 to rmse10\n", + "rmse_values = [rmse1, rmse2, rmse2_1, rmse3, rmse4, rmse5, rmse6, rmse7, rmse8, rmse8_1, rmse9, rmse10]\n", + "\n", + "# List of corresponding labels for each RMSE value\n", + "labels = ['RMSE1', 'RMSE2', 'RMSE2_1', 'RMSE3', 'RMSE4', 'RMSE5', 'RMSE6', 'RMSE7', 'RMSE8', 'RMSE8_1', 'RMSE9', 'RMSE10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, rmse_values, color='green')\n", + "plt.xlabel('RMSE Variables')\n", + "plt.ylabel('RMSE Values')\n", + "plt.title('Bar Graph of RMSE')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "nrZu-K-KDCJ2", + "outputId": "d0dd5f18-77bd-41f4-c21b-09e71322b318" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/MUlEQVR4nO3deVxUZf//8fcACogCorIlKuW+pOYWmbdLFK6pueR2h2JqqZl5l+l9m2V5Z1qZS6RZKFmCS6mlpUWYW+GuZUmuuAuWKYomopzfH36dX3MDCjoww+n1fDzO4+Fc5zrn+swMMm/Ouc4Zi2EYhgAAAEzKxdEFAAAAFCbCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDoC/hVdeeUUWi0W///57oY+1evVqNWjQQB4eHrJYLDp37lyhjwkgb4QdoJiLjY2VxWKxWfz9/dW6dWutWrWqyOtZsWKFOnXqpICAAJUsWVJ+fn76xz/+obffflvnz58v8nqK2pkzZ9SzZ095enoqOjpaH3/8sby8vHLt+9f3buPGjTnWG4ahkJAQWSwWdezYMdd9nDt3zhqqkpOTc+3Tv3//HD8jNxYPD4/bf7JAMeHm6AIA2Merr76q0NBQGYahtLQ0xcbGqn379lqxYkWeH5T2lJ2drYEDByo2Nlb16tXT0KFDFRISogsXLigpKUnjxo3TV199pcTExEKvxZG2bt2qCxcu6LXXXlN4eHi+tvHw8FBcXJwefPBBm/Z169bp+PHjcnd3z3PbJUuWyGKxKDAwUAsWLNDEiRNz7efu7q4PP/wwR7urq2u+agSKM8IOYBLt2rVT48aNrY8HDhyogIAAxcfH2yXsZGdn68qVK3keCZgyZYpiY2P13HPP6e2335bFYrGue/bZZ3Xq1CnNnz//jsYoDk6fPi1J8vX1zfc27du315IlSzRjxgy5uf3/X8txcXFq1KjRTU+9ffLJJ2rfvr0qV66suLi4PMOOm5ub+vXrl++aADPhNBZgUr6+vvL09LT58JSkt956Sw888IDKlSsnT09PNWrUSJ9++mmO7S0Wi4YPH64FCxaoTp06cnd31+rVq3Md69KlS5o8ebLq1KmjN9980ybo3BAUFKQXX3wx32PcTp01atSQh4eHGjVqpPXr1+da67lz59S/f3/5+vrKx8dHAwYM0KVLl3J/Ef/HkiVL1KhRI3l6eqp8+fLq16+fTpw4YV3fqlUrRUZGSpKaNGkii8Wi/v3733K/vXv31pkzZ5SQkGBtu3Llij799FP16dMnz+2OHj2qDRs2qFevXurVq5dSUlL0ww8/5Ou5AH8nHNkBTCI9PV2///67DMPQ6dOnNXPmTGVkZOT4a3769Ol69NFH1bdvX125ckULFy5Ujx49tHLlSnXo0MGm75o1a7R48WINHz5c5cuXV5UqVXIde+PGjTp37pyef/75Ap8WyWuMgtS5bt06LVq0SCNGjJC7u7vee+89tW3bVlu2bFHdunVt+vbs2VOhoaGaNGmSduzYoQ8//FD+/v6aPHnyTeuMjY3VgAED1KRJE02aNElpaWmaPn26vv/+e+3cuVO+vr76z3/+oxo1amjOnDnW04r33HPPLV+DKlWqKCwsTPHx8WrXrp0kadWqVUpPT1evXr00Y8aMXLeLj4+Xl5eXOnbsKE9PT91zzz1asGCBHnjggVz753aEqGTJkvL29r5ljUCxZgAo1ubNm2dIyrG4u7sbsbGxOfpfunTJ5vGVK1eMunXrGm3atLFpl2S4uLgYv/zyyy1rmD59uiHJWL58uU371atXjd9++81myc7OztcYBalTkrFt2zZr25EjRwwPDw+ja9eu1raXX37ZkGRERUXZbN+1a1ejXLlyN31+V65cMfz9/Y26desaf/75p7V95cqVhiRj/Pjx1rYb78fWrVtvus//7fvuu+8aZcqUsT7vHj16GK1btzYMwzAqV65sdOjQIcf29erVM/r27Wt9/O9//9soX768kZWVZdMvMjIy158RSUZERMQt6wSKO05jASYRHR2thIQEJSQk6JNPPlHr1q315JNPaunSpTb9PD09rf8+e/as0tPT1aJFC+3YsSPHPlu2bKnatWvfcuwbV1mVLl3apn337t2qUKGCzXLmzJl8jVGQOsPCwtSoUSPr40qVKqlz5876+uuvde3aNZu+Tz31lM3jFi1a6MyZMze9Umzbtm06ffq0hg4dajOfqEOHDqpZs6a+/PLLPLfNr549e+rPP//UypUrdeHCBa1cufKmp7B++ukn7d69W71797a29e7dW7///ru+/vrrHP09PDysPx9/Xd544407rh1wdpzGAkyiadOmNhOUe/furYYNG2r48OHq2LGjSpYsKUlauXKlJk6cqF27dikzM9PaP7d5NqGhofkau0yZMpKkjIwMm/aqVata56HMnz9fH3/8cb7HKEid1apVy9FWvXp1Xbp0Sb/99psCAwOt7ZUqVbLpV7ZsWUnXA1Vep3OOHDkiSapRo0aOdTVr1sz1svGCqlChgsLDwxUXF6dLly7p2rVr6t69e579P/nkE3l5eenuu+/WgQMHJF0PNFWqVNGCBQtynOpzdXXN99VhgNlwZAcwKRcXF7Vu3VqnTp3S/v37JUkbNmzQo48+Kg8PD7333nv66quvlJCQoD59+sgwjBz7+OvRlZupWbOmJOnnn3+2aS9durTCw8MVHh6uu+++O9dtcxujoHUWRF5ziu50v/bQp08frVq1SrNnz1a7du3yvKLLMAzFx8fr4sWLql27tqpVq2ZdDh8+rM8//zxH8AT+zjiyA5jY1atXJf3/Iy6fffaZPDw89PXXX9vcu2XevHl3NE6LFi3k4+OjhQsXauzYsXJxubO/owpa540w91f79u1TqVKlVKFChTuqRZIqV64sSdq7d6/atGljs27v3r3W9Xeqa9euGjJkiDZt2qRFixbl2e/G/XdeffVV1apVy2bd2bNnNXjwYC1fvpxLzYH/w5EdwKSysrL0zTffqGTJktYPRFdXV1ksFpt5LIcPH9by5cvvaKxSpUpp9OjR+vnnnzVmzJhcj5IU5MhJQetMSkqymctz7Ngxff7553rkkUfsctO8xo0by9/fX7Nnz7Y5pbZq1SolJyfnOGV0u0qXLq1Zs2bplVdeUadOnfLsd+MU1gsvvKDu3bvbLIMGDVK1atW0YMECu9QEmAFHdgCTWLVqlX799VdJ129sFxcXp/3792vMmDHWuSgdOnTQ1KlT1bZtW/Xp00enT59WdHS0qlatqp9++umOxh8zZoySk5P15ptv6ptvvlG3bt1UsWJFnT17Vjt27NCSJUvk7++frxsGFrTOunXrKiIiwubSc0maMGHCHT2nG0qUKKHJkydrwIABatmypXr37m299LxKlSp67rnn7DKOJOt9evKSmZmpzz77TA8//HCer+Wjjz6q6dOn6/Tp0/L395d0/SjfJ598kmv/rl275vmVFoAZEHYAkxg/frz13x4eHqpZs6ZmzZqlIUOGWNvbtGmjmJgYvfHGGxo5cqRCQ0M1efJkHT58+I7DjouLiz7++GN169ZNH3zwgWbOnKmzZ8+qdOnSqlu3rv773/9q0KBBOa7Yyk1B62zZsqXCwsI0YcIEHT16VLVr11ZsbKzuvffeO3pOf9W/f3+VKlVKb7zxhl588UV5eXmpa9eumjx5coHulnynvvzyS507d+6mR346deqkt99+WwsXLtSIESMkXQ9J//znP3Ptn5KSQtiBqVkMZ5iVBwC3yWKxaNiwYXr33XcdXQoAJ8WcHQAAYGqEHQAAYGqEHQAAYGpMUAZQrDHtEMCtcGQHAACYGmEHAACYGqexJGVnZ+vkyZMqU6ZMrl8yCAAAnI9hGLpw4YKCg4Nv+jU1hB1JJ0+eVEhIiKPLAAAAt+HYsWOqWLFinusJO5LKlCkj6fqLdeO2+gAAwLmdP39eISEh1s/xvBB2JOupK29vb8IOAADFzK2moDBBGQAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmJqbowuAg8RZHDd2H8NxYwMA/nY4sgMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEzNoWFn/fr16tSpk4KDg2WxWLR8+XLruqysLL344ouqV6+evLy8FBwcrCeeeEInT5602ccff/yhvn37ytvbW76+vho4cKAyMjKK+JkAAABn5dCwc/HiRdWvX1/R0dE51l26dEk7duzQSy+9pB07dmjp0qXau3evHn30UZt+ffv21S+//KKEhAStXLlS69ev1+DBg4vqKQAAACdnMQzDcHQRkmSxWLRs2TJ16dIlzz5bt25V06ZNdeTIEVWqVEnJycmqXbu2tm7dqsaNG0uSVq9erfbt2+v48eMKDg7O19jnz5+Xj4+P0tPT5e3tbY+n4/ziLI4bu49T/MgBAIq5/H5+F6s5O+np6bJYLPL19ZUkJSUlydfX1xp0JCk8PFwuLi7avHmzg6oEAADOxM3RBeTX5cuX9eKLL6p3797W9Jaamip/f3+bfm5ubvLz81Nqamqe+8rMzFRmZqb18fnz5wunaAAA4HDF4shOVlaWevbsKcMwNGvWrDve36RJk+Tj42NdQkJC7FAlAABwRk4fdm4EnSNHjighIcHmnFxgYKBOnz5t0//q1av6448/FBgYmOc+x44dq/T0dOty7NixQqsfAAA4llOfxroRdPbv36/vvvtO5cqVs1kfFhamc+fOafv27WrUqJEkac2aNcrOzlazZs3y3K+7u7vc3d0LtXYAAOAcHBp2MjIydODAAevjlJQU7dq1S35+fgoKClL37t21Y8cOrVy5UteuXbPOw/Hz81PJkiVVq1YttW3bVoMGDdLs2bOVlZWl4cOHq1evXvm+EgsAAJibQy89X7t2rVq3bp2jPTIyUq+88opCQ0Nz3e67775Tq1atJF2/qeDw4cO1YsUKubi4qFu3bpoxY4ZKly6d7zq49LyIcek5AMAO8vv57dAjO61atdLNslZ+cpifn5/i4uLsWRYAADARp5+gDAAAcCcIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNQIOwAAwNTcHF0AkEOcxTHj9jEcMy4AoFBxZAcAAJgaYQcAAJgaYQcAAJgac3YAADfHPDoUcxzZAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApubQsLN+/Xp16tRJwcHBslgsWr58uc16wzA0fvx4BQUFydPTU+Hh4dq/f79Nnz/++EN9+/aVt7e3fH19NXDgQGVkZBThswAAAM7MzZGDX7x4UfXr11dUVJQee+yxHOunTJmiGTNm6KOPPlJoaKheeuklRUREaM+ePfLw8JAk9e3bV6dOnVJCQoKysrI0YMAADR48WHFxcUX9dAAARSnO4rix+xiOGxsF5tCw065dO7Vr1y7XdYZhaNq0aRo3bpw6d+4sSZo/f74CAgK0fPly9erVS8nJyVq9erW2bt2qxo0bS5Jmzpyp9u3b66233lJwcHCRPRcAAOCcnHbOTkpKilJTUxUeHm5t8/HxUbNmzZSUlCRJSkpKkq+vrzXoSFJ4eLhcXFy0efPmPPedmZmp8+fP2ywAAMCcnDbspKamSpICAgJs2gMCAqzrUlNT5e/vb7Pezc1Nfn5+1j65mTRpknx8fKxLSEiInasHAADOwmnDTmEaO3as0tPTrcuxY8ccXRIAACgkTht2AgMDJUlpaWk27WlpadZ1gYGBOn36tM36q1ev6o8//rD2yY27u7u8vb1tFgAAYE5OG3ZCQ0MVGBioxMREa9v58+e1efNmhYWFSZLCwsJ07tw5bd++3dpnzZo1ys7OVrNmzYq8ZgAA4HwcejVWRkaGDhw4YH2ckpKiXbt2yc/PT5UqVdLIkSM1ceJEVatWzXrpeXBwsLp06SJJqlWrltq2batBgwZp9uzZysrK0vDhw9WrVy+uxAIAAJIcHHa2bdum1q1bWx+PGjVKkhQZGanY2FiNHj1aFy9e1ODBg3Xu3Dk9+OCDWr16tfUeO5K0YMECDR8+XA899JBcXFzUrVs3zZgxo8ifCwAAcE4WwzD+9ndGOn/+vHx8fJSenv73mb/jzDfjclRt3CQMyJ2z/p905t9jKBL5/fx22jk7AAAA9kDYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApubUYefatWt66aWXFBoaKk9PT91zzz167bXXZBiGtY9hGBo/fryCgoLk6emp8PBw7d+/34FVAwAAZ3LHYefatWvatWuXzp49a496bEyePFmzZs3Su+++q+TkZE2ePFlTpkzRzJkzrX2mTJmiGTNmaPbs2dq8ebO8vLwUERGhy5cv270eAABQ/BQ47IwcOVIxMTGSrgedli1b6r777lNISIjWrl1r1+J++OEHde7cWR06dFCVKlXUvXt3PfLII9qyZYuk60d1pk2bpnHjxqlz58669957NX/+fJ08eVLLly+3ay0AAKB4KnDY+fTTT1W/fn1J0ooVK5SSkqJff/1Vzz33nP7zn//YtbgHHnhAiYmJ2rdvnyTpxx9/1MaNG9WuXTtJUkpKilJTUxUeHm7dxsfHR82aNVNSUlKe+83MzNT58+dtFgAAYE4FDju///67AgMDJUlfffWVevTooerVqysqKkq7d++2a3FjxoxRr169VLNmTZUoUUINGzbUyJEj1bdvX0lSamqqJCkgIMBmu4CAAOu63EyaNEk+Pj7WJSQkxK51AwAA51HgsBMQEKA9e/bo2rVrWr16tR5++GFJ0qVLl+Tq6mrX4hYvXqwFCxYoLi5OO3bs0EcffaS33npLH3300R3td+zYsUpPT7cux44ds1PFAADA2bgVdIMBAwaoZ8+eCgoKksVisZ5C2rx5s2rWrGnX4l544QXr0R1Jqlevno4cOaJJkyYpMjLSeoQpLS1NQUFB1u3S0tLUoEGDPPfr7u4ud3d3u9YKAACcU4HDziuvvKK6devq2LFj6tGjhzU0uLq6asyYMXYt7tKlS3JxsT345OrqquzsbElSaGioAgMDlZiYaA0358+f1+bNm/X000/btRYAAFA8FTjsSFL37t0lyeby7sjISPtU9BedOnXSf//7X1WqVEl16tTRzp07NXXqVEVFRUmSLBaLRo4cqYkTJ6patWoKDQ3VSy+9pODgYHXp0sXu9QAAgOKnwHN2rl27ptdee0133XWXSpcurUOHDkmSXnrpJesl6fYyc+ZMde/eXUOHDlWtWrX0/PPPa8iQIXrttdesfUaPHq1nnnlGgwcPVpMmTZSRkaHVq1fLw8PDrrUAAIDiqcBh57///a9iY2M1ZcoUlSxZ0tpet25dffjhh3YtrkyZMpo2bZqOHDmiP//8UwcPHtTEiRNtxrVYLHr11VeVmpqqy5cv69tvv1X16tXtWgcAACi+Chx25s+frzlz5qhv3742V1/Vr19fv/76q12LAwAAuFMFDjsnTpxQ1apVc7RnZ2crKyvLLkUBAADYS4HDTu3atbVhw4Yc7Z9++qkaNmxol6IAAADspcBXY40fP16RkZE6ceKEsrOztXTpUu3du1fz58/XypUrC6NGAACA21bgIzudO3fWihUr9O2338rLy0vjx49XcnKyVqxYYb2bMgAAgLO4rfvstGjRQgkJCfauBQAAwO4KfGQHAACgOCnwkR0XFxdZLJY811+7du2OCgIAALCnAoedZcuW2TzOysrSzp079dFHH2nChAl2KwwAAMAeChx2OnfunKOte/fuqlOnjhYtWqSBAwfapTAAAAB7sNucnfvvv1+JiYn22h0AAIBd2CXs/Pnnn5oxY4buuusue+wOAADAbgp8Gqts2bI2E5QNw9CFCxdUqlQpffLJJ3YtDgAA4E4VOOy88847NmHHxcVFFSpUULNmzVS2bFm7FgcAAHCnChx2+vfvXwhlAAAAFI58hZ2ffvop3zu89957b7sYAAAAe8tX2GnQoIEsFosMw7hpP4vFwk0FAQCAU8lX2ElJSSnsOgAAAApFvsJO5cqVC7sOAACAQnFb33ouSXv27NHRo0d15coVm/ZHH330josCAACwlwKHnUOHDqlr167avXu3zTyeG5ejM2cHAAA4kwLfQfnZZ59VaGioTp8+rVKlSumXX37R+vXr1bhxY61du7YQSgQAALh9BT6yk5SUpDVr1qh8+fJycXGRi4uLHnzwQU2aNEkjRozQzp07C6NOAACA21LgIzvXrl1TmTJlJEnly5fXyZMnJV2fxLx37177VgcAAHCHCnxkp27duvrxxx8VGhqqZs2aacqUKSpZsqTmzJmju+++uzBqBAAAuG0FDjvjxo3TxYsXJUmvvvqqOnbsqBYtWqhcuXJatGiR3QsEAAC4E/kOO40bN9aTTz6pPn36yNvbW5JUtWpV/frrr/rjjz9yfBs6AACAM8j3nJ369etr9OjRCgoK0hNPPGFz5ZWfnx9BBwAAOKV8h52YmBilpqYqOjpaR48e1UMPPaSqVavq9ddf14kTJwqzRgAAgNtWoKuxSpUqpf79+2vt2rXat2+fevXqpffff19VqlRRhw4dtHTp0sKqEwAA4LYU+NLzG+655x5NnDhRhw8fVnx8vDZt2qQePXrYszYAAIA7dtvfjSVJa9eu1bx58/TZZ5/Jzc1NgwYNslddAAAAdlHgsHP8+HHFxsYqNjZWhw4dUosWLfTee++pR48e8vT0LIwaAQAAblu+w87ixYs1d+5cJSYmyt/fX5GRkYqKilLVqlULsz4AAIA7ku+w069fP3Xo0EHLli1T+/bt5eJy29N9AAAAiky+w87x48fl7+9fmLUAAADYXb4PzxB0AABAccS5KAAAYGqEHQAAYGqEHQAAYGr5DjtbtmzRtWvX8lyfmZmpxYsX26UoAAAAe8l32AkLC9OZM2esj729vXXo0CHr43Pnzql37972rQ4AAOAO5TvsGIZx08d5tQEAADiSXefsWCwWe+4OAADgjjn9BOUTJ06oX79+KleunDw9PVWvXj1t27bNut4wDI0fP15BQUHy9PRUeHi49u/f78CKAQCAMynQF4Hu2bNHqampkq6HjF9//VUZGRmSpN9//93uxZ09e1bNmzdX69attWrVKlWoUEH79+9X2bJlrX2mTJmiGTNm6KOPPlJoaKheeuklRUREaM+ePfLw8LB7TQAAoHgpUNh56KGHbObldOzYUdL101eGYdj9NNbkyZMVEhKiefPmWdtCQ0Ot/zYMQ9OmTdO4cePUuXNnSdL8+fMVEBCg5cuXq1evXnatBwAAFD/5DjspKSmFWUeuvvjiC0VERKhHjx5at26d7rrrLg0dOlSDBg2y1pSamqrw8HDrNj4+PmrWrJmSkpLyDDuZmZnKzMy0Pj5//nzhPhEAAOAw+Q47lStXvmWfn3/++Y6K+V+HDh3SrFmzNGrUKP373//W1q1bNWLECJUsWVKRkZHWU2oBAQE22wUEBFjX5WbSpEmaMGGCXWsFAADO6Y4nKF+4cEFz5sxR06ZNVb9+fXvUZJWdna377rtPr7/+uho2bKjBgwdr0KBBmj179h3td+zYsUpPT7cux44ds1PFAADA2dx22Fm/fr0iIyMVFBSkt956S23atNGmTZvsWZuCgoJUu3Ztm7ZatWrp6NGjkqTAwEBJUlpamk2ftLQ067rcuLu7y9vb22YBAADmVKCwk5qaqjfeeEPVqlVTjx495O3trczMTC1fvlxvvPGGmjRpYtfimjdvrr1799q07du3z3pKLTQ0VIGBgUpMTLSuP3/+vDZv3qywsDC71gIAAIqnfIedTp06qUaNGvrpp580bdo0nTx5UjNnzizM2vTcc89p06ZNev3113XgwAHFxcVpzpw5GjZsmKTrV4GNHDlSEydO1BdffKHdu3friSeeUHBwsLp06VKotQEAgOIh3xOUV61apREjRujpp59WtWrVCrMmqyZNmmjZsmUaO3asXn31VYWGhmratGnq27evtc/o0aN18eJFDR48WOfOndODDz6o1atXc48dAAAgqQBhZ+PGjYqJiVGjRo1Uq1Yt/fOf/yyS+9h07NjRej+f3FgsFr366qt69dVXC70WAABQ/OT7NNb999+vDz74QKdOndKQIUO0cOFCBQcHKzs7WwkJCbpw4UJh1gkAAHBbCnw1lpeXl6KiorRx40bt3r1b//rXv/TGG2/I399fjz76aGHUCAAAcNvu6D47NWrU0JQpU3T8+HHFx8fbqyYAAAC7scu3nru6uqpLly764osv7LE7AAAAu8n3BOWoqKhb9rFYLIqJibmjggAAAOwp32EnNjZWlStXVsOGDW2++RwAAMCZ5TvsPP3004qPj1dKSooGDBigfv36yc/PrzBrAwAAuGP5nrMTHR2tU6dOafTo0VqxYoVCQkLUs2dPff311xzpAQAATqtAE5Td3d3Vu3dvJSQkaM+ePapTp46GDh2qKlWqKCMjo7BqBAAAuG23fTWWi4uLLBaLDMPQtWvX7FkTAACA3RQo7GRmZio+Pl4PP/ywqlevrt27d+vdd9/V0aNHVbp06cKqEQAA4Lble4Ly0KFDtXDhQoWEhCgqKkrx8fEqX758YdYGAABwx/IddmbPnq1KlSrp7rvv1rp167Ru3bpc+y1dutRuxQEAANypfIedJ554QhaLpTBrAQAAsLsC3VQQAACguLHLd2MBAAA4K8IOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwNcIOAAAwtWIVdt544w1ZLBaNHDnS2nb58mUNGzZM5cqVU+nSpdWtWzelpaU5rkgAAOBUik3Y2bp1q95//33de++9Nu3PPfecVqxYoSVLlmjdunU6efKkHnvsMQdVCQAAnE2xCDsZGRnq27evPvjgA5UtW9banp6erpiYGE2dOlVt2rRRo0aNNG/ePP3www/atGmTAysGAADOoliEnWHDhqlDhw4KDw+3ad++fbuysrJs2mvWrKlKlSopKSkpz/1lZmbq/PnzNgsAADAnN0cXcCsLFy7Ujh07tHXr1hzrUlNTVbJkSfn6+tq0BwQEKDU1Nc99Tpo0SRMmTLB3qQAAwAk59ZGdY8eO6dlnn9WCBQvk4eFht/2OHTtW6enp1uXYsWN22zcAAHAuTh12tm/frtOnT+u+++6Tm5ub3NzctG7dOs2YMUNubm4KCAjQlStXdO7cOZvt0tLSFBgYmOd+3d3d5e3tbbMAAABzcurTWA899JB2795t0zZgwADVrFlTL774okJCQlSiRAklJiaqW7dukqS9e/fq6NGjCgsLc0TJAADAyTh12ClTpozq1q1r0+bl5aVy5cpZ2wcOHKhRo0bJz89P3t7eeuaZZxQWFqb777/fESUDAAAn49RhJz/eeecdubi4qFu3bsrMzFRERITee+89R5cFAACcRLELO2vXrrV57OHhoejoaEVHRzumIAAA4NSceoIyAADAnSLsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAUyPsAAAAU3PqsDNp0iQ1adJEZcqUkb+/v7p06aK9e/fa9Ll8+bKGDRumcuXKqXTp0urWrZvS0tIcVDEAAHA2Th121q1bp2HDhmnTpk1KSEhQVlaWHnnkEV28eNHa57nnntOKFSu0ZMkSrVu3TidPntRjjz3mwKoBAIAzcXN0ATezevVqm8exsbHy9/fX9u3b9Y9//EPp6emKiYlRXFyc2rRpI0maN2+eatWqpU2bNun+++93RNkAAMCJOPWRnf+Vnp4uSfLz85Mkbd++XVlZWQoPD7f2qVmzpipVqqSkpCSH1AgAAJyLUx/Z+avs7GyNHDlSzZs3V926dSVJqampKlmypHx9fW36BgQEKDU1Nc99ZWZmKjMz0/r4/PnzhVIzAABwvGJzZGfYsGH6+eeftXDhwjve16RJk+Tj42NdQkJC7FAhAABwRsUi7AwfPlwrV67Ud999p4oVK1rbAwMDdeXKFZ07d86mf1pamgIDA/Pc39ixY5Wenm5djh07VlilAwAAB3PqsGMYhoYPH65ly5ZpzZo1Cg0NtVnfqFEjlShRQomJida2vXv36ujRowoLC8tzv+7u7vL29rZZAACAOTn1nJ1hw4YpLi5On3/+ucqUKWOdh+Pj4yNPT0/5+Pho4MCBGjVqlPz8/OTt7a1nnnlGYWFhXIkFAAAkOXnYmTVrliSpVatWNu3z5s1T//79JUnvvPOOXFxc1K1bN2VmZioiIkLvvfdeEVcKAACclVOHHcMwbtnHw8ND0dHRio6OLoKKAABAcePUc3YAAADuFGEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYmpujCwAAAEUkzuKYcfsYjhn3/3BkBwAAmBpHdgD8vTjqL1vJ4X/dAn9XHNkBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACm5uboAuwlOjpab775plJTU1W/fn3NnDlTTZs2dXRZAJB/cRbHjNvHcMy4ZuWo91HivcyDKcLOokWLNGrUKM2ePVvNmjXTtGnTFBERob1798rf39/R5cEsnPWDyFl/sTprXQD+dkwRdqZOnapBgwZpwIABkqTZs2fryy+/1Ny5czVmzBjHFscvfAAAHKrYz9m5cuWKtm/frvDwcGubi4uLwsPDlZSU5MDKAACAMyj2R3Z+//13Xbt2TQEBATbtAQEB+vXXX3PdJjMzU5mZmdbH6enpkqTz58/bv8BL9t9lvt3s+ThrXZLjaqOugiuOP2POWpfEz9j/cta6JH7GCqowPl/1/z+3DeMWZzKMYu7EiROGJOOHH36waX/hhReMpk2b5rrNyy+/bEhiYWFhYWFhMcFy7Nixm2aFYn9kp3z58nJ1dVVaWppNe1pamgIDA3PdZuzYsRo1apT1cXZ2tv744w+VK1dOFosD59j8xfnz5xUSEqJjx47J29vb0eXYcNbaqKtgnLUuyXlro66Coa6Cc9banLUuwzB04cIFBQcH37RfsQ87JUuWVKNGjZSYmKguXbpIuh5eEhMTNXz48Fy3cXd3l7u7u02br69vIVd6e7y9vZ3qB+uvnLU26ioYZ61Lct7aqKtgqKvgnLU2Z6zLx8fnln2KfdiRpFGjRikyMlKNGzdW06ZNNW3aNF28eNF6dRYAAPj7MkXYefzxx/Xbb79p/PjxSk1NVYMGDbR69eock5YBAMDfjynCjiQNHz48z9NWxZG7u7tefvnlHKfbnIGz1kZdBeOsdUnOWxt1FQx1FZyz1uasdeWXxTBudb0WAABA8VXsbyoIAABwM4QdAABgaoQdAABgaoQdAABgaoSdQtC/f39ZLBY99dRTOdYNGzZMFotF/fv3t2lPSkqSq6urOnTokGObw4cPy2Kx5Lps2rRJknTq1Cn16dNH1atXl4uLi0aOHOk0tS1dulTBwcGyWCwqWbKkwsLC9PXXXxfJuA8//LAqVKggb2/vHOPeyvr16xUSEmLd7/Lly4vk9dq4caOaN2+ucuXKydPTUzVr1tQ777xjsx9HvI9/9f3338vNzU0NGjRweF1r167NdX1qaqrDa5Oufxfff/7zH1WuXFnu7u6qUqWK5s6d69C6boz5v0udOnUc/nr94x//kMVikZubm4KCghQVFaUzZ84U+rgLFixQ/fr1VapUqRzj3sovv/yiypUrW/c7bdq0Inu9oqOjVatWLXl6eqpGjRpq0aKF037+LFmyRDVr1pSHh4fq1aunr776Ktd+hYGwU0hCQkK0cOFC/fnnn9a2y5cvKy4uTpUqVcrRPyYmRs8884zWr1+vkydP5rrPb7/9VqdOnbJZGjVqJOn6L9QKFSpo3Lhxql+/vlPVtn79egUHBysgIEAeHh568MEH1alTJ+3cubPQx3344Yf11Vdfafv27WrdurV13Py4ePGi/Pz8VL58eUmy+fLYwqzby8tLw4cP1/r165WcnKxx48Zp3LhxmjNnjs0+ivp9vOHcuXN64okn9NBDD+W6D0fVtXfvXpv1/v7+TlFbz549lZiYqJiYGO3du1fx8fGqUaOGQ+uaPn26TfuxY8fk5+enHj16OLSu77//Xhs2bJCvr69KlSqlTz75RFu2bNGgQYMKfdwnnnhCAwcO1C+//KIlS5ZYx82PS5cuqUyZMtavHLpy5UqRvF6zZs3S2LFj9corr+iXX37RhAkTtGnTJpUvX97pPn9++OEH9e7dWwMHDtTOnTvVpUsXdenSRT///HMer6p9meY+O87mvvvu08GDB7V06VL17dtX0vUjDZUqVVJoaKhN34yMDC1atEjbtm1TamqqYmNj9e9//zvHPsuVK5fn931VqVJF06dPlySbvxqdobZp06apf//+qlixog4ePKgGDRqoWrVqWrFihZKTkwt13L96/fXX9fnnn2vFihVq2LBhnq/PDe3atdOiRYsUGhqqzz//XJs2bdLjjz8uqXBfr4YNG9rUV6VKFS1dulQbNmzQ4MGDre1F/T7e8NRTT6lPnz5ydXXNcbTLkXX5+/vf8mtfirq21atXa926dTp06JD8/PwkXX8/HV2Xj4+PzS32ly9frrNnz+a463xR15WUlKTSpUurZcuWOnjwoFJTUzVkyBBNnjy50MetUqWKRowYIUkKDQ21jpsfTZo0UePGjXXu3Dl99dVX2r17t3VdYdb98ccfa8iQIdbfS3fffbdee+01paamKiQkxKk+f6ZPn662bdvqhRdekCS99tprSkhI0LvvvqvZs2fnuo09cWSnEEVFRWnevHnWx3Pnzs31KywWL16smjVrqkaNGurXr5/mzp1766+rL6a13Rj3woUL8vPzK9LXJDs72zru7VizZo3130VZ986dO/XDDz+oZcuWOdYV9fs4b948HTp0SC+//PJN+zni56tBgwYKCgrSww8/rO+//94pavviiy/UuHFjTZkyRXfddZeqV6+u559/3uYvbkfU9b9iYmIUHh6uypUrO7SusLAwXbx4UWlpaRowYIDef/99ffrpp2rfvn2hj3vs2DF99dVXMgxDaWlp1nELqnTp0tq8ebP1cWHWnZmZKQ8PD5s2Nzc3nT17VpGRkU71+ZOUlKTw8HCbtoiICCUlJdl9rNwQdgpRv379tHHjRh05ckRHjhzR999/r379+uXoFxMTY21v27at0tPTtW7duhz9HnjgAZUuXdpmKW619evXT+vWrVN6errCwsKK9DV56623lJGRoZ49e+bZ52aSk5OL9PWqWLGi3N3d1bhxYw0bNkxPPvlkjj5F+T7u379fY8aM0SeffCI3t5sfFC7KuoKCgjR79mx99tln+uyzzxQSEqJWrVppx44dDq/t0KFD2rhxo37++WctW7ZM06ZN06effqqhQ4c6tK6/OnnypFatWpXrz1dR19W8eXP94x//0NatWzV69Ght2LBBJUqU0OjRowt93AULFujxxx9XyZIlFRgYKB8fH0VHR+f6mtyMl5eXUlJSiuT1ioiI0Icffqjt27fLMAxt27ZN+/btk2EYatu2rVN9/qSmpub4CqeAgIAcc+sKC6exClGFChXUoUMHxcbGyjAMdejQwTr/44a9e/dqy5YtWrZsmaTrqfzxxx9XTEyMWrVqZdN30aJFqlWrVrGuLSEhQYZhqEuXLlqxYkWRjRsXF6cJEybo888/z3UuR340atSoSF+vDRs2KCMjQ5s2bdKYMWNUtWpV9e7d26ZPUb2P165dU58+fTRhwgRVr179pnUXZV2SVKNGDZs5MA888IAOHjyod955Rx9//LFDa8vOzpbFYtGCBQusp42mTp2q7t2767333pOnp6dD6vqrjz76SL6+vurSpUuu64uyrj179mjLli2qWbOm4uLiNHToUO3evVs9evQo9HGfffZZjR8/XhERETp16pReeOEFPfXUU4qJicl1m7y4urqqdu3aRfJ6vfTSS0pNTdX9998vwzAUEBCgqlWr6ueff3bqzx9HIOwUsqioKOt3duX2V0JMTIyuXr2q4OBga5thGHJ3d9e7775rc149JCREVatWLba1nThxQk8++aTGjRunjz76SOvXry+ScRcuXKgnn3xSS5YsyXEYtSAeeughxcbGSiqa1+vGufV69eopLS1Nr7zySo6wIxXN+3jhwgVt27ZNO3futI6VnZ0twzDk5uamb775Rm3atCnyuvLStGlTbdy4Mc/1RVVbUFCQ7rrrLpv+tWrVkmEYOn78uKpVq+aQuv667dy5c/XPf/5TJUuWzLNfUdU1adIk+fv7q2rVqrr33ns1duxYDRo0SLt27dK//vWvQh23efPm1vkk9957r7y8vNSiRQtNnDhRQUFBeb42uWnatGmR/K7w9PTU3Llz9f777ystLU1BQUF68MEH5ebmpgoVKjjV509gYKDS0tJs2tLS0m45F89eOI1VyNq2basrV64oKytLERERNuuuXr2q+fPn6+2339auXbusy48//qjg4GDFx8ebpraUlBTt2LFD8fHxeumll4ps3Pj4eA0YMEDx8fG5XlZZEA0bNnTYe5mdnW1zNdhfFcX76O3trd27d9vs46mnnlKNGjW0a9cuNWvWzCF15WXXrl03/YAqqtqaN2+ukydPKiMjw9q2b98+ubi4qGLFig6r64Z169bpwIEDGjhw4E37FVVdly5dksVisRk3KytLknLMWbP3uC4uth+Hrq6uknRb81dq1apVpO9jiRIlVLFiRbm6uiolJUUBAQFycXFxqs+fsLAwJSYm2rQlJCQoLCzMruPkhSM7hczV1VXJycnWf//VypUrdfbsWQ0cONAmQUtSt27dFBMTY3OvhDNnzuQ4v+nr62udoLZr1y5J12fX//bbb9q1a5dKliyp2rVrO7S2uLg4bdiwQfXq1VOzZs3022+/ae3atfLw8Cj0cSMjIzV9+nQ1a9bM2s/T0zPHvnOTkZGhP/74QxcuXJAkHT16VIsWLVLZsmULte7o6GhVqlRJNWvWlHT9Evq33nrLeqXI/yqq97Fu3bo27f7+/rm2F3Vd06ZNU2hoqOrUqaPLly/rww8/1Jo1a/TNN9/kWldR1tanTx+99tprGjBggCZMmKDff/9dL7zwgqKiomxOYRV1XTfExMSoWbNmeb6HRV1Xp06dtGzZMnl7e+vQoUM6deqUQkJCVLlyZYWEhBTquIMGDdKsWbOsp7FGjhyppk2b2hz1yMuVK1esvyuuXLmiU6dOadGiRfLy8irU12vfvn3asmWLmjVrprNnz2rq1Kk6e/asNRg60+fPs88+q5YtW+rtt99Whw4dtHDhQm3bti3HLTUKjQG7i4yMNDp37pzn+s6dOxuRkZFGx44djfbt2+faZ/PmzYYk48cffzRSUlIMSbku8fHx1m1yW1+5cmWH19ayZctc10dGRjp83Jv57rvvHFL3jBkzjDp16hilSpUyvL29jYYNGxrvvfeece3aNes+HfUz9lcvv/yyUb9+fZs2R9Q1efJk45577jE8PDwMPz8/o1WrVsaaNWty7NdRr1lycrIRHh5ueHp6GhUrVjRGjRplXLp0yeF1nTt3zvD09DTmzJmT6z4dVVfTpk2NMmXKGJ6enkZQUJDRt29f4/jx44U+7owZM4zatWvnOe7N5DVGy5YtC7XuPXv2GA0aNDA8PT0Nb29vo3PnzkaXLl2c9vNn8eLFRvXq1Y2SJUsaderUMb788st8vb72YPm/IgEAAEyJOTsAAMDUCDv4Wzp69GiOe0b8dTl69KijSwTgJG72u2LDhg2OLg/5wGks/C1dvXpVhw8fznN9lSpVbnnjPAB/DwcOHMhz3V133ZXrZHM4F8IOAAAwNU5jAQAAUyPsAAAAUyPsAAAAUyPsAICk2NhY+fr6FmibKlWqaNq0aTftY7FYtHz58tuuC8CdI+wAuKX+/fvLYrHY3D7+hmHDhslisah///451iUlJcnV1TXX7yU7fPiwLBZLrsumTZty9E9LS1OJEiW0cOHCXGscOHCg7rvvvoI/uf/z+OOPa9++fbe9PQDnRdgBkC8hISFauHCh/vzzT2vb5cuXFRcXp0qVKuW6TUxMjJ555hmtX79eJ0+ezLXPt99+q1OnTtksjRo1ytEvICBAHTp00Ny5c3Osu3jxohYvXnzLL7TMS1ZWljw9PeXv739b2wNwboQdAPly3333KSQkREuXLrW2LV26VJUqVVLDhg1z9M/IyNCiRYv09NNPq0OHDoqNjc11v+XKlVNgYKDNUqJEiVz7Dhw4UImJiTlu+rhkyRJdvXpVffv21erVq/Xggw/K19dX5cqVU8eOHXXw4EFr3xtHlBYtWqSWLVvKw8NDCxYsyHEa6+DBg+rcubMCAgJUunRpNWnSRN9++22Omi5cuKDevXvLy8tLd911l6Kjo2/2MurYsWPq2bOnfH195efnp86dO9vc82nt2rVq2rSpvLy85Ovrq+bNm+vIkSM33SeAmyPsAMi3qKgozZs3z/p47ty5GjBgQK59Fy9erJo1a6pGjRrq16+f5s6dqzu9rVf79u0VEBCQIzjNmzdPjz32mHx9fXXx4kWNGjVK27ZtU2JiolxcXNS1a1dlZ2fbbDNmzBg9++yzSk5OVkRERI6xMjIy1L59eyUmJmrnzp1q27atOnXqlCNovfnmm6pfv7527txp3WdCQkKu9WdlZSkiIkJlypTRhg0b9P3336t06dJq27atrly5oqtXr6pLly5q2bKlfvrpJyUlJWnw4MGyWCx39LoBf3tF9pWjAIqtG9+Affr0acPd3d04fPiwcfjwYcPDw8P47bffrN+k/FcPPPCAMW3aNMMwDCMrK8soX7688d1331nX3/g2ZU9PT8PLy8tmuZkxY8YYoaGhRnZ2tmEYhnHgwAHDYrEY3377ba79f/vtN0OSsXv3bptxb9R2w7x58wwfH5+bjl2nTh1j5syZ1seVK1c22rZta9Pn8ccfN9q1a2d9LMlYtmyZYRiG8fHHHxs1atSw1m4YhpGZmWl4enoaX3/9tXHmzBlDkrF27dqb1gGgYDiyAyDfKlSoYD0lNW/ePHXo0EHly5fP0W/v3r3asmWLevfuLUlyc3PT448/rpiYmBx9Fy1apF27dtksNxMVFaWUlBR99913kq4f1alSpYratGkjSdq/f7969+6tu+++W97e3qpSpYok5Tgi07hx45uOk5GRoeeff161atWSr6+vSpcureTk5Bz7CQsLy/E4OTk5133++OOPOnDggMqUKWP9biU/Pz9dvnxZBw8elJ+fn/r376+IiAh16tRJ06dP16lTp25aJ4Bb48t/ABRIVFSUhg8fLkl5zk+JiYnR1atXFRwcbG0zDEPu7u5699135ePjY20PCQlR1apV8z1+tWrV1KJFC82bN0+tWrXS/PnzNWjQIOupnk6dOqly5cr64IMPFBwcrOzsbNWtW1dXrlyx2Y+Xl9dNx3n++eeVkJCgt956S1WrVpWnp6e6d++eYz8FkZGRoUaNGmnBggU51lWoUEHS9fA2YsQIrV69WosWLdK4ceOUkJCg+++//7bHBf7uCDsACuTG/BKLxZLrXJerV69q/vz5evvtt/XII4/YrOvSpYvi4+NzvYS9IAYOHKinn35ajz76qE6cOGG97P3MmTPau3evPvjgA7Vo0UKStHHjxtsa4/vvv1f//v3VtWtXSdeDSm5fHvu/l8lv2rRJtWrVynWf9913nxYtWiR/f395e3vnOXbDhg3VsGFDjR07VmFhYYqLiyPsAHeA01gACsTV1VXJycnas2ePXF1dc6xfuXKlzp49q4EDB6pu3bo2S7du3XKcyjpz5oxSU1NtlsuXL9+0hh49eqhEiRIaMmSIHnnkEYWEhEiSypYtq3LlymnOnDk6cOCA1qxZo1GjRt3W86xWrZqWLl2qXbt26ccff1SfPn1yTHKWroeiKVOmaN++fYqOjtaSJUv07LPP5rrPvn37qnz58urcubM2bNiglJQUrV27ViNGjNDx48eVkpKisWPHKikpSUeOHNE333yj/fv35xmeAOQPYQdAgXl7e+d5ZCImJkbh4eE2p6pu6Natm7Zt26affvrJ2hYeHq6goCCb5VZ3HC5VqpR69eqls2fPKioqytru4uKihQsXavv27apbt66ee+45vfnmm7f1HKdOnaqyZcvqgQceUKdOnRQREZHrTQv/9a9/adu2bWrYsKEmTpyoqVOn5nrE60bd69evV6VKlfTYY4+pVq1aGjhwoC5fvixvb2+VKlVKv/76q7p166bq1atr8ODBGjZsmIYMGXJbzwHAdRbDuMNrQQEAAJwYR3YAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICp/T+WRF7HOqAsCAAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of MAE values from mae1 to mae10\n", + "mae_values = [mae1, mae2, mae2_1, mae3, mae4, mae5, mae6, mae7, mae8, mae8_1, mae9, mae10]\n", + "\n", + "# List of corresponding labels for each MAE value\n", + "labels = ['MAE1', 'MAE2', 'MAE2_1', 'MAE3', 'MAE4', 'MAE5', 'MAE6', 'MAE7', 'MAE8', 'MAE8_1', 'MAE9', 'MAE10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, mae_values, color='orange')\n", + "plt.xlabel('MAE Variables')\n", + "plt.ylabel('MAE Values')\n", + "plt.title('Bar Graph of MAE')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 100, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "_c4Pe76fDNM-", + "outputId": "c1784b34-6746-42fd-9f66-b7c1cfd50a21" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA930lEQVR4nO3deVwV9f7H8fcB9QAKuCDigopLmrtiFtxSLBMRt25XDTM3sjK9pXazbNGWX6GVqaVplso1U9zSyjXSXErKXFMzywpxAbVUEE1AmN8fPjzXIwflKHgO0+v5eMzj4XznOzOfMwfl7cx3ZiyGYRgCAAAwCQ9XFwAAAFCUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcASryXXnpJFotFf/zxR7Hva/Xq1WrRooW8vLxksVh0+vTpYt8nAOcQbgA3Fh8fL4vFYjcFBgaqffv2WrVq1U2v5/PPP1fXrl1VpUoVlSlTRhUrVlTbtm01YcIEZWRk3PR6brY///xTvXr1kre3t6ZOnaqPPvpIZcuWddj38u/u66+/zrfcMAwFBwfLYrGoS5cuDrdx+vRpW4jat2+fwz4DBgyw+/nw8/NT8+bNNWHCBGVlZdn6XQqABU1paWnXcUQA91TK1QUAuLZXXnlFISEhMgxDx44dU3x8vDp37qzPP/+8wF+MRSkvL0+xsbGKj49X06ZN9fjjjys4OFhnzpxRUlKSXnjhBa1cuVJr164t9lpc6fvvv9eZM2f06quvqkOHDoVax8vLS/PmzdOdd95p175hwwYdPnxYVqu1wHUXLVoki8WioKAgffzxx/q///s/h/2sVqs+/PBDSRcD0ZIlS/Sf//xH33//vRISEuz6Tps2TeXKlcu3jfLlyxfq8wAlAeEGKAGioqLUunVr23xsbKyqVKmi+fPnF0m4ycvLU3Z2try8vBwuf+ONNxQfH68RI0ZowoQJslgstmVPPvmkUlNTNWfOnBvaR0lw/PhxSc4Fgc6dO2vRokV65513VKrU//7JnTdvnkJDQ696KW3u3Lnq3LmzatWqpXnz5hUYbkqVKqW+ffva5h9//HHdfvvtWrBggd5++21Vq1bNtuxf//qXAgICCl0/UBJxWQoogcqXLy9vb2+7X5aS9NZbbyk8PFyVKlWSt7e3QkNDtXjx4nzrWywWDRs2TB9//LEaN24sq9Wq1atXO9zXuXPnNH78eDVu3FhvvvmmXbC5pGrVqnrmmWcKvY/rqbNBgwby8vJSaGioNm7c6LDW06dPa8CAASpfvrz8/f01cOBAnTt3zvFBvMKiRYsUGhoqb29vBQQEqG/fvjpy5IhteUREhPr37y9Juu2222SxWDRgwIBrbjcmJkZ//vmnEhMTbW3Z2dlavHix+vTpU+B6KSkp2rRpkx544AE98MAD+v3337V58+ZCfRYPDw9FRERIkpKTkwu1DmAmnLkBSoD09HT98ccfMgxDx48f17vvvqvMzEy7/61L0uTJk9WtWzc9+OCDys7OVkJCgnr27Knly5crOjraru+6deu0cOFCDRs2TAEBAapdu7bDfX/99dc6ffq0/vOf/8jT09OpugvahzN1btiwQQsWLNATTzwhq9Wq9957T506ddKWLVvUpEkTu769evVSSEiI4uLitH37dn344YcKDAzU+PHjr1pnfHy8Bg4cqNtuu01xcXE6duyYJk+erG+++UY7duxQ+fLl9fzzz6tBgwaaMWOG7TJh3bp1r3kMateurbCwMM2fP19RUVGSpFWrVik9PV0PPPCA3nnnHYfrzZ8/X2XLllWXLl3k7e2tunXr6uOPP1Z4ePg19ylJv/76qySpUqVKdu0nT57M17dUqVJcloK5GADc1uzZsw1J+Sar1WrEx8fn63/u3Dm7+ezsbKNJkybG3XffbdcuyfDw8DD27t17zRomT55sSDKWLVtm137hwgXjxIkTdlNeXl6h9uFMnZKMrVu32toOHjxoeHl5Gffdd5+tbezYsYYkY9CgQXbr33fffUalSpWu+vmys7ONwMBAo0mTJsZff/1la1++fLkhyRgzZoyt7dL38f333191m1f2nTJliuHr62v73D179jTat29vGIZh1KpVy4iOjs63ftOmTY0HH3zQNv/cc88ZAQEBRk5Ojl2//v37G2XLlrV9BwcOHDBef/11w2KxGM2aNbP1u3SMHE0NGjS45ucBShIuSwElwNSpU5WYmKjExETNnTtX7du318MPP6xPPvnErp+3t7ftz6dOnVJ6erruuusubd++Pd8227Vrp0aNGl1z35fugrpyEOru3btVuXJlu+nPP/8s1D6cqTMsLEyhoaG2+Zo1a6p79+5as2aNcnNz7fo+9thjdvN33XWX/vzzz6veybV161YdP35cjz/+uN14oOjoaDVs2FArVqwocN3C6tWrl/766y8tX75cZ86c0fLly696SeqHH37Q7t27FRMTY2uLiYnRH3/8oTVr1uTrf/bsWdt3UK9ePT333HMKCwvT0qVL8/VdsmSJ7Wfp0jR79uwb/oyAO+GyFFACtGnTxm5AcUxMjFq2bKlhw4apS5cuKlOmjCRp+fLl+r//+z/t3LnT7jZgR+NkQkJCCrVvX19fSVJmZqZde7169WzjSObMmaOPPvqo0Ptwps769evna7vlllt07tw5nThxQkFBQbb2mjVr2vWrUKGCpIsBys/Pz2EtBw8elCQ1aNAg37KGDRs6vI3bWZUrV1aHDh00b948nTt3Trm5ufrXv/5VYP+5c+eqbNmyqlOnjg4cOCDp4l1XtWvX1scff5zv0p2Xl5c+//xzSRfvnAoJCVGNGjUcbrtt27YMKIbpEW6AEsjDw0Pt27fX5MmT9csvv6hx48batGmTunXrprZt2+q9995T1apVVbp0ac2ePVvz5s3Lt43Lz55cTcOGDSVJe/bsUffu3W3t5cqVs90OXVAAcLQPZ+t0RkFjggzDuKHtFoU+ffpo8ODBSktLU1RUVIFjXAzD0Pz583X27FmHZ72OHz+uzMxMuzNpnp6ehb41Hfg7INwAJdSFCxck/e+MypIlS+Tl5aU1a9bYPTvlRi853HXXXfL391dCQoJGjx4tD48bu5rtbJ2//PJLvraff/5ZPj4+qly58g3VIkm1atWSJO3fv19333233bL9+/fblt+o++67T48++qi+/fZbLViwoMB+l55/88orr+jWW2+1W3bq1Ck98sgjWrZsWb7B5AD+hzE3QAmUk5OjL774QmXKlLH9AvT09JTFYrEbh5KcnKxly5bd0L58fHw0atQo7dmzR88++6zDsyDOnBlxts6kpCS7sTiHDh3Sp59+qo4dOzp995YjrVu3VmBgoKZPn253iWzVqlXat29fvktA16tcuXKaNm2aXnrpJXXt2rXAfpcuST399NP617/+ZTcNHjxY9evX18cff1wkNQFmxZkboARYtWqVfvrpJ0kXL0vMmzdPv/zyi5599lnbWJLo6Gi9/fbb6tSpk/r06aPjx49r6tSpqlevnn744Ycb2v+zzz6rffv26c0339QXX3yh+++/XzVq1NCpU6e0fft2LVq0SIGBgYV6QJ+zdTZp0kSRkZF2t4JL0ssvv3xDn+mS0qVLa/z48Ro4cKDatWunmJgY263gtWvX1ogRI4pkP5Jsz8kpSFZWlpYsWaJ77723wGPZrVs3TZ48WcePH1dgYKDTNSxevNjhE4rvvfdeValSxentAe6IcAOUAGPGjLH92cvLSw0bNtS0adP06KOP2trvvvtuzZw5U+PGjdPw4cMVEhKi8ePHKzk5+YbDjYeHhz766CPdf//9+uCDD/Tuu+/q1KlTKleunJo0aaLXXntNgwcPdvhL80rO1tmuXTuFhYXp5ZdfVkpKiho1aqT4+Hg1a9bshj7T5QYMGCAfHx+NGzdOzzzzjMqWLav77rtP48ePv6nPf1mxYoVOnz591TM7Xbt21YQJE5SQkKAnnnjC6X0MGTLEYftXX31FuIFpWAx3GGkHAA5YLBYNHTpUU6ZMcXUpAEoQxtwAAABTIdwAAABTIdwAAABTYUAxALfFkEAA14MzNwAAwFQINwAAwFT+dpel8vLydPToUfn6+jp8SR8AAHA/hmHozJkzqlat2jVfA/O3CzdHjx5VcHCwq8sAAADX4dChQwW+9f6Sv1248fX1lXTx4Fx6bD0AAHBvGRkZCg4Otv0ev5q/Xbi5dCnKz8+PcAMAQAlTmCElDCgGAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmUsrVBcA1aj+7wtUlKHlctKtLAACYEGduAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqbg03MTFxem2226Tr6+vAgMD1aNHD+3fv/+q68THx8tisdhNXl5eN6liAADg7lwabjZs2KChQ4fq22+/VWJionJyctSxY0edPXv2quv5+fkpNTXVNh08ePAmVQwAANxdKVfufPXq1Xbz8fHxCgwM1LZt29S2bdsC17NYLAoKCiru8gAAQAnkVmNu0tPTJUkVK1a8ar/MzEzVqlVLwcHB6t69u/bu3Vtg36ysLGVkZNhNAADAvNwm3OTl5Wn48OH6xz/+oSZNmhTYr0GDBpo1a5Y+/fRTzZ07V3l5eQoPD9fhw4cd9o+Li5O/v79tCg4OLq6PAAAA3IDFMAzD1UVI0pAhQ7Rq1Sp9/fXXqlGjRqHXy8nJ0a233qqYmBi9+uqr+ZZnZWUpKyvLNp+RkaHg4GClp6fLz8+vSGoviWo/u8LVJSh5XLSrSwAAlBAZGRny9/cv1O9vl465uWTYsGFavny5Nm7c6FSwkaTSpUurZcuWOnDggMPlVqtVVqu1KMoEAAAlgEsvSxmGoWHDhmnp0qVat26dQkJCnN5Gbm6udu/erapVqxZDhQAAoKRx6ZmboUOHat68efr000/l6+urtLQ0SZK/v7+8vb0lSf369VP16tUVFxcnSXrllVd0xx13qF69ejp9+rTefPNNHTx4UA8//LDLPgcAAHAfLg0306ZNkyRFRETYtc+ePVsDBgyQJKWkpMjD438nmE6dOqXBgwcrLS1NFSpUUGhoqDZv3qxGjRrdrLIBAIAbc5sBxTeLMwOSzIwBxQCAksSZ399ucys4AABAUSDcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAU3FpuImLi9Ntt90mX19fBQYGqkePHtq/f/8111u0aJEaNmwoLy8vNW3aVCtXrrwJ1QIAgJLApeFmw4YNGjp0qL799lslJiYqJydHHTt21NmzZwtcZ/PmzYqJiVFsbKx27NihHj16qEePHtqzZ89NrBwAALgri2EYhquLuOTEiRMKDAzUhg0b1LZtW4d9evfurbNnz2r58uW2tjvuuEMtWrTQ9OnTr7mPjIwM+fv7Kz09XX5+fkVWe0lT+9kVri5ByeOiXV0CAKCEcOb3t1uNuUlPT5ckVaxYscA+SUlJ6tChg11bZGSkkpKSHPbPyspSRkaG3QQAAMzLbcJNXl6ehg8frn/84x9q0qRJgf3S0tJUpUoVu7YqVaooLS3NYf+4uDj5+/vbpuDg4CKtGwAAuBe3CTdDhw7Vnj17lJCQUKTbHT16tNLT023ToUOHinT7AADAvZRydQGSNGzYMC1fvlwbN25UjRo1rto3KChIx44ds2s7duyYgoKCHPa3Wq2yWq1FVisAAHBvLj1zYxiGhg0bpqVLl2rdunUKCQm55jphYWFau3atXVtiYqLCwsKKq0wAAFCCuPTMzdChQzVv3jx9+umn8vX1tY2b8ff3l7e3tySpX79+ql69uuLi4iRJTz75pNq1a6cJEyYoOjpaCQkJ2rp1q2bMmOGyz4Hi4Q53dEnc1QUAJY1Lz9xMmzZN6enpioiIUNWqVW3TggULbH1SUlKUmppqmw8PD9e8efM0Y8YMNW/eXIsXL9ayZcuuOggZAAD8fbj0zE1hHrGzfv36fG09e/ZUz549i6EiAABQ0rnN3VIAAABFgXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMpZSrCwAA/L3VfnaFq0tQ8rhoV5eAIsSZGwAAYCqEGwAAYCpOh5tDhw7p8OHDtvktW7Zo+PDhmjFjRpEWBgAAcD2cDjd9+vTRV199JUlKS0vTvffeqy1btuj555/XK6+8UuQFAgAAOMPpcLNnzx61adNGkrRw4UI1adJEmzdv1scff6z4+Piirg8AAMApToebnJwcWa1WSdKXX36pbt26SZIaNmyo1NTUoq0OAADASU6Hm8aNG2v69OnatGmTEhMT1alTJ0nS0aNHValSpSIvEAAAwBlOh5vx48fr/fffV0REhGJiYtS8eXNJ0meffWa7XAUAAOAqTj/ELyIiQn/88YcyMjJUoUIFW/sjjzwiHx+fIi0OAADAWdf1nBvDMLRt2za9//77OnPmjCSpTJkyhBsAAOByTp+5OXjwoDp16qSUlBRlZWXp3nvvla+vr8aPH6+srCxNnz69OOoEAAAoFKfP3Dz55JNq3bq1Tp06JW9vb1v7fffdp7Vr1xZpcQAAAM5y+szNpk2btHnzZpUpU8auvXbt2jpy5EiRFQYAAHA9nD5zk5eXp9zc3Hzthw8flq+vb5EUBQAAcL2cDjcdO3bUpEmTbPMWi0WZmZkaO3asOnfuXJS1AQAAOM3py1ITJkxQZGSkGjVqpPPnz6tPnz765ZdfFBAQoPnz5xdHjQAAAIXmdLipUaOGdu3apYSEBP3www/KzMxUbGysHnzwQbsBxgAAAK7gdLiRpFKlSqlv375FXQsAAMANczrczJkz56rL+/Xrd93FAAAA3Cinw82TTz5pN5+Tk6Nz587ZnlBMuAEAAK7k9N1Sp06dspsyMzO1f/9+3XnnnQwoBgAALndd75a6Uv369TVu3Lh8Z3UAAAButiIJN9LFQcZHjx4tqs0BAABcF6fH3Hz22Wd284ZhKDU1VVOmTNE//vGPIisMAADgejgdbnr06GE3b7FYVLlyZd19992aMGFCUdUFAABwXZwON3l5ecVRBwAAQJEosjE3AAAA7qBQZ25GjhxZ6A2+/fbb110MAADAjSpUuNmxY0ehNmaxWJza+caNG/Xmm29q27ZtSk1N1dKlS/ON6bnc+vXr1b59+3ztqampCgoKcmrfAADAnAoVbr766qti2fnZs2fVvHlzDRo0SP/85z8Lvd7+/fvl5+dnmw8MDCyO8gAAQAl0XS/OLCpRUVGKiopyer3AwECVL1++6AsCAAAl3nWFm61bt2rhwoVKSUlRdna23bJPPvmkSAq7mhYtWigrK0tNmjTRSy+9dNXn62RlZSkrK8s2n5GRUez1AQAA13H6bqmEhASFh4dr3759Wrp0qXJycrR3716tW7dO/v7+xVGjTdWqVTV9+nQtWbJES5YsUXBwsCIiIrR9+/YC14mLi5O/v79tCg4OLtYaAQCAazl95ub111/XxIkTNXToUPn6+mry5MkKCQnRo48+qqpVqxZHjTYNGjRQgwYNbPPh4eH69ddfNXHiRH300UcO1xk9erTd3V4ZGRkEHAAATMzpMze//vqroqOjJUllypTR2bNnZbFYNGLECM2YMaPIC7yWNm3a6MCBAwUut1qt8vPzs5sAAIB5OR1uKlSooDNnzkiSqlevrj179kiSTp8+rXPnzhVtdYWwc+fOYj9jBAAASg6nL0u1bdtWiYmJatq0qXr27Kknn3xS69atU2Jiou655x6ntpWZmWl31uX333/Xzp07VbFiRdWsWVOjR4/WkSNHNGfOHEnSpEmTFBISosaNG+v8+fP68MMPtW7dOn3xxRfOfgwAAGBShQ43e/bsUZMmTTRlyhSdP39ekvT888+rdOnS2rx5s+6//3698MILTu1869atdg/luzQ2pn///oqPj1dqaqpSUlJsy7Ozs/XUU0/pyJEj8vHxUbNmzfTll186fLAfAAD4eyp0uGnWrJluu+02Pfzww3rggQckSR4eHnr22Weve+cREREyDKPA5fHx8Xbzo0aN0qhRo657fwAAwPwKPeZmw4YNaty4sZ566ilVrVpV/fv316ZNm4qzNgAAAKcVOtzcddddmjVrllJTU/Xuu+8qOTlZ7dq10y233KLx48crLS2tOOsEAAAoFKfvlipbtqwGDhyoDRs26Oeff1bPnj01depU1axZU926dSuOGgEAAArN6XBzuXr16um5557TCy+8IF9fX61YsaKo6gIAALgu1/3izI0bN2rWrFlasmSJPDw81KtXL8XGxhZlbQAAAE5zKtwcPXpU8fHxio+P14EDBxQeHq533nlHvXr1UtmyZYurRgAAgEIrdLiJiorSl19+qYCAAPXr10+DBg2ye88TAACAOyh0uCldurQWL16sLl26yNPTszhrAgAAuG6FDjefffZZcdYBAABQJG7obikAAAB3Q7gBAACmQrgBAACmQrgBAACmUuhw8/jjjyszM9M2P3/+fJ09e9Y2f/r0aXXu3LloqwMAAHBSocPN+++/r3PnztnmH330UR07dsw2n5WVpTVr1hRtdQAAAE4qdLgxDOOq8wAAAO6AMTcAAMBUCDcAAMBUnHpx5pgxY+Tj4yNJys7O1muvvSZ/f39JshuPAwAA4CqFDjdt27bV/v37bfPh4eH67bff8vUBAABwpUKHm/Xr1xdjGQAAAEXDqctSGRkZ+u6775Sdna02bdqocuXKxVUXAADAdSl0uNm5c6c6d+6stLQ0SZKvr68WLlyoyMjIYisOAADAWYW+W+qZZ55RSEiIvvnmG23btk333HOPhg0bVpy1AQAAOK3QZ262bdumL774Qq1atZIkzZo1SxUrVlRGRob8/PyKrUAAAABnFPrMzcmTJ1WjRg3bfPny5VW2bFn9+eefxVIYAADA9XBqQPGPP/5oG3MjXXwFw759+3TmzBlbW7NmzYquOgAAACc5FW7uueeefO+U6tKliywWiwzDkMViUW5ubpEWCAAA4IxCh5vff/+9OOsAAAAoEoUON7Vq1bpmnz179txQMQAAADfqhl+ceebMGc2YMUNt2rRR8+bNi6ImAACA63bd4Wbjxo3q37+/qlatqrfeekt33323vv3226KsDQAAwGlODShOS0tTfHy8Zs6cqYyMDPXq1UtZWVlatmyZGjVqVFw1AgAAFFqhz9x07dpVDRo00A8//KBJkybp6NGjevfdd4uzNgAAAKcV+szNqlWr9MQTT2jIkCGqX79+cdYEAABw3Qp95ubrr7/WmTNnFBoaqttvv11TpkzRH3/8UZy1AQAAOK3Q4eaOO+7QBx98oNTUVD366KNKSEhQtWrVlJeXp8TERLunFAMAALiK03dLlS1bVoMGDdLXX3+t3bt366mnntK4ceMUGBiobt26FUeNAAAAhXZDz7lp0KCB3njjDR0+fFjz588vqpoAAACu2w0/xE+SPD091aNHD3322WdFsTkAAIDrVui7pQYNGnTNPhaLRTNnzryhggAAAG5EocNNfHy8atWqpZYtW+Z7MzgAAIC7KHS4GTJkiObPn6/ff/9dAwcOVN++fVWxYsXirA0AAMBphR5zM3XqVKWmpmrUqFH6/PPPFRwcrF69emnNmjWcyQEAAG7DqQHFVqtVMTExSkxM1I8//qjGjRvr8ccfV+3atZWZmVlcNQIAABTadd8t5eHhIYvFIsMwlJubW5Q1AQAAXDenwk1WVpbmz5+ve++9V7fccot2796tKVOmKCUlReXKlSuuGgEAAAqt0AOKH3/8cSUkJCg4OFiDBg3S/PnzFRAQUJy1AQAAOK3Q4Wb69OmqWbOm6tSpow0bNmjDhg0O+33yySdFVhwAAICzCh1u+vXrJ4vFUpy1AAAA3DCnHuIHAADg7ork3VIAAADugnADAABMhXADAABMhXADAABMxaXhZuPGjeratauqVasmi8WiZcuWXXOd9evXq1WrVrJarapXrx4DnQEAgB2XhpuzZ8+qefPmmjp1aqH6//7774qOjlb79u21c+dODR8+XA8//LDWrFlTzJUCAICSotC3gheHqKgoRUVFFbr/9OnTFRISogkTJkiSbr31Vn399deaOHGiIiMji6tMAABQgpSoMTdJSUnq0KGDXVtkZKSSkpIKXCcrK0sZGRl2EwAAMK8SFW7S0tJUpUoVu7YqVaooIyNDf/31l8N14uLi5O/vb5uCg4NvRqkAAMBFSlS4uR6jR49Wenq6bTp06JCrSwIAAMXIpWNunBUUFKRjx47ZtR07dkx+fn7y9vZ2uI7VapXVar0Z5QEAADdQos7chIWFae3atXZtiYmJCgsLc1FFAADA3bg03GRmZmrnzp3auXOnpIu3eu/cuVMpKSmSLl5S6tevn63/Y489pt9++02jRo3STz/9pPfee08LFy7UiBEjXFE+AABwQy4NN1u3blXLli3VsmVLSdLIkSPVsmVLjRkzRpKUmppqCzqSFBISohUrVigxMVHNmzfXhAkT9OGHH3IbOAAAsHHpmJuIiAgZhlHgckdPH46IiNCOHTuKsSoAAFCSlagxNwAAANdCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKbiFuFm6tSpql27try8vHT77bdry5YtBfaNj4+XxWKxm7y8vG5itQAAwJ25PNwsWLBAI0eO1NixY7V9+3Y1b95ckZGROn78eIHr+Pn5KTU11TYdPHjwJlYMAADcmcvDzdtvv63Bgwdr4MCBatSokaZPny4fHx/NmjWrwHUsFouCgoJsU5UqVW5ixQAAwJ25NNxkZ2dr27Zt6tChg63Nw8NDHTp0UFJSUoHrZWZmqlatWgoODlb37t21d+/eAvtmZWUpIyPDbgIAAObl0nDzxx9/KDc3N9+ZlypVqigtLc3hOg0aNNCsWbP06aefau7cucrLy1N4eLgOHz7ssH9cXJz8/f1tU3BwcJF/DgAA4D5cflnKWWFhYerXr59atGihdu3a6ZNPPlHlypX1/vvvO+w/evRopaen26ZDhw7d5IoBAMDNVMqVOw8ICJCnp6eOHTtm137s2DEFBQUVahulS5dWy5YtdeDAAYfLrVarrFbrDdcKAABKBpeeuSlTpoxCQ0O1du1aW1teXp7Wrl2rsLCwQm0jNzdXu3fvVtWqVYurTAAAUIK49MyNJI0cOVL9+/dX69at1aZNG02aNElnz57VwIEDJUn9+vVT9erVFRcXJ0l65ZVXdMcdd6hevXo6ffq03nzzTR08eFAPP/ywKz8GAABwEy4PN71799aJEyc0ZswYpaWlqUWLFlq9erVtkHFKSoo8PP53gunUqVMaPHiw0tLSVKFCBYWGhmrz5s1q1KiRqz4CAABwIy4PN5I0bNgwDRs2zOGy9evX281PnDhREydOvAlVAQCAkqjE3S0FAABwNYQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKqVcXQAAlDS1n13h6hIkScnjol1dAuCWOHMDAABMhXADAABMhXADAABMhTE3AACYBOPBLuLMDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBW3CDdTp05V7dq15eXlpdtvv11btmy5av9FixapYcOG8vLyUtOmTbVy5cqbVCkAAHB3Lg83CxYs0MiRIzV27Fht375dzZs3V2RkpI4fP+6w/+bNmxUTE6PY2Fjt2LFDPXr0UI8ePbRnz56bXDkAAHBHLg83b7/9tgYPHqyBAweqUaNGmj59unx8fDRr1iyH/SdPnqxOnTrp6aef1q233qpXX31VrVq10pQpU25y5QAAwB2VcuXOs7OztW3bNo0ePdrW5uHhoQ4dOigpKcnhOklJSRo5cqRdW2RkpJYtW1acpQIlXu1nV7i6BCWPi75mn5JSZ0nAsSxaHM+Sw6Xh5o8//lBubq6qVKli116lShX99NNPDtdJS0tz2D8tLc1h/6ysLGVlZdnm09PTJUkZGRk3UnqBmoxdUyzbdcaelyOv2Scv69xNqOTqrvUduEON0rXr5DsvvML8vSsJdbpDjVLJqNMs37lUMup0hxql4vkde2mbhmFcs69Lw83NEBcXp5dffjlfe3BwsAuquTn8J7m6gsKhzqJTEmqUqLOolYQ6S0KNEnUWteKs88yZM/L3979qH5eGm4CAAHl6eurYsWN27ceOHVNQUJDDdYKCgpzqP3r0aLvLWHl5eTp58qQqVaoki8Vyg5+g6GVkZCg4OFiHDh2Sn5+fq8txqCTUKFFnUSsJdZaEGiXqLGoloc6SUKPk3nUahqEzZ86oWrVq1+zr0nBTpkwZhYaGau3aterRo4eki+Fj7dq1GjZsmMN1wsLCtHbtWg0fPtzWlpiYqLCwMIf9rVarrFarXVv58uWLovxi5efn53Y/WFcqCTVK1FnUSkKdJaFGiTqLWkmosyTUKLlvndc6Y3OJyy9LjRw5Uv3791fr1q3Vpk0bTZo0SWfPntXAgQMlSf369VP16tUVFxcnSXryySfVrl07TZgwQdHR0UpISNDWrVs1Y8YMV34MAADgJlwebnr37q0TJ05ozJgxSktLU4sWLbR69WrboOGUlBR5ePzvjvXw8HDNmzdPL7zwgp577jnVr19fy5YtU5MmTVz1EQAAgBtxebiRpGHDhhV4GWr9+vX52nr27KmePXsWc1WuYbVaNXbs2HyX0txJSahRos6iVhLqLAk1StRZ1EpCnSWhRqnk1HktFqMw91QBAACUEC5/QjEAAEBRItwAAABTIdwAAABTIdwAAABTIdxcpwEDBshiseixxx7Lt2zo0KGyWCwaMGCAXXtSUpI8PT0VHZ3/xWfJycmyWCy2qVKlSurYsaN27Nhh6xMREWHX59J0eQ2vvfaawsPD5ePjo/Lly7tVnZfqSE5OVmxsrEJCQuTt7S1/f39ZLBb169fvph6vK+uoW7euxo4dq+zs7Hz7k/J/5+fPn9eAAQPUtGlTeXh4uOw779atm2rWrCkvLy9VrVpVdevWdZvv3FENWVlZatGixVX7uLLO2rVrF/qzuPp4rlixQrfffrs8PT1lsVgUEhLiNjWuX7++wH8H/vnPf7pNnZL0888/q3v37goICJCfn5+qVKnidt/5pX9/atSoofLly6tSpUp65JFHlJmZ6Va/cxxJSUlRdHS0fHx8FBgYqKeffloXLlxw2LeoEG5uQHBwsBISEvTXX3/Z2s6fP6958+apZs2a+frPnDlT//73v7Vx40YdPXrU4Ta//PJLpaamas2aNcrMzFRUVJROnz5tWz548GClpqbaTW+88YZteXZ2tnr27KkhQ4a4VZ29evVSjRo1lJCQoF27dikvL0/vv/++tm/frtzcXHl4eGj79u039Xj99NNPtjr27t2riRMnavr06Xruuecc7uvKY5mbmytvb28NGTJEnp6e8vb2vinH8srvvH379lq4cKH279+vJUuW6MyZMypTpozLv/Mr67xk1KhRtsenBwUFuWWdr7zyisOfXXeqc8mSJXrooYc0cOBAde/eXUFBQTp+/Ljb1BgeHp5vWf369eXp6al169a5TZ2S1KVLF124cEHr1q3Ttm3bVKFCBVksFs2fP99t6jx37pwsFotOnDihDRs2aPXq1dq7d68eeught/udc7nc3FxFR0crOztbmzdv1n//+1/Fx8drzJgxDvsXGQPXpX///kb37t2NJk2aGHPnzrW1f/zxx0azZs2M7t27G/3797e1nzlzxihXrpzx008/Gb179zZee+01u+39/vvvhiRjx44dtrZvvvnGkGSsXr3aMAzDaNeunfHkk08Wqr7Zs2cb/v7+blPntepo3LixUa5cOZcdr0veeOMNIyQkxOGyq32GChUqGEFBQS79zi+5++67DUlG48aN3e5nc+XKlUbDhg2NvXv3GpKMiIgIl/9sXqlWrVrGxIkTbfPu8nfocjk5OUb16tWNDz/80G1rvFJ2drZhtVqNhg0bulWdJ06cMCQZGzdutLX16dPHkGTUrl3bbeoMCwszypQpY3fsfvjhB0OS0bBhQ5d/x5d+51xp5cqVhoeHh5GWlmZrmzZtmuHn52dkZWUVatvXgzM3N2jQoEGaPXu2bX7WrFm2V0dcbuHChWrYsKEaNGigvn37atasWdd8bfulMwEFXSYpiXUWVEdOTo7dQ6NcdbzS09NVsWJFpz9DvXr18vVzxWc4efKkfvvtN1WsWFGxsbFu8Z1fcuzYMQ0ePFgfffSRfHx8bO3u8rN5uXHjxqlSpUpq2bKl9uzZI8Mw3KrO7du368iRI/Lw8FDLli21YMECJSUlKSoqym1qvNJnn32mrKws1axZ062OZaVKldSgQQPNmTNHZ8+e1YULF7R//36VKVNGDz/8sNvUeekM9+XH7tI2WrZs6ZKaCiMpKUlNmza1vXVAkiIjI5WRkaG9e/cW2X7yKbbYZHKX/qd0/Phxw2q1GsnJyUZycrLh5eVlnDhxIl+KDg8PNyZNmmQYxsX/dQUEBBhfffWVbfmVKfrUqVPGfffdZ5QrV86WeNu1a2eULl3aKFu2rN10+f8sLrnyzI2r6yxVqpQRGhrqsI7vvvvOKFWqlBEWFuay42UYhvHLL78Yfn5+xowZMxwuv9qx7N27d74zNzfzM4waNcrw8fExJBkBAQFGVFSUy7/zy+vMy8szOnXqZLz66qt224yIiHCrOg3DMCZMmGB89dVXxq5du4xp06YZpUuXNurWretWdc6fP9+QZNSsWdNYvHix0aVLF6N69epGhQoV3KbGK0VFRRnVq1d3i3+Prqzz0KFDRmhoqGGxWAxPT0/D29vb7X42u3fvblgsFmPMmDGG1Wo1du3aZXTq1MmQZDz//PMu/44LOnMzePBgo2PHjnZtZ8+eNSQZK1euzNe/qLjF6xdKssqVKys6Olrx8fEyDEPR0dEKCAiw67N//35t2bJFS5culSSVKlVKvXv31syZMxUREWHXNzw8XB4eHjp79qzq1KmjBQsW2CXeBx98UM8//7zdOpcvd9c6R40apezs7Hx13H333erTp4+qVaumW265xWXH68iRI+rUqZN69uypwYMHO30svby8btqxdPQZnn76acXGxurgwYPq27evtm/froCAALf52Xz33Xd15swZjR49ulDH05V/h0aOHGn7c7NmzfTRRx8pKSlJfn5+blNnXl6eJOn555/X/fffr88//1ytWrVSUlKSGjVq5BY1Xu7w4cNas2aN2rZtK8m9vnPDMDR06FAFBgZq06ZN8vb2Vp8+ffTtt9/qwoULblNn+fLl1apVK73//vvKyspSq1at1KZNG1mtVvn6+rqkJndGuCkCgwYNsr0ba+rUqfmWz5w5UxcuXLANopQu/oWyWq2aMmWK3SvcFyxYoEaNGqlSpUoOR577+/s7vATi7nX6+fnZBqldqiM3N1e5ubm65557lJ6eflPqcOTo0aNq3769wsPDC/12+SuP5cKFC+2W3+zPEBAQoICAAN1yyy1q27atFi9erG+//dZtfjbXrVunpKSkfO+rWb9+vfr37+82dTpSuXJlGYah5ORkt6mzatWqkqRGjRrZ2jw8PFSnTh3Vrl1b8fHxLq/xcrNnz1alSpUUHBysjIwMSe7z7+a6deu0fPlynTp1Sn5+fpKkO+64Q4cPH9Z///tft6lTkmrUqKGtW7dq7ty5euGFF3T06FFlZ2erTp06SkpKcklN1xIUFKQtW7bYtR07dsy2rLgw5qYIdOrUSdnZ2crJyVFkZKTdsgsXLmjOnDmaMGGCdu7caZt27dqlatWqaf78+Xb9g4ODVbdu3QJvqTNDnZ06ddJff/2l1NRU3XnnnZo9e7YsFstNr0O6eMYmIiJCoaGhmj17tt0b6K/1GdzhWF5NVlaW29T5zjvvaNeuXbZ9rFy5UpJ022236bXXXnObOh05efKkJCkwMNBt6gwNDZXVatX+/fttbXl5eUpOTlb79u3dosZLDMPQ7Nmz1a9fP7u/X+5yLM+dOydJDv/u5+XluU2dl4uJiVFOTo4yMjLk5eWle++91+U1FSQsLEy7d+/W8ePHbW2JiYny8/OzC+dFjTM3RcDT01P79u2z/flyl/5HEBsba5eWJen+++/XzJkzHT5LoSDnzp1TWlqaXZvValWFChUkXXyewMmTJ5WSkqLc3FydPHlSZ86cUWZmpsqVK+eyOv/66y/l5ORIktLS0lS2bFk1bNhQb7/9tk6cOKHz58/rr7/+uqnH61KwqVWrlt566y2dOHHC1uda/6O49J3/9NNP2r17t06ePKmcnBydPHlS77777k37DN99952+//573XnnnapQoYJ+/fVXbdiwQT4+PgoLC3Obn80rb1MtV66cJKls2bKqUaOGJLlFnUlJSfruu+/Uvn17+fr6KikpSVu2bFFwcLDt75g71Onn56fHHntMY8eOVXBwsNLT07Vr1y5JUu/evdWnTx+X13jJunXr9Pvvv+vhhx/WuHHjbO3u8rMZFhamChUqqH///hozZoy8vb21detWnTt3TtHR0W5TpyT99ttv2r59u8qVK6cRI0boxRdf1Pjx4+2Ciat/5+zcuVOSVK9ePZUrV04dO3ZUo0aN9NBDD+mNN95QWlqaXnjhBQ0dOrR43zxebKN5TO7S4NKCXBrc1aVLF6Nz584O+3z33XeGJGPXrl0Ob8u7Urt27QxJ+abIyEi7uhz1uXwgmavqDAwMNAzj4sAzR8sl3dTjdbU6HHH0ndeqVcvh+jfrM/zwww9G+/btjYoVKxpWq9WoXbu2ccstt9j9TFzJVT+bl7t8QLE71blt2zbj9ttvN/z9/Q0vLy/j1ltvNVq1amV07drVreo0jIu3Vj/11FNGYGCgUapUKaNy5crGnj173KpGwzCMmJgYIzw83DAM9/138/vvvzc6duxoVKxY0fD19TUCAgKMO+64w63q7N+/v1GjRg2jYsWKRpkyZYxmzZoZc+bMcfmxK8zvnOTkZCMqKsrw9vY2AgICjKeeesrIyckpcL9FwWIY17g3DAAAoARhzA0AADAVwg1QgKioKJUrV87h9Prrr7u6PABAAbgsBRTgyJEjdu+VuVzFihWv+SRjAIBrEG4AAICpcFkKAACYCuEGAACYCuEGAACYCuEGACRZLBYtW7as0P1feukltWjR4qp9BgwYoB49etxQXQCcR7gB/uYGDBggi8Xi8JHsQ4cOlcVi0YABA/ItS0pKkqenp6Kjo/MtS05OlsVisU2VKlVSx44dtWPHDlufiIgIuz6XpoIeDd+1a1d16tTJ4bJNmzbJYrHohx9+KOSnzi81NVVRUVHXvT4A90G4AaDg4GAlJCTY3fp+/vx5zZs3L997oS6ZOXOm/v3vf2vjxo06evSowz5ffvmlUlNTtWbNGmVmZioqKsr2dnhJGjx4sFJTU+2mN954w+G2YmNjlZiYqMOHD+dbNnv2bLVu3VrNmjVz4lNflJ2dLeni+8SK9V03AG4awg0AtWrVSsHBwfrkk09sbZ988olq1qypli1b5uufmZmpBQsWaMiQIYqOjlZ8fLzD7VaqVElBQUFq3bq13nrrLR07dkzfffedbbmPj4+CgoLsJj8/P4fb6tKliypXrpxvX5mZmVq0aJFiY2P1559/KiYmRtWrV5ePj4+aNm2a7y3IERERGjZsmIYPH66AgADbm56vvCz1zDPP6JZbbpGPj4/q1KmjF1980fby18u9//77Cg4Olo+Pj3r16qX09HSH9UsX3zIdFxenkJAQeXt7q3nz5lq8eLFt+alTp/Tggw+qcuXK8vb2Vv369TV79uwCtwfAMcINAEnSoEGD7H6Rzpo1SwMHDnTYd+HChWrYsKEaNGigvn37atasWbrWI7O8vb0l/e9MibNKlSqlfv36KT4+3m5fixYtUm5urmJiYnT+/HmFhoZqxYoV2rNnjx555BE99NBD2rJli922/vvf/6pMmTL65ptvNH36dIf78/X1VXx8vH788UdNnjxZH3zwgSZOnGjX58CBA1q4cKE+//xzrV69Wjt27NDjjz9e4GeIi4vTnDlzNH36dO3du1cjRoxQ3759tWHDBknSiy++qB9//FGrVq3Svn37NG3aNAUEBFzX8QL+1or1tZwA3N6lNzUfP37csFqtRnJyspGcnGx4eXkZJ06csL1t+HLh4eHGpEmTDMMwjJycHCMgIMDuLcBXvnH41KlTxn333WeUK1fOSEtLMwzj4huHS5cubZQtW9Zumjt3boG17tu3L98bh++66y6jb9++Ba4THR1tPPXUU7b5du3aGS1btszXT5KxdOnSArfz5ptvGqGhobb5sWPHGp6ensbhw4dtbatWrTI8PDyM1NRUwzDs34J9/vx5w8fHx9i8ebPddmNjY42YmBjDMAyja9euxsCBAwusAUDhlHJxtgLgJipXrmy7xGQYhqKjox2eNdi/f7+2bNmipUuXSrp4RqV3796aOXOmIiIi7PqGh4fLw8NDZ8+eVZ06dbRgwQJVqVLFtvzBBx/U888/b7fO5cuv1LBhQ4WHh2vWrFmKiIjQgQMHtGnTJr3yyiuSpNzcXL3++utauHChjhw5ouzsbGVlZcnHx8duO6Ghodc8HgsWLNA777yjX3/9VZmZmbpw4UK+S2Y1a9ZU9erVbfNhYWHKy8vT/v37FRQUZNf3wIEDOnfunO6991679uzsbNulvyFDhuj+++/X9u3b1bFjR/Xo0UPh4eHXrBWAPcINAJtBgwZp2LBhkqSpU6c67DNz5kxduHBB1apVs7UZhiGr1aopU6bI39/f1r5gwQI1atRIlSpVUvny5fNty9/fX/Xq1XOqxtjYWP373//W1KlTNXv2bNWtW1ft2rWTJL355puaPHmyJk2apKZNm6ps2bIaPnx4vkthZcuWveo+kpKS9OCDD+rll19WZGSk/P39lZCQoAkTJjhV6+UyMzMlSStWrLALRJJsA5mjoqJ08OBBrVy5UomJibrnnns0dOhQvfXWW9e9X+DviDE3AGw6deqk7Oxs5eTk2AbaXu7ChQuaM2eOJkyYoJ07d9qmXbt2qVq1avkG7wYHB6tu3boOg8316tWrlzw8PDRv3jzNmTNHgwYNksVikSR988036t69u/r27avmzZurTp06+vnnn53ex+bNm1WrVi09//zzat26terXr6+DBw/m65eSkmJ3p9i3334rDw8PNWjQIF/fRo0ayWq1KiUlRfXq1bObgoODbf0qV66s/v37a+7cuZo0aZJmzJjhdP3A3x1nbgDYeHp6at++fbY/X2n58uU6deqUYmNj7c7QSNL999+vmTNnFvicGkfOnTuntLQ0uzar1aoKFSoUuE65cuXUu3dvjR49WhkZGXbP4Klfv74WL16szZs3q0KFCnr77bd17NgxNWrUqNA1XdpOSkqKEhISdNttt2nFihW2y3CX8/LyUv/+/fXWW28pIyNDTzzxhHr16pXvkpR0cYDyf/7zH40YMUJ5eXm68847lZ6erm+++UZ+fn7q37+/xowZo9DQUDVu3FhZWVlavny5br31VqdqB8CZGwBX8PPzK/B27JkzZ6pDhw75go10Mdxs3brVqQfpffDBB6patardFBMTc831YmNjderUKUVGRtpdHnvhhRfUqlUrRUZGKiIiQkFBQdf1hOBu3bppxIgRGjZsmFq0aKHNmzfrxRdfzNevXr16+uc//6nOnTurY8eOatasmd57770Ct/vqq6/qxRdfVFxcnG699VZ16tRJK1asUEhIiCSpTJkyGj16tJo1a6a2bdvK09NTCQkJTtcP/N1ZDOMa928CAACUIJy5AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApvL/s2EKz3IU2acAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of MAPE values from mape1 to mape10\n", + "mape_values = [mape1, mape2, mape2_1, mape3, mape4, mape5, mape6, mape7, mape8, mape8_1, mape9, mape10]\n", + "\n", + "# List of corresponding labels for each MAPE value\n", + "labels = ['MAPE1', 'MAPE2', 'MAPE2_1', 'MAPE3', 'MAPE4', 'MAPE5', 'MAPE6', 'MAPE7', 'MAPE8', 'MAPE2_1', 'MAPE9', 'MAPE10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, mape_values)\n", + "plt.xlabel('MAPE Variables')\n", + "plt.ylabel('MAPE Values')\n", + "plt.title('Bar Graph of MAPE')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "bCF5ZehcARcw", + "outputId": "ed3103b5-2636-48c5-82ba-60f8b3dfd729" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Length of labels: 12\n", + "Length of mape_values: 10\n" + ] + } + ], + "source": [ + "print(\"Length of labels:\", len(labels))\n", + "print(\"Length of mape_values:\", len(mape_values))" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "ZDPV0M5rDTi6", + "outputId": "2b5b43fb-f025-41ff-dc55-6193541132e0" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAHHCAYAAABdm0mZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQuUlEQVR4nO3deXhMZ/8G8Hsmy0wiO9mQCKJ2QWyhKEJQKdqSl5BQpWqpSjdqSdBKVW2trRRRr1YssdcSabRoWkopbUWoilYSQSUiss7z+8Mv583IhJmYmMlxf65rrsucOct3nvPkzO2sCiGEABEREZHMKE1dABEREVFlYMghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEisxEVFQWFQoEbN25U+rL279+Pli1bQq1WQ6FQ4Pbt25W+TGMYMWIEfHx8DJrm8OHDUCgUOHz4cKXURGSuGHKInoCYmBgoFAqtl5ubG7p164Z9+/Y98Xp2796N4OBguLu7w9raGi4uLujSpQsWLFiA7OzsJ17Pk3bz5k0MHjwYNjY2WLZsGTZs2IBq1arpHPfBdadWq/HMM89gwoQJyMjIeMKVE5EhLE1dANHTZPbs2ahbty6EEMjIyEBMTAz69u2L3bt3o1+/fpW+fI1Gg1GjRiEmJgbNmzfHuHHj4OXlhTt37iApKQnTp0/HN998g4SEhEqvxZROnDiBO3fuYM6cOQgMDNRrmpJ1l5eXh6NHj2LFihX45ptvcO7cOdja2lZyxf+zevVqaDQag6bp0qUL7t27B2tr60qqisg8MeQQPUF9+vRBmzZtpPejRo2Cu7s7vv76a6OEHI1Gg4KCAqjVap2ff/zxx4iJicHkyZOxYMECKBQK6bNJkyYhLS0NX3755WMtoyq4fv06AMDJyUnvaUqvu1dffRXVq1fHwoULsXPnTgwZMkTnNHfv3i13D1FFWVlZGTyNUqms0uuLqKJ4uIrIhJycnGBjYwNLS+3/b3zyySfo2LEjqlevDhsbG/j7+2Pr1q1lplcoFJgwYQI2btyIpk2bQqVSYf/+/TqXlZubi3nz5qFp06aYP3++VsAp4enpiffee0/vZVSkzoYNG0KtVsPf3x/ff/+9zlpv376NESNGwMnJCY6Ojhg5ciRyc3N1N+IDtmzZAn9/f9jY2KBGjRoYNmwY/vnnH+nz5557DuHh4QCAtm3bQqFQYMSIEXrNu7Tu3bsDAC5fvgzg/rkydnZ2uHTpEvr27Qt7e3uEhoYCuB8MFy9ejKZNm0KtVsPd3R2vvfYa/v333zLz3bdvH7p27Qp7e3s4ODigbdu2+Oqrr6TPdZ2Ts2nTJvj7+0vTNG/eHEuWLJE+L++cnEe1Venv9c8//2DAgAGws7ODq6sr3n77bRQXFxvcbkRPEkMO0ROUlZWFGzduIDMzE7/99htef/115OTkYNiwYVrjLVmyBK1atcLs2bMxd+5cWFpaYtCgQdi7d2+ZeX777beYPHkyQkJCsGTJknJPSj169Chu376NIUOGwMLCwqC6y1uGIXV+9913ePPNNzFs2DDMnj0bN2/eRO/evXHu3Lky4w4ePBh37txBdHQ0Bg8ejJiYGMyaNeuRdcbExGDw4MGwsLBAdHQ0Ro8ejbi4ODz77LPSicXTpk3DmDFjANw/BLVhwwa89tprBrUHAFy6dAkAUL16dWlYUVERgoKC4Obmhk8++QQvvfQSAOC1117DO++8g06dOmHJkiUYOXIkNm7ciKCgIBQWFmrV//zzz+PWrVuYOnUqPvroI7Rs2bLc4AoA8fHxGDJkCJydnTFv3jx89NFHeO6553Ds2LHHbqsSxcXFCAoKQvXq1fHJJ5+ga9euWLBgAVatWmVosxE9WYKIKt26desEgDIvlUolYmJiyoyfm5ur9b6goEA0a9ZMdO/eXWs4AKFUKsVvv/32yBqWLFkiAIgdO3ZoDS8qKhKZmZlaL41Go9cyDKkTgPj555+lYVeuXBFqtVoMHDhQGhYZGSkAiFdeeUVr+oEDB4rq1as/9PsVFBQINzc30axZM3Hv3j1p+J49ewQAMXPmTGlYyfo4ceLEQ+dZetxDhw6JzMxMcfXqVbFp0yZRvXp1YWNjI/7++28hhBDh4eECgJgyZYrW9EeOHBEAxMaNG7WG79+/X2v47du3hb29vWjfvr1W/UIIrfURHh4u6tSpI72fNGmScHBwEEVFReV+h8TERAFAJCYmGtxWJd9r9uzZWvNs1aqV8Pf3L3eZROaAe3KInqBly5YhPj4e8fHx+O9//4tu3brh1VdfRVxcnNZ4NjY20r///fdfZGVloXPnzjh16lSZeXbt2hVNmjR55LJLrpqys7PTGn727Fm4urpqvW7evKnXMgypMyAgAP7+/tJ7b29v9O/fHwcOHChz2GPs2LFa7zt37oybN28+9Mqvn3/+GdevX8e4ceO0zj95/vnn0ahRI517lwwRGBgIV1dXeHl54T//+Q/s7Oywfft21KpVS2u8119/Xev9li1b4OjoiJ49e+LGjRvSy9/fH3Z2dkhMTARwf4/MnTt3MGXKlDLnz+g6tFjCyckJd+/eRXx8vN7fpSJtpWud/Pnnn3ovk8gUeOIx0RPUrl07rROPhwwZglatWmHChAno16+fdPXLnj178MEHH+D06dPIz8+Xxtf1Y1e3bl29lm1vbw8AyMnJ0Rru6+sr/UB++eWX2LBhg97LMKTOBg0alBn2zDPPIDc3F5mZmfDw8JCGe3t7a43n7OwM4H6QcnBw0FnLlStXAAANGzYs81mjRo1w9OhRndPpa9myZXjmmWdgaWkJd3d3NGzYEEql9v8TLS0tUbt2ba1hKSkpyMrKgpubm875lpwEXXL4q1mzZgbVNW7cOGzevBl9+vRBrVq10KtXLwwePBi9e/cudxpD20qtVsPV1VVrmLOzs85ziojMCUMOkQkplUp069YNS5YsQUpKCpo2bYojR47ghRdeQJcuXbB8+XJ4enrCysoK69at0zoBtUTpvSkP06hRIwDAuXPn0L9/f2m4nZ2ddBl1eUFA1zIMrdMQ5Z0zJIR4rPk+jgcDqi4qlapM8NFoNHBzc8PGjRt1TvNgeDCUm5sbTp8+jQMHDmDfvn3Yt28f1q1bh7CwMKxfv/6x5l3C0HO4iMwFQw6RiRUVFQH43x6Wbdu2Qa1W48CBA1CpVNJ469ate6zldO7cGY6Ojti0aROmTp1a5sfYUIbWmZKSUmbYhQsXYGtr+9g/9ABQp04dAEBycrJ05VOJ5ORk6fMnrX79+jh06BA6der00EBav359APdDqK+vr0HLsLa2RnBwMIKDg6HRaDBu3Dh8/vnnmDFjhs55mWtbERkbz8khMqHCwkIcPHgQ1tbWaNy4MYD7/2tWKBRa56n89ddf2LFjx2Mty9bWFu+++y7OnTuHKVOm6NwrYsieEkPrTEpK0jpX5+rVq9i5cyd69epllD0Fbdq0gZubG1auXKl16Gzfvn34448/8Pzzzz/2Mipi8ODBKC4uxpw5c8p8VlRUJF3J1KtXL9jb2yM6Ohp5eXla4z1svTx4/pRSqUSLFi0AQKsdSjPXtiIyNu7JIXqC9u3bh/PnzwO4fy7GV199hZSUFEyZMkU61+T555/HwoUL0bt3bwwdOhTXr1/HsmXL4Ovri19//fWxlj9lyhT88ccfmD9/Pg4ePIiXXnoJtWvXxr///otTp05hy5YtcHNz0+vGcYbW2axZMwQFBeGNN96ASqXC8uXLAUCvS8P1YWVlhXnz5mHkyJHo2rUrhgwZgoyMDOmS98mTJxtlOYbq2rUrXnvtNURHR+P06dPo1asXrKyskJKSgi1btmDJkiV4+eWX4eDggEWLFuHVV19F27ZtMXToUDg7O+PMmTPIzc0t99DTq6++ilu3bqF79+6oXbs2rly5gs8++wwtW7aUgvODzLWtiIzOtBd3ET0ddF1CrlarRcuWLcWKFSu0LhEWQog1a9aIBg0aCJVKJRo1aiTWrVsnXV5dGgAxfvx4g+vZvn276Nu3r3B1dRWWlpbCyclJPPvss2L+/Pni9u3bei/D0Dr/+9//SuO3atVKuqS5RMm0mZmZWsNL2u/y5cuP/G6xsbGiVatWQqVSCRcXFxEaGipd5v3g/Ay5hPxR44aHh4tq1aqV+/mqVauEv7+/sLGxEfb29qJ58+bi3XffFdeuXdMab9euXaJjx47CxsZGODg4iHbt2omvv/5aazmlLyHfunWr6NWrl3BzcxPW1tbC29tbvPbaayItLU0a58FLyEvo01blfS9d65nI3CiEMOGZfET0VFAoFBg/fjyWLl1q6lKI6CnCc3KIiIhIlhhyiIiISJYYcoiIiEiWeHUVEVU6nvpHRKbAPTlEREQkSww5REREJEtP3eEqjUaDa9euwd7e/qFP9iUiIiLzIYTAnTt3ULNmTb0fS/PUhZxr167By8vL1GUQERFRBVy9ehW1a9fWa9ynLuTY29sDuN9IJbfRJyIiIvOWnZ0NLy8v6XdcH09dyCk5ROXg4MCQQ0REVMUYcqoJTzwmIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWTJpyPn+++8RHByMmjVrQqFQYMeOHY+c5vDhw2jdujVUKhV8fX0RExNT6XUSERFR1WPSkHP37l34+flh2bJleo1/+fJlPP/88+jWrRtOnz6NN998E6+++ioOHDhQyZUSERFRVWPSB3T26dMHffr00Xv8lStXom7duliwYAEAoHHjxjh69CgWLVqEoKCgyiqTiIiIqqAqdU5OUlISAgMDtYYFBQUhKSnJRBURERGRuTLpnhxDpaenw93dXWuYu7s7srOzce/ePdjY2JSZJj8/H/n5+dL77OzsSq+TiIiITK9K7cmpiOjoaDg6OkovLy8vU5dEpSkUpnsRUdXCbQUZqEqFHA8PD2RkZGgNy8jIgIODg869OAAwdepUZGVlSa+rV68+iVLND8MEEdHThdv9qnW4KiAgAN98843WsPj4eAQEBJQ7jUqlgkqlquzSiMhcmXKDK4Tplk1Ept2Tk5OTg9OnT+P06dMA7l8ifvr0aaSmpgK4vxcmLCxMGn/s2LH4888/8e677+L8+fNYvnw5Nm/ejMmTJ5uifCIiIjJjJt2T8/PPP6Nbt27S+4iICABAeHg4YmJikJaWJgUeAKhbty727t2LyZMnY8mSJahduza++OILXj5ORGRMptr7xT1fZGQKIZ6uXpWdnQ1HR0dkZWXBwcHB1OU8Oea6y95c6yL5YB8znLmGHHOty1zJrO9X5Pe7Sp14TERERKQvhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlS1MXQEREVKXJ7GnfcsI9OURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkS5amLoCIDKRQmGa5Qjz8c3Oti4ieWtyTQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJsBEhGZgqlungjwBor01OCeHCIiIpIl7skxNt7anoiIyCxwTw4RERHJEvfkEOnC8yWIiKo87skhIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZMnnIWbZsGXx8fKBWq9G+fXscP378oeMvXrwYDRs2hI2NDby8vDB58mTk5eU9oWqJiIioqjBpyImNjUVERAQiIyNx6tQp+Pn5ISgoCNevX9c5/ldffYUpU6YgMjISf/zxB9asWYPY2Fi8//77T7hyIiIiMncmDTkLFy7E6NGjMXLkSDRp0gQrV66Era0t1q5dq3P8H374AZ06dcLQoUPh4+ODXr16YciQIY/c+0NERERPH5OFnIKCApw8eRKBgYH/K0apRGBgIJKSknRO07FjR5w8eVIKNX/++Se++eYb9O3bt9zl5OfnIzs7W+tFRERE8mdpqgXfuHEDxcXFcHd31xru7u6O8+fP65xm6NChuHHjBp599lkIIVBUVISxY8c+9HBVdHQ0Zs2aZdTaiYiIyPyZ/MRjQxw+fBhz587F8uXLcerUKcTFxWHv3r2YM2dOudNMnToVWVlZ0uvq1atPsGIiIiIyFZPtyalRowYsLCyQkZGhNTwjIwMeHh46p5kxYwaGDx+OV199FQDQvHlz3L17F2PGjMG0adOgVJbNbCqVCiqVyvhfgIiIiMyayfbkWFtbw9/fHwkJCdIwjUaDhIQEBAQE6JwmNze3TJCxsLAAAAghKq9YIiIiqnJMticHACIiIhAeHo42bdqgXbt2WLx4Me7evYuRI0cCAMLCwlCrVi1ER0cDAIKDg7Fw4UK0atUK7du3x8WLFzFjxgwEBwdLYYeIiIgIMHHICQkJQWZmJmbOnIn09HS0bNkS+/fvl05GTk1N1dpzM336dCgUCkyfPh3//PMPXF1dERwcjA8//NBUX4GIiIjMlEI8Zcd5srOz4ejoiKysLDg4OBh/AQqF8eepj0etRlPVBTy8NtZVlrmuS9ZlOPYxw7Auw1XVPlYBFfn9rlJXVxERERHpiyGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGTJ4JCzf/9+HD16VHq/bNkytGzZEkOHDsW///5r1OKIiIiIKsrgkPPOO+8gOzsbAHD27Fm89dZb6Nu3Ly5fvoyIiAijF0hERERUEZaGTnD58mU0adIEALBt2zb069cPc+fOxalTp9C3b1+jF0hERERUEQbvybG2tkZubi4A4NChQ+jVqxcAwMXFRdrDQ0RERGRqBu/JefbZZxEREYFOnTrh+PHjiI2NBQBcuHABtWvXNnqBRERERBVh8J6cpUuXwtLSElu3bsWKFStQq1YtAMC+ffvQu3dvoxdIREREVBEKIYQwdRFPUnZ2NhwdHZGVlQUHBwfjL0ChMP489fGo1WiquoCH18a6yjLXdcm6DMc+ZhjWZbiq2scqoCK/3xW6T86lS5cwffp0DBkyBNevXwdwf0/Ob7/9VpHZERERERmdwSHnu+++Q/PmzfHTTz8hLi4OOTk5AIAzZ84gMjLS6AUSERERVYTBIWfKlCn44IMPEB8fD2tra2l49+7d8eOPPxq1OCIiIqKKMjjknD17FgMHDiwz3M3NDTdu3DBKUURERESPy+CQ4+TkhLS0tDLDf/nlF+lKKyIiIiJTMzjk/Oc//8F7772H9PR0KBQKaDQaHDt2DG+//TbCwsIqo0YiIiIigxkccubOnYtGjRrBy8sLOTk5aNKkCbp06YKOHTti+vTplVEjERERkcEqfJ+c1NRUnDt3Djk5OWjVqhUaNGhg7NoqBe+TYwJV8T4O5loXwD72IHOtC2AfMxTrMlxV7WMVUJHfb4Mf61DC29sb3t7eFZ2ciIiIqFIZHHJeeeWVh36+du3aChdDREREZCwGh5x///1X631hYSHOnTuH27dvo3v37kYrjIiIiOhxGBxytm/fXmaYRqPB66+/jvr16xulKCIiIqLHVaFnV5WZiVKJiIgILFq0yBizIyIiInpsRgk5wP2HdhYVFRlrdkRERESPxeDDVREREVrvhRBIS0vD3r17ER4ebrTCiIiIiB6HwSHnl19+0XqvVCrh6uqKBQsWPPLKKyIiIqInxeCQk5iYaNQCli1bhvnz5yM9PR1+fn747LPP0K5du3LHv337NqZNm4a4uDjcunULderUweLFi9G3b1+j1kVERERVW4VvBmgMsbGxiIiIwMqVK9G+fXssXrwYQUFBSE5OhpubW5nxCwoK0LNnT7i5uWHr1q2oVasWrly5AicnpydfPBEREZk1vR7r0KpVKyj0vD30qVOn9F54+/bt0bZtWyxduhTA/UvRvby8MHHiREyZMqXM+CtXrsT8+fNx/vx5WFlZ6b2c0vhYBxOoircdN9e6APaxB5lrXQD7mKFYl+Gqah+rgEp7rMOAAQMepy6dCgoKcPLkSUydOlUaplQqERgYiKSkJJ3T7Nq1CwEBARg/fjx27twJV1dXDB06FO+99x4sLCx0TpOfn4/8/HzpfXZ2tnG/CBEREZklvUJOZGSk0Rd848YNFBcXw93dXWu4u7s7zp8/r3OaP//8E99++y1CQ0PxzTff4OLFixg3bhwKCwvLrTE6OhqzZs0yev1ERERk3ox2n5wnQaPRwM3NDatWrYK/vz9CQkIwbdo0rFy5stxppk6diqysLOl19erVJ1gxERERmYrBJx4XFxdj0aJF2Lx5M1JTU1FQUKD1+a1bt/SaT40aNWBhYYGMjAyt4RkZGfDw8NA5jaenJ6ysrLQOTTVu3Bjp6ekoKCiAtbV1mWlUKhVUKpVeNREREZF8GLwnZ9asWVi4cCFCQkKQlZWFiIgIvPjii1AqlYiKitJ7PtbW1vD390dCQoI0TKPRICEhAQEBATqn6dSpEy5evAiNRiMNu3DhAjw9PXUGHCIiInqKCQPVq1dP7NmzRwghhJ2dnbh48aIQQoglS5aIIUOGGDSvTZs2CZVKJWJiYsTvv/8uxowZI5ycnER6eroQQojhw4eLKVOmSOOnpqYKe3t7MWHCBJGcnCz27Nkj3NzcxAcffKD3MrOysgQAkZWVZVCtert/TvmTf5lrXY+qjXVVnXXJutjHWJd51VWV+1gFVOT32+DDVenp6WjevDkAwM7ODllZWQCAfv36YcaMGQbNKyQkBJmZmZg5cybS09PRsmVL7N+/XzoZOTU1FUrl/3Y2eXl54cCBA5g8eTJatGiBWrVqYdKkSXjvvfcM/RpEREQkcwaHnNq1ayMtLQ3e3t6oX78+Dh48iNatW+PEiRMVOvdlwoQJmDBhgs7PDh8+XGZYQEAAfvzxR4OXQ0RERE8Xg8/JGThwoHQezcSJEzFjxgw0aNAAYWFhfHYVERERmQ297ngMAEuXLsWwYcPKPEIhKSkJSUlJaNCgAYKDgyujRqPiHY9N4GG1sa6yzHVdsi7DsY8ZhnUZrqr2sQqoyO+33iHH0dERhYWFGDhwIEaNGoXu3bs/VrGmwpBjAlXxj9Bc6wLYxx5krnUB7GOGYl2Gq6p9rAIq8vut9+Gq9PR0rFy5EteuXUPPnj1Rt25dzJkzhzfXIyIiIrOkd8ixsbFBWFgYEhMTkZKSguHDh2PNmjWoW7cuevfujS1btqCwsLAyayUiIiLSW4Ue61CvXj3Mnj0bly9fxr59+1C9enWMGDECtWrVMnZ9RERERBXyWM+uUigUsLS0hEKhgBCCe3KIiIjIbFQo5Fy9ehWzZ89GvXr10LNnT1y7dg2rV69GWlqasesjIiIiqhC9bwZYUFCAuLg4rF27Ft9++y08PT0RHh6OV155BfXq1avMGomIiIgMpnfI8fDwQG5uLvr164fdu3cjKChI65ELREREROZE75Azffp0DB8+HK6urpVZDxEREZFR6B1yIiIiKrMOIiIiIqPi8SYiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJb1PPC5RXFyMmJgYJCQk4Pr169BoNFqff/vtt0YrjoiIiKiiDA45kyZNQkxMDJ5//nk0a9YMClM+yp2IiIioHAaHnE2bNmHz5s3o27dvZdRDREREZBQGn5NjbW0NX1/fyqiFiIiIyGgMDjlvvfUWlixZAiFEZdRDREREZBQGH646evQoEhMTsW/fPjRt2hRWVlZan8fFxRmtOCIiIqKKMjjkODk5YeDAgZVRCxEREZHRGBxy1q1bVxl1EBERERmVwSGnRGZmJpKTkwEADRs25NPJiYiIyKwYfOLx3bt38corr8DT0xNdunRBly5dULNmTYwaNQq5ubmVUSMRERGRwQwOOREREfjuu++we/du3L59G7dv38bOnTvx3Xff4a233qqMGomIiIgMphAGXgteo0YNbN26Fc8995zW8MTERAwePBiZmZnGrM/osrOz4ejoiKysLDg4OBh/Aaa6A/SjVqMp70z9sNpYV1nmui5Zl+HYxwzDugxXVftYBVTk99vgPTm5ublwd3cvM9zNzY2Hq4iIiMhsGBxyAgICEBkZiby8PGnYvXv3MGvWLAQEBBi1OCIiIqKKMvjqqiVLliAoKAi1a9eGn58fAODMmTNQq9U4cOCA0QskIiIiqgiDQ06zZs2QkpKCjRs34vz58wCAIUOGIDQ0FDY2NkYvkIiIiKgiKnSfHFtbW4wePdrYtRAREREZjV4hZ9euXejTpw+srKywa9euh477wgsvGKUwIiIioseh1yXkSqUS6enpcHNzg1JZ/rnKCoUCxcXFRi3Q2HgJuQlUxUsczbUugH3sQeZaF8A+ZijWZbiq2scqoCK/33rtydFoNDr/TURERGSuDL6EXJfbt28bYzZERERERmNwyJk3bx5iY2Ol94MGDYKLiwtq1aqFM2fOGLU4IiIioooyOOSsXLkSXl5eAID4+HgcOnQI+/fvR58+ffDOO+8YvUAiIiKiijD4EvL09HQp5OzZsweDBw9Gr1694OPjg/bt2xu9QCIiIqKKMHhPjrOzM65evQoA2L9/PwIDAwEAQgizv7KKiIiInh4G78l58cUXMXToUDRo0AA3b95Enz59AAC//PILfH19jV4gERERUUUYHHIWLVoEHx8fXL16FR9//DHs7OwAAGlpaRg3bpzRCyQiIiKqCL1uBignvBmgCVTFm1WZa10A+9iDzLUugH3MUKzLcFW1j1VApd0MkI91ICIioqqGj3UwNv5Po6yq+D8Nc60LYB97kLnWBbCPGYp1Ga6q9rEK4GMdiIiIiP6fUR7rQERERGRuDA45b7zxBj799NMyw5cuXYo333zTGDURERERPTaDQ862bdvQqVOnMsM7duyIrVu3GqUoIiIiosdlcMi5efMmHB0dywx3cHDAjRs3jFIUERER0eMyOOT4+vpi//79ZYbv27cP9erVM0pRRERERI/L4DseR0REYMKECcjMzET37t0BAAkJCViwYAEWL15s7PqIiIiIKsTgkPPKK68gPz8fH374IebMmQMA8PHxwYoVKxAWFmb0AomIiIgq4rEe65CZmQkbGxvp+VVVAW8GaAJV8WZV5loXwD72IHOtC2AfMxTrMlxV7WMVUJHf7wrdJ6eoqAiHDh1CXFwcSjLStWvXkJOTU5HZERERERmdwYerrly5gt69eyM1NRX5+fno2bMn7O3tMW/ePOTn52PlypWVUScRERGRQQzekzNp0iS0adMG//77L2xsbKThAwcOREJCglGLIyIiIqoog/fkHDlyBD/88AOsra21hvv4+OCff/4xWmFEREREj8PgPTkajUbnk8b//vtv2NvbG6UoIiIiosdlcMjp1auX1v1wFAoFcnJyEBkZib59+1aoiGXLlsHHxwdqtRrt27fH8ePH9Zpu06ZNUCgUGDBgQIWWS0RERPJlcMj55JNPcOzYMTRp0gR5eXkYOnSodKhq3rx5BhcQGxuLiIgIREZG4tSpU/Dz80NQUBCuX7/+0On++usvvP322+jcubPByyQiIiL5q9B9coqKihAbG4szZ84gJycHrVu3RmhoqNaJyPpq37492rZti6VLlwK4fzjMy8sLEydOxJQpU3ROU1xcjC5duuCVV17BkSNHcPv2bezYsUOv5fE+OSZQFe/jYK51AexjDzLXugD2MUOxLsNV1T5WARX5/TboxOPCwkI0atQIe/bsQWhoKEJDQytUaImCggKcPHkSU6dOlYYplUoEBgYiKSmp3Olmz54NNzc3jBo1CkeOHHnoMvLz85Gfny+9z87OfqyaiYiIqGow6HCVlZUV8vLyjLbwGzduoLi4GO7u7lrD3d3dkZ6ernOao0ePYs2aNVi9erVey4iOjoajo6P08vLyeuy6iYiIyPwZfE7O+PHjMW/ePBQVFVVGPQ91584dDB8+HKtXr0aNGjX0mmbq1KnIysqSXlevXq3kKomIiMgcGHyfnBMnTiAhIQEHDx5E8+bNUa1aNa3P4+Li9J5XjRo1YGFhgYyMDK3hGRkZ8PDwKDP+pUuX8NdffyE4OFgaptFoAACWlpZITk5G/fr1taZRqVRQqVR610RERETyYHDIcXJywksvvWSUhVtbW8Pf3x8JCQnSZeAajQYJCQmYMGFCmfEbNWqEs2fPag2bPn067ty5gyVLlvBQFBEREUkMDjnr1q0zagEREREIDw9HmzZt0K5dOyxevBh3797FyJEjAQBhYWGoVasWoqOjoVar0axZM63pnZycAKDMcCIiInq66R1yNBoN5s+fj127dqGgoAA9evRAZGRkhS4bLy0kJASZmZmYOXMm0tPT0bJlS+zfv186GTk1NRVKZYUelk5ERERPMb3vkzNnzhxERUUhMDAQNjY2OHDgAIYMGYK1a9dWdo1GxfvkmEBVvI+DudYFsI89yFzrAtjHDMW6DFdV+1gFVOT3W+9dJF9++SWWL1+OAwcOYMeOHdi9ezc2btwonfhLREREZE70Djmpqalaz6YKDAyEQqHAtWvXKqUwIiIiosehd8gpKiqCWq3WGmZlZYXCwkKjF0VERET0uPQ+8VgIgREjRmjdcyYvLw9jx47VuleOIffJISIiIqoseoec8PDwMsOGDRtm1GKIiIiIjEXvkGPs++MQERERVSbegIaIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZMksQs6yZcvg4+MDtVqN9u3b4/jx4+WOu3r1anTu3BnOzs5wdnZGYGDgQ8cnIiKip5PJQ05sbCwiIiIQGRmJU6dOwc/PD0FBQbh+/brO8Q8fPowhQ4YgMTERSUlJ8PLyQq9evfDPP/884cqJiIjInCmEEMKUBbRv3x5t27bF0qVLAQAajQZeXl6YOHEipkyZ8sjpi4uL4ezsjKVLlyIsLOyR42dnZ8PR0RFZWVlwcHB47PrLUCiMP099PGo1mqou4OG1sa6yzHVdsi7DsY8ZhnUZrqr2sQqoyO+3SffkFBQU4OTJkwgMDJSGKZVKBAYGIikpSa955ObmorCwEC4uLjo/z8/PR3Z2ttaLiIiI5M+kIefGjRsoLi6Gu7u71nB3d3ekp6frNY/33nsPNWvW1ApKpUVHR8PR0VF6eXl5PXbdREREZP5Mfk7O4/joo4+wadMmbN++HWq1Wuc4U6dORVZWlvS6evXqE66SiIiITMHSlAuvUaMGLCwskJGRoTU8IyMDHh4eD532k08+wUcffYRDhw6hRYsW5Y6nUqmgUqmMUi8RERFVHSbdk2NtbQ1/f38kJCRIwzQaDRISEhAQEFDudB9//DHmzJmD/fv3o02bNk+iVCIiIqpiTLonBwAiIiIQHh6ONm3aoF27dli8eDHu3r2LkSNHAgDCwsJQq1YtREdHAwDmzZuHmTNn4quvvoKPj4907o6dnR3s7OxM9j2IiIjIvJg85ISEhCAzMxMzZ85Eeno6WrZsif3790snI6empkKp/N8OpxUrVqCgoAAvv/yy1nwiIyMRFRX1JEsnIiIiM2by++Q8abxPjglUxfs4mGtdAPvYg8y1LoB9zFCsy3BVtY9VQJW7Tw4RERFRZWHIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlkyi5CzbNky+Pj4QK1Wo3379jh+/PhDx9+yZQsaNWoEtVqN5s2b45tvvnlClRIREVFVYfKQExsbi4iICERGRuLUqVPw8/NDUFAQrl+/rnP8H374AUOGDMGoUaPwyy+/YMCAARgwYADOnTv3hCsnIiIic6YQQghTFtC+fXu0bdsWS5cuBQBoNBp4eXlh4sSJmDJlSpnxQ0JCcPfuXezZs0ca1qFDB7Rs2RIrV6585PKys7Ph6OiIrKwsODg4GO+LlFAojD9PfTxqNZqqLuDhtbGussx1XbIuw7GPGYZ1Ga6q9rEKqMjvt0n35BQUFODkyZMIDAyUhimVSgQGBiIpKUnnNElJSVrjA0BQUFC54xMREdHTydKUC79x4waKi4vh7u6uNdzd3R3nz5/XOU16errO8dPT03WOn5+fj/z8fOl9VlYWgPuJUFbM+fuYa22syzCsy3DmWhvrMoy51gWYb22VUFfJ77YhB6BMGnKehOjoaMyaNavMcC8vLxNUU4kcHU1dQfnMtTbWZRjWZThzrY11GcZc6wLMt7ZKrOvOnTtw1HP+Jg05NWrUgIWFBTIyMrSGZ2RkwMPDQ+c0Hh4eBo0/depURERESO81Gg1u3bqF6tWrQ2HK45UPyM7OhpeXF65evVo55wpVkLnWBZhvbazLMKzLcOZaG+syDOsyjBACd+7cQc2aNfWexqQhx9raGv7+/khISMCAAQMA3A8hCQkJmDBhgs5pAgICkJCQgDfffFMaFh8fj4CAAJ3jq1QqqFQqrWFOTk7GKL9SODg4mFWnKmGudQHmWxvrMgzrMpy51sa6DMO69KfvHpwSJj9cFRERgfDwcLRp0wbt2rXD4sWLcffuXYwcORIAEBYWhlq1aiE6OhoAMGnSJHTt2hULFizA888/j02bNuHnn3/GqlWrTPk1iIiIyMyYPOSEhIQgMzMTM2fORHp6Olq2bIn9+/dLJxenpqZCqfzfRWAdO3bEV199henTp+P9999HgwYNsGPHDjRr1sxUX4GIiIjMkMlDDgBMmDCh3MNThw8fLjNs0KBBGDRoUCVX9WSpVCpERkaWObRmauZaF2C+tbEuw7Auw5lrbazLMKyr8pn8ZoBERERElcHkj3UgIiIiqgwMOURERCRLDDlEREQkSww5JqJQKLBjxw6jj/u4TFmXubbJo5hr3azLMOZal6HLexrazFzb41HMpW5zqeOJECTCw8MFAAFAWFlZifr164tZs2aJwsLCSltmWlqayMvLM1ld27ZtEz179hQuLi4CgPjll1+06tJn2fp8B0OkpqaKiIgI0axZM2Frays8PT3F8OHDxT///FNm3PKWXdE2KygoEO+++65eyy6vlg8++EAEBAQIGxsb4ejoaJS69BEZGSkaNmwobG1thZOTk+jRo4f48ccfTd7HSnvttdcEALFo0SKT11V63iWvoKAgvftzZdb2+++/i+DgYOHg4CBsbW1FmzZtxJUrV0zeZg+2V8lrxowZYtiwYXot15jbi5J53blzR4wfP17UqlVLqNVq0bhxY7FixQq9lvs47aXPch9W9+effy66du0q7O3ttdqzdB1Xr1416vZVCCHS09NFeHi4cHNzE2q1WgQFBYkLFy7oVbMxlff7U9q9e/fEuHHjhIuLi6hWrZp48cUXRXp6usHLYsgR9zt77969RVpamvjrr7/E8uXLhUKhEHPnzi0zbn5+vizq+vLLL8WsWbPE6tWrdXYyU7TJ7du3RWBgoIiNjRXnz58XSUlJol27dsLf31/veVS0bmMse+bMmWLhwoUiIiJCZ8iprPbcuHGjiI+PF5cuXRLnzp0To0aNEg4ODuL69euPnPZJrOe4uDjh5+cnatasKRYtWqTXNJVZV+l5l7xu3bpVoemNWdvFixeFi4uLeOedd8SpU6fExYsXxc6dO0VGRoZJ6xJCaLVVWlqaWLt2rVAoFOLSpUsm3X6OHj1a1K9fXyQmJorLly+Lzz//XFhYWIidO3c+ctrHqftxliuEEIsWLRLR0dEiOjpaABA9evSo9PbTaDSiQ4cOonPnzuL48ePi/PnzYsyYMcLb21vk5ORUeL4V8ajfHyGEGDt2rPDy8hIJCQni559/Fh06dBAdO3Y0eFkMOeJ+Z+/fv7/WsJ49e4oOHTpIn33wwQfC09NT+Pj4CCHu73UYNGiQcHR0FM7OzuKFF14Qly9f1prHmjVrRJMmTYS1tbXw8PAQ48ePlz4DILZv3y6EuN9xx48fLzw8PIRKpRLe3t5i7ty50rJLj9uzZ0/RokUL4eHhIZRKpbCxsRG2traiTp06Ul116tQRlpaWwsbGRqhUKuHo6CjGjRsnCgoKytTl6uqq1clKlhUeHi6Cg4O16lKr1cLLy0urLmdnZ6lNDh48KM1PoVCIOnXqiHPnzmm1c8uWLYW7u7s0TrNmzaS6dLVJ9erVBQBRq1YtrT/60uMKIcSvv/4qunXrJpRKpbCyshKjR48Wd+7ckdrM1dVVeHl5iaZNmwo7OzuhUCiEvb29KCgoKHddHj9+XAAQV65cMWhddu/eXSgUiie+LkvqysrKkv5naA59TKlUiiFDhog6deqIRYsWmbwuR0dHoVQqK/Q3WdKPH+x/AQEBwsHBQep/bdq0ER4eHtLfxssvvyxq1qwp1Gq1UCgUwsrKSgwbNkyqSwgh2rZtKxwdHc16e1FSV//+/UX37t0FANGtWzfRv39/rboUCoWwtrYWrVu3lrafAISbm5u03F69eglLS0tpD8Z//vMf6W9WCCE6duwo7O3thYWFhVAqlUKlUkl1lXzHpk2bipkzZ2q1h7W1tXjuued0tp0QxtlWlLRl6e1+69atxbRp0wzaVgwYMEAAEEqlUquP9ezZU6ttP/jgA+Hq6irUarVQq9XC0dFR1K1bV2ub9dJLL4n+/fuL+fPnCw8PD1GtWjXh7Ows1REaGioAiHPnzkl1FBcXixo1aohu3brp7OsPaz+1Wi1cXFy02q/k76N0HS4uLlr9qbTLly/rDDm3b98WVlZWYsuWLdKwP/74QwAQSUlJZebzMDwnpxw2NjYoKCgAACQkJCA5ORnx8fHYs2cPCgsLERQUBHt7exw5cgTHjh2DnZ0devfuLU2zYsUKjB8/HmPGjMHZs2exa9cu+Pr66lzWp59+il27dmHz5s1ITk7Gxo0b4ePjo3Nca2tr/P7777C2toZarcazzz4LZ2dn+Pn5SXVZWVlBpVLhhRdeQM+ePWFnZ4d169YhJiamTF2rV68utw3+/PNPrbratGkDCwsLqU0AICoqCnv27MHt27fRt29f2NraYtu2bVizZg1u3LiBjh07Sm1y/vx5nD59GvXr18c333yDTz75BMnJyYiJiSm3TaZNmwYAWLNmTbltcvfuXQQFBcHZ2Rn9+vVD27ZtcejQIekGkzY2NiguLkZ6ejouXLiA7t2747PPPkNhYSG++OKLctfljRs3oFAosHXrVoPW5enTp2Fra/vE1+WuXbvg4+ODVatWlXm+iyn62OjRo9GqVSu8+eabaNeuXbnt9aTreuaZZ2Bra4u8vDxs3rwZr7/+Om7evFnhuu7evYtTp05BqVSiX79+sLS0xPnz59GuXTtpexEfH4/MzEwEBwdj9+7d6NixIzZu3IgvvvgCALBs2TKcOHECHTt2RNu2bZGXl4fdu3frPBfClNuLXbt2wd3dHXv37sWoUaPKratHjx7w8fGBnZ2dtP0EgGnTpqGwsBA9e/bEkSNH0LVrV+zcuRNdunTBtm3b8PrrrwO4v/386aefUFBQgEGDBmHTpk0YPnw4YmJitLYXHTt2xNq1a7F9+3bExsZi3bp1sLCwQOfOnctdV8bYVgwcOBD16tWDUqlE7969cfDgQVy4cAG5ubkGbSt++OEHAEDXrl211qONjY00XkJCAn777TcIIfDss8/ihx9+gKOjIzIzM9G1a1dpmxUfH49vv/0Wly5dwpgxY1BYWIicnBzMmDEDu3btkh5qqVarpXkrlUoUFhbi+PHjevf1kvY7ceIEtmzZotV+JRITE3Hp0iUkJiZi/fr1Zdbbo5w8eRKFhYUIDAyUhjVq1Aje3t5ISkrSez4AeE6OENp7cjQajYiPjxcqlUq8/fbbIjw8XLi7u2vtJtywYYNo2LCh0Gg00rD8/HxhY2MjDhw4IIQQombNmmLatGnlLhOl0vHEiRNF9+7dteZXui4AIi4uTsTHxwtLS0uhUqlEaGioVNfevXuFUqkUS5cuFQ0bNhRhYWGiTp06oqioSKqrc+fOIiQkpExdDybpkrrCw8NF3bp1Rffu3UVxcbHONin9HV555RWhVCq1Ev2OHTsEALFp0yYhhBA2NjbCwcFBFBUVSeMMGjRIhISE6GyT5557TrRq1UoMHTr0oe23atUq4ezsLHJycqQ227t3r1AoFGLz5s1CpVKJpk2bimrVqmmty0GDBon27duXuy59fX3F0KFDDV6XjRs3Fg4ODk90Xe7evVtUq1ZNKBQKUbNmTWkvlCn72Ny5c0XPnj2lZerak2OKur7++muxc+dO8euvv4rt27eLxo0bi7Zt2+pVV0ltJeNqNBrx5ptvCgBi0qRJ0t/Gjh07hFKpFOnp6WLDhg3CwcFBeHt7S30/Pz9fWFhYiK5duwohhPDw8BAAhK2trVi4cKH45ZdfRHR0tFAoFOLw4cMmb7PS5s2bJ5ydncW9e/e09jZMnDhRdOvWTRw8eFDn9rPkO2zYsEG4u7sLJycn6TBJfn6+UKlUQqFQiPT0dFGzZk3RvHlzqa4SJduLknnl5eWJRo0aCQDCwsJCWFtbi/Xr15f792msbUVeXp4ICwuT9phaWlqK9evXG7ytaNWqlQAg+vbtK4TQ/v0paVt3d3exfPlyqe6S3589e/ZIfaykP7m5uYmioiKpjtLb14KCAuHt7S0GDRokAIjNmzeLjz76SAAQLi4uOvv6w9qvREl/KjlfJjw8vNz19qDy9uRs3LhRWFtblxm/bdu24t133y23fXUxi8c6mIM9e/bAzs4OhYWF0Gg0GDp0KKKiojB+/Hg0b94c1tbW0rhnzpzBxYsXYW9vrzWPvLw8XLp0CdevX8e1a9fQo0cPvZY9YsQI9OzZEw0bNkTv3r3Rr18/9OrVS6oLAAYPHgwAaNCgAWrUqAFLS0uprk6dOkGj0eDo0aO4ePEiLl26BCGE9L/5vLw8WFhY4O+//zaortTUVFy+fBmWlpZQKBTo3r27VptkZGRotYlGo4GHh0eZ+fz000/o1q0b7t27hxYtWkh7gwDA09MTZ8+eLTPNsGHD8Oyzz0KpVKJdu3Y4ePCg1CYP+uOPP+Dn54dq1apJbXbo0CEIITBkyBCEhoaiqKgIt2/fRuPGjaV16enpiR9//BHXrl0rsy7v3buHvLw8zJ49G76+vgaty7Vr1+LevXt44403nti67NatG06fPo0bN25g9erV0jJK1/Uk+5iXlxciIyNx6tQpKBSKh7bXk+773bp1k5bfvHlztGjRAvXr19e7rhJDhgyBRqNBUVER3N3d8eGHH0p/G8899xw0Gg2Sk5Nx5swZ3LlzB3fv3tXaw1ZcXIy0tDRcv34d6enpAID+/ftj8uTJAICWLVvihx9+wMqVK03eZqWtXbsWoaGhWnsE9uzZA2tra9y7dw+JiYlo1KgROnfujLi4OJ3bz+vXr0OhUEjPKASAgoICCCGkv8lmzZrBy8vroduLzz77DLm5ubC3t4ezszPq1q2L1157DTVr1tTaC1DCWNuKwsJCFBYWQq1WIz8/Hy+++CJef/115ObmGrStWL9+PQBg3759sLGxgUajkX5/vvzySwD3+2hKSopUd8nvT0hICDQaDerWrQulUoni4mK4urri5s2b0nq7c+eO1F5WVlaIi4uT9sD95z//Qc+ePdGxY0ecOHHioX29vPYDIPWn5ORkaX02bdpUr+38k8DDVf+v5EciJSUF9+7dw/r166UVWXqFAkBOTg78/f1x+vRprdeFCxcwdOhQrV2N+mjdujUuX76MOXPm4N69exg8eDBefvllqS4AWL58Oe7du4fevXtLnefBunJzc+Hv74/g4GA899xzWnU1atSoQm1y6tQpfPbZZxgxYgROnDiB8PBwncsuLCyEvb29VnscOXIEABAYGCi1SemOD9y/PFGj0ZSZV3R0NJ555hksXboUxcXFWm2iT90lyz548CDWr18PKysrKJVKrboVCgWKioq01uWJEycQEBCAhg0b4vvvv4ebm5sBLXZ/Xc6fPx8qleqJrstq1arB19cXHTp0wJo1a2Bpqf3/lyfdx3799Vdcv34d3t7esLS0hKWlJa5cuYK33nrLpHXpUq9ePdSoUUPvukosXLgQKSkpmDhxIho3bvzQ7UX16tW16jp9+jTCw8Ph6uoq/W0olUo0adJEa9rGjRsjNTXVbNrsyJEjSE5Oxquvvqo1vFu3bvj1119x7tw5bNy4Ec8++yzCwsJw+PBhne3h7u6ONm3aaLXHyZMnAUDreUlWVlZa05beXuTn5+P999/H8uXL8ffff+Pjjz9GgwYNoNFoMGzYMJ31P6gi24off/wRGo0Gn3/+Oc6ePYsLFy5g1apVeOmll/RaZonWrVvjq6++AgB4eHjA0tISPXr0kH5/SpT3+1NS9xdffIHTp09j4MCBqFOnjtbvz4Pb15JtHXA/rO7fvx9FRUUIDw9/aF831MPWmz48PDxQUFCA27dvaw3PyMjQ+R/ph2HI+X8lPxIlG+WHad26NVJSUuDm5gZfX1+tl6OjI+zt7eHj4yOdt6IPBwcHhISEYPXq1YiNjcW2bduQn58vdXBXV1dYWlqicePGOHPmDIqKiqRpjx07BqVSiS5duiAlJQVqtRp2dnZadalUKlhaWhpUV7Vq1dCqVSuMHz8ea9as0arrQX5+fsjJyZHa0dfXF2lpaVAqlfD394e9vT3s7Oxw48aNhy6zqKgIgwcPRkpKChITE/Hqq69qtcmtW7fKTFPSJnfv3pXqLll206ZNH7o8e3t7aV3WqVMH77//PtLS0nDkyBHUrVu3QuvSxsYG1tbWJl2XujYoT7KPqdVq/Prrr1o/YjVr1sQ777xj0rp0tdfff/9d5pyc8uoq3f88PT3h7e2Npk2bavW/0nU1bNgQrVu3RnZ2NlQqlVZdTk5OsLS0lPqYp6endO5KiQsXLqBOnTpm02Zr1qyBv78//Pz8tOop+btv2rQphg4dKtV15coV6Zy8EiXtceHCBXh6epbZXrRq1Qo+Pj5IS0sr871LKy4uRmFhIZRKpVZ79OjRAxkZGZW2rXByckJRURFq166ttd23sbGBWq02aFtRsr5atWqFrVu3Yt++fcjOzn5o3SW/P5cuXYJSqUSPHj3g6+sLBwcHWFlZ6b3NcnR0REpKCn7++WcMGjTooX1dVx0lSvd1Y/H394eVlZXWd0hOTkZqaioCAgIMmhcPV1VAaGgo5s+fj/79+2P27NmoXbs2rly5gri4OLz77ruoXbs2oqKiMHbsWLi5uaFPnz64c+cOjh07hokTJ5aZ38KFC+Hp6YlWrVpBqVRiy5Yt8PDwkHb/PrjsyMhIHD16FPXq1UNiYiImTpyI4cOH4/XXX8fnn3+OxMRE+Pr64vLly1JdJZ2ypK5q1aqhSZMmuHLlCgCU2bgCwMWLF/H111/rVdfChQvx1Vdfwc/PD/Pnz4eVlRXefvttPPPMMygsLARwPwglJSXh008/ldqk5H8VJT7++GOkpaUhJCQEW7duRbNmzaBUKhEbGwsPDw84OTnpXB+RkZEIDw9HYWEhbt68KbVJ6d3huri5uUEIgRdeeAFFRUW4dOkS5syZg6lTp2LcuHGoWbMmpk+fjgkTJjxyXaampmLJkiVITU1FYWEhdu7ciZiYGLi7u1fquvzpp58wZswY2Nra4vDhw7h58yb++eefMuvnSfexOnXqaLWXlZVVmf+FmaKupKQkjB07FjY2Nti/fz+SkpLg6+uLlJSUR9ZVkf4XGhqKt99+G8ePH8eRI0ek7cXhw4el/3VHRUVhzJgx+Oqrr9CwYUM0b94c//3vf7F7924cPnwYX3/9tUnbzM3NDZ07d0ZsbCxeeOGFMm1QXl1qtbrM/+pDQ0Px8ccfIzU1Fc8//zymTJmCP/74A1FRUXjxxRfh7u6OqKgojBo1CkIIpKSkSH2oNFtbW3Tt2hUjR47E6NGj0bVrV/z88884ePAgHBwcKm1bMXz4cPj5+WHSpElITk7G6dOn0aJFC3z55ZcYPHgwFixY8MhtRXp6OubPny8FmoyMDKxcuRLu7u6PrPu9995DtWrVMHz4cPTq1Qu5ubk4fPgwfvrpJ3h7e2utt/bt2yM3NxenTp3CsWPH4OHhAVdXVwD3TyN488030bRpU9y8eRPnz583qK9HRUUhMzNT7/Yr7datW0hNTcW1a9cA/O/3x8PDAx4eHnB0dMSoUaMQEREBFxcXODg4YOLEiQgICECHDh30Xg4AnngshO5LyB/1WVpamggLCxM1atQQKpVK1KtXT4wePVpkZWVJ46xcuVI0bNhQWFlZCU9PTzFx4kTpMzxwMlfLli1FtWrVhIODg+jRo4c4deqUzktChbh/CV/JJaEPXsKXlpYm6tevL6ytrbXqGjt2rHSS48qVK6UTHXW9Sk489vPzM6iub7/9Vmu+9vb2YsSIEVKblMyzdJv4+flJdZVXDwDRunVrcerUKZ3tV9Im5V0WWrJsLy8vrXU5adIk0bVrV5GWliZefPHFcpedmJio17rUdZM5AGLVqlWVti4/++wzYWdnJy3L1tZWvPDCC2VOPDZFH3uwvXSdePyk6/r000+Fra2tVh8dPXq0SE9P16uukr5kaP8bPHiw8PLy0tpeNGvWTHTq1Eka58G/yxo1aogdO3aU6e+mWpcWFhYCgBgzZoxW3y858VhXXcHBwdLfXOm60tLSRHBwsLCyspIuoW7UqJHWzTc7dOgg7OzstPpQyd9sybzS0tJEx44dpUvRlUqlaNCggTh58qRWjcbcVoSFhQkXFxehVCqFhYWFsLCwEL6+vmLBggVCo9Hota2IjIzUua2IiorS2bal61ar1cLJyUk0aNBAVK9eXVpvDRo0kE5gLllvzs7OQqFQSHUsWbJE1K5dW+pf06dPF8uXLy+3rz+s/R51CXlpJe1XYt26dTq/f2RkpDROyc0AnZ2dha2trRg4cKBIS0sThlL8/5cgIiIikhWek0NERESyxJBDpIe5c+fCzs5O56tPnz6mLo+IzMTGjRvL3VY86uRmMj4eriLSw61bt3RebQDcv5qqVq1aT7giIjJHd+7c0bqHWGlWVlY6r5ajysOQQ0RERLLEw1VEREQkSww5REREJEsMOURERCRLDDlEZBQKhQI7duww+rjm6LnnnsObb76p9/iHDx+GQqEo8yye0mJiYnTeZZaIKo4hh0hmRowYAYVCAYVCAWtra/j6+mL27Nlazy+qDGlpaXpfTm/IuBWxYMECODs7Iy8vr8xnubm5cHBwwKefflrh+cfFxWHOnDmPUyIRPQEMOUQy1Lt3b6SlpSElJQVvvfUWoqKiMH/+fJ3jPvgAxYry8PDQeoK0scatiOHDh+Pu3buIi4sr89nWrVtRUFCg95OqSytpKxcXF9jb2z92nURUuRhyiGRIpVLBw8MDderUweuvv47AwEDs2rULwP09PQMGDMCHH36ImjVrSk8Pvnr1KgYPHgwnJye4uLigf//++Ouvv7Tmu3btWjRt2hQqlQqenp6YMGGC9FnpQ1AFBQWYMGECPD09oVarUadOHURHR+scFwDOnj2L7t27w8bGBtWrV8eYMWOQk5MjfV5S8yeffAJPT09Ur14d48ePlx7++iA3NzcEBwdj7dq1ZT5bu3YtBgwYABcXF7z33nt45plnYGtri3r16mHGjBla84yKikLLli3xxRdfoG7dulCr1QDKHq7asGED2rRpA3t7e3h4eGDo0KG4fv16mWUfO3YMLVq0gFqtRocOHXDu3Dmd9ZfYuXMnWrduDbVajXr16mHWrFnSHjkhBKKiouDt7Q2VSoWaNWvijTfeeOj8iJ42DDlETwEbGxutPTYJCQlITk5GfHw89uzZg8LCQgQFBcHe3h5HjhzBsWPHYGdnh969e0vTrVixAuPHj8eYMWNw9uxZ7Nq1C76+vjqX9+mnn2LXrl3YvHkzkpOTsXHjRvj4+Ogc9+7duwgKCoKzszNOnDiBLVu24NChQ1oBCgASExNx6dIlJCYmYv369YiJiUFMTEy533nUqFH49ttvceXKFWnYn3/+ie+//x6jRo0CANjb2yMmJga///47lixZgtWrV2PRokVa87l48SK2bduGuLg4nD59WueyCgsLMWfOHJw5cwY7duzAX3/9hREjRpQZ75133sGCBQtw4sQJuLq6Ijg4uNygduTIEYSFhWHSpEn4/fff8fnnnyMmJgYffvghAGDbtm1YtGgRPv/8c6SkpGDHjh1o3rx5ue1B9FQy+JGeRGTWSj8FWKPRiPj4eKFSqcTbb78tfe7u7i7y8/OlaTZs2CAaNmwoNBqNNCw/P1/Y2NiIAwcOCCGEqFmzppg2bVq5y0WppxVPnDhRdO/eXWt+5Y27atUq4ezsLHJycqTP9+7dK5RKpUhPT5dqrlOnjigqKpLGGTRokAgJCSm3nqKiIlGrVi2tJxvPmDFDeHt7i+LiYp3TzJ8/X/j7+0vvIyMjhZWVlbh+/brWeF27dhWTJk0qd9knTpwQAKSnMycmJgoAYtOmTdI4N2/eFDY2NiI2NlYIcf/JzI6OjtLnPXr0EHPnztWa74YNG4Snp6cQQogFCxaIZ555RhQUFJRbB9HTjntyiGRoz549sLOzg1qtRp8+fRASEoKoqCjp8+bNm8Pa2lp6f+bMGVy8eBH29vbSc3ZcXFyQl5eHS5cu4fr167h27Rp69Oih1/JHjBiB06dPo2HDhnjjjTdw8ODBcsf9448/4Ofnh2rVqknDOnXqBI1Gg+TkZGlY06ZNYWFhIb339PTUeUiohIWFBcLDwxETEwMhBDQaDdavX4+RI0dCqby/6YuNjUWnTp3g4eEBOzs7TJ8+HampqVrzqVOnDlxdXR/6fU+ePIng4GB4e3vD3t4eXbt2BYAy8woICJD+7eLigoYNG+KPP/7QOc8zZ85g9uzZWs8+Gj16NNLS0pCbm4tBgwbh3r17qFevHkaPHo3t27dX+snlRFWNpakLICLj69atG1asWAFra2vUrFkTlpbaf+qlAwUA5OTkwN/fHxs3biwzL1dXVykU6Kt169a4fPky9u3bh0OHDmHw4MEIDAzE1q1bDf8y/8/KykrrvUKhgEajeeg0r7zyCqKjo/Htt99Co9Hg6tWrGDlyJAAgKSkJoaGhmDVrFoKCguDo6IhNmzZhwYIFWvN4sK0eVHK4LSgoCBs3boSrqytSU1MRFBT0WCd15+TkYNasWXjxxRfLfKZWq+Hl5YXk5GQcOnQI8fHxGDduHObPn4/vvvuuTFsRPa0YcohkqFq1auWeL6NL69atERsbCzc3Nzg4OOgcx8fHBwkJCejWrZte83RwcEBISAhCQkLw8ssvo3fv3rh16xZcXFy0xmvcuDFiYmJw9+5dKVAcO3YMSqVSOim6ourXr4+uXbti7dq1EEIgMDBQekDiDz/8gDp16mDatGnS+KXP39HX+fPncfPmTXz00Ufw8vICAPz88886x/3xxx/h7e0NAPj3339x4cIFNG7cWOe4rVu3RnJy8kPXo42NDYKDgxEcHIzx48ejUaNGOHv2LFq3bm3w9yCSI4YcIkJoaCjmz5+P/v37Y/bs2ahduzauXLmCuLg4vPvuu6hduzaioqIwduxYuLm5oU+fPrhz5w6OHTuGiRMnlpnfwoUL4enpiVatWkGpVGLLli3w8PDQebO70NBQREZGIjw8HFFRUcjMzMTEiRMxfPhwuLu7P/Z3GzVqFEaPHg0AWicqN2jQAKmpqdi0aRPatm2LvXv3Yvv27QbP39vbG9bW1vjss88wduxYnDt3rtx76MyePRvVq1eHu7s7pk2bhho1amDAgAE6x505cyb69esHb29vvPzyy1AqlThz5gzOnTuHDz74ADExMSguLkb79u1ha2uL//73v7CxseFTrolK4Tk5RARbW1t8//338Pb2xosvvojGjRtj1KhRyMvLk/bshIeHY/HixVi+fDmaNm2Kfv36ISUlRef87O3t8fHHH6NNmzZo27Yt/vrrL3zzzTc6D3vZ2triwIEDuHXrFtq2bYuXX34ZPXr0wNKlS43y3V566SWoVCrY2tpqBYoXXngBkydPxoQJE9CyZUv88MMPmDFjhsHzd3V1RUxMDLZs2YImTZrgo48+wieffKJz3I8++giTJk2Cv78/0tPTsXv3bq1zo0oLCgrCnj17cPDgQbRt2xYdOnTAokWLpBDj5OSE1atXo1OnTmjRogUOHTqE3bt3o3r16gZ/ByK5UgghhKmLICIiIjI27skhIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZ+j+kAJmILEPk8AAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of precision values from precision1 to precision10\n", + "precision_values = [precision1, precision2, precision2_1, precision3, precision4, precision5, precision6, precision7, precision8, precision8_1, precision9, precision10]\n", + "\n", + "# List of corresponding labels for each precision value\n", + "labels = ['Precision1', 'Precision2', 'Precision2_1', 'Precision3', 'Precision4', 'Precision5', 'Precision6', 'Precision7', 'Precision8', 'Precision8_1', 'Precision9', 'Precision10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, precision_values, color='red')\n", + "plt.xlabel('Precision Variables')\n", + "plt.ylabel('Precision Values')\n", + "plt.title('Bar Graph of Precision')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "39LBleNeDeuw", + "outputId": "66c1cd08-96bb-46bb-afd3-7792e2b71345" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFVUlEQVR4nO3df3zO9eL/8ee1za7NMD83msUwSjKaH01Gq62hRDkSObZZOYo4dnxEYeQci/Krg/TD73OKQh3FEc1RiSizQsjv0WHzc2Njy/b+/uG767hs2DWba3t73G+363Zr773f1+u59/V2Xc/evy6LYRiGAAAATMLF2QEAAABKEuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGAACYCuUGQLk1btw4WSwWnTp1qtTHWrNmjVq0aCEPDw9ZLBadO3eu1McsLRaLRePGjbP9vGDBAlksFh0+fNhpmYCSRLkByqD8D5urHz4+PgoLC9O///3v257n888/V9euXeXr6yt3d3dVr15dHTp00JQpU5SRkXHb89xup0+f1jPPPCNPT0/NmjVLixcvlpeXV6HzXvvaubm5yc/PT9HR0frtt99uc3LgzuTm7AAAru/1119XQECADMNQamqqFixYoC5duujzzz/XE088Uerj5+XlKTY2VgsWLND999+vl156Sf7+/jp//rw2b96s0aNHa/Xq1UpMTCz1LM70ww8/6Pz585owYYLCw8OLtEz+a3fp0iV9//33WrBggTZu3KidO3fKw8OjlBMDdzbKDVCGde7cWa1atbL9HBsbK19fX3300UclUm7y8vKUk5Nz3Q/byZMna8GCBRo2bJimTJkii8Vi+93QoUN1/PhxLVq06JbGKA/S0tIkSVWrVi3yMle/ds8//7xq1qypSZMmaeXKlXrmmWdKIyaA/4/DUkA5UrVqVXl6esrNzf7/S9566y21a9dONWrUkKenp4KDg7Vs2bICy1ssFg0ePFj//Oc/dd9998lqtWrNmjWFjpWVlaVJkybpvvvu05tvvmlXbPLVqVNHr7zySpHHKE7OJk2ayMPDQ8HBwfrmm28KzXru3DlFR0eratWq8vb2VkxMjLKysgpfidf45JNPFBwcLE9PT9WsWVN9+/a1O3z08MMPKyoqSpLUunVrWSwWRUdHF+m5rxYaGipJOnDggN30PXv26A9/+IOqV68uDw8PtWrVSitXriz0bxw2bJjq168vq9WqunXrql+/frbzjXJycjR27FgFBwfL29tbXl5eCg0N1X/+8x+HswLlHXtugDIsPT1dp06dkmEYSktL09///ndduHBBffv2tZtvxowZevLJJ/Xcc88pJydHS5YsUc+ePfXFF1/o8ccft5t3/fr1+vjjjzV48GDVrFlT9evXL3TsjRs36ty5cxo+fLhcXV0dyn29MRzJ+fXXX2vp0qUaMmSIrFarZs+erU6dOmnr1q1q1qyZ3bzPPPOMAgIClJCQoKSkJH3wwQfy8fHRpEmTbphzwYIFiomJUevWrZWQkKDU1FTNmDFD3333nbZv366qVavqtddeU5MmTfTee+/ZDjU1bNjQofUhyXaybrVq1WzTdu3apYceekh+fn4aOXKkvLy89PHHH6t79+5avny5nnrqKUnShQsXFBoaqt27d6t///564IEHdOrUKa1cuVLHjh1TzZo1lZGRoQ8++EC9e/fWCy+8oPPnz2vu3LmKjIzU1q1b1aJFC4czA+WWAaDMmT9/viGpwMNqtRoLFiwoMH9WVpbdzzk5OUazZs2MRx55xG66JMPFxcXYtWvXTTPMmDHDkGR89tlndtMvX75snDx50u6Rl5dXpDEcySnJ+PHHH23Tjhw5Ynh4eBhPPfWUbVp8fLwhyejfv7/d8k899ZRRo0aNG/59OTk5ho+Pj9GsWTPj4sWLtulffPGFIckYO3asbVr+6/HDDz/c8Dmvnverr74yTp48aRw9etRYtmyZUatWLcNqtRpHjx61zfvoo48a999/v3Hp0iXbtLy8PKNdu3ZGYGCgbdrYsWMNScaKFSsKjJe/7i9fvmxkZ2fb/e7s2bOGr69vgfUjyYiPjy+Q+dChQzf9+4DygMNSQBk2a9YsrVu3TuvWrdM//vEPhYWF6fnnn9eKFSvs5vP09LT999mzZ5Wenq7Q0FAlJSUVeM6OHTuqadOmNx07/yqoSpUq2U3fsWOHatWqZfc4ffp0kcZwJGdISIiCg4NtP999993q1q2bvvzyS+Xm5trNO3DgQLufQ0NDdfr06RteyfXjjz8qLS1NL730kt35QI8//rjuuecerVq16rrLFkV4eLhq1aolf39//eEPf5CXl5dWrlypunXrSpLOnDmj9evX65lnntH58+d16tQpnTp1SqdPn1ZkZKT27dtnOzy2fPlyBQUF2fbkXC3/cKGrq6vc3d0lXTnP6cyZM7p8+bJatWpV6PoFzIzDUkAZ1qZNG7sTinv37q2WLVtq8ODBeuKJJ2wfZl988YX++te/Kjk5WdnZ2bb5CztPJiAgoEhjV65cWdKVQyJXa9SokdatWydJWrRokRYvXlzkMRzJGRgYWGBa48aNlZWVpZMnT6p27dq26XfffbfdfPmHfs6ePasqVaoUmuXIkSOSpCZNmhT43T333KONGzcWulxRzZo1S40bN1Z6errmzZunb775Rlar1fb7/fv3yzAMjRkzRmPGjCn0OdLS0uTn56cDBw6oR48eNx1z4cKFmjJlivbs2aPff//dNr2orzlgFpQboBxxcXFRWFiYZsyYoX379um+++7Tt99+qyeffFIdOnTQ7NmzVadOHVWoUEHz58/Xhx9+WOA5rt57ciP33HOPJGnnzp3q1q2bbXqlSpVsl0NfrwAUNoajOR1xvXOCDMO4pee9FVcX0+7du6t9+/bq06eP9u7dq0qVKikvL0+SNHz4cEVGRhb6HI0aNSryeP/4xz8UHR2t7t276//+7//k4+MjV1dXJSQkFDiJGTA7yg1Qzly+fFnS//aoLF++XB4eHvryyy/t9gzMnz//lsYJDQ2Vt7e3lixZolGjRsnF5daOYjuac9++fQWm/frrr6pYsaJq1ap1S1kkqV69epKkvXv36pFHHrH73d69e22/Lwn5JSMsLEwzZ87UyJEj1aBBA0lShQoVbnrvnIYNG2rnzp03nGfZsmVq0KCBVqxYYbcnLD4+/tb/AKCc4ZwboBz5/ffftXbtWrm7u+vee++VdOWD02Kx2J2HcvjwYX322We3NFbFihU1YsQI7dy5UyNHjix0L4gje0Yczbl582a7c0WOHj2qf/3rX3rsscccvnqrMK1atZKPj4/mzJljd4js3//+t3bv3l3g6q1b9fDDD6tNmzaaPn26Ll26JB8fHz388MN69913dfz48QLznzx50vbfPXr00E8//aRPP/20wHz5r0H+Orn6NdmyZYs2b95con8HUB6w5wYow/79739rz549kq6cf/Hhhx9q3759GjlypO1ckscff1xTp05Vp06d1KdPH6WlpWnWrFlq1KiRfv7551saf+TIkdq9e7fefPNNrV27Vj169FDdunV19uxZJSUl6ZNPPpGPj0+RbtDnaM5mzZopMjLS7lJwSRo/fvwt/U35KlSooEmTJikmJkYdO3ZU7969bZeC169fX8OGDSuRca72f//3f+rZs6cWLFiggQMHatasWWrfvr3uv/9+vfDCC2rQoIFSU1O1efNmHTt2TD/99JNtuWXLlqlnz57q37+/goODdebMGa1cuVJz5sxRUFCQnnjiCa1YsUJPPfWUHn/8cR06dEhz5sxR06ZNC5w3BZieMy/VAlC4wi4F9/DwMFq0aGG88847dpdeG4ZhzJ071wgMDDSsVqtxzz33GPPnz7ddJn01ScagQYMczvPpp58aXbp0MWrVqmW4ubkZVatWNdq3b2+8+eabxrlz54o8hqM5//GPf9jmb9mypfGf//zHbr78ZU+ePGk33ZFLm5cuXWq0bNnSsFqtRvXq1Y3nnnvOOHbsWKHP58il4IXNm5ubazRs2NBo2LChcfnyZcMwDOPAgQNGv379jNq1axsVKlQw/Pz8jCeeeMJYtmyZ3bKnT582Bg8ebPj5+Rnu7u5G3bp1jaioKOPUqVOGYVy5JHzixIlGvXr1bOvriy++MKKioox69erZPZe4FBwmZzEMJ55xBwCFsFgsGjRokGbOnOnsKADKIc65AQAApkK5AQAApkK5AQAApsLVUgDKHE4FBHAr2HMDAABMhXIDAABM5Y47LJWXl6f//ve/qly5cqFf1gcAAMoewzB0/vx53XXXXTf9Opg7rtz897//lb+/v7NjAACAYjh69Kjq1q17w3nuuHJTuXJlSVdWTv7t6wEAQNmWkZEhf39/2+f4jdxx5Sb/UFSVKlUoNwAAlDNFOaWEE4oBAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpUG4AAICpOLXcfPPNN+ratavuuusuWSwWffbZZzddZsOGDXrggQdktVrVqFEjLViwoNRzAgCA8sOp5SYzM1NBQUGaNWtWkeY/dOiQHn/8cYWFhSk5OVl//vOf9fzzz+vLL78s5aQAAKC8cOoXZ3bu3FmdO3cu8vxz5sxRQECApkyZIkm69957tXHjRk2bNk2RkZGlFRMAAJQj5eqcm82bNys8PNxuWmRkpDZv3uykRAAAoKxx6p4bR504cUK+vr5203x9fZWRkaGLFy/K09OzwDLZ2dnKzs62/ZyRkVHqOQEAgPOUqz03xZGQkCBvb2/bw9/f39mRnMLixEd5zAUAKL/KVbmpXbu2UlNT7aalpqaqSpUqhe61kaRRo0YpPT3d9jh69OjtiAoAKGH8jxCKqlwdlgoJCdHq1avtpq1bt04hISHXXcZqtcpqtZZ2NAAAyhRnFjPDiWNLTt5zc+HCBSUnJys5OVnSlUu9k5OTlZKSIunKXpd+/frZ5h84cKAOHjyoESNGaM+ePZo9e7Y+/vhjDRs2zBnxAZQDHPp0HOsL5Z1Ty82PP/6oli1bqmXLlpKkuLg4tWzZUmPHjpUkHT9+3FZ0JCkgIECrVq3SunXrFBQUpClTpuiDDz7gMnAAAGBjMQzD2XuPbquMjAx5e3srPT1dVapUcXac26as7p4sq7lgHmxjjnPWOrvZ+iqrucoqs237jnx+l6sTigEAAG6GcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEyFcgMAAEzFzdkBAAAozyxOHNtw4thlGeUGKGec9UZ6szfRspoLwJ2Hw1IAAMBUKDcAAMBUKDcAAMBUKDcAAMBUKDcAAMBUuFoKAJyAy4eB0sOeGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCqUGwAAYCpcLQUUgitZAKD8Ys8NAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFcoNAAAwFaeXm1mzZql+/fry8PBQ27ZttXXr1hvOP336dDVp0kSenp7y9/fXsGHDdOnSpduU9uYsTnoAAIArnFpuli5dqri4OMXHxyspKUlBQUGKjIxUWlpaofN/+OGHGjlypOLj47V7927NnTtXS5cu1auvvnqbkwMAgLLKqeVm6tSpeuGFFxQTE6OmTZtqzpw5qlixoubNm1fo/Js2bdJDDz2kPn36qH79+nrsscfUu3fvm+7tAQAAdw6nlZucnBxt27ZN4eHh/wvj4qLw8HBt3ry50GXatWunbdu22crMwYMHtXr1anXp0uW642RnZysjI8PuAQAAzMvNWQOfOnVKubm58vX1tZvu6+urPXv2FLpMnz59dOrUKbVv316GYejy5csaOHDgDQ9LJSQkaPz48SWaHQAAlF1OP6HYERs2bNDEiRM1e/ZsJSUlacWKFVq1apUmTJhw3WVGjRql9PR02+Po0aO3MTEAALjdnLbnpmbNmnJ1dVVqaqrd9NTUVNWuXbvQZcaMGaM//vGPev755yVJ999/vzIzMzVgwAC99tprcnEp2NWsVqusVmvJ/wEAAKBMctqeG3d3dwUHBysxMdE2LS8vT4mJiQoJCSl0maysrAIFxtXVVZJkGEbphQUAAOWG0/bcSFJcXJyioqLUqlUrtWnTRtOnT1dmZqZiYmIkSf369ZOfn58SEhIkSV27dtXUqVPVsmVLtW3bVvv379eYMWPUtWtXW8kBAAB3NqeWm169eunkyZMaO3asTpw4oRYtWmjNmjW2k4xTUlLs9tSMHj1aFotFo0eP1m+//aZatWqpa9eu+tvf/uasPwEAAJQxFuMOO56TkZEhb29vpaenq0qVKiX+/M66W/DNXkRn3sX4RtnIVVBZfS3J5Ti2MceQy3HldRsrDkc+v8vV1VIAAAA3Q7kBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACm4nC5uXjxorKysmw/HzlyRNOnT9fatWtLNBgAAEBxOFxuunXrpkWLFkmSzp07p7Zt22rKlCnq1q2b3nnnnRIPCAAA4AiHy01SUpJCQ0MlScuWLZOvr6+OHDmiRYsW6e233y7xgAAAAI5wuNxkZWWpcuXKkqS1a9fq6aeflouLix588EEdOXKkxAMCAAA4wuFy06hRI3322Wc6evSovvzySz322GOSpLS0NFWpUqXEAwIAADjC4XIzduxYDR8+XPXr11ebNm0UEhIi6cpenJYtW5Z4QAAAAEdYDMMwHF3oxIkTOn78uIKCguTicqUfbd26VVWqVNE999xT4iFLUkZGhry9vZWenl4qe5osJf6MRXOzF9FZuaQbZyNXQWX1tSSX49jGHEMux5XXbaw4HPn8LtZ9bmrXrq3KlStr3bp1unjxoiSpdevWZb7YAAAA83O43Jw+fVqPPvqoGjdurC5duuj48eOSpNjYWP3lL38p8YAAAACOcLjcDBs2TBUqVFBKSooqVqxom96rVy+tWbOmRMMBAAA4ys3RBdauXasvv/xSdevWtZseGBjIpeAAAMDpHN5zk5mZabfHJt+ZM2dktVpLJBQAAEBxOVxuQkNDbV+/IEkWi0V5eXmaPHmywsLCSjQcAACAoxwuN5MnT9Z7772nzp07KycnRyNGjFCzZs30zTffaNKkSQ4HmDVrlurXry8PDw+1bdtWW7duveH8586d06BBg1SnTh1ZrVY1btxYq1evdnhcAABgTg6Xm2bNmunXX39V+/bt1a1bN2VmZurpp5/W9u3b1bBhQ4eea+nSpYqLi1N8fLySkpIUFBSkyMhIpaWlFTp/Tk6OIiIidPjwYS1btkx79+7V+++/Lz8/P0f/DAAAYFLFuolfSWnbtq1at26tmTNnSpLy8vLk7++vl19+WSNHjiww/5w5c/Tmm29qz549qlChQrHG5CZ+t195vMlUWc0lsY1dq6zmktjGHEUux5XXbaw4HPn8dvhqqW+++eaGv+/QoUORnicnJ0fbtm3TqFGjbNNcXFwUHh6uzZs3F7rMypUrFRISokGDBulf//qXatWqpT59+uiVV16Rq6troctkZ2crOzvb9nNGRkaR8gEAgPLJ4XLz8MMPF5hmsfyvH+bm5hbpeU6dOqXc3Fz5+vraTff19dWePXsKXebgwYNav369nnvuOa1evVr79+/XSy+9pN9//13x8fGFLpOQkKDx48cXKRMAACj/HD7n5uzZs3aPtLQ0rVmzRq1bt9batWtLI6NNXl6efHx89N577yk4OFi9evXSa6+9pjlz5lx3mVGjRik9Pd32OHr0aKlmBAAAzuXwnhtvb+8C0yIiIuTu7q64uDht27atSM9Ts2ZNubq6KjU11W56amqqateuXegyderUUYUKFewOQd177706ceKEcnJy5O7uXmAZq9XK/XcAALiDFOuLMwvj6+urvXv3Fnl+d3d3BQcHKzEx0TYtLy9PiYmJCgkJKXSZhx56SPv371deXp5t2q+//qo6deoUWmwAAMCdx+E9Nz///LPdz4Zh6Pjx43rjjTfUokULh54rLi5OUVFRatWqldq0aaPp06crMzNTMTExkqR+/frJz89PCQkJkqQXX3xRM2fO1NChQ/Xyyy9r3759mjhxooYMGeLonwEAAEzK4XLTokULWSwWXXsF+YMPPqh58+Y59Fy9evXSyZMnNXbsWJ04cUItWrTQmjVrbCcZp6SkyMXlfzuX/P399eWXX2rYsGFq3ry5/Pz8NHToUL3yyiuO/hkAAMCkHL7PzbVfjuni4qJatWrJw8OjRIOVFu5zc/uVx/swlNVcEtvYtcpqLoltzFHkclx53caKo1Tvc1OvXr1iBwMAAChtRSo3b7/9dpGfkPNfAACAMxXpsFRAQEDRnsxi0cGDB285VGnisNTtVx53m5bVXBLb2LXKai6JbcxR5HJced3GiqPED0sdOnSoRIIBAACUthK7zw0AAEBZ4PAJxZJ07NgxrVy5UikpKcrJybH73dSpU0skGAAAQHE4XG4SExP15JNPqkGDBtqzZ4+aNWumw4cPyzAMPfDAA6WREQAAoMgcPiw1atQoDR8+XDt27JCHh4eWL1+uo0ePqmPHjurZs2dpZAQAACgyh8vN7t271a9fP0mSm5ubLl68qEqVKun111/XpEmTSjwgAACAIxwuN15eXrbzbOrUqaMDBw7Yfnfq1KmSSwYAAFAMDp9z8+CDD2rjxo2699571aVLF/3lL3/Rjh07tGLFCj344IOlkREAAKDIilxuzpw5o+rVq2vq1Km6cOGCJGn8+PG6cOGCli5dqsDAQK6UAgAATlfkL8708PBQ9+7dFRsbq4iIiNLOVWq4Q/HtVx7voFlWc0lsY9cqq7kktjFHkctx5XUbKw5HPr+LfM7N+++/r5MnT6pTp06qX7++xo0bp8OHD99qVgAAgBJV5HLzxz/+UYmJidq/f7+ioqK0cOFCNWrUSBEREVq6dGmBm/kBAAA4g8NXSwUEBGj8+PE6dOiQ1qxZIx8fH/Xv31916tThG8EBAIDTFfmcmxtZvny5BgwYoHPnzik3N7ckcpUazrm5/crjMeGymktiG7tWWc0lsY05ilyOK6/bWHGU+LeCF+bIkSOaP3++Fi5cqKNHjyosLEyxsbHFfToAAIAS4VC5yc7O1vLlyzVv3jxt2LBBfn5+io6OVkxMjOrXr19KEQEAAIquyOXmpZde0pIlS5SVlaVu3bpp9erVioiIkMXizB1fAAAA9opcbjZu3Kj4+Hj17dtXNWrUKM1MAAAAxVbkcvPzzz+XZg4AAIAS4fCl4AAAAGUZ5QYAAJgK5QYAAJgK5QYAAJhKkU4oduRk4ubNmxc7DAAAwK0qUrlp0aKFLBaLrvdNDfm/s1gsZf7rFwAAgLkVqdwcOnSotHMAAACUiCKVm3r16pV2DgAAgBJRpHKzcuXKIj/hk08+WewwAAAAt6pI5aZ79+5FejLOuQEAAM5WpHKTl5dX2jkAAABKBPe5AQAAplLkL868WmZmpr7++mulpKQoJyfH7ndDhgwpkWAAAADF4XC52b59u7p06aKsrCxlZmaqevXqOnXqlCpWrCgfHx/KDQAAcCqHD0sNGzZMXbt21dmzZ+Xp6anvv/9eR44cUXBwsN56663SyAgAAFBkDpeb5ORk/eUvf5GLi4tcXV2VnZ0tf39/TZ48Wa+++mppZAQAACgyh8tNhQoV5OJyZTEfHx+lpKRIkry9vXX06NGSTQcAAOAgh8+5admypX744QcFBgaqY8eOGjt2rE6dOqXFixerWbNmpZERAACgyBzeczNx4kTVqVNHkvS3v/1N1apV04svvqiTJ0/q3XffLfGAAAAAjrAY1/uqb5PKyMiQt7e30tPTVaVKlRJ/fkuJP2PR3OxFdFYu6cbZyFVQWX0tyeU4tjHHkMtx5XUbKw5HPr8d3nNz6NAh7du3r8D0ffv26fDhw44+HQAAQIlyuNxER0dr06ZNBaZv2bJF0dHRJZEJAACg2BwuN9u3b9dDDz1UYPqDDz6o5OTkksgEAABQbA6XG4vFovPnzxeYnp6ezjeCAwAAp3O43HTo0EEJCQl2RSY3N1cJCQlq3759iYYDAABwlMP3uZk0aZI6dOigJk2aKDQ0VJL07bffKiMjQ+vXry/xgAAAAI5weM9N06ZN9fPPP+uZZ55RWlqazp8/r379+mnPnj3cxA8AADgd97kpYdyHoaDyeB+GsppLYhu7VlnNJbGNOYpcjiuv21hxlOp9bqQrh6H69u2rdu3a6bfffpMkLV68WBs3bizO0wEAAJQYh8vN8uXLFRkZKU9PTyUlJSk7O1vSlaulJk6cWOIBAQAAHOFwufnrX/+qOXPm6P3331eFChVs0x966CElJSWVaDgAAABHOVxu9u7dqw4dOhSY7u3trXPnzpVEJgAAgGJzuNzUrl1b+/fvLzB948aNatCgQYmEAgAAKC6Hy80LL7ygoUOHasuWLbJYLPrvf/+rf/7znxo+fLhefPHF0sgIAABQZA7fxG/kyJHKy8vTo48+qqysLHXo0EFWq1XDhw/Xyy+/XBoZAQAAiqzY97nJycnR/v37deHCBTVt2lSVKlXSxYsX5enpWdIZSxT3ubn9yuN9GMpqLolt7FplNZfENuYocjmuvG5jxVHq97mRJHd3dzVt2lRt2rRRhQoVNHXqVAUEBBT36QAAAEpEkctNdna2Ro0apVatWqldu3b67LPPJEnz589XQECApk2bpmHDhpVWTgAAgCIpcrkZO3as3nnnHdWvX1+HDx9Wz549NWDAAE2bNk1Tp07V4cOH9corrxQrxKxZs1S/fn15eHiobdu22rp1a5GWW7JkiSwWi7p3716scQEAgPkUudx88sknWrRokZYtW6a1a9cqNzdXly9f1k8//aRnn31Wrq6uxQqwdOlSxcXFKT4+XklJSQoKClJkZKTS0tJuuNzhw4c1fPhw2zeTAwAASA6Um2PHjik4OFiS1KxZM1mtVg0bNkwWy62dsjR16lS98MILiomJUdOmTTVnzhxVrFhR8+bNu+4yubm5eu655zR+/HjurQMAAOwUudzk5ubK3d3d9rObm5sqVap0S4Pn5ORo27ZtCg8P/18gFxeFh4dr8+bN113u9ddfl4+Pj2JjY286RnZ2tjIyMuweAADAvIp8nxvDMBQdHS2r1SpJunTpkgYOHCgvLy+7+VasWFHkwU+dOqXc3Fz5+vraTff19dWePXsKXWbjxo2aO3eukpOTizRGQkKCxo8fX+RMAACgfCtyuYmKirL7uW/fviUe5mbOnz+vP/7xj3r//fdVs2bNIi0zatQoxcXF2X7OyMiQv79/aUUEAABOVuRyM3/+/BIfvGbNmnJ1dVVqaqrd9NTUVNWuXbvA/AcOHNDhw4fVtWtX27S8vDxJVw6T7d27Vw0bNrRbxmq12vY2AQAA8yv2TfxKgru7u4KDg5WYmGiblpeXp8TERIWEhBSY/5577tGOHTuUnJxsezz55JMKCwtTcnIye2QAAIDj3y1V0uLi4hQVFaVWrVqpTZs2mj59ujIzMxUTEyNJ6tevn/z8/JSQkCAPDw81a9bMbvmqVatKUoHpAADgzuT0ctOrVy+dPHlSY8eO1YkTJ9SiRQutWbPGdpJxSkqKXFycuoMJAACUI8X+4szyii/OvP3K4xe7ldVcEtvYtcpqLoltzFHkclx53caK47Z8cSYAAEBZRLkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmQrkBAACmUibKzaxZs1S/fn15eHiobdu22rp163Xnff/99xUaGqpq1aqpWrVqCg8Pv+H8AADgzuL0crN06VLFxcUpPj5eSUlJCgoKUmRkpNLS0gqdf8OGDerdu7f+85//aPPmzfL399djjz2m33777TYnBwAAZZHFMAzDmQHatm2r1q1ba+bMmZKkvLw8+fv76+WXX9bIkSNvunxubq6qVaummTNnql+/fjedPyMjQ97e3kpPT1eVKlVuOf+1LCX+jEVzsxfRWbmkG2cjV0Fl9bUkl+PYxhxDLseV122sOBz5/HbqnpucnBxt27ZN4eHhtmkuLi4KDw/X5s2bi/QcWVlZ+v3331W9evVCf5+dna2MjAy7BwAAMC+nlptTp04pNzdXvr6+dtN9fX114sSJIj3HK6+8orvuusuuIF0tISFB3t7etoe/v/8t5wYAAGWX08+5uRVvvPGGlixZok8//VQeHh6FzjNq1Cilp6fbHkePHr3NKQEAwO3k5szBa9asKVdXV6WmptpNT01NVe3atW+47FtvvaU33nhDX331lZo3b37d+axWq6xWa4nkBQAAZZ9T99y4u7srODhYiYmJtml5eXlKTExUSEjIdZebPHmyJkyYoDVr1qhVq1a3IyoAACgnnLrnRpLi4uIUFRWlVq1aqU2bNpo+fboyMzMVExMjSerXr5/8/PyUkJAgSZo0aZLGjh2rDz/8UPXr17edm1OpUiVVqlTJaX8HAAAoG5xebnr16qWTJ09q7NixOnHihFq0aKE1a9bYTjJOSUmRi8v/djC98847ysnJ0R/+8Ae754mPj9e4ceNuZ3QAAFAGOf0+N7cb97m5/crjfRjKai6JbexaZTWXxDbmKHI5rrxuY8VRbu5zAwAAUNIoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFQoNwAAwFTKRLmZNWuW6tevLw8PD7Vt21Zbt2694fyffPKJ7rnnHnl4eOj+++/X6tWrb1NSAABQ1jm93CxdulRxcXGKj49XUlKSgoKCFBkZqbS0tELn37Rpk3r37q3Y2Fht375d3bt3V/fu3bVz587bnBwAAJRFFsMwDGcGaNu2rVq3bq2ZM2dKkvLy8uTv76+XX35ZI0eOLDB/r169lJmZqS+++MI27cEHH1SLFi00Z86cm46XkZEhb29vpaenq0qVKiX3h/x/lhJ/xqK52YvorFzSjbORq6Cy+lqSy3FsY44hl+PK6zZWHI58fjt1z01OTo62bdum8PBw2zQXFxeFh4dr8+bNhS6zefNmu/klKTIy8rrzAwCAO4ubMwc/deqUcnNz5evrazfd19dXe/bsKXSZEydOFDr/iRMnCp0/Oztb2dnZtp/T09MlXWmAZlKW/5qymo1cjiGX48pqNnI5pqzmksputtLIlf+5XZQDTk4tN7dDQkKCxo8fX2C6v7+/E9KUHm9nB7iBspqNXI4hl+PKajZyOaas5pLKbrbSzHX+/Hl5e994BKeWm5o1a8rV1VWpqal201NTU1W7du1Cl6ldu7ZD848aNUpxcXG2n/Py8nTmzBnVqFFDFoszj0jay8jIkL+/v44ePVoq5wIVV1nNJZXdbORyDLkcV1azkcsx5HKMYRg6f/687rrrrpvO69Ry4+7uruDgYCUmJqp79+6SrpSPxMREDR48uNBlQkJClJiYqD//+c+2aevWrVNISEih81utVlmtVrtpVatWLYn4paJKlSplamPKV1ZzSWU3G7kcQy7HldVs5HIMuYruZnts8jn9sFRcXJyioqLUqlUrtWnTRtOnT1dmZqZiYmIkSf369ZOfn58SEhIkSUOHDlXHjh01ZcoUPf7441qyZIl+/PFHvffee878MwAAQBnh9HLTq1cvnTx5UmPHjtWJEyfUokULrVmzxnbScEpKilxc/ndRV7t27fThhx9q9OjRevXVVxUYGKjPPvtMzZo1c9afAAAAyhCnlxtJGjx48HUPQ23YsKHAtJ49e6pnz56lnOr2slqtio+PL3AIzdnKai6p7GYjl2PI5biymo1cjiFX6XH6TfwAAABKktO/fgEAAKAkUW4AAICpUG4AAICpUG7KGYvFos8++0ySdPjwYVksFiUnJzs1Uz5nZSvL6+RGympucjmurGYjV9kY91aVldxlJUdRUG4cEB0dLYvFIovFogoVKiggIEAjRozQpUuXnB3NLlv+w8fHp9SzXT2uJP3pT3/SiBEj7L7PS5J++ukn9e7dW/7+/vL09NS9996rGTNmlGq2G41b1Nfy+PHj6tOnjxo3biwXFxe7m0eWhrFjx9pyubi4yM3NTa6urqpbt64GDx7stO9EuzpX/vp6+eWX5efnJ4vFonPnzjkll1T4tp//WLJkidNyXbvOatWqpVq1aslqtcrHx0eDBg1yeq7rPdLS0kp83KK+V0jSDz/8oEcffVRVq1ZVtWrVFBkZqZ9++qnEMxVl3CeffLJI7xWXLl1SdHS07r//frm5udluTFtS3n77bVksFgUEBEiSHn/8cVuOxMREtWvXTpUrV1bt2rX1yiuv6PLlyyU6flEMGTJEwcHBslqtatGiRaHz/PzzzwoNDZWHh4f8/f01efLkUslCuXFQp06ddPz4cR08eFDTpk3Tu+++q/j4eGfHknQlW//+/TVhwgR17NhRp0+fvi3Z8teJJPXv31/vvvuupk2bZjfPtm3b5OPjo3/84x/atWuXXnvtNY0aNUozZ84s1WzXG3f37t1Fei2zs7NVq1YtjR49WkFBQaWaNV+nTp20e/duTZgwQW+88Ya8vLzUvn17ffXVVxo4cOBtyXC9XFevrzlz5pSZS0U7deokSXrrrbc0b948Va5cWYMGDSrxD5ji5Dp+/LhGjhyp3NxcZWZmKjo6Wl999ZUiIyOdmuvgwYP68ccf7dZXZGSkOnbsKB8fn1Ib92bvFRcuXFCnTp109913a8uWLdq4caMqV66syMhI/f7776WS60bjrlu3TpGRkTd9r8jNzZWnp6eGDBmi8PDwUsnYqVMnbd26VZI0fPhwvfvuu3rxxRfVpUsXderUSdu3b9fSpUu1cuVKjRw5slQy3Ez//v3Vq1evQn+XkZGhxx57TPXq1dO2bdv05ptvaty4caVyE17KjYOsVqtq164tf39/de/eXeHh4Vq3bp2kK18dkZCQoICAAHl6eiooKEjLli2zW37Xrl164oknVKVKFVWuXFmhoaE6cOCApCv/1xAREaGaNWvK29tbHTt2VFJSkkPZ5s6dq9GjR+vhhx+2/cMs7Wz560SS2rZtq/DwcG3cuNFu3AkTJui9997TkCFDlJSUpL59+yomJkYrVqwo1XXSv39/zZgxQx07dlSDBg1s46akpBTptQwLC9N7772nKVOmKCcn57a8llarVffcc49ee+01DR8+XBEREfr111/10ksv6ZtvvnHaNnb1+jp+/LiqVq0qV1dXu/XlzG1fkho2bKiYmBhFRERo06ZN8vDwcGq2/K9/mTJlij755BN17txZP/zwg5o3b64nnnjCqbkCAgIUHBxsW1/ffPON1q9fr5iYGKe+VzRp0kRnzpzRli1btGPHDt13332Kj49Xamqqvvrqq1Lbhvbs2aMzZ87o9ddfV5MmTWzjXrp0Sbm5uTd9r2jWrJkWLFigmTNnFtirU1Kvo9VqVa1atSRJYWFhCg8P17///W81b95co0eP1ieffKLo6GgdPHhQU6dO1eLFi0slx/W8/fbbGjRokBo0aFDo7//5z38qJydH8+bN03333adnn31WQ4YM0dSpUx0apygoN7dg586d2rRpk9zd3SVd+QbyRYsWac6cOdq1a5eGDRumvn376uuvv5Yk/fbbb+rQoYOsVqvWr1+vbdu2qX///rbdh+fPn1dUVJQ2btyo77//XoGBgerSpYvOnz/vcLa0tDRlZmaWerZr/0/qyJEj2rRpkypUqCBJmjdv3nXHTU9Pl6en521bJ/nS09ML7HEoymu5e/duHTt27JbWl6O583NJ0ooVK1SzZk2nb2O//PKLxowZY9tNL0lTp051ei5JGjRokKpWrarPP/9c6enpMgzD6f8u161bp7y8PG3ZskX/+te/tHPnTj3zzDMaOXJkmVhn+dtYenq6KlasqEOHDjn1vWLmzJmqWrWqGjdurL59+2rt2rWaO3euGjVqpL59+5ba+mjSpIlq1KihuXPnKicnRxcvXtTcuXPl7e2tihUrFlhfN3qv+Pbbb3Xq1KlSfR3379+vTZs2yWKxyMPDwy7HBx98IMMwFBsb65TPn+vZvHmzOnToYFt3khQZGam9e/fq7NmzJTaOJMlAkUVFRRmurq6Gl5eXYbVaDUmGi4uLsWzZMuPSpUtGxYoVjU2bNtktExsba/Tu3dswDMMYNWqUERAQYOTk5BRpvNzcXKNy5crG559/bpsmyfj0008NwzCMQ4cOGZKM7du3F5pNUqlne+SRR2zj5o/p4uJizJ4925BkeHh4FDpuRESE4ebmZvTq1avU1klhvvvuO8PNzc2IiIhw+LWsXbu20bhx41taXzfL3bVr10JfR0lGly5dnLaNXZ3LYrHY1te4ceMMSWVi23d3dzfc3d0NSYbFYjHc3NyMKVOmOH2d5WfKX2cTJ040wsLCDIvFYnz99ddOy3Xttu/n52cMGDCgTLxX7Nixw2jYsKFtviZNmhgvvfRSqb9X5I/r4uJiuLi4GE2aNDF69Ojh8HtFYGCg4efnd0vr69rcYWFhhqurq1GxYkW79Td69GjDYrEYVqvV+Pbbb41jx44ZoaGhhiTj4Ycfvi3/Bq8VHx9vBAUFFZgeERFhDBgwwG7arl27DEnGL7/8UqRcRVUmvn6hPAkLC9M777yjzMxMTZs2TW5uburRo4d27dqlrKwsRURE2M2fk5Ojli1bSpKSk5MVGhpq+z+Va6Wmpmr06NHasGGD0tLSlJubq6ysLKWkpDicLSoqSkePHi31bJmZmbZxAwMDFRYWpgYNGqhz586Srpxkd+24+ScQxsfHa9OmTaW6Tq62c+dOdevWTfHx8dq/f7/Dr2VWVpaM/39D79J8La/ONXHiROXm5qpfv34aNmyYU7exsLAw+fv767ffflOdOnXk5uamjh072tZNWdn281/Lu+66S5MnT3b6OmvevLmmTp2qiIgI3X333Ro1apTat2+vDh06KDIy0nZo73bnunp9nTlzRp9//rkeffRRvffee05/r7h48aLthPrGjRvr3nvv1aJFi9StW7dS24YuXryo2NhYPfTQQ/roo4+Um5urt956S4mJierYsaPefffdIr9XXLx40fZt2iX5OoaFhem1115TWFiYunbtKh8fH02YMEHZ2dl68803FRoaKkm2PSPffvutgoODSzxHeUC5cZCXl5caNWok6cpu1KCgIM2dO9f2xZ2rVq2Sn5+f3TL5h0A8PT1v+NxRUVE6ffq0ZsyYoXr16slqtSokJKTAuR5FydatWzdNnjy51LPl5eXZjTt48GDFx8dr6dKltmWvHnffvn3q27ev+vTpo9GjR6tHjx6luk7y/fLLL3r00Uc1YMAAjR49WtHR0Q6/ls8995ztd6X5Wl6d66OPPlJQUJBOnjypESNGaODAgVq0aJGaN29ut8zt2Ma8vLyUlJSkHTt2SLpyrsG8efNsv+/Ro4fGjBlz23PlZ7v2tXzkkUeUmpoqyXn/Lr28vGzbzAcffKDHH3/cbhsbNGhQgZPEb1euq9dXzZo15e/vr3r16kly7nvFd999pylTpmjz5s1ycXGR1WqVr6+vKlaseMMP2lvdhj788EMdPnzYNm7+tIoVKyojI8Oh94oRI0YoMzPzltZXYbm9vLxUv359SdK4ceMUFRWluXPnqkePHnrzzTe1bNkyNWnSRMeOHVPnzp318ccfq3Xr1iWeo7hq165t+zeZL//n/HOxSgrl5ha4uLjo1VdfVVxcnH799VdZrValpKTY/m/2Ws2bN9fChQv1+++/F9qev/vuO82ePVtdunSRJB09etR23NZR+ZeCjx49ulSz5V+WmC9/nQwdOlTSlf+DyB93165dio6OVmxsrO3yv9uxTnbt2qVHHnlEUVFR+tvf/lboPEV5LT09PVW5cuXblvvaXPPnz5d05f4STz/9dKHzl3au5cuX6+LFi5Kk1atXa+LEiUpPT5e7u7vatGlj+wC43bmulr/OBgwYoKpVq+rixYtO/Xf50EMPSbpS7PNfy++//96W1dnrLCsrS1lZWcrNzVXTpk2d/l5RuXJlubu7KzAw0HbZ+OXLl+Xi4qI9e/aU2vrIysqSi4uLbcz8jBaLxbbH9urcN3qvqFKlivLy8m5pfd1MYTmysrLUrFkzffzxx/L391e3bt1sewZv57/B6wkJCdFrr71ml2HdunVq0qSJqlWrVqJjcULxLerZs6dcXV317rvvavjw4Ro2bJgWLlyoAwcOKCkpSX//+9+1cOFCSbLdp+TZZ5/Vjz/+qH379mnx4sXau3evJCkwMFCLFy/W7t27tWXLFj333HM3bdvX2r9/v5KTk3XixAlZrVbl5eUpPj5ew4YNu23Z8teJJNvhlL/97W/q0KGDgoOD5e3trbffflsnTpzQs88+W6rrZOfOnQoLC9Njjz2muLg4nThxQidOnCj0/j/Xey0///xzffTRRzp48KC2bNmi5ORkRURElGru1atXa/78+dq5c6dat26t33//XVFRUapbt64mTpzotG2sYcOGatasmZo1a6a4uDjbG9TLL7+s+Ph4p+U6ceKEPvjgA+3cuVP79+/X6dOnlZmZqVatWjn932Xjxo3VrVs3DR06VH5+fsrLy1Pnzp1Vs2ZNzZs3z6nvF5Jse04qVap029/HCnuvyMzM1JkzZ/TMM8/otdde08SJExUTEyMPDw9dvny51NZHRESEzp49q0GDBmn37t3atWuXYmJiZLFYVLNmzUJzX7u+1qxZo48++kjbtm3T3r17lZycrI4dO5ba65ifo3fv3urXr5+GDBmip59+WgkJCRo6dKhmz57ttM+fixcvKjk5WcnJyba9P3369JG7u7tiY2O1a9cuLV26VDNmzFBcXJxD4xRJiZ7BY3JRUVFGt27dCkxPSEgwatWqZVy4cMGYPn260aRJE6NChQpGrVq1jMjISLuTBn/66SfjscceMypWrGhUrlzZCA0NNQ4cOGAYhmEkJSUZrVq1Mjw8PIzAwEDjk08+MerVq2dMmzbNtrxucFJlt27djI4dO9qdhJr/2LVrV6lka926tW2dXJ1txIgRhiRj06ZNxvTp040aNWoUmqtevXqltk4M48qJbYWN6+XlVeTX8nbm7tq1q9GtWzdj/fr1RkhIiOHt7W14eHgYNWrUMCpWrGgcO3bMKdtYfq5rvfDCC4Ykp+XK3/ZDQkKMFi1aGJUqVTK8vLyMoKAgo3v37k79d3n1OktPTzf69+9vVK1a1fD09DTc3d2NPXv2OD2XYRhGSEiI0adPn1J/Hyvqe0WTJk0MNzc3o0KFCoabm5tRqVIl45FHHjE2b95cqu8VhmEYa9euNR566CHD29vbqFatmvHII48YXbp0uaX3CkklkjssLMzo1q1bgdwJCQlGhQoVjCpVqhhubm6Gh4eH4ebmdlv/Dea73ufPoUOH7DK0b9/esFqthp+fn/HGG28UWLclwfL/AwMAAJgCh6UAAICpUG5wR7vvvvtUqVKlQh///Oc/nR0PQBnRuXPn675XTJw40dnxcA0OS+GOduTIket+X42vr6/t6igAd7bffvvNdqXgtapXr67q1avf5kS4EcoNAAAwFQ5LAQAAU6HcAAAAU6HcAAAAU6HcAHA6i8Wizz77TNKVr5ewWCxKTk6+7TmKM3Z0dLS6d+9+w3kefvhh/fnPf76lbACKjnID3MGio6NlsVhksVhUoUIFBQQEaMSIEYV+PUVZcf/99xf4ssl8ixcvltVqLfZ34vj7++v48eO2L0QEUD5RboA7XKdOnXT8+HEdPHhQ06ZN07vvvqv4+Hhnx7qu2NhYLVmypNDLcufPn68nn3yywHcBFUVOTo5cXV1Vu3ZtubnxncJAeUa5Ae5wVqtVtWvXlr+/v7p3767w8HCtW7fO9vu8vDwlJCQoICBAnp6eCgoK0rJly+yeY9euXXriiSdUpUoVVa5cWaGhoTpw4IAk6YcfflBERIRq1qwpb29vdezYUUlJScXO27dvX128eFHLly+3m37o0CFt2LBBsbGxOnDggLp16yZfX19VqlRJrVu31ldffWU3f/369TVhwgT169dPVapU0YABAwoclsrNzVVsbKztb2/SpIlmzJhRaK7x48erVq1aqlKligYOHGj7ssDCZGdna/jw4fLz85OXl5fatm2rDRs22H5/5MgRde3aVdWqVZOXl5fuu+8+rV69ungrDLgDUW4A2OzcuVObNm2Su7u7bVpCQoIWLVqkOXPmaNeuXRo2bJj69u2rr7/+WtKVm5t16NBBVqtV69ev17Zt29S/f39dvnxZknT+/HlFRUVp48aN+v777xUYGKguXbro/PnzxcpYs2ZNdevWTfPmzbObvmDBAtWtW1ePPfaYLly4oC5duigxMVHbt29Xp06d1LVrV6WkpNgt89ZbbykoKEjbt2/XmDFjCoyVl5enunXr6pNPPtEvv/yisWPH6tVXX9XHH39sN19iYqJ2796tDRs26KOPPtKKFSs0fvz46/4NgwcP1ubNm7VkyRL9/PPP6tmzpzp16qR9+/ZJkgYNGqTs7Gx988032rFjhyZNmqRKlSoVa30Bd6RS+TpOAOVCVFSU4erqanh5eRlWq9WQZLi4uBjLli0zDMMwLl26ZFSsWNHYtGmT3XKxsbFG7969DcMwjFGjRhkBAQFGTk5OkcbMzc01KleubHz++ee2abrJtw1fa82aNYbFYjEOHjxoGIZh5OXlGfXq1TNGjx593WXuu+8+4+9//7vt53r16hndu3e3m6coYw8aNMjo0aOH7eeoqCijevXqRmZmpm3aO++8Y1SqVMnIzc01DOPKtyUPHTrUMAzDOHLkiOHq6mr89ttvds/76KOPGqNGjTIMwzDuv/9+Y9y4cdfNAODGOLAM3OHCwsL0zjvvKDMzU9OmTZObm5t69OghSdq/f7+ysrIUERFht0xOTo5atmwpSUpOTlZoaKgqVKhQ6POnpqZq9OjR2rBhg9LS0pSbm6usrKwCe1EcERERobp162r+/Pl6/fXXlZiYqJSUFMXExEiSLly4oHHjxmnVqlU6fvy4Ll++rIsXLxYYs1WrVjcda9asWZo3b55SUlJ08eJF5eTkqEWLFnbzBAUFqWLFirafQ0JCdOHCBR09elT16tWzm3fHjh3Kzc1V48aN7aZnZ2erRo0akqQhQ4boxRdf1Nq1axUeHq4ePXqoefPmRV4/wJ2OcgPc4by8vNSoUSNJ0rx58xQUFKS5c+cqNjZWFy5ckCStWrVKfn5+dstZrVZJkqen5w2fPyoqSqdPn9aMGTNUr149Wa1WhYSE3PCclJtxcXFRdHS0Fi5cqHHjxmn+/PkKCwtTgwYNJEnDhw/XunXr9NZbb6lRo0by9PTUH/7whwJjenl53XCcJUuWaPjw4ZoyZYpCQkJUuXJlvfnmm9qyZUuxs1+4cEGurq7atm2bXF1d7X6Xf+jp+eefV2RkpFatWqW1a9cqISFBU6ZM0csvv1zscYE7CeUGgI2Li4teffVVxcXFqU+fPmratKmsVqtSUlLUsWPHQpdp3ry5Fi5cqN9//73QvTffffedZs+erS5dukiSjh49WuxLta8WExOjv/71r1qxYoU+/fRTffDBB3ZjRkdH66mnnpJ0pVAcPnzY4TG+++47tWvXTi+99JJtWv6J0lf76aefdPHiRVvR+/7771WpUiX5+/sXmLdly5bKzc1VWlqaQkNDrzu2v7+/Bg4cqIEDB2rUqFF6//33KTdAEXFCMQA7PXv2lKurq2bNmqXKlStr+PDhGjZsmBYuXKgDBw4oKSlJf//737Vw4UJJV06OzcjI0LPPPqsff/xR+/bt0+LFi7V3715JUmBgoBYvXqzdu3dry5Yteu655266t6coAgIC9Mgjj2jAgAGyWq16+umnbb8LDAzUihUrlJycrJ9++kl9+vRRXl6ew2MEBgbqxx9/1Jdffqlff/1VY8aM0Q8//FBgvpycHMXGxuqXX37R6tWrFR8fr8GDB8vFpeBbbOPGjfXcc8+pX79+WrFihQ4dOqStW7cqISFBq1atkiT9+c9/1pdffqlDhw4pKSlJ//nPf3Tvvfc6nB+4U1FuANhxc3PT4MGDNXnyZGVmZmrChAkaM2aMEhISdO+996pTp05atWqVAgICJEk1atTQ+vXrdeHCBXXs2FHBwcF6//33bXtx5s6dq7Nnz+qBBx7QH//4Rw0ZMkQ+Pj4lkjU2NlZnz55Vnz595OHhYZs+depUVatWTe3atVPXrl0VGRmpBx54wOHn/9Of/qSnn35avXr1Utu2bXX69Gm7vTj5Hn30UQUGBqpDhw7q1auXnnzySY0bN+66zzt//nz169dPf/nLX9SkSRN1795dP/zwg+6++25JVy5BHzRokG19N27cWLNnz3Y4P3CnshiGYTg7BAAAQElhzw0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADAVyg0AADCV/wcuiWwhrgYr0QAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of recall values from recall1 to recall10\n", + "recall_values = [recall1, recall2, recall2_1, recall3, recall4, recall5, recall6, recall7, recall8, recall8_1, recall9, recall10]\n", + "\n", + "# List of corresponding labels for each recall value\n", + "labels = ['Recall1', 'Recall2', 'Recall2_1', 'Recall3', 'Recall4', 'Recall5', 'Recall6', 'Recall7', 'Recall8', 'Recall8_1', 'Recall9', 'Recall10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, recall_values, color='cyan')\n", + "plt.xlabel('Recall Variables')\n", + "plt.ylabel('Recall Values')\n", + "plt.title('Bar Graph of Recall')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": { + "id": "13cZXvb0DsvK" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "provenance": [], + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Python File/Stock_Price_Prediction_REMOTE_19716.ipynb b/Python File/Stock_Price_Prediction_REMOTE_19716.ipynb new file mode 100644 index 0000000..5312833 --- /dev/null +++ b/Python File/Stock_Price_Prediction_REMOTE_19716.ipynb @@ -0,0 +1,2034 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "qCDSjVhXLr_Z" + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.metrics import mean_squared_error, mean_absolute_error, mean_absolute_percentage_error, accuracy_score, precision_score, confusion_matrix, recall_score, f1_score" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "SOQbXSiB-g5G", + "outputId": "6ae02a27-02b0-4bd9-a1ae-a7029056f32e" + }, + "outputs": [], + "source": [ + "# from google.colab import drive\n", + "# drive.mount('/content/drive')\n", + "# df = pd.read_csv('drive/My Drive/Colab Notebooks/Stock Price Prediction RNN/SBIN.csv')\n", + "df = pd.read_csv('SBIN.csv')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Data Analysis and Visualization" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Print first 5 rows of dataset\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# basic dataset features information\n", + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Summary of numerical columns\n", + "df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Checking for null values\n", + "df.isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Drop the 'Date' and 'Adj Close' columns\n", + "df.drop(['Date', 'Adj Close'], axis=1, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "dydEPoNeM6eN" + }, + "outputs": [], + "source": [ + "# Handle missing values\n", + "from sklearn.impute import SimpleImputer\n", + "imputer = SimpleImputer(strategy='mean')\n", + "df = pd.DataFrame(imputer.fit_transform(df), columns=df.columns)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Checking for null values\n", + "df.isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Adding Indicators" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### SMA" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Its the avg of stock price over a specific time period\n", + "\n", + "SMA = (sum of closing price os past n days) / n\n", + "\n", + "It helps identify trends by filtering out shortterm fluctuations\n", + "\n", + "Price above SMA indicate Uptrend and price below SMA indicate lowertrend" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "df[\"SMA_10\"] = df[\"Close\"].rolling(window=10).mean()\n", + "df[\"SMA_50\"] = df[\"Close\"].rolling(window=50).mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "df.dropna(subset=['SMA_10', 'SMA_50'], inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    OpenHighLowCloseVolumeSMA_10SMA_50
    4922.64921822.73413522.27652722.63506539637704.023.10257920.537146
    5022.17273922.36144321.83779022.11612939109363.022.92944320.603004
    5122.09254122.18689221.88968322.08310527429706.022.75725020.680184
    5222.07366922.68695821.96044722.61147727421227.022.63506520.777649
    5322.69167522.88981422.46523122.58788936343129.022.62657320.875870
    \n", + "
    " + ], + "text/plain": [ + " Open High Low Close Volume SMA_10 \\\n", + "49 22.649218 22.734135 22.276527 22.635065 39637704.0 23.102579 \n", + "50 22.172739 22.361443 21.837790 22.116129 39109363.0 22.929443 \n", + "51 22.092541 22.186892 21.889683 22.083105 27429706.0 22.757250 \n", + "52 22.073669 22.686958 21.960447 22.611477 27421227.0 22.635065 \n", + "53 22.691675 22.889814 22.465231 22.587889 36343129.0 22.626573 \n", + "\n", + " SMA_50 \n", + "49 20.537146 \n", + "50 20.603004 \n", + "51 20.680184 \n", + "52 20.777649 \n", + "53 20.875870 " + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### RSI" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It is a momentum indicator used to measure the speed and change of price movements. It ranges from 0 to 100 and helps identify whether a stock is overbought or oversold. \n", + "\n", + "RSI > 70: Overbought \n", + "RSI < 30: Oversold" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "delta = df['Close'].diff(1)\n", + "\n", + "gain = delta.where(delta > 0, 0)\n", + "loss = -delta.where(delta < 0, 0)\n", + "\n", + "avg_gain = gain.rolling(window=14).mean()\n", + "avg_loss = loss.rolling(window=14).mean()\n", + "\n", + "rs = avg_gain / avg_loss # Relative Strength\n", + "df['RSI'] = 100 - (100 / (1 + rs))\n", + "\n", + "df.dropna(subset=['RSI'], inplace=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Representing RSI Graphically" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAMWCAYAAADs4eXxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUZcLG4SeBEGqCICSgNEVFsCBIyWJFBBELih0FFcGCvaN8YFtxdVdXFNuqYC/YZVVARFSKAgqLgAiIgkIoIonUtPn+eD05Z2bOTGYm0/O7ryvX6WfeSSaQ57wtw+PxeAQAAAAAAKIuM9EFAAAAAAAgXRG6AQAAAACIEUI3AAAAAAAxQugGAAAAACBGCN0AAAAAAMQIoRsAAAAAgBghdAMAAAAAECOEbgAAAAAAYoTQDQAAAABAjBC6AQCowT7//HNlZGTorbfeSsjrT5o0SRkZGfr5558T8voAAMQaoRsAgDhbsmSJzjrrLLVp00Z169bVPvvsoxNPPFGPPfaY13n333+/3nvvvcQUMgQ///yzMjIyKr9q1aql1q1b64wzztCiRYsSXTwAAJJChsfj8SS6EAAA1BRz5szR8ccfr9atW2vo0KHKz8/XunXrNG/ePK1evVqrVq2qPLdhw4Y666yzNGnSpJiV5/PPP9fxxx+vyZMn66yzzgrr2p9//lnt2rXT+eefr5NPPlnl5eVavny5nnzySe3Zs0fz5s1T586dg96jvLxcpaWlys7OVkZGRjXeCQAAyal2ogsAAEBN8ve//125ubmaP3++Gjdu7HVs06ZNiSlUNXXp0kUXXnhh5XavXr102mmn6cknn9TTTz/tes2OHTvUoEED1apVS7Vq1YpXUQEAiDualwMAEEerV69Wp06d/AK3JDVv3rxyPSMjQzt27NALL7xQ2Xz74osvrjz+3XffqX///srJyVHDhg11wgknaN68eX733LZtm2644Qa1bdtW2dnZ2nfffTVkyBBt2bIlYBn37NmjU045Rbm5uZozZ07Y77F3796SpDVr1kiy+23PmjVLV111lZo3b659993X65hvn+6PP/5Yxx57rBo1aqScnBx169ZNr776qtc5X3/9tU466STl5uaqfv36OvbYYzV79uywywsAQCxR0w0AQBy1adNGc+fO1ffff69DDjkk4HkvvfSSLrvsMnXv3l0jRoyQJO2///6SpKVLl+roo49WTk6Obr31VmVlZenpp5/Wcccdp1mzZqlHjx6SpO3bt+voo4/W8uXLdemll6pLly7asmWLPvjgA/3666/ae++9/V53165dOv3007VgwQJ9+umn6tatW9jvcfXq1ZKkpk2beu2/6qqr1KxZM40ZM0Y7duwIeP2kSZN06aWXqlOnTho1apQaN26s7777Tp988okuuOACSdJnn32m/v37q2vXrho7dqwyMzM1ceJE9e7dW19++aW6d+8edrkBAIgFQjcAAHF08803q3///urcubO6d++uo48+WieccIKOP/54ZWVlVZ534YUX6oorrtB+++3n1XRbkkaPHq3S0lJ99dVX2m+//SRJQ4YM0UEHHaRbb71Vs2bNkiQ99NBD+v777/XOO+/ojDPO8LrebUiX7du365RTTtHSpUv12WefVdkf27Jz505t2bJF5eXl+uGHH3TDDTdIks4++2yv85o0aaIZM2YEbU5eVFSka6+9Vt27d9fnn3+uunXrVh6zyuzxeHTFFVfo+OOP18cff1zZF/zyyy9Xp06dNHr0aE2bNi2ksgMAEGs0LwcAII5OPPFEzZ07V6eddpoWL16sBx98UP369dM+++yjDz74oMrry8vLNW3aNA0cOLAycEtSixYtdMEFF+irr75ScXGxJOntt9/W4Ycf7hW4Lb6DlhUVFalv37764Ycf9Pnnn4ccuCVp7NixatasmfLz83Xcccdp9erV+sc//qEzzzzT67zhw4dX2X97+vTp+vPPP3X77bd7BW5nmRctWqSVK1fqggsu0O+//64tW7Zoy5Yt2rFjh0444QR98cUXqqioCLn8AADEEjXdAADEWbdu3fTOO++opKREixcv1rvvvqtHHnlEZ511lhYtWqSOHTsGvHbz5s3auXOnDjroIL9jBx98sCoqKrRu3Tp16tRJq1ev1qBBg0Iq0/XXX6/du3fru+++U6dOncJ6PyNGjNDZZ5+tzMxMNW7cWJ06dVJ2drbfee3atavyXlbT9GBN71euXClJGjp0aMBzioqKtNdee1X5egAAxBqhGwCABKlTp466deumbt266cADD9Qll1yiyZMna+zYsXEvy+mnn67XX39dDzzwgF588UVlZobeGO6AAw5Qnz59qjyvXr161SliJasW+6GHHgpYI9+wYcOovBYAANVF6AYAIAkceeSRkqQNGzZU7nObt7pZs2aqX7++VqxY4Xfshx9+UGZmplq1aiXJDLz2/fffh/T6AwcOVN++fXXxxRerUaNGevLJJyN5G9VmDRb3/fffq3379kHPycnJCSnsAwCQSPTpBgAgjmbOnOk6iNlHH30kSV7Nxhs0aKBt27Z5nVerVi317dtX77//vtc0Wxs3btSrr76qo446Sjk5OZKkQYMGVTZf9+VWhiFDhmj8+PF66qmndNttt0Xy9qqtb9++atSokcaNG6fdu3d7HbPK3LVrV+2///765z//qe3bt/vdY/PmzXEpKwAAoaCmGwCAOLrmmmu0c+dOnXHGGerQoYNKSko0Z84cvfHGG2rbtq0uueSSynO7du2qTz/9VA8//LBatmypdu3aqUePHrrvvvs0ffp0HXXUUbrqqqtUu3ZtPf3009qzZ48efPDByutvueUWvfXWWzr77LN16aWXqmvXrtq6das++OADPfXUUzr88MP9ynf11VeruLhYd955p3Jzc3XHHXfE5ftiycnJ0SOPPKLLLrtM3bp10wUXXKC99tpLixcv1s6dO/XCCy8oMzNTzz77rPr3769OnTrpkksu0T777KPffvtNM2fOVE5Ojj788MO4lhsAgEAI3QAAxNE///lPTZ48WR999JGeeeYZlZSUqHXr1rrqqqs0evRoNW7cuPLchx9+WCNGjNDo0aO1a9cuDR06VD169FCnTp305ZdfatSoURo3bpwqKirUo0cPvfzyy5VzdEumX/OXX36psWPH6t1339ULL7yg5s2b64QTTtC+++4bsIx33HGHioqKKoP3yJEjY/kt8TNs2DA1b95cDzzwgO69915lZWWpQ4cOlVORSdJxxx2nuXPn6t5779Xjjz+u7du3Kz8/Xz169NDll18e1/ICABBMhsetfRkAAAAAAKg2+nQDAAAAABAjhG4AAAAAAGKE0A0AAAAAQIwQugEAAAAAiBFCNwAAAAAAMULoBgAAAAAgRpinW1JFRYXWr1+vRo0aKSMjI9HFAQAAAAAkOY/Hoz///FMtW7ZUZmbg+mxCt6T169erVatWiS4GAAAAACDFrFu3Tvvuu2/A44RuSY0aNZJkvlk5OTkJLg0AAAAAINkVFxerVatWlXkyEEK3VNmkPCcnh9ANAAAAAAhZVV2UGUgNAAAAAIAYIXQDAAAAABAjhG4AAAAAAGKEPt0hqqioUElJSaKLgTjIyspSrVq1El0MAAAAAGmA0B2CkpISrVmzRhUVFYkuCuKkcePGys/PZ952AAAAANVC6K6Cx+PRhg0bVKtWLbVq1SropOdIfR6PRzt37tSmTZskSS1atEhwiQAAAACkMkJ3FcrKyrRz5061bNlS9evXT3RxEAf16tWTJG3atEnNmzenqTkAAACAiFFtW4Xy8nJJUp06dRJcEsST9YCltLQ0wSUBAAAAkMoI3SGib2/Nws8bAAAAQDQQugEAAAAAiBFCdw2XkZGh9957L9HFCNtxxx2n66+/PtHFAAAAAICgCN1prLCwUNdcc432228/ZWdnq1WrVjr11FM1Y8aMRBet0l133aWMjAxlZGSodu3aatu2rW644QZt37496HXvvPOO7r333jiVEgAAAAAiw+jlaernn39Wr1691LhxYz300EM69NBDVVpaqqlTp2rkyJH64YcfEl3ESp06ddKnn36qsrIyzZ49W5deeql27typp59+2u/ckpIS1alTR02aNElASQEAAAAgPNR0p6mrrrpKGRkZ+uabbzRo0CAdeOCB6tSpk2688UbNmzcv4HVLlixR7969Va9ePTVt2lQjRozwqnX+/PPP1b17dzVo0ECNGzdWr1699Msvv1Qef//999WlSxfVrVtX++23n+6++26VlZUFLWvt2rWVn5+vfffdV+eee64GDx6sDz74QJKpCe/cubOeffZZtWvXTnXr1pXk37x8z549uu2229SqVStlZ2erffv2eu655yqPf//99+rfv78aNmyovLw8XXTRRdqyZUtY31MAAAAACBc13WHyeKSdOxPz2vXrS6EMqr1161Z98skn+vvf/64GDRr4HW/cuLHrdTt27FC/fv1UUFCg+fPna9OmTbrssst09dVXa9KkSSorK9PAgQM1fPhwvfbaayopKdE333xTOdL3l19+qSFDhmj8+PE6+uijtXr1ao0YMUKSNHbs2JDfZ7169VRSUlK5vWrVKr399tt65513As6ZPWTIEM2dO1fjx4/X4YcfrjVr1lSG6m3btql379667LLL9Mgjj2jXrl267bbbdM455+izzz4LuVwAAAAAEC5Cd5h27pQaNkzMa2/fLrlkaD+rVq2Sx+NRhw4dwrr/q6++qt27d+vFF1+sDOuPP/64Tj31VP3jH/9QVlaWioqKdMopp2j//feXJB188MGV19999926/fbbNXToUEnSfvvtp3vvvVe33npryKF74cKFevXVV9W7d+/KfSUlJXrxxRfVrFkz12t+/PFHvfnmm5o+fbr69OlT+dqWxx9/XEcccYTuv//+yn3PP/+8WrVqpR9//FEHHnhgSGUDAAAAgHARutOQx+OJ6Lrly5fr8MMP96od79WrlyoqKrRixQodc8wxuvjii9WvXz+deOKJ6tOnj8455xy1aNFCkrR48WLNnj1bf//73yuvLy8v1+7du7Vz507Vr1/f9XWXLFmihg0bqry8XCUlJRowYIAef/zxyuNt2rQJGLgladGiRapVq5aOPfZY1+OLFy/WzJkz1dDlacnq1asJ3QAAAABihtAdpvr1TY1zol47FAcccIAyMjJiMljaxIkTde211+qTTz7RG2+8odGjR2v69Onq2bOntm/frrvvvltnnnmm33VWX2w3Bx10kD744APVrl1bLVu2VJ06dbyOuzWRd6pXr17Q49u3b6+srfdlPTAAAAAAgFggdIcpIyO0Jt6J1KRJE/Xr108TJkzQtdde6xdat23b5tqv++CDD9akSZO0Y8eOymtmz56tzMxMHXTQQZXnHXHEETriiCM0atQoFRQU6NVXX1XPnj3VpUsXrVixQu3btw+rvHXq1An7GqdDDz1UFRUVmjVrVmXzcqcuXbro7bffVtu2bVW7Nh95AAAAIJlt3Wq69ebmSo0aJbo01cfo5WlqwoQJKi8vV/fu3fX2229r5cqVWr58ucaPH6+CggLXawYPHqy6detq6NCh+v777zVz5kxdc801uuiii5SXl6c1a9Zo1KhRmjt3rn755RdNmzZNK1eurOzXPWbMGL344ou6++67tXTpUi1fvlyvv/66Ro8eHdP32rZtWw0dOlSXXnqp3nvvPa1Zs0aff/653nzzTUnSyJEjtXXrVp1//vmaP3++Vq9eralTp+qSSy5ReXl5TMsGAAAAIDy33y61aiWNH5/okkQHoTtN7bfffvr22291/PHH66abbtIhhxyiE088UTNmzNCTTz7pek39+vU1depUbd26Vd26ddNZZ52lE044obJ/df369fXDDz9UTkE2YsQIjRw5UpdffrkkqV+/fpoyZYqmTZumbt26qWfPnnrkkUfUpk2bmL/fJ598UmeddZauuuoqdejQQcOHD9eOHTskSS1bttTs2bNVXl6uvn376tBDD9X111+vxo0bKzOTXwEAAAAgmVRUmGW6/Kme4Yl01K00UlxcrNzcXBUVFSknJ8fr2O7du7VmzRqvOaKR/vi5AwAAAIlx6aXSxInSuHGm1jtZBcuRTmny7AAAAAAAkA6sauF0qelOk7cBAAAAAEgH6da8PE3eBgAAAAAgHRC6AQAAAACIEUI3AAAAAAAxQuiuoRjkvWapsH7TAQAAAMRVuoXu2okuQLLLyspSRkaGNm/erGbNmikjIyPRRUIMeTwelZSUaPPmzcrMzFSdOnUSXSQAAACgRiF01zC1atXSvvvuq19//VU///xzoouDOKlfv75at26tzHT5TQcAAABSBKG7BmrYsKEOOOAAlZaWJrooiINatWqpdu3atGoAAAAAEoDQHUVt27bVL7/84rf/qquu0oQJE7R7927ddNNNev3117Vnzx7169dPTzzxhPLy8irPXbt2ra688krNnDlTDRs21NChQzVu3DjVrh3dt1arVi3VqlUrqvcEAAAAAHhLt9Cd0Lcxf/58bdiwofJr+vTpkqSzzz5bknTDDTfoww8/1OTJkzVr1iytX79eZ555ZuX15eXlGjBggEpKSjRnzhy98MILmjRpksaMGZOQ9wMAAAAAqB4rdKdLw9OEhu5mzZopPz+/8mvKlCnaf//9deyxx6qoqEjPPfecHn74YfXu3Vtdu3bVxIkTNWfOHM2bN0+SNG3aNC1btkwvv/yyOnfurP79++vee+/VhAkTVFJSksi3BgAAAACIgDVxFDXdUVZSUqKXX35Zl156qTIyMrRw4UKVlpaqT58+led06NBBrVu31ty5cyVJc+fO1aGHHurV3Lxfv34qLi7W0qVL4/4eAAAAAADVk27Ny5NmILX33ntP27Zt08UXXyxJKiwsVJ06ddS4cWOv8/Ly8lRYWFh5jjNwW8etY4Hs2bNHe/bsqdwuLi6OwjsAAAAAAFRXuoXupHkbzz33nPr376+WLVvG/LXGjRun3Nzcyq9WrVrF/DUBAAAAAFUjdMfAL7/8ok8//VSXXXZZ5b78/HyVlJRo27ZtXudu3LhR+fn5leds3LjR77h1LJBRo0apqKio8mvdunVReicAAAAAgOogdMfAxIkT1bx5cw0YMKByX9euXZWVlaUZM2ZU7luxYoXWrl2rgoICSVJBQYGWLFmiTZs2VZ4zffp05eTkqGPHjgFfLzs7Wzk5OV5fAAAAAIDES7fQnfA+3RUVFZo4caKGDh3qNbd2bm6uhg0bphtvvFFNmjRRTk6OrrnmGhUUFKhnz56SpL59+6pjx4666KKL9OCDD6qwsFCjR4/WyJEjlZ2dnai3BAAAAACIEKE7yj799FOtXbtWl156qd+xRx55RJmZmRo0aJD27Nmjfv366Yknnqg8XqtWLU2ZMkVXXnmlCgoK1KBBAw0dOlT33HNPPN8CAAAAACBK0i10Z3g81ixoNVdxcbFyc3NVVFREU3MAAAAASKCjjpJmz5beeUc644xElyawUHNkmjw7AAAAAACkg3Sr6U6TtwEAAAAASAdW6M7ISGw5ooXQDQAAAABIGtR0AwAAAAAQI9aoY4RuAAAAAACijJpuAAAAAABihNANAAAAAECMELoBAAAAAIgRQjcAAAAAADFC6AYAAAAAIEYI3QAAAAAAxAihGwAAAACAGCF0AwAAAAAQI1bozshIbDmihdANAAAAAEga1HQDAAAAABAjHo9ZEroBAAAAAIgyaroBAAAAAIgRQjcAAAAAADFC6AYAAAAAIEYI3QAAAAAAxAihGwAAAACAGCF0AwAAAAAQJZMmScOGSeXlZjvdQnftRBcAAAAAAFBzXXKJWfbtK517bvqF7jR5GwAAAACAVLZhg1kSugEAAAAAiLIbbjDLXbvMMiMjcWWJJkI3AAAAACApbNkilZWZdWq6AQAAAACohp07vbdfftler1MnvmWJFUI3AAAAACAhtmzx3t661V7Pzo5vWWKF0A0AAAAASAhr0DRLUZG9TugGAAAAAKAafEP3a6/Z6zQvBwAAAACgGnxD9+bN9npWVnzLEiuEbgAAAABAQviGbkufPkwZBgAAAABAtXg87vubNo1vOWKJ0A0AAAAASIhANd3p0p9bInQDAAAAABIkUOhOl/7cEqEbAAAAAJAg1HQDAAAAABAj1HQDAAAAABAj1HQDAAAAABAj1HQDAAAAABAj1HQDAAAAAGqEH36QzjxT+u67+L1mTajprp3oAgAAAAAAEu+kk6RffpE++kjavTs+r0lNNwAAAACgRvjlF7Pcsyd+r1lebpa1annvT6eabkI3AAAAACCqvvxSWras6vOsGvV99vHen0413TQvBwAAAABEzZo10jHHmHWPJ/i5u3aZZV6etHatvZ+abgAAAABA2ohmk/IHHgj9XKumu149adw4e//vv0evPIlG6AYAAACAGmrnTumll6TRo6N3z2eeCf1cq6a7Xj3p4ovt/V98Eb3yJBrNywEAAACghrruOunZZ/33b9ggtWhR/ft7PFJGRuDjX39tllu3SplpWiWcpm8LAAAAAFCV115z39+yZeDpvMJRWhr8+BNPmOX8+d4jmFfVFzyVELoBAAAAoIYKVru8cGH1719V6A5Uln79qv/ayYLQDQAAAAA1VLDQvX179e9fVhb8+N57m+Uzz3iX5bTTqv/ayYLQDQAAAAA1VLD+1qtWVf/+VdV0W8e7dfMO3enUvzuN3goAAAAAIBzBwu2IEdW/f7DQXVwsFRWZ9bZtvY8FexiQahIeun/77TddeOGFatq0qerVq6dDDz1UCxYsqDzu8Xg0ZswYtWjRQvXq1VOfPn20cuVKr3ts3bpVgwcPVk5Ojho3bqxhw4ZpezTaQgAAAABAGotFjbJzQDQrdJeW+g/M5mx63qiR9+Bp1HRHyR9//KFevXopKytLH3/8sZYtW6Z//etf2muvvSrPefDBBzV+/Hg99dRT+vrrr9WgQQP169dPu61Z1CUNHjxYS5cu1fTp0zVlyhR98cUXGhGNxzIAAAAAkMaqqlEOdwTz8nLzZSktlUpKpA4dTBh3zr/tPC8zU6pf395u3jy8101mGR5P4gZjv/322zV79mx9+eWXrsc9Ho9atmypm266STfffLMkqaioSHl5eZo0aZLOO+88LV++XB07dtT8+fN15JFHSpI++eQTnXzyyfr111/VsmXLKstRXFys3NxcFRUVKScnJ3pvEAAAAACSWH6+tHFj4OMvvihddFHo99u1yzs8//CDtGOH1LWrvW/7dqlBA/O6+fkm+Fvh/vffzXqzZuG9j0QINUcmtKb7gw8+0JFHHqmzzz5bzZs31xFHHKH//Oc/lcfXrFmjwsJC9enTp3Jfbm6uevTooblz50qS5s6dq8aNG1cGbknq06ePMjMz9bU107qPPXv2qLi42OsLAAAAAGqaqmq6hwwJ734ffOC9XVoqZWV579u1yyytmm5nU/KmTVMjcIcjoaH7p59+0pNPPqkDDjhAU6dO1ZVXXqlrr71WL7zwgiSpsLBQkpSXl+d1XV5eXuWxwsJCNfdpe1C7dm01adKk8hxf48aNU25ubuVXq1atov3WAAAAACDpRbvd8/PPe29bzcudrJBthW5nH/B0lNDQXVFRoS5duuj+++/XEUccoREjRmj48OF66qmnYvq6o0aNUlFRUeXXunXrYvp6AAAAAJCMqprSK1y+83KXlkpbt3rvs5qSW0tCdwy1aNFCHTt29Np38MEHa+3atZKk/Px8SdJGn04GGzdurDyWn5+vTZs2eR0vKyvT1q1bK8/xlZ2drZycHK8vAAAAAKhpnCF5yZLwry8vN03KrUbGzsHRJBO6feJa5TluzcvTUULfXq9evbRixQqvfT/++KPatGkjSWrXrp3y8/M1Y8aMyuPFxcX6+uuvVVBQIEkqKCjQtm3btHDhwspzPvvsM1VUVKhHjx5xeBcAAAAAkJqcobtTJ/dzgjVBf/FF6fTTpcMOM9uzZnkfLy01A6k5LV9uljQvj4MbbrhB8+bN0/33369Vq1bp1Vdf1TPPPKORI0dKkjIyMnT99dfrvvvu0wcffKAlS5ZoyJAhatmypQYOHCjJ1IyfdNJJGj58uL755hvNnj1bV199tc4777yQRi4HAAAAgJrK2bw80KBqvrXXTp98YpabN/uHa8mE+s2bvfddcolZ1pTm5bUT+eLdunXTu+++q1GjRumee+5Ru3bt9O9//1uDBw+uPOfWW2/Vjh07NGLECG3btk1HHXWUPvnkE9WtW7fynFdeeUVXX321TjjhBGVmZmrQoEEaP358It4SAAAAAKSMTp2kRYuCn1NeLtUOkByzs+31X37xP15aKo0e7b3v55/t+0rp37w8oaFbkk455RSdcsopAY9nZGTonnvu0T333BPwnCZNmujVV1+NRfEAAAAAIG01aGCWf00g5cqqkXbjrAWfNs3/eLCB2mheDgAAAABIa1af7saNA58TrHm589gNNwS+vxsrzKd7TXeavz0AAAAAQCBWTXRWlvf+du3s9UA13T/+KL3xRvD7Bwvd1HQDAAAAANKaFYp9+2w7g3Cgmu5bbqn6/qWlUpcu/vtnzZK6d/d/rXRE6AYAAACAGipQTbczhLvVdBcVmfm5q1JWJpWUmPVjjrH3Dx9ecwZSS/O3BwAAAAAIJFDorqqme8GCwPds2NAO2GVl0p49Zt2apGrvvaWVK91fKx0lfPRyAAAAAED8/f67tGqVWfdtXp6Zaebt9njca7p/+y3wfc88U/rzT7PuDN0NG5rl7t3e56d76KamGwAAAABqoCuvtNd9a7ozMuxm32413UOHBr5v3bp2iC8ttUO3NT3Z9u3e56d783JqugEAAACgBvr6a3vdt6Y7I8PUQJeXB58yzI0zdF9zjb3fCt2+qOkGAAAAAKSNXbvMcu1ae5/Vt9virOkONGVYIM7Q7ZSb634+oRsAAAAAkBbmzZPq15fuuMN7/44d3tt16thhONya7uxs9z7f++zjfn66Ny9P87cHAAAAALAUFJjluHHe+605s595xoTj556zQ3dVNd0NG0o5OfZ23brSzJn+52VnS3/7m/9+aroBAAAAAGmtbl2zHD5c+vVX6ZBDgg+k5rRqlVRc7H0vj8f/vKws937dhG4AAAAAQNo58kizbNTI/XgoNd377Sfl5XnvswK8rwYN3EP3+vXBy5nqCN0AAAAAUAO1aGGWjzzifjxYTfd++5nlk0/6H6tbV6pXz39/rVqmP7mvX3+tuqypjNANAAAAADWQNX92nTrux5013eXlphm51Wz8p5/MsqjI/7rsbOmzz9zvGWjasHRG6AYAAACAGqikxCwDhW5nTfeIEdIBB0gTJ3r311650iyHDLH31asn9ezpfk9CNwAAAACgRvj8c7PMznY/7qzpfv55s37PPXYNuSRdeqn3UpLatQv8mm6h+6STQipuyiJ0AwAAAEANFkpNtyU7W9q5097ee2+zdPbVDnQ/63pfF1wQWjlTFaEbAAAAAGqwqvp0O0N3Xp5d052ZKdWu7X+PrCz/e733XuBjboOrpZPaiS4AAAAAACBxQhlIzVJRIZWWmnVngHZbX7VK2rrVTE2WkeF/nuXwwyMrd6ogdAMAAABADeA29Zdkh2tfbs3LQwndVojff3/z5WRdK5l+4g0bSu3bV132VEboBgAAAIAaoLjYfb9VC+3Lraa7vNwe9dwZtJ1hunHjwGV4/HF7/cwzpdzcwOemC/p0AwAAAEANUFjovj8nx33/smVm2bu3va+szL2me5997PVgfbR/+81ed2tqno4I3QAAAABQA2zd6r6/Q4fQ7xGoeXlurpmze926wDXnknTWWfY6oRsAAAAAkDacTcAtrVvbI5CHorzcPXRLpm/2vvsGv/7ii+31cF43lRG6AQAAAKAGKCvz3xdu8A3UvDxUmY4EGqxGPJ0QugEAAACgBnCr6Q40cnkgFRX2PN2BphqDtxpSoQ8AAAAANZtbTXe4obu83Iw6LklLl4Zfhl69TG33wQeHf22qInQDAAAAQA0QjZru8nLpzz8jL0NOjrm+JtWSE7oBAAAAIE2VlUnnny91724GTfOVGWaH4/Ly6pcp2JRi6Yg+3QAAAACQ5P73PzPw2H33hXfd559Lb70l3Xpr9Gq6ER5CNwAAAAAkucMPN8v/+7/wrvN47PW33vI/Xp3Q3aRJeNfWVIRuAAAAAEhiv/4anfu8/77/vkhC94EHmvXnnqt+mWoCQjcAAAAAJLGff4782oqKqBVDkgndVj/wxo2je+90RegGAAAAgCRWnZG+S0qCH//998DHunf337dzpz1Pd926kZerJiF0AwAAAEASy8qK/Nply4IfX7068DG3eb1r15bWrDHr2dmRl6smIXQDAAAAQBKYNUtavNh/f22fiZ6dg6NV5fbbIy+P20jl27fb69R0h4Z5ugEAAAAgwX79VTruOLNeUWGmB7NYzbktZWXVq/0OlVtNt1NNm287UtR0AwAAAECCrVplr0+d6n3s0Ue9t6sKw9FS1euEO/J5TUXoBgAAAIAEcwbcH3/0PjZ9uvd2OM3L3QZDC5VV8x5Iy5aR37smIXQDAAAAQII5Q/euXd7HfGuU//wz9PsefHDkZbrnHumOOwIfzyRNhoRvEwAAAAAkWGmpvb57t/cx39D9yCOR3TdczZtLf/975NfDIHQDAAAAQII5B0tr08b72LBh3tubNoV+3+qEbkQHoRsAAAAAEmzrVnu9Th3vY82aeW/71oQHU1IS/PgZZ4R+L6enn47supqI0A0AAAAACXb55fa67/zYFRXe287Q/d130oYNge/7ww/++yZNstdfeSXkInpp0iSy62oi5ukGAAAAgCTiG7p9a6ut0L1okdSli1kvLZVqu6S7FSv89110kdSokdStm1SvXmRlrFs3sutqImq6AQAAACCJ+Ibum27y3p42zSyPOsre9/jjod8/M1M680ypVavIyidJ2dmRX1vTELoBAAAAIIk4Q/fOnYGP79hh7/vkE//znNOQVceSJWb6sGeesfdR0x06mpcDAAAAQBJx9tl+8033czwe7223ObOLi/337btv+OU55BDzNXmyvY/QHTpqugEAAAAgidxyi70+frz7Obt2eW+79d3ets0s69e39519duTlco6qTvPy0BG6AQAAACCBgg2c9t137tf4Nh3fssX/nKIis8zNld56Sxo4UBozJuJier1GVlbk96lpaF4OAAAAAAnkW2vdvXvV15SWem+7NSW39uXkSIMGma/q2LPHXvdt3o7AElrTfddddykjI8Prq0OHDpXHd+/erZEjR6pp06Zq2LChBg0apI0bN3rdY+3atRowYIDq16+v5s2b65ZbblFZtEYMAAAAAIAY8x0szTmq+PHHu1/jG7rdWDXmsWgKfvDB0b9nukp4TXenTp306aefVm7Xdkwud8MNN+i///2vJk+erNzcXF199dU688wzNXv2bElSeXm5BgwYoPz8fM2ZM0cbNmzQkCFDlJWVpfvvvz/u7wUAAAAAwuUbuqdMsdebNHG/JpTQbZ0Trabg++9vr2dkROeeNUHCQ3ft2rWVn5/vt7+oqEjPPfecXn31VfXu3VuSNHHiRB188MGaN2+eevbsqWnTpmnZsmX69NNPlZeXp86dO+vee+/Vbbfdprvuukt1nD39AQAAACAJrV3rvb1njxnBvG5d7ybdTt9847/P4/EOw9EO3X37So8+KnXuHJ371RQJH0ht5cqVatmypfbbbz8NHjxYa//6xC1cuFClpaXq06dP5bkdOnRQ69atNXfuXEnS3LlzdeihhyovL6/ynH79+qm4uFhLly6N7xsBAAAAgAj8/rv/PiswOwdVczrrrMDX+G7XjlJVa0aGdO210jHHROd+NUVCa7p79OihSZMm6aCDDtKGDRt099136+ijj9b333+vwsJC1alTR40bN/a6Ji8vT4WFhZKkwsJCr8BtHbeOBbJnzx7tcTwyKnYbdQAAAAAA4sAtWFsDlQWq6XZTWuo9rVe0a7oRmYSG7v79+1euH3bYYerRo4fatGmjN998U/Xq1YvZ644bN0533313zO4PAAAAAKH65BP/fdY0YoFqut0EqukmdCdWwpuXOzVu3FgHHnigVq1apfz8fJWUlGibNaP7XzZu3FjZBzw/P99vNHNr262fuGXUqFEqKiqq/Fq3bl103wgAAAAAhGjSJP99VugOp6bbN6ATupNDUoXu7du3a/Xq1WrRooW6du2qrKwszZgxo/L4ihUrtHbtWhUUFEiSCgoKtGTJEm3atKnynOnTpysnJ0cdO3YM+DrZ2dnKycnx+gIAAACAZHHppdK771LTnQ4S2rz85ptv1qmnnqo2bdpo/fr1Gjt2rGrVqqXzzz9fubm5GjZsmG688UY1adJEOTk5uuaaa1RQUKCePXtKkvr27auOHTvqoosu0oMPPqjCwkKNHj1aI0eOVHYsJqMDAAAAgDj48EPz5QzM7dtLq1YFvsY3dJeVmSWhO7ESGrp//fVXnX/++fr999/VrFkzHXXUUZo3b56aNWsmSXrkkUeUmZmpQYMGac+ePerXr5+eeOKJyutr1aqlKVOm6Morr1RBQYEaNGigoUOH6p577knUWwIAAACAqLGCdJcu0rPPmqVTZqZUUeF9ru+1hO7ESmjofv3114Mer1u3riZMmKAJEyYEPKdNmzb66KOPol00AAAAAEgab7wh7bWX//7HH5f+7//MtGOxnjIMkUmqPt0AAAAAAH/t25tabV9lZXZNtjN0l5VJt91m1qnpTixCNwAAAAAkAbdQLUktWgQ+XlLiHrq//tpez8iITvkQGUI3AAAAACTQvvua5VtvuR+3QrVb6D77bKlOHbPuHOl81y57/YMPql9GRI7QDQAAAAAJtGWLWe69t3Toof7HrT7ZvqH7nnuk1q2l1avNtmO25cp5viVp27aoFRURIHQDAAAAQIJUVEi7d5v1nTul00/3PydQTbdVQ24ZM8Zed9Z0H3hg9cuJyBG6AQAAACBBfEccdxtpPFDoDjYquTN0ezyRlQ3RQegGAAAAgARxNgPv1St46PYdEC1Y6LZqzyUpLy/y8qH6CN0AAAAAkCBlZfZ6VpZ7kA7Up9vaX1BglgcdZB9z1nQPH179ciJyhG4AAAAASBBn6K5dO7zm5db+gQPNcsUK+5gVunv2lM49NypFRYQI3QAAAACQIM7QnZnpPi1YVc3LrdHLJalNG2nhQmn7drN9yCHM051ohG4AAAAASBArdNeqZcJxRYX/OVa4DhS6L7/c3rd2rXTeedJdd5ntd96JanERAUI3AAAAACSIFbqtAO0Wuq2abl/WNQ0beu9ftcpe37q1euVD9RG6AQAAACBBwg3dAwb4769VK/D9H3igeuVD9RG6AQAAACBBrCnDrODsnELM4gzdBxxgr1tBPVjoPvjg6pUP1UfoBgAAAIAECaWm2zmiuTOAhxK669evXvlQfYRuAAAAAEiA8nJp8WKzbvW99nj8z3MG7Tp1/PcTupObyyxwAAAAAIBY2r1b6tRJ+umnqs8NFLqp6U4N1HQDAAAAQJzNmOEeuN1GKnfuo3l56iF0AwAAAECScNZkW774wv14KKG7bt3olAuRI3QDAAAAQJxlZLjvHzZMatvWe9+KFfa6W613sNAd7Bjig9ANAAAAAHHw7bfSWWdJK1cGPic31zQ7dzYLr06f7pYtIysroofQDQAAAABx0LWr9Pbb0qmn+td0t2hhr2dkSHvvbW83b26vh9Onu1+/wDXqiB9CNwAAAADE0YoV/mH4ppu8t+vVs9fLy+1155zdVYXuhg0jLyOih9ANAAAAAAlWVua9XVFhr5eW2uvOgF1Vn+4GDaJTNlQPoRsAAAAAEmyffby3naG7Rw973VlDbtV0ZwZIdbt2RadsqB5CNwAAAAAk2Pnne287Q/fEifa6W+gOZPLk6pcL1UfoBgAAAIA48+3T7dtE3Bm6nQOpOa9zDqqG5EXoBgAAAIAk4wzdTs6m5IGalVsGDoxacVANhG4AAAAAiDPniORu7rzTLM87z3u/s6bbbTqwpk3t9UsuiaxsiC5CNwAAAADEWVWhe8QIafly6aWXvPcHmne7Wzczzdinn9r7Ao1qjviqous9AAAAAKC6PB7v7apCd0aG1KGD//5ATcrnzZNKSqQtW6o+F/HFjwEAAAAAouzTT6UzzpA2bDDbv/7qfbyq0B1I/fru+zMzpbp1pWbN7H0bN0b2GoguaroBAAAAIMpOPNEss7Ol11/3bxZeVmav9+8f+n379pVOOUXq3Nn9eHa2vb5nT+j3RewQugEAAAAgRtatM0vfpt7Omu4zzwz9frVqSR9+GNq5zmCPxKF5OQAAAADEiG9fboszdA8bFpvXLi2NzX0RHmq6AQAAACBG9uyR3n1XmjHDe78Vuvv3DzwieXUdeWRs7ovwELoBAAAAIEa+/da9+fi4cWbZoEH0X3PlSunHH6Wjjor+vRE+QjcAAAAAxNmPP5rlYYdF/97t25svJAf6dAMAAABAgjRsmOgSINYI3QAAAACQIJdckugSINYI3QAAAAAQRaFO1XXuuVLjxjEtCpIAoRsAAAAAoui550I7r3792JYDyYHQDQAAAABR9N13oZ2XnR3bciA5ELoBAAAAIIratg3tPEJ3zUDoBgAAAIAoOuCAwMfOOsteJ3TXDIRuAAAAAIgit4HUmjSRNmyQ+va19xG6awZCNwAAAACE6c8/pTVr3I+5he7//lfKz5d27bL3bdkSm7IhuRC6AQAAACBM7dpJ++0nrVjhf8wtdPfsaZYVFfa+7dtjUzYkF0I3AAAAAITp99/Ncto0/2MlJYGvKy+31zMyolsmJCdCNwAAAABEqHZt/33Llpll48Zm2aePfcxZ042aweUjAgAAAAAIRa1a/vs2bTLLO+6QBgyQ2re3jzlD95FHxrZsSA6EbgAAAACIkMfjv8/q052dLXXs6H2stNRev/LK2JULyYPm5QAAAAAQhj/+sNevuML/uNVv263p+Z9/2utux5F+kiZ0P/DAA8rIyND1119fuW/37t0aOXKkmjZtqoYNG2rQoEHauHGj13Vr167VgAEDVL9+fTVv3ly33HKLytyGCwQAAACAKHj+ee9t31HIrTji1vT8wgvN0hrNHOkvKUL3/Pnz9fTTT+uwww7z2n/DDTfoww8/1OTJkzVr1iytX79eZ555ZuXx8vJyDRgwQCUlJZozZ45eeOEFTZo0SWPGjIn3WwAAAABQQ/jW8f3rX97bwWq6Dz1UWr9e+uKL2JQNySfhoXv79u0aPHiw/vOf/2ivvfaq3F9UVKTnnntODz/8sHr37q2uXbtq4sSJmjNnjubNmydJmjZtmpYtW6aXX35ZnTt3Vv/+/XXvvfdqwoQJKgk2Tj8AAAAARCjTJ0VZ04dZgtV0S1KLFlJWVvTLheSU8NA9cuRIDRgwQH2c4+hLWrhwoUpLS732d+jQQa1bt9bcuXMlSXPnztWhhx6qvLy8ynP69eun4uJiLV26NOBr7tmzR8XFxV5fAAAAABAKnwa6foLVdKPmSejH4PXXX9e3336r+fPn+x0rLCxUnTp11Nia3O4veXl5KiwsrDzHGbit49axQMaNG6e77767mqUHAAAAUBO5jVjuZIXuQDXdqFkSVtO9bt06XXfddXrllVdUt27duL72qFGjVFRUVPm1bt26uL4+AAAAgNT15pvBj1vNy6nphpTA0L1w4UJt2rRJXbp0Ue3atVW7dm3NmjVL48ePV+3atZWXl6eSkhJt27bN67qNGzcqPz9fkpSfn+83mrm1bZ3jJjs7Wzk5OV5fAAAAABCKiRODH6emG04JC90nnHCClixZokWLFlV+HXnkkRo8eHDlelZWlmbMmFF5zYoVK7R27VoVFBRIkgoKCrRkyRJt2rSp8pzp06crJydHHX1noQcAAACAGPAdIoqabjgl7GPQqFEjHXLIIV77GjRooKZNm1buHzZsmG688UY1adJEOTk5uuaaa1RQUKCef01q17dvX3Xs2FEXXXSRHnzwQRUWFmr06NEaOXKksrOz4/6eAAAAANQ8++/vvU1NN5yS+tnLI488oszMTA0aNEh79uxRv3799MQTT1Qer1WrlqZMmaIrr7xSBQUFatCggYYOHap77rkngaUGAAAAUJPk5npvU9MNpwyPp6qx9wIrKSnRmjVrtP/++6t2Cn+iiouLlZubq6KiIvp3AwAAAAgqI8N7+5BDpCVL7O3DDjPb06dLPjMjI42EmiMj6tO9c+dODRs2TPXr11enTp20du1aSdI111yjBx54ILISAwAAAEAK8J186fvvvbep6YZTRKF71KhRWrx4sT7//HOv6b769OmjN954I2qFAwAAAIBkE2SiJEn06Ya3iJ69vPfee3rjjTfUs2dPZTjaVnTq1EmrV6+OWuEAAAAAINlUVAQ/Tk03nCKq6d68ebOaN2/ut3/Hjh1eIRwAAAAA0o1b6C4sNMudO6WffjLrDRrEr0xIXhGF7iOPPFL//e9/K7etoP3ss89WzqENAAAAAOnICt033WTvW7fOLB0xSQccEL8yIXlF1ODh/vvvV//+/bVs2TKVlZXp0Ucf1bJlyzRnzhzNmjUr2mUEAAAAgKRh9dk++WTpX/8y61ZTcmd/73r14lsuJKeIarqPOuooLVq0SGVlZTr00EM1bdo0NW/eXHPnzlXXrl2jXUYAAAAASBpWTbezx21JifexDh3iWyYkr4i79u+///76z3/+E82yAAAAAEDSs4J1ZqZ08MHS8uXSrl3+xwApwprujz76SFOnTvXbP3XqVH388cfVLhQAAAAAJCsrWNeqZc/ZvXu3/zFAijB033777Sq3OjI4eDwe3X777dUuFAAAAICawWqWnUqsKJSZaffb3rzZLKnphq+IPgorV65Ux44d/fZ36NBBq1atqnahAAAAAKS/e+4xoXX+/ESXJDzOYP2//5n1IUP8jwFShKE7NzdXP1mTzzmsWrVKDZiMDgAAAEAVXnlFGjvWhNTrr090acLjDNbbt9v7p08ndMNfRB+F008/Xddff71Wr15duW/VqlW66aabdNppp0WtcAAAAADS04UX2usZGYkrRyQC9dvu29e76TkgRRi6H3zwQTVo0EAdOnRQu3bt1K5dOx188MFq2rSp/vnPf0a7jAAAAADSWKoF1GDBesoUs0y1JvOInYimDMvNzdWcOXM0ffp0LV68WPXq1dNhhx2mY445JtrlAwAAAJDmUrWm2y10P/10fMuC5BfxPN0ZGRnq27ev+vbtG83yAAAAAKhhUjV016plarS7dUtseZDcQg7d48eP14gRI1S3bl2NHz8+6LnXXntttQsGAAAAIL0UFpqBx/LyvPeXliamPJHweMyXZGq6mzRJbHmQ/DI8HusjE1y7du20YMECNW3aVO3atQt8w4wM15HNk1lxcbFyc3NVVFSknJycRBcHAAAASEtWjfbVV0uPP27vP+QQacmSxJQpXOXlUu2/qi63bJF27pRat3Y/N7SkhVQVao4MuaZ7zZo1rusAAAAAEI6ZM723UymcWk3LJVPTXadO4sqC1BD2OIGlpaXaf//9tXz58liUBwAAAEAacgZr36m2CgriW5bqcIbuWrWkrCz38x56KD7lQfILO3RnZWVp9+7dsSgLAAAAgDRVVmavr1vnfSyV+nSHWtN91FHxKQ+SX0Qz4o0cOVL/+Mc/VOb8zQEAAACAAJzB+o8/vI+VlMS3LNVhzdEtmdAdqKa7adP4lAfJL6Ipw+bPn68ZM2Zo2rRpOvTQQ9WgQQOv4++8805UCgcAAAAgPQSrzU6l0O3bvDw72/289u3jUx4kv4hCd+PGjTVo0KBolwUAAABAmgoWuvfsiV85qsu3pluShg2TnnvO+7xUm3scsRNW6K6oqNBDDz2kH3/8USUlJerdu7fuuusu1atXL1blAwAAAJAG3HqmnnGG9O67Vdd0ezzSf/8rdeokBZm9OC58a7olqXHjhBQFKSKsPt1///vfdccdd6hhw4baZ599NH78eI0cOTJWZQMAAACQJtxquvfayyyrqumeOlU69VRpv/2iX65wOWu6rdrsO+/0PmfIkPiVB8kvrND94osv6oknntDUqVP13nvv6cMPP9Qrr7yiCufjHgAAAADw4Ra6rRriqmq6v/gi6sWJmBV9MjPt0L3XXlKTJvY5w4fHv1xIXmGF7rVr1+rkk0+u3O7Tp48yMjK0fv36qBcMAAAAQPooLPTfF2rozoxozqXYsGq6fcvk3A40jRhqprA+vmVlZapbt67XvqysLJWm0sR6AAAgKf3zn9Lrrye6FABiZeBA/31W8/KFC6Vffw18bTKGbqs/t5tA04ihZgprIDWPx6OLL75Y2Y5x8Xfv3q0rrrjCa9owpgwDAADh+Pln6ZZbzPoZZwSeggdA6tq82X+fcwCyhx82X26coXv3bsmnHjCunM3LnbZssdcJ3XAKK3QPHTrUb9+FF14YtcIAAICayTmqcVGR1Lx54soCIH723tted9Th+XEG3PHjpRtvlGpHNPlx9YVS003zcjiF9VGdOHFirMoBAABqMOdowPRaA2oO5wO21q0Dn+cM3f/+tzR2rHT//dINN8SsaAFZNd00L0eokqh3BAAAqKmcodttLl8A/jwe00968OBElyRynTvb68GCqrNWe8MG08T8xhtjVqygAg2k5kTohhOhGwAAJBw13TVPSYkJjYjc2rXS++9Lr76aGoMQHnSQ9/Ztt5ngesopZtv574Cv556LXbnCFUpNN+NSwInQDQAAEo6a7ppl40apaVNpyJBElyS1bd1qr59/fuLKEapjjjHLQw+VZs2SHnjAbFvhNVjoXrUqtmULx65dZhksWDdrFp+yIDUQugEAQMJR012z/Oc/0vbt0ssvJ7okqe244xJdgvBYNcTnnWcHcEn64w+zXLcu8LWnnea+f8eO6JQtHFZ5renOgKoQugEAQEJ9/LH03nv2NjXd6W/37kSXID0UFwc+lozfY6s7gW9f6C++MMv77gt87QcfuO8fPbr65QrXnj1mWa9e/F8bqYnQDQAAEqakRDr5ZO8/tqnpTn9WaEFsvPWWCYQTJiS6JNKbb0qffmrWA81vXRVnM3pfM2bY6/EaI8B6HxkZ8Xk9pD5CNwAASJhvv/XfR013+rP6xCJyy5d7bztrXc8+2yyvvjp+5XGzerV07rnSiSea7ViE7qIi6csvTQDOzJR27oysrOGI9H2g5uKjAgAAEqagwH8fNd3pb8qURJcg9a1d671dUpKYcgTj7KPt8UQeVoO9tx07vPuHT50a3r0jEaiZ/IwZ0ogR8Qn+SC2EbgAAkBCBwjU13envl18SXYLU5vFIAwZ47ysvDz76dyI4y1NeHjh033GHWZ5xhvt9grWM+P137+26dcMrYyQCvY/evaWnn6avN/wRugEAQEJs3+6+n5rumsUKMAjd6tXuATvZfnecD9BKSgL3hW7RwiyzstzvE84YAIkM3UAgfFQAAEBCBArd1HSnn7vvlh5/3N5u395eT7agmArq1HHfn2xNzJ2/y9u2BQ6rtWubZaDPQjifkXgM0kfoRrhqJ7oAAACgZvrzT/f9yTjVESK3fr10111m/aCDpF69pFWr7ONlZVJ2dkKKlrIChe7cXGnYsPiWJRhn6H7//cB9oa0a7kAP3P73v8heM1YI3QgXHxUAAJAQv/7qvj9QDThSk7P5eN++0kcfeR+npju6nnsuOvfZsqX693A+QNtvP7tJfDg13b/9Jl17beivGY9+7YRuhIuPCgAASAjnyMZOvlMhIbX5hiDfWm1Cd/hiPR/1889LzZpJ99xTvfs4m3oXFZmRxiWpQQPv84LVdC9bFt5rxjN0M083QkXoBgAAcffLL9Jll7kfe/DB+JYFseUbgoYM8d4mdCcf63dz7Njq3cf5sz33XHs6r0aNvM8LVtNdv777vZcscd9PTTeSER8VAAAQd0cdlegSIF58Q9C2bd7bhO7APB73EBnrmu5o3T/Ugd18a7qXLjVzb3/+uV077uuAA9z3x2M0/EB904FA+KgAAIC4C9SfG+mnqppHQndgAwaY5vi+wTOcUBwotMZDoNDtO26Db033wIHSl19Kxx8v/fCD+z2ys/2bqUvUdCM58VEBAABJZ8aMRJcA0ULojtzHH5vv3957R36P6obu+fMjvzbQz/bYY723fWu6CwvtY851STrrLOmRR8z6d9/535vQjWTERwUAACSdPn38myEjNS1eHPw4odsMOLZ5c+DjvtPo+dZ0v/pq4Frl6s7d3b174NrmqgR67datvbd9a7qdYda3ufjkydL115v1du387x2P5uWEboSLjwoAAEioxYul/ff3379xY/zLgugbPDj48SeeqNnBu7RUqltXat7cu9tFsCbkvsfOOsuuLfZV3dAt+U/zFqpI+3QHC91OVlh3inVN9+efSyNGmHVCN0KV0I/Kk08+qcMOO0w5OTnKyclRQUGBPv7448rju3fv1siRI9W0aVM1bNhQgwYN0kaf/4HXrl2rAQMGqH79+mrevLluueUWlbnNNwAAAJLSYYdJq1b57y8qin9ZEH9PP12zR6yfPdte//RTez3UGtvcXDu0ujVDj0bozs8PfnzJEumaa6Q1ayJ77XBquqsS69B9/PH2OqEboUroR2XffffVAw88oIULF2rBggXq3bu3Tj/9dC1dulSSdMMNN+jDDz/U5MmTNWvWLK1fv15nnnlm5fXl5eUaMGCASkpKNGfOHL3wwguaNGmSxowZk6i3BAAAQtCkiVkG+2M+GmEBqeG99xJdgsRxNh131mAHC4/O8/7v/+z1k0/2Pzcav0e+zdt9HX+89Pjj0o03eu+fPj20+/vWdDvnv3aG7rvuqvpe8ejTbSF0I1QJ/aiceuqpOvnkk3XAAQfowAMP1N///nc1bNhQ8+bNU1FRkZ577jk9/PDD6t27t7p27aqJEydqzpw5mjdvniRp2rRpWrZsmV5++WV17txZ/fv317333qsJEyaohP+pAQBIWj16mOW4cYHPqclNjtNJbm7V5yxYYM/hXNM4P+fOP1+DNdx0hm5n0G3Y0P/caPxJXNXv4u+/m+V773mH3gULzPLII4NfH0pN98iRoc0bHo8+3RbnwwEgmKR5PlNeXq7XX39dO3bsUEFBgRYuXKjS0lL16dOn8pwOHTqodevWmjt3riRp7ty5OvTQQ5WXl1d5Tr9+/VRcXFxZWw4AAJKP9Yd5rVr2vosu8j6H0J0ejj46tPPcamlrgj177PU2bez1UHpL1qvnHfysAcacRo+OuGiVAv0ulpVJ//qX974//jBL5/vKyZGaNg18f+vfgd9+Mw8U3EJ348ahlZWabiSjhH9UlixZooYNGyo7O1tXXHGF3n33XXXs2FGFhYWqU6eOGvv8huXl5anwr7kDCgsLvQK3ddw6FsiePXtUXFzs9QUAAOLHLXTfe6/3OYTu9FBV02RLPGsok8nZZ9vrzu+Bb3h01m4HGmTtgAP890WjBUGg38Xnn5duvtl7386dZmnVfktmPu1gAdU5b3dxsff7C3ekcEI3klHCPyoHHXSQFi1apK+//lpXXnmlhg4dqmXLlsX0NceNG6fc3NzKr1atWsX09QAAgDe30O3bDJnQnR7cQveRR0onnhj/siSL3bul11+Xpkzx3u/8zPt+35zHrFDq1rz5H/+oXtms0BzotZ2WLPHfZ80L7gzdFRVmhPZAune3131DsxW6nf9WBEPoRjJK+EelTp06at++vbp27apx48bp8MMP16OPPqr8/HyVlJRom88knRs3blT+X6Ou5Ofn+41mbm3nBxmZZdSoUSoqKqr8WrduXXTfFAAACMr6I945zZFv81FCd3rwDY8HHCB9803ozYXT0dix0vnnS6ee6r3f+Zn37Sm5a5e9Hix0Bwu3objtNv99Tz3lfq7bNGVWrbWzIWlpqRmlvl496cUX/a9xTv1VVhZeTbfVLcEK7vFsMUHoRqiS7qNSUVGhPXv2qGvXrsrKytKMGTMqj61YsUJr165VQUGBJKmgoEBLlizRpk2bKs+ZPn26cnJy1LFjx4CvkZ2dXTlNmfUFAADixxrcqU6dwOcQutODNZiW5eCDTVisVy8x5UkGr7zivr+0VHruOfP14Yfex5x9pIP529+qV7Znn/Xf55yK7L77pIICU6PtFrqtPt3O0F1WJvXvL/35p//YDZL3wwPfgd+smutAAffDD6Vt26ROnbzPjwdCN0LlMqV8/IwaNUr9+/dX69at9eeff+rVV1/V559/rqlTpyo3N1fDhg3TjTfeqCZNmignJ0fXXHONCgoK1LNnT0lS37591bFjR1100UV68MEHVVhYqNGjR2vkyJHKzs5O5FsDAABBWAEi2H/XoYTu+fOlSy+VHnpIOumk6JQN0fPLL/b6mDHS6tXSP/9ptgOF7l9/NSGsRQvp/fdNDeY++8S+rPH022/u+zdtch8MTQq9efmRR0qffy4dd1xkZXPrDuB8HWuKsv/8xz109+sn/e9/0pw59r7Wrc0ylCbizz3nvV1VTXdmpumaYt07nqGb0csRqoSG7k2bNmnIkCHasGGDcnNzddhhh2nq1Kk68a9OPo888ogyMzM1aNAg7dmzR/369dMTTzxReX2tWrU0ZcoUXXnllSooKFCDBg00dOhQ3XPPPYl6SwAAIATRquk+5xzp559NLVqgwaWQOH/+aa937Srdfbe97dYMevduqWNHc92TT0pXXmmaoVu1p+luxYrAx0IN3ZJ07LGRl+Gii6SXXvLe53x4Ypk927RacPN//2cemFgeeij013/nHWnzZns71IHUEhG6a+rgfwhfQkP3c76PsnzUrVtXEyZM0IQJEwKe06ZNG3300UfRLhoAAIihaNV0+wz9giTjDEDNm3sfq1/f//w1a+ygfscdZun2M/Z4zEBdzmbP6eDJJwMfc/t9CFbTeued0t//Hn4Z2rY1yxYtpIEDTZk2bpS+/lrq0cM+7623pKOOcr+HxyN17iwtWmRaNITzc/rf/7y3Qx1IbcsWs/z229BfKxK1a9vTuUVjDnTUDPREAAAAcWf9sVrd0E2fyuTmDN1/9Q6stO++/uf//LO9Hqx2OzNTatYsOtNhpQq3mu5grrkmtPM9HtNNw3rYYfXFPucc6fLL7fMee8z/2q++MsvcXO+HKh98YJq5Syb8V0dVfbotb79tls4a9lhwzp/OuBMIFf9VAQCAuHrvPbtPKwOppTcrMFl9ep3cgqA1EnWoUrUff8uWoZ135plSXp5ZD6d5ueT9u+UMir7eftv0mz/6aLP96KNm+dRT7q0R3Dz9tPdc25I9IJvPRENhc5vpIFFmzvTepqYboSJ0AwCAuHn1VemMM+ztSGu6ly83QW7r1uiVDdHnNh+7Zf786L5GKnEbrMzN9u12eA63eblzGq5g36OXXzbLxYu99+fkeIdujydwyGzeXOrWzf1Ydfs9J1PofvNN720eDCJUhG4AABAXHo80eLD3vmBhINgftFddJa1bF51yIXasGla30N20aXRe45lnonOfeNq5M7Tzpk0zU3NJ7vN0B+M793Ugvg+++vQxy7vukho0sPeXl5vR1d3Uqyc9+KD3Pqsf98CBVZc1mFBD97/+Vb3XCYXvAwRCN0JF6AYAAHHh9od/ixaBz//uO+mEE7ynHrLQrDM1BKvpDoczZPoGzhkzqnfvaFm71nu09kDKy0Ov6e7SxW7N4Rz5PZTm5c7vebDQ7dvFwwq39et713RnZgaeK7x+ff8m89bAZqHOx96mjfv+Tz/1LlcgffuapfNBQbT5/tzWr4/dayG9ELoBAEBcuP3hn5PjvX3jjfb6u+9Kn30m9erlfx3z46aGYKE7nGbHzimrfK9Lhubla9ea0Gj1vw7Gt++zJN10kzRypPTDD97hc/Roe93t4UI0mpf7hm7nz8x5rH37wA8L6tcP3HIh1Adk//2v+37rNb/5Jvj11mcsWJeV6vJ9gLB8eexeC+mF0A0AAOIilHD00EPSgAHux779VsrPlz76iFHLU8WGDWbpFrqDDaLnyzkSt2+T3mQI3V9+aZbOJuCBWM2369QxIfv996V//EN6/HHpoIOk/fe3z/UNubNnm2UozcudvyPBgq/z5+Dx+D8oue46s/z888BNuOvVC1yj7TtqfSCBarotVk12INb7jeXc2c7R9SXprLNi91pIL/yXBQAA4iJYE1eLNRWUm65dzUjIAwYQulPFhReapVvt7i23SB06hHafKVPsdd/PUTKEbudDBd95osvKTI10RoZpKr5ggdlfUmJC9mmneV/vXPcdnd0K7KE0L3d6443Ax5w1w7t3+4du6/iXX0oTJ7rfw2qGvmWLd4gPFsYD3SMQtxYvTlZ5Y/V52LXLf4q6ZBjcDamB/7IAAEBchBK6pdAGJwqlpg/R9d13Zrq3UDl/jmvW+B/fe+/Imuf6fj5iWbMZKmdT7uef9z7mbBZ95ZVV38sZpOvVk44/3t7evdv7sx9q6L7hhsDHnGX/88/AodtXo0b2uhWYmzaVDjzQ3p+bG1r5pKofpFV13CpvrD4P//tfbO6LmoHQDQAA4sI3dDv/OA92nhu3AYwI4rHVpYuZ7u3000MbfTuUptahOvFEs/zpJ//gnww13U6+4dDZtPurr6q+ftEie71OHemCC7yPP/FEZJ/1QE3MnQ8xduwILXR36SI98IB3OS3Omu1wQndVqhqMz/q+x+LzsH27dNll/vv794/+ayE9EboBAEBcWGG6Th1p1SppyRL386oa2fmAA+yRkd3uj9j64ANp3Liqz7OmuoqG0lIzXdX++0uXXup9LBlCtzO4+jY5dn4fQhnt2jktV2amdMgh3sevvjr85uWS9Mcf7q/14Yf29m23hRa6s7OlU0+1t31r5y3RDN2JrOn+v/+Tvv/e3v7lF9PlwXcKRCAQQjcAAIgL55zN++8feCAt3xrSI47w3l650n3qIkJ3/Hz9ddXzpIc6F3Uoysq8R/J2Sobm5c7psnxDarg1/v36eW/37Cm99JL7ueGEbrffmYMO8m76P3lyaKG7Th2pVSsTRNeu9T7m7JudLjXd//63vb7vvlLr1mZsCWZRQKgI3QAAIC6sP4adfUjd+IaU776Tzj3X/ZwuXex9ofQFR3RMn26CR7Dmtc7Qbc21HKnSUv+Roy2JqOn2eAL3rfZt+h1obutA3nhDmjTJe87vCy/0HnRu9erw7im5Ny/fts1/n1Uzb8137fZwzPod7tTJhG8nZ013oNYsofCt2U50n27Lr7/G9v5IT4RuAAAQF1ZNdFWhe++9/fe9+ab7ubfdZq9//XVk5ULkPvkk8DErdLdtK51wQvVeZ+1aE/TdxDt0ezzS0UdLxxxjB2xn0PMtT1XdJXzl5kpDh0oNG3rvt6Ylk6RRo8wynJrWrVu9twP1Cy8uNsucHLOsW9f/nGC/w877hjpHtxvfZvqh1nT7PhABkgGhGwAAxEWooXv8eDM10rXXVn1P5wjKVc3ji/iy+hBHY1ola75vN/FuXr5pk5kv+6uv7LEFnEH7oYdMGLYGRPMdzdzSvn14r+t8GLXPPmZZVej+4AN73RnaJfdA3LatHbqt3y23n1+w32FnS5XWrYOXz9d995ll587e85VLodd0S9H/TIQ67RkQCKEbAADExWOPmeXmzcHP23dfU6vpO2qzG9+5fZNhUC0Y111nlitXxvZ14j1nu7MbgxVc3UKeNRbBnDn+x448Upo5M/zX7tnTLPPzQzv/1FOlJk3cr3EL3U2b2s3arZput2AfrNbZWbN/662hldNy553me/ntt/7N2sOZUiza/w44f75VzScOuCF0AwCAuHj66fDODzQ/sFNenve2c4RhxN/MmdKNN5p+zD/+GPl9jj029HOrajkRbc6+6tu3m2nM7rwztGuPOMI0154xwzxcCtfhh5ul1e86lOblVp/yDz+U/vtfM1DbunXufc0XLrTXrdDdrp3/ecG+587Qfd55VZfPV0aG+Qq3hUSsaro9Hu/vVSj/LgG+CN0AACAphfLHrW9wCXfQKlSPb//73r2lRx4xwfKYY8y+Aw4I/77hBK6q+vpGmzN0b9pk5pufPz+0a7/5xjRJtwJtuKxaVqsMoYRuK6C/8YZ0yinStGnSDTdU/bti9eW2atedQg3d1RndO9DsBoHEqqbbd1YEQjciQegGAABJqXHjqs+xRli2bN8ek6IggC1bpKeecj/WvLlZXn99+Pc96KDQz4136HbOu33MMeEFvNq1/T+z4bD6FoczHdt++5lljx72vo0bvZuXT57sf50zMI8f730sWFPvcAeOC2T2bHvdbXBFX87PQTRDt28zfEI3IkHoBgAASalp06rP8a1Jo093/F15pfv+t94yS7fRr6vyf/8nDR5sjwOQLBYu9J9HO5iffrLXb7ih+q9v1XRb/a5DqUm+9FKzPPhge19+vl3TvddeUteuwe/h21zb+eDB1yWXmOVRR1VdtlDdeGPV5zgfBESzeblvi4Bwa+ABidANAADiwPlH8LffhnZNJH/c+jYFRXT4TjcVjrVrw78mL096+WXTXN3JbUR752fr8celf/wj/NcLVa9ewQOnL+cDiauuqv7rW4OhWSOjhxK6rab6kybZ+/bZx67BrVPHf3Ru39YDBQXe28GmArvpJmnqVNN/PFqcZQ8kXjXdhG5EgtANAABiztnkNJI+vm6soLBmjb2P0B0bvqNQn3GG9/b330uLF7tfe+654b2Wsxm077Raw4fbg4lZrNBdViZdc410++3Szz+H95qhCnfMgGnT7HVrFPHqCKX1h6958/z3lZba7yU7279svn3qu3eXPv/c3g42hVvt2mb6vkj7rbsJZYT6WNV0+4bu6nQPQM1F6AYAADHnnLs3WnPeWjWobdtKf/ubWU/l5uU33WSmSfN4El0Sf74jkb/zjvf27bfb83L7atUqtNeoW1eaONG7htS3VjE31z+AWX1/nQ92XnkltNeMp9zc6t/D9/sRSk23WwDds8eePzw729zX2RTerZ+8c0T5qqb9i7YXX6z6HGvUcym6/w74PmixpoIDwkHoBgAAMWcN/FSnTnQGvvJ4vAdXsu7pW9P966/S779X//VirbRUevhh6bXXpA8+SL7g7fyZ3Xyz//FFi6Tjj3e/NtR5jRs2lC6+2L82d8AAe71pU/9pqKx5s53haPTo0F4zXC1aRH5tLAZ8c84ZHohb7fiff9oD4FnzqDunBqtqGrZoDZYWqm7dQjvPeiATrZruXbu8BwIcPjy23ReQvgjdAAAg5qxRxUMNYBa3Jqpuoc8KCc4ars8+M7Wse+9tpnZKZs4HAwMHSq++mrCiuHIGRrdA+9tvga8NpWmwFPhBw8CB9nr9+mZAsvffN9NfOfkGwR9+kO6/P7oBsVmzqs/Zd18zjVgsbNnivV1YWPU1bt9/Z622kzUyt7OJvxtny5VYCWX2Al/W5zRaNd0PPCB99JFZ32cf6ZlnotNiATUPoRsAAMScNSDWtm3hXWfN9ez00EP++9xqup19iWfODO914803BN1zT2LKEYp4DyTlOwZAVpZ02mneAfiPP/ybAR98sHTnndItt0SvLFWNxH788dK6df7zx4fbrz0Q5wjkoXJrgr5ggb3urNVesEAaOVJ64YXg94xHTXckoTvaNd1Ll9rr4cwdD/gidAMAgEovvCDNmRP9+4ZSI+dm0iQzYvOwYaaG6aab3M+zgoMVul97zbtWMNnn1r3oIu/tX35JTDkCcT7MiGQKsOo49ljpueekuXO99ztr3ydNChwEX389emWp6qGRVcP62WexKUO3btKUKeFdU1W/b2dAPeQQMwK8NUp6IJEE4nCNGWOW55wT+jXRrul2itXgfKgZquixAQAAaoovvzR9aqXo9ikePz7ya5s2tUdKfuqpwH1NfZuXX3CB9/Hq1FJ9843pyxvqgGCR8K3pDneU7Fhzhu5QBu+KNmuu6UBmz/bu4+/kO9J6dTgHlDvnHOnNN01AtR4qudWwRvtzM2CAGTww1BDYvHnw4+HUCn/+uZkze8KE0K+J1MUXm2bu4cx2EO2a7mQbWwGpi5puAAAgKfT5s8N13XXRuU+wwZ0CDaRmCWXAKTdLl5o//Fu3juz6UJ18svd2ss0F3Llz7F8j3DDvLNPbb0tDhrifF4vgdOCBZh7xN96QvvvO3u/2OYv0sxdMqP3kJTPd21FHRed1jz1WWrhQ6tkzOvcLJiND6tgxvAdmsazpBqqD0A0AACT5z0ebSnybl/uKdOAn3ybNseJbM7fffoHPnT/fjKAczbmIq2LVlp59dvDzfAPSkiWxKY8kXX55aOdFc+5263M2Y4Z5r+ec490Ue8cOs7zmGntfpF0rggknVDZqJE2dGv0yJCPr+xKtnzk13YgWQjcAAJAUu2bDhxxir7dsGZvX8G1e3qmT9/FIQ3csaind+PYVDhbUunc382JHs69yVazva1VNlX2/X3l5sSmPZH7mVTU7l6L34MTjscOc78OFCy80y1GjzNI52N8HH0Tn9Z2sweEGDQrt/GQf0yBa/vzTLKM1EOHy5fZ6PJrUI30RugEAgCTvJqvRqOEpK5OWLfPed8UV1b+vG9/m5b5zc1vzhIcrXqH766/NcvJks9y2reqa7FgMeBeI9X11Dl7Wt69ZOgPdk096X1evXuivEclnLpSmx40ahX9fN87aZd+uDpMmSatX22MJZGeb89etk049NTqv73TVVaaZ9yuvhHZ+LOYIT2Zvvhmd+xQV2etVTaMGBEPoBgAAkrxruq+7Tlq0qHr3u/ZaU+P8/fdme8wYuyYw2nxruv/4w/t4Mtd0/+tfduBs0cLeX9VgavFsXm59X53h7d13pS++8P6cnHii93WxHuk8lL7vVu1ndTmbLPuG/Vq1/LsEZGb6Tx0WLRkZUpcu0anBTsTAeKni9NPt9WBjSgBVIXQDAABJ3n98P/aYdMQR4c+r7eRb6zl4cOz+cHXWdO/ebQdWa7qhaITuP/6ITdC9+WZ73TkPs3OOYIuzNtg5gFesWaHb+fOrX186+mjv6aPq1/e+LpyfdyThL5TQ7dvqIVLOz0K6zNl85plmdH64c3aHOeywxJUDqY/QDQAAJLmHnr32imzKL7da8tzc8O8TKivclZZ6Nwm1BrlasCCy+zqDVpMmVQ8kFsyPP5q+vsEGrNtrL3vdrc+2s7Z11arIyxIut+blFmfozsmx+8E2axbzYoUUfrdujc7DEudnOpVDt7Psb78tHXlk4sqS7NasMcuRI2kRgOohdAMAUA0lJdLHH0feZziZBAom4Uz5VVxsBgE74gj/Y7EM3Q0amOWYMdKjj5r1Ro3smtfffovsvr7Ny995J7L7SGa+6FtvNf1xLb7fc+cf9oce6n3stde8a3bbto28LOFya15uqVvX1JbOm2d+Dh06mAcf69bFvly+Nd39+vmfU1Hh/SAmUuedZ6+nch/p445LdAlSx8SJZhmPzzLSG6EbAIAIbN8u/e9/ZuCkk082YeOttxJdquoJ1n/Z46m6trCkxARrZ79kp1j2783JsdfHjTPLFi2kbt2qd99o9um2BpWbOdPe9/LL9nqHDmZ5xhlm6fsgxxqky+KcqirW3JqXO3Xr5j3QVE5O+P2NIxlI7ccfvbc/+sg0uz/sMGnKFPthzK+/hn9vy6xZ5mHI+vX2vlSs9dywwbT4sMZVsL43qJrvgJBAuAjdAABEoFEj6fDDTfNMy9lnS089Zf64TUXBAmZBgdS1a/D5bwOF7XhwG7AqN9du+lzVoGSBuH1PJk2S2reP/A9xZxgdOtRe/+ors7TKPH9+8PvEcyC1YM3LE8m3CX5mptS5s7R4sTRggD1v9mGHRf79ctZwp7L8fPM7fPzx5rO2enWiS5Q6GEQN1UXoBgAgTMHC6ZVXSgceGL+yRFOwvsZff236tAbrR7x1a9SLFDK3+aCzsuyA65xvNxxuP+tLLjGBZciQyO65fLn7fZs2NUurxYTVtDWcssWK1Z852EOX6oqk9njMGHvd2R/eTZcu4d9fCj5neqrq1Su2c6inA2fLi1Tuw4/kQOgGACBM27dX73iyCiXEJWvtmO+o2ZLp72v1+a2oMM2NwxXse1Kdgcyc/bp9WSOuS2Yu5sWL3cNuLAOwL2uE6+Li+L1mKE44wV6vqrn94sWRNWHv2DH8a5D6nL/7++yTuHIgPRC6AQAIUyjz/kbyx32ihRK6f/7Zff+rrwa/LtbT7QQK3YccYm+femr49w32PanO4FzPPhv4M+IcuO7II01zabf5zeNZ023p3Tv+rxmMc5yAxx+v+vxIuhk0ahT+NUgtc+eahzJOzs/KhRfGtzxIP4RuAADCFEpNdqR9iBMplBBn9ZH1dcUV7vtnzJAGDZLeey/iYoWkXj3/fXXquO8PR7iDgc2a5T6gnttAXs4HEf/4h73uFvL++U//ffGs6W7e3CzbtYvfa4bC+fPxHe1dkt5/33s73FkGPB7TtcJp4cLw7oHktnmz9Le/mYdbTs7uNunSrx+Jw7AAAACE4emnpdmzqz5v167YjtYdC8H6dFsChe5du9z39+4dn9rRQDXd1RXq4FuXXGKmzPrhB7M9dqx011328RUr/K/5/nt7/dpr7fWGDUN7zXjWdO/ebZbhPoSIJ7cHLKedZoK29fkI9DkNxHegtpdeirxvOJKT84FYRYUZjE+yH5zWqpV8Awgi9VDTDQBAiHbuNDW6L70U2rmpZOZM6cknvfc984x0zDHe+wK9L6smNFHcQrc1zVV1WGGzKpMm2YFbku6+2/v46NGBr61b1/sBTaihO5413db3IZkfJAVq1VCvnj2lXLi/l84R5G+6SRo8OLKyIXk5u3k4/82wHkJG4+EdQOgGACBEoQYwKfwatUQ76ST/fU2amKmxnAKFln79zDJRg065zTn8yy9m+eKLZhlJLa0zSPtq1swsA30unH/Mz5sX+D6+o25XFWytBxzxqumuqLADSLKF7k6dzNR9J54YvDbSCuTh/l46W39cc01qzs+N4JytWZwPsqxBA5O5dQdSB6EbAIAQhfMHe6rVdLs1La9b179/8RNPBL9+2DB73x13RKdsoXCr6baah/bta5YlJeHVfpeVmQGWAtmyxdxzyRL3486ppg46yCzd+h27TXW1bp37PXNy7D7j8arpdn42ki10164tffutNHVq8POsz0c4v5dlZdKECfY24Ss9OR+OrV1rr1vNzqsaFR8IBaEbAIAQhRO6U6mmO1Cw3LbNfX7r//3Pf5/1fp1NfKs7iFk4srPNwGSNG9v7rJqqJk3M0uMJb8Txzz8PftzjMcF77Fj347//bq9bLQacfbctbqF7333d79mokd3n9Mcfg5cvWpw1+ckWuiXz/aiqBtpqleA2oF0gubne24Sv9OQM3c88Y69b/6btvXd8y4P0ROgGACBE6VrTHWg05q1bpU8/9d+/YYP39oIF0hdfmHVnKDviiOiULxQZGWYuaWfZrJ9BVpbd9Dicn+HDD1d9zrffSgUF7sf++MNe/+9/zdIZxC1uoTuQhg2lTZvs7Xg83LFCd0aGqVlORS1amOXWraFf4/wdrqomHanL2frF+VAuFcYxQOogdAMAEKKrrw793NWrY1eOaAtUI73//u614M6gV1oqdetmanwl8wfqjBnSI49IJ58c/bIGk51tXr9TJ7N9zjn2MesP53CmcjvxxKrPOf10aeVK92PO0G2ZPNl/X7ihe8AAe3vbttCvjZT1PatbN3X7NFuD04Uy3Z+bQA9WkPqc/545f58I3YgmQjcAACGyanOd6tVzD63Dh8e+PNESaHTek06Sunc389gWFdnNLP/80z7HN1jWq2emCLv++sQFtKlTpcce857b2uqPG07oDmW6sIqKwKPZu4XuQw7x32c1fw9Fo0bm52Vd4/Ya0fbNN2aZyuEj3NDtO8ZBKr93BBfoM0HoRjQRugEAiNDWrdKaNfZ0RKnK6vvsy+o7vPfe5j3+7W9m2xoVXPLv350Mf6Dus49pleCceiuS0B3OaPVu3ALxDTf47wun77v1nqza8VjXdO/cabcYSNVabin80H3zzd7bqdqsvqZ5/3173dlXO5gdO+x15+wLhG5EE6EbAIAI7bWXlJcX+h93ycotiFx3nf++jz4yS+cI5kOGeJ8Tz8HTwmGF7nCCtFXD27VreK9lTenlDN1W6HObg9v5EKMq1vXWgHGxrun+7Td7PZUGB/Rlfd+crTSCeewxe33FitR+4FCTWAPmSYFnAPDlDN1ffWWvE7oRTYRuAABqON9B315+Wfr3v/3P693bLOvXN4MPnXee/6BqyfoHqlXOZctCv+aDD8zSbaC5K690v+ajj+xp0x58UPr6a7NuNVfOyvK/xrdW1dK5s/8+6/trlemUU8zPK1as6dak1A7d1jzukQxw2LZtVIuCGHIOihZs3nYn50PHmTPtdUI3oimhoXvcuHHq1q2bGjVqpObNm2vgwIFasWKF1zm7d+/WyJEj1bRpUzVs2FCDBg3Sxo0bvc5Zu3atBgwYoPr166t58+a65ZZbVBavySsBADVeoJruVKkB9w0i/fq5n9etm1muXm0GS3vjDf9zkvUPVKtZuXMe8WCc03Gdeab/cbcpvR59VOrf3+5vvXu3dOyxZr201CyzsqQpU7yvO+AA9zLMnCktXuy9z22e8Ysucr8+Gn7+OXb3jqdw5um2flYWtwclSE7O349QuwQ4a7otu3dLVtxI1n/TkFoSGrpnzZqlkSNHat68eZo+fbpKS0vVt29f7XB8+m+44QZ9+OGHmjx5smbNmqX169frTMf/fuXl5RowYIBKSko0Z84cvfDCC5o0aZLGjBmTiLcEAEhjbk2DpcDhOpSBuJKB9d/u6NGm+W2geWmXLrXX4zFqdqyEUmNr1VBL3oOfvfOOediw//7+11ifA+do5Hv2mCBgHcvK8h59XDKDo7lp3NjMPX7uufa+QM3jfQf+ioWjjor9a8RKOKH7lVe8t2lanjrCrXNbtcr8u+erXj3pP/8x64RuRENCQ/cnn3yiiy++WJ06ddLhhx+uSZMmae3atVr4V5upoqIiPffcc3r44YfVu3dvde3aVRMnTtScOXM0b948SdK0adO0bNkyvfzyy+rcubP69++ve++9VxMmTFBJPP4HAgDUGM4ar0A1pnPm2Oup0ujKCiKNGgV+sCB5//EZqB9yfn70yhVNmY6/ePbfv+q+3c6ftbPG7KSTzMBibv1F27c3S6sps8VZc+o7Unwo06q9+KL/vf7+d+9znn666vuEa/Zse71VK7u5fSqyQrc1tZ2bX381TY2DnYPk1rOnvR7KQ0/fMSkk71YuEqEb0ZFUfbqL/pqRvslf7bIWLlyo0tJS9enTp/KcDh06qHXr1pr718Shc+fO1aGHHqq8vLzKc/r166fi4mItdT6Sd9izZ4+Ki4u9vgAACKa83B606tNPpWeesY+NGGGWvXtLhx9u70+10F3VIGjWYGSS9x+mAwaY7fnzzcByyejhh+31DRvMe/V4THh++WX/JsXOP9idgd2q9XSbm9sK0L5/pDvvHUlTZWdQt8riOwr6tddGvzuDs7b/kUfCm0882VitG6zB8Xx98415sNCoUep0C4E/5wOvYKHb+rf5hx/8j73zjvc2oRvRkDShu6KiQtdff7169eqlQ/5qx1VYWKg6deqosTVE51/y8vJUWFhYeU6ez//w1rZ1jq9x48YpNze38qtVq1ZRfjcAgHTz7LP2ert23kHsrrukTz6R3nvPu1Y0VUK31bw8WC238zzJ/n40bSpNmmT6JR95ZEyKFxVufzi//bZ00EGmT/STT3ofc/7s3EK3b/PyDh3sY5k+f11VN3Q7Wfd2e0AS6sjcoXKG/WQdlT5Ua9cGPlZSIvXoYW87W0FcfnnsyoTYsD63gR6eLF1qHiB16OA++v+oUd7bhG5EQ9KE7pEjR+r777/X66+/HvPXGjVqlIqKiiq/1oU6pwAAoMaypsuS/EfFzcoyg481apSaodsavde3WbSvq67y3zd6dOA+4MnE7Q/nL76wa0CdoxZL3g8YnAOdWaF3+HDv84N975yhO9QRlX2ddZZZ3nSTvc+31jbUOahD5VbDnqqc3UGcP4/XX/duwSF5b7dpE9tyIfqsh1/OObudbr7Z/K74jN0cEKEb0ZAU/4ReffXVmjJlimbOnKl9HcOB5ufnq6SkRNt8RmvZuHGj8v/qNJafn+83mrm1nR+gY1l2drZycnK8vgAACMb5h3qwAJKZaf/Rlyqh2wqYVYXu44/33xdoELBk4/aHs7NBXMOGpi+vVTtmfU8OPlhq0cI+z/rZ+n6vnNu+A29ZNadZWf7HQm3K/MYb0qZN3n1Wu3Xzfl++TeSry/kAKdVDd9Om9rpzMLXzz/c/1/lnoXMQPaQGa6aCq692P+42A0AwhG5EQ0L/CfV4PLr66qv17rvv6rPPPlO7du28jnft2lVZWVmaMWNG5b4VK1Zo7dq1KigokCQVFBRoyZIl2rRpU+U506dPV05Ojjp27BifNwIASHvO57tV9W21wkqqhe6qmpdL/jV/qRy6J0+21999V2rWTLr7brNtfU+OOcb7Gis0+zYTb93a/xyLda/qNC3PzDTl8+WsjY526P72W3u9V6/o3jvenLXXVigLxDmQ2imnxKY8iI/Vq/33hdtnn9CNaEho6B45cqRefvllvfrqq2rUqJEKCwtVWFioXX+19crNzdWwYcN04403aubMmVq4cKEuueQSFRQUqOdfj3r79u2rjh076qKLLtLixYs1depUjR49WiNHjlS2b3shAAAidNhh9npV4TTVQneozcsl/1HLUyV0VzVnrxWMfUN3gwbef6RbNb6+wdrZfPlvf/M+tnWrWcZivmfnnzpVjcgergkTzLJevdA+G8ksI8P+/lc1uc3vv5vluecyXViqa9/eu2b7hRfMQJhuAnWTIXQjGhIaup988kkVFRXpuOOOU4sWLSq/3njjjcpzHnnkEZ1yyikaNGiQjjnmGOXn5+sdx7CCtWrV0pQpU1SrVi0VFBTowgsv1JAhQ3TPPfck4i0BANKU1fvpgguqPjeZQvf335uBwlatCnxOqM3LJf+QnSqzc4ZbCxzoexIohB17rL3epIkdtCXp6KPNMtah+9BDQ5uHOhTO/uGhzGueCqzvVVWfWaumm7qb9PDvf9vrF1/sfk6vXtJzz7kfI3QjGqp47htbnhDad9StW1cTJkzQBOtxq4s2bdroI+cINwAARJn1h3oo81Bbo0i/8oo0ZkzsyhSKE04wfYEXLpSWLfM/XlJij+AbSvPy5s29R8k+8cTolDPWwn04EM6DCMk/jLt1QQhl3uBwdehg5pe2fPmlGdQvmF27zJRjZ5wR+Ny/ZnFNK1ZTfKt5eaAZY19+2ft8pLabbzaDQAYbgf+FFwI/mKS1A6IhxYfFAAAgPqya0nBqK8eOjU1ZwmENebJ8ufvxOXPs9VCmhXIOqDV3rlS/fuRli6dwR6EON3SHwln7HS2+U50Fau5fWmpq4y+9VPrnP6Wnn5ZOOinwfZ39nj//vNrFTApWiLYewPhO++aLmu70sX178PC8//6Bf97OQfiASBG6AQAIgfWHejrUfnk8JnjNmuXddDKUPy6df7g6R9JOdj16SA8+GPr5mzebZbNm4Q+8ZIlHI7z27aWWLe3t8ePdz1u+3EyRNnGi9N13Vd/XaqZeq5Z30/lUZoUqa6oo54BpbtLhdx3Gxx9XfY7vuA/vvSe9+KJ0+OExKRJqGEI3AABBlJebsGL1ckqHP8Tfflu65RbpuOPscNWpU2jNKFO5qWWgKYTcWNOJ5eVF/nr9+1d9TqSB3snZbcAxLI4X52BSzu4BgVj9uPfZJ/JyJRur9cK554bW6oCa7vQRbCDFWbPM0veh4+mnm/EwgGggdAMAEMR553nX9EUyGNaePdL06ckzINUPP9jr1e27nErCCVFWs/zmzaP3+rm50btXuPd1DiQXaPRmJ+thTChdDlKFs2bbbSopX+nwgA1GoH+33nnHnhawQwd7P7MOI9oI3QCQJHbutGvXwvXzz7EZpAnSW295b4fyh/j//Z9Zdu1qlrfdJvXt6z2tVLxlZUnffGNq7J0PDrZtM8tU6ZtdHZkh/tXjHFyuSZPA51k/52BOO81ed/5RHw/btklvvmn+bQk0kFygmnZrkLF0/VyE0sKAmu704Tad3ogRpjbb4gzmzv1ANBC6ASBJ7LOP1KKF90jEoZg4UWrXzgyQhNgLpabbmtPbCiyPPmqWr70WmzKFolYt06/56qulDz+09w8ZYpah1nQ7+w+nouXLTdN6S+PG/uf06uV9PNCUQXffbWqNN24M/HqOWU5dm2oHC/WRsh7AnXWWaUp93XXeA6M5BWp9YT0sCKX/d7RUpyl/uJxToknSkUf6n0NNd2oaMMB/n1vofuqpwA/iQn1AB4SKjxQAJAmrxtHqXxaqu+4yyxdeiGZpEEgof4hbwTzcuaGj7euv7XXnH5HO5uWWUEP3s8+a5vZTplSvbInSoYOZKsvi1jR7wQJ7vW5dE8guuEC6807v8zIyzJRswZqg16pl+tAff7z3IGdvvin17i3961+RvQ9fU6fa67/8YpYzZpjls88GrukOpX93rH36qflM+bYqiSXnlGi33SbNn+//maamOzV98IH/PrfQHayrDKEb0ZbQeboBAEg1qRS6naOLW310JffazUC1ub7atUv9KaScYapZMzukBpKRYeZcj9SZZ5ovp7PPNl/R0revqUn/7Tfp99/Nz8kpUOjOz5deekm68MLolSVcJ5xgvmItM9NuBeAM3VY3Ad8aUkJ3anILzL7/5gWbLk8yD8uAaOI5DgAAYQilebl1jlvtSjJwa2qc6AcE8eQMU77NjFPZ3nub5e+/+x8LFLol6corY1OeZGa1LJK8R7a+7TZ7nebl6WPpUu/t//43+PkFBbErC2omQjcAAGEI5Q9x64/4pUulU0/1PpYMA945p4+ypOuAWW6cP8N0GqXYmvLIbf7p558PfF2LFrEpT7Jx/u45a7qdD9KcY2NQ0526hgwxA1nutZfZfvVV7+OBmo+vWGHGYejbN7blQ81D6AYAIIB58/z3hVPTLfn3E03WmtVzz010CRIjHs2a48UK3aNH+x/75JPA10VjrvBU8J//2OvWWBiZmd4BzDm2ATXdqeuFF8zYDNYsBKE68EDvMR+AaCF0AwAQwKJF/vtC+UM82OBUoUwzFW833CCdeGKiSxE/zlGyr7giceWINmtk+Z9/lr76Kvi5Z51lr1tzklucn99EjrgfbZddJrVu7b2vts/oRg0b2us15WFETRPKPPVAtBG6AQAIwGqa6BRK6A7Wl9s5gnWyOP74RJcgvnJypB9/lNauTa9Rip2Dp33zTfBzX3rJnjquuNi7n7+zyf3BB0evfMnAd1oy35YrjRrZ68k6JgMid/fd6dW6Bakjjf6rAQAgutz+6A6lebnbPLGJsN9+VZ/Tpo3Up0/sy5JsDjhAatXKrAebOiiVOAPluHHBz61bVzr5ZLumd/Nm+9ivv9rroU4llyp8R+n3rel2PoQ55JDYlwex5ftv8T77JKYcAKEbAIAA3Ppfh1LTnSx9Qd3moHY68UTpp5+kevXiU55klSw/r+rq1s1edxuh3nLttWaZmWmPeN6qlTRhgv+5++8fvfIlA9/PuttDtDlzzJzhnTvHpUiIIWfLBYnB8ZA4hG4AAAKw+rb26GHvC6Wm242zRi1e03NVNVL69denV/PqSN1yi/t+3z/Yk53zIUugcQV++03697/t7cJCe/3qq/3PT5dWABbf+ZfdRnovKJAGDYpPeRBbvj/HSP/9BqqL/2oBIMUx2E/sWDXdTZrY+yKtFXXWmu/cGXmZwhEsdB97rGleDDO43VtvefeJlqQLLkhMeSLVuHHV57RsGXqQTqdB1CyErprFN3SnS6sWpB5CNwAADiNHmrm1Kyrs2kJrKiYp8j/a69Sxa5XdQveuXdF/gGKF7ieekG680fsPUN8av5qsTh3zvfEdOO/hhxNTnkj59k/2dcopwY936WI+g9bn9Nhjo1OuZPLQQ4kuAeIpI8N7MEAeuiBRqvjnGQCQ7NKt+WcilZWZgCpJS5a413RH2v85I0OqX9/c0zd0b95spjI64QTTlD0nR7ruushex8kK3R07Slde6f1ZKSio/v3TjbNlwFNPmZ9XqttnH9OkXDLvydewYdJzz5n1b781vwPW9yEd+/ofeGCiS4B4c36O0+F3GqmJmm4ASHE0L4+e5cvt9cxM6fnnzbqzb2+oA/EcdJC9vmyZWVojQfuG7vPOMyOl//e/0pgxpq/17beHVXRX5eVm6dZv+/rrq3//dHb55YkuQWT+8Q/v7XvukebPl9ascR+5+YknpAcftLeLi+1135G+gVTkrN0mdCNRCN0AAPzl99/tdWf4WL/eXg91cK1586RFi8xDEat5o/UHn2/o/uwz/+v/8Q9p69bQXisQq8bSCt2DB9vHcnKqd+90dPfdZjlsWGLLUR2+Nbm1aklHHim1bet+fp060hVX2NuLF9vrjPSMdOBswZJu884jddC8HABSHM3Lo8c52NmHH9rrLVtK77xjwmvDhqHdq3Fj/4Gt3EL3nDmB7/Hyy6ZpeKTzaFt/bFr9t084QXrlFbPOgEL+TjvNPGDJz090SaInlL77ztq/DRvMskMH/m1BenD+DqTajARIH4RuAEhxNC+Pjj//lB54wN52NtO96Sb/QbYiYYWbHTvsfb16BT7f6te9ebM9n3I4fGu6nfM4w12LFokuQfX4to6oanA1yTuUXHihWf7wQ/TKlGy6dDH911EzzJtnrzNFIhKFjx4AADIDmc2e7X4sGoFbkhYsMMtXXw3vum3bIns939B9yCHS9OnSr79Gdj8kvxNO8N4mZPh7661ElwBATcM/xQCQ4mgCWn2zZwcOtkcfHb3XsVolhDv/caTT3PiGbsk0VXcbUAvpoU0b7/nXIx0XoEOH6JQnGbVrJ735ppSbK338caJLg1h75plElwAgdANAyqN5efXs2CEddVTg4y++GL+yBDJtWmTXBRu9HOnrsMPs9ZKSyO7hNrhfOjn7bPNA4qSTEl0SxNqwYdK990qzZiW6JKjJ+G8YAFCj/fln8OOBRn2OpxEjIrvOraYb6e/mm+31Vq1Cu+bll723U71veyj4vagZMjOl0aOlY45JdElQk/HPDQCkOJqXV8+uXYGPde8e3dcaOdIs9903uvcNxHf0ctQMTZtKL7wgXXutdPrpoV0zeLA94NQTT8SubABQEzF6OQCgRnOOJO5rv/2i+1onnSRNmBC/WkRqumuuIUPMVzh69KC7CgDEAv8NAwBqNGsAtdat/Y9Fe05Xa45v53zgoYg0NBO6AQBIPP4bBoAUR81U9fzxh1k2b+5/zJpXO1oaNDDLYLXrbk49NbLXYyA1AAASj/+GAQA1mhW699pLevddM+COpW7d6L6WVdO9dq10ySWBR5a+6CLv7YMOiuz1qOkGACDx+G8YAFIcA6lVz9ChZrlmjTRwoHfoLi2N7mu1aWOvT5okPf+8+3k9enhv+5bD47FrsQOZONFuxs5AagAAJA6hGwBSHM3LI7Nxo3Tppfb2qlVmmZ1t7ysuju5r+jZX37DB/TzfEdXLyry3TztN6tBB2r3b/fodO7zfGzXdAAAkDv8NAwBqpCuuMLXBltmz/c+JdSuCQLXVwUK3xyNNmWIeEnz1lfv1vn3GCd0AACQO/w0DQIqjeXlkFi601zMypJ49/c+JtC91qHbudN/vG7qffNKu1XbWbgf62fvWjBO6AQBIHP4bBoAUR/PyyDj7STdo4B1MP/tMuukm6eqrY1sGa2A1X7t2STk53vtuv90s//wz+D09HumUU7z3EboBAEgc/hsGAKS0336Tfv45/Oucods3/B5/vPTPf3r3744W53zgztHLp0yRDjzQrA8a5N90/NFHTQ32AQfY+9z6dD/2mPTdd9776tSpXpkBAEDkCN0AkOJqcvPyigpp332ldu2k114L/bp166Tff7e3A9U4x4Lz57Vtm1lmZkoDBpgm70uXSkcdJR16qAnaTkuWeA/u5tsMXZKuu85/nzU/OAAAiD9CNwCkuJrcvHzLFnv9ggtCv+7ww723rfms4+HBB+315cu9X79hQ6ljR/t4Vpb3tb411oH6hPuiphsAgMQhdAMAUlZhYWTX/fGH9/ZPP1W/LKE65xzpkkvM+hdfBD+3dm3vbd/5ut1qups29d9Xk1tDAACQaIRuAEhxNTlQOUN3376hXZMMLQOsvttV8Q3dL7zgve0Wun1r/BctCrlYAAAgBgjdAJBkwg2FyRAiE2XDBnvdtxY4ELfBx2I9NZivevVCO8+3efm//+297da83Pl9uPde/6b0AAAgvgjdAICU5azpnjlTeuop74HG3PgG1aws6eWXo1+2YLZvD+0835puX++/b0Yqv/9+ac8es88aEX3kSGn06MjLCAAAoqOK/84BAPFWk5uLh+u337y3r7xSmjvXvxm2kzN0//67VLeuVL9+bMoXSKdOoZ3nW9Pt65tvpC5dzHrt2tKtt9qhu127yMsHAACih5puAEDKmjbNf9+LL/oPlOZkhe7GjaUmTeIfuCVp4MDQzquqpttp4UKztGq8YzHHOAAACB+hGwCQktatk1ascD/WpIlUVuZ+bMcOs0xE2A5XOKE786//0T/80CyZJgwAgORA6AaAJFOTB0YLx0svBT+elSWtWeO//88/zbJRo+iXKdoCNS9364PeoYO0das9UFwm/8MDAJAU+C8ZAJCSWrSo+pzLLvPfV1Rklrm50S1PdRx5pPv+QDXd55/vv6+0VJo0qeprAQBAfBG6ASDJMJBaaKw5qps1C3yO2/fSGt08Jyf6ZYrU55+77w9U052ZKTVv7r1vxw7pppvs7X79olI0AABQTTwHBwCkJKtv9kknSYcdJu23nzRokPs5Fo/HjPgtJU9Nd3a21KCB+zFrJHI3mzZ5b/tOQxZKSwAAABB7hG4AQEp67z2z3LlTuvlm977w8+Z5b993n/TYY2Y9mUJ3IFb/7FCEOvc3AACIr4Q2L//iiy906qmnqmXLlsrIyNB71l9Qf/F4PBozZoxatGihevXqqU+fPlq5cqXXOVu3btXgwYOVk5Ojxo0ba9iwYdrOXx4AUhgDqVXtww+lOXPM+oIFZpmR4T5i9y+/2OtjxtjryTK6d7ByBKvp9hVsmjQAAJA4CQ3dO3bs0OGHH64JEya4Hn/wwQc1fvx4PfXUU/r666/VoEED9evXT7sdj/4HDx6spUuXavr06ZoyZYq++OILjRgxIl5vAQCQAJdfbq87/wtZtUr67jvplVfsfW4jmEvS8uWxKVu4AvXblqR99gl87LDDvLenTo1OeQAAQHQlNHT3799f9913n8444wy/Yx6PR//+9781evRonX766TrssMP04osvav369ZU14suXL9cnn3yiZ599Vj169NBRRx2lxx57TK+//rrWr18f53cDANHBQGpV27DBXh8wwF5v1Urq3Nl8Wazm5L4OPzwWJQtfsNDdvbv01FPSp59KF15o9ll9ta+7ziwPPji25QMAANWTtKOXr1mzRoWFherTp0/lvtzcXPXo0UNz586VJM2dO1eNGzfWkY65Vvr06aPMzEx9/fXXcS8zACD2Skvt9b/+O/DTsaO9/s477uckOqxaDwtuuCH4eZdfLp1wgvT449Lf/y59+aXZf8klplZ//vzYlhMAAFRP0g6kVlhYKEnKy8vz2p+Xl1d5rLCwUM195kypXbu2mjRpUnmOmz179mjPnj2V28XW/DEAgKRnzbMtSV27hnaNx+M9KFnLlu5zeMfT5MnS4sWmNjsUubnSHXfY2xkZdo3+3/5m93GX7BHaAQBA4iVtTXcsjRs3Trm5uZVfrVq1SnSRAKASA6kFdu653vNyB2uafddd9vq0ad59uFeulGon+LFzvXpSz55mzu3qOuEE7+0OHap/TwAAEB1JG7rz8/MlSRs3bvTav3Hjxspj+fn52uQzUWlZWZm2bt1aeY6bUaNGqaioqPJr3bp1US49ACDaioqkN98M/fzbb7fXTzrJrhXPy5Pq149u2RLN+SBCCjzvNwAAiL+kDd3t2rVTfn6+ZsyYUbmvuLhYX3/9tQoKCiRJBQUF2rZtmxYuXFh5zmeffaaKigr16NEj4L2zs7OVk5Pj9QUAySLdB1KbN880737lFem556S77w7tutWrvbdPOSX4+dnZ7uHa51luWvAN3dGoPQcAANGR0MZ127dv16pVqyq316xZo0WLFqlJkyZq3bq1rr/+et1333064IAD1K5dO/3f//2fWrZsqYEDB0qSDj74YJ100kkaPny4nnrqKZWWlurqq6/Weeedp5YtWyboXQEAAtm2TfrruWnlaNySmWP63/8OfF15uX//7Q8/rPr1du7035cs83NHU7o/qAEAIJUlNHQvWLBAxx9/fOX2jTfeKEkaOnSoJk2apFtvvVU7duzQiBEjtG3bNh111FH65JNPVLdu3cprXnnlFV199dU64YQTlJmZqUGDBmn8+PFxfy8AUNOUl5tlrVqhX7PXXu77H300eOhetMh7+/ffQ39NX8ccE/m1yapnT3v9r1k1AQBAkkho6D7uuOPkCTJiUEZGhu655x7dc889Ac9p0qSJXn311VgUDwASIhUGUrNqnisqzLRVzuC9e7cZ4Cwjw7uZ8x9/RP56//mPvX711VKTJpHf68wzI782WTkbd4XzEAQAAMQevb4AAGF7800z3dWSJdLTT5t9M2ZI999vRuWuXduEv4svtq9xjh4ejsJC+zUk6eGHQ7/WreHT8OGRlSOZOUdxb98+ceUAAAD+CN0AkGSSvX+uxyNdcIG9PXKk6Tvdp490553e577wgjR1qln3HQgtVP/6l/d2sGnCfF1zjf++RE8VFitTpkiTJjFdGAAAySZN//QAAMTKY4/573MOiubrpJOkpUulv4bt0IUXSi+/HPrrffCBve6cezsS4Uw5lmoGDEh0CQAAgBtqugEgCaRCP27L/Pn++959N/g1nTpJW7aY9Xnz3M8vLPTf98gj0o8/mvUHH5TuuCO8skrSV19JV1xhRk4/++zwrwcAAKgOaroBIMkkewD/7rvqXf/cc+4jiA8caAK5xeOxa8clacSI8JqWW3r1Ml8AAACJQE03ACSBZA/alvJyadUqs750qf/xxo2lNm3M+tChUl6e9/GsLDtw/+9/0v/9n33s66+9z/WtUc/JibjYAAAACUPoBoAkk8wDqf3yi7Rnj5SdLR10kDR5sn0sL89MC7ZihfTxx9ITT5im3U7vvGOvH3qodPfdUv369r5ly+x1Zwh/6aXk/r4AAAAEQvNyAECVtm41TbR37DDbBx5opgRzNtu2QnF2thk8TTLTV3k80saN0vffS717e983I8PUaHfqZLaPOsq8liRde619XrCB2gAAAJIZoRsAkkAyNy8vLpaaNvXeZ01L5Wzy/cQTge+Rl+ff1Nyy7772en6+We7eHX45AQAAkhGhGwCSTLIF8Jtu8t/XrZtZNmggXXWVtGuXGQgtEs7gfsYZZrl2rb3vo48iuy8AAEAyIHQDQBJItqDt9L//+e9zjj4+YUL1X2P4cOk//5Huv980YT/rLLN///2l/v2rf38AAIBEYSA1AEgy8RgwrLxcKi0N7Vxn82/LIYdEtzzOsjz6qDRypFkP1CQdAAAgVRC6AaCG2b1batjQNOsuLg5+bmmptGSJWX/vPWnLFmnDBtOsPJrOPNN726pd79Iluq8DAAAQb4RuAEgC8Wxe3qqVCd67d0uXXhr4vFWrpDp1pJUrzfa++5oB1azBzqLp5JPd9++9d/RfCwAAIJ4I3QCQZGIZwIuLTW21ZcGCwOcecID3dps2sSmTZKYfKyvz35+dHbvXBAAAiAdCNwAkgXjVdM+b573t2697zhwpK8u/X/nf/hb7WudataSnnvLeF6wmHgAAIBUQugEgDqZNMzXHM2dWfW6sBlLzeKR+/bz3rV8vvf66vd2rl3+N86xZ0uzZsSmTr8svN6/fvbt05JE0LwcAAKmP0A0AcXDyyaaPdO/eUmGh//E9e+z1Cy90b2odiRkzpA4dTHDOdPyLX6+evX7++dKPP7qXS5IOPzw6ZQlVrVqmRv7rr73LDAAAkIr4cwYA4qC83F5v0UK66ipp8mQzN3VZmdS+vff5X34Zndc991xpxQrpuOO89y9c6L190EH+I4hL0sCBUm5udMoSjowMAjcAAEgP/EkDADHm1l/7ySelc86RRowwfag3bfI+/uOP1X/d8nLp99/99z/zjHTwwSbwO82da6+XlJhyv/tu9csBAABQkxG6ASDG1q0L/5rFi6v3mu+/L9Wu7b9/332l4cPN+mWXmTm3fX31lXkQAAAAgOojdANAjL32WmjnffONdMUVZn3Vquq95sCB7vsvv9x7Oz9feughe/uqq8xgagAAAIgOQjcAxFhJSWjndesmHX+8WXcOrBauX34JfMytBvvyy6W6dc36uHGRvy4AAAD8EboBIMZ+/tksL7jA3te9u/c5xxxjltnZZhlqUHezfr29Pn68dNZZ9rZbDXijRtKCBWbAtZycyF8XAAAA/gjdABBjzz9vlj17SsuWSVOnmumwKirscw44wCzr1DHLefOkxx6L7PX+/NMs8/Kka64xo6Rv2yb98YcZpdxNp07SgQdG9noAAAAIjNANADG0c6e9vs8+ZtTwvn3NdkaGNH26aVb+r3+ZfVZNtyRde234r7d+vdSvn1nv3Nnen5srNW4c/v0AAABQPYRuAIiSxx4zo4Y7pwh79FF7/Ywz/K/p08cMoGbNhW3VdIeqqEjavdve3mcfe/3ww8O7FwAAAKKP0A0AUTBihKmZHjhQysyU3nzTNPO+4w5zvFUrU7NdFWdNtyTdc0/gc5cvN7XXmze7H7/++hAKDgAAgJgidANAFPznP97b557rPSjZE09Edt+xY6UtW0xt9vDhZmC0P/6QFi2SOnYMfN3y5VKLFpG9JgAAAKKndqILAACpaPVq6ZRTpA0bzLIqvXuHdl+3Ucsff9xMIfbss2b7uuuC32PSJKlDh9BeDwAAALFFTTcAhOH5500z8fbtpR9+MH2qX3nFPr57t3Tffd7XLFki1a8f2v333tt/3913Sw88EPgaa7oxy6mnhvZaAAAAiD1CNwCEaOxYadiwwMeHDzd9su+804Tz66+XysulQw4J/TUOOkh6+mnpww+lo46q+vydO6VZs6S33zbbLVtKTZqE/noAAACIrQyPxznObs1UXFys3NxcFRUVKcfZCRMA/vLBB9Lppwc/Z+VKUwMeLTt3Sg0aeO979lnpssvM+sSJ0sUX28d275bq1o3e6wMAACCwUHMkNd0AUIVVq/wD99lnm37Ww4fb+6IZuCXTJN26/8yZUkWFqWnfsEH66itp6FDv8wncAAAAyYeablHTDcBdebn08MPSa69J331n7589W/rb38y6xyO98IJ07LFSu3aJKScAAADiL9QcyejlqBaPRxo3zvRhbdfONK+tVSvRpQKqr6JCqu3yL+S2bVJurr2dkeHdxBsAAABwonk5Atq508z1G0yfPiZwS9KaNSakZGSYprBAKnvhBf99Gzd6B24AAACgKoTuFLN2rXTaaWa0YsuKFaaG+dlnTeDNyDC1dJHYvl36+WdTg92rl9Sxo7nf889LP/5o1rOypM8+M+uffeZ+n969pVdfjawMQDyUl0u33SZ98on78YkTvbdnz5aaN499uQAAAJBe6NOt1OrTnZFhr3/2mfT++9Kjj/qf99VXJjSHq0sX03d16lSpX7/Qr/vtN2mfffz3z5pl5hD2eKRPP5WOPjr8wZ7OO0964w2zvmNH6PMdA24eeki69VbvfatXS/vtZz6nFRXm4dZ++5ljCxZIXbvGv5wAAABIboxenoZ8H4/07u0euCUzv2/TpiY433uv/7VuvvzSHiwqnMA9apSZG3jnTlOeKVPsY9bgUpmZUt++0siRod1z/Xrp3HPNQwYrcEtm+qQ33wy9bLFUWip1727KOH9+ZPfgkVfsVVSYQc+sViC+gVuS9t/fHMvMNF0krMB9wgkEbgAAAFQPNd1KnZruhx+Wbrop8ut//FE64IDAx5216ME8+6yZDzg31wTjrCz/c849N3A4Hj1auvtuE3CcKirMvvJy9wGsnPbskerUCa280fLJJ1L//qZJcu/e0hdfSH//u328tNS/3CtXSk89ZR4+nHaa97HLLjNzP8+ZI/3yi2mdMGpU/N+XZL73Dz9syn/ddaF/FqKhvNx0a4hFX2mPR8rLkzZvjuz6Z581U3QBAAAAvkLNkYRupUboLitzD7cW66dYUmKacH/zTfDzfN15p3T//f77H3rINDX/9FOzff/9JhhWZcMGE1jGjHE/ftZZ0uTJpjz/+pe5Z1mZCaJ79kgvveR9/pYtJsRfdZW9r6IivuGwqtfKzZV69LBD+eLFUufO9vHdu6VFi6QLL5See84EcTe7d0vZ2dEqdXAVFWYwPOfAdx98IJ16qln3eKSFC6VDDon+HNAejzRwoHk9Sfr2W+mII0wA/+036cAD7e/5unXmgdMNN5jtLl3s71F5ufnsOL9nHo+5xzvvmIcITh06SIcdZmqxL73U/IyWLvUv34gR0hNPMBo/AAAA3BG6w5AKofvpp6UrrjDrX31lmnK//rr08cemprRtW+/zf/1VatXKNKudM8f/fh9+KLVoYZrOTpokXXKJfSw7W7roIumZZ0zo+eUXacAAU+NnhZ5QlZRIf/xhgkuzZt7H/vMf6b77zP0DcQbrigrvADRjhgm3q1ebc6wmwdVVVmYeNjRv7l3L2ayZCf+h+OIL86DinnvCf/1DDpGWLHE/5vF4txA4+GATViMJxNu3S40auR9bu9Z8fq65Rnr8cbPv//5Puv568/0uKTFhtUGD8F/X8tFH5nMVzODB0tixJoC7GTBA+u9/zXrbtuZhTt265nPla+tWaa+9Ar9WYaF5sNW0aUjFBwAAQA1H6A5DsofuP/80gXLLFtM0+957w7t+5kzplFNMUK/K7NkmqMfCihWmv/fNN4d2/vr15sGAU3GxaSK/aZMJhd27S2+/bY498YQ0dKg90FpZmTRvnlRQEF5t5QkneI/KbgX/QDXd8+dL3bqFfv9QvPKKqWlt0UI6+2zTEqBRI/dm+xdeaLcMmDNH+v13u6baje/Di0AaNDAD1wVzyy3S5ZebBxKBfnX27DEPMfr3Nw95tmzxfwATS3l5Zjq7evXi95oAAABIf4TuMCR76PZ4pPfeM02S3303eDPzQMaMqTqsT5smnXhiREUMy/jx3k1+8/JMoBw8WDrjDBPSunULHHK/+so0oQ9k1izvpts9e5owGmpTdN/z7rlHOvxw6fTTzfapp5oa/zVrTG1vly7mgcbYsaYW+sEHva+/7TbpH/9wf63TTzfNq++809zrrLMCl+uf/wz+wGKvvUyrAslMd3Xxxd7HN240U8Bt3ep/bXa2+b5Xxz/+Yb4v1ufzt9/MgH4//2yf4/aAolcv87DH915PPul9bcOGpnXEpk3256dTJ/P9X7zY1L736mUeKhQWmibpp55qPvvRbhoPAAAAELrDkOyhOxo2bDAjjEvSkUea2uDvv7cD2EsvmRrTeBk3TrrjDjPN2E8/hTd42M6d4TdrnjfP9Lf2tWCBdPXVpjlynz5mn2/o3mcfE9pWrzbbVf3GzJhh30sKvY92qDXQ1j137pSaNAlejt69TUgtKnJvom2Fc4/HfG3d6l8LfcAB0ty5ZmmF+r59zUMaX337mq4Qd94Z+jztzhYNGzaY0L733mbb6kbRoIF0zjnx7cMPAAAABEPoDkNNCN2BbN9ugkx1+uYmQr9+duh7+mlTszl2bPBrRo824fqaa0yz6Nq17QcRkqlt//FHOwBOm2ZCpNMVV5ga2Kr8+qsJxu3bh/6eJFMLvGCBvX3EEdL//mcGC7M4R6EfMcLU/krScceZWt+HHw7ttT7+WDrpJP/977wjDRpkpnd77LHAQbe01Ezn9tNPplb52Wfdz9trLxOiV6703l9VH2sAAAAgmRG6w1CTQ3e6Wb3aDrpr15rm8itWhH+fzEzTJ9x3WrPly83o17FidQNo08a7afXPP5sm1+eea8J1MO+/b0YFd3PUUdILL5iB2qzm8tHSubNp5m0ZPtzUTlu1/ldeaaZPk2L/fQQAAABijdAdBkJ3+tq82YxCHq6DDpJ++ME7xEsmiMdyCqmyMmnCBFOTX51QWl5umpP/9JPZPvlk033gnHNiV35nX/1Jk8ygdr527TKDs1nNxwEAAIBURegOA6E7vRUXm5rdn382tcTffGMGW9t3XzNS+9/+Zvozv/SSaTq+Z48ZIdwK2z//LD3/vKm5bdUqgW8kAqWlphl9PPpCV1RI551nlm++6d9KAAAAAEgnhO4wELoBAAAAAOEINUdSFwUAAAAAQIwQugEAAAAAiJG0Cd0TJkxQ27ZtVbduXfXo0UPffPNNoosEAAAAAKjh0iJ0v/HGG7rxxhs1duxYffvttzr88MPVr18/bdq0KdFFAwAAAADUYGkRuh9++GENHz5cl1xyiTp27KinnnpK9evX1/PPP5/oogEAAAAAarCUD90lJSVauHCh+vTpU7kvMzNTffr00dy5c12v2bNnj4qLi72+AAAAAACItpQP3Vu2bFF5ebny8vK89ufl5amwsND1mnHjxik3N7fyq1WqTb4MAAAAAEgJKR+6IzFq1CgVFRVVfq1bty7RRQIAAAAApKHaiS5Ade29996qVauWNm7c6LV/48aNys/Pd70mOztb2dnZ8SgeAAAAAKAGS/ma7jp16qhr166aMWNG5b6KigrNmDFDBQUFCSwZAAAAAKCmS/mabkm68cYbNXToUB155JHq3r27/v3vf2vHjh265JJLEl00AAAAAEANlhah+9xzz9XmzZs1ZswYFRYWqnPnzvrkk0/8BlcDAAAAACCeMjwejyfRhUi04uJi5ebmqqioSDk5OYkuDgAAAAAgyYWaI1O+TzcAAAAAAMmK0A0AAAAAQIwQugEAAAAAiBFCNwAAAAAAMULoBgAAAAAgRgjdAAAAAADESFrM011d1qxpxcXFCS4JAAAAACAVWPmxqlm4Cd2S/vzzT0lSq1atElwSAAAAAEAq+fPPP5WbmxvwOKFbUqNGjSRJ69atCzqpeawVFxerVatWCS8Hooufa/riZ5u++NmmJ36u6YufbXri55q+0uVna70PK08GQuiWlJOTo6KiIjVq1EgZGRmJLo5ycnJS+sMHd/xc0xc/2/TFzzY98XNNX/xs0xM/1/SV6j/bRo0aVebIYAjdkjIyMlL6hw0AAAAAiK9QcySjlwMAAAAAECOE7iSSnZ2tsWPHKjs7O9FFQRTxc01f/GzTFz/b9MTPNX3xs01P/FzTV0372WZ4qhrfHAAAAAAARISabgAAAAAAYoTQDQAAAABAjBC6AQAAAACIEUI3AAAAAAAxQuhOEhMmTFDbtm1Vt25d9ejRQ998802iiwSHL774QqeeeqpatmypjIwMvffee17HPR6PxowZoxYtWqhevXrq06ePVq5c6XXO1q1bNXjwYOXk5Khx48YaNmyYtm/f7nXO//73Px199NGqW7euWrVqpQcffDDWb61GGzdunLp166ZGjRqpefPmGjhwoFasWOF1zu7duzVy5Eg1bdpUDRs21KBBg7Rx40avc9auXasBAwaofv36at68uW655RaVlZV5nfP555+rS5cuys7OVvv27TVp0qRYv70a7cknn9Rhhx2mnJwc5eTkqKCgQB9//HHlcX6u6eGBBx5QRkaGrr/++sp9/GxT01133aWMjAyvrw4dOlQe5+ea2n777TddeOGFatq0qerVq6dDDz1UCxYsqDzO31Gpp23btn6/sxkZGRo5cqQkfmf9eJBwr7/+uqdOnTqe559/3rN06VLP8OHDPY0bN/Zs3Lgx0UXDXz766CPPnXfe6XnnnXc8kjzvvvuu1/EHHnjAk5ub63nvvfc8ixcv9px22mmedu3aeXbt2lV5zkknneQ5/PDDPfPmzfN8+eWXnvbt23vOP//8yuNFRUWevLw8z+DBgz3ff/+957XXXvPUq1fP8/TTT8frbdY4/fr180ycONHz/fffexYtWuQ5+eSTPa1bt/Zs37698pwrrrjC06pVK8+MGTM8CxYs8PTs2dPzt7/9rfJ4WVmZ55BDDvH06dPH891333k++ugjz9577+0ZNWpU5Tk//fSTp379+p4bb7zRs2zZMs9jjz3mqVWrlueTTz6J6/utST744APPf//7X8+PP/7oWbFiheeOO+7wZGVleb7//nuPx8PPNR188803nrZt23oOO+wwz3XXXVe5n59taho7dqynU6dOng0bNlR+bd68ufI4P9fUtXXrVk+bNm08F198sefrr7/2/PTTT56pU6d6Vq1aVXkOf0elnk2bNnn9vk6fPt0jyTNz5kyPx8PvrC9CdxLo3r27Z+TIkZXb5eXlnpYtW3rGjRuXwFIhEN/QXVFR4cnPz/c89NBDlfu2bdvmyc7O9rz22msej8fjWbZsmUeSZ/78+ZXnfPzxx56MjAzPb7/95vF4PJ4nnnjCs9dee3n27NlTec5tt93mOeigg2L8jmDZtGmTR5Jn1qxZHo/H/ByzsrI8kydPrjxn+fLlHkmeuXPnejwe80AmMzPTU1hYWHnOk08+6cnJyan8Wd56662eTp06eb3Wueee6+nX7//Zu+4wKYq0/5vZvOSw5IxkVJAkiAKKonIGVMR0gnrmnPXuU9TzTg89T70z3HkemBVQECOCZAQEBCSJ5Jxhd9m8M9PfH52qq6uqq3tmNlm/59lne7qrq6orvm+9aUSyP0mBQIMGDbT//ve/ql9rAE6cOKF16tRJmzVrljZkyBCL6VZ9W30xfvx47dRTT2U+U/1avfHoo49qgwcP5j5XdFTNwL333qt17NhRi8Vias4yoNTLKxllZWVYuXIlhg8fbt0Lh8MYPnw4lixZUok1U5DF9u3bceDAAUcf1qtXDwMGDLD6cMmSJahfvz769u1rpRk+fDjC4TCWLVtmpTnrrLOQnp5upRkxYgQ2bdqE48ePV9DX/LaRl5cHAGjYsCEAYOXKlSgvL3f0bdeuXdGmTRtH35588slo2rSplWbEiBHIz8/H+vXrrTRkHmYaNccrBtFoFB9//DEKCwsxcOBA1a81AHfeeSdGjhzpan/Vt9UbmzdvRosWLdChQwdce+212LVrFwDVr9UdM2bMQN++fTF69Gg0adIEvXv3xltvvWU9V3RU9UdZWRnef/993HjjjQiFQmrOMqCY7krGkSNHEI1GHQMOAJo2bYoDBw5UUq0U/MDsJ1EfHjhwAE2aNHE8T01NRcOGDR1pWHmQZSgkD7FYDPfddx/OOOMM9OzZE4De7unp6ahfv74jLd23Xv3GS5Ofn4/i4uJkfI4CgLVr16J27drIyMjAbbfdhmnTpqF79+6qX6s5Pv74Y/z000947rnnXM9U31ZfDBgwAJMmTcK3336LN954A9u3b8eZZ56JEydOqH6t5ti2bRveeOMNdOrUCTNnzsTtt9+Oe+65B++88w4ARUfVBEyfPh25ubkYN24cALUWs5Ba2RVQUFBQqAq48847sW7dOixatKiyq6KQIHTp0gWrV69GXl4epk6dirFjx2L+/PmVXS2FOLB7927ce++9mDVrFjIzMyu7OgoJxAUXXGBdn3LKKRgwYADatm2LyZMnIysrqxJrphAvYrEY+vbti7/+9a8AgN69e2PdunV48803MXbs2EqunUIi8Pbbb+OCCy5AixYtKrsqVRZK0l3JaNy4MVJSUlze/A4ePIhmzZpVUq0U/MDsJ1EfNmvWDIcOHXI8j0QiOHbsmCMNKw+yDIXk4K677sKXX36JuXPnolWrVtb9Zs2aoaysDLm5uY70dN969RsvTd26dRUxmUSkp6fjpJNOQp8+ffDcc8/h1FNPxSuvvKL6tRpj5cqVOHToEE477TSkpqYiNTUV8+fPx6uvvorU1FQ0bdpU9W0NQf369dG5c2ds2bJFzdlqjubNm6N79+6Oe926dbPMBxQdVb2xc+dOzJ49G3/4wx+se2rOuqGY7kpGeno6+vTpg++//966F4vF8P3332PgwIGVWDMFWbRv3x7NmjVz9GF+fj6WLVtm9eHAgQORm5uLlStXWmnmzJmDWCyGAQMGWGkWLFiA8vJyK82sWbPQpUsXNGjQoIK+5rcFTdNw1113Ydq0aZgzZw7at2/veN6nTx+kpaU5+nbTpk3YtWuXo2/Xrl3rIAZmzZqFunXrWkTGwIEDHXmYadQcr1jEYjGUlpaqfq3GOOecc7B27VqsXr3a+uvbty+uvfZa61r1bc1AQUEBtm7diubNm6s5W81xxhlnuMJx/vrrr2jbti0ARUdVd0ycOBFNmjTByJEjrXtqzjJQ2Z7cFPSQYRkZGdqkSZO0DRs2aLfccotWv359hzc/hcrFiRMntFWrVmmrVq3SAGgvvfSStmrVKm3nzp2apumhLurXr699/vnn2s8//6xdcsklzFAXvXv31pYtW6YtWrRI69SpkyPURW5urta0aVPt97//vbZu3Trt448/1rKzs1WoiyTi9ttv1+rVq6fNmzfPEfaiqKjISnPbbbdpbdq00ebMmaOtWLFCGzhwoDZw4EDruRny4rzzztNWr16tffvtt1pOTg4z5MXDDz+sbdy4UXvttdeqbciL6oLHHntMmz9/vrZ9+3bt559/1h577DEtFApp3333naZpql9rEkjv5Zqm+ra64sEHH9TmzZunbd++XVu8eLE2fPhwrXHjxtqhQ4c0TVP9Wp3x448/aqmpqdpf/vIXbfPmzdoHH3ygZWdna++//76VRtFR1RPRaFRr06aN9uijj7qeqTnrhGK6qwj++c9/am3atNHS09O1/v37a0uXLq3sKikQmDt3rgbA9Td27FhN0/RwF0888YTWtGlTLSMjQzvnnHO0TZs2OfI4evSodvXVV2u1a9fW6tatq91www3aiRMnHGnWrFmjDR48WMvIyNBatmypPf/88xX1ib9JsPoUgDZx4kQrTXFxsXbHHXdoDRo00LKzs7VRo0Zp+/fvd+SzY8cO7YILLtCysrK0xo0baw8++KBWXl7uSDN37lytV69eWnp6utahQwdHGQqJx4033qi1bdtWS09P13JycrRzzjnHYrg1TfVrTQLNdKu+rZ4YM2aM1rx5cy09PV1r2bKlNmbMGEccZ9Wv1RtffPGF1rNnTy0jI0Pr2rWr9p///MfxXNFR1RMzZ87UALj6StPUnKUR0jRNqxQRu4KCgoKCgoKCgoKCgoJCDYey6VZQUFBQUFBQUFBQUFBQSBIU062goKCgoKCgoKCgoKCgkCQopltBQUFBQUFBQUFBQUFBIUlQTLeCgoKCgoKCgoKCgoKCQpKgmG4FBQUFBQUFBQUFBQUFhSRBMd0KCgoKCgoKCgoKCgoKCkmCYroVFBQUFBQUFBQUFBQUFJIExXQrKCgoKCgoKCgoKCgoKCQJiulWUFBQUFBQUFBQUFBQUEgSFNOtoKCgoKCgoKCgoKCgoJAkKKZbQUFBQUFBQUFBQUFBQSFJUEy3goKCgoKCgoKCgoKCgkKSoJhuBQUFBQUFBQUFBQUFBYUkQTHdCgoKCgoKCgoKCgoKCgpJgmK6FRQUFBQUFBQUFBQUFBSSBMV0KygoKCgoKCgoKCgoKCgkCYrpVlBQUFBQUFBQUFBQUFBIEhTTraCgoKBQZTFv3jyEQiHMmzcvofmGQiE89dRTCc1TgY127drhd7/7XWVXw4GhQ4di6NChlVL27t27kZmZicWLF1dK+VdddRWuvPLKSilbQUFB4bcKxXQrKCgoKCQEkyZNQigUsv5SU1PRsmVLjBs3Dnv37q3w+nz99ddVjrEuKCjA+PHj0bNnT9SqVQuNGjVCr169cO+992Lfvn1WuqpYdxE2bNiAp556Cjt27Eh43qFQCHfddVfC860sPPPMMxgwYADOOOMM6964ceMccycjIwOdO3fGk08+iZKSElcesuPoqaeeQigUwpEjR6x7jz76KD799FOsWbMmuR+qoKCgoGAhtbIroKCgoKBQs/DMM8+gffv2KCkpwdKlSzFp0iQsWrQI69atQ2ZmZoXV4+uvv8Zrr73GZF6Li4uRmlqxW2B5eTnOOuss/PLLLxg7dizuvvtuFBQUYP369fjwww8xatQotGjRwrPuVREbNmzA008/jaFDh6Jdu3aVXZ0qi8OHD+Odd97BO++843qWkZGB//73vwCAvLw8fP755/jzn/+MrVu34oMPPrDS+RlHLPTu3Rt9+/bF3//+d7z77ruJ/0gFBQUFBRcU062goKCgkFBccMEF6Nu3LwDgD3/4Axo3boy//e1vmDFjRpVRa61I5t/E9OnTsWrVKnzwwQe45pprHM9KSkpQVlYWKN9IJIJYLIb09PREVFMhiXj//feRmpqKiy66yPUsNTUV1113nfX7jjvuwKBBg/DRRx/hpZdeQtOmTQEkZhxdeeWVGD9+PF5//XXUrl07zq9SUFBQUPCCUi9XUFBQUEgqzjzzTADA1q1bHfd/+eUXXHHFFWjYsCEyMzPRt29fzJgxwzO/hQsXYvTo0WjTpg0yMjLQunVr3H///SguLrbSjBs3Dq+99hoAONR2TZA23VOnTkUoFML8+fNdZf373/9GKBTCunXr4q63+f2kWrGJzMxM1K1b17PuO3bsQCgUwosvvoiXX34ZHTt2REZGBjZs2CBdN9MMYPHixXjggQeQk5ODWrVqYdSoUTh8+LAjbSwWw1NPPYUWLVogOzsbw4YNw4YNG9CuXTuMGzfOym/06NEAgGHDhln1pe3wFy1ahP79+yMzMxMdOnQILGU17fwnT56Mv/zlL2jVqhUyMzNxzjnnYMuWLa70//nPf9CxY0dkZWWhf//+WLhwITPf0tJSjB8/HieddJI1rh555BGUlpZaacaOHYvMzExs3LjR8e6IESPQoEEDh2o3C9OnT8eAAQOkGN1QKITBgwdD0zRs27bNui87jkQ499xzUVhYiFmzZnmmVVBQUFCIH0rSraCgoKCQVJh2vg0aNLDurV+/HmeccQZatmyJxx57DLVq1cLkyZNx6aWX4tNPP8WoUaO4+U2ZMgVFRUW4/fbb0ahRI/z444/45z//iT179mDKlCkAgFtvvRX79u3DrFmz8N577wnrN3LkSNSuXRuTJ0/GkCFDHM8++eQT9OjRAz179oy73m3btgUAvPvuu/i///s/xyEACZm6T5w4ESUlJbjllluQkZGBhg0b+q7b3XffjQYNGmD8+PHYsWMHXn75Zdx111345JNPrDSPP/44JkyYgIsuuggjRozAmjVrMGLECIed8VlnnYV77rkHr776Kv74xz+iW7duAGD9B4AtW7bgiiuuwE033YSxY8fif//7H8aNG4c+ffqgR48e3DYT4fnnn0c4HMZDDz2EvLw8TJgwAddeey2WLVtmpXn77bdx6623YtCgQbjvvvuwbds2XHzxxWjYsCFat25tpYvFYrj44ouxaNEi3HLLLejWrRvWrl2Lf/zjH/j1118xffp0AMArr7yCOXPmYOzYsViyZAlSUlLw73//G9999x3ee+89oVp3eXk5li9fjttvv136G1lzR3YcidC9e3dkZWVh8eLFwjGroKCgoJAgaAoKCgoKCgnAxIkTNQDa7NmztcOHD2u7d+/Wpk6dquXk5GgZGRna7t27rbTnnHOOdvLJJ2slJSXWvVgspg0aNEjr1KmTdW/u3LkaAG3u3LnWvaKiIlfZzz33nBYKhbSdO3da9+68806Nt80B0MaPH2/9vvrqq7UmTZpokUjEurd//34tHA5rzzzzjO96s1BUVKR16dJFA6C1bdtWGzdunPb2229rBw8edKXl1X379u0aAK1u3braoUOHHM9k62b20/Dhw7VYLGbdv//++7WUlBQtNzdX0zRNO3DggJaamqpdeumljnKeeuopDYA2duxY696UKVNc/WSibdu2GgBtwYIF1r1Dhw5pGRkZ2oMPPshpLRsAtDvvvNP6bY6Jbt26aaWlpdb9V155RQOgrV27VtM0TSsrK9OaNGmi9erVy5HuP//5jwZAGzJkiHXvvffe08LhsLZw4UJH2W+++aYGQFu8eLF1b+bMmRoA7dlnn9W2bdum1a5d29VGLGzZskUDoP3zn/90PRs7dqxWq1Yt7fDhw9rhw4e1LVu2aC+++KIWCoW0nj17OvrJzzgaP368BkA7fPiw61nnzp21Cy64wLPeCgoKCgrxQ6mXKygoKCgkFMOHD0dOTg5at26NK664ArVq1cKMGTPQqlUrAMCxY8cwZ84cXHnllThx4gSOHDmCI0eO4OjRoxgxYgQ2b94s9HaelZVlXRcWFuLIkSMYNGgQNE3DqlWrAtV5zJgxOHTokEMleurUqYjFYhgzZkzC6r1s2TI8/PDDAHS17JtuugnNmzfH3Xff7VBj9sLll1+OnJwc63eQut1yyy0OKemZZ56JaDSKnTt3AgC+//57RCIR3HHHHY737r77bul6mujevbtlZgAAOTk56NKli0Nt2i9uuOEGhx27mb+Z54oVK3Do0CHcdtttjnTjxo1DvXr1HHlNmTIF3bp1Q9euXa22O3LkCM4++2wAwNy5c6205513Hm699VY888wzuOyyy5CZmYl///vfnvU9evQoAKfUmkRhYSFycnKQk5ODk046CQ899BDOOOMMfP75545+StQ4atCggcOruYKCgoJC8qCYbgUFBQWFhOK1117DrFmzMHXqVFx44YU4cuQIMjIyrOdbtmyBpml44oknLCbD/Bs/fjwA4NChQ9z8d+3ahXHjxqFhw4aoXbs2cnJyLLXwvLy8QHU+//zzUa9ePYdq9SeffIJevXqhc+fOCak3ANSrVw8TJkzAjh07sGPHDrz99tvo0qUL/vWvf+HPf/6zdH3bt2/v+B2kbm3atHH8NpnB48ePA4DFfJ900kmOdA0bNuQyjjzQZZnlmWUFgWz9O3Xq5EiXlpaGDh06OO5t3rwZ69evd7Wd2fd027344oto2LAhVq9ejVdffRVNmjSRrremacz7mZmZmDVrFmbNmoWJEyeiW7duOHTokOOQyUQixpGmaYFU0xUUFBQU/EPZdCsoKCgoJBT9+/e3vJdfeumlGDx4MK655hps2rQJtWvXRiwWAwA89NBDGDFiBDMPmtEzEY1Gce655+LYsWN49NFH0bVrV9SqVQt79+7FuHHjrLz9IiMjA5deeimmTZuG119/HQcPHsTixYvx17/+1UoTT71ZaNu2LW688UaMGjUKHTp0wAcffIBnn31W6l2aEQtSt5SUFGY6HlMYD5JRViLzjMViOPnkk/HSSy8xn5P23wCwatUqixFfu3Ytrr76as8yGjVqBADcg4aUlBQMHz7c+j1ixAh07doVt956q9BRX9BxdPz4cdeBhIKCgoJCcqCYbgUFBQWFpCElJQXPPfcchg0bhn/961947LHHLCljWlqag8mQwdq1a/Hrr7/inXfewfXXX2/dZ3lh9ivFGzNmDN555x18//332LhxIzRNs1TLAcRVbxEaNGiAjh07Ojyk+617MupmOuzasmWLQ7J+9OhRF+NYFSWmZv03b95sqYkDukOz7du349RTT7XudezYEWvWrME555zj+S2FhYW44YYb0L17dwwaNAgTJkzAqFGj0K9fP+F7bdq0QVZWFrZv3y5V/+bNm+P+++/H008/jaVLl+L0008XpmeNIx4ikQh2796Niy++WKouCgoKCgrxQamXKygoKCgkFUOHDkX//v3x8ssvo6SkBE2aNMHQoUPx73//G/v373elp8NWkTClm6Q0U9M0vPLKK660tWrVAgDk5uZK1XP48OFo2LAhPvnkE3zyySfo37+/g9mMp94AsGbNGqYN7c6dO7FhwwZ06dIlcN3jrRsL55xzDlJTU/HGG2847v/rX/9ypfVb34pA3759kZOTgzfffNMRu3rSpEmuel555ZXYu3cv3nrrLVc+xcXFKCwstH4/+uij2LVrF9555x289NJLaNeuHcaOHetpS52Wloa+fftixYoV0t9w9913Izs7G88//7x1z8844mHDhg0oKSnBoEGDpOuioKCgoBAcStKtoKCgoJB0PPzwwxg9ejQmTZqE2267Da+99hoGDx6Mk08+GTfffDM6dOiAgwcPYsmSJdizZw/WrFnDzKdr167o2LEjHnroIezduxd169bFp59+ylTZ7dOnDwDgnnvuwYgRI5CSkoKrrrqKW8e0tDRcdtll+Pjjj1FYWIgXX3zRlSZovQFdGj9+/HhcfPHFOP3001G7dm1s27YN//vf/1BaWmrFDQ9S93jrxkLTpk1x77334u9//zsuvvhinH/++VizZg2++eYbNG7c2CER7tWrF1JSUvC3v/0NeXl5yMjIwNlnn+3L1jnRSEtLw7PPPotbb70VZ599NsaMGYPt27dj4sSJLpvu3//+95g8eTJuu+02zJ07F2eccQai0Sh++eUXTJ48GTNnzkTfvn0xZ84cvP766xg/fjxOO+00AHr4tqFDh+KJJ57AhAkThHW65JJL8Kc//Qn5+flS8bQbNWqEG264Aa+//jo2btyIbt26+RpHPMyaNQvZ2dk499xzPdMqKCgoKCQAleM0XUFBQUGhpsEMRbV8+XLXs2g0qnXs2FHr2LGjFZZr69at2vXXX681a9ZMS0tL01q2bKn97ne/06ZOnWq9xwoZtmHDBm348OFa7dq1tcaNG2s333yztmbNGg2ANnHiRCtdJBLR7r77bi0nJ0cLhUKOEFygQoaZmDVrlgZAC4VCjhBnJGTqzcK2bdu0J598Ujv99NO1Jk2aaKmpqVpOTo42cuRIbc6cOY60vLqbIcNeeOGFwHXj9ROrrSORiPbEE09ozZo107KysrSzzz5b27hxo9aoUSPttttuc7z/1ltvaR06dNBSUlIc+bRt21YbOXKkq65DhgxxhO3iAZyQYVOmTHGkM9uGHAOapmmvv/661r59ey0jI0Pr27evtmDBAmbZZWVl2t/+9jetR48eWkZGhtagQQOtT58+2tNPP63l5eVp+fn5Wtu2bbXTTjtNKy8vd7x7//33a+FwWFuyZInwWw4ePKilpqZq7733nuO+GTKMha1bt2opKSlWiDY/44gXMmzAgAHaddddJ6yrgoKCgkLiENK0JHhMUVBQUFBQUKiRyM3NRYMGDfDss8/iT3/6U2VXp9rhpptuwq+//oqFCxdWSvmrV6/Gaaedhp9++gm9evWqlDooKCgo/NagbLoVFBQUFBQUmCguLnbde/nllwHotvoK/jF+/HgsX74cixcvrpTyn3/+eVxxxRWK4VZQUFCoQChJt4KCgoKCggITkyZNwqRJk3DhhReidu3aWLRoET766COcd955mDlzZmVXT0FBQUFBoVpAOVJTUFBQUFBQYOKUU05BamoqJkyYgPz8fMu5mmw8cQUFBQUFBQUl6VZQUFBQUFBQUFBQUFBQSBqUTbeCgoKCgoKCgoKCgoKCQpKgmG4FBQUFBQUFBQUFBQUFhSRBMd0KCgoKCgoKCgoKCgoKCkmCcqQGIBaLYd++fahTpw5CoVBlV0dBQUFBQUFBQUFBQUGhikPTNJw4cQItWrRAOMyXZyumG8C+ffvQunXryq6GgoKCgoKCgoKCgoKCQjXD7t270apVK+7zSmW6FyxYgBdeeAErV67E/v37MW3aNFx66aXWc03TMH78eLz11lvIzc3FGWecgTfeeAOdOnWy0hw7dgx33303vvjiC4TDYVx++eV45ZVXULt2bel61KlTB4DeWHXr1k3Y9ykoKCgoKCgoKCgoKCjUTOTn56N169YWP8lDpTLdhYWFOPXUU3HjjTfisssucz2fMGECXn31Vbzzzjto3749nnjiCYwYMQIbNmxAZmYmAODaa6/F/v37MWvWLJSXl+OGG27ALbfcgg8//FC6HqZKed26dRXTraCgoKCgoKCgoKCgoCANLxPlKhOnOxQKOSTdmqahRYsWePDBB/HQQw8BAPLy8tC0aVNMmjQJV111FTZu3Iju3btj+fLl6Nu3LwDg22+/xYUXXog9e/agRYsWUmXn5+ejXr16yMvLU0y3goKCgoKCgoKCgoKCgidk+cgq6718+/btOHDgAIYPH27dq1evHgYMGIAlS5YAAJYsWYL69etbDDcADB8+HOFwGMuWLePmXVpaivz8fMefgoKCgoKCgoKCgoKCgkKiUWWZ7gMHDgAAmjZt6rjftGlT69mBAwfQpEkTx/PU1FQ0bNjQSsPCc889h3r16ll/yomagoKCgoKCgoKCgoKCQjJQZZnuZOLxxx9HXl6e9bd79+7KrpKCgoICkL8ZODivsmvhjaI9wJfdgXV/qeyaKCgoKCgoKChUeVRZprtZs2YAgIMHDzruHzx40HrWrFkzHDp0yPE8Eong2LFjVhoWMjIyLKdpynmagoJClcGXnYHvhwG56yq7JmLs+xrI3wj8/H+VXRMFBQUFBQUFhSqPKst0t2/fHs2aNcP3339v3cvPz8eyZcswcOBAAMDAgQORm5uLlStXWmnmzJmDWCyGAQMGVHidFRQUFBKC42squwZilJ+o7BooJANFe4BIUWXXQkFBQUFBocahUkOGFRQUYMuWLdbv7du3Y/Xq1WjYsCHatGmD++67D88++yw6depkhQxr0aKF5eG8W7duOP/883HzzTfjzTffRHl5Oe666y5cddVV0p7LFRQUFKocPMJOuFB2HPjlFaDdtUDdTsmpkwNVIuiFQiJRsA2Y0RHIbAJcdtA7vYKCgoKCgoI0KpXpXrFiBYYNG2b9fuCBBwAAY8eOxaRJk/DII4+gsLAQt9xyC3JzczF48GB8++23VoxuAPjggw9w11134ZxzzkE4HMbll1+OV199tcK/RUFBQaHSsPxOYOdHwIbngatKkl8eGWlS0/wfEihUPeyfqf8vOSROp6CgoKCQWMQiQChF7aU1HJXKdA8dOhSiMOGhUAjPPPMMnnnmGW6ahg0b4sMPP0xG9RQUFBSqBw4v1v/HSiu+bC2mEwsKCgoKCgoKThTs0P2gdLgBSM1yP48UA190BOqfAgz7tsKrp1BxqFSmW0FBQeE3g/xNQFZLIK22ROKqftpNHpbGACimW0FBQUGBgUixLsFNyfROWxPxVXcgWgwU7gB6T3A/PzgHKN6v/ynUaFRZR2oKCgoKlY6y405V6qA4sgz4siswpQ5wYHb8+VU6SPXyWOVVQ0FBQUGh6iIW0ZnOGScBUY4m1oE5wJwRul+Jmohosf7/4JzKrUd1wJxzgS+7JYbuqoJQTLeCgoICC3u+AKY2BL7tE39eu6fa1/MvkXihiku6tRrIdO/4ENg5ubJrUXmooUSOgoJCJaI8X5fwFu/lM9VzzgEOfAcsvrZCq1Z1oNZeAEDRXl0okf8LkFvFI7gEhGK6qxvK82vuaaCCQlXCqof0/8dXASVH4syMWGrD6XHmVdVQA5jusuPAD9cCi8cA0QpwRKegoKDwW4DjUNbjMLmkmqpXR0slaYQqfphe2SjPt69r6D6smO7qhu8G6Wo6eRsruyYKCtUDeRt0e2q/OPGrfV12PL46hIiltn4PifRVfHPe9LJ9XRMk3ZFC+5qnAqmgoKCg4BPk/lBDJbrfDQSmt5Swya7i+3plg9yHa6jmlWK6qxvy1gPQgMMLK7smCgpVH5FC4Kseuj11rDx4PuG0+OoRK7Ovs9tIvFDFN+cSIo5zTWC6He1dMzd7hSqCwl3Alv+qwx2F3wY0P0x3Fd/3WCg9qmvDxcqAYz9Vdm2qN0zbdwA1QoOOAcV0VycU7ravQ3EyAQrBEA/jplDxKD1qX8ejrhSv5DkWsa/T68eXFwuVKhmvAptj6VGg+KB3Oh5ITYQacYgQAGTYt3jaUkGMmf2AH28GNhBejI+t1J0H7fmi8uqloJAMkOup59paDZnufEIjzmtvr+oabJUNkulWkm6FSsfnhIQsxYj1p2nAwsuBJeMqpUq/Kez9CphcB9g2qbJroiALkpGI58BEi8ZXj3rdE5cXCxW9QdVqW3ll09A04NPGwLRmTvW0wPlFvNPURJAEY7So0qpR41FySP+/72v73oJRuvOgBRdXTp0UFFgoPgAcXR5nJn6Y7iqK4gPAzNOBrRPdzzSCrmDtheTBv4IYDsFINR0rHlBMd3VF2GAmCncCuz8Dtr+j1NUSCdbiOf93QKwUWHpDxddHIX7E4pgfsTgZ5eW3EXnVAKauVnv7urIJKZJBPLElWB7kN9SE/gkC8rsru09rKkiikiTWIwUVXxcFBS9MbwnM7B+fDyHHWuKxrlRVSfCaPwJHlwHLbnQ/c+wXjO9b8yfiRxX9vqoCx/qoJN0KVQkswvC3KqFJNLZOBKa1UPY5NQGkdPv4z8HziUc6TR+GyeTll/iocGLFByGVbJQTDEtQbQayT36r66ijDZKgjaHg9O2Q1dK+JjVyFBSqCkyG+cjS+PMAJBipKsqUluXyn2keh5Vb/k38qKLfV1WgbLoVqixM4jKc6r6nEB+W3QiUHACWjmM/T61VodVRiAOkFPTHW4LnEw8TQobBACSZuiq+OTsYtEreHI+vsq+D1sVBGP5GGU4H8fgbbYNkgxxndU6yrxXTrVCVEYqHVahCB7SBQdS7aI9T6JVoDaFkS3jXPw/88nJyy/ALLQYcXQGUn3Deq4FQTHd1hUkgOWxWy9hpqzI0DVj7DLDx75VdE3mkN6rsGijIYst/7OuiXfLv0RtfPEwIPS8rajPRtOQ5xIpVIaZ7+R32dWApdUD18uKDwIHZNUMVTkm6+YgUAT/eDuybGWdGvHFSxQ/ZSKx6GJh1JhCthvSGQkDEsb7VBEdq5Po+vTUw5xzimYd6ee0O9rWURloS95LiA8Cax4Gf7q9a83fdn3UHkyvvJm7WgD2VAcV0V1dsnOC+F4+ke88M4PDi4O8HxaH5wNrxwKqH4vMunQyEMzgPKpHJKNqre7it6kR+eX7VqGPR3oAv0kx3HCrHLgZGpl0SQHysfVp3Lvbra/HnRcPxTUmcD1oMWHApsPpxfpomZ9nXm18PVk7Mh3r5oUXA5+11x4ozOgBzzgV2fxqs3IpCwTbgpwfF88FLTfK3jM2vA1veBOadH18+3HatJu2dvwnY+CJweBGwV3larzBs+Bvw422Vt6fGU64fpruq2nTT9T60gHjmsW6S4UZDqe7ngLN9tZi+H/FU2kuP6b6c/KJwl67BaaEKrTnrn3Pfq6F7kGK6qyvyN+n/HQ6AAp5cFewAFlwCzBocd7V8o/SwfV3VHMGF09n3K3Mx+KKz7uF2xweVVwcvHF4CTKkHzGgPbH27cuvS+vJg79F9HI/kz5VXBY2fdU/r/1fclfi8K4pBO7QA2PM5sOF5fpqsFva1n3kRKQZy1xoED0kYejDdc4YDhTt0x4qm+QLpiboqYs65wC8v6QcYPBTtsa+TLeku2qMfBFQXlB5JTD68uVJdCMzNhH2qMmerOKx+TLcNPrai4sokGcF4okKY3vqB6ivpZjGox9fo9A05D1jfR4b3rd3e/dwFDZhzNjC1AZC/2f3400bA5+2c7eqFgu3A522Bb3qL61ppYBzqVAWhTRKgmO5qD2JgBt0Ei4NKAxMBYpGtaurxPDumylysqgORv3a8/r9wJ7DsD+yNo6IQ5pwseyGRTLdrw5bYTOI98TcP5ZKFirLpltF+8auFsHuaHqLpi07A16fo0R/8qFazvOBXKQKGAZPBFRHt6/9qXyeT6dY0XUVzRke3v4OqiGiZfkCTEJASLUq6VR3gx0RHIfFIREhEaRDj06H26xOzzyR+EOM8WuY2f6oukm4A+KaXTt/s/JhM6E5Hqpdnt5Yry5Skb3/X+ayYkFTnrvPOy8SB79nlVBUw61KF6pdAKKa7uiMRku7KHAYkcVfVmG4uqsBiUJWlDKSDIMCpzVDRCOxYK+r+XbBD//MLOtxYIje7WIR9Inx8deLKYCEe9fKNfwc+7wAU7vb3Hi9sm98QX8tuAvZMtw8bt/0vASHDasCpfHYr+zqpBBnRVkHUJCsai8cAv76amLy44ZOq4PiJFAIntjrvaVW8zjUeFdjmyVgDyDy/7aObP+X/mvhyRNg1FVh+p891XtDuB+cQyViSboK+lqLbiLLoQ4gfb2Xn6wVm2ipAx1pQkm6FaoMESLrJCem10K64V/9L1IQg61xdmO6qcEJYlcMaZTZz/o7L82mcCCyxo/o4UqSry89oH8D3QABJtwwihcD0VmyVYZ7tmAzKC7y1E+KRdK96CCjcTsUvlcCO9zh18TkXyo5T78ec31O43SMDhjSmKqwJ8aLJMPs6qZJu8oCjCh8emtgzPXF58exbqyKB+UUn4IuTqAO8GjDOWTi6XHfIWHq0smsiRkWOk6SsaUT98wxJrcMfRgVIuheN1n00JMoPh9deSN4rkXBs6siDop3yiXjp8TLdFbFnxaLAtnfdh3fuyrBeTkaNKh2K6a7uSISk28F0C4itSJF+4v/rq0CB1ySSBEkwVzkCjLMBVAXPvoEdhFUA0upQNyqT6U5ACCkAKDtGXOfFl5cU4SRBfOz7Wt/E985w3i/Liy882lc9gC876zZrPCRCvVyGWSa1JI4uZ6eJd93QYs5vWH6nOD1LBbImMN0x4jApWWvcz+OB6UR8alPapGm6g6AaD837OtlaKrIo3q//30OsLzxtExkc/xn4siuw+Jr46pUMzOwPbH5DPxCsTtA0YPHVwPIk+O1IBtNTlWy6I0XeaaRA0jceTLcMjU6mp/caknbwFWaQxXRXAB279b/A0rH64Z0IXocVNQiK6a72SLSkWzARyWe0tCgoSBWfXZONe+XAvJFsj4YVCZ59UVVYDI5xGJCqANoBXWVKuoMSDkLnZxymueQQsPV/7s3cNacSNX5C7OtVDzoPCfxA02y7zX3fCNIlgOmWGRdHf7SvefZwcds5UpJuT3MIVr2roKTSLxz7R5LWuHXPUI6VjPX/h+t0B0GHFiW2vOM/Ax+GgKU3JDbfoOBKuol9MI+QZlUJkLbn5ez7XijcBXxzqu5rYudHAU04KgBV5cCDC6rNC7bpNsWbX0t8myZDqs7cK3ww2iWHEhcGk+coNx542SZLaWUJ2t1BS/iRdFfSQfGh+XG8XAP2VAYU011dYYYhSLRNt/D0i+MEJh6Qm/iGv+n/d03VpXhr/piYMhKNqsB0V2XQY6MynaMEPc1l2XR7YdEY3V54BSUpTZak25mpfUkyqn5BqtKmNxAUl4iQYRLfWP8U+5r0Ug7oxNeScXy1c1nQkm7SthnQPTbv/syWxDIPC2oAgVAZcbpNRn/nh/p/kZf6IPjmVP3/tkmJzTcwOEw3eeARTZQELkEgQxcFjTAy60znb4fzKQ72fqWHuatIBj2rlXeaqgRyLUp4yFVifAaNAiLKkwURrRAtBT5rqtuBJ2JMJIouiZywr70ktjLrqiMPqo6k6ZMvYUYlqZcnKr57DYJiuqsr6vXU/2sVKenmqcbFAcfiaSww0UR5ipVA3gZg/sXAsZ8YD3mS7qqmBk9gx8fAzslyabVYkmzE6DxrgHq5zAn1oXn6fxeBHyBkmBRBwEnDIkjoMjdMAH552Z1ux4f2Nc10F++3w0oFlXQ7pHgS38hytLjyPl1FdfFVwPZ35Mvm4eAcZzntfm9fF+8Hlt8GLLxcl8QemFN59nHJhl/i0ES0RF8/g6wl9FpaE9pRBEcbcQ7MN7+p+1WoKtj0sr0/kp77/fQ37fXcPGAXYf7v9DB3FRl2MuxHZbeCIKK7whn2daIPaxxqzgnaw5eMc98LcTS2aBz5wb4mGd3ASIYwwEu93KekW9TufvokNZtxM6YfJO/4OH4TrV2f6mEpSe/qQJzreQ04yGZAMd3VFRYT4Fd1hQFZppt3Sh8tBXZP92/rCjgnu7X4VqBkdM5wYO8XwOyh8u8k/EQ5QSgvAH64Wve2W7RPnDZSrDvKWTQ68fWgF9qq4kgtI8fHi9Q3eMXilK2DfsPf+zxwiRXWxk/UoeQQsPpR4Kf73aGQSEcvKVnE+zFgWgs91FOk0Ek8+GkPUhVcRkLNYro3vaKrqJqHHAkBx46OVl1f92ew16caQCDIHKRoMbdp0ZzzdE/EQZgjFxFaA9pRCM4eSuLYCuDHmyumOrL49Z/6/0Q5Oy3z4bAsUf5jpFAFQ1aJHO6Ra1Wi6ZJkHIDFE56WDHsV9Fsd7eejr2UPmFjpHOuqBI0uknST8ENXkXu5VU5UP0j+4WrgK0OIV7QX2PCCf/PRRVcAB2YDqx6myohjDJlh02oYFNNdXWFO5IRIuonT3a968j0NFpKn1cRkWvMnYOEoYP5I/2WTi1Cj0436kBtJQHU2WZjOYpgnp1VwAxaBZBC8iJr9M3V7sER58HSAJgyqiKTbz/ygNwsHsemX6Q4g6Y5n7DFV3IiNn7Q5p4kAUp0bnLYr2uPM78gS+brRdnRemzvNdCdLEkqe0DuIJHospyAp3suPrdJ9WEQrMYKDjKR7/sXA1Ia6rbSJwwv1/1v+rf8vPaarBZNpuGVGqDGQRKa7KngIl43NLaN+XaEwtdAC7Mes7/TDNFWXqCZJg0DS7RhPiTYJSdBam1rbI4GkpJscR4GdoCV5DfC06farXi4A6dQwfxPw00NOfxleeZL3Thhh22YPBVY/omuTBYHrUCWO9qbNvGoIFNNdnZBCqIjEWJLuBKg9F+8Dlt/OfkaqhJGL/fZ39f+HF/svjyT6W11iXBALL6lSVNE4tiK+90uPAl+dDKxPsJ0iD2T/0xJMV1pK8mkePiSmItTvJB9erLxfV1tjEtXE/CjPld+s6c2RJPz8Ejf0hmducK50fjcoH47+ZOtcpxP7HYdmS4nz2fLb5PIGbF8UrHxZIMv56X6gJEkx3w98xy6TJjxDKRw1zjiJuW9P031YbHo5vnziggRxuO8r/f/mN/jZrLhLVws27amFRZYD654lyk0m0x2AiUh0fVgOGcsToSorQPkJYM8XcUpCjbXGDPMEyK8prMPOZsP56Y8uB/Z9S7xfgUx3pTr95EDWCWCimW5ZiasXaAeYonkoNKsi3pvZL1hdRJ7BE4Kg6uWcgxXheCTbYwDwy991m3fWYSdrbLD6oWCL/p+MPe4HB+fShQTLB0jCIVLVQBVcYRT4YKiSk8xSUEk3Ldk+MIvtEdi056TrkpLhSiqNGMsbquTJZ7IRIezqghBfv7ykEylrHk9cnURwOOPxsosn+u+zprrqsBejLgtXWyWZkN70sm7be2KL+zkd4mbjC/L5OvIh1cv9Mt1Ueq66ZDxMt4cEjet9nZ5fPMkJeSq+JY4N0ec30uVMa8ZOFy9Icwyeh2mAH6YlURJ4UZi2ZMOXIzVBP/o5rIwU6o4zLSTRpjuQ+VWi1y7G2OJJp0Q4ukL3RyKDRVcCCy7WtQ+Cgun9WLI9WUxzvR789DP7A/MuIMqpSA0FAb2RtwH4+hTdfjUodk8DprX056V/x/v2tWhvTbQWkEzEDinQml702iJJ45HfXnY82LhIts+IwI7UeP0oKfkvJ0w7WYedTKZbsMZnNOY/84N42tusX8khXSsziPlqFYRiuqsTWKpEpJQgKNP90/3ue9tZ9pYc26J4Qi+wbEMr09s1D0GYjGSf0NOnpg5pLIcgMvuNtRh6hkqSBZX37unAvpnxZXl4MbDqUffBgMO8gtXeVF2kw/EI1Mu9YtXSp9OyG09QlS4XBJLuWMSD+Cbbk/hOUkqmRYIz3S6v8B6EU0Wddu/7klMmw1Si+fnu9xNFzCVK0lZ6FFj7Z6Bwp+55XQYOIi4O6avIHpxGyUGnk63ctcHL9UKQ/THRDB/5fUH3u9KjuqTvKwHjSmK/ITXe8h9/5TjAqKNse7LWZfPbNQ3Y8ZG43yuTHohFdC2BkiPAD9fq9Vx0RfD8Fl6maxPOY6whgZBE9XKRmY2vfBhMNzc/SUk3EOwQzdFGSRhX9LeWHLbNbwB+nQ/Mtq/JcLD02K9/Mr8sIbwO4ulniVr34sjHpD9+fgKY0RHY9GpiqlTJUEx3tQJJEBuTl1QpDupIjSUVZS3gR5ezn8fDdLPifpIT/td/Bc87kQiyoYVS7WvawURgEItw/ibnIy9nX2W5uvO0nx5iP08UwU8v2Guf1IkML2ZVhFmDgY0TgI0v0oVxrs1bNPMsqWJJv+dgOj2ITZc0VHJzNJ0V6ZnIvcOCSL18x/vAnmnEA4G9OTnmN0xg5wcAWS3t69x1wJ4Zgrr5dCrnd941Octfeq8yWZJuZii1RDnHS6CX4LVP6qGaFkqG+yG/e9kfvBLr//I3i/Pxuh+jbIRLEhSDl1l+FZB0b3qF+BHwoKZod7D34mJe45B0s0yXzLGw/zvgh2t0CbKfspMGqqxf/6VrCcwaBJTnJ66YRPmqkfUREASOQ5V4JJbUHIpFnHUlxyVJM3nmE0TIlGRJN53/wlHUY86cIenc+Rfxsw8aYYKZVsR0JyhMX1zMu1E/s59p07RqCsV0VyswTjVDxEAMKumWZcDisWvlgekFmahPUhx9BUAgpptgvlzMYkCQqvxhaoPSWG1J4NfXdNXmX/7O+Z5ELQe8hdZcRKPAj7cD29/npBPAdNbEKkvGljmoTff6v9jXX/XwkATSku4gY0eC0CTTeHmeNp8XUgS7UF2RyHP/N+z8AKBOR/v665OBBZc4D+h477F+0/B7UEP6vfCDTEJtXaRerkXYjoESJRngqa/7hWmj7odBc9geSjIFuZL2gwCb4Ey2o0yv8j3hs18PLdAltzy0IojwwOEMNfZ1RUO2PZdc775nfvvxVRIZJJnpFtn5mloiJxiHS77L4YSL85cJ/3fCJd0kPcEZZ/mbGXa8NFiSbs7YER06BgnjKcqD7mtNAxZfDay4l/Wi//wBt58jv31E7weO/H2MIb9+XuINIWYXEserpnaeyXQLDmSqEao8092uXTuEQiHX35133gkAGDp0qOvZbbf5cOxTneAgBo0FpyXhMTzwRGEx3R4DPFFqOiyb7qroQMG14EssJokioB3lCuwuvRZk0gFUUm2beBu04UBsz2fAljeBJb/3n7Uw5IiEpFs2lqlX+5DhS2hkNPSXFxCQeCaZbo8TcOueh709bwzRYWsc3tAZ/h/y1jPqCzcT7TXXE+EcUgYO/w0CR2r7vubM6yqmXs4bc6I1KVHrLle9nMV0V2D4xRObvNPQ8LNOajFg9hBdcluwjZ3G0b8sHyZSBXGuk4iDc4Hc9VQYQcm5yWKs/Yy1IBL6oj1AwXa5tKI+Tq1FVsR/PUiQ+13g/Ve0fida0k3OV07eX3YGvj9bHKmAqV7OY7pFNFMCJN2ids/boEcN+DUeNWYvzS2fBwWpdfj5+1qbGPNN5BPCT9uKIm4kwqbbrEtISborBMuXL8f+/futv1mzZgEARo+24wvffPPNjjQTJkzgZVfNwVAvJx0eBJZ0MyakF8OYMAKNIZ1NtrOLIKAXS5nvTzrTLXBQ4hmmxefJpx/w+u9rIxZk6bHElANQzKqH93IAaDZCMl+PMciKe2mCVqeUYrrjbHuvAxdeHUTq+rzxdGSxN9PNdTgmOihiwDdTFpAJ4TnKY2oBsVRtEyXpThRhwamPUH2T+NZ63f0XeWwFsPHvcI2/8gLdpwPLYVhFeqY+vtr/OzyNDRZI9ePyAnYa0n+K19hnzSv9Rfk8aMQiwJwRwKpH/L1XsEVfv0lTtECaA9bL+j8phtons6vFgOmtgRkdgGIJcwXHmkSTxBxnlYcW6CZPfsbUjg/k0/IgWme+7Rt//o6yPDTnSLA0XnjvunyCkOrlokNB2lQsyPgTOCkjTc+COoP1E41DBmkU0y3SwhKWy0gr4hf8HHYfWykqWD4f16tRZ12UennFICcnB82aNbP+vvzyS3Ts2BFDhgyx0mRnZzvS1K1btxJrnESwHKk51LMDMt0sFU4viYvfxaPkMNs7toOZrcKS7m0Tnb9lFjw/6jCxKFAkkuLCkDCKVF89FmRyrDBjsXO+KXcdsP0DH4yFR7qELp4+1culYz96Md0+/BjIjGfXBiizNHPUy1nMDU/STarNA+w1Rq+gfUn7WWAy3Zyx71e9XFb9uIMRVico80uuQ6VHiPvUOGjQi1NGPMQF8W5Wi+D5OPLkjF/R3CM94Nbv5ZE/53tXPeQ+dJp/ke7T4YuTGPnEudYX7QPmng/s/ZL9vI19OI86nf3nf3SZfFpyfZVZ+732kA2cSAueB408hHR11wPf6VEc4j0oikcF1ZfZiF+mm8h7jiA0GSu9rFR99hC9Leec669uiUYy43Tn/0Lk7TFW/UiotSifYRbSnVQ+B+f6H8Miz+AxwWEr6ehMOn/Wc58HBSL18nhtukVrlJ8DDVG0ikQ44DPropjuikdZWRnef/993HjjjQgRi+MHH3yAxo0bo2fPnnj88cdRVCRWIS0tLUV+fr7jr3qAXGAjzv9AgiXdqXpYhiM/sieOn3iHxQeAz5roYaloOCRMRjkOla5Khvmde7+iHkgw3X4k3QsuBaa30h3LeNWFVweRWizglCqxPJXzFvGvTwaWXGfH6PWC10KbLKZbRr2c/MaifcCiq4BDC+GC14b2/dm6R1upKkqMFdrDtMzYIeedl+d583tYYdW4KuVEG4iIZJbKPm9D923TLSnpDpu+DoIy3UQ99ky3DxLo9qrVHr49wXqWTbx74Ds5hqQ8HzhGqO1qMXs8xqLwLek+scUZPz6ekGE0Ds0TZBMno7DiTmD/TL7zIXIeBVJH9UF8+rYxNfuds39y7YjjkHSTTk+5knRJxOVsyUe9/aqXk/sPGVecm15kKqcJnsF5QFchCCiBDYINfyOK8WK6w0DBDn0/PfKj8xlLQs0Stpj58EDn88PVurmPHwg9dgtM96Th0U5+pfMuWiqBkm4R++dHgCe06efUMVrm7V/HpV6ubLorHNOnT0dubi7GjRtn3bvmmmvw/vvvY+7cuXj88cfx3nvv4brrrhPm89xzz6FevXrWX+vWrZNc8wSAxzyQkqDAhB/jvUPzgakNge8GsE/5/CxKh+br/8tzGUUz7IYykxSLNwisiV/Gvi8Ci3EqOQLsnOyW4JkhixzebTl14f6m7G5pbHnTvmZ5YvUi9oVqRJx6sECq0G5/H5g5gIoBT+cnICx4ToU0TZfmuzY5om4/3grs+gSYfRYjX4m5tFHWjMVUpRQstyWUdDBRtr0mtKiuabKD4bzO4SCREzKs/Dg/b5N4J9MnTL1cUtJttV+CiFCT2abDKcbKOOMxHpMYIr/Di4DNr3m/8k1v4NvT7LV54WXAZznA4R+An+7jv0cfhmz8u67FQoeTkmWo4g3ntPl19z0/5ifFB8TPHc7hfKqyx6Jux4Mi5BPhCKVMSrzGPkMzDIhD0g3K+WKc/hJkx4jLLhX2t0tJwvyOMZ9zUZrp5kBWCpoQeDDd8YTmzF0HbHvX7hOHxpRHO4RS9IP5XZ/oNKMDDNqV3JcPLXDmwwWjDrKCACsLhl8ksl4WAq7niVYvl/W54pkNy8+LYP76OaBkORa1yiAPwAjNic/bApNrs7VfrXdN9XJT0q2Y7grH22+/jQsuuAAtWtgS01tuuQUjRozAySefjGuvvRbvvvsupk2bhq1bWeqzOh5//HHk5eVZf7t3BwzBUZFwxWQ2JkXxPuJmAqQ8Jrb+175mqe75WjwEm6bGkHRXlHMYwPv0bL/uQ8Dlzddc/HZ+Amx+E0yw8v5+KLB4DLD2KV6F9H9Fe4Btk5xOKrwYFj+bBtP7dqI2DI/+I1Wzl/weOPqjO3Y0+d17BSGoeJLuLf/W1VnXPU0lJ76xkOPsiE7Hg+zGZLZbRo7+n2kPTi3FUky3D2JUizrjIZNwMCNEG25/174uPcrPO1qiMyhkPjzbZN+Sbkmm25xrCfPmbLQtzajFyiClUeEH9Ls7PvR+x3TUtXOy/n/P5/r/Ta+IwyySWibb39PVwZdcx4gtX4kmPhEfMcJJJnLPDPe65iCyfTKZCy6WOwAB9PH//dnscrnwGKtNz+Y8iMN7ueNQLc6wQLLr30m3MOoRJ/0glFjGwXQHOUSKR8X88BLgwxDweTs5+3MadP+vvCd4Xb4+GVg61o4YU0g4omOablESalId3ZGOZdNNjL0y4pAtbyO48CutZeZB9PW6P/OfBY4skGD1chHT7WsOeZgbup75WCvTREw3UYYZDlLTgJIDADT+mAEIptsUWiTBR1IloNow3Tt37sTs2bPxhz+I44cOGKCfsm3ZwlCjNJCRkYG6des6/qo8XJPVsO9NhGt/r8mbXk/8jsgLIiDeyFiSbnJhyW4FlOWx1WJNrH/ebf8WKeTYLdN1o21mqEXODJVES9zM7198FbD8dra3WpYatenVeefH4np92xdYegOw4TnipsCGm37utfizpD6enqQTxHSz4rqTxPLSG4BPMoCfx+u/vcaXVSxR7tqnOWnIdhEtfxKbbkqmXF3MMs3xIOOcS2qD8UEgrrhHj9POguNgh6jbMR9OpKLFzjGVKPVynrSPRkuOenG8oL+Dx3QfnBNHIfR4iEd67CWRIr5n1cPEfWq8xcuQVRiItlpwCbDwCuo5Ken2uVf6UV098gO/XB48nTVmcB4E9VgdohiLeJnuON73w9S4wnhNB6bUsw+a4skboL6DEUYqmZg1SP9fuJMRDpMB17eJJKEBcXAe46aXv5Qw+OsWw6abHHthYpznDBJUjNEXvg9JiO9wRdgIytASSLSk25U+qHo5S9ItqIuftUG0DpD7N81EA+L+s9KZ/6sNuypEtfmKiRMnokmTJhg5cqQw3erVqwEAzZs3r4BaVSBYkyBGeYEM7ETIYyFIYxxKmO8sGStRgGhisWJBEt9RtEe3df6iE5DPCPlSegxY8ziw+hEn4/ZFF13SSdo9MqsmioMI23uyS72cSlfCsKkVegrmtbnRVuap4J7p/HdkvZf/cB3wHbWZscYTnf/x1cBa4jRYdpH3GocsKSjZD9sm6f/XPSNTGPuat5g7pBqC5U/K0U9Ij8nLklCQnvh/vNVIbn43ox3TqTBjMowXGebKCwe+A1bcxX7Gk3T7gRalpNKcthURESzwCGsa1kFOoryIG+1Pj9VYeWIIWxL0fPFDSPolOsk1qYQct34l3UlkRmLl8nsZ/f1mfHITWhxMtx/wNKFEsCQ4vLWKk0c8cbpJO3ERsSyTr6zmgF+C3wWqfRaO0te+BZdy0sejXi74btJ3RYPe/sqQASnxtarjk6kOajLg0IBg+NHw8n4dEjDdLJtuUohCxrLObCqoYyIk3bI23QGZ26iHnwS/B1VLrqecJSfQppumAUmax89aSeZDOwIl7bZpdXEAYt6AlnRXG3ZViGrxFbFYDBMnTsTYsWORmmoTDVu3bsWf//xnrFy5Ejt27MCMGTNw/fXX46yzzsIpp5xSiTVOAliTtWg3nBtMUILZY/KGGRI9LaYv1KQKKhciSTepXs6QdAM2c8GynSIZBvLajOdMMq3MqtFMN0UMmBJulk23Y6NiLVKCdpVd1EhnN3Td9lP2W6wFORbRQ5UcWeJdPt3u3/QG1j7Jf86FaGPTgJ+fcN8PuqCyJMqA8/TckZ48ZY1T0r1xgh6T97uBjHKM+brvW9vJmSk1ZbVjNuVXQoaZMpl5WfC8jMY4km4SXl7ftagc8+5X0i0CS2MiYcyg0f5tKMkpT9IdF6g29zUXfDLdPK/7rnXQgzhMpgTwyy66GU4iQO6biQ5Ppmm6n4vyE+5DOt48Ig+wg6qi7ppM/PDJYC67kchftAdJ9K8sA8Gc43FIuj3Li4Pppt/Nbmlfk175XYfzkmYwIoTTdUeqhYQZkKfzVKqfgmgfaBqlIi+pzq9RTDePpmEJB+YSoTtlDmv1F923/NINorHh8F4ekAFd8yeP8jn9U6sd/51dU4j3JW26XYc1jDlIf9fc8/j5ieA4FCDX2yiQu8b+bUq9yTRCx3mK6a40zJ49G7t27cKNN97ouJ+eno7Zs2fjvPPOQ9euXfHggw/i8ssvxxdffFFJNU0iWJN11yfUJKxAW2gt6mFrS0CoQsLyYukzDIr1eoBQPq6JTJ/Kmkw3tUBpMedCxjwQCKC+Q7eVQ1JD5eeyV2bYdJNhgBx1YzHdXgxQAiTdhxex1ZYD2+swVC1LjwKFOzjpyW+QUG0SeVo324u0fbOeGf1L+lwwmUSZ0GYyTA3LMWEQOIgeRrmRQrGjO0Cvv8OpI2cs+WW6U7L5z8z27PMKrL5MFDNo9lG9ns77XEdqAGYPczsk81OWhZBexrKbgV8ZNsWkOYDIxIEFUnIvihJxYBZbs8gv/DhFM6HFdOdKstomwryIdS7Rku69M3QzoJn93ev5xhd1LTAXwyFJNAP8ubHpZSJNHONdKOmWkdTHwXTzQhgmAn77mYyfTX837/CWrncixlbBVp0Z/byt3a+ejiepejAPIj0QKwMOfu+RiNFPDkl3Cv9Qi2XTzYMf7+X6C/z0TFCmi478OYcviVw3eHO6YR/+O459XkAPOsrxMkWEux+CmkiRa2zJId38o/gAcHiBM12Z4YxVZM5BwvIjU7OY7mrhDu68886DxthcWrdujfnz5yeuoMJCIIVB/KekAJmZznQ8hMNAVlawtEVF/E20mHIQUwqgOAoUlQCmNlBRqV5eKARkE8RqcTEQk2SYyuCmBYpK9HxLAJjNoEWB3XPtsk2Q31vLJOpCdr50exQa9c+AvTCUlLrzJb8vO9tmTsvK7LSFBUDUaE/zXpT4mLIyoJxaQEs0wLwVIxjpiPFXWKj/FVN1ipQB6TE77YqngY6EjSQAFBbp76TDPt4y842WA7t/AI4uBU662c47QvR/xKif2WbF+c46kPxgJGKXZ5ZdWAgU5+r3UmHP9ij0sUa3cUEBkFEIpKcDmqEWFIPed4DeV3T/paXp6QEgGgVKStxtZSIV9kJK5gsAO2YBfYy86frGYs78yDqUF+j9lwZ97mgaMO0UdvkAUEoWGiLay8iz/ASwdSKQ2USvX3a6vemKoleVUA9P5On9Xlhgv5edpl+HjXqaY7iw0Nl3AFBYrN8XrRF0fULQ55H1reDTtGTaWJm9RhRRfXdsNzC9jT3vAXsuh8L2nC04oduMm2uENZdL9HFhfVehM3+SGKDTAkC0NlBijMUM2Ht0OYDyiD6Wiw3V9hIAxRH3GlFaqs8PqxyqLVjzs+AEkF4IFBVT877EvUaY2DVP/2t+rf47M9PeT1hrj4nyAr09rToYYzjXCHfUcpwz/ZaX7OtYmrNNiyPuNcLc0qIASqL2WG96FbD1bf26qEz/FnKNmNoVGEOZMFjrlNFv0RL3XCaxc7YzX1FawDnvy3KBqOBQIY1YAB3rFLE+FBrjIgX2PNY0fR6ZyNuo+5Ho8Ueg1cVAaiqQYUwODfo8ImHmv2GSXmb+LzZBaLbPr5/o/3MuA5obsaJTUpxEd1G5MfeL3WMyDCdxSn6TY504AUTTxXSEmT4FejtZ0fUifJojWqZ/N7me0LSBuceYqEUc4pA0hzmHGg8EmpwBbHjROe9p2sC1zhKEeUkJfy8AgKK1wCxD86gc+jjm0WDmGrHmcTttcZkzfRFnDz/wszOvwhNAmlHPrCx93Qac855FK5HzPm+Xneb4HiCjoT6/zHvpsMdEebmeN72eZtfX72Vk6OOYTMtDmBjgUQDF5e58zbGanm7Pu+1TCdqzRN87zKHkSKs55+eJE+62MOd9KGzTETR2fu+mDTSIaWySPonFdBrHzLrd5dS8ouyPzWcH5rjrmwKb/iLXiMb93XM1DL3vAL3/WPUtLnenNd836V4AKI7ZZdFtRP4syHdqNRVTaUsBFBQy5hrcdISILwmFnOtUGYBZo4D0+sCgd535zxsHdBhrr8Nl0Ne+NE499kzT/2sxPW1RGb+vybWHRUeQENEG8aSV5bE0BS0vL08DoOXZZLvz78ILnS9kZ7PTAZo2ZIgzbePG/LR9+zrTtm3LT9u1k6Z9AE37KEP/35KTDtDzIdG3Lz9t48aa9nkHPc8PoGndBPlmwE73yz81rZcgLTm0dk3TtP4ead+Gpq15Uk9/aR9x2kOH7LxvvUGc9qs77bQPPSROu26dppXl6d93mUd9F3yhaZFiPe3VHmn/ZLRZLKZpYz3SPjdAr+sH0LRbPNLeQ7Tx5MnitLcQffeQR77/+pem7f1GT/snj7QTJth1+PFHcdrLoGm7p+v5/s0j35FGXTVN02Y+Ik473Eh7cIE+NkRpzyfmxnSPcdYfmjalgd1uorQXXmin+wDiNaIbNC0aSfwa0RLOOojWiMZEuqMrxGtEHSpfmTVi1zS9vhdeKG63w0vsb7viCnHat4k6nOnRH+Qacccd4rQvE/mO9Mj3n601bdFVcmvEjz/adZgwQZz2T0Qd7jpJnPbP3ey0z1wsTnsPke89HvX1s0Y8eLq9TnmtEVcT+T7jkfYyIu3K+eK0Dz2kad+dqad92SPf4dC0DS/odfZaI8aOtb/tbY98+xt13TdTbo0w9+8PoGmZYX7abtC09cTamow14tgaTevenZ+WXCM+gKZ1EHxb48bOOpx1Fj9tBjRt8bV6unV/9aYjfnpEfo34pJ3/NeIDY3yI0r4M+TVi3Tq7vuPHi9M+Q+R7cwdx2j9B0z4M6/n+61/itF9+addh4kRx2vffkl8jJk6085WhIzRN0z6pI79GrLhfjo4w6ztlnDjtQw/Z9d2+XZz29yPsfHeuFac9k6iD7BrxATTtYwFdAOhzgZxzGYK0A7ra3/YB9H2al7ZHK2e+jQVpzTXChGiNaNtW0+ZfKrdG1DHyLNovT0domqZ9O0Ce15BZIwoK7LRjx4rT+qAj8n7+WQOg5eXlaSLUDHn9bwl+Y9Wd2OodhL5ZAFsO0iGLF2TVQszT76Mr/deHn6nP5JI2ppoGKRW8IHnLglZ9TSSSFhMxzri+Qkj0deFO4ofEuBSpl9NIq+ejLgl2xkWCGZJMgKhI9BgQ0vOoEkNTBYIWrM6JsPk04YiHXoO3cE1iPvux9y3Pl0tXcliubEc9ZPc4P2PHZx38It443SIUe5mjJMmm22+/VTck2okjkFwHg3oB8kl3vO8z7wSuf0GdlPkqI5FRIfyM9STOC79+BEw1c1kkqy8qCSFNq+mrlDfy8/NRr1495O3bxw4fVhXUy09sBeacqhP22S2BQxuAIV8COz8Cths2Sd0eBE552qle/qGh2j1yk/5e7npg5gDdBudKw9533X12XG6WejkAdHsA2PI2kGK80/EmYOPb7rSkOqKp8rHnC2D2xXpaWl1x1lnAsZ90dZaefwJOfRZ4J6SrOdHocg/Q669OlY+8PcCnhhOqi7cCWYb3y0+M2IG9HgNOM8JusVQ8P21mO2obFwXKjwOfNrZVR3v8Eej5R2DVY874t5dvBrKbAlPq2mnpb9v4EvDzk7Zq2phS4IMMp0oqALQdo8f7BoB2FwFnz9D7LQIguzNwwU/6s4KdwFc97PdOfgjoZ4RKi0SALZ/onsoBoN/rQIfr9XHz9alu9XLWPjtspq7+l54OHF8KzD7LqRZ20i1An5ec77DUy39+Atj4D3f+qdC/bcHFbDVTs/0+qW3X9xoNWPtXYDnhoGTUbiC9gX5dlgvMaKWrep0zD2hyFjBRsBGnABhrzLGZg4C9S5xlfzcQOL5Wvw4DqNfSdsonUi+/phj4qpWtPn/2GqBOR2Dbu8DyO5xpwwB+X2KHBCostMeriaFfAU2HuNeIg+uArOa6LS89Jk21sNRauh22rHr5OfOAuv119aifn9THLQ2WenlqLX1DjBYDI9fp3oRPbNHTDp4MtBntVvXa9E9g9eP277M/BNpdrV/TaQu2A1+dbP+m1cvNpP1e0x1U/fB7oPEg4JzvxGphn7VwMmAs9fJh3wJNBgNb3gJW3m+nbdAWaNwH2P2ZW73chDmWSPXyZfcB61/Rr0fnOg+1So8CX7e169DwLGAfYQ93xRGn7fbcM4H8Vfp1t6eBzg/a46f1KGD3NDstrV6e1RnI/9V4VseO+NDjj8Cmv7rXCHpNM8vpPBYYPElfp0Qq40O/BhZdGEy9/OJdQIj26k8gLQ1YcB5waL4zX7LOs4foh7gpALrcAJz+P32PJdXLZ51pR7k4eTyw4Wmg+516jG4NbvXykeuA1Y8Ce7+y1UGHfac7IqLXiAFv2eM7JQWYVssmIuucCZz9DVC4G/iym/O9MIB+zwE9HtN/W+YvBcBnzex0l2zX9yERHWH2WWot3buyOe/PWwpkn8ymOcpPANOai9XLAeDcxUDDU/VrUsVz3lh97QOAtlfpITJPeVZf81Y9DHQeAwz+GFj/HLD8jzZtoGnA5DrOMk57DOhl7OElJcCMbkDBDv23i57oCRQZz8w1gk5jwlwjPgzZadPrA6OIA4PF1+nOWFlrBIlLd+nq4ABbvTxWDkxp4HxnTAEwrbadb4Mzgf0L9etzFwINe+vr1GeGR2izDtdotsp43i+6XwETne8Aek/wp15evhf4uot+HQXQ4irg9P/qceeP/Kjfb9QPGD7XqV7+XsimI874CFh8tfPbzLSfZAPlxYBWV/+eIZ8D8y9x1oGc92Miej+XHQemUQ5G6bRNzwfKYkDP8fY4JEGrl+9fqftgAIBOtwKn/d1Ou/sT4Keb9OuLdwChxu592QRPvbz5ecBZn9npPqntVBkPpQAXM/zsLBrjXE9MlADo8zJwkhEqmdy7BrwB9LhNv/4w5Fx7Ot8F9H7e/v3Li8Cmp+zfpQB6PGHHKif3ApM2uDqmzw8v9fJllwP7v9V/k2vEOfPcDjFv1HQadccHetqhs4Ccgex2zoQ+1r/tCxxYCQz+TG9fFqqAenl+eTnqNWiAvLw8YRjqamHTXWGoVcvZeaJ0fvKUBWmHTSNizPBwqh72JQNAdgaQmWITxFlp7PLSAUR3A7U6A7sWGumjdlrypJPnhyMtor9nJt36Njst73vNtJGdQL3u9v0MjbATN2ZrGpz2yiZ2vgqc8QqVb5r9fnYmkG2Ub96LEcRVerq9AJvIDNkbaDhsSyLMhT0jpn9TZsjJeIRDdn3NtPS3Z6U439Gizg3DRHaGnS6VYBhTAWSl2vlGqDqQ+aSm6vbH9FiIZjjfAfQNg+W3LL0MKN0EZPe2HZuFYb+fGRaP55QUo63S3GWaMBcwMl8T5gJH3w9T97LSgUyjHmllxFjR2O/zECb6x/yuWnUAMjQ06ZhGlG9mpnNj2v4SMHCSPiZZ75ESr1q13GlqZbnb+vBi4PvBQMN+wPk/useXCbPveD6AaMRKbaI9M9W7/cwmSUvVvyMCfQz3vB1Y9aCRp/F9mVRm6VFn/ivvtpkSOm1UMI7INSI7C0gz2jn1BLD/A6D15UBGI/15RoZtowvoaw7Pb585P835k5XurEMoZp/ss+YywJ4jJdvtfA59BnS8wX6WUuQU2KRRfZCVBqQReYYJzmfjeODUPxLzXtB/KdDXMYv+PmG3Q3a681vMNaJWLX1cm/OWtU6x5rKJWpnOfEVpaYQgv3+S+ZLvpMfs+2aItFDImaZWbcDcJjY/rY+rza/ZdaDru/pG4OiP1H1j7tNpM1PssmjtqCyzHlmcNiHWEzOPcmr+lKwHGrZ1vkbSESWH7PRpKc7DVi3CpznKIu71g7nfM9ap0qPAvnftcg9+rF/XytKZ7kzA4UjNzNcca17rbGaKvWfTZZNS8TQATfvJjSFrPckFClfqh7eAvv/T9WHu4Vn2nkTCpDkiRe58sjKd875sD0XLZAPlZez2SEvT/yLU2MlMdX+vmZaHE0QlUgCUbtTzyACx94fc+ZJ0RBa1VpNptZgxPzOBknydjhD1sUlHHJzivVYcNJi9pcv0w0wRwmF9PeLRM44m0tj7MgvkGkHOd8D9vhZ1MnJWOs5engknXU/uXWtut5luuqzC5dQ6SAkiMuCkH1JjQP3OwIlf7TQfhYGrysV8CeCU3pNrRHY6Z+zWs9Pu+Q/Qbji/nc01Mx16PWTmMk1HiEDTBvGkzZfTpKrBumk1DObADqXaqmyxKKWuJlBaMDf7VQ/x8xYhVian5sE6ESNV774+hcrXQQV45+8ukLg0HRwRXNOvr8q/T+ZhworTTXsvj8Jx7F//ZLggiqNNwqGaSKvSEb+P/STO3+HN0njmR/Vn/kXAt32AfV+D3Reyaj6idAJVwcgJ9n263Rwhrsj+96uGxKhLKrXB8EIsMUHUxfIEStSpEyHxDqIyteMj/b/p/Z2bh89lXRTqq2E//nuhFJvB16KUN2xO3ei1xvJQyoA59zwRg9WXuWv1UGoLRnmk94BVT3p9iPHnsSyKdjl/s7yXk6DV/+k2PPKDfNk8iQXv/uHFusRzx4f0C/GVJ/VuIryXk+FsOPn5Ncco2MYohzOmSCKWNZaEYLQd/Q3zfyeOZb/uWeIHtS7EygWmJZLrE8tbtqNMApECIkoFL3/WeIlDjbZ2O3HyMobUce+X9rW06rVHe5mabCRo9X4yCoYWBeYM16XNIrjmF/U7Ughsf1+s0svzLu5H3Vo4V406mZ7gpUP3UXNbFMmCF6XFVRXiO2jayFGvGHBwnlyezkycPxsNYNSB1VYStDsrfxN1u7Hv75mh74fRYvczOlxv7fbuNHPP59fLyodDY/L4ikb9iTQea7xG8Dg1xJSqZnzFbwExgum2ui1GLYyyE5cCGTJDCCL/Br05SViTKMR/7iCKAjAirAWJDNME6CpYgOE5kiJ4vQghM5wSvYBoVNub6s6ONHRbcL5PGC6LaLsl17nrwMvfinkegEHY+TF7LMn2j5DQFhDJOz/m5Ecz3byDGp/jJ4VxaknHpA8JJAQ0HHHCGcSoI/wMVVeSIQfYbZhGqV3y+sPv5iSK053RmP8ezXQ7Qq5wxh19P6u5XL1E2DbJLTk4vJCfXmYcxyjCs05n80H8TLeLAKLqQ3+LI6QbGMSMn/4mxhU5Tnh2s/Mv1iXEP1xLZSPLCMVjjyfxrpe9b0yG6ZaQjAzy2CN5Y8oRjoou32hD7kEII0/WvS1v8utFjrVQCDiJkIytuAv4JEM3CaEhFa4NYPYRK4QioNfdHHN+5pDXoZTwXY9yTNMy3j1Zu3ev+UDGRwd0JknE0Bfv1w9uj6/2Ktj589d/AisfsH//eBuw5Pe66Q83C94BaZSfpizX+Vu0VlvhN409cdnNQPux/PQW6PCpkn1Rlsv3oUF+x57PgC86A0eW6b/J/ohF3UIOGciMVWYIPRHtLugHE7w43wsu0cNYbniOkS9Fe7Py9gwlB8Z+ZN7n0QBE+laXivOOldv1Uky3QoXCHKjhVILQpSZKrFSX8LBiuybEcZMEoeXXUUQyJN00IbbgYv3//Iv1GJj7Zgqyk5R0n9jkjF18iIpJyMqLSwAIJN1+4layFucgjju0GNhSFtm8BP0oIpJ5G6XwRJosVgN+Hi+uGgCs/bNuU0Y6PuMRQH4cqbEYGnIzDROHK3TfpQtsV1n5Awh2iMOAw8EUVYbIoZ6Q6ebUje7LNL7tkzRhHimEP0I8gKTb/M5oSbA5RY77fd9QZdH9SkskqfFOM0TkGPUi/snn5IESr03Kjonz84I08+bz3YLtep3LOdoxVh6kNIeTn8MBIgekSRS7IPbtot3EWkyv1+ZvH9oH8Rz4hMLOA4a89fr/r1laWkQ558wDandg58laN7nzS3PSLq7HmuRhL/G7eD+nLK+6EHUSvSMtlfVJX2W1EPeldD8z6r+J8KdiOiZj0SfcPEKMOtBMN7UubH5dkL/xriltLzsm1nCyqkEfPkqsu2XHgakNgBmc8Up+R+lR3SHwd6cbj8qd6QIxeUFpZHrfJekOGY0DTh+yYM5BR3tymG7A9p/Agx9Jt6bJHc5bz8thfb9iuhUqFKSk2yLoKanLjg90px8r7nK/nwgPgOSGyGNSWJuUkHFkSLp5UnR2Bu736QXH9LS+3yB2N71MvKM5r3lSVfp7F1wKfNPLo2oi9W8CQomTiJngEXHEtV/Pkla+jM1DVt03qKRbizrfNQldevF2ENJkWRqw7hnv+q19Etg7A9j9KZEnR53YD9NN1qXJEHd+IYKB9dSCYBGDtFYGp51LDwsqycBSwr6YzlNEdDoOADmS7sNL9ENAM1/6xD1/E7D5TWDN/7nzl12zTv0r/HnF90EYmfU2Dx/Kjtvxs4Mil4rx6ynpptXLqbXIV6QBcjymsK8TCVnpVGYzxk1O///6uk5Us/Y5V/kSkm7T+aYIjkMxiblJwoyYQJd/ZIlHoZKSblmtg9KjutM5Gqx13TrATtUdOnbmtHUsAuRtcOYR4o1Hgun2w6zT90sO2dekY1Heu8d+0h04yrYdmS4icITrlY8wfSRBTHcCICXppvdFSjskd61E/gwBiRD0mi7RxqbUmtZ2dNWFAdJzuha1Haj6AZ1/qTFWTyFMLmTUy7kHon7MMjhoPMh4hV4bOXmLzFfofEiw6F0tCvzyMlWuAKSku4awqzXjK34LcEi6SRUtcoMg1KIilApjQtzuk4smZ6Ltmsq4KSCIHUyhkX/Dvsyk7CqRjKY5gT0YV65al4DpDiQxlpR0iwhekWRYaDMeh3o5b6x4hZ6jy2ZC8D2ZTamyOaqIPBvkRNiP7vvKeT+U4uOElTQ3MIl0UtItkCwGIrISMac98hQx3Q5JN3UAuMbwNj9rkM4c0e1qotHpwPLbgfV/AY6vcT6TbZPaHeXSWfn6UC+3+o8YtyUH/JXnuz60TTelAeLS/PAzdkimmygnWUy3rKSw3xvue7x+WvNH/f/mN+BJbEqZL0kc2LDMRRwQjCmRdFd/wLkta+IjagPq2fFVgrTka+Yhv1F32vzFxO4pOuM7e5h9r/FATp6EJNv0duwA57A3ckL37MzSOis7rpuXrH7coHkYPlq+7QOsvAfY/h6nTLqexnwqOQIcW8n+FlE+W/8HHBKYtwCGx33BgZQsvZGQ4EOcA1+RpNvLLM+kFRyaNeQaI1PvAOFFSf8MzEMWwVpJzg0tBmx80X/5ZJnFB23/D/VPse+b6/ehhXr0nuM/Mw41OLQC94DEw7afBOvgi6deDnjvw1z1cpakOwbkb7R/k9qiLCj1coVKA7kJWoOPmigkcVa0h5qIAqJAxqZNrwSRHWeiyTq0sLIk8tnyHyNfQV1d5bIk3RRoaaXGYPTN913MEEfSLQNZm25Hujjs1Vj2/UHVy1mbuXnqr2niuMMiQkB0iJCS6fwmy2GgSNJNtmkCmG4aJGPpmQc5P0rd98h8AjHdHoROIuCSdAvGvUu9nKgPzZia2iY0SEdHtLMf2e9LSfe27SXzlJkTLkdqiSBuuYU5f9LEhdfhnZ94y7y5afZzVgv5vGQgGwM+nO627+fOCaKvvTR5ZNTLZYg5x9yVZYath+LyeX3C8rXi1wnTAQmbzIwcRpbEIT/g9n9hOm761VArPrrUuz6hsFvS7tA0i7Lf3fpf3WHcJ1k6XUP7OFh6A7DheWDD3xjfQfQLSxrLbHvjne2TGM84MPM5/AOw7CY93KYX9kzjP5PWUEvAusQzexCqAXuYOi0Z607nmEOc76vVlkjvgxYy5zBJyzI1ODjzlD5cCby3Et9LjnXy0M789tln6b5H5l0AV3s6mG6Bs2Rr/PqoryW0o/qApQUjk7c5Vjvf7bz/M0N7jc5r7VMeeSumW6Gy4FAv50iXSLurlAy5EzIASDdC6/R/S1wHR348G1iGRECoXk7UP1Kgxx0W1ZVW92JJuunFmmaaeIwE3Z5k2kASY0lJ95Z/CzKpDEk3h/hJr6//X3478Ekmn6CLykrE6XKp9uc53SH7b9cU4v04VPK0iB4Dl0Yo7EMKSLSZdShB9lHIeWBGwiWtZBFT1D3Sy27CQJUhMikQ2XS7wFkDRGuUbH+mN4L0YRWtrcFzQGOut5ZDtSSqe/q1OxWZW3gXRlwyNJekzSkkiX1ZSXcoDLfjJEa7lB4DynPl85dRL5caO2QaibnpeGR+h0/V8AKGgzO/eRTu4D8zQTtoBOz1iKsqbtSDtdZzJV8e41yG0Znemv8sfwPjJpEnkw4RHKD4kiLH9Hm49wv71qGFurpzEUfVmXcf8LHeJIPpZngvpw/ZvUyddk9150G2P2/Nqn0S8cMHe5JpHNiRTDfLNIA3xr6ltCuDrvdk/uRBFenPJVLg9EVQvA/ug1dy3gn2SFMFnm7/7Jbs+tXuwBdm8BApBLZ/oGuUsGCOF1p4x3IC6Pcwg7TpriHsas34it8CSBsrS+02xp/kNOMkGuzmpGnUDzjpVlEl7Eveoml5+SUgVJGmFrfDi8R1dXn+lfxGEkd+YDNYLM/EFtPtkTeLMXNtZkFUqojfLS+intF1YizOQSTd+ovuW2ZICfOQYM5wnQimsfW/gmw9JEJkfc02NZl9EyShTUpQt74tyNsDWlQPreFCWEB4ujKxL806OpjpELgq8ywvuq7sqT5JtJoz4O4fVqgRE36Ybt4aQPb3ejrUkOR8TqsNeaabamfegYpZr9WP6P/zWAR9guAipGhinNY+EGj7eBdGZkTcNg91JZluWYaElkryEEqBm+lmjKevKIdmXky3jPdymbFDjl9W+CUZSTfTxpGjUs3Nyq96uUyerHpR6uU08jfx8+MS84x6ku3K07CSRsjtoMtLi4ypgiw4JOFBi+mH0Ruet+/NPkt30jWdwwCJ8q9I9XKXk9jNcPm3cTGwEurM5Seo9pVguh2HJJx5eUWu+x5rnDIP/yX7VMZrNxOkORkhgCLX1cM/uOeIqx+JeqbW5aSBfggVi7rr2/Rsp+8DEyc/Ay4NwsPap/TIOUtv0E0uAN0Hy+ft9ENs81vCjGgwNGTLTKuv/y/YYY8hJelWqFDwbLrJRY0M40A/Ey7wJkMvUqXVwJSMmDBV1ByxeiXAIiCFTDcleXNssjzpLmPx3jjBeEQwVGXHBUy3l10Lx2mE84Y4D4AhpSd+m21rqmG66kqqg8Xc92QRCrEXeNZGKSK+WPBkusn6GuO8bhcqGYcgEanredYrCuykYxHDn6Tb4fWWIekm86LbYSulZZIQW70goCXdHkx3OE5JNzmmDs6lnjHy48VqlVVFpMcwr2/3fa2f7icDLht02u52NfWYYafq+O2HOeD0UcyvpFsSPKY4Z7DzN9N3AuO7Sg7K5W89T5B6uef6L9pfRUycT0bTr3q5VJ4C21dfTvoM8OLGd75T/yPLNX0/AIjfR0XIfajGk7TaCdy3TFrG1xqsiQ996zEcvgkdqVWgevl3jFjS+RvFTDdPJZ1EtBTc+vGYbscewFnTw+m6LxAmiPL8SLpprHpYLp0of5IJJfentDoMe3H6QJ1gmC16j1P3rf9h398wwX2PdH4axGQyYkSLWP8X3UHkvJEEb+Ll9wL+9ipA93RvausopluhQiHjvZyUkNBO1lgbyNIbgS3/JZjuVMHADgEiSbcVdoW1yEqqlwNAyWEIN1+aCZjZ352XzMQuNqSEYZrp5qi4ypzQearHBtggvskAeQAAl8RJREFUWeq3JlFQTBGgjnaLR9JN9bWVJcsxht+F24M4ZaqXc5gOLQZs+59csb0YGxArTxp+bLrJNjMPwOjvIeeub1QAI85ziMOCSNLd4kIqbZgd3km48TPaiMtcM+5vfw/I2+i8R8e6ZxHDgO7Znk6bKMgQrM4Ezp91Ogmee4wRrl2xBOEU5CCI1b/9/wOcuxBoebF9j6VeLnNgWLRb/DxRjtRYds/OggSPBDbdmiZ+15Xep3q5VJ4iSXcApns/IyRnKEVnHrLb2Pf2Uc7U/Er9WXD5b6HMe2iw2s4y04tXA4GAqa3V8Wa5d4IwRH6Qt1EPncnU+DPK92XTzdJiCFOHHqRWg8T38db6UIrTFwhZPtOxLpks3oMdDziYbtKOOwo0NZwNbpsI/Poq/aI7LysCioepIMvMT9PYY8hBgwShDal6Hppnl5PC2Tuank28LrGmh8JAI0Pdn9QcSZazzwpGgBVVoVLAitONGITOuVxOSihsm6j/pRo2XSIGI0Qz3RHGc7A3MV/q5QuB4wwbMxMk0811ACKzsGq6t2RSVZAVMsz6LZFnLOJceBKhXn58lS5NrtuFYLoNG/woffrMkHQHsk3iMN2sRdovcSA83afb32wLzmHG1rfl1LIB3TO6CDyVSFlJd/kJZ1uYdqf09/BsumVQIdJvWtLtwXSTTqLIbzX9RFhpQ8CS6915CD34Gvk17Ae0uUL3ALtoND89DbO8a4w6Fu52xqvt+SSQc0Z8GhLSIOZ14XbnI09bV6pP2o4Bjv/Eft8VjozOi+gjUmvIIpwEKoJBCFaWerl5QFuHsN8MpTD2iQQQyFI23RIIhfSIBLy45cK2Ee1Lfm0ckyHpZq3rHurlfmEy72R+pG0+ED/TzdLQYh3iOiDqE4m6pNbRpX9ea7N5QF6LOHRICNMdsL1MM429MzjZ0ppLdF3pduaZPRD3SU/VUvbEHGFNKMx/5unHKMlMNzdaSdSeA6wQXEy6mT6gF9D6ono48kyJj+mm27RuV5uG5h3Yku2w82Pns4b9WC8AqbX1S9LBnZJ0K1QoSEk3z6abhEvSLaFeHhZJ9agNzXVSaRJMPjcB1sSPMCRiJhyEIm0Xw5F0M51KaMCCUdS9GGMB88G8ejpOC7hBWjGMjbqYaku0Z2DWhhPkxDycyt4EEsJ0exCnXGkQ+dtIQzJQXvBasLn9K8l00+FoWIceJLFAS/FMb8B2Bt5lJgVGuaYpg6ykO0aZs7jGShjYM92dh0g92LLlSgG6PwK0OB98qaSHtDJSCHzexnnvlKflVOJM0NL7hMGrr6k5QxPK5DooiioA8Me55QyHo77vqofk+GR5L7fmIh2yTMKRmh/Q+yN3jkt+i9AhqGh/FUm6fTKarHJIszIane8JlqfDh4wP8EwyzLYjHUolur8RgtDPiayk28/hvUMAIoLxnHQ2RZtKOJJL7qvxHsQeW8HJl9qLPbVzWO1ImziSz+KUdLueadR/Vh0hb25nhfz0Ca7juKgHHSHQEPUUoHDGMKv9SKa7PF9QH15RVJtmNrP3Dp5NN2nPTntIP7ackZ5guh2oGexqzfiK3wI0lnq5wI7SteAZE5PlrdehXi5gumUk3fGql3vBIenm2TZSC0PzEey8yminKzG3HZC5SCeC6Q5KVFhaBNTGfXSp06adtUmKbHIB4Ipj7jBBPKlwLAIcpBZNL+KADAFC1osFWtJthaHhSLplnTQBEqekvJPhsJzDskxK/ZRJuIXsAyU6Xq7UPCDy2vct0KC3xDs+YdbX3EBFp+GhFDicspDfsPMjYPObRFoJm25XXcx1iXiXS4h5MN3HVrHv+zo9j2O7lLL55T2nxubhxdRzog3beGgC8CRMlqQ7i/0cYO8nXmDNUXOPcfQry3t5HJJpgH8o64Is0+2XaLYqYiRhMbcxu3/TGwBdH/CoBCMPWnNCul5mEpF6Oeebm53Lvs81yQgx8mM4j4rXkZqIOfTtvdxjXpKaPp5mDua6Shzy7Xifnz7Zkm4vbJxA+UMIoLVHO/MlIfo+izEWrfUSkm6hFoMHWo8CWvxOLq2zAsQlpWkqWj9YY42WdHNpfVYb8/onbJhwAjgwm53EUmtnFub8GS0m/IHwJN2k2arEuOEx3UrSrVChYDpS85J0M9TLWY5ymDHAKdBELUmM55wBa4H0o14eSF2R3AgkJd2sxar4gLuuv/7TdrDmlScLMpJuT0dFjLayVOCN+pKn5Zv+SWTPkOqImO46nXVCr25X5/30hmAujloE+H4oddOjXS7Z4c6DC4akuyyX359k2A0vpNUVP+cREbLqlbQTMJYvAHJuLR7DTk/Wp3AXsPha4OgK3bHKplfs5/MuYHsnJTHoI9t0RBqMMUaCHL/kelFywP0Ny28n0nLWFUd8X7oqhKTbzoiT2IPp5vajjy0w6KYfLeGrcQLwJgQ9CBVSWyBVJKkGn3AzYxiL3mc5OfQCa/3hSbpde4xJbGpiaS4LsahbldEX0cpAMiTdtCT2tL+L68DKww+RLJunlyO1jjd550vCbDu/jIevMjy8kzP3Xlb7SGqJhcJAeZ5+PYdzCEHXQ9ZRoayvlGSZHO2a4qa1HFJimXFF0adNhtrXQqbbXM9Yktqw879VFsumm3PIJYNYBMhq5rzXsC87LTd/oo2aDhOPfZbGF22Kxl2/iDKFvpWg14Hn6NDEIIEDUXq8RYvh6Q+E1M6VyRMh/6GHqxFqxlf8FsCK0y2y6Xape5rXrI3JlCj5cRpFIkTky5rsHIJYNk4gCZG6oBkjk15YWeVECt1q7FvfBvJ/pcrzI+mmDwEYp8OyIXlIHJitSw1pSTcAxAh1e5YNlojpNgmqoz+6nzG9l7Mcqfnc9IXqxJoenoJE+Qm4xlQsCUw3bx7JLvSb33D+Nvtq+7v8vH4hmGjW+Fo0RveoPrMf8Ms/3M/NGJ08tLsK/m1GjbbmqooRRHgoxVZPXHaTxxyR9C7uqAtD0p1optvPRi5knAXYw3jPIQXxmkNeTDdJwAY0ozD7URT2xRHOT7I/WXHeLUm3l3q5Uddf/wlMbeDPm/zW/wJLx1L58eaC5BwR7o2iPBgMgYnig/DsX0dWjDxEB2vSEkkKDnM2BnwTwAxJt8tsyKeqPa8MR57EtzEFDix1/eN6DG0vTSo/plXWIYakOYtsfPtkmiHRjP/8kf7KpbUtyTEjOnwv2OZOb+XBWDuchRKXcTDd0RJ32laXAmd+6vEiS7u0LZCa5cF0s8YSLemWWL9MTVZeWhn6Xhj6i8qXlHTz/IGIhHmAeyyQzt6cFRPUq/qgZnzFbwE8STfPRoWnXi4iloTq5SKEPNTLOQikPihQcd/4gvnAu5xD89jZd7mX/W6ibLq92pfXP8tvJ07LGVJInv2iMOSTQVCRYVwAQ+1I0qbb76YvJCY0YNskxm2qP01nRiyCngsvZkSgXh4IhqokGUecLuOn+4hnjPGV/0vAsslqBPQuz9tAaUk3iU0v87MN0o6WpJt4lw41ZeXvxXSLojJIwI/GwI+3A9/0se2rWfNG6KSITutD0k32CW3awasLCVGIKKaTQw9sfp1VCPUfbPVys11WGmuyH2/y+79x3zNDz9CQPjj0I60hnwkkVTveg9TeTOfluCfamyQlkq57Xo7UfM5nGUl3IkKGubIk5wZrbDPaZ/1f9djapOOvuMFQLxcmp+YpyQgFlW7zPJVz60DtHaRXelnNP573eNG+tOIOQaaMtUMvzF2veBypxUrdaUMpQOvLxO+xDlMtJ4KCOSOSdPtRL7cEMnHQMyJtDJeku9Rb0u3gWRj1ctFxHKZbSboVKhQOb6KEHaXQo6HHqR+NMJG3CyJmnZB0+7EvCcJ0k98R4zBdMurlPKQZtiTW4iVp38UqJwjTLcyfwxCVnwA+bwesfdKdNiLBdO/72nn/8EJIM91+VQJFTLd5wk2XSZexwjgk8GPT7RlvVmADFQS0IxqAr7INsMeKAwEkxYA3k+VK70O93FcMX6od63SWqAuhgWPi9P8B3R8FGvbxUTb4885rI89orP/v87J8WVve1L2Lm5o3LJDzwHMO+ZB0h0J2yKNBHzGy8lgLhdIYhqQ7u5U4P1EZtKSbZjplnR6xwGNMiln+GRJh0y0h6TbTpDfgFcB4lVSxP87uP2FEiAD7FnmPN8cTIel2lRmnpJt1aEEeOjMl3YLyvNRw/cBqY8l2o5lS2hO2/YP9fulRd4hGUxU+IZA9zCHTkQITAdNdeoxfBssfhAMMm+7yfODDEDDzdB+S7lJ3Wpkx74j2QWmXCsc+J7wXmY+MTwrTJ0c85nL0PGk8kPhB09YRYq0QSbrNcll0JfVdPEm3YroVKhRMR2oeNt1MpxIBJd2eqqNBJN0eDEHPJxk3iW9iSUUBBtPtg/GwpGsGsRGPpNu1QGmU91YWRMyVmR8pIUrV1VdpRy6WpFvgfdokqEx7TrquruJZ7eiX6RZstuuecd+LloI7prycxJHw3GwSLOnWYu5x12GcO13BDiM9S5WarEdQppvRP7XaAj3+KE7P0qYA3OrlsqDr3/V+iZcY4z0zB+j1PFCnC12AR/m8dvXoX5M5DnJYZs0XD7XXRDLdpDNCVp2lnENxQHueBWwv937AsumGQNIdCDwHTqxDv2TbdFNEMy1xFTF+5hha9TAwtSGw5d+sRPz3g9p0e4UM87su8mxxSWz4G/BZc3/5Ogtx3yL3RaYET9B2ln1sAmC1sayklRqnjpjPZBg8Tv9+2hiYQplUmeMuETHAZc0WeBEtRAcAluNYxrhkrh2ALelmCJrW/En/f3SZ+yCChxhDvVxmzJ/YDJzYql8fXqT/LzY0JkRrqyjKg1kPXr+R9bQEMkGZ7pB7faLjjZMo3scom87Sw6bb5ZSZtRfA/5pTRVEzvuK3AJaHcZY0zZGe4UhNyHSn8JlCIePqoV7OW6C9GNna7RnveDlGgXux9CVRN21a05zvmv8738V/9egK/UT1y676IhpI0i2KaW5+F9Ge6/9iS+cdaU0P34INVrgJMBhav5Lu099x35O2VTNQvIdfhh/1cs+QYZwxKuv4xoWYczNpdSnbSdUMY4y7CHLa3tGn1K/X3/jPcgYDp/4FaHs146FRLu9AQ6ReLgTV/iIv2VZVzAMwRjk0Ex9UvdxrXJgq4oE2fAmVY690ZlpL+sOAY04Re4LnAZ9PkDHSSQmsX7AYMJEjtWRDtpzATsAo1VeXXbPZhsb3n/mZ/fyE4WPkF8PB2raJwcoWQei9nKfNwpgPrMNbE6z5SftU2fy6OFxoEDj2CEadReM3o5H+PyuegwADfqKgAG7Jp19JNzNP473F18i/w4PMgTepiRkKsxlLJiSYbno9Lt6vOx3N/Zko3yj713/Z92TpD5akW5Zd2vSq/n/1Y0Zexhj0K+kmNVp/egj4nDAXOuXP7HdNDTUtBjbj6mXeyJAyOw55BOOX60iNtOmOQ9JdQ9jVmvEVvwWwbLrhQ9JtMQCCRVrkSM3T6ZkxwYsPAgtHU+EIgqqXszZJ4psym7mfA3CdJvtx2EZLuunNUqQivNCI+52/Sbd/SpZ6Ob0gsQgjmbAnohis5bnue0xHaoz8TfXJRv0YefhkuqMlCD5+CHjGm00w002H0BLls/dLtnSSJFRz1/srP82wQe7Eso8zxo9py2+qUAOw24F3Ui6QdAulntQ4kbFtFEr/aYIioCaA13vxSLoLtjlD+pEgxwYpLWBh1cPAp42AnZOBnxnaP34k3Z6QJOJZB4CysOol6UgtCGQPekuPyq9JfpwBOZ5RazFXemx8f4sL7HtLb/Cul4zndL95eKqXM+bN16cICmC03QbBwWAQeB6MsdpJ0D6maRbpdTsozPEhKz2nI1OQ66VjHw6gWbh7qvw7PJiHQMLySPo0BNTrKkxugwqR6ngkUC/f+SGw8h7iRsxtsia7pvBsumXAPeAN6L1ciznbOyUb6Pl/Nk1BHiyF47TpDoXd9STHm8jkJ6hNt2vtDIO5XvgyZ6u68PUV+fn5Uunq1q3rnUjBHxzeRI1rmrAn4VLtMdOJmG6BGohosSJtun+6Dyg9oi/s13ipRXoww8wFgvVNFDxtq0XgSbo91G5pRAoYhIwM0x1jL0yhMKxvd9mzik4PBX0gWsTKGXNd1pGa5UCE0X9+VdtEJhR+4NXuXG+fARd6Wr1cxGTOv8hdHj0G9n0ZrB6nvaTH1DUPhABCWmC0CRkTM2KYI/Dss0SS7rS67jj3Jn5+gp8PD0ImxSfTHdibqzmWqXTNzwf2fyt+9ef/0/8GfSiuz4JLxfmYnsXpMHMmeJLuIEy3NJNmrotxSLpJJ4NMCUsy1MuN9adwl1NyJAORY0PhXmZKuhmHSOn14aorueZ4hQUk8xWV7YXjq5z7ipd6uW9Haoz5yXNsFxgB1gDRGDOluaFUoEEv4PjqoBWz94J6PeXS0/4g/KqXM+sQxyEWDZFWg6M8ghbo/SLfJJBEIPVyVvkx3Qs9iRKWTwcGWN7LzbIzm4nz8ct055wJ5G9w3zfXdXpPdezf5U6m29ORmpekm6VxJCnp5qmXk47R9kxzP6bbMhRit2FQWqyKwdfKWb9+fTRo0ID7Zz5XSAJ43svz1nHS0+rlJqMuknwyTrkc+XFftMsqPcJ6mf2al4SBNfE8vVMy7sdj0124HSg5IifpJhFOCybp5jmT0WJAyUG7bqR0knl6KCGJMr/xtJcE75P3OJLu3PVUHF1KXZKEX0l3wphur6Uu0ZJuSr1cdsOIRxOChZQMp+QMYBAuxLebm+Kx5ez8HO1BO74SzLPCnVQ+cUq6TQ/20oizf+l+CWx2YCKBqtMuSbeHRFWIgJLujn/QJTAyMOvlUP3VkFBJNwmHlNBoK9MjeqIgiqssknTX7kCs36ywWhKHlPGqlwPuvuPZn5vwbW5RBZQqmeNJ0D4m0x1OBUb8CFwmcQDCzcsY6+EUoNHp/t93qJcHXDuChGh15eEzTJpV17Curl+nk7/3aXg6UiPfj7nT0SFJeRA5UmsyRPwuV5OFc//wQrZGlHnwsvoRdj7mmCL99ljCooDq5ax5GpNkunnhcEV8BWAf9DvqwKp7zWC6fX3F3Llzk1UPBS844nQbE4Pl7dkET71cyHSHgjPdpC2NiaI9undbVjzOUNi2Z+XCi+nmSbrjsOm2JNrE1Fj7FMF0S9iiAno/0eUuv83NfLDK5/VRnnEa6pIKCSTdopNwcxHreBPw0wPs90mwNu0jS4Elv9evr4roRAWpUubKwyfTDc4hxPb3/GUTSgFaXsT3KH18Dec9vwu9cQBFS7plHaE57HCDqkxT79Jzmma6/UhLSE2PvZ87n/k53BIdXpUcAmYNtiWhrDVp31fO317ty5V0+2C6e/8dWPWg/jtepjuRUieepDsIoyNN0FNMd4cbga4PAl91k3jXqBe5lsbK4R7vCZJ0Z+TohzTRYpuJ5an9B4VXKESAfYi08l6g28PGD5PplgytZCcSFC3rJI5a5zb9Q/9/bCUnfUBHaslEkDVA1D6kpDucpjtxTK1j2533/RewQuDjhVvPAG3hOIjx4Q8is6l9WJ+INWfuCKDjzUCehLkTSYPKONKzIJB0c0OGscpnMN1eaDoMODiXo15u5MXU5iIET4lyPsgDnX/+JncZohCo3R4BNk6QyxuQl3QLIx0Ivp32D8Cz6f4tqpcPGeJxwqOQPDgcmxiLEqme50pPOLEA9HAjgDdRRU+6jByg9LBYtYq32R1aCLRjOGuKRYAUCUmXp6SbtwAk0JEaoNs388J18cCSdB9eLFG8wGTABH1yyDrw8KNezpJQiZzrkCAZr71fAK0vtctk9Z+0MxWzTM4hxJLr5fNo2Ec/Ye/6AJ/pJmOQkvDLXIVTdUK5cDvVXkZb9HlFLGXjOVKLB66N1CSAKEl3GeFRttlwyi+DAdJuO57DLdHJ9+rH3arH3hmKH/PWPT+SbjLutSyz7rc+vmAe8CRQ0n1wjlw62pGa6MCWhpmOXEtjZe595MhS/7GFWQin6vtY0S57/YlbU4HC1rf5z6y+ZvRL0W7KDpWCzCGlOe9+eQXIbELtubLrCKkVp9nMNk+jJGjIsKQipK/zPLqIOecE8zBijD2yv4Z+Dcw+0y7PL1KyAzLdBiOixeCss0f/mgw34O9QlIeDc/U/GTjqKhE2y0SDU433RY7UZNo+Bv9mEEb9YixJt/Gsfk+3uVcoBKFZHfm+LGp3BAq2MvIRfZNHFKFQCnDqswKmm0VzSzLdonDDojrTkm5uyLCawXT7GpGRSASlpc7YuAcPHsTTTz+NRx55BIsWLUpo5Z566imEQiHHX9eutjOGkpIS3HnnnWjUqBFq166Nyy+/HAcPHhTkWI3BUi8vEXyrFnWedpWZJ/teTDc1JFqbzsE2SleVyMysDFU3SRUl1sQjmTxZSTePoRK965jgIULSLalejlAwwnrPNL7JgAXq5JC2lwXgkkSxYH4jc6GVlHST6Sw7cIIQpyFzQu4sAPKEIwNdHwBGLAc3DIVVDGdM+l3oSWaMPBE32zgjx+P9BKuXA3D4XCDrQs/PNY/baTrezM6L5YHdhB/1RdEmTJuosNrEpaYYlOmWVfvneVQNiIRIuo1+cxDBxCFVkPrSoQe5RdPrS0jeWzpL6lWnE1x9+MtLwLIb5fJ01Y9YM0JphNqlMc8TwYCQEGmdiSTdJFjrpQzTHYvo0q6f7gN+oD1TB3CkxgszaR641ekMKdKR9PpdIeF+PPZc5kGyoH1MQQW5RpBmXUHCOGY1C9gWxJ7vCDdYATbd3R7xTsMrz3UAKDNuWtrv0/CTjxbz30ek6jbPe3mPPwHdHwfOJ7VA6PCHgrxFIA8DO3LWPjofU9296dlw7emsd0U0DVNQQvB8Qkm3QMIvGvOu9aZmO1LzNftvvvlm3HOPfSp74sQJ9OvXD6+99hpmzpyJYcOG4euvv05oBXv06IH9+/dbfyRjf//99+OLL77AlClTMH/+fOzbtw+XXXZZQsuvMmCpl4sYGFrSLaNeDrgntIxEh2fLxwsjJmsXxJqou6bY1zx1MdZ9lmMwJhiSbpLplnWk5lDz9IlZZ4mfe9nIAHbZok3ZWsQEcYSzWuin+wCbMY0xVKhF6uUHv9f/txjJr5ejHnHadGuaXS/Rwl+0l33fr0Qsi/Co78hT8qQ/YZJuOqQW6RWdkhaYY4R0FGV6oKchsttNlKTb9e2MfutAeXX2JK44Y0j2oEAU2SEIEhkOi1QBdngvTyKj49KkCSDpJpGajcRKQ4n2Dafa89jcexJh3yoLae/ljPsye6UWtRlE17MAkm5eP5y3BGh7DTD0K++x1fUB98F1shHyYLojhcZ+Qn6rxDzkRmwIKEUN0hbknu9HvZxE0IOmul2CvUdq7dHOO73eI/+T8KOmHkS93GK6BTbdabWBXn8FGp5GPnSn4+UtLD+Nfc2qR4Ne+n/zMCy9of1M5DiU3itrdxTXkXR4KBxDIkm34NuPrqCSh9n7eTIEEpUAXyNy8eLFuPzyy63f7777LqLRKDZv3ow1a9bggQcewAsvvJDQCqampqJZs2bWX+PG+kljXl4e3n77bbz00ks4++yz0adPH0ycOBE//PADli5dmtA6VAmQkm4pz420Tbd5wu+T6ZY5XerzMi8z9m1pybPH8GRKY8s43yi50bEk3aEQrM1ZVr1ci4Pp5kka7Ap5522FdhDZ8JuSbhbTbbxXu73t3ZopKSDvUYcsog3PjIHqBZc6nV8Q74rqc+QH9n2/ku6CbbatKukoKiTLdBvPiyW9rMqCSSxS/eWQDlL1TG8AdL6HcoAm8HLqCUFf0IwC6+DD1ZcBJd2ZlOZBXU5YG0esUb9gEcYJZLpdZcWhXk4SYMJiTEaSCC0Vd0idJDFm4TQG0+3DIZRJ3AYGJen2IwmT2UO0iDPPzf8mnsmOM41zTaD+ycAZHwB1TvKeC+EMKtIBkd7LEZUMWl7MuOmxL657GvimFzB7iL3GmOkzm/LfI2kgUprne7xKHP5yXyWkhSymu243YKSHFpnMQVP//zDK9rkHWkw6qXUj4QDNijFt1JMVnsrKpwLUy2Ml1DPJvPw6UiNBjrXyPHYaMx9zL7YEcqRGm8CmmwZJ03p9o9CRGm9d40mujfqb/iPI9Eq9XMfevXvRqZOt1vf999/j8ssvR7169QAAY8eOxfr1ftVHxdi8eTNatGiBDh064Nprr8WuXbsAACtXrkR5eTmGDx9upe3atSvatGmDJUuWCPMsLS1Ffn6+46/KgwzhIXXKR6mX7/xQjoFxSbo9BnrrK3TGjAVTNY4momVVGENhPdxOu2vZz5lMN8MBhp5YrkyLYYxTvTxRXrdZCIWBYo5k1gJlc8nMR9C3VtsSp5Skww5XOgCH5lNlCjZG2Q3MJZnwCU1CgiNCOM3pbbZeD+93TMcg+0itH+N7vQ6xCrfr/3+8OYCHbgGY8b/pDVrAdA/6COj7ivM+/S1eDELtk4z/HdgEiKWOSjPdLP8PfglXzhiiY4t3fZCdLpRClRmnWmfBDvn3/YBcd4IQ97KHYeb64tDAikPSrT+QLFsC9AGSRaCae5KPA6KBPp02uuoiK+kOGp4w6mQGl99GaD9IjtMThO0ouW/xDqG8+ioUFki6E9DPTKaLOBznIXet7i2aPjRKbwh0f5RTFtG26Q3ta154RB6s+RiE6SbpPsY3hkL2+sqDzAFOen3n75TsAIcLhBq8S9ItYrqNw+qYQNLt25GaX/VyIl+XTxNRmZRmDTNvGUm3jCNVSmvAQauR2musccKoA1eTg4FYBFh6k/t+s+GCvuXYdPPCkrLUy0+6JXmHshUMX7M/MzMTxcW2p7mlS5diwIABjucFBQlwfGJgwIABmDRpEr799lu88cYb2L59O84880ycOHECBw4cQHp6OurXr+94p2nTpjhwQCwleu6551CvXj3rr3Xr1gmrc9LgcKQmyXTTk+7EFglJN5W3l3pttIT/zFJLoTb+hv3EedqV0Z3CDHqf/Zi1KLPUgnhpaaTWst8NU5Ju3zbdcUi6vSB76KJf8NOIbDBJFXEp5hzA1v8aEiRKvfxchq8HaSlcBUm6eQinAtkt7N80USLCljfdZSdcRSoEXMbw7XD0RyoZQ9JNq5dz08MeKw7m3afqfX0jRm23R9h9wQtzxyQUEiTpBoCcwfZ1O9omlqiDywZZEiyp6pxz2Gl7x6spRqiXIywXms0BnxpBDl8jgrFNeioXEWdJAcEAWqqrPphukRRUCqZU1dzD41A/ZSEWcb9baB5sSzLdC0jJMfEOzwzIay2lTaDI9Mkye/BSLydBqzCHUvjrGbn/kes/7XXZu4LGvyDjnLTpJp3JkuYdXmugxJin9/qWv/N36N3sXCcz6Mem21wjrHqymEZq7xKBdWBfiyMgsvIX2TvL0EuCPKRU64n68tZuWmvAsa4QBzObXpGrg4PG95ib+74Ctv3Pfb92R/444Umuec6UWXG6SV8K1Ry+Vr9evXrhvff0U9+FCxfi4MGDOPvss63nW7duRYsWLXiv+8YFF1yA0aNH45RTTsGIESPw9ddfIzc3F5MnT44r38cffxx5eXnW3+7dkpLXyoRDjS+Aerl5T+R8DWAQ216EdQBJ6sq7gTUs518CmGqPzUcQN43va3WJfYvpAANymzEZ25xeiCxm3Id6uadDtKCIh+kmbY8kmWmRdJZmKEgNC3PhzDmD8aLHN5gSFnLjNNXc/cCxEQSRMFDj/6Tb/OehZ2T889h4L1zrM9uw7rGYBk1gMQlggaSbluKwxopfxyZmmC/eJmwRwtRcNf0AOCtE/YyD6W5tmEyl1XPnayKzqbMNZTQeTPhRZfYj7ewwTv/fgLAtdEi6U+RjZ/uF2VcxycPgWm3sa4sop9Ymab8bMiAl3QQRR9dbBjLjXEiQG3WZd6H+v2A7O92JX+Xr5Mg/CnfbM0xGpPOLsa8d8FpL6TmeYEk3EyH5wxR6rRFpEPLmJEv9WVi9eCTdxCHGwbnAjI7A/u9gj/OQd76//EP8HGCMY599dcozxPwmBA88SXdaXfvaYrpFNt0+HKmxDuy9nPg26G1f035NpNXLAzLdba6EU2LuYdNtHcKYY56WdIveJe/5kHSX5XLyTQGXF+D5IBKGVhP4pKnm8DX7n3zySbzyyivo2LEjRowYgXHjxqF5c9tD5bRp0zBo0KCEV9JE/fr10blzZ2zZsgXNmjVDWVkZcnNzHWkOHjyIZs2asTMwkJGRgbp16zr+qjxkiRsTJANpQkTUmDZSftXLRUy3KQWnF4DctcD6Zz3ypfJuf71xQXy7uellNrUZMp56uYzUORYhNmHSHi2ApPv4av/qZ7KQdSICuNvewXxJMNNeDqSYRA7DkZoVi9Z85CUpMcskHOOJbCu5+cUr6U5ztmG7a4HOd/vPxyI6POZTnZOA09/xkS+nb2i16bAE002GcyvexylHgijgwRxTB+ew682TdLMIfz+Sbp6qnYnOd+nq8yPX88dIWl1KWueDCPDDdPshcs01yhEyLAar/ZLqSI0h6RZpzsg4oCo9lJCquUEQfSKCngc/zp+YoMZeea582SZEUQ80hqTbfui/LIctqQ/inX7Ok24na1xqUfn46y5JN+cgEOC3rW9NtgTZdP94i+47ZO4IuA6XRNgzXaIcmv4Lw9cYIg8vSG1Lpk13SHe4Z4KWdCfCkRq9d3itxV0fsEND0mmTbdNNaloC3mrqZn2swx8Zm26WpJtkugPOTRHTzVMvL+Gt96y5mMS9rILh60uGDBmCFStW4J577sHEiRPx1ltvOZ736tULt99+e0IrSKKgoABbt25F8+bN0adPH6SlpeH7720pyKZNm7Br1y4MHDgwaXWoNJDq5TKSbpKBtO4JFpy9M4z8AzhS4yEaL9PJsDHd/w2QZ4QvI1XDTGcQpcfccf8AwQSH7QnZIen2YdNNMziAvzBlfhGPejn5rlCCbRyYpGSIGUV6YywvsMcd2Va0qpQM0QbA4YdAVr2LRM5ZRJ4BvcbShI0ZR9REFqHdwz3lllQvZ3kX9UrvNx3PeznJHLgk5aZ6LnmIETDWcdEedv/zPO4znRfSbSRiuj38K4RTgXZXAdkt+fmE09xMd5Oz2Gld5fuRdPvYks35S4aVIssKKh2QcnRFMd1eh8EOXwCcesUjlSclZnrFiLIJvxRBTH7ideDDkjp5qbnSEGlWaFHGmsHQXpHFL6RaahxMt0OrKsGSblabRork+5elXs47UOftk37HkkwUDe67PO0g84CNZLjiAD3WQ2FjXZREON051yyGkMEs034yfEm6ZdXLaUm3QBMiuzWQmmWXEZTpNueMuY6azum8aOlQmKqvxyGQ1c6EIzUZ7+Wuez6Ybh5t4qo79cwPq8ka679VSTcAdO/eHffeey/GjBmDcNh+vbS0FCdOnMCoUaMSVrmHHnoI8+fPx44dO/DDDz9g1KhRSElJwdVXX4169erhpptuwgMPPIC5c+di5cqVuOGGGzBw4ECcfvrp3plXNzi8l0syXa4FR4L4cw12L4JDsPhZkl7Oxt30bPZ9Ew77FqIe+74xnhMbpqn2/d0ARqxSAEtv5JdjfTMhVXU5UhOol2cyNCuSuUj4Ybp5YS8Acd+a9mrhDH8HL6S9D2nH6WK6vdqH2DwswiIA8dt2jP93SORLqHySfg0G/JeTyAfT7QeydoVS3suJsUJL1ljhavyMCzpmrx9JNytMX5MzqfqJmO5yMdMtk084DY51N5QCaSJXJtayla8f4sRkuol1nTxwDCq1OGcOMHy+OI3ZnqxQliyQWlY8tVxpJ24M9CP8J2gaXGYlNNPt62ArXqabMfb6veEzE8H4jUXcTKjlnTsA0x05QeTD6SsZTSVHGuL6wHf+6yQDr3lGOkEzv+uI4XQ3lCI4MOX1fwzo/2/OMxboddcHCndx2tyHTbcMXAdiYaApx/8EC1nNqbkmsOnWIs5vSqWYbqb3cr+SbioPkVlJrNRZVxeDLrme/nQ/HKFrzXHnuY6E4dTME6lfE//NeofT4NrTXe8yDi0cB/Je9AeP6U7RDy2YttccSTe3CAaTnkytrQqGry8pLS3F448/jr59+2LQoEGYPn06AGDixIlo3749Xn75Zdx///0Jq9yePXtw9dVXo0uXLrjyyivRqFEjLF26FDk5OkH4j3/8A7/73e9w+eWX46yzzkKzZs3w2WefJaz8KgVZ4sYES708KtiUTLvARKqXlxeI0/ixF2fanZgLVJjNDJMOko4tF5RDLCRmOzuYRMI5EUvqRjKXVpbJXCR8qJeLYh6LmKaIwcylZPhjBCOEI0WHpJvua1n1cklJNzefOCUsx1fBre4sCGnFs/k36yFz2p0Mm0empJs4bHL8B9DifOf7Vr2pOTlMUqMjWkpWBsz+5xH4LAlUw9P0uMGX7vEue/Mb8kw3V7qQxiBOJPtJtO66yvFLnIBiuk84nzfzQTCT73lpMWgx4MhSSDtSIxmitDrsNL6dvpHvEvXVYsChefbveCXd5tgf9GHAyjH2P7+mGSLmWYswyvCQdLP8QLjeBZBWn5NGRtJNpMnfKE7vG4zvIsfY+Svcz8l3zHGw/q/6//yNbA05QCzpPukWpx2wCPFIugt3eOx/dESKgHBJun0y82QUA6ZNN22rS9IjxjofE6mXs9TUeRCol9ft5k5OO32jy5dqfwPHV8GmW4y6es35UNh2XFi3q0CqTDHOEUJAYr5zfDWnEJbGQQJMP0Ip+jy5dC8wcgP1jHPIzoWSdFt48skn8cYbb6Bdu3bYsWMHRo8ejVtuuQX/+Mc/8NJLL2HHjh149FFO2IUA+Pjjj7Fv3z6UlpZiz549+Pjjj9GxY0freWZmJl577TUcO3YMhYWF+OyzzzztuastHMSNxCJYvN8dckikWmOGoPLtSE0AL8m6pzMbTggjl9SC4wQlnMZmiGmQ75oxstMIp12OzYPRHkymO5mSbklHeoCbWJOVdJvq5eF0f5Keej2J/Il6stTLf/cLcPpEdj6kmpT5DSKG1eFgj4cAUp+ULOfhDQtSKvsSjtSSGYeyiGBOaZtuTdMlkSSRQY9zlno5QkDz8+x8RKDXImY7cA6KmOrlABqfbqs+lp9gpwGAg/PcefIgknTTqpHp9eTy9KNeLks01+1qpyWZ7nLi0CuUoqs2nvIsMORLH3WAN3OqRYHvCDMu+jA4uw31AvEsi7dHxxEakNxLyFBFAFC0171nSEuACSlN7Q7eyUkbVas+jAMfWS0RS21ecGjE0mqzH3Jui5h44ln3h/nphAjLM2vNhnunkUGMONjLYDmXjLKvAX39a3MFO1+uTTfDd4kQPqS0ovcddSDVy+PJ2wDTpltUJXqfCNlRawp3OGk0/QV+/rSkWxgyTFK93OVIzVgnWHsKfUBAQ9QW9OFmtJhg4s1+lzhwH/Bf4LR/6NpG3ANg4/6BWfr/gi36/3CGrhFhPmOFkHOFC4WzHE+61UOCnpLOMLcMIulWjtQAAFOmTMG7776LqVOn4rvvvkM0GkUkEsGaNWtw1VVXISWl5jRMlQMp6ZbxmrlxAvA9pb4tYrp5MUS9iAPh5s1x5mU99+PMhqhHmCKgwilAwVbGOx5OwOwM7UvztDuFXDg0fvsA9mbhKDvJku6mw8RJuDbdko7UTJXpsE9Jt8kANOzjvO/anFOAul1sD8w0HOrMLJV/Ap3uYNuh9npepsZi1G4PdLlXVwf9nRGnXERMem3YQqbbh72aF4RMBUW4lB0DptRzno5zT5oTILXj2ify1iCJiAFea5u0pNsH093nFTkpVzLUy0lJu8ORGtkOYSCjIdDzT0B2K/k6AHxptFUObbZC2WdKfbOHBokfOCJFsBzvUeYRgZwiSdSPJa0/thz4sjuVL2POXLDGvm5rmEi1uVL/79AUgfMgUIvA/c2UyQhp3uEHLlt5Sfix4wzqG4KGOeZ4MePpgxkavOgYvH0nqE13UKdQQvVy82ccYUozmzHazaOuLsFJ2HbC+dMDDMaTzo/47ceRmsxcFDlSY81TEY3nKJuBcAbQfiyZmChbUtKNsB6Srut9+nwVOaZkISXDGemDperN0jjgmYGwIGNuwvTf42fMM5j036p6+Z49e9Cnj05M9+zZExkZGbj//vsRqiFBy6s0SIc1myRCP7Ag9NxoLGI0sZTCcBLGeo/5yFx0OASvV3gPh003Q9Ido09RaXCIexrk+DUl3eRpHamqz8qPKU1P4pwIhYG63cVpzFNQEdMtOlCJEpJuP7a7poScJqSCOlIjDzx49ej3GnsMdKe1bgL0iRbTN8tOtwF1OxvZeGye9U9h3DQlEQHjgJqQjhMvAE/Vz5GGehZmSbrNOeH3sJVz8m1u6FmU4x4ZtWMhU+3hvdxRNUabWIcEJGGRonu5veAn7zx9eS+XZVQISSKZP3lNtrGfEGeA21mgC1R7hilJt8vXgAxDHQfTLZJikqrv5rM6neXyJce2zKEAa36vfcqtXk2vZW2vARoQ60Z9o7+0GFB8ADhGqUtnNAaGLzTSRN11OzjPrLT+76RbqUoxvmX3NP4zGl7MHe9gjcbA9/jxekUgw+SZMGkX+oDMhGiMAPz68vYdP2Hn9AKMfwFpAy+b7ngQSgXO+8E9fr36kPbDQH8bLekWMVO0IzWWM1qWbxEuWIetptYci+mWoCd5SMkAdn9KVtR94CCjXu68wU5nznVamyic7vTezzr4NMOg8fYJr/7mjXmW+Zp9wyfTHBMc+ld/+GK6o9Eo0tPtwZqamoratQPEzlXwD4cjtYAQEX/mAkGHufIr8XA8iwJHVwB7OaqN5iLHVdvzYdPNgrQtCUksml67CUbasUCxvD9K3ksUZAkawE2MkWq+Qkm36ZzDp3p5lHTqQcAl6fZiusnN1QxpVcpN7pvoaHMlWxWURqP+jHdHO3/TbczSQvAj6RYRZaQzIBGEhF0A+z+RpJv3TSN+BM5b6pEfAd7hisxBg4gJ2PeVHtWAhEv9WQDzkIV18CeDpDhSI1TwYhxJt+wBWxC4JN2UdLHLPfQLMpkGr0/9k4lsRJJuv9JJn+u4rNaHa02lD0fNQ64osOoRxvthm+GJMSTdm1833ucwGazvWngZuy4seLYjQ0WUhdTsYLb8LAm8uT/wJN2eTDdPwilwpAbIM9HW3Kbm+Cky4VPB+aYEMd2n/kXX6qKlq17rUYsLqRs0001rlgiiTqRQNt3HGQeaXt65XWVz0rG0p7yYblE/5wx2+rMJheyy/aiXi37bFdX/0XQIXW9632l1CSc/H+rlXEk38R5No/i16Y6V+WiL6gdfO7GmaRg3bhwyMvQBW1JSgttuuw21ajmloTXWmVllwlIvj4OZk5F0t7kSWPJ7+7aL6Q7BuSmLvKqWAzP7CZ4b33TyU8DR5XropTWPu+sEUCdpDJtuFmQnOzmhzYWKJPS9mG4WoZXUkzlJgiZaBiEBJXR8ZB4+pPtfMAE3ke/Xe7nDpttUkRT4a/ArPTh9ok7w/fKSOJ0ZTo5EahZwdVQnUut0Ara/bz9r2A84tIhRPz/q5QKwwtOxIJLKcQkgAZg23eYzTr0zm3LmBu/QyPA6TRMnaRK2015E2M9POH8P+9Y7TxPWN5DECVHHnMHAYUafm/DDdMv2CSnpJqXKPAlGosFkuom6Nx0GrPuzzzzjYLqbE47/WISheZi88yNda0Xam73PNpQ93PB0qEjscYcWsJ+TjDm37TiRH0S+TmT6wUtLLSQp3QqnI5B6eSikv0vOLXLvYUq6abt/lokEqyyeTXcC4nSfM8/H/iqQdMerbWqOD1ddjHzbXw9sf1c3CSs5BJQdNx6HdTOu1Y/Zv0lsm+jM1+WcTCDpZtaTFrgIIDIrYh3kWqFOOaELWfPiwrXAge+Bznfq6vR2RYOpl5PgjguOhhn9m9Y28gpnSl437OvWrgEEfUNqgaXqh2JWxAqfku5YOVz74G9V0j127Fg0adIE9erVQ7169XDdddehRYsW1m/zTyEJINXLebZHnnlISLpT0oFBH9j3U6kTZZp5EhEv5bke9TEmcFpdoO+rQNOh1HMPSbeMOpDUZCcmuKkiRC7KBdvsa6bTtCQ5wKrbhX2fJLhFiBSI+0e0kAVWLyfs6hxl+fRebj0nJN1CKa9fokMyPc+uKhQGzpoO9H4BjoONWq05fWNuvIK2TJWIUzx4incaL8iolwPOk3GRWh99yt1qFND2Kj2ECGuM1WovIGRj7rEjNf48iLCiXc7f9Rjea3kwiSXaptuEqbLHrVoS4nSznM0AFDNEPe98t3e+MmMQEBPPrLLlMg3wjgHSMVLpEfdzM0yVxcDKMt0+iT1ZBtIzndEWO953hluzECZ8m0SAvPXifOjvkHEwKqyeB8O5+zO5PYqOCiANxjzxUi8noUWBNX+i6uJT0u3XkRrLrpn0rC9Ct4c9vsnHfGNpYplrLE+9vL0hiAmnU8wnHYmCqsfOj4zbpkkgpa3mm+k2D+Nl1goR083yEyJxuE+jfk+g673uPar0sP4HEP3uU9LtpV7ul+nmMf2sfe28H4BR+xhlcw7baDoplRDW+dHMBAwaQEm6AeihwRQqCZbTsFSgz6vAshv95yFL/JGMNa3GlZLhXDhFTJ1XeV6eLStD0s0qjwTL/oy1mHlJAmTQ9hrdO/OyP1B1C3PshinEPCTdpv068xnpvTyAIzWXZMWvTTfB5Ek5P/JJ5Jt59X0NWHGnv3e9UHLYfc/c5EUbrxUbm/MttTtI2NpKwEvS3eVe/X+PPwF7PtevLaLCg+kOpwFnkZpOjD7r/qhAmsAguHhpvd5LFLyY7mbDgb1f8N83mYF6PSmHXxRaXuyDuOAx3YQHXprpacTQOmrYT3dCaZqdZLeWKz53jfN3IElbHEw2DVJd9GuJOSIt6fbrSC2opJvK27KvBlCex6hX2F5LIoXA0nHsciwCnRpX8TLdXvbMh+YDOWd655OSHmzshEJwjX9SvZwb6sxA7s/ABsrRJm+fE4UM8wWWWY8k093zCWDjC6xKMPL0AIth5Uq6KZV40tzLLJfrlIuRjyt8IovpFo0tsx4SbS+SdAdRL/ezXs2/yL4OatPtpV7uxXQXU0wz76CP5UgtnMZ2vnhgNicPkVkCfTDjBc2d/rcq6VaoRJDey2VVTF15SKiX06AnnotpMBY1FrHm6SiNUpmnFxmHpJtc2GmmW2DTLTPEWe+b6lMAUKej/p8X25S1mJltLUN48BBOA7P+oTDlKZMHDWKmW2AjHSNsswMx3fQizPBeLgLLkZqIsPBLuJn5Z+aI0/nJywRL6mRqTohUpT3bOVHLtYekO72Ruz7WnCPGU/9/89NZRTG+KbW27lWbiZiboOrxODspCWnv5LA9QsvCHLu87+x0BzDwfXBhzomWv2M/N8dE7xfhy5EaHYaNLIuZD+NeOBVodq79uzeLsE8SXMS/JFHb919uXwFkf0SLvAncZDHdMpLutLrufZRuCzLeOs+PgpSGFYdAr8MIJwTozkllnO55ecM/+WlnmEIek0964fcFxjtm6CTa1IEFcn+3suTREQKtHD9ghvUKyXmp5tYhyMEVKwKFh6Tbak+NYbtMfU9DxuGetX9QNCFL0n1gNv+70usbF5Lq5Svu8MiHSg8g4WyRxXT7ten2GHdeTDcNbvkM9XLfEBwY8CTdvDCWmsZIX3NY1ZrzJTUdjjjdAU99ZBypAc5FlY5FS5dtEsinT2KU58V0054t6e/iLKy0qmsyJN1aDDjpNqMaHvb0LALPeoeRd6tR3nUCDCkza4pKbtRkjGsWTGm26BnPkVrPJzllmiE56M3bp4MWliO1UBgYsZz3gjg/XvpEmAZkUuporG8zGVlRbGdmDE2PfIPAS9LNeh5iSLqbn2c8S2Gkg/sZfY9UQTOhMZhu2kMuC14EsBnCrlZbYNCH3vmRKN5rXHAk3eFUoP21ug07C6TJhek0klRJd6ztPlRVt/7XfT//F3f9WHW27qUC/d8ATn4GuHgr/2BRFmaYmoanOe+ztD/8Mi1kGfTBs8trslfeybLpTuObBdmJ5G26AfaBtuzexlNF7fMq0PIid/pYqa5dBYg9vNftDAyerEtgWcgZBBRuJ+pB0ALkoReTwJZByK2qbELGmZ0f3xT0mnbyU/pcP3m8XRcpUFJjgMG0cuAp9fQj6WZ9u/GNXEdqxv+8DdT6TNvrhvSQV678SUk5eZ/hSA0Atk1iVt3qW5nDhqLdQOFO9rM2Y3Q/EKf82RZgdH/cWVcXgtrNmwcXPm26ueUZ3779XSp5itj01I96uV9wNSQA8LQ56nblZKbB9e1K0q1Q4SBtugMz3SKHPsQiVp9SzyO9JLqYbmMRZUmuRDbkgFtSLZJ0O6TeibbpZkmTic2EJ721Xmepl5vvsKRLknZ/4TQwF15pIsVL0k2H9SGfedh0s+JiAwSD4XEK68l0E5s0Kelu1NfpUfzU5+xnnmCowfmNMc3MVuLEud21/Gf2ix7lVBTTLcmwsZ7JtIUZ194hzTMQKwO2vMkviwcvdUPTZKZ2R7kDKxaCEifknOhnfBvJSJFaTLJbcqRAfGDEXHc4/ZreADj5CXcUiVH7BIdcHFy6Bxid5zZLYmo9UWuTrNQulOKctyc/xcjag6kOJOmWQDgVGL5AP4RuNICTZ9ibACf7lhfeSkqVnaNentUUGDLDnTxWZrdNrbbirNuMBk55hvOQKo88gHetuUHVy3lF+2gXmXrQ+Z08Hhi1H6jlIwICYNfZUXdJ9XLuuuBHvZyQVrseeThS47V3ySFn2aTZgyMbimYzQc5DUhvCy3xS5pCBZZZhlZUBDPsG6Pl/wIC3dM2ZU/7srKsLAc1hkqVeTh5qAUa9RQ5UZZjugDSGaN9nSbrbXy/+PlmpfzWEYrqrC075CzDgbf0UnR6AXqpeJlgqVSbIxa9hb+Ds74GLDHUtx6KaAnR7iHjPnOSMoeRl001LkOmJlt2C/V6ibbqbcFTALcaPYrov2clORyJi2Euz1OqkmW6epFty2rrsr6AzHSZEdn0k0w0AdSnHU7xNL8pzpOZzESW9lNI23WS9zdNx33aBAkk3y97LV9bUt/Z8krBpF9XTg8Ax24TuC9/wUC8nVfutVyTji8vMN5F5jGlDbuUnqYnQ4gLxc6tecXj5Dcx0E9ofLOKTNLORJXpy17qdWpJgHaix6izq16zm+iGXF5oNt69TMtjhnFhwMZM+mG5yXDCl8x55BWG6ZQ4FThjaAh3G8sd5ONXbptvBdHOkslKh9Dz8YbT7vfN3tFTSh4YH6LWF7CPH/hdQ0i16RyYEGasvyfdIKT+TiQyyjjCEC9KOEznrjZ/ICKYWijnWGvR258/dtzn13DvDfYjAWlOsfKixTB7GyIxnEzIRLUT0J+2HpPEA+1Ay6Liv151TFke9vOVFQIdx7nQmeFpH5tg96VaqHA9Jt5e9vZlHEPi16e7/H3D34sKdPg4gqh9qzpfUdLS+FOh4o04I0QP8TMkQbaWHBA+pTajZ2bYtM01sOhY8wQbtqV5Oq20TedQ/FWgylF0/MlSK430K4QzvReSsGYxYk4BjoaAPB2q1ATreZCdlOXrK36j/ZxFefiTdTCdvxj1T/Z0HpiORkO7IKqsl0J0R/9V+2aiDQYi4iAyeZ02eTbdPGx2HOhp1sOPYnD1Usrn5G+lZfSGjzuzMzPlTFIpGRKx5EXJmmwybKV81UT6JknSTJ+6mXaUJvw6bSo86f8tGasho5DEfzP6Ow5zA7+GCCVLSTTPdmgaHk0w/xIVfLQ2eenm86PgH9n0zFvqZn7Kfu9YmP5Just5BGKAkSbpLDni/y7THpr6d1EpganGEgbAMk8JRL7ceU3t0pIAoLx7ykHp34LvsZCxVUikI3sld6/066yAjnAKMOqBra5ChUj0PiIm6XLAG6HKfO4YyAGboQYTscHbCMjh9schQ1T+6zDsPcs0BKMaTI+l22XQzK0dchjiHFJRJIF0nQJLpNsqS2VeETLdgbPOeeR3mcPcfjnr5kBlOfxr0nGl6Dic/o/+aj6CKSeXbSQPAtv/Z1yRdSkulg0DEJNOS7tTa+uGsqCw6AoWSdCtUKmSdotAoETDdwpN/StJNphU5M/N0pCaw6T75SYEkzrjvdSJ/dJn3ItLqIk4aQr1cYzgnIhd90WLMkvrIhpUJp4M5Rc16tbrYIwNCvbxBL70ugz7Q42peulsuNEaYJ6Hl9E0sQTbdpLdUq58ZGy7PDvrs791ZssIhJYLpKNjq/E1LH6Q3DC/i02iTWiwbTx+bkjTTzQnZ5wd+N/E91AHiGT7sr0lCmQZpnhMUfiTdYwh/CaRHfxfTTayloSQz3UxTlQSMf14eF64Bzlsi8GERVL2cUmENQiiyYl/zyrIg40hNZoxIqIZ7qpen6Eyi5xgQaKIB7rXqi5Ns1d64JN3Uu6SdO9nPdbsFLCcOjRUA3EOXrKaGTTtRJz8HdQ1OAfr8g5AqE7AYW0oyLBPpJN443IC91rB84ch6L6fRqD+cfcFjuslDdLJOfpluMz+JPhFqAYiYbqoNOt0JtL7MHdLW/SLntkC9XMTwhkJuU08A3IgEoRRdM4kXwpI83CHb/cRmIlGy1MtZ3ykY0y7P6zWHVa05X/JbAm2bJ6NOBYiZ7nbXCV4kJkd5HhzEh8iZmSzTzVK7olV8HeqYmvMej7g58Wt8DA9t0+2QPhBtULSbn20mI+yCLLEcSuNstmZ7eXwb6Uit0x3AFceBxoY9NJ3vsJlAjz8COYOpojhMN48I4IUME6mXNx7ozsfB+FGEo6P9OCrZzc5251m3ix4O69S/2PfoQ5HWl3vbB9OgvUjTJ+y+x2AAR2ojfgSaC1Ssz5pO/JBVLyfvVdBJ8+HF9nWv573VxmXh5QxRCuT65JFPSoatEXTkB7tsF9NN2rqmwhcz4ZfpZpkXycblFtaDQwCn1wcan84fZ6KDXi8fAg6m22ef8sLe+K0HExJMN1PSTachmW7GPmoR8oK9n1z/eWuHiDGJi9ANAR1uJH4TeZFrblYzBGKg42VC6TV68BQqfwZD6gssesKYrwfnEvdCQONBAfIPAGvNYdBN5hx2HZZ7mDzRMZVDITFzKWK6ZelYVj1ZCDy2qWf9/qVr6/i1yabvezLdsuY/nIM0nokAC6QT3aNEJIhkqZfvIyXwDHrfBaVerlCVQA9wWRvUUoYHWROisDzkgC87Rkm6BWEW6I2NtlERhQyjF2BHXpJMN8AO38QEbfvcgWC6Gc7BSPUc0ts7DZb0TXYTT0lnE4ghSabbwbDSXkYpND9PZ0bpuln9QEt5eEx3AEdqDoaQes6K0x1iMN2yNpp9XtYPF0zQquQnPy12MCcDWUl3Vku58DxWPkSb0fVueBow7Gv+u7XaEfl4MfeMzdsivipQzevYSn/pRWOA51XfD/zadNPzjQy/Z65dK+9x5umHuJDVmDHBIkJP/au/PFiQUedljjWBerlQ/ZNSL5eJ407i2E/yacl+bthXZxhZ0icrvSTTTRPgtJSfdGrHCu0ow3QXbIOtXs5pT57HfdE7MgiFdemg9Ztoi55PAjlnAP3fiqOcBDPdba5w/k4ltam81gxWXRj3zDFbesyZTtaxY+vL5dJxEQNW3A0cM5wjOsYqR9JdYJoOcfqo4x/cDDlzjTXfFzDdfg430ht6pwnKdAcd96S/HBKW+RAx51mOVZmH3QKmm0djyRzGtr1a/+9Qb+fUQQYi88FQ2Lk3W+NdZGpHfduhhcHqVQWhmO7qCC+Ghgde+ATAY6KKbFZFNt3UxkYS/oAtfWI5sLDC9Jhlkqf9pvdG43t433/aP9j3ZdDuajtflvfy7o/q3mn7/FPc/iyiyI+kmykFNhkgzvQ1JWwOSYckkcJiFPTM6ITs93nq5a6lhvid2UQPP+PI3mjTwh2EnTjDDtsyNZBQ0WOB7ru02t5ee71Qni8uw0TX+4CR64h0HlIFss1ojQQvMCWDHpLu+qfozl5Ihy2n/UPvr14T/JUfBHu/8JdexHTzNDBkUNsw3/G06aadYVFjPiXDXuu0KLD6j8CW/xDpfXgvByBtl2yCNWb8emBmgVYFZIE1poXq5B4EGdmPMtJ6lodzGThsEbOAyw4DFwiYdlmm27V2U21B1pcVGkuGwC7LhePQlQUr+gMLcUq6eQxFZmPg3EXASX+w03Kz4bWhRN3qdOI/8zpYPfyDdx1EYI1385CMtX/JoOkw//UgoUWBX/9FlC2hXm5qR7LqOXgqcNItcPWfL+/lUXcaIYyyWDbzNEQ23SKbcLIesk4hATuEJi8/8pC0y73uslhjmnWAIVIvB+T2uP7/1v0s8Oguv6DfM0NX6g+pxKYwixPyj5Vf4Y5g9aqCUEx3dYSL6U6AvY9w46OGCenAQWRXTTNCrtN9WlJN5EGHWyFPETVNP/0/vsqZDw0vGyERwREK24tb7s9UPaGHSBuxFOhylwfTzSCKUgjNBIezOApaBKjXk5Wpuz4mTvuH3RcOJ2QBme4sQz2eJpC56uWSkm76dJ+O2Whu9tvfJWJ2CtTLvZz28eBqw5CuatjyIuA8Cec0LPR+waMMzn0vm1aybzztX2nHTCShZ27OXpLukO7spT8RwqtuZ93ZUPeHPcr3CZOxJeE7jrOgTeJhui1bTIZkSPyi+zdJfG6g1h+/Nt1+x3w9htf7hNh0yxBqjO/qaKgfN+yn/9d8SLpJTSNuvFcCprPMWm0h7bDNLItECi+ihAkJW2AZySYrBKezYsY/AdNdtItoU2Kudye02jIZtsdWEXFKuj0PqSTK4caNF+xnppmN6EDCy3kZyRAE0o4RSLpZ+5eJFiMFWcZJroscfFprHPWtlnYk43saDzD2EBmm26RJBEy3H3OZeNXLsziRcQBnO3e+W75OvP3UdCgZZhx8O9qKJelmtYkH083Tfun9on2dVgdo/3vdBMiRtd89lyrbBDl/QmGnTwez3jzbczKNCZa2TzWFYrqrI1gbWLxqn6IF3WQ6TTQZDLQ0nHj1fY3/vosopNJYTHmY+g33okiGpYEGlJ+wf/LU5r3U7kWhiwBg+yQ6Q3Y6EeHK2kjIQwuReiArdAJg32P1ef2TiXcI9XLpDZvaOKw2oglVno2gpE23632q3KJdjKqJJN0e4el4cNUrpG8QQ2bY9u9+0Z7yjyByqOQAEY+cBb9OnRxFkRu+eS0hUWfWIxGHfHSRjHki2pRZoAm6ut1se0lXpAQBzl/hNHkwiSZWnHcRWNJMs+1ZDHMoDH6fMBBUu8NRZgL6suv9wcpp+Ttg5Ebg3AXGDXJMS6iXn/uDbmtJEnTcd8iDSB/wu6+2u9r7XSktCUlGT8SoLLwcOGg4lCTHokwYOPodvwiFnX0uzEswBrmmA4J3Wpyv/xdqvvgItZUw9XKjr4TSzYDaHzKg10cZ9XLrEJ3VfxzNLNb4Nh0Xumy6iTXMix6jYZpY8UJoBvVenogQWiSyDBMOB91ilEE6s5WVdPtRLyfT8NTfSZiCLL/wmt+ktpzFdNcHGp3OeYX6NjK0WjWHYrqrI/wy3Z3vksmU/4g1EYd8rnvobTrEuCEh6aYXZ1rSTS6SKRTDHAoRE1Rz5kWrrVvveCyYXqeltOM5X0SUWQaDqSZVxoVELyeGqYjpzmgMqy8dIcMCSrqtfpWUdMuGDGMxuySYYdzM706gpNvlsCMAYSN0Qgi+ZItuo6M/ivPxJemm3/WjXl5RdttE+ay52O91f9nRBF3fV22ihmv2wEDDPkCrS4hqstpDYpyIHNIxPVKH3E75RBARlXHbf/pAtow5Bqe96nUlNJJkJd1GH+YMdNoNC8GRtHnBcw+hmF4yVm+Q/cJPGlb5/Awl0zkyD/AOp7ygkm6uc6oQkJEjLlskHfMzDvyOGYC9j4Q40mQS3G8CEs90syTdtPaV+Y7oYEGiXuW5Rn4Cm25eeMieTxBFEmWdt1Q38ztzKvs94cGKoM7kfh3vXkj6jyHpFnMMkJJmWZtuL/VyM1wt4KQ/ZWgbPx7kWWUzn4WpepB+Mvqw36H36YaSB4XVAIrpro7wLemW6eYACzrJGDPVy6lFnlbpom2lHc4WGMyqJdXUnExH26tsxxAkSAKIBb8LaiDbLhZRFGZfd33AmUyLgd0vYeq/gbR6QINTib6gHKlJgcOEupg8nzbdno7VqPxYjlIs50GMGL1BpX6yTmxEyGaE8CLh2y6R07YnyBjYcUjsPNXLE7wtMA9Q4JyzLOKCpXIuBEtaaB7KxKFeHuIcPHnCJ9MN2JJJGdD22Dln2tdNzhK/2+oSYPh8+bJEkJpDEuuPI8ySiCjmMJqigwZyj/F7YCWCyzaUlO7KarhA3nzHlZWsf5AA+3vcIcMSIOnmPgsBIzcAZ3zi3vstB6gl7tdM+NkvooJ8uBBIusn9y1wHBryta/ORkTVcWSZ4XWbadFP1tqI+iKSw9AGLqD+pfYs8LOcx3T3+j32/zkl6hAue0EVoM1xRkm7yYJmYqyZ969DGlGS6vbyXk3D4Lqgkphshap0i25fXD15CmuqLmvMlvyX4DekTyQcanOaRZ5ynqDKTgueN2Kx7vW66V9NWozj5mXXU4Fi8w6lAn1eAttc4k3up0XkR4J3vcf7mEpcCIo4ZJoIj4WtH1b/tVZy+Djv/mzjlz2YCo1oJcKTGZTj82nT7lHSLpIukhK/0iHEvQZLuIIdP3R/WfRCc9jL7eTwSLxIlB+3rXhP0DZuUAohQmZJunppn1/uIMhlz0a8tJdNm0fjGkgPB8tQzMvLX3PeErwVgulmOE3kYTEl4HNpBHvU77SVvxtzEBav5z7wOnKzqSOwPA9/T59FZM8TrFW98DnxXonzSz4UECraJn9PqzzKO1BoIvJ+LwJLqy4ZZcjgiCqr15AM8KZzfcriS7rBuj972SrcjPfOdpufo/7NbuR1i+dkvGg/wTuOuIOMWw6bbrEfHG4GzZxkxwn3kSaP+ydI1lPI/IDJ5SjUis7iYW0E9RerlrEgvXR/Q/SiIwGMUhYclkmMuWUy3pQruYQIpVC/3McfouvAQ2Kbboz0d9IdH+7Yf6y2UqcZQTHd1x0hDlUQ06LdNApqd45FRvIM6ARt0KKx7NT3rM046gummJQOZOcAZHxDVkZAAeC1SpIqpniknoYjpZm0YRFuTRCtdn4xGbJs2q704jGo8km6eejnZ3pfu5i+CXJtuuq29mG7BYcOv/7TvbZto1C+oI7UEMN3pDXSnel3vZT/nSdbi2dDr9wCuLABOeUYuvUOq4aEW6Df+syc4308SS8z+9lsPmukO8+eIH5iED+ncKr2e93tBmG46hIsIdTsDDXrbvx0qfJy16rKDwMj1zpBUXhAxiYlUg67bWZ9HrS6CcD/htZ2oDJ4jJy+wYpuTcHlOlyDYez3PuMmYIy0vcv52aLqYhLfkHPF7YAQgfvVyshxBXqLQgDLaQDwtrL7/1J1HnfuDHp6RhNd+QdoXex0+yDIEpulIiCHploGoHNOE0A/TJKNGbZkAMtrAXL9de72gnvRhB/mbRSvJeA/n9Y8olKuXo0bWdbxgHXyTB6UsvzSsNY3lHBGwQ8GZzm9d5XO+uQvhk4NUTfcDP5JuL4/toRAjP8V0K1QqiG6zJpjXxpCAUzDh63G8L3ta75A4eTgIE9k7mvBSpZE9SRSpK7IW/lBI95ze/VHnyTRLBbtuJ6DLfVQGZr14jKpJYAbwXs5VFSO+MbMpPz+epNtLXUiqrX1s5rKoiBPVTI6dHv3NJoEhrVrqQ2rLSstVL/cpDRZJQgE+IciyzSfhl/l3qegSkm4rTQD7TDMEXzgNuOK4/ickhkwwDnS8mG7fRB5RpmMd5fRtZhNvsxs/kJWG+jblETHdnLkulKaS6uUBxgAPQkk3Zx7JhiGi9yfWd1dp9XLyt6BvDs0TZCTBdPP2kvT6QLcHgVqt3eV77RfxmiAwbbrNQ3GS6fazbwn6w9TK87VmEvnxHNaJfMKY39j+et1jfJ9/8tNa+ZXzf4dCephKXh298qYh8lAvmg+kb5W4HRQT5ZAMtukEzjN/Vp8bYzO7lfN24zP0/y1pYZFVGfZth5PigPDSZHHYs3uol2taQI206gHFdFdH1Oum2+81PYcg1L2Y7gSd1vIQzyZFO03jgpR0+3QQxizXI76rNOEg+PbcNcCA/7rv93jMkHiIbACN8vtQ8cZ5cbrN35Z0JgHq5UxHagwJogmuTbdXW/qQdLNQmZJuL/AOleg28CKY6nQOXgcmA8CTdPvc8LykpjymO8xROQtaDxczRdmVAkDBdvn82l2r/+9GhEdLr+8Os8ID/U1tx0gw3T63ZI3DdFeUDZwsUer3IEdUfx7DJPT+Tki6WQ62/GgYkKBtumVUU5kqpYw9xLU+MNaRZDpSi2sMJcgmk/ceqXLsmo8S5neeBy8+6Bkz5B2JX15y37O8lxP183UAJNKoM+ZXvzfkszOdmwH80GymtoWo/1KzgGFf6+FT9cT8tA5nudlA98f0/+ahAemXwqtcL5TnB3vvwCyi/ARKusNpwAWrgBHLbVX6QHS7MQ5oG/ja7fX/ne/k5MXplxYXiOsgA09JN2+v53xf++vjr1MVRc09TgiAwrJCpJS5B09KOAWZqZmOdDyEQ2FkpWUFSltUXgSNw7yGQiFkpxlMYjgNRUO+0adeeZF+Twtb2pUhANnEWC5uci5i0SjX91KtsPkWUFxejBhNJBM/a2XUt65LIiWIxoxNo6zQlX8tog4lMSCamg1EitwViESQrWkIGYtCaaQUERZhFYsBMSBbiyFkLDylMSBCtjFZh7JCZGlA2FhryjSgnGxeLaTX23gvK0SkjZahvLzUmV9Ms9JnpmYixVDPKotFUM7T6mo9BpkNeyNl2R8A6OWXkfWNlttllJcgQwNSjTqUx6Ioi5S4v6u8GAgVIiMWtSZwRANKI+V6/cwxcXgZEI0AMSA9FoNJnkViEZRGOE5GYjGka0CaUYeopqGkrBCIEOOnvBgoLwFierp0Ky1QYrZZNGq3LQBESpGm2WljAIodz4sd35gW02CSVTENKNaMtqLHWTSG1EgpMgymW9OAIg3OsgmkhlORkZphpNVQVFZMjZkiIEV/18+8d6XNbA0U7Tbaq8RRn3AMyAoDyBmsp0W6riFQv5/Rf/a4C8NICwAdxnqvEcRvR9pIif2dZcUIlRchm9iEi2NEM0QirvarlW6rW7rWCC3kXCOI90oiJYgaY9CCmXekzE4bCulrBFloeamjHtlp2eI1otzuy+wQEDLUy0tjgJWy+LDr27LSshA2CIGyaBnKowZh2OdN4NQX9INN4x1uWkAfqFYbFyJTA8zdpKz1lSjXwta8ob4UmSEjbShFXyNYXXz6JGDpOGSEyDVCQ5lZJlm+MVcyUjOQahA8wnkPID0lHWkpaey0Z0wDFo6y04aMNSIURjQWRUmEbz+ZlpKGdKMOUQ36eiJKm5IOIGTPexoptYGyQiItENNiKC4v1vdBmpGJakiNliMDALQYtGgxiuj1OpRutV0qgAyTR281CkWs+hppU3KGINNU6wRQWFYMpBjlR2OOcZ8CIDMlbBGghY51zDnnwqEwsghCtjAGIGbv8TDX+rICez0xUBRjsGcRfZ8JAY55X1RexFdEicUc6wmTNgCsOpH7fXG0FDFiPqK8xEH0k+uJa9478tac64mZNhqz24toZ33eM9aIGJxrUKQE2WYQlMym7vUkFnPMZeG87/ZHIJwFtLrUTmu+StIcsZC9fxl5Z0bL7DXCzLf3y8DK+5ztUFaIzGjESutaI8y1su7JQAzONYK3npTkEmmJNYJsp57PGnuS3pfWvIdgPTH2GjKtNe8JOhXnzQfSmwCX7EVaWra+34fT9LRmfc15EbN/p0XL3POerHMobB30kvSJYz1hzGknbWDQEVH3XuhOq6HIpLno6REpR0qkxKYNGvTS6Qhr7JYRc6TUmRZAITkOTRi0VTgWBXnkVxgx6AzGO2EAWaDmPUlHEOlD5UU2rwHOemKmhclr6CPeWiMcc60MQCoQM9YIY10rLi9GjKQNstsCRTuBNtcCWpiiI8oQFewbjvWE5EsY8KQjAqZlro0MhDQeBfcbQn5+PurVqwc8BoChcXxhpwvx1TVfWb9r/bWWPckoDGk7BPPGzbN+57yQgyNFR5hp+7boi+U32xt2u5fbYWfeTmba7jndsf6O9dbvHq/3wIbDG5hp26YCO9rbv/sd64AVR9kOYRqnAIc7ALjsMJDZGEMnDcX8nfOZabNDQOENnwGtdeJr5Icj8fXmr5lpAUDrZF+P3g9MFZjYFDxeYE2ccdPH4Z0173DTHrrqLeS0Ph+Y3hp3Hg7j9Vz+YN/eDmhncJsPHwZezOXXYV0boIchhHiqxXg8Pf9pbtof//Aj+rXUT7hf+KAXHtmyhpt27ti5GPrDMADAa7nAXZyw4gDwZQtgZC0AoTAmdXsbN3x+Azft5AtewOgtuhRuygngygP8fCeecRvGDddPwb/69Sv87qPfcdP+Kwe4s75+Pa/PVAz7+Apu2gmNgYcbAKjTGcsP/4r+u/l1GN8QeMrQqlrf4+/oOf1BbtqHugzDC7G5AIAd5UD7Hfx87+h7B15rXA5sfQuHI0ATgTBz7KljMenSSQB0Jrr2cxyPqQCu6H4FpoyeYv0OPc0/wXetEX/JRlGkmJl2SOtBmHfF/6z4wjkTGuJIMdt2tG8GsLyN8aPbQ2g3f4p4jahvrAkn3YoeKxby14h6bbHjjtXA1AYAgH67gBUcfqxxdmMcftgetMI1IiUVhf9nE6TSa0TOYIz+eVHi1oj2QM5Fa4ANz+PO5R/h9Tx+vtvv3Y529dsBAB7+7mG8uORFbtp1t69DjyY9AABPzXtKvEZ0aYN+sV0AgBdwGh7Z/BM37dyWwNA/aEDxQbw2sZncGnGNhknvtsYN2/dw006+YjJG9xgNAJiyfgqunHolN+3ESyZiXK9xAHysEfW6Y16P1zDsnWHctBOGT8DDWAXs/AjLyzPRfwefQR8/ZDyeGvoU8FkzrM87iJ67uEnx0MCH8MJ5LwAAduTuQPtX2nPT3nHqdXit6H0gJRuHW12DJrMZ2kcGxtYBJhmR5gqbX4TaC77gpr2i3UBMSVti/Q5t5tf3wmzgq06tgUv1j6r1TEgn7BkY0nYI5nVpC2x/FwCQsw04wqEjHWsEgHbbgZ0c2rB7OrD+958DrS4G4EFHZNbGjkdPWL/7vdUPK/atYKa16AgDQ4v6Yf7e5cy02WnZKPyjTUCP/HsGvi7gh3fyRUd0BGoN/B/Q8Qa5NSIVQO2TcGfKeXh9BT9Eoe81YnZPAMBTR4Gnj/Hr++Olr6DfqbqU94XFL+CR2Y9w084d/gCG7tQl6NJ0BIBJ+cANB/lpJzcDRt9UCKRme68RTYFxdQGc+ld8lXaKPB1RBAzby6/DhOET8PAZDwOrHsbyVS+K6QhzjQCw/tB69HyjJzftQ/WBFwzrLik6YuRrwIehqkNH/DkVRRwGckibMzEvY6H1O2dPQxwpZg+2vhnA8uu/sWLYS/MaH4bQYyewgTM9LV7j7FlAs+Fya0S9nsDItWI6Ii0bhWNeBQxh1cjIMHy9fS67EgC08fZCOnrKaEzdwAkjB590xEOHkFNLH0B3fnWncI34+YafcUrbU5CXl4e6dfkmREq9vCZC2kaagKz6MR2mpjKw94tg6uykc5SqDplTM18mAUHVpmXV0v2qYSXY3IHlhKQyIap/OM1iuPW0km2X8PPRClSl90SC69LqYqBej8Tn6wfkGJBWw/Y5j4oFJ20VgUIBV0yi3+tAz/G6h3IpJLjfrNCHUXEoIf8Z+0vuxwwm0VEE/EIUcssLfppF1lxDuuxqRNam+KBJgnqWloHfNku4s02zHkr51gnBRPJtEppE+aqftUp2rLUZHawuVRxK0g1b0r3v8D7mCUWVUy9npf2iM1C8T087ag+yP7edLBT3n4hY4Q5grSGVaXw6cPZsYPd0YMl1usrH6HwgrQ5bhWyyfYpX68KfgIa9ATDUOCY7T/tc6uXhNLaDsysL5NQ4jPyzG/REaPAU4KtuKA1lIHL5UXcd2v0e6P8GsvZOQ3jJ7wEAZZktUX72POBL4+j8gtV6rEfjPYd6+ZhSlB/6AfiekOC0uBAYPBkApV6+4AqU7/rUXV8AuHg7Mmu3RsrH+mZSrgFlo4mj+u3vActv169HrkPG1z1ttbAxZSiLljm/C9A9EKfWQkbBFqR+2wuAoV7e9z9A+2uAeb/TndP0/y+wfSJweDHSB3+ItHZ6PFOhmumSsUjf86mtFnbpPpSk1gW+7GarS19ZAOSuBb4baKtv1euBaO56lKQ3BEqP6V5jO91m51u0F2lfdbFVvc74BMXNR9rPjfxMpPV5BemrdG/gllpYn1eAjjc509Zqj9SLNiLjxz8AO9631cKuZItDmGphZNtevN1yfBaXenlJriVFxpnTgOa2zajnGrHnC+AHva8c6uWd70bRqc+L14gpBhF30q0o6v2SM635nQP+h1C7McjWyqw6OtTLh34DNHHa1gnVyym4VL1+fgbY8JydwOyb0qOo9UVb/TpnMEoOLnKqmY46AKTZfeO5RpQcAn68GWg/DtkdrtXTLhiF0l3TbfXyhv2A4c4Tc6HqKAVh2s/b2SHsrixA5nf9kGJ4gy3rcBPKT3tFtzOc1sKVb2YISLlWA0qPoXxqI10d9PRJQFYzYMn1QK8XgDaXA5Nr26qj12go/yBkq462uxbYYURw6Pc60P76xKmXF+4CvrIdsDlUR6+KeKuXG+qgUqroKenAtJaIFe1zq5f3fwsw1jGmevm05kD5Cec7tdoh9ZzZyPjyJCCUAi0WdUuYW1wI7NM1Mhzq5S0vQdHAD8BDyr5vkfmDrQlUePkJmxj++UmHbW8KgMysHODyQ3ra9wmiucUFwGBbGhYOhZH10z3AVl0iXxiDHuLt0AI9Qac7gN4TgK96Ily4w1u9vNdzwOrHdXXQkauABr30tOVF0PJ/Bb7p7fq2EIDs6+ycuPPeWFcc6uXn/4xY0R5g3oX6DWo9dqwRG19BlFanNtHgNNTKszVELPXys2c5w+vt+wZYNFpXLx/4DtDheucaMdktidRV0QHUPgmlF65zridTG9i0ypUF/teIjwzagFQvbzYcOGs6sOwmYOcnAIDMq8uRkpLKzvfzNvpeWq8HMGIZMrf9Dyk/6VJxl8r4JTtt51w7P0HG5leRmruGndZE3a5A/i/6enJ1GRBO0+f9hwRDbfZbwVbg61PteX/aS4h0vpu9nuStA2ae7lYvH81XUbDm8ponEF33rK1efupfgC732v3X9iqkDXrHPe83vQqs+aOexlRThkC9nEEfWLTBhyGbjuj3mh7CipcWlHo5Pc5GLENKg1P4dISmAVMM++7eLyCly13OtIuus9d0ExmNgEt2IowQsqba86jwgo2608DCPcBXXR2vhAFkDfsKaKnPRxf/YNa7xQUInTnV5jU+DOnrSVZToJhSl2h9OUK7P9XVy8+ZBzQdYq8RZDsM+ghIrwvMG6mvEQ16Axf8pKf9+Slg4wQ9HTmGAdQKRYEp9QAAJSM3IUpHICBQFdTLy4vL0aB+A09JtzpWIlArvZaj80Tp/OQpC5Kp9p32/9s78zgriqvv/+4++85sMAzDIjsDsgwDsigji7hA0PAoCrjEFzMYffSjgkkkPkZRfJ+8bgSyKMRoJDERYoyCiICasAQCImBGFBRUBlCEGYZltnr/6LtU963e7r19tznfz+d+5k533arqru6qOnVOneNwBpSH6Z1l+1pSnW7AmRI473QD7nTA1sYdk+rJCwN++IUpbnWN7xwAAO4M1TANKXYANgZc+jdgsyIUiuIeeZweeCBwNtP9JuDz30ud+t/7Smntdnj43/vq6vJeY07A9Mhtd8DtyQikSS0IlK1YfHM73HC70+XHnZ6gukr52uFWW7zzZEmhOXIqgVMfwpU/FC4+DxfXLu5M2cKmy+HyT4Jl9XBnSs5LHIHB0WkDnO40qX5Ot5Te5Qbsduk7tzLttDvhdKu8+k63rA4Ou0t6hmX1TJc+sufCDocNSEerdNxXFx9t8muzQ/Fu+OrM/+9LawPSbQBcqVKenuxAWoddahevBsnmS2vgvbPZbFId7Db4p6nuDNXfmnvvM7lnMUWzPkH58veap73ZRB/BgtPy9XGlARcC5u/8pB2eTM36CvsIFVKcKcCA+4H/PI7APfbmbeMGxtTOUh/h46IfAelFqvkK+wh3BVDzjvzYl2vgsSOQ0unSvDa3w+2f0OkRlNZuk78j3Oq/2+EJ9CeitvU7WXLA5ZusulKAzpOAa7nJjuK3Lm5iK3tufO8Kh+Z7ryAobUuGuN6QFpyMvhuG09rsgfeeR3BdgCSkprvTpXFQOd9y2KXnHQBYW6CPKPsecOQ1bxqn8Pr8fYQaLvkYmO7hJpuu1OA8OU13+rTPgNd7BMpXlsNp/dLtkPeRvue49zxg9wLZz9JE7eRKl96NpsN+gRvwziPyBwNZPSTBimeI3IRa9b0XlJfqSpPuOf8+qJDSdTqw6+7gEza7bBwAEOgjPNnyPPmyvP2MrI/QVK4xQX/Sqlp3U30EJ/Th+DtSXpUPA437gb73S+2ulu/E94GPnwT6/8Tbn3CXy7/3gPx+9LpF+vzBJk7rw864+yJ9cdqdcMrmGt483Yr33+ZQ709kbSHhsBkcP+1OKa2/T0uVzzUcTpkTPf9732MO8JFX6O52LfCf/w3Oms9Xpy7+PsKVZiAt10fw110wCug0Iih90H3w99lp0jydT+t0BT+7dpuwTuke79ylVa2vDiyYqc4N7I5AX+lLaweQVgJc4MahXncAZTOAr7zKJu9Y5+8jhjwKfPhj6bsnU3Ic5yvDu3iV6kqVP4PKeUdzYE9YilN7DsUTJJdooCprhJC24XyDoXzi2g5n8eLFGD58ODIzM1FYWIhp06ahrq5Olmb8+PGw2Wyyz7x581RyTGJMeSf3pm3jVtwMmxdppdMzd2kHOqvvAdLFUyAoUu+6FTEBeSc7Ss+zenmrmdBohR/x/Wb8G8CAnwJjX1cm0M9ftV6K+qWXy8+zNuDC8eByDOXt+9/7O1eO/HiQB2Dv79TidCvrqnR2pPxfdC/OeveuikzbQg0ZBijMgCNk1hpWuB2VOvjCsYWNz6O9igAWaRM/dw4wcJF2OUXj5ef6/Hdk6+Av00pzc4U6SRQ+Su0d95/nfiOLy2wEu8r3CBB1k12VdtJrP9VnV1B/I2EldeH7DgPjBd9P8V7/RdYrrQqNPZ+fP73BdrE5gOIJQI+bVc4L8ul8tbG8hfnZZAveunUTYocslrTslELo5fP4Sn0PvhiRGthCA9Cs3sAVe4CKG7XTZfcDRq4AMr0LM1qezg1HgOHgtYG677fivdPzVh0qQe+vMi8DeZdMDL18JeFs8Ri+1KKyuGezcBx33NuGam1pyKhZy2Uax9Cn5ceUdc+p5M45FXM2rn4HlouPJzFxfZWbN29GbW0ttm7divXr16OlpQUTJ05EU5PcHPMHP/gBjh496v8sWbIkRjWOIcoXjX/BGINwcqAVx1C1HK09JjqPk79OIXbKwoFFLS/fcX7ia5cLLnpxuo2GPWnT2PvmC5WQ1gUY9D9AmtK01KbyXQNfPfi2yBkEFF7iPe7tAL/bDTR4F6kMC2zKwdVbljJ8E5/fxG2BdL79kkHxr5XPp9K9prJtBffCa/4p3DccasgwKUPtckPBCuHOlNBtoHx3tvh4tGJkyuLVKhddrBqarBS6lUVx18BpssVpBUL3d+qO1/zwMZ9lQn4Ur9MK+Gvp+X9M/E7t/gqeJyP7UvXSaIW/EfVJZvoppVmpaEHB6Hui9043CjzA+cIahYTdawZ7GOC3f4lQuwabXb09leMFn0eZwPFntPcKX/kfwJkpbQOIFFp7unXnMqL8eKFbbzHL4FxIOhl8iLOu0EQv1KhqkbwZneCddamb+wbB30uzQve4gBM0uPPM/dbotfLPwfHN3O+99yCU0LY+guKkq2B3KZQVGguOdpe8Tfi0/MKiMg9+vq8Mj5bAxLXQvXbtWsydOxf9+/dHZWUlVq5cicOHD2Pnzp2ydGlpaSguLvZ/tOzpkxcTK5V+QSoUp0danbNOx53t3RMY6oRQWF8doVvWAdmB9G5STNayawFnhOJ0azmc0eu0Q5ooCxYULrozOM+6pwPHzmu4L1Wrj6wsRd14LVH+8MB1+gYE5SQn6D4oJhA5AxXpBffCN4jxz4GvDfuqe33VJe4c76g8B6L4wqpoDLB6K95WTFCdggm8XUPojqUDtIjBC906mm7RedFEwxc3t+tM6W+nsYFzyr4ukvDvSHb/yOYtLjDwdcRyyVQTNv2YssL7axNPxG3cMYUPA2Ea4Xm7+DsAYRuoCt0GJsQiyyzDQkkIGjszgkpQed56pZcBHh3hQ2uhRO2c0rybvw8+Py081b9TL1/UH4brKCyrN/D9BqB8Znj5yFARuksmhZadmXFPaemm9TyJxu5L1L1Jy3+rYyGnBj8nEM0ThzxpLB9A8oWjWh8deEfDZucVan2XEtXxW8UC0v87jUWbyTukbQwDfqJRQY26BSlZFEI3fx8vqCzCBQndKZIPpVEv6/chCUS8zTY1OX1asvHPy5M3wMsvv4yCggIMGDAACxcuxNmz4nBePi5cuICGhgbZJ+HResFTSxSrUt4XosetkgA69NnIlKPnQXrsGm+6EL1wijTdqqvkAqGbtUnHL3sbGPOq+HcAMOgRcd5qA02vWvW8gjS4QRXl6mfwvog03bLJn8is0aApZdD99JkiK4VuTutqs+nfqyBNt1KzadM+D0iOgwD5oOrbd9ipWnqeQ8IC83K1/MOh06jI5KOHFUJ3r3mSI6Ghz3DlcM+Esr0jZkqvJEaabpEmW5bW+77wWhblRBcARr0EjP4jUOWbGHITMCs13aklUtsNXx7YxmIlyvt0+fvA95sAd67274QaXSbWBNrdwJWfSNfU+y5g+lFJM/k9fg+9zrugJXSL2jqcbTA+M2MZBqdwRjWNPHrbrzQx8/ypXYNN/VyQptsh/u5D81oEQsyEjdLi0oR3NX5ngE4qizmhoGZerrcwJCK/Cuh2g/H0ygUYzTIFbZ/ezVg5QYv1KtvdlHjyJT8gve8GPIXB51O7BC/sq5HGOewyu1ilNw/T/G0I5uWislXn6BoLe3lDgcpHghVRpV5nt8LtXiaEbn4R64zatilBvbteZ+45TQASxpFae3s77r77bowePRoDBgT2Ct1www0oLy9HaWkp9uzZgwceeAB1dXV47bXXVPNavHgxHn744WhUO3qoCUsAUHQp8N0u7pw3rTNdEkDNFaR+KvMiRTnK84IV6Mv/YbxooQCrZ17O0aQReNFHTiW32qe4p8c2iH/TdYb4eOWj+pNf2Xmj+8gE2me9zt5wSC2lcN2mclyZn+JeBZmJKeoUysJLmtcjP9+Bp5YEvouEFCPI3p140LCq1MGMma0WqcXa560wL3emSR6H1VAKI5wX04gSTbNrkdDt+67UePLnK2ZL8Zl7/yg4T1cWUM7F0ZW9Rxbu6QaA3l5rmq/eiHzeQQi2uTgNCIFGzZEBaRE3q5f0AaT3QrkPU1fjqXHPhZNftT7eQN9/0Xxg/xMGyhCQN9RYOh9j/xreu2JGy6e2b1u5HUz2Gw1Nt+gZMLuQ2Gk0MHWvud+IiGR/ozZmKvf+G2HSVmDfY8bT22ySUPuJd9FUs3/mrtmdJ2ni1dpYSajm5QAwzGvZd+ZzQZXsJkJuhuBnR5hNFITu9IrAvNZvwarWZ4Xgp2DsGsnBYlZvKYoGjxnzciMLQ3FncWgNCXOVtbW12Lt3L1atWiU7fvvtt2PSpEkYOHAgZs2ahRdffBGrV6/GZ599ppITsHDhQpw+fdr/OXLkiNXVtx6RkzEfNhtUBTQjjFnNZ6aervpFoPwGacA2SlqZ8bQisyG9QU02aBsYAJWO13jOHVX/XYpAkOn/oH55/CtoWNPt0+Lzv1XRePloM6g5VK6m+/f9Ku5d3sWKOik7XZ3BU+9aRfFLfYMJ/xzIhLUQnd/I4vbGg9AtuI6MHvrbIfQY8xow8GGg6DLtdLGIlcragKoXpO/Dl0c+dq+faLavwLwcEE+u+PMjVwIzz6loNpVw75FW3xVJojE5CrUMVVNlQbvnDzeQn85kUdauBszLw8G36MhjRVtM2SXFuQ8HU/VSS2sH2s6JTymt3vQ03bGOeR4J1MbMaPXXvEm/p5N6Ov5dG/8WMPoPxsvQmzcYQbiVxA7D84NwtNWyeVgYWvLAwcDX4cukv6P/GDg29P8F/15t/3Moig67UxK4eUShu5TXalcsMhtZyCehO36YP38+3njjDWzcuBFduggGHo6qqioAwKefqnt+9Xg8yMrKkn0SnpErpBi0Y3zxopWagjCE7oKRxn6bMwAY/bJYo+1Scdqktk9JhBFHar4OIneIN3tOoDKyh72N25pg6j5x19FvoTTYGMEWgtAd+HHg60nOz4HQvNzgfmBe6L7qAOcASnGfU4uBaz4Hrj3pPa9nXq7UdAtM5SZsBEqmAFd/BuEA6cuDH1R5jaHhlWwF/H2PCwdUFnnOLZsODHxI/xqj5UiNh7VJnpVvYECvCGn0AaBksvz/oU+L00WCfg9If7teJ/1V03SL3kWZJtxm3DGS7Nm10Lycp+kL6/L2E2L9zQggXQ3st9V1pKbiIEj0vxah9l38fUrram7BWzXLUN//EJyCAhoLJXYpvjgQHCs5aCzX03RrtYWFnsp5MnuF93s183K1/nr619JfkWM5IIRnjruHmts8wphrBs3xQhG6BfO8TpeY374HmBec+b7drHM7vbJ6zQP+qxko5cY02bYJbtvhpO1S9IGrDwXaKkseuztkOo2W/rZw4YHNmJerkhDiaNjEtXk5Ywx33nknVq9ejU2bNqGiokL3N7t37wYAlJSUaCdMNjJ7ApO3cweUHWoYJjN8+lC8ZALq+2ncJsxIRSaCyk595IuSiXuP26T/zTr9aeX9AZiYOPAd+mCTZluBTIz/TolsIi/SdKtoDJTwA7vMCkG0T4vb26lsh6CJgLJOggGwaHwgdNSJfwafF+2LDWePZLQw6wREOBmKpll0LIRui9qx6jfAGu9z3PtuILdSM3lY9LlX8pHhdxjJa7p1Jh2h+iNQE7qtnMC0ntFPEy5G+yslvrCCPHrO67Rw6sSGVQuFA4S/8JE/Evh2q3Yavs173CZpqDuNAU68H3q5Zt9/m0MaNzqNAk78I7heergypIWqwwo/Kza75Afi2u+k74c4Z2hKC4RIaSetxBGmpVLzKfHxMyrb5lJLpEVMwB+zOyxk80AtBUYYPlKUyhlVx64aKPvai37ktRKLgnl5C2fqb7a9jZSlvDY1C8f84cA47wLcpW8Dzd8ZD+Gnh2/MOXOQO6hU8vGWJ2RezhPXV1lbW4uXXnoJf/jDH5CZmYn6+nrU19fj3DlpQP7ss8/wyCOPYOfOnfj888/x+uuvY/bs2Rg7diwGDTLo+r7DEMbqoyy2dQgDhzsvYBqjxGUiFIAR7+UFIyRNmW8PEb9yakTby8dONaWp0IihqQlXf7MOinhBJYNbkBJtNehzj8E8uUm8KQ+uZh2p6a06CwZIvi3TywHYgFz+PY/E5CmCwu3I3wEDFhkzY5URoqPBSBEToduiaxaZ5FqFzSYJ9b73pvkkd07lnrpygPFrgX4LQixUzbzcwkWaaIRvCXUrhXB/q8q90JrkVj4qLZ70vU+7PFkoHGU5ZsZZQd814leB71W/VZz0ObgUOHKL1OTaKFd8JFl5DOfqa7YfveRP0tYXHt/1uHMQ7DNES7MmaleNsUEvXna45EvWl+hxS3j5+CxolDR+EmKGJsdLowsbsvfA5FxT2bdEwrzcv8UwBPNyo3vRffiUS8qQWkbI6ht87BsTPo/U7lX+MKDkcnN10cQXoYa30lT6KAlB0x0XVobWE9ea7mXLJEFt/PjxsuMrVqzA3Llz4Xa78c477+Cpp55CU1MTysrKMGPGDPzkJ2bc3icpZTOAI38Bcr17b8PpCFMKvRpjm0GtHe9IIxeYcSIyq1hC7+URelEnbgP+8wtg8ONc3oo6l2t4UQxZaFAshqSVAWcN+hjgtby8B3VRfFU+lIUW/KAnu369MFN6e7oVg1eejiDKr+CWTA5eNLjqgOTMjZ+cd58D1D0F5A3TzluTCHb83WfrpxERLc2LGjExL4/CQoNV2nQ1Tu/nylZZlPPkAaUhhvwB5A4No6XpjoY57qhXgC03AZUmrIbUUBsjtBaX+j9ozCcHvxAcinm5r78vEzjj5BeklRpAf7sLBKFQvFnLMzeXPLuvNG6eMxiWUo2BD0lekl/1bfczoSgIRdOd5a23cgtKpLnsHeC7f0smzuHQqToy9fFhdpyRLeppjRFhaLqDhLMImJf7zKsNXy9XZtNhc2V78oDp9foWMjxTdgPnvgZyBFaZDXU6P+avKUo6VCYSupXRaHih25lUcbbDJa6FbqbzkpSVlWHz5s1Rqk2CUfU8UDyB288ThqbbZpc6BghCQ+n+1hE5sxFT3stNUjACuGSV4qCi3hUaQlSomm7loGRGu8wLEXwnH879FgnsAPCNnpmjzh5u/jrtLul+a8K9+5cK9seLVk9zB0v72LScCuoRF6utgkmv0T35kSBWjtSSoQzVslUE/nAdPMmiCAi0nolK3pDIeI8GEJKm2yia5uU6jpEAaVz97t8qzg01BEmf+b1I0x1u20dkASzEhRl+/NGMga5Az5GaCHdu+A7jjODKAArHWl+OafQW0jXGdMNjhMlnMWj+o3gWjfjlUdatn9daxehzzfv1Mev1HwBSi8ylz61U3/bU/0HjXuajNXfxjaOybX6KaDZK83J+O4Jv62cHJcFHZkIVdzbQ6w4gxedlMswwCHaneVMbtbLy9QQuFUSabiNCqk8gHfWKufKUA33Dx+ppQ56oKMrwmaIZgXeiIbvPYbzWaoOpXtxk3T3dHHres4HQ72dqiUmzeCVxIHSLFhuNWj9o5SFC5HU/FpruaJjUx1LoDgqx5zsepvadF+ZlfYCVz3EcvCNmUI2NHuF9rka8lyvTePKkfcuiOsqcnyreSZ9TJKGGN8zrCnkBmdd8RcIagjfz5cb+kinaZQtDZooccybYcxwxfNet00ZBSg5+4VxjjLCFoelWWmmcVISgNeJTSFmmP5SowWfy/PHAdyt9gBjBqaIE8RNDTTc/dqVq+NBSzsf4LZwdEBK6OwrRHGBcnDd40QAYqkMR0SqnEeFs+lHgqk+Bbv9lrrwgQVJLmAtRaFC2y8BF0qr4ZYqY4P0WBv82swfQ/8fAxb9QDHRhaHDUrrFAz7RNZ0+3/KSZGllPerfA91gKZv46CJ4lPXP8UOk+V/rLe6NNpj3dQMCss3uYeyrDQU3oDtVhmA81oc9STXeMtz+YxsL+RuZ13ogjNTN1EfTpk/4FDPwZ0Odu7wmRpjvM680OdU84X24E3mc14U1oNaJnXh5j55SRgh+rfJg1j/ct1ustjAQpOVT8RwQRxlZG5fxDKWTzc0uj2AwuMvjwOXNVhsqKBWbe5WhZN/nG6k6jAsfSOovTAMFtykdD6oDEtXk5EUH4yZ2at8tIwb+Aeiv4ZhAJ3ee+1v+dK1PdbFq7QPm/3bT2dIcorKWWyv/P6g3UCLZMqIUbqfx58LFwOl81gatyMbBhPJCj4qBQb0+3/KSBikRxYp9SBDR9Ln03sxfLMgTXnlJoLguj79jAh4GCUZJFzNvehZVYxLS1crFjwruS9kI5MYgHzteH9/sRvwE2XQEMehg4x+cVJYHC5zMkrrFS6NYyaw5z7BNpb/OHSR+tNOFOvkOxaAPkApFmSCmDqPUJer4ZjPZfibgFY9K/JI/2m68KHCuuMZeHM1U/DaCtVY7Wnm7fAkHlY8AXq4C+95rLj8ew9VchMOPbEOeMkUbn/ql5L7cS33uZOxiYuFUR5cafKPDV96xc8zlw+j9A0aWBc5584MK3FlU0PiGhu6NwgfekG83BJoITHiP7eSIJf586X6U9kQhVU5c/XNJUR9LkJpz2VTMbKxoHTN2v7mFdL0637FycCd088TAREz1LZk2+jU4wHG6gy1WSJjatTPIUnGxCt90VnwJ3JMgdBEz3hsnatzhwPFrP8YR3o1NOWFjYl8jCKCksuIRtYKZdDJjzipzneToJk1qOww1c8wUAFnpoUR7ezJdHr68Q9V/C9z8BNd0pBUDnK4FBPwf2eB0GZ/Y0l4d/W5pJ83J+TDFqXh62pts75+u/UPqEhYl+wGyYT8vQe0b5a4rc89ze3o7mZsWWQrd37pcxGDh/3vvda37v+99Hc3sgfXMb0HoecBQBeUXytIOeAz5cIM4jznC5XHA4wp8bkdDdUeBXh9ui+HBHcvIndKRmJRp76pQ4M4GWU6EV0+e/DSQyMWCEJXRrmNBnC0JaqJUZ7r7gaHrwjgeTchkCodtqk2+7C7j6oNSOsdjrGGuP7VYTDSE4aublHO5s/TTRJLs/cHqf/JieP4pwkAndivFJaOVlol0MeeQWhDe6aL7k+PK73UCTxVZtSoxGyQgHoR8EXrMmuFe5g4HhvwS+2RaI9x0PC6yhwltkdTbpDG7I/3q/mDUvF2gvhUTSe3mYY1HhOC6rBGxv3TrzbRKZcbu5uRmHDh1Ce7tiHtJnNdDaJCmfDun0K+12oNty6fsXGv5o2vsH0unlGQfk5OSguLgYtjDuNQndHQVee2blJCSIcPe1ccRS063HpWuBrXMlrXXMCWNwyTC5aq5WZth7uqMohIUaE9gqRAJoOB7ZjRILB2r9HwQ+e0GK85vM9Pqh9WVEzZFaHDPmNeANxV7MNgs9//PvjHJ8MuK9XBMDfjpEvjycacDY14BPfgnsqBX/LpEJ1by81x2SFYBP6E6Wd8SIAHDFXmkRpuTywFYlvYVOLSWHVXu6g8LdhdlGGT0C39O7AWcOhpdf1InuM8oYw9GjR+FwOFBWVga7PcS5JGsDTrVIz2ZOhXba1i7S8+SI8vzeBIwxnD17FsePS9Y3JSUajuN0IKG7oyDT5kVTqxTBTkP0UlbMiVz+SswI3QVVwJUa3s2jSTgrul2vBRoeNudFXVRmIu3pHv4r4P1pklO6uIC79urfAwdfkMwJk5HKR6VrS2ZPwhk9JbNQH8U1QP07kS+HnyRbqdVp/MS6vMNFZEas5YsjXGTxaJVCSpiabiOWVlqx2XvcBny7HSgJIw58PCLcyqWj6RaeS+I+R0lOf0EcaJ0xNk/hr4G/71r9dTjeyyO98Msv0FQ9D/xjJtAnjH3h0abTaO3zEbYQa21txdmzZ1FaWoq0tDCVEZ7BUvvrbleLwFaUKJCaKm3LOH78OAoLC0M2NSehu6MQK6E7oublAqHbyv2ncWWOFCXzcpsdGPhQaL+T/R/unu4okt0HuPI/sa4FB9fWFTdKn2Qm3p6HSKN8N8asBl61wEmPzBrCwnsaze1JZuE1ZcOXS1q90issLI8XupWabkEbmBmvzJqXK9M43ED1SuPlxQ02aI93gnMsBKE7rsZ3k4i8mEeKSduBQy9Jzhl5LnxjMANe6A5X0x0m/Lw3oxswaVtk87eagipgwkYgQ01bHNm5fFubdL/c7ghonWMSetRafAsRLS0tIQvdCdzrEKbgVymjun/SYkdqlg6cfN4x3nPaZZp0rYXj9dPGYn+scqKj2eEaeCZ041MmMVaGzyKiT1Dc2AxryknhHGglskARDvyeUFcWUDZdsDcVBkIgGsSmYV4uml5php0Mypz7qhZrPAb7+K2mu9d6zRfqT4lwfOtgmu4u1wAD/wcYvzaMTFTmCfnDgWFPS041ZcdHGMzXpvLdAKbeDwMI9/8nGEXj1R3YWkQ4e5aTmUjcl+RbiiDEyDTdUZzUhx2rlP9ZlB9XfoBubYpu2Uo8+cD3m4w5k2s5Lf8/KgKsmT3dBuh6LXDkL0CnMeHlk5AkuVOxjkJ+FfDttujFB3dyIZusFMBSS4BzR63LPxxk8Zw1HCRGKu69lqZbJECY8UtiMyt0xyDqgBUMew4oqgFKp4jPi+L88g7cNE2fk0TTbbMBA38aXh5mF+dDeb7M3mPlOxOuRl9v/z9BRBkSujsM/H6caA7OggGw6YvQsop2DGVeI6UWviSaGA3D8u2/5P9f83nEqxKEmT3dRiaedhcw5s/h1SlRIU13cnDZeuld5D3oWok9Slq8/JHAl6utyz9SKN+j1M7Aua+k723nIlMG3+8pfY6I+jlTQrcRLXYSarqd6UDFrODjU/cDh18VR/tw5wJT9+mPke28Uz3S5pnCcPzzCGm60yuA8u+b+72SuItMEmlogT7RSJJemtCF73y04k1HGtGqc/GE0PKyO4FpR6TB1U+UOp1E6ryVpkjRiDnZdlb+v9YA7Y8TSoihgTQpcGUCxZcphGEvaV0sKJAfzkmgCLLoGvRI4HvZ9MgUwY9vQZpu7v8etwbXQT9zPjOVJBHSdHefK/3tF24sZAvJ7iv5G3GpWG5l9wMyumvncfbLyNcrUckZZC59arGxdHy8+vYWc2Xwi/WDHg5/ISkZzMu1SPZQmwaZO3cubDYbbDYbXC4XKioqcP/99+M8F/t78+bNuOyyy5CXl4e0tDT06tULc+bM8ccj37RpE2w2G06dOmVpXUnT3VHghUZXThQLFkz+1AZNI6R1AVojpKUwQ2Nd9MsMlcqfS4NV0+fWOhHiaVDcHy1Nt2iPJRGANN3JT8VsYN9jUvzgSCEznbXSwWSCCPTKhdKKG4GjayVT5JLJkS9PKXQ7OUupEb8GBjxkMo61SfPycPqNEb8BetUCuUNCzyMRqJgN7JgvfW/+LrZ1iTXl3weaTxr3b1B0mbQokzNAO507G+h2I3D2sIYDMBVsBhaazGDJ4mY8QUK3j8mTJ2PFihVoaWnBzp07MWfOHNhsNjzxxBPYv38/Jk+ejDvvvBPPPPMMUlNTceDAAfzlL3/xO4+LFiR0dxT4Abnn7daXV3oF8PWbQLkgXEvx5cDH/zf0vPkJZbRW+syu2MYSTz4wfGl0yzy9T/6/SLvnPxdhZynJBgndyc+ARZKAU3Rp5PKM1v7eRHk+lUK33QVc8kfrylP62yiukcbB7AFS25gSuGHQvJwTUr56Heh2vbkyfNidQP6w0H6bSPALId9ujV094gGbHbjohybS24DBjxlLO+r3odVJWV6oXPo2cOhF4/VNVIxuOewAeDweFBdL1hhlZWWoqanB+vXr8cQTT+Dtt99GcXExlixZ4k/fo0cPTJ5sweKrDiR0dxT4CUjnq6wvr+q3wLc7gM5XBp8rmQhcug7I6hNa3rzQZjiMBRFVDHuQJYKh1eukx+GWnAVGEl4w01r0Cpd4F7pTCiUfHMWXR7fcIPNyBzD+72FkaEDr13Qo8D1vaBhldRASxUqDQFia7pLLpU+yUzxRms9H0mKKh7HgrYPRwpEW8vu6d+9e/POf/0R5ubTVsri4GEePHsV7772HsWPHRrKWpiGhu6PAC93RGHhSS4AuGsJ9ycTQ8+br33wy9HzMkNU3OuUkC5pCN3U7msS7UEPEKdHSdMe5f4urD0mmw2mdo1uuGSdpRjDivbyNcwzWW+BgjCASFVeWfpqOjt0BjHvduvzbzgJ/sijEpR7fP2PKefIbb7yBjIwMtLa24sKFC7Db7XjuuecAANdddx3WrVuHcePGobi4GCNHjsSECRMwe/ZsZGVF9zkjR2odhWSdyLc0RqecbgJvqkSASxSexrU6S9J060CabiIEZIKZhUN7vI8lzrToC9xAsPfysDFgXt4WcBRkqXUDQUSLi38BdLsJKI2+6S+RuFx66aXYvXs3tm3bhjlz5uDmm2/GjBkzAAAOhwMrVqzAl19+iSVLlqBz58547LHH0L9/fxw9Gt3wl6Ry6ijEu3bCLEUTgGMbgB63WVvOuL8BX78F9L3P2nISna4zAt8ze2mnJaFbG/JISoRCtBypKb2CExKWOq9TEbqT3lEU0eEQhYQjYoMjTdI4x6psE6Snp6Nnz54AgBdeeAGVlZV4/vnnceutt/rTdO7cGTfddBNuuukmPPLII7jooouwfPlyPPzwwxGtuhYkdHcUkk3oHvdX4OS/gYJR1pbT+UrxvnTCPIXjgeObgO43x7omcQ4J3UQIRMuRWkZPAOusyz/R8MX/Lp0a4Yz5fkBF6C6/Hmj4OHqx4AmC6DjYbKZMvOMFu92OBx98EPfccw9uuOEGpKYGh6nNzc1FSUkJmpqaolo3Ero7CskmdDvTgcIxsa4FYYbL3gFaTkcnbngiE+/mu0R8Ei2hu/LnQHuzFIKLAK74EGj8FMgfEdl8HamSIN/aBKSXi9PYHUDlo5EtN9nxLZL0uFU/LUEQCcl1112H++67D0uXLkVmZiZ2796N6dOno0ePHjh//jxefPFF7Nu3D88++2xU60VCd0eh733AV38Dul4X65oQHRW7gwRuQ0RC6CZteccjSt7L3TlA1a+tyz/R8ORLn0hjswHj34h8vh2daUckB6xWtBlBEHGB0+nE/PnzsWTJEqxevRoffPAB5s2bh6+//hoZGRno378/1qxZg3HjomslREJ3R6FwDPC9EzTQENZDe5LDg+4fEQrR0nQTRCJjs9E8iCCSiJUrVwqPL1iwAAsWLAAAjB49WjOP8ePHg0Vh7kVCd0cipSDWNSA6AhQLNUzIvJwIAV7odgTvYSMIgiAIInaQ0E0QRGRR87RLGIM03UQopBQDZTMATwGQUhjr2hAEQRAEwUFCN0EQkeX8iVjXIMEhTTcRAjYbMObPsa4FQRAEQRACSCVFEERkaT4Z6xokNqTpJgiCIAiCSCpI6CYIgiAIgiAIgiAIiyChmyAIIp7odQeQVgb0/u/Q83BmRK4+BEEQBEF0CKLhxTsRaW8Pf+tf0uzpXrp0KZ588knU19ejsrISzz77LEaMGBHrahFExyGlGDhfD7iyY12TxMaTB1zzRWhe4Ef8Cjj4O2DATyJfL4IgCIIgkhKXywWbzYYTJ06gU6dOsFEkGgDSIkRzczNOnDgBu90Ot9sdcl42lgRLGn/84x8xe/ZsLF++HFVVVXjqqafw6quvoq6uDoWF+l5cGxoakJ2djdOnTyMrKysKNSaIJOTUPmDPT4CBi4DcwbGuDUEQBEEQBGGQM2fO4MsvvyRtt4C0tDSUlJQIhW6jcmRSCN1VVVUYPnw4nnvuOQCSCUBZWRnuvPNOf2B0LUjoJgiCIAiCIAiiI9PW1oaWlpZYVyOucDgccDqdqtp/o3JkwpuXNzc3Y+fOnVi4cKH/mN1uR01NDbZs2SL8zYULF3DhwgX//w0NDZbXkyAIgiAIgiAIIl5xOBxwOByxrkZSkvCO1L755hu0tbWhqKhIdryoqAj19fXC3yxevBjZ2dn+T1lZWTSqShAEQRAEQRAEQXQwEl7oDoWFCxfi9OnT/s+RI0diXSWCIAiCIAiCIAgiCUl48/KCggI4HA4cO3ZMdvzYsWMoLi4W/sbj8cDj8USjegRBEARBEARBEEQHJuGFbrfbjaFDh2LDhg2YNm0aAMmR2oYNGzB//nxDefh8ydHeboIgCIIgCIIgCMIIPvlRzzd5wgvdAHDPPfdgzpw5GDZsGEaMGIGnnnoKTU1NuPnmmw39vrGxEQBobzdBEARBEARBEARhisbGRmRnZ6ueTwqhe+bMmThx4gQeeugh1NfXY/DgwVi7dm2QczU1SktLceTIEWRmZsY0GHxDQwPKyspw5MgRCl2WRFC7Ji/UtskLtW1yQu2avFDbJifUrslLsrQtYwyNjY0oLS3VTJcUcbqTBYoXnpxQuyYv1LbJC7VtckLtmrxQ2yYn1K7JS0dr2w7pvZwgCIIgCIIgCIIgogEJ3QRBEARBEARBEARhESR0xxEejweLFi2icGZJBrVr8kJtm7xQ2yYn1K7JC7VtckLtmrx0tLalPd0EQRAEQRAEQRAEYRGk6SYIgiAIgiAIgiAIiyChmyAIgiAIgiAIgiAsgoRugiAIgiAIgiAIgrAIEroJgiAIgiAIgiAIwiJI6I4Tli5dim7duiElJQVVVVXYvn17rKtEcLz33nu46qqrUFpaCpvNhjVr1sjOM8bw0EMPoaSkBKmpqaipqcGBAwdkaU6ePIlZs2YhKysLOTk5uPXWW3HmzBlZmj179mDMmDFISUlBWVkZlixZYvWldWgWL16M4cOHIzMzE4WFhZg2bRrq6upkac6fP4/a2lrk5+cjIyMDM2bMwLFjx2RpDh8+jKlTpyItLQ2FhYW477770NraKkuzadMmXHzxxfB4POjZsydWrlxp9eV1aJYtW4ZBgwYhKysLWVlZqK6uxltvveU/T+2aHDz++OOw2Wy4++67/ceobROTn/3sZ7DZbLJPnz59/OepXRObr776CjfeeCPy8/ORmpqKgQMHYseOHf7zNI9KPLp16xb0ztpsNtTW1gKgdzYIRsScVatWMbfbzV544QW2b98+9oMf/IDl5OSwY8eOxbpqhJc333yT/fjHP2avvfYaA8BWr14tO//444+z7OxstmbNGvbhhx+yq6++mlVUVLBz587500yePJlVVlayrVu3svfff5/17NmTXX/99f7zp0+fZkVFRWzWrFls79697JVXXmGpqansV7/6VbQus8MxadIktmLFCrZ37162e/dudsUVV7CuXbuyM2fO+NPMmzePlZWVsQ0bNrAdO3awkSNHslGjRvnPt7a2sgEDBrCamhq2a9cu9uabb7KCggK2cOFCf5qDBw+ytLQ0ds8997D9+/ezZ599ljkcDrZ27dqoXm9H4vXXX2d///vf2SeffMLq6urYgw8+yFwuF9u7dy9jjNo1Gdi+fTvr1q0bGzRoELvrrrv8x6ltE5NFixax/v37s6NHj/o/J06c8J+ndk1cTp48ycrLy9ncuXPZtm3b2MGDB9m6devYp59+6k9D86jE4/jx47L3df369QwA27hxI2OM3lklJHTHASNGjGC1tbX+/9va2lhpaSlbvHhxDGtFqKEUutvb21lxcTF78skn/cdOnTrFPB4Pe+WVVxhjjO3fv58BYP/617/8ad566y1ms9nYV199xRhj7Je//CXLzc1lFy5c8Kd54IEHWO/evS2+IsLH8ePHGQC2efNmxpjUji6Xi7366qv+NB9//DEDwLZs2cIYkxZk7HY7q6+v96dZtmwZy8rK8rfl/fffz/r37y8ra+bMmWzSpElWXxLBkZuby377299SuyYBjY2NrFevXmz9+vVs3LhxfqGb2jZxWbRoEausrBSeo3ZNbB544AF2ySWXqJ6neVRycNddd7EePXqw9vZ2emcFkHl5jGlubsbOnTtRU1PjP2a321FTU4MtW7bEsGaEUQ4dOoT6+npZG2ZnZ6Oqqsrfhlu2bEFOTg6GDRvmT1NTUwO73Y5t27b504wdOxZut9ufZtKkSairq8N3330Xpavp2Jw+fRoAkJeXBwDYuXMnWlpaZG3bp08fdO3aVda2AwcORFFRkT/NpEmT0NDQgH379vnT8Hn40tA7Hh3a2tqwatUqNDU1obq6mto1CaitrcXUqVOD7j+1bWJz4MABlJaWonv37pg1axYOHz4MgNo10Xn99dcxbNgwXHfddSgsLMSQIUPwm9/8xn+e5lGJT3NzM1566SXccsstsNls9M4KIKE7xnzzzTdoa2uTPXAAUFRUhPr6+hjVijCDr5202rC+vh6FhYWy806nE3l5ebI0ojz4MgjraG9vx913343Ro0djwIABAKT77na7kZOTI0urbFu9dlNL09DQgHPnzllxOQSAjz76CBkZGfB4PJg3bx5Wr16Nfv36UbsmOKtWrcK///1vLF68OOgctW3iUlVVhZUrV2Lt2rVYtmwZDh06hDFjxqCxsZHaNcE5ePAgli1bhl69emHdunW444478KMf/Qi/+93vANA8KhlYs2YNTp06hblz5wKgvliEM9YVIAiCiAdqa2uxd+9efPDBB7GuChEhevfujd27d+P06dP485//jDlz5mDz5s2xrhYRBkeOHMFdd92F9evXIyUlJdbVISLIlClT/N8HDRqEqqoqlJeX409/+hNSU1NjWDMiXNrb2zFs2DA89thjAIAhQ4Zg7969WL58OebMmRPj2hGR4Pnnn8eUKVNQWloa66rELaTpjjEFBQVwOBxB3vyOHTuG4uLiGNWKMIOvnbTasLi4GMePH5edb21txcmTJ2VpRHnwZRDWMH/+fLzxxhvYuHEjunTp4j9eXFyM5uZmnDp1SpZe2bZ67aaWJisriyaTFuJ2u9GzZ08MHToUixcvRmVlJZ5++mlq1wRm586dOH78OC6++GI4nU44nU5s3rwZzzzzDJxOJ4qKiqhtk4ScnBxcdNFF+PTTT+mdTXBKSkrQr18/2bG+ffv6tw/QPCqx+eKLL/DOO+/gtttu8x+jdzYYErpjjNvtxtChQ7Fhwwb/sfb2dmzYsAHV1dUxrBlhlIqKChQXF8vasKGhAdu2bfO3YXV1NU6dOoWdO3f607z77rtob29HVVWVP817772HlpYWf5r169ejd+/eyM3NjdLVdCwYY5g/fz5Wr16Nd999FxUVFbLzQ4cOhcvlkrVtXV0dDh8+LGvbjz76SDYZWL9+PbKysvyTjOrqalkevjT0jkeX9vZ2XLhwgdo1gZkwYQI++ugj7N692/8ZNmwYZs2a5f9ObZscnDlzBp999hlKSkronU1wRo8eHRSO85NPPkF5eTkAmkclOitWrEBhYSGmTp3qP0bvrIBYe3IjpJBhHo+HrVy5ku3fv5/dfvvtLCcnR+bNj4gtjY2NbNeuXWzXrl0MAPvFL37Bdu3axb744gvGmBTqIicnh/31r39le/bsYddcc40w1MWQIUPYtm3b2AcffMB69eolC3Vx6tQpVlRUxG666Sa2d+9etmrVKpaWlkahLizkjjvuYNnZ2WzTpk2ysBdnz571p5k3bx7r2rUre/fdd9mOHTtYdXU1q66u9p/3hbyYOHEi2717N1u7di3r1KmTMOTFfffdxz7++GO2dOnShA15kSgsWLCAbd68mR06dIjt2bOHLViwgNlsNvb2228zxqhdkwneezlj1LaJyr333ss2bdrEDh06xP7xj3+wmpoaVlBQwI4fP84Yo3ZNZLZv386cTid79NFH2YEDB9jLL7/M0tLS2EsvveRPQ/OoxKStrY117dqVPfDAA0Hn6J2VQ0J3nPDss8+yrl27MrfbzUaMGMG2bt0a6yoRHBs3bmQAgj5z5sxhjEnhLn7605+yoqIi5vF42IQJE1hdXZ0sj2+//ZZdf/31LCMjg2VlZbGbb76ZNTY2ytJ8+OGH7JJLLmEej4d17tyZPf7449G6xA6JqE0BsBUrVvjTnDt3jv3whz9kubm5LC0tjU2fPp0dPXpUls/nn3/OpkyZwlJTU1lBQQG79957WUtLiyzNxo0b2eDBg5nb7Wbdu3eXlUFEnltuuYWVl5czt9vNOnXqxCZMmOAXuBmjdk0mlEI3tW1iMnPmTFZSUsLcbjfr3LkzmzlzpiyOM7VrYvO3v/2NDRgwgHk8HtanTx/261//Wnae5lGJybp16xiAoLZijN5ZJTbGGIuJip0gCIIgCIIgCIIgkhza000QBEEQBEEQBEEQFkFCN0EQBEEQBEEQBEFYBAndBEEQBEEQBEEQBGERJHQTBEEQBEEQBEEQhEWQ0E0QBEEQBEEQBEEQFkFCN0EQBEEQBEEQBEFYBAndBEEQBEEQBEEQBGERJHQTBEEQBEEQBEEQhEWQ0E0QBEEQBEEQBEEQFkFCN0EQBEEQBEEQBEFYBAndBEEQBEEQBEEQBGERJHQTBEEQBEEQBEEQhEX8f6rVb/kGURYiAAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Create subplots\n", + "import matplotlib.pyplot as plt\n", + "fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8), gridspec_kw={'height_ratios': [3, 1]})\n", + "\n", + "# price graph\n", + "ax1.plot(df['Close'], label='Close Price', color='blue')\n", + "ax1.set_title('Stock Price')\n", + "ax1.set_ylabel('Price')\n", + "ax1.legend()\n", + "\n", + "# rsi graph\n", + "ax2.plot(df['RSI'], label='RSI', color='orange')\n", + "ax2.axhline(70, color='red', linestyle='--') # Overbought line\n", + "ax2.axhline(30, color='green', linestyle='--') # Oversold line\n", + "ax2.set_title('Relative Strength Index (RSI)')\n", + "ax2.set_ylabel('RSI')\n", + "ax2.legend()\n", + "\n", + "plt.tight_layout()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    OpenHighLowCloseVolumeSMA_10SMA_50RSI
    6221.70097922.03121221.70097921.81420114674821.021.63304621.56747140.418486
    6321.81420123.11626121.85666122.17745815454878.021.59200221.66295545.076147
    6422.31426622.40862122.03121222.21048021249133.021.59483321.75494851.133774
    6521.70097922.92755521.70097922.80961640137428.021.71560421.84665957.684634
    6623.12097723.87107722.51712423.53140853712115.021.96752321.94893659.348024
    \n", + "
    " + ], + "text/plain": [ + " Open High Low Close Volume SMA_10 \\\n", + "62 21.700979 22.031212 21.700979 21.814201 14674821.0 21.633046 \n", + "63 21.814201 23.116261 21.856661 22.177458 15454878.0 21.592002 \n", + "64 22.314266 22.408621 22.031212 22.210480 21249133.0 21.594833 \n", + "65 21.700979 22.927555 21.700979 22.809616 40137428.0 21.715604 \n", + "66 23.120977 23.871077 22.517124 23.531408 53712115.0 21.967523 \n", + "\n", + " SMA_50 RSI \n", + "62 21.567471 40.418486 \n", + "63 21.662955 45.076147 \n", + "64 21.754948 51.133774 \n", + "65 21.846659 57.684634 \n", + "66 21.948936 59.348024 " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Correlations" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "corr = df.corr()\n", + "corr" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "plt.figure(figsize=(10,8))\n", + "sns.heatmap(corr, annot=True, linewidths=0.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "id": "OQ3cGqgTMBwt" + }, + "outputs": [], + "source": [ + "# Select features and target variable\n", + "X = df[['Open', 'High', 'Low', 'Volume']]\n", + "y = df['Close']" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "id": "9Oz-bwJOMEWD" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "id": "ugapDyXODtn3" + }, + "outputs": [], + "source": [ + "# Scale the features using Min-Max scaling\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "997ZEgibCZIO", + "outputId": "2a45a8e3-71b0-47f3-bd66-91bcdc028c76" + }, + "outputs": [], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "bmtt76RuCeyG", + "outputId": "658075af-e75d-45b1-f6cf-756e349a32d1" + }, + "outputs": [], + "source": [ + "X_test.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "CeJkUJ92Ciqd", + "outputId": "93dec527-ea2e-42e6-c70b-a9491c71d917" + }, + "outputs": [], + "source": [ + "y_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7HGC7VuTCjWc", + "outputId": "64dc2569-b4b4-4c2e-d416-1cf77c41ac75" + }, + "outputs": [], + "source": [ + "y_test.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "c6Ek8jRlO2_I" + }, + "source": [ + "## 1. LINEAR REGRESSION" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "id": "RdZ1SpzdMHAJ" + }, + "outputs": [], + "source": [ + "# Create a linear regression model\n", + "model1 = LinearRegression()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mPM035IzMY04", + "outputId": "07379dba-cfe8-4814-b972-d08b12f224ac" + }, + "outputs": [], + "source": [ + "y_train.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "qBhQ9HbYMI3d", + "outputId": "52e0655f-1d23-47b7-decc-7a7ca35c0470" + }, + "outputs": [], + "source": [ + "# Train the model\n", + "model1.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "id": "X269co2kMS4z" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred1 = model1.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "id": "QK8GvDYPOd0Y" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse1 = np.sqrt(mean_squared_error(y_test, pred1))\n", + "mae1 = mean_absolute_error(y_test, pred1)\n", + "mape1 = mean_absolute_percentage_error(y_test, pred1)\n", + "accuracy1 = accuracy_score(y_test > pred1, y_test > pred1.round())\n", + "precision1 = precision_score(y_test > pred1, y_test > pred1.round())\n", + "confusion1 = confusion_matrix(y_test > pred1, y_test > pred1.round())\n", + "recall1 = recall_score(y_test > pred1, y_test > pred1.round())\n", + "f11 = f1_score(y_test > pred1, y_test > pred1.round())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dEi49xtEOtne", + "outputId": "0000b074-3187-41de-fbac-4ae75cbda6bd" + }, + "outputs": [], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse1)\n", + "print(\"MAE:\", mae1)\n", + "print(\"MAPE:\", mape1)\n", + "print(\"Accuracy:\", accuracy1)\n", + "print(\"Precision:\", precision1)\n", + "print(\"Confusion Matrix:\\n\", confusion1)\n", + "print(\"Recall:\", recall1)\n", + "print(\"F1 Score:\", f11)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GxtMzlg-gR2P" + }, + "source": [ + "## 2. SVR" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "id": "o7K9r7EXWRjQ" + }, + "outputs": [], + "source": [ + "from sklearn.svm import SVR" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "id": "0xQewd7QWTtq" + }, + "outputs": [], + "source": [ + "# Create an SVR model\n", + "model2 = SVR()" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "id": "DuNes3s6U2IV" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "22SaCsQmfhgP", + "outputId": "2121e992-399d-4b78-e42c-fc20b9d52189" + }, + "outputs": [], + "source": [ + "# Train the model\n", + "model2.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "id": "OQ1nL4oYfkAC" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred2 = model2.predict(X_test)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "id": "nRYTwydsfpjb" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse2 = np.sqrt(mean_squared_error(y_test, pred2))\n", + "mae2 = mean_absolute_error(y_test, pred2)\n", + "mape2 = mean_absolute_percentage_error(y_test, pred2)\n", + "accuracy2 = accuracy_score(y_test > pred2, y_test > pred2.round())\n", + "precision2 = precision_score(y_test > pred2, y_test > pred2.round())\n", + "confusion2 = confusion_matrix(y_test > pred2, y_test > pred2.round())\n", + "recall2 = recall_score(y_test > pred2, y_test > pred2.round())\n", + "f12 = f1_score(y_test > pred2, y_test > pred2.round())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "656J5oz5fzq6", + "outputId": "ce67d2d8-0bc8-4e6d-d6b5-6b78e7e1c59b" + }, + "outputs": [], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse2)\n", + "print(\"MAE:\", mae2)\n", + "print(\"MAPE:\", mape2)\n", + "print(\"Accuracy:\", accuracy2)\n", + "print(\"Precision:\", precision2)\n", + "print(\"Confusion Matrix:\\n\", confusion2)\n", + "print(\"Recall:\", recall2)\n", + "print(\"F1 Score:\", f12)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hcIfVMWdgcKt" + }, + "source": [ + "## 3. Random Forest" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "id": "f7raXT_hf2ij" + }, + "outputs": [], + "source": [ + "from sklearn.ensemble import RandomForestRegressor\n", + "# Create a Random Forest model\n", + "model3 = RandomForestRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "id": "TadNM7MEU7fh" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "fF002Yepgk55", + "outputId": "d148c589-4879-4e2d-8b0f-5b5ca01a2a53" + }, + "outputs": [], + "source": [ + "# Train the model\n", + "model3.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "id": "8nRU_pzEgnCt" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred3 = model3.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "id": "4aKEXGVUgsry" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse3 = np.sqrt(mean_squared_error(y_test, pred3))\n", + "mae3 = mean_absolute_error(y_test, pred3)\n", + "mape3 = mean_absolute_percentage_error(y_test, pred3)\n", + "accuracy3 = accuracy_score(y_test > pred3, y_test > pred3.round())\n", + "precision3 = precision_score(y_test > pred3, y_test > pred3.round())\n", + "confusion3 = confusion_matrix(y_test > pred3, y_test > pred3.round())\n", + "recall3 = recall_score(y_test > pred3, y_test > pred3.round())\n", + "f13 = f1_score(y_test > pred3, y_test > pred3.round())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8pPzsCY1g305", + "outputId": "72c4ea56-2610-41c6-f286-4c8289d3f0ac" + }, + "outputs": [], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse3)\n", + "print(\"MAE:\", mae3)\n", + "print(\"MAPE:\", mape3)\n", + "print(\"Accuracy:\", accuracy3)\n", + "print(\"Precision:\", precision3)\n", + "print(\"Confusion Matrix:\\n\", confusion3)\n", + "print(\"Recall:\", recall3)\n", + "print(\"F1 Score:\", f13)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mZsLwLivhLGH" + }, + "source": [ + "## 4. Gradient Boosting Models (GBM)" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "id": "TI8idoxOg6jF" + }, + "outputs": [], + "source": [ + "import xgboost as xgb\n", + "# Create an XGBoost model\n", + "model4 = xgb.XGBRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": { + "id": "7r9xJDtOVBEA" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "id": "2gpbDxshhexj", + "outputId": "b2b1a681-7ede-4d66-be5d-1a8606d0f470" + }, + "outputs": [], + "source": [ + "# Train the model\n", + "model4.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": { + "id": "Jj9DXdUPhh9V" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred4 = model4.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": { + "id": "TdH60Sllhn5O" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse4 = np.sqrt(mean_squared_error(y_test, pred4))\n", + "mae4 = mean_absolute_error(y_test, pred4)\n", + "mape4 = mean_absolute_percentage_error(y_test, pred4)\n", + "accuracy4 = accuracy_score(y_test > pred4, y_test > pred4.round())\n", + "precision4 = precision_score(y_test > pred4, y_test > pred4.round())\n", + "confusion4 = confusion_matrix(y_test > pred4, y_test > pred4.round())\n", + "recall4 = recall_score(y_test > pred4, y_test > pred4.round())\n", + "f14 = f1_score(y_test > pred4, y_test > pred4.round())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "qpnLeFyZhwB3", + "outputId": "4dcac062-ec60-4b2c-ab4b-dcda1b0f2341" + }, + "outputs": [], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse4)\n", + "print(\"MAE:\", mae4)\n", + "print(\"MAPE:\", mape4)\n", + "print(\"Accuracy:\", accuracy4)\n", + "print(\"Precision:\", precision4)\n", + "print(\"Confusion Matrix:\\n\", confusion4)\n", + "print(\"Recall:\", recall4)\n", + "print(\"F1 Score:\", f14)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "d8nSGoyuh9dx" + }, + "source": [ + "## 5. Extreme Gradient Boosting (XGBoost)" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": { + "id": "DyhhdlZAhx94" + }, + "outputs": [], + "source": [ + "import xgboost as xgb\n", + "# Create an XGBoost model\n", + "model5 = xgb.XGBRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "id": "Z_AD0lVOVHwB" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "id": "RAIwxIp5iH9Z", + "outputId": "d2b4aa97-7e07-4015-c308-76a292b0929f" + }, + "outputs": [], + "source": [ + "# Train the model\n", + "model5.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": { + "id": "XmJds5fYiKT3" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred5 = model5.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": { + "id": "lZ1A0-L8iNCM" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse5 = np.sqrt(mean_squared_error(y_test, pred5))\n", + "mae5 = mean_absolute_error(y_test, pred5)\n", + "mape5 = mean_absolute_percentage_error(y_test, pred5)\n", + "accuracy5 = accuracy_score(y_test > pred5, y_test > pred5.round())\n", + "precision5 = precision_score(y_test > pred5, y_test > pred5.round())\n", + "confusion5 = confusion_matrix(y_test > pred5, y_test > pred5.round())\n", + "recall5 = recall_score(y_test > pred5, y_test > pred5.round())\n", + "f15 = f1_score(y_test > pred5, y_test > pred5.round())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7IkE-RAmiWNo", + "outputId": "cf4c1d84-412b-4a18-f70c-65ce637772ea" + }, + "outputs": [], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse5)\n", + "print(\"MAE:\", mae5)\n", + "print(\"MAPE:\", mape5)\n", + "print(\"Accuracy:\", accuracy5)\n", + "print(\"Precision:\", precision5)\n", + "print(\"Confusion Matrix:\\n\", confusion5)\n", + "print(\"Recall:\", recall5)\n", + "print(\"F1 Score:\", f15)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "A_J776rtiovq" + }, + "source": [ + "## 6. AdaBoostRegressor" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": { + "id": "HNq66cXRiYPJ" + }, + "outputs": [], + "source": [ + "from sklearn.ensemble import AdaBoostRegressor\n", + "# Create an AdaBoost model\n", + "model6 = AdaBoostRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": { + "id": "qPHH6rG0VW4V" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "P0oB5wjQivBr", + "outputId": "8726c583-6782-4504-b0ac-d2ef4ccbca4c" + }, + "outputs": [], + "source": [ + "# Train the model\n", + "model6.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": { + "id": "Bf1m5ukOi2VM" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred6 = model6.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "id": "oFWSqC4ai6gd" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse6 = np.sqrt(mean_squared_error(y_test, pred6))\n", + "mae6 = mean_absolute_error(y_test, pred6)\n", + "mape6 = mean_absolute_percentage_error(y_test, pred6)\n", + "accuracy6 = accuracy_score(y_test > pred6, y_test > pred6.round())\n", + "precision6 = precision_score(y_test > pred6, y_test > pred6.round())\n", + "confusion6 = confusion_matrix(y_test > pred6, y_test > pred6.round())\n", + "recall6 = recall_score(y_test > pred6, y_test > pred6.round())\n", + "f16 = f1_score(y_test > pred6, y_test > pred6.round())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "BsajWJGBjC80", + "outputId": "1af1194f-9a33-40af-8578-c99832509c1b" + }, + "outputs": [], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse6)\n", + "print(\"MAE:\", mae6)\n", + "print(\"MAPE:\", mape6)\n", + "print(\"Accuracy:\", accuracy6)\n", + "print(\"Precision:\", precision6)\n", + "print(\"Confusion Matrix:\\n\", confusion6)\n", + "print(\"Recall:\", recall6)\n", + "print(\"F1 Score:\", f16)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Q9DzOt3CkWFX" + }, + "source": [ + "## 7. Decision Tree" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": { + "id": "23DZ2biSjF9a" + }, + "outputs": [], + "source": [ + "from sklearn.tree import DecisionTreeRegressor\n", + "# Create a Decision Tree model\n", + "model7 = DecisionTreeRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": { + "id": "Ajo2RAVAVb7H" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "6mQEQf-ykc9F", + "outputId": "f1a62020-4125-4aea-e7e4-11acffdc5169" + }, + "outputs": [], + "source": [ + "# Train the model\n", + "model7.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": { + "id": "BFJ9q_tvkgRC" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred7 = model7.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "id": "9IxfYZbYkjv1" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse7 = np.sqrt(mean_squared_error(y_test, pred7))\n", + "mae7 = mean_absolute_error(y_test, pred7)\n", + "mape7 = mean_absolute_percentage_error(y_test, pred7)\n", + "accuracy7 = accuracy_score(y_test > pred7, y_test > pred7.round())\n", + "precision7 = precision_score(y_test > pred7, y_test > pred7.round())\n", + "confusion7 = confusion_matrix(y_test > pred7, y_test > pred7.round())\n", + "recall7 = recall_score(y_test > pred7, y_test > pred7.round())\n", + "f17 = f1_score(y_test > pred7, y_test > pred7.round())\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AnZXMYb8kooV", + "outputId": "273fa9ed-d6f2-4c4d-fb0e-a643f5ef5732" + }, + "outputs": [], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse7)\n", + "print(\"MAE:\", mae7)\n", + "print(\"MAPE:\", mape7)\n", + "print(\"Accuracy:\", accuracy7)\n", + "print(\"Precision:\", precision7)\n", + "print(\"Confusion Matrix:\\n\", confusion7)\n", + "print(\"Recall:\", recall7)\n", + "print(\"F1 Score:\", f17)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LH-B-Xd6k5UD" + }, + "source": [ + "## 8. KNeighborsRegressor(KNN)" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": { + "id": "JVDSed7yktFY" + }, + "outputs": [], + "source": [ + "from sklearn.neighbors import KNeighborsRegressor\n", + "# Create a KNN model\n", + "model8 = KNeighborsRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": { + "id": "XJHb5SxrVgVp" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "9fn64o-ZlBka", + "outputId": "dc5e6af2-de37-46ee-cde7-e0a3baa31a1f" + }, + "outputs": [], + "source": [ + "# Train the model\n", + "model8.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": { + "id": "hbfbbjcSlDn7" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred8 = model8.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": { + "id": "hnWyNv3blHdL" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse8 = np.sqrt(mean_squared_error(y_test, pred8))\n", + "mae8 = mean_absolute_error(y_test, pred8)\n", + "mape8 = mean_absolute_percentage_error(y_test, pred8)\n", + "accuracy8 = accuracy_score(y_test > pred8, y_test > pred8.round())\n", + "precision8 = precision_score(y_test > pred8, y_test > pred8.round())\n", + "confusion8 = confusion_matrix(y_test > pred8, y_test > pred8.round())\n", + "recall8 = recall_score(y_test > pred8, y_test > pred8.round())\n", + "f18 = f1_score(y_test > pred8, y_test > pred8.round())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IPoDRkcMlMAr", + "outputId": "9892f42f-e65f-46c0-eeed-77ce32f6a7eb" + }, + "outputs": [], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse8)\n", + "print(\"MAE:\", mae8)\n", + "print(\"MAPE:\", mape8)\n", + "print(\"Accuracy:\", accuracy8)\n", + "print(\"Precision:\", precision8)\n", + "print(\"Confusion Matrix:\\n\", confusion8)\n", + "print(\"Recall:\", recall8)\n", + "print(\"F1 Score:\", f18)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "X5XtlzMXljps" + }, + "source": [ + "## 9. Artificial Neural Networks (ANN)" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": { + "id": "bJk1-9VhlRL6" + }, + "outputs": [], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": { + "id": "sZVPMR9Wlo7-" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": { + "id": "vd1fDjQiltP4" + }, + "outputs": [], + "source": [ + "# Create an ANN model\n", + "model9 = Sequential()\n", + "model9.add(Dense(32, activation='relu', input_shape=(X_train.shape[1],)))\n", + "model9.add(Dense(16, activation='relu'))\n", + "model9.add(Dense(1, activation='linear'))" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": { + "id": "ZIf94WLMlv04" + }, + "outputs": [], + "source": [ + "# Compile the model\n", + "model9.compile(loss='mean_squared_error', optimizer='adam')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "FX5DTKqslxWf", + "outputId": "9253b26c-1a79-4390-975e-d14c28a5e2a8" + }, + "outputs": [], + "source": [ + "# Train the model\n", + "model9.fit(X_train_scaled, y_train, epochs=100, batch_size=32, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OVW2qpNsmGVq", + "outputId": "34343782-f560-4dee-c307-ff0d0c52ab5a" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred9 = model9.predict(X_test_scaled).flatten()" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": { + "id": "CqRmjMj2maJY" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse9 = np.sqrt(mean_squared_error(y_test, pred9))\n", + "mae9 = mean_absolute_error(y_test, pred9)\n", + "mape9 = mean_absolute_percentage_error(y_test, pred9)\n", + "accuracy9 = accuracy_score(y_test > pred9, y_test > pred9.round())\n", + "precision9 = precision_score(y_test > pred9, y_test > pred9.round())\n", + "confusion9 = confusion_matrix(y_test > pred9, y_test > pred9.round())\n", + "recall9 = recall_score(y_test > pred9, y_test > pred9.round())\n", + "f19 = f1_score(y_test > pred9, y_test > pred9.round())\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5zuwkC1emmh3", + "outputId": "5d6a0e05-3112-4d27-f5fb-ed665867b22d" + }, + "outputs": [], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse9)\n", + "print(\"MAE:\", mae9)\n", + "print(\"MAPE:\", mape9)\n", + "print(\"Accuracy:\", accuracy9)\n", + "print(\"Precision:\", precision9)\n", + "print(\"Confusion Matrix:\\n\", confusion9)\n", + "print(\"Recall:\", recall9)\n", + "print(\"F1 Score:\", f19)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vjSMQNcOnFPJ" + }, + "source": [ + "## 10. LSTM(Long Short term Memory)" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": { + "id": "nCoyUanhnDKw" + }, + "outputs": [], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import LSTM, Dense" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": { + "id": "ThcXESVEVv0U" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": { + "id": "uACvajfImrbB" + }, + "outputs": [], + "source": [ + "# Reshape the input data for LSTM\n", + "n_features = X_train_scaled.shape[1]\n", + "n_steps = 10\n", + "n_samples_train = X_train_scaled.shape[0] - n_steps + 1\n", + "n_samples_test = X_test_scaled.shape[0] - n_steps + 1\n", + "\n", + "# Reshape the input data\n", + "X_train_reshaped = np.array([X_train_scaled[i:i+n_steps, :] for i in range(n_samples_train)])\n", + "X_test_reshaped = np.array([X_test_scaled[i:i+n_steps, :] for i in range(n_samples_test)])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": { + "id": "r066pVYpnXH5" + }, + "outputs": [], + "source": [ + "# Create an LSTM model\n", + "model = Sequential()\n", + "model.add(LSTM(64, activation='relu', input_shape=(n_steps, n_features)))\n", + "model.add(Dense(1))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": { + "id": "YpSfHu6gov35" + }, + "outputs": [], + "source": [ + "# Compile the model\n", + "model.compile(loss='mean_squared_error', optimizer='adam')\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0vHjcluaoxzP", + "outputId": "1eaafd31-9f91-4655-f437-e9199c0f7933" + }, + "outputs": [], + "source": [ + "# Train the model\n", + "model.fit(X_train_reshaped, y_train[n_steps-1:], epochs=100, batch_size=32, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "gEE06_TjozYv", + "outputId": "30306af7-2ec8-4733-db96-d3416a7fc6d4" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "y_pred = model.predict(X_test_reshaped).flatten()" + ] + }, + { + "cell_type": "code", + "execution_count": 113, + "metadata": { + "id": "7k6C8DrxpB_Q" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse10 = np.sqrt(mean_squared_error(y_test[n_steps-1:], y_pred))\n", + "mae10 = mean_absolute_error(y_test[n_steps-1:], y_pred)\n", + "mape10 = mean_absolute_percentage_error(y_test[n_steps-1:], y_pred)\n", + "accuracy10 = accuracy_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "precision10 = precision_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "recall10 = recall_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "f110 = f1_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "confusion10 = confusion_matrix(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "i_6-UUDhpi0c", + "outputId": "3dcc5761-03b6-4b52-dfe6-08dece835c8d" + }, + "outputs": [], + "source": [ + "# Print evaluation metrics\n", + "print(\"RMSE:\", rmse10)\n", + "print(\"MAE:\", mae10)\n", + "print(\"MAPE:\", mape10)\n", + "print(\"Accuracy:\", accuracy10)\n", + "print(\"Precision:\", precision10)\n", + "print(\"Recall:\", recall10)\n", + "print(\"F1 Score:\", f110)\n", + "print(\"Confusion Matrix:\\n\", confusion10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "qpWPtph9CGip", + "outputId": "c099cb8d-96af-4223-f499-743040aecdf1" + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of accuracies from accuracy1 to accuracy10\n", + "accuracies = [accuracy1*100, accuracy2*100, accuracy3*100, accuracy4*100, accuracy5*100, accuracy6*100, accuracy7*100, accuracy8*100, accuracy9*100, accuracy10*100]\n", + "\n", + "# List of corresponding labels for each accuracy\n", + "labels = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, accuracies, color='blue')\n", + "plt.xlabel('Accuracy Variables')\n", + "plt.ylabel('Accuracy Values')\n", + "plt.title('Bar Graph of Accuracies')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "RFaaCNH6Cfoa", + "outputId": "67a8f358-e3ce-4ad2-9c78-ebc75902beb4" + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of RMSE values from rmse1 to rmse10\n", + "rmse_values = [rmse1, rmse2, rmse3, rmse4, rmse5, rmse6, rmse7, rmse8, rmse9, rmse10]\n", + "\n", + "# List of corresponding labels for each RMSE value\n", + "labels = ['RMSE1', 'RMSE2', 'RMSE3', 'RMSE4', 'RMSE5', 'RMSE6', 'RMSE7', 'RMSE8', 'RMSE9', 'RMSE10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, rmse_values, color='green')\n", + "plt.xlabel('RMSE Variables')\n", + "plt.ylabel('RMSE Values')\n", + "plt.title('Bar Graph of RMSE')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "nrZu-K-KDCJ2", + "outputId": "69165581-da05-4554-a464-a606eb87a734" + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of MAE values from mae1 to mae10\n", + "mae_values = [mae1, mae2, mae3, mae4, mae5, mae6, mae7, mae8, mae9, mae10]\n", + "\n", + "# List of corresponding labels for each MAE value\n", + "labels = ['MAE1', 'MAE2', 'MAE3', 'MAE4', 'MAE5', 'MAE6', 'MAE7', 'MAE8', 'MAE9', 'MAE10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, mae_values, color='orange')\n", + "plt.xlabel('MAE Variables')\n", + "plt.ylabel('MAE Values')\n", + "plt.title('Bar Graph of MAE')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "_c4Pe76fDNM-", + "outputId": "0e3d2f74-9042-4e2d-92c6-5ce61e967bd4" + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of MAPE values from mape1 to mape10\n", + "mape_values = [mape1, mape2, mape3, mape4, mape5, mape6, mape7, mape8, mape9, mape10]\n", + "\n", + "# List of corresponding labels for each MAPE value\n", + "labels = ['MAPE1', 'MAPE2', 'MAPE3', 'MAPE4', 'MAPE5', 'MAPE6', 'MAPE7', 'MAPE8', 'MAPE9', 'MAPE10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, mape_values, color='purple')\n", + "plt.xlabel('MAPE Variables')\n", + "plt.ylabel('MAPE Values')\n", + "plt.title('Bar Graph of MAPE')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "ZDPV0M5rDTi6", + "outputId": "9db63164-3f42-47be-d302-d80d381d9b91" + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of precision values from precision1 to precision10\n", + "precision_values = [precision1, precision2, precision3, precision4, precision5, precision6, precision7, precision8, precision9, precision10]\n", + "\n", + "# List of corresponding labels for each precision value\n", + "labels = ['Precision1', 'Precision2', 'Precision3', 'Precision4', 'Precision5', 'Precision6', 'Precision7', 'Precision8', 'Precision9', 'Precision10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, precision_values, color='red')\n", + "plt.xlabel('Precision Variables')\n", + "plt.ylabel('Precision Values')\n", + "plt.title('Bar Graph of Precision')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "39LBleNeDeuw", + "outputId": "3c6c40bc-f1da-44fb-da14-25ec6d6cf278" + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of recall values from recall1 to recall10\n", + "recall_values = [recall1, recall2, recall3, recall4, recall5, recall6, recall7, recall8, recall9, recall10]\n", + "\n", + "# List of corresponding labels for each recall value\n", + "labels = ['Recall1', 'Recall2', 'Recall3', 'Recall4', 'Recall5', 'Recall6', 'Recall7', 'Recall8', 'Recall9', 'Recall10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, recall_values, color='cyan')\n", + "plt.xlabel('Recall Variables')\n", + "plt.ylabel('Recall Values')\n", + "plt.title('Bar Graph of Recall')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "13cZXvb0DsvK" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Python File/Stock_Price_Prediction_REMOTE_20502.ipynb b/Python File/Stock_Price_Prediction_REMOTE_20502.ipynb new file mode 100644 index 0000000..5312833 --- /dev/null +++ b/Python File/Stock_Price_Prediction_REMOTE_20502.ipynb @@ -0,0 +1,2034 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "qCDSjVhXLr_Z" + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.metrics import mean_squared_error, mean_absolute_error, mean_absolute_percentage_error, accuracy_score, precision_score, confusion_matrix, recall_score, f1_score" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "SOQbXSiB-g5G", + "outputId": "6ae02a27-02b0-4bd9-a1ae-a7029056f32e" + }, + "outputs": [], + "source": [ + "# from google.colab import drive\n", + "# drive.mount('/content/drive')\n", + "# df = pd.read_csv('drive/My Drive/Colab Notebooks/Stock Price Prediction RNN/SBIN.csv')\n", + "df = pd.read_csv('SBIN.csv')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Data Analysis and Visualization" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Print first 5 rows of dataset\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# basic dataset features information\n", + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Summary of numerical columns\n", + "df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Checking for null values\n", + "df.isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Drop the 'Date' and 'Adj Close' columns\n", + "df.drop(['Date', 'Adj Close'], axis=1, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "dydEPoNeM6eN" + }, + "outputs": [], + "source": [ + "# Handle missing values\n", + "from sklearn.impute import SimpleImputer\n", + "imputer = SimpleImputer(strategy='mean')\n", + "df = pd.DataFrame(imputer.fit_transform(df), columns=df.columns)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Checking for null values\n", + "df.isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Adding Indicators" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### SMA" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Its the avg of stock price over a specific time period\n", + "\n", + "SMA = (sum of closing price os past n days) / n\n", + "\n", + "It helps identify trends by filtering out shortterm fluctuations\n", + "\n", + "Price above SMA indicate Uptrend and price below SMA indicate lowertrend" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "df[\"SMA_10\"] = df[\"Close\"].rolling(window=10).mean()\n", + "df[\"SMA_50\"] = df[\"Close\"].rolling(window=50).mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "df.dropna(subset=['SMA_10', 'SMA_50'], inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    OpenHighLowCloseVolumeSMA_10SMA_50
    4922.64921822.73413522.27652722.63506539637704.023.10257920.537146
    5022.17273922.36144321.83779022.11612939109363.022.92944320.603004
    5122.09254122.18689221.88968322.08310527429706.022.75725020.680184
    5222.07366922.68695821.96044722.61147727421227.022.63506520.777649
    5322.69167522.88981422.46523122.58788936343129.022.62657320.875870
    \n", + "
    " + ], + "text/plain": [ + " Open High Low Close Volume SMA_10 \\\n", + "49 22.649218 22.734135 22.276527 22.635065 39637704.0 23.102579 \n", + "50 22.172739 22.361443 21.837790 22.116129 39109363.0 22.929443 \n", + "51 22.092541 22.186892 21.889683 22.083105 27429706.0 22.757250 \n", + "52 22.073669 22.686958 21.960447 22.611477 27421227.0 22.635065 \n", + "53 22.691675 22.889814 22.465231 22.587889 36343129.0 22.626573 \n", + "\n", + " SMA_50 \n", + "49 20.537146 \n", + "50 20.603004 \n", + "51 20.680184 \n", + "52 20.777649 \n", + "53 20.875870 " + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### RSI" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It is a momentum indicator used to measure the speed and change of price movements. It ranges from 0 to 100 and helps identify whether a stock is overbought or oversold. \n", + "\n", + "RSI > 70: Overbought \n", + "RSI < 30: Oversold" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "delta = df['Close'].diff(1)\n", + "\n", + "gain = delta.where(delta > 0, 0)\n", + "loss = -delta.where(delta < 0, 0)\n", + "\n", + "avg_gain = gain.rolling(window=14).mean()\n", + "avg_loss = loss.rolling(window=14).mean()\n", + "\n", + "rs = avg_gain / avg_loss # Relative Strength\n", + "df['RSI'] = 100 - (100 / (1 + rs))\n", + "\n", + "df.dropna(subset=['RSI'], inplace=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Representing RSI Graphically" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAMWCAYAAADs4eXxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUZcLG4SeBEGqCICSgNEVFsCBIyWJFBBELih0FFcGCvaN8YFtxdVdXFNuqYC/YZVVARFSKAgqLgAiIgkIoIonUtPn+eD05Z2bOTGYm0/O7ryvX6WfeSSaQ57wtw+PxeAQAAAAAAKIuM9EFAAAAAAAgXRG6AQAAAACIEUI3AAAAAAAxQugGAAAAACBGCN0AAAAAAMQIoRsAAAAAgBghdAMAAAAAECOEbgAAAAAAYoTQDQAAAABAjBC6AQCowT7//HNlZGTorbfeSsjrT5o0SRkZGfr5558T8voAAMQaoRsAgDhbsmSJzjrrLLVp00Z169bVPvvsoxNPPFGPPfaY13n333+/3nvvvcQUMgQ///yzMjIyKr9q1aql1q1b64wzztCiRYsSXTwAAJJChsfj8SS6EAAA1BRz5szR8ccfr9atW2vo0KHKz8/XunXrNG/ePK1evVqrVq2qPLdhw4Y666yzNGnSpJiV5/PPP9fxxx+vyZMn66yzzgrr2p9//lnt2rXT+eefr5NPPlnl5eVavny5nnzySe3Zs0fz5s1T586dg96jvLxcpaWlys7OVkZGRjXeCQAAyal2ogsAAEBN8ve//125ubmaP3++Gjdu7HVs06ZNiSlUNXXp0kUXXnhh5XavXr102mmn6cknn9TTTz/tes2OHTvUoEED1apVS7Vq1YpXUQEAiDualwMAEEerV69Wp06d/AK3JDVv3rxyPSMjQzt27NALL7xQ2Xz74osvrjz+3XffqX///srJyVHDhg11wgknaN68eX733LZtm2644Qa1bdtW2dnZ2nfffTVkyBBt2bIlYBn37NmjU045Rbm5uZozZ07Y77F3796SpDVr1kiy+23PmjVLV111lZo3b659993X65hvn+6PP/5Yxx57rBo1aqScnBx169ZNr776qtc5X3/9tU466STl5uaqfv36OvbYYzV79uywywsAQCxR0w0AQBy1adNGc+fO1ffff69DDjkk4HkvvfSSLrvsMnXv3l0jRoyQJO2///6SpKVLl+roo49WTk6Obr31VmVlZenpp5/Wcccdp1mzZqlHjx6SpO3bt+voo4/W8uXLdemll6pLly7asmWLPvjgA/3666/ae++9/V53165dOv3007VgwQJ9+umn6tatW9jvcfXq1ZKkpk2beu2/6qqr1KxZM40ZM0Y7duwIeP2kSZN06aWXqlOnTho1apQaN26s7777Tp988okuuOACSdJnn32m/v37q2vXrho7dqwyMzM1ceJE9e7dW19++aW6d+8edrkBAIgFQjcAAHF08803q3///urcubO6d++uo48+WieccIKOP/54ZWVlVZ534YUX6oorrtB+++3n1XRbkkaPHq3S0lJ99dVX2m+//SRJQ4YM0UEHHaRbb71Vs2bNkiQ99NBD+v777/XOO+/ojDPO8LrebUiX7du365RTTtHSpUv12WefVdkf27Jz505t2bJF5eXl+uGHH3TDDTdIks4++2yv85o0aaIZM2YEbU5eVFSka6+9Vt27d9fnn3+uunXrVh6zyuzxeHTFFVfo+OOP18cff1zZF/zyyy9Xp06dNHr0aE2bNi2ksgMAEGs0LwcAII5OPPFEzZ07V6eddpoWL16sBx98UP369dM+++yjDz74oMrry8vLNW3aNA0cOLAycEtSixYtdMEFF+irr75ScXGxJOntt9/W4Ycf7hW4Lb6DlhUVFalv37764Ycf9Pnnn4ccuCVp7NixatasmfLz83Xcccdp9erV+sc//qEzzzzT67zhw4dX2X97+vTp+vPPP3X77bd7BW5nmRctWqSVK1fqggsu0O+//64tW7Zoy5Yt2rFjh0444QR98cUXqqioCLn8AADEEjXdAADEWbdu3fTOO++opKREixcv1rvvvqtHHnlEZ511lhYtWqSOHTsGvHbz5s3auXOnDjroIL9jBx98sCoqKrRu3Tp16tRJq1ev1qBBg0Iq0/XXX6/du3fru+++U6dOncJ6PyNGjNDZZ5+tzMxMNW7cWJ06dVJ2drbfee3atavyXlbT9GBN71euXClJGjp0aMBzioqKtNdee1X5egAAxBqhGwCABKlTp466deumbt266cADD9Qll1yiyZMna+zYsXEvy+mnn67XX39dDzzwgF588UVlZobeGO6AAw5Qnz59qjyvXr161SliJasW+6GHHgpYI9+wYcOovBYAANVF6AYAIAkceeSRkqQNGzZU7nObt7pZs2aqX7++VqxY4Xfshx9+UGZmplq1aiXJDLz2/fffh/T6AwcOVN++fXXxxRerUaNGevLJJyN5G9VmDRb3/fffq3379kHPycnJCSnsAwCQSPTpBgAgjmbOnOk6iNlHH30kSV7Nxhs0aKBt27Z5nVerVi317dtX77//vtc0Wxs3btSrr76qo446Sjk5OZKkQYMGVTZf9+VWhiFDhmj8+PF66qmndNttt0Xy9qqtb9++atSokcaNG6fdu3d7HbPK3LVrV+2///765z//qe3bt/vdY/PmzXEpKwAAoaCmGwCAOLrmmmu0c+dOnXHGGerQoYNKSko0Z84cvfHGG2rbtq0uueSSynO7du2qTz/9VA8//LBatmypdu3aqUePHrrvvvs0ffp0HXXUUbrqqqtUu3ZtPf3009qzZ48efPDByutvueUWvfXWWzr77LN16aWXqmvXrtq6das++OADPfXUUzr88MP9ynf11VeruLhYd955p3Jzc3XHHXfE5ftiycnJ0SOPPKLLLrtM3bp10wUXXKC99tpLixcv1s6dO/XCCy8oMzNTzz77rPr3769OnTrpkksu0T777KPffvtNM2fOVE5Ojj788MO4lhsAgEAI3QAAxNE///lPTZ48WR999JGeeeYZlZSUqHXr1rrqqqs0evRoNW7cuPLchx9+WCNGjNDo0aO1a9cuDR06VD169FCnTp305ZdfatSoURo3bpwqKirUo0cPvfzyy5VzdEumX/OXX36psWPH6t1339ULL7yg5s2b64QTTtC+++4bsIx33HGHioqKKoP3yJEjY/kt8TNs2DA1b95cDzzwgO69915lZWWpQ4cOlVORSdJxxx2nuXPn6t5779Xjjz+u7du3Kz8/Xz169NDll18e1/ICABBMhsetfRkAAAAAAKg2+nQDAAAAABAjhG4AAAAAAGKE0A0AAAAAQIwQugEAAAAAiBFCNwAAAAAAMULoBgAAAAAgRpinW1JFRYXWr1+vRo0aKSMjI9HFAQAAAAAkOY/Hoz///FMtW7ZUZmbg+mxCt6T169erVatWiS4GAAAAACDFrFu3Tvvuu2/A44RuSY0aNZJkvlk5OTkJLg0AAAAAINkVFxerVatWlXkyEEK3VNmkPCcnh9ANAAAAAAhZVV2UGUgNAAAAAIAYIXQDAAAAABAjhG4AAAAAAGKEPt0hqqioUElJSaKLgTjIyspSrVq1El0MAAAAAGmA0B2CkpISrVmzRhUVFYkuCuKkcePGys/PZ952AAAAANVC6K6Cx+PRhg0bVKtWLbVq1SropOdIfR6PRzt37tSmTZskSS1atEhwiQAAAACkMkJ3FcrKyrRz5061bNlS9evXT3RxEAf16tWTJG3atEnNmzenqTkAAACAiFFtW4Xy8nJJUp06dRJcEsST9YCltLQ0wSUBAAAAkMoI3SGib2/Nws8bAAAAQDQQugEAAAAAiBFCdw2XkZGh9957L9HFCNtxxx2n66+/PtHFAAAAAICgCN1prLCwUNdcc432228/ZWdnq1WrVjr11FM1Y8aMRBet0l133aWMjAxlZGSodu3aatu2rW644QZt37496HXvvPOO7r333jiVEgAAAAAiw+jlaernn39Wr1691LhxYz300EM69NBDVVpaqqlTp2rkyJH64YcfEl3ESp06ddKnn36qsrIyzZ49W5deeql27typp59+2u/ckpIS1alTR02aNElASQEAAAAgPNR0p6mrrrpKGRkZ+uabbzRo0CAdeOCB6tSpk2688UbNmzcv4HVLlixR7969Va9ePTVt2lQjRozwqnX+/PPP1b17dzVo0ECNGzdWr1699Msvv1Qef//999WlSxfVrVtX++23n+6++26VlZUFLWvt2rWVn5+vfffdV+eee64GDx6sDz74QJKpCe/cubOeffZZtWvXTnXr1pXk37x8z549uu2229SqVStlZ2erffv2eu655yqPf//99+rfv78aNmyovLw8XXTRRdqyZUtY31MAAAAACBc13WHyeKSdOxPz2vXrS6EMqr1161Z98skn+vvf/64GDRr4HW/cuLHrdTt27FC/fv1UUFCg+fPna9OmTbrssst09dVXa9KkSSorK9PAgQM1fPhwvfbaayopKdE333xTOdL3l19+qSFDhmj8+PE6+uijtXr1ao0YMUKSNHbs2JDfZ7169VRSUlK5vWrVKr399tt65513As6ZPWTIEM2dO1fjx4/X4YcfrjVr1lSG6m3btql379667LLL9Mgjj2jXrl267bbbdM455+izzz4LuVwAAAAAEC5Cd5h27pQaNkzMa2/fLrlkaD+rVq2Sx+NRhw4dwrr/q6++qt27d+vFF1+sDOuPP/64Tj31VP3jH/9QVlaWioqKdMopp2j//feXJB188MGV19999926/fbbNXToUEnSfvvtp3vvvVe33npryKF74cKFevXVV9W7d+/KfSUlJXrxxRfVrFkz12t+/PFHvfnmm5o+fbr69OlT+dqWxx9/XEcccYTuv//+yn3PP/+8WrVqpR9//FEHHnhgSGUDAAAAgHARutOQx+OJ6Lrly5fr8MMP96od79WrlyoqKrRixQodc8wxuvjii9WvXz+deOKJ6tOnj8455xy1aNFCkrR48WLNnj1bf//73yuvLy8v1+7du7Vz507Vr1/f9XWXLFmihg0bqry8XCUlJRowYIAef/zxyuNt2rQJGLgladGiRapVq5aOPfZY1+OLFy/WzJkz1dDlacnq1asJ3QAAAABihtAdpvr1TY1zol47FAcccIAyMjJiMljaxIkTde211+qTTz7RG2+8odGjR2v69Onq2bOntm/frrvvvltnnnmm33VWX2w3Bx10kD744APVrl1bLVu2VJ06dbyOuzWRd6pXr17Q49u3b6+srfdlPTAAAAAAgFggdIcpIyO0Jt6J1KRJE/Xr108TJkzQtdde6xdat23b5tqv++CDD9akSZO0Y8eOymtmz56tzMxMHXTQQZXnHXHEETriiCM0atQoFRQU6NVXX1XPnj3VpUsXrVixQu3btw+rvHXq1An7GqdDDz1UFRUVmjVrVmXzcqcuXbro7bffVtu2bVW7Nh95AAAAIJlt3Wq69ebmSo0aJbo01cfo5WlqwoQJKi8vV/fu3fX2229r5cqVWr58ucaPH6+CggLXawYPHqy6detq6NCh+v777zVz5kxdc801uuiii5SXl6c1a9Zo1KhRmjt3rn755RdNmzZNK1eurOzXPWbMGL344ou6++67tXTpUi1fvlyvv/66Ro8eHdP32rZtWw0dOlSXXnqp3nvvPa1Zs0aff/653nzzTUnSyJEjtXXrVp1//vmaP3++Vq9eralTp+qSSy5ReXl5TMsGAAAAIDy33y61aiWNH5/okkQHoTtN7bfffvr22291/PHH66abbtIhhxyiE088UTNmzNCTTz7pek39+vU1depUbd26Vd26ddNZZ52lE044obJ/df369fXDDz9UTkE2YsQIjRw5UpdffrkkqV+/fpoyZYqmTZumbt26qWfPnnrkkUfUpk2bmL/fJ598UmeddZauuuoqdejQQcOHD9eOHTskSS1bttTs2bNVXl6uvn376tBDD9X111+vxo0bKzOTXwEAAAAgmVRUmGW6/Kme4Yl01K00UlxcrNzcXBUVFSknJ8fr2O7du7VmzRqvOaKR/vi5AwAAAIlx6aXSxInSuHGm1jtZBcuRTmny7AAAAAAAkA6sauF0qelOk7cBAAAAAEgH6da8PE3eBgAAAAAgHRC6AQAAAACIEUI3AAAAAAAxQuiuoRjkvWapsH7TAQAAAMRVuoXu2okuQLLLyspSRkaGNm/erGbNmikjIyPRRUIMeTwelZSUaPPmzcrMzFSdOnUSXSQAAACgRiF01zC1atXSvvvuq19//VU///xzoouDOKlfv75at26tzHT5TQcAAABSBKG7BmrYsKEOOOAAlZaWJrooiINatWqpdu3atGoAAAAAEoDQHUVt27bVL7/84rf/qquu0oQJE7R7927ddNNNev3117Vnzx7169dPTzzxhPLy8irPXbt2ra688krNnDlTDRs21NChQzVu3DjVrh3dt1arVi3VqlUrqvcEAAAAAHhLt9Cd0Lcxf/58bdiwofJr+vTpkqSzzz5bknTDDTfoww8/1OTJkzVr1iytX79eZ555ZuX15eXlGjBggEpKSjRnzhy98MILmjRpksaMGZOQ9wMAAAAAqB4rdKdLw9OEhu5mzZopPz+/8mvKlCnaf//9deyxx6qoqEjPPfecHn74YfXu3Vtdu3bVxIkTNWfOHM2bN0+SNG3aNC1btkwvv/yyOnfurP79++vee+/VhAkTVFJSksi3BgAAAACIgDVxFDXdUVZSUqKXX35Zl156qTIyMrRw4UKVlpaqT58+led06NBBrVu31ty5cyVJc+fO1aGHHurV3Lxfv34qLi7W0qVL4/4eAAAAAADVk27Ny5NmILX33ntP27Zt08UXXyxJKiwsVJ06ddS4cWOv8/Ly8lRYWFh5jjNwW8etY4Hs2bNHe/bsqdwuLi6OwjsAAAAAAFRXuoXupHkbzz33nPr376+WLVvG/LXGjRun3Nzcyq9WrVrF/DUBAAAAAFUjdMfAL7/8ok8//VSXXXZZ5b78/HyVlJRo27ZtXudu3LhR+fn5leds3LjR77h1LJBRo0apqKio8mvdunVReicAAAAAgOogdMfAxIkT1bx5cw0YMKByX9euXZWVlaUZM2ZU7luxYoXWrl2rgoICSVJBQYGWLFmiTZs2VZ4zffp05eTkqGPHjgFfLzs7Wzk5OV5fAAAAAIDES7fQnfA+3RUVFZo4caKGDh3qNbd2bm6uhg0bphtvvFFNmjRRTk6OrrnmGhUUFKhnz56SpL59+6pjx4666KKL9OCDD6qwsFCjR4/WyJEjlZ2dnai3BAAAAACIEKE7yj799FOtXbtWl156qd+xRx55RJmZmRo0aJD27Nmjfv366Yknnqg8XqtWLU2ZMkVXXnmlCgoK1KBBAw0dOlT33HNPPN8CAAAAACBK0i10Z3g81ixoNVdxcbFyc3NVVFREU3MAAAAASKCjjpJmz5beeUc644xElyawUHNkmjw7AAAAAACkg3Sr6U6TtwEAAAAASAdW6M7ISGw5ooXQDQAAAABIGtR0AwAAAAAQI9aoY4RuAAAAAACijJpuAAAAAABihNANAAAAAECMELoBAAAAAIgRQjcAAAAAADFC6AYAAAAAIEYI3QAAAAAAxAihGwAAAACAGCF0AwAAAAAQI1bozshIbDmihdANAAAAAEga1HQDAAAAABAjHo9ZEroBAAAAAIgyaroBAAAAAIgRQjcAAAAAADFC6AYAAAAAIEYI3QAAAAAAxAihGwAAAACAGCF0AwAAAAAQJZMmScOGSeXlZjvdQnftRBcAAAAAAFBzXXKJWfbtK517bvqF7jR5GwAAAACAVLZhg1kSugEAAAAAiLIbbjDLXbvMMiMjcWWJJkI3AAAAACApbNkilZWZdWq6AQAAAACohp07vbdfftler1MnvmWJFUI3AAAAACAhtmzx3t661V7Pzo5vWWKF0A0AAAAASAhr0DRLUZG9TugGAAAAAKAafEP3a6/Z6zQvBwAAAACgGnxD9+bN9npWVnzLEiuEbgAAAABAQviGbkufPkwZBgAAAABAtXg87vubNo1vOWKJ0A0AAAAASIhANd3p0p9bInQDAAAAABIkUOhOl/7cEqEbAAAAAJAg1HQDAAAAABAj1HQDAAAAABAj1HQDAAAAABAj1HQDAAAAABAj1HQDAAAAAGqEH36QzjxT+u67+L1mTajprp3oAgAAAAAAEu+kk6RffpE++kjavTs+r0lNNwAAAACgRvjlF7Pcsyd+r1lebpa1annvT6eabkI3AAAAACCqvvxSWras6vOsGvV99vHen0413TQvBwAAAABEzZo10jHHmHWPJ/i5u3aZZV6etHatvZ+abgAAAABA2ohmk/IHHgj9XKumu149adw4e//vv0evPIlG6AYAAACAGmrnTumll6TRo6N3z2eeCf1cq6a7Xj3p4ovt/V98Eb3yJBrNywEAAACghrruOunZZ/33b9ggtWhR/ft7PFJGRuDjX39tllu3SplpWiWcpm8LAAAAAFCV115z39+yZeDpvMJRWhr8+BNPmOX8+d4jmFfVFzyVELoBAAAAoIYKVru8cGH1719V6A5Uln79qv/ayYLQDQAAAAA1VLDQvX179e9fVhb8+N57m+Uzz3iX5bTTqv/ayYLQDQAAAAA1VLD+1qtWVf/+VdV0W8e7dfMO3enUvzuN3goAAAAAIBzBwu2IEdW/f7DQXVwsFRWZ9bZtvY8FexiQahIeun/77TddeOGFatq0qerVq6dDDz1UCxYsqDzu8Xg0ZswYtWjRQvXq1VOfPn20cuVKr3ts3bpVgwcPVk5Ojho3bqxhw4ZpezTaQgAAAABAGotFjbJzQDQrdJeW+g/M5mx63qiR9+Bp1HRHyR9//KFevXopKytLH3/8sZYtW6Z//etf2muvvSrPefDBBzV+/Hg99dRT+vrrr9WgQQP169dPu61Z1CUNHjxYS5cu1fTp0zVlyhR98cUXGhGNxzIAAAAAkMaqqlEOdwTz8nLzZSktlUpKpA4dTBh3zr/tPC8zU6pf395u3jy8101mGR5P4gZjv/322zV79mx9+eWXrsc9Ho9atmypm266STfffLMkqaioSHl5eZo0aZLOO+88LV++XB07dtT8+fN15JFHSpI++eQTnXzyyfr111/VsmXLKstRXFys3NxcFRUVKScnJ3pvEAAAAACSWH6+tHFj4OMvvihddFHo99u1yzs8//CDtGOH1LWrvW/7dqlBA/O6+fkm+Fvh/vffzXqzZuG9j0QINUcmtKb7gw8+0JFHHqmzzz5bzZs31xFHHKH//Oc/lcfXrFmjwsJC9enTp3Jfbm6uevTooblz50qS5s6dq8aNG1cGbknq06ePMjMz9bU107qPPXv2qLi42OsLAAAAAGqaqmq6hwwJ734ffOC9XVoqZWV579u1yyytmm5nU/KmTVMjcIcjoaH7p59+0pNPPqkDDjhAU6dO1ZVXXqlrr71WL7zwgiSpsLBQkpSXl+d1XV5eXuWxwsJCNfdpe1C7dm01adKk8hxf48aNU25ubuVXq1atov3WAAAAACDpRbvd8/PPe29bzcudrJBthW5nH/B0lNDQXVFRoS5duuj+++/XEUccoREjRmj48OF66qmnYvq6o0aNUlFRUeXXunXrYvp6AAAAAJCMqprSK1y+83KXlkpbt3rvs5qSW0tCdwy1aNFCHTt29Np38MEHa+3atZKk/Px8SdJGn04GGzdurDyWn5+vTZs2eR0vKyvT1q1bK8/xlZ2drZycHK8vAAAAAKhpnCF5yZLwry8vN03KrUbGzsHRJBO6feJa5TluzcvTUULfXq9evbRixQqvfT/++KPatGkjSWrXrp3y8/M1Y8aMyuPFxcX6+uuvVVBQIEkqKCjQtm3btHDhwspzPvvsM1VUVKhHjx5xeBcAAAAAkJqcobtTJ/dzgjVBf/FF6fTTpcMOM9uzZnkfLy01A6k5LV9uljQvj4MbbrhB8+bN0/33369Vq1bp1Vdf1TPPPKORI0dKkjIyMnT99dfrvvvu0wcffKAlS5ZoyJAhatmypQYOHCjJ1IyfdNJJGj58uL755hvNnj1bV199tc4777yQRi4HAAAAgJrK2bw80KBqvrXXTp98YpabN/uHa8mE+s2bvfddcolZ1pTm5bUT+eLdunXTu+++q1GjRumee+5Ru3bt9O9//1uDBw+uPOfWW2/Vjh07NGLECG3btk1HHXWUPvnkE9WtW7fynFdeeUVXX321TjjhBGVmZmrQoEEaP358It4SAAAAAKSMTp2kRYuCn1NeLtUOkByzs+31X37xP15aKo0e7b3v55/t+0rp37w8oaFbkk455RSdcsopAY9nZGTonnvu0T333BPwnCZNmujVV1+NRfEAAAAAIG01aGCWf00g5cqqkXbjrAWfNs3/eLCB2mheDgAAAABIa1af7saNA58TrHm589gNNwS+vxsrzKd7TXeavz0AAAAAQCBWTXRWlvf+du3s9UA13T/+KL3xRvD7Bwvd1HQDAAAAANKaFYp9+2w7g3Cgmu5bbqn6/qWlUpcu/vtnzZK6d/d/rXRE6AYAAACAGipQTbczhLvVdBcVmfm5q1JWJpWUmPVjjrH3Dx9ecwZSS/O3BwAAAAAIJFDorqqme8GCwPds2NAO2GVl0p49Zt2apGrvvaWVK91fKx0lfPRyAAAAAED8/f67tGqVWfdtXp6Zaebt9njca7p/+y3wfc88U/rzT7PuDN0NG5rl7t3e56d76KamGwAAAABqoCuvtNd9a7ozMuxm32413UOHBr5v3bp2iC8ttUO3NT3Z9u3e56d783JqugEAAACgBvr6a3vdt6Y7I8PUQJeXB58yzI0zdF9zjb3fCt2+qOkGAAAAAKSNXbvMcu1ae5/Vt9virOkONGVYIM7Q7ZSb634+oRsAAAAAkBbmzZPq15fuuMN7/44d3tt16thhONya7uxs9z7f++zjfn66Ny9P87cHAAAAALAUFJjluHHe+605s595xoTj556zQ3dVNd0NG0o5OfZ23brSzJn+52VnS3/7m/9+aroBAAAAAGmtbl2zHD5c+vVX6ZBDgg+k5rRqlVRc7H0vj8f/vKws937dhG4AAAAAQNo58kizbNTI/XgoNd377Sfl5XnvswK8rwYN3EP3+vXBy5nqCN0AAAAAUAO1aGGWjzzifjxYTfd++5nlk0/6H6tbV6pXz39/rVqmP7mvX3+tuqypjNANAAAAADWQNX92nTrux5013eXlphm51Wz8p5/MsqjI/7rsbOmzz9zvGWjasHRG6AYAAACAGqikxCwDhW5nTfeIEdIBB0gTJ3r311650iyHDLH31asn9ezpfk9CNwAAAACgRvj8c7PMznY/7qzpfv55s37PPXYNuSRdeqn3UpLatQv8mm6h+6STQipuyiJ0AwAAAEANFkpNtyU7W9q5097ee2+zdPbVDnQ/63pfF1wQWjlTFaEbAAAAAGqwqvp0O0N3Xp5d052ZKdWu7X+PrCz/e733XuBjboOrpZPaiS4AAAAAACBxQhlIzVJRIZWWmnVngHZbX7VK2rrVTE2WkeF/nuXwwyMrd6ogdAMAAABADeA29Zdkh2tfbs3LQwndVojff3/z5WRdK5l+4g0bSu3bV132VEboBgAAAIAaoLjYfb9VC+3Lraa7vNwe9dwZtJ1hunHjwGV4/HF7/cwzpdzcwOemC/p0AwAAAEANUFjovj8nx33/smVm2bu3va+szL2me5997PVgfbR/+81ed2tqno4I3QAAAABQA2zd6r6/Q4fQ7xGoeXlurpmze926wDXnknTWWfY6oRsAAAAAkDacTcAtrVvbI5CHorzcPXRLpm/2vvsGv/7ii+31cF43lRG6AQAAAKAGKCvz3xdu8A3UvDxUmY4EGqxGPJ0QugEAAACgBnCr6Q40cnkgFRX2PN2BphqDtxpSoQ8AAAAANZtbTXe4obu83Iw6LklLl4Zfhl69TG33wQeHf22qInQDAAAAQA0QjZru8nLpzz8jL0NOjrm+JtWSE7oBAAAAIE2VlUnnny91724GTfOVGWaH4/Ly6pcp2JRi6Yg+3QAAAACQ5P73PzPw2H33hXfd559Lb70l3Xpr9Gq6ER5CNwAAAAAkucMPN8v/+7/wrvN47PW33vI/Xp3Q3aRJeNfWVIRuAAAAAEhiv/4anfu8/77/vkhC94EHmvXnnqt+mWoCQjcAAAAAJLGff4782oqKqBVDkgndVj/wxo2je+90RegGAAAAgCRWnZG+S0qCH//998DHunf337dzpz1Pd926kZerJiF0AwAAAEASy8qK/Nply4IfX7068DG3eb1r15bWrDHr2dmRl6smIXQDAAAAQBKYNUtavNh/f22fiZ6dg6NV5fbbIy+P20jl27fb69R0h4Z5ugEAAAAgwX79VTruOLNeUWGmB7NYzbktZWXVq/0OlVtNt1NNm287UtR0AwAAAECCrVplr0+d6n3s0Ue9t6sKw9FS1euEO/J5TUXoBgAAAIAEcwbcH3/0PjZ9uvd2OM3L3QZDC5VV8x5Iy5aR37smIXQDAAAAQII5Q/euXd7HfGuU//wz9PsefHDkZbrnHumOOwIfzyRNhoRvEwAAAAAkWGmpvb57t/cx39D9yCOR3TdczZtLf/975NfDIHQDAAAAQII5B0tr08b72LBh3tubNoV+3+qEbkQHoRsAAAAAEmzrVnu9Th3vY82aeW/71oQHU1IS/PgZZ4R+L6enn47supqI0A0AAAAACXb55fa67/zYFRXe287Q/d130oYNge/7ww/++yZNstdfeSXkInpp0iSy62oi5ukGAAAAgCTiG7p9a6ut0L1okdSli1kvLZVqu6S7FSv89110kdSokdStm1SvXmRlrFs3sutqImq6AQAAACCJ+Ibum27y3p42zSyPOsre9/jjod8/M1M680ypVavIyidJ2dmRX1vTELoBAAAAIIk4Q/fOnYGP79hh7/vkE//znNOQVceSJWb6sGeesfdR0x06mpcDAAAAQBJx9tl+8033czwe7223ObOLi/337btv+OU55BDzNXmyvY/QHTpqugEAAAAgidxyi70+frz7Obt2eW+79d3ets0s69e39519duTlco6qTvPy0BG6AQAAACCBgg2c9t137tf4Nh3fssX/nKIis8zNld56Sxo4UBozJuJier1GVlbk96lpaF4OAAAAAAnkW2vdvXvV15SWem+7NSW39uXkSIMGma/q2LPHXvdt3o7AElrTfddddykjI8Prq0OHDpXHd+/erZEjR6pp06Zq2LChBg0apI0bN3rdY+3atRowYIDq16+v5s2b65ZbblFZtEYMAAAAAIAY8x0szTmq+PHHu1/jG7rdWDXmsWgKfvDB0b9nukp4TXenTp306aefVm7Xdkwud8MNN+i///2vJk+erNzcXF199dU688wzNXv2bElSeXm5BgwYoPz8fM2ZM0cbNmzQkCFDlJWVpfvvvz/u7wUAAAAAwuUbuqdMsdebNHG/JpTQbZ0Trabg++9vr2dkROeeNUHCQ3ft2rWVn5/vt7+oqEjPPfecXn31VfXu3VuSNHHiRB188MGaN2+eevbsqWnTpmnZsmX69NNPlZeXp86dO+vee+/Vbbfdprvuukt1nD39AQAAACAJrV3rvb1njxnBvG5d7ybdTt9847/P4/EOw9EO3X37So8+KnXuHJ371RQJH0ht5cqVatmypfbbbz8NHjxYa//6xC1cuFClpaXq06dP5bkdOnRQ69atNXfuXEnS3LlzdeihhyovL6/ynH79+qm4uFhLly6N7xsBAAAAgAj8/rv/PiswOwdVczrrrMDX+G7XjlJVa0aGdO210jHHROd+NUVCa7p79OihSZMm6aCDDtKGDRt099136+ijj9b333+vwsJC1alTR40bN/a6Ji8vT4WFhZKkwsJCr8BtHbeOBbJnzx7tcTwyKnYbdQAAAAAA4sAtWFsDlQWq6XZTWuo9rVe0a7oRmYSG7v79+1euH3bYYerRo4fatGmjN998U/Xq1YvZ644bN0533313zO4PAAAAAKH65BP/fdY0YoFqut0EqukmdCdWwpuXOzVu3FgHHnigVq1apfz8fJWUlGibNaP7XzZu3FjZBzw/P99vNHNr262fuGXUqFEqKiqq/Fq3bl103wgAAAAAhGjSJP99VugOp6bbN6ATupNDUoXu7du3a/Xq1WrRooW6du2qrKwszZgxo/L4ihUrtHbtWhUUFEiSCgoKtGTJEm3atKnynOnTpysnJ0cdO3YM+DrZ2dnKycnx+gIAAACAZHHppdK771LTnQ4S2rz85ptv1qmnnqo2bdpo/fr1Gjt2rGrVqqXzzz9fubm5GjZsmG688UY1adJEOTk5uuaaa1RQUKCePXtKkvr27auOHTvqoosu0oMPPqjCwkKNHj1aI0eOVHYsJqMDAAAAgDj48EPz5QzM7dtLq1YFvsY3dJeVmSWhO7ESGrp//fVXnX/++fr999/VrFkzHXXUUZo3b56aNWsmSXrkkUeUmZmpQYMGac+ePerXr5+eeOKJyutr1aqlKVOm6Morr1RBQYEaNGigoUOH6p577knUWwIAAACAqLGCdJcu0rPPmqVTZqZUUeF9ru+1hO7ESmjofv3114Mer1u3riZMmKAJEyYEPKdNmzb66KOPol00AAAAAEgab7wh7bWX//7HH5f+7//MtGOxnjIMkUmqPt0AAAAAAH/t25tabV9lZXZNtjN0l5VJt91m1qnpTixCNwAAAAAkAbdQLUktWgQ+XlLiHrq//tpez8iITvkQGUI3AAAAACTQvvua5VtvuR+3QrVb6D77bKlOHbPuHOl81y57/YMPql9GRI7QDQAAAAAJtGWLWe69t3Toof7HrT7ZvqH7nnuk1q2l1avNtmO25cp5viVp27aoFRURIHQDAAAAQIJUVEi7d5v1nTul00/3PydQTbdVQ24ZM8Zed9Z0H3hg9cuJyBG6AQAAACBBfEccdxtpPFDoDjYquTN0ezyRlQ3RQegGAAAAgARxNgPv1St46PYdEC1Y6LZqzyUpLy/y8qH6CN0AAAAAkCBlZfZ6VpZ7kA7Up9vaX1BglgcdZB9z1nQPH179ciJyhG4AAAAASBBn6K5dO7zm5db+gQPNcsUK+5gVunv2lM49NypFRYQI3QAAAACQIM7QnZnpPi1YVc3LrdHLJalNG2nhQmn7drN9yCHM051ohG4AAAAASBArdNeqZcJxRYX/OVa4DhS6L7/c3rd2rXTeedJdd5ntd96JanERAUI3AAAAACSIFbqtAO0Wuq2abl/WNQ0beu9ftcpe37q1euVD9RG6AQAAACBBwg3dAwb4769VK/D9H3igeuVD9RG6AQAAACBBrCnDrODsnELM4gzdBxxgr1tBPVjoPvjg6pUP1UfoBgAAAIAECaWm2zmiuTOAhxK669evXvlQfYRuAAAAAEiA8nJp8WKzbvW99nj8z3MG7Tp1/PcTupObyyxwAAAAAIBY2r1b6tRJ+umnqs8NFLqp6U4N1HQDAAAAQJzNmOEeuN1GKnfuo3l56iF0AwAAAECScNZkW774wv14KKG7bt3olAuRI3QDAAAAQJxlZLjvHzZMatvWe9+KFfa6W613sNAd7Bjig9ANAAAAAHHw7bfSWWdJK1cGPic31zQ7dzYLr06f7pYtIysroofQDQAAAABx0LWr9Pbb0qmn+td0t2hhr2dkSHvvbW83b26vh9Onu1+/wDXqiB9CNwAAAADE0YoV/mH4ppu8t+vVs9fLy+1155zdVYXuhg0jLyOih9ANAAAAAAlWVua9XVFhr5eW2uvOgF1Vn+4GDaJTNlQPoRsAAAAAEmyffby3naG7Rw973VlDbtV0ZwZIdbt2RadsqB5CNwAAAAAk2Pnne287Q/fEifa6W+gOZPLk6pcL1UfoBgAAAIA48+3T7dtE3Bm6nQOpOa9zDqqG5EXoBgAAAIAk4wzdTs6m5IGalVsGDoxacVANhG4AAAAAiDPniORu7rzTLM87z3u/s6bbbTqwpk3t9UsuiaxsiC5CNwAAAADEWVWhe8QIafly6aWXvPcHmne7Wzczzdinn9r7Ao1qjviqous9AAAAAKC6PB7v7apCd0aG1KGD//5ATcrnzZNKSqQtW6o+F/HFjwEAAAAAouzTT6UzzpA2bDDbv/7qfbyq0B1I/fru+zMzpbp1pWbN7H0bN0b2GoguaroBAAAAIMpOPNEss7Ol11/3bxZeVmav9+8f+n379pVOOUXq3Nn9eHa2vb5nT+j3RewQugEAAAAgRtatM0vfpt7Omu4zzwz9frVqSR9+GNq5zmCPxKF5OQAAAADEiG9fboszdA8bFpvXLi2NzX0RHmq6AQAAACBG9uyR3n1XmjHDe78Vuvv3DzwieXUdeWRs7ovwELoBAAAAIEa+/da9+fi4cWbZoEH0X3PlSunHH6Wjjor+vRE+QjcAAAAAxNmPP5rlYYdF/97t25svJAf6dAMAAABAgjRsmOgSINYI3QAAAACQIJdckugSINYI3QAAAAAQRaFO1XXuuVLjxjEtCpIAoRsAAAAAoui550I7r3792JYDyYHQDQAAAABR9N13oZ2XnR3bciA5ELoBAAAAIIratg3tPEJ3zUDoBgAAAIAoOuCAwMfOOsteJ3TXDIRuAAAAAIgit4HUmjSRNmyQ+va19xG6awZCNwAAAACE6c8/pTVr3I+5he7//lfKz5d27bL3bdkSm7IhuRC6AQAAACBM7dpJ++0nrVjhf8wtdPfsaZYVFfa+7dtjUzYkF0I3AAAAAITp99/Ncto0/2MlJYGvKy+31zMyolsmJCdCNwAAAABEqHZt/33Llpll48Zm2aePfcxZ042aweUjAgAAAAAIRa1a/vs2bTLLO+6QBgyQ2re3jzlD95FHxrZsSA6EbgAAAACIkMfjv8/q052dLXXs6H2stNRev/LK2JULyYPm5QAAAAAQhj/+sNevuML/uNVv263p+Z9/2utux5F+kiZ0P/DAA8rIyND1119fuW/37t0aOXKkmjZtqoYNG2rQoEHauHGj13Vr167VgAEDVL9+fTVv3ly33HKLytyGCwQAAACAKHj+ee9t31HIrTji1vT8wgvN0hrNHOkvKUL3/Pnz9fTTT+uwww7z2n/DDTfoww8/1OTJkzVr1iytX79eZ555ZuXx8vJyDRgwQCUlJZozZ45eeOEFTZo0SWPGjIn3WwAAAABQQ/jW8f3rX97bwWq6Dz1UWr9e+uKL2JQNySfhoXv79u0aPHiw/vOf/2ivvfaq3F9UVKTnnntODz/8sHr37q2uXbtq4sSJmjNnjubNmydJmjZtmpYtW6aXX35ZnTt3Vv/+/XXvvfdqwoQJKgk2Tj8AAAAARCjTJ0VZ04dZgtV0S1KLFlJWVvTLheSU8NA9cuRIDRgwQH2c4+hLWrhwoUpLS732d+jQQa1bt9bcuXMlSXPnztWhhx6qvLy8ynP69eun4uJiLV26NOBr7tmzR8XFxV5fAAAAABAKnwa6foLVdKPmSejH4PXXX9e3336r+fPn+x0rLCxUnTp11Nia3O4veXl5KiwsrDzHGbit49axQMaNG6e77767mqUHAAAAUBO5jVjuZIXuQDXdqFkSVtO9bt06XXfddXrllVdUt27duL72qFGjVFRUVPm1bt26uL4+AAAAgNT15pvBj1vNy6nphpTA0L1w4UJt2rRJXbp0Ue3atVW7dm3NmjVL48ePV+3atZWXl6eSkhJt27bN67qNGzcqPz9fkpSfn+83mrm1bZ3jJjs7Wzk5OV5fAAAAABCKiRODH6emG04JC90nnHCClixZokWLFlV+HXnkkRo8eHDlelZWlmbMmFF5zYoVK7R27VoVFBRIkgoKCrRkyRJt2rSp8pzp06crJydHHX1noQcAAACAGPAdIoqabjgl7GPQqFEjHXLIIV77GjRooKZNm1buHzZsmG688UY1adJEOTk5uuaaa1RQUKCef01q17dvX3Xs2FEXXXSRHnzwQRUWFmr06NEaOXKksrOz4/6eAAAAANQ8++/vvU1NN5yS+tnLI488oszMTA0aNEh79uxRv3799MQTT1Qer1WrlqZMmaIrr7xSBQUFatCggYYOHap77rkngaUGAAAAUJPk5npvU9MNpwyPp6qx9wIrKSnRmjVrtP/++6t2Cn+iiouLlZubq6KiIvp3AwAAAAgqI8N7+5BDpCVL7O3DDjPb06dLPjMjI42EmiMj6tO9c+dODRs2TPXr11enTp20du1aSdI111yjBx54ILISAwAAAEAK8J186fvvvbep6YZTRKF71KhRWrx4sT7//HOv6b769OmjN954I2qFAwAAAIBkE2SiJEn06Ya3iJ69vPfee3rjjTfUs2dPZTjaVnTq1EmrV6+OWuEAAAAAINlUVAQ/Tk03nCKq6d68ebOaN2/ut3/Hjh1eIRwAAAAA0o1b6C4sNMudO6WffjLrDRrEr0xIXhGF7iOPPFL//e9/K7etoP3ss89WzqENAAAAAOnICt033WTvW7fOLB0xSQccEL8yIXlF1ODh/vvvV//+/bVs2TKVlZXp0Ucf1bJlyzRnzhzNmjUr2mUEAAAAgKRh9dk++WTpX/8y61ZTcmd/73r14lsuJKeIarqPOuooLVq0SGVlZTr00EM1bdo0NW/eXHPnzlXXrl2jXUYAAAAASBpWTbezx21JifexDh3iWyYkr4i79u+///76z3/+E82yAAAAAEDSs4J1ZqZ08MHS8uXSrl3+xwApwprujz76SFOnTvXbP3XqVH388cfVLhQAAAAAJCsrWNeqZc/ZvXu3/zFAijB033777Sq3OjI4eDwe3X777dUuFAAAAICawWqWnUqsKJSZaffb3rzZLKnphq+IPgorV65Ux44d/fZ36NBBq1atqnahAAAAAKS/e+4xoXX+/ESXJDzOYP2//5n1IUP8jwFShKE7NzdXP1mTzzmsWrVKDZiMDgAAAEAVXnlFGjvWhNTrr090acLjDNbbt9v7p08ndMNfRB+F008/Xddff71Wr15duW/VqlW66aabdNppp0WtcAAAAADS04UX2usZGYkrRyQC9dvu29e76TkgRRi6H3zwQTVo0EAdOnRQu3bt1K5dOx188MFq2rSp/vnPf0a7jAAAAADSWKoF1GDBesoUs0y1JvOInYimDMvNzdWcOXM0ffp0LV68WPXq1dNhhx2mY445JtrlAwAAAJDmUrWm2y10P/10fMuC5BfxPN0ZGRnq27ev+vbtG83yAAAAAKhhUjV016plarS7dUtseZDcQg7d48eP14gRI1S3bl2NHz8+6LnXXntttQsGAAAAIL0UFpqBx/LyvPeXliamPJHweMyXZGq6mzRJbHmQ/DI8HusjE1y7du20YMECNW3aVO3atQt8w4wM15HNk1lxcbFyc3NVVFSknJycRBcHAAAASEtWjfbVV0uPP27vP+QQacmSxJQpXOXlUu2/qi63bJF27pRat3Y/N7SkhVQVao4MuaZ7zZo1rusAAAAAEI6ZM723UymcWk3LJVPTXadO4sqC1BD2OIGlpaXaf//9tXz58liUBwAAAEAacgZr36m2CgriW5bqcIbuWrWkrCz38x56KD7lQfILO3RnZWVp9+7dsSgLAAAAgDRVVmavr1vnfSyV+nSHWtN91FHxKQ+SX0Qz4o0cOVL/+Mc/VOb8zQEAAACAAJzB+o8/vI+VlMS3LNVhzdEtmdAdqKa7adP4lAfJL6Ipw+bPn68ZM2Zo2rRpOvTQQ9WgQQOv4++8805UCgcAAAAgPQSrzU6l0O3bvDw72/289u3jUx4kv4hCd+PGjTVo0KBolwUAAABAmgoWuvfsiV85qsu3pluShg2TnnvO+7xUm3scsRNW6K6oqNBDDz2kH3/8USUlJerdu7fuuusu1atXL1blAwAAAJAG3HqmnnGG9O67Vdd0ezzSf/8rdeokBZm9OC58a7olqXHjhBQFKSKsPt1///vfdccdd6hhw4baZ599NH78eI0cOTJWZQMAAACQJtxquvfayyyrqumeOlU69VRpv/2iX65wOWu6rdrsO+/0PmfIkPiVB8kvrND94osv6oknntDUqVP13nvv6cMPP9Qrr7yiCufjHgAAAADw4Ra6rRriqmq6v/gi6sWJmBV9MjPt0L3XXlKTJvY5w4fHv1xIXmGF7rVr1+rkk0+u3O7Tp48yMjK0fv36qBcMAAAAQPooLPTfF2rozoxozqXYsGq6fcvk3A40jRhqprA+vmVlZapbt67XvqysLJWm0sR6AAAgKf3zn9Lrrye6FABiZeBA/31W8/KFC6Vffw18bTKGbqs/t5tA04ihZgprIDWPx6OLL75Y2Y5x8Xfv3q0rrrjCa9owpgwDAADh+Pln6ZZbzPoZZwSeggdA6tq82X+fcwCyhx82X26coXv3bsmnHjCunM3LnbZssdcJ3XAKK3QPHTrUb9+FF14YtcIAAICayTmqcVGR1Lx54soCIH723tted9Th+XEG3PHjpRtvlGpHNPlx9YVS003zcjiF9VGdOHFirMoBAABqMOdowPRaA2oO5wO21q0Dn+cM3f/+tzR2rHT//dINN8SsaAFZNd00L0eokqh3BAAAqKmcodttLl8A/jwe00968OBElyRynTvb68GCqrNWe8MG08T8xhtjVqygAg2k5kTohhOhGwAAJBw13TVPSYkJjYjc2rXS++9Lr76aGoMQHnSQ9/Ztt5ngesopZtv574Cv556LXbnCFUpNN+NSwInQDQAAEo6a7ppl40apaVNpyJBElyS1bd1qr59/fuLKEapjjjHLQw+VZs2SHnjAbFvhNVjoXrUqtmULx65dZhksWDdrFp+yIDUQugEAQMJR012z/Oc/0vbt0ssvJ7okqe244xJdgvBYNcTnnWcHcEn64w+zXLcu8LWnnea+f8eO6JQtHFZ5renOgKoQugEAQEJ9/LH03nv2NjXd6W/37kSXID0UFwc+lozfY6s7gW9f6C++MMv77gt87QcfuO8fPbr65QrXnj1mWa9e/F8bqYnQDQAAEqakRDr5ZO8/tqnpTn9WaEFsvPWWCYQTJiS6JNKbb0qffmrWA81vXRVnM3pfM2bY6/EaI8B6HxkZ8Xk9pD5CNwAASJhvv/XfR013+rP6xCJyy5d7bztrXc8+2yyvvjp+5XGzerV07rnSiSea7ViE7qIi6csvTQDOzJR27oysrOGI9H2g5uKjAgAAEqagwH8fNd3pb8qURJcg9a1d671dUpKYcgTj7KPt8UQeVoO9tx07vPuHT50a3r0jEaiZ/IwZ0ogR8Qn+SC2EbgAAkBCBwjU13envl18SXYLU5vFIAwZ47ysvDz76dyI4y1NeHjh033GHWZ5xhvt9grWM+P137+26dcMrYyQCvY/evaWnn6avN/wRugEAQEJs3+6+n5rumsUKMAjd6tXuATvZfnecD9BKSgL3hW7RwiyzstzvE84YAIkM3UAgfFQAAEBCBArd1HSnn7vvlh5/3N5u395eT7agmArq1HHfn2xNzJ2/y9u2BQ6rtWubZaDPQjifkXgM0kfoRrhqJ7oAAACgZvrzT/f9yTjVESK3fr10111m/aCDpF69pFWr7ONlZVJ2dkKKlrIChe7cXGnYsPiWJRhn6H7//cB9oa0a7kAP3P73v8heM1YI3QgXHxUAAJAQv/7qvj9QDThSk7P5eN++0kcfeR+npju6nnsuOvfZsqX693A+QNtvP7tJfDg13b/9Jl17beivGY9+7YRuhIuPCgAASAjnyMZOvlMhIbX5hiDfWm1Cd/hiPR/1889LzZpJ99xTvfs4m3oXFZmRxiWpQQPv84LVdC9bFt5rxjN0M083QkXoBgAAcffLL9Jll7kfe/DB+JYFseUbgoYM8d4mdCcf63dz7Njq3cf5sz33XHs6r0aNvM8LVtNdv777vZcscd9PTTeSER8VAAAQd0cdlegSIF58Q9C2bd7bhO7APB73EBnrmu5o3T/Ugd18a7qXLjVzb3/+uV077uuAA9z3x2M0/EB904FA+KgAAIC4C9SfG+mnqppHQndgAwaY5vi+wTOcUBwotMZDoNDtO26Db033wIHSl19Kxx8v/fCD+z2ys/2bqUvUdCM58VEBAABJZ8aMRJcA0ULojtzHH5vv3957R36P6obu+fMjvzbQz/bYY723fWu6CwvtY851STrrLOmRR8z6d9/535vQjWTERwUAACSdPn38myEjNS1eHPw4odsMOLZ5c+DjvtPo+dZ0v/pq4Frl6s7d3b174NrmqgR67datvbd9a7qdYda3ufjkydL115v1du387x2P5uWEboSLjwoAAEioxYul/ff3379xY/zLgugbPDj48SeeqNnBu7RUqltXat7cu9tFsCbkvsfOOsuuLfZV3dAt+U/zFqpI+3QHC91OVlh3inVN9+efSyNGmHVCN0KV0I/Kk08+qcMOO0w5OTnKyclRQUGBPv7448rju3fv1siRI9W0aVM1bNhQgwYN0kaf/4HXrl2rAQMGqH79+mrevLluueUWlbnNNwAAAJLSYYdJq1b57y8qin9ZEH9PP12zR6yfPdte//RTez3UGtvcXDu0ujVDj0bozs8PfnzJEumaa6Q1ayJ77XBquqsS69B9/PH2OqEboUroR2XffffVAw88oIULF2rBggXq3bu3Tj/9dC1dulSSdMMNN+jDDz/U5MmTNWvWLK1fv15nnnlm5fXl5eUaMGCASkpKNGfOHL3wwguaNGmSxowZk6i3BAAAQtCkiVkG+2M+GmEBqeG99xJdgsRxNh131mAHC4/O8/7v/+z1k0/2Pzcav0e+zdt9HX+89Pjj0o03eu+fPj20+/vWdDvnv3aG7rvuqvpe8ejTbSF0I1QJ/aiceuqpOvnkk3XAAQfowAMP1N///nc1bNhQ8+bNU1FRkZ577jk9/PDD6t27t7p27aqJEydqzpw5mjdvniRp2rRpWrZsmV5++WV17txZ/fv317333qsJEyaohP+pAQBIWj16mOW4cYHPqclNjtNJbm7V5yxYYM/hXNM4P+fOP1+DNdx0hm5n0G3Y0P/caPxJXNXv4u+/m+V773mH3gULzPLII4NfH0pN98iRoc0bHo8+3RbnwwEgmKR5PlNeXq7XX39dO3bsUEFBgRYuXKjS0lL16dOn8pwOHTqodevWmjt3riRp7ty5OvTQQ5WXl1d5Tr9+/VRcXFxZWw4AAJKP9Yd5rVr2vosu8j6H0J0ejj46tPPcamlrgj177PU2bez1UHpL1qvnHfysAcacRo+OuGiVAv0ulpVJ//qX974//jBL5/vKyZGaNg18f+vfgd9+Mw8U3EJ348ahlZWabiSjhH9UlixZooYNGyo7O1tXXHGF3n33XXXs2FGFhYWqU6eOGvv8huXl5anwr7kDCgsLvQK3ddw6FsiePXtUXFzs9QUAAOLHLXTfe6/3OYTu9FBV02RLPGsok8nZZ9vrzu+Bb3h01m4HGmTtgAP890WjBUGg38Xnn5duvtl7386dZmnVfktmPu1gAdU5b3dxsff7C3ekcEI3klHCPyoHHXSQFi1apK+//lpXXnmlhg4dqmXLlsX0NceNG6fc3NzKr1atWsX09QAAgDe30O3bDJnQnR7cQveRR0onnhj/siSL3bul11+Xpkzx3u/8zPt+35zHrFDq1rz5H/+oXtms0BzotZ2WLPHfZ80L7gzdFRVmhPZAune3131DsxW6nf9WBEPoRjJK+EelTp06at++vbp27apx48bp8MMP16OPPqr8/HyVlJRom88knRs3blT+X6Ou5Ofn+41mbm3nBxmZZdSoUSoqKqr8WrduXXTfFAAACMr6I945zZFv81FCd3rwDY8HHCB9803ozYXT0dix0vnnS6ee6r3f+Zn37Sm5a5e9Hix0Bwu3objtNv99Tz3lfq7bNGVWrbWzIWlpqRmlvl496cUX/a9xTv1VVhZeTbfVLcEK7vFsMUHoRqiS7qNSUVGhPXv2qGvXrsrKytKMGTMqj61YsUJr165VQUGBJKmgoEBLlizRpk2bKs+ZPn26cnJy1LFjx4CvkZ2dXTlNmfUFAADixxrcqU6dwOcQutODNZiW5eCDTVisVy8x5UkGr7zivr+0VHruOfP14Yfex5x9pIP529+qV7Znn/Xf55yK7L77pIICU6PtFrqtPt3O0F1WJvXvL/35p//YDZL3wwPfgd+smutAAffDD6Vt26ROnbzPjwdCN0LlMqV8/IwaNUr9+/dX69at9eeff+rVV1/V559/rqlTpyo3N1fDhg3TjTfeqCZNmignJ0fXXHONCgoK1LNnT0lS37591bFjR1100UV68MEHVVhYqNGjR2vkyJHKzs5O5FsDAABBWAEi2H/XoYTu+fOlSy+VHnpIOumk6JQN0fPLL/b6mDHS6tXSP/9ptgOF7l9/NSGsRQvp/fdNDeY++8S+rPH022/u+zdtch8MTQq9efmRR0qffy4dd1xkZXPrDuB8HWuKsv/8xz109+sn/e9/0pw59r7Wrc0ylCbizz3nvV1VTXdmpumaYt07nqGb0csRqoSG7k2bNmnIkCHasGGDcnNzddhhh2nq1Kk68a9OPo888ogyMzM1aNAg7dmzR/369dMTTzxReX2tWrU0ZcoUXXnllSooKFCDBg00dOhQ3XPPPYl6SwAAIATRquk+5xzp559NLVqgwaWQOH/+aa937Srdfbe97dYMevduqWNHc92TT0pXXmmaoVu1p+luxYrAx0IN3ZJ07LGRl+Gii6SXXvLe53x4Ypk927RacPN//2cemFgeeij013/nHWnzZns71IHUEhG6a+rgfwhfQkP3c76PsnzUrVtXEyZM0IQJEwKe06ZNG3300UfRLhoAAIihaNV0+wz9giTjDEDNm3sfq1/f//w1a+ygfscdZun2M/Z4zEBdzmbP6eDJJwMfc/t9CFbTeued0t//Hn4Z2rY1yxYtpIEDTZk2bpS+/lrq0cM+7623pKOOcr+HxyN17iwtWmRaNITzc/rf/7y3Qx1IbcsWs/z229BfKxK1a9vTuUVjDnTUDPREAAAAcWf9sVrd0E2fyuTmDN1/9Q6stO++/uf//LO9Hqx2OzNTatYsOtNhpQq3mu5grrkmtPM9HtNNw3rYYfXFPucc6fLL7fMee8z/2q++MsvcXO+HKh98YJq5Syb8V0dVfbotb79tls4a9lhwzp/OuBMIFf9VAQCAuHrvPbtPKwOppTcrMFl9ep3cgqA1EnWoUrUff8uWoZ135plSXp5ZD6d5ueT9u+UMir7eftv0mz/6aLP96KNm+dRT7q0R3Dz9tPdc25I9IJvPRENhc5vpIFFmzvTepqYboSJ0AwCAuHn1VemMM+ztSGu6ly83QW7r1uiVDdHnNh+7Zf786L5GKnEbrMzN9u12eA63eblzGq5g36OXXzbLxYu99+fkeIdujydwyGzeXOrWzf1Ydfs9J1PofvNN720eDCJUhG4AABAXHo80eLD3vmBhINgftFddJa1bF51yIXasGla30N20aXRe45lnonOfeNq5M7Tzpk0zU3NJ7vN0B+M793Ugvg+++vQxy7vukho0sPeXl5vR1d3Uqyc9+KD3Pqsf98CBVZc1mFBD97/+Vb3XCYXvAwRCN0JF6AYAAHHh9od/ixaBz//uO+mEE7ynHrLQrDM1BKvpDoczZPoGzhkzqnfvaFm71nu09kDKy0Ov6e7SxW7N4Rz5PZTm5c7vebDQ7dvFwwq39et713RnZgaeK7x+ff8m89bAZqHOx96mjfv+Tz/1LlcgffuapfNBQbT5/tzWr4/dayG9ELoBAEBcuP3hn5PjvX3jjfb6u+9Kn30m9erlfx3z46aGYKE7nGbHzimrfK9Lhubla9ea0Gj1vw7Gt++zJN10kzRypPTDD97hc/Roe93t4UI0mpf7hm7nz8x5rH37wA8L6tcP3HIh1Adk//2v+37rNb/5Jvj11mcsWJeV6vJ9gLB8eexeC+mF0A0AAOIilHD00EPSgAHux779VsrPlz76iFHLU8WGDWbpFrqDDaLnyzkSt2+T3mQI3V9+aZbOJuCBWM2369QxIfv996V//EN6/HHpoIOk/fe3z/UNubNnm2UozcudvyPBgq/z5+Dx+D8oue46s/z888BNuOvVC1yj7TtqfSCBarotVk12INb7jeXc2c7R9SXprLNi91pIL/yXBQAA4iJYE1eLNRWUm65dzUjIAwYQulPFhReapVvt7i23SB06hHafKVPsdd/PUTKEbudDBd95osvKTI10RoZpKr5ggdlfUmJC9mmneV/vXPcdnd0K7KE0L3d6443Ax5w1w7t3+4du6/iXX0oTJ7rfw2qGvmWLd4gPFsYD3SMQtxYvTlZ5Y/V52LXLf4q6ZBjcDamB/7IAAEBchBK6pdAGJwqlpg/R9d13Zrq3UDl/jmvW+B/fe+/Imuf6fj5iWbMZKmdT7uef9z7mbBZ95ZVV38sZpOvVk44/3t7evdv7sx9q6L7hhsDHnGX/88/AodtXo0b2uhWYmzaVDjzQ3p+bG1r5pKofpFV13CpvrD4P//tfbO6LmoHQDQAA4sI3dDv/OA92nhu3AYwI4rHVpYuZ7u3000MbfTuUptahOvFEs/zpJ//gnww13U6+4dDZtPurr6q+ftEie71OHemCC7yPP/FEZJ/1QE3MnQ8xduwILXR36SI98IB3OS3Omu1wQndVqhqMz/q+x+LzsH27dNll/vv794/+ayE9EboBAEBcWGG6Th1p1SppyRL386oa2fmAA+yRkd3uj9j64ANp3Liqz7OmuoqG0lIzXdX++0uXXup9LBlCtzO4+jY5dn4fQhnt2jktV2amdMgh3sevvjr85uWS9Mcf7q/14Yf29m23hRa6s7OlU0+1t31r5y3RDN2JrOn+v/+Tvv/e3v7lF9PlwXcKRCAQQjcAAIgL55zN++8feCAt3xrSI47w3l650n3qIkJ3/Hz9ddXzpIc6F3Uoysq8R/J2Sobm5c7psnxDarg1/v36eW/37Cm99JL7ueGEbrffmYMO8m76P3lyaKG7Th2pVSsTRNeu9T7m7JudLjXd//63vb7vvlLr1mZsCWZRQKgI3QAAIC6sP4adfUjd+IaU776Tzj3X/ZwuXex9ofQFR3RMn26CR7Dmtc7Qbc21HKnSUv+Roy2JqOn2eAL3rfZt+h1obutA3nhDmjTJe87vCy/0HnRu9erw7im5Ny/fts1/n1Uzb8137fZwzPod7tTJhG8nZ013oNYsofCt2U50n27Lr7/G9v5IT4RuAAAQF1ZNdFWhe++9/fe9+ab7ubfdZq9//XVk5ULkPvkk8DErdLdtK51wQvVeZ+1aE/TdxDt0ezzS0UdLxxxjB2xn0PMtT1XdJXzl5kpDh0oNG3rvt6Ylk6RRo8wynJrWrVu9twP1Cy8uNsucHLOsW9f/nGC/w877hjpHtxvfZvqh1nT7PhABkgGhGwAAxEWooXv8eDM10rXXVn1P5wjKVc3ji/iy+hBHY1ola75vN/FuXr5pk5kv+6uv7LEFnEH7oYdMGLYGRPMdzdzSvn14r+t8GLXPPmZZVej+4AN73RnaJfdA3LatHbqt3y23n1+w32FnS5XWrYOXz9d995ll587e85VLodd0S9H/TIQ67RkQCKEbAADExWOPmeXmzcHP23dfU6vpO2qzG9+5fZNhUC0Y111nlitXxvZ14j1nu7MbgxVc3UKeNRbBnDn+x448Upo5M/zX7tnTLPPzQzv/1FOlJk3cr3EL3U2b2s3arZput2AfrNbZWbN/662hldNy553me/ntt/7N2sOZUiza/w44f75VzScOuCF0AwCAuHj66fDODzQ/sFNenve2c4RhxN/MmdKNN5p+zD/+GPl9jj029HOrajkRbc6+6tu3m2nM7rwztGuPOMI0154xwzxcCtfhh5ul1e86lOblVp/yDz+U/vtfM1DbunXufc0XLrTXrdDdrp3/ecG+587Qfd55VZfPV0aG+Qq3hUSsaro9Hu/vVSj/LgG+CN0AACAphfLHrW9wCXfQKlSPb//73r2lRx4xwfKYY8y+Aw4I/77hBK6q+vpGmzN0b9pk5pufPz+0a7/5xjRJtwJtuKxaVqsMoYRuK6C/8YZ0yinStGnSDTdU/bti9eW2atedQg3d1RndO9DsBoHEqqbbd1YEQjciQegGAABJqXHjqs+xRli2bN8ek6IggC1bpKeecj/WvLlZXn99+Pc96KDQz4136HbOu33MMeEFvNq1/T+z4bD6FoczHdt++5lljx72vo0bvZuXT57sf50zMI8f730sWFPvcAeOC2T2bHvdbXBFX87PQTRDt28zfEI3IkHoBgAASalp06rP8a1Jo093/F15pfv+t94yS7fRr6vyf/8nDR5sjwOQLBYu9J9HO5iffrLXb7ih+q9v1XRb/a5DqUm+9FKzPPhge19+vl3TvddeUteuwe/h21zb+eDB1yWXmOVRR1VdtlDdeGPV5zgfBESzeblvi4Bwa+ABidANAADiwPlH8LffhnZNJH/c+jYFRXT4TjcVjrVrw78mL096+WXTXN3JbUR752fr8celf/wj/NcLVa9ewQOnL+cDiauuqv7rW4OhWSOjhxK6rab6kybZ+/bZx67BrVPHf3Ru39YDBQXe28GmArvpJmnqVNN/PFqcZQ8kXjXdhG5EgtANAABiztnkNJI+vm6soLBmjb2P0B0bvqNQn3GG9/b330uLF7tfe+654b2Wsxm077Raw4fbg4lZrNBdViZdc410++3Szz+H95qhCnfMgGnT7HVrFPHqCKX1h6958/z3lZba7yU7279svn3qu3eXPv/c3g42hVvt2mb6vkj7rbsJZYT6WNV0+4bu6nQPQM1F6AYAADHnnLs3WnPeWjWobdtKf/ubWU/l5uU33WSmSfN4El0Sf74jkb/zjvf27bfb83L7atUqtNeoW1eaONG7htS3VjE31z+AWX1/nQ92XnkltNeMp9zc6t/D9/sRSk23WwDds8eePzw729zX2RTerZ+8c0T5qqb9i7YXX6z6HGvUcym6/w74PmixpoIDwkHoBgAAMWcN/FSnTnQGvvJ4vAdXsu7pW9P966/S779X//VirbRUevhh6bXXpA8+SL7g7fyZ3Xyz//FFi6Tjj3e/NtR5jRs2lC6+2L82d8AAe71pU/9pqKx5s53haPTo0F4zXC1aRH5tLAZ8c84ZHohb7fiff9oD4FnzqDunBqtqGrZoDZYWqm7dQjvPeiATrZruXbu8BwIcPjy23ReQvgjdAAAg5qxRxUMNYBa3Jqpuoc8KCc4ars8+M7Wse+9tpnZKZs4HAwMHSq++mrCiuHIGRrdA+9tvga8NpWmwFPhBw8CB9nr9+mZAsvffN9NfOfkGwR9+kO6/P7oBsVmzqs/Zd18zjVgsbNnivV1YWPU1bt9/Z622kzUyt7OJvxtny5VYCWX2Al/W5zRaNd0PPCB99JFZ32cf6ZlnotNiATUPoRsAAMScNSDWtm3hXWfN9ez00EP++9xqup19iWfODO914803BN1zT2LKEYp4DyTlOwZAVpZ02mneAfiPP/ybAR98sHTnndItt0SvLFWNxH788dK6df7zx4fbrz0Q5wjkoXJrgr5ggb3urNVesEAaOVJ64YXg94xHTXckoTvaNd1Ll9rr4cwdD/gidAMAgEovvCDNmRP9+4ZSI+dm0iQzYvOwYaaG6aab3M+zgoMVul97zbtWMNnn1r3oIu/tX35JTDkCcT7MiGQKsOo49ljpueekuXO99ztr3ydNChwEX389emWp6qGRVcP62WexKUO3btKUKeFdU1W/b2dAPeQQMwK8NUp6IJEE4nCNGWOW55wT+jXRrul2itXgfKgZquixAQAAaoovvzR9aqXo9ikePz7ya5s2tUdKfuqpwH1NfZuXX3CB9/Hq1FJ9843pyxvqgGCR8K3pDneU7Fhzhu5QBu+KNmuu6UBmz/bu4+/kO9J6dTgHlDvnHOnNN01AtR4qudWwRvtzM2CAGTww1BDYvHnw4+HUCn/+uZkze8KE0K+J1MUXm2bu4cx2EO2a7mQbWwGpi5puAAAgKfT5s8N13XXRuU+wwZ0CDaRmCWXAKTdLl5o//Fu3juz6UJ18svd2ss0F3Llz7F8j3DDvLNPbb0tDhrifF4vgdOCBZh7xN96QvvvO3u/2OYv0sxdMqP3kJTPd21FHRed1jz1WWrhQ6tkzOvcLJiND6tgxvAdmsazpBqqD0A0AACT5z0ebSnybl/uKdOAn3ybNseJbM7fffoHPnT/fjKAczbmIq2LVlp59dvDzfAPSkiWxKY8kXX55aOdFc+5263M2Y4Z5r+ec490Ue8cOs7zmGntfpF0rggknVDZqJE2dGv0yJCPr+xKtnzk13YgWQjcAAJAUu2bDhxxir7dsGZvX8G1e3qmT9/FIQ3csaind+PYVDhbUunc382JHs69yVazva1VNlX2/X3l5sSmPZH7mVTU7l6L34MTjscOc78OFCy80y1GjzNI52N8HH0Tn9Z2sweEGDQrt/GQf0yBa/vzTLKM1EOHy5fZ6PJrUI30RugEAgCTvJqvRqOEpK5OWLfPed8UV1b+vG9/m5b5zc1vzhIcrXqH766/NcvJks9y2reqa7FgMeBeI9X11Dl7Wt69ZOgPdk096X1evXuivEclnLpSmx40ahX9fN87aZd+uDpMmSatX22MJZGeb89etk049NTqv73TVVaaZ9yuvhHZ+LOYIT2Zvvhmd+xQV2etVTaMGBEPoBgAAkrxruq+7Tlq0qHr3u/ZaU+P8/fdme8wYuyYw2nxruv/4w/t4Mtd0/+tfduBs0cLeX9VgavFsXm59X53h7d13pS++8P6cnHii93WxHuk8lL7vVu1ndTmbLPuG/Vq1/LsEZGb6Tx0WLRkZUpcu0anBTsTAeKni9NPt9WBjSgBVIXQDAABJ3n98P/aYdMQR4c+r7eRb6zl4cOz+cHXWdO/ebQdWa7qhaITuP/6ITdC9+WZ73TkPs3OOYIuzNtg5gFesWaHb+fOrX186+mjv6aPq1/e+LpyfdyThL5TQ7dvqIVLOz0K6zNl85plmdH64c3aHOeywxJUDqY/QDQAAJLmHnr32imzKL7da8tzc8O8TKivclZZ6Nwm1BrlasCCy+zqDVpMmVQ8kFsyPP5q+vsEGrNtrL3vdrc+2s7Z11arIyxIut+blFmfozsmx+8E2axbzYoUUfrdujc7DEudnOpVDt7Psb78tHXlk4sqS7NasMcuRI2kRgOohdAMAUA0lJdLHH0feZziZBAom4Uz5VVxsBgE74gj/Y7EM3Q0amOWYMdKjj5r1Ro3smtfffovsvr7Ny995J7L7SGa+6FtvNf1xLb7fc+cf9oce6n3stde8a3bbto28LOFya15uqVvX1JbOm2d+Dh06mAcf69bFvly+Nd39+vmfU1Hh/SAmUuedZ6+nch/p445LdAlSx8SJZhmPzzLSG6EbAIAIbN8u/e9/ZuCkk082YeOttxJdquoJ1n/Z46m6trCkxARrZ79kp1j2783JsdfHjTPLFi2kbt2qd99o9um2BpWbOdPe9/LL9nqHDmZ5xhlm6fsgxxqky+KcqirW3JqXO3Xr5j3QVE5O+P2NIxlI7ccfvbc/+sg0uz/sMGnKFPthzK+/hn9vy6xZ5mHI+vX2vlSs9dywwbT4sMZVsL43qJrvgJBAuAjdAABEoFEj6fDDTfNMy9lnS089Zf64TUXBAmZBgdS1a/D5bwOF7XhwG7AqN9du+lzVoGSBuH1PJk2S2reP/A9xZxgdOtRe/+ors7TKPH9+8PvEcyC1YM3LE8m3CX5mptS5s7R4sTRggD1v9mGHRf79ctZwp7L8fPM7fPzx5rO2enWiS5Q6GEQN1UXoBgAgTMHC6ZVXSgceGL+yRFOwvsZff236tAbrR7x1a9SLFDK3+aCzsuyA65xvNxxuP+tLLjGBZciQyO65fLn7fZs2NUurxYTVtDWcssWK1Z852EOX6oqk9njMGHvd2R/eTZcu4d9fCj5neqrq1Su2c6inA2fLi1Tuw4/kQOgGACBM27dX73iyCiXEJWvtmO+o2ZLp72v1+a2oMM2NwxXse1Kdgcyc/bp9WSOuS2Yu5sWL3cNuLAOwL2uE6+Li+L1mKE44wV6vqrn94sWRNWHv2DH8a5D6nL/7++yTuHIgPRC6AQAIUyjz/kbyx32ihRK6f/7Zff+rrwa/LtbT7QQK3YccYm+femr49w32PanO4FzPPhv4M+IcuO7II01zabf5zeNZ023p3Tv+rxmMc5yAxx+v+vxIuhk0ahT+NUgtc+eahzJOzs/KhRfGtzxIP4RuAADCFEpNdqR9iBMplBBn9ZH1dcUV7vtnzJAGDZLeey/iYoWkXj3/fXXquO8PR7iDgc2a5T6gnttAXs4HEf/4h73uFvL++U//ffGs6W7e3CzbtYvfa4bC+fPxHe1dkt5/33s73FkGPB7TtcJp4cLw7oHktnmz9Le/mYdbTs7uNunSrx+Jw7AAAACE4emnpdmzqz5v167YjtYdC8H6dFsChe5du9z39+4dn9rRQDXd1RXq4FuXXGKmzPrhB7M9dqx011328RUr/K/5/nt7/dpr7fWGDUN7zXjWdO/ebZbhPoSIJ7cHLKedZoK29fkI9DkNxHegtpdeirxvOJKT84FYRYUZjE+yH5zWqpV8Awgi9VDTDQBAiHbuNDW6L70U2rmpZOZM6cknvfc984x0zDHe+wK9L6smNFHcQrc1zVV1WGGzKpMm2YFbku6+2/v46NGBr61b1/sBTaihO5413db3IZkfJAVq1VCvnj2lXLi/l84R5G+6SRo8OLKyIXk5u3k4/82wHkJG4+EdQOgGACBEoQYwKfwatUQ76ST/fU2amKmxnAKFln79zDJRg065zTn8yy9m+eKLZhlJLa0zSPtq1swsA30unH/Mz5sX+D6+o25XFWytBxzxqumuqLADSLKF7k6dzNR9J54YvDbSCuTh/l46W39cc01qzs+N4JytWZwPsqxBA5O5dQdSB6EbAIAQhfMHe6rVdLs1La9b179/8RNPBL9+2DB73x13RKdsoXCr6baah/bta5YlJeHVfpeVmQGWAtmyxdxzyRL3486ppg46yCzd+h27TXW1bp37PXNy7D7j8arpdn42ki10164tffutNHVq8POsz0c4v5dlZdKECfY24Ss9OR+OrV1rr1vNzqsaFR8IBaEbAIAQhRO6U6mmO1Cw3LbNfX7r//3Pf5/1fp1NfKs7iFk4srPNwGSNG9v7rJqqJk3M0uMJb8Txzz8PftzjMcF77Fj347//bq9bLQacfbctbqF7333d79mokd3n9Mcfg5cvWpw1+ckWuiXz/aiqBtpqleA2oF0gubne24Sv9OQM3c88Y69b/6btvXd8y4P0ROgGACBE6VrTHWg05q1bpU8/9d+/YYP39oIF0hdfmHVnKDviiOiULxQZGWYuaWfZrJ9BVpbd9Dicn+HDD1d9zrffSgUF7sf++MNe/+9/zdIZxC1uoTuQhg2lTZvs7Xg83LFCd0aGqVlORS1amOXWraFf4/wdrqomHanL2frF+VAuFcYxQOogdAMAEKKrrw793NWrY1eOaAtUI73//u614M6gV1oqdetmanwl8wfqjBnSI49IJ58c/bIGk51tXr9TJ7N9zjn2MesP53CmcjvxxKrPOf10aeVK92PO0G2ZPNl/X7ihe8AAe3vbttCvjZT1PatbN3X7NFuD04Uy3Z+bQA9WkPqc/545f58I3YgmQjcAACGyanOd6tVzD63Dh8e+PNESaHTek06Sunc389gWFdnNLP/80z7HN1jWq2emCLv++sQFtKlTpcce857b2uqPG07oDmW6sIqKwKPZu4XuQw7x32c1fw9Fo0bm52Vd4/Ya0fbNN2aZyuEj3NDtO8ZBKr93BBfoM0HoRjQRugEAiNDWrdKaNfZ0RKnK6vvsy+o7vPfe5j3+7W9m2xoVXPLv350Mf6Dus49pleCceiuS0B3OaPVu3ALxDTf47wun77v1nqza8VjXdO/cabcYSNVabin80H3zzd7bqdqsvqZ5/3173dlXO5gdO+x15+wLhG5EE6EbAIAI7bWXlJcX+h93ycotiFx3nf++jz4yS+cI5kOGeJ8Tz8HTwmGF7nCCtFXD27VreK9lTenlDN1W6HObg9v5EKMq1vXWgHGxrun+7Td7PZUGB/Rlfd+crTSCeewxe33FitR+4FCTWAPmSYFnAPDlDN1ffWWvE7oRTYRuAABqON9B315+Wfr3v/3P693bLOvXN4MPnXee/6BqyfoHqlXOZctCv+aDD8zSbaC5K690v+ajj+xp0x58UPr6a7NuNVfOyvK/xrdW1dK5s/8+6/trlemUU8zPK1as6dak1A7d1jzukQxw2LZtVIuCGHIOihZs3nYn50PHmTPtdUI3oimhoXvcuHHq1q2bGjVqpObNm2vgwIFasWKF1zm7d+/WyJEj1bRpUzVs2FCDBg3Sxo0bvc5Zu3atBgwYoPr166t58+a65ZZbVBavySsBADVeoJruVKkB9w0i/fq5n9etm1muXm0GS3vjDf9zkvUPVKtZuXMe8WCc03Gdeab/cbcpvR59VOrf3+5vvXu3dOyxZr201CyzsqQpU7yvO+AA9zLMnCktXuy9z22e8Ysucr8+Gn7+OXb3jqdw5um2flYWtwclSE7O349QuwQ4a7otu3dLVtxI1n/TkFoSGrpnzZqlkSNHat68eZo+fbpKS0vVt29f7XB8+m+44QZ9+OGHmjx5smbNmqX169frTMf/fuXl5RowYIBKSko0Z84cvfDCC5o0aZLGjBmTiLcEAEhjbk2DpcDhOpSBuJKB9d/u6NGm+W2geWmXLrXX4zFqdqyEUmNr1VBL3oOfvfOOediw//7+11ifA+do5Hv2mCBgHcvK8h59XDKDo7lp3NjMPX7uufa+QM3jfQf+ioWjjor9a8RKOKH7lVe8t2lanjrCrXNbtcr8u+erXj3pP/8x64RuRENCQ/cnn3yiiy++WJ06ddLhhx+uSZMmae3atVr4V5upoqIiPffcc3r44YfVu3dvde3aVRMnTtScOXM0b948SdK0adO0bNkyvfzyy+rcubP69++ve++9VxMmTFBJPP4HAgDUGM4ar0A1pnPm2Oup0ujKCiKNGgV+sCB5//EZqB9yfn70yhVNmY6/ePbfv+q+3c6ftbPG7KSTzMBibv1F27c3S6sps8VZc+o7Unwo06q9+KL/vf7+d+9znn666vuEa/Zse71VK7u5fSqyQrc1tZ2bX381TY2DnYPk1rOnvR7KQ0/fMSkk71YuEqEb0ZFUfbqL/pqRvslf7bIWLlyo0tJS9enTp/KcDh06qHXr1pr718Shc+fO1aGHHqq8vLzKc/r166fi4mItdT6Sd9izZ4+Ki4u9vgAACKa83B606tNPpWeesY+NGGGWvXtLhx9u70+10F3VIGjWYGSS9x+mAwaY7fnzzcByyejhh+31DRvMe/V4THh++WX/JsXOP9idgd2q9XSbm9sK0L5/pDvvHUlTZWdQt8riOwr6tddGvzuDs7b/kUfCm0882VitG6zB8Xx98415sNCoUep0C4E/5wOvYKHb+rf5hx/8j73zjvc2oRvRkDShu6KiQtdff7169eqlQ/5qx1VYWKg6deqosTVE51/y8vJUWFhYeU6ez//w1rZ1jq9x48YpNze38qtVq1ZRfjcAgHTz7LP2ert23kHsrrukTz6R3nvPu1Y0VUK31bw8WC238zzJ/n40bSpNmmT6JR95ZEyKFxVufzi//bZ00EGmT/STT3ofc/7s3EK3b/PyDh3sY5k+f11VN3Q7Wfd2e0AS6sjcoXKG/WQdlT5Ua9cGPlZSIvXoYW87W0FcfnnsyoTYsD63gR6eLF1qHiB16OA++v+oUd7bhG5EQ9KE7pEjR+r777/X66+/HvPXGjVqlIqKiiq/1oU6pwAAoMaypsuS/EfFzcoyg481apSaodsavde3WbSvq67y3zd6dOA+4MnE7Q/nL76wa0CdoxZL3g8YnAOdWaF3+HDv84N975yhO9QRlX2ddZZZ3nSTvc+31jbUOahD5VbDnqqc3UGcP4/XX/duwSF5b7dpE9tyIfqsh1/OObudbr7Z/K74jN0cEKEb0ZAU/4ReffXVmjJlimbOnKl9HcOB5ufnq6SkRNt8RmvZuHGj8v/qNJafn+83mrm1nR+gY1l2drZycnK8vgAACMb5h3qwAJKZaf/Rlyqh2wqYVYXu44/33xdoELBk4/aHs7NBXMOGpi+vVTtmfU8OPlhq0cI+z/rZ+n6vnNu+A29ZNadZWf7HQm3K/MYb0qZN3n1Wu3Xzfl++TeSry/kAKdVDd9Om9rpzMLXzz/c/1/lnoXMQPaQGa6aCq692P+42A0AwhG5EQ0L/CfV4PLr66qv17rvv6rPPPlO7du28jnft2lVZWVmaMWNG5b4VK1Zo7dq1KigokCQVFBRoyZIl2rRpU+U506dPV05Ojjp27BifNwIASHvO57tV9W21wkqqhe6qmpdL/jV/qRy6J0+21999V2rWTLr7brNtfU+OOcb7Gis0+zYTb93a/xyLda/qNC3PzDTl8+WsjY526P72W3u9V6/o3jvenLXXVigLxDmQ2imnxKY8iI/Vq/33hdtnn9CNaEho6B45cqRefvllvfrqq2rUqJEKCwtVWFioXX+19crNzdWwYcN04403aubMmVq4cKEuueQSFRQUqOdfj3r79u2rjh076qKLLtLixYs1depUjR49WiNHjlS2b3shAAAidNhh9npV4TTVQneozcsl/1HLUyV0VzVnrxWMfUN3gwbef6RbNb6+wdrZfPlvf/M+tnWrWcZivmfnnzpVjcgergkTzLJevdA+G8ksI8P+/lc1uc3vv5vluecyXViqa9/eu2b7hRfMQJhuAnWTIXQjGhIaup988kkVFRXpuOOOU4sWLSq/3njjjcpzHnnkEZ1yyikaNGiQjjnmGOXn5+sdx7CCtWrV0pQpU1SrVi0VFBTowgsv1JAhQ3TPPfck4i0BANKU1fvpgguqPjeZQvf335uBwlatCnxOqM3LJf+QnSqzc4ZbCxzoexIohB17rL3epIkdtCXp6KPNMtah+9BDQ5uHOhTO/uGhzGueCqzvVVWfWaumm7qb9PDvf9vrF1/sfk6vXtJzz7kfI3QjGqp47htbnhDad9StW1cTJkzQBOtxq4s2bdroI+cINwAARJn1h3oo81Bbo0i/8oo0ZkzsyhSKE04wfYEXLpSWLfM/XlJij+AbSvPy5s29R8k+8cTolDPWwn04EM6DCMk/jLt1QQhl3uBwdehg5pe2fPmlGdQvmF27zJRjZ5wR+Ny/ZnFNK1ZTfKt5eaAZY19+2ft8pLabbzaDQAYbgf+FFwI/mKS1A6IhxYfFAAAgPqya0nBqK8eOjU1ZwmENebJ8ufvxOXPs9VCmhXIOqDV3rlS/fuRli6dwR6EON3SHwln7HS2+U50Fau5fWmpq4y+9VPrnP6Wnn5ZOOinwfZ39nj//vNrFTApWiLYewPhO++aLmu70sX178PC8//6Bf97OQfiASBG6AQAIgfWHejrUfnk8JnjNmuXddDKUPy6df7g6R9JOdj16SA8+GPr5mzebZbNm4Q+8ZIlHI7z27aWWLe3t8ePdz1u+3EyRNnGi9N13Vd/XaqZeq5Z30/lUZoUqa6oo54BpbtLhdx3Gxx9XfY7vuA/vvSe9+KJ0+OExKRJqGEI3AABBlJebsGL1ckqHP8Tfflu65RbpuOPscNWpU2jNKFO5qWWgKYTcWNOJ5eVF/nr9+1d9TqSB3snZbcAxLI4X52BSzu4BgVj9uPfZJ/JyJRur9cK554bW6oCa7vQRbCDFWbPM0veh4+mnm/EwgGggdAMAEMR553nX9EUyGNaePdL06ckzINUPP9jr1e27nErCCVFWs/zmzaP3+rm50btXuPd1DiQXaPRmJ+thTChdDlKFs2bbbSopX+nwgA1GoH+33nnHnhawQwd7P7MOI9oI3QCQJHbutGvXwvXzz7EZpAnSW295b4fyh/j//Z9Zdu1qlrfdJvXt6z2tVLxlZUnffGNq7J0PDrZtM8tU6ZtdHZkh/tXjHFyuSZPA51k/52BOO81ed/5RHw/btklvvmn+bQk0kFygmnZrkLF0/VyE0sKAmu704Tad3ogRpjbb4gzmzv1ANBC6ASBJ7LOP1KKF90jEoZg4UWrXzgyQhNgLpabbmtPbCiyPPmqWr70WmzKFolYt06/56qulDz+09w8ZYpah1nQ7+w+nouXLTdN6S+PG/uf06uV9PNCUQXffbWqNN24M/HqOWU5dm2oHC/WRsh7AnXWWaUp93XXeA6M5BWp9YT0sCKX/d7RUpyl/uJxToknSkUf6n0NNd2oaMMB/n1vofuqpwA/iQn1AB4SKjxQAJAmrxtHqXxaqu+4yyxdeiGZpEEgof4hbwTzcuaGj7euv7XXnH5HO5uWWUEP3s8+a5vZTplSvbInSoYOZKsvi1jR7wQJ7vW5dE8guuEC6807v8zIyzJRswZqg16pl+tAff7z3IGdvvin17i3961+RvQ9fU6fa67/8YpYzZpjls88GrukOpX93rH36qflM+bYqiSXnlGi33SbNn+//maamOzV98IH/PrfQHayrDKEb0ZbQeboBAEg1qRS6naOLW310JffazUC1ub7atUv9KaScYapZMzukBpKRYeZcj9SZZ5ovp7PPNl/R0revqUn/7Tfp99/Nz8kpUOjOz5deekm68MLolSVcJ5xgvmItM9NuBeAM3VY3Ad8aUkJ3anILzL7/5gWbLk8yD8uAaOI5DgAAYQilebl1jlvtSjJwa2qc6AcE8eQMU77NjFPZ3nub5e+/+x8LFLol6corY1OeZGa1LJK8R7a+7TZ7nebl6WPpUu/t//43+PkFBbErC2omQjcAAGEI5Q9x64/4pUulU0/1PpYMA945p4+ypOuAWW6cP8N0GqXYmvLIbf7p558PfF2LFrEpT7Jx/u45a7qdD9KcY2NQ0526hgwxA1nutZfZfvVV7+OBmo+vWGHGYejbN7blQ81D6AYAIIB58/z3hVPTLfn3E03WmtVzz010CRIjHs2a48UK3aNH+x/75JPA10VjrvBU8J//2OvWWBiZmd4BzDm2ATXdqeuFF8zYDNYsBKE68EDvMR+AaCF0AwAQwKJF/vtC+UM82OBUoUwzFW833CCdeGKiSxE/zlGyr7giceWINmtk+Z9/lr76Kvi5Z51lr1tzklucn99EjrgfbZddJrVu7b2vts/oRg0b2us15WFETRPKPPVAtBG6AQAIwGqa6BRK6A7Wl9s5gnWyOP74RJcgvnJypB9/lNauTa9Rip2Dp33zTfBzX3rJnjquuNi7n7+zyf3BB0evfMnAd1oy35YrjRrZ68k6JgMid/fd6dW6Bakjjf6rAQAgutz+6A6lebnbPLGJsN9+VZ/Tpo3Up0/sy5JsDjhAatXKrAebOiiVOAPluHHBz61bVzr5ZLumd/Nm+9ivv9rroU4llyp8R+n3rel2PoQ55JDYlwex5ftv8T77JKYcAKEbAIAA3Ppfh1LTnSx9Qd3moHY68UTpp5+kevXiU55klSw/r+rq1s1edxuh3nLttWaZmWmPeN6qlTRhgv+5++8fvfIlA9/PuttDtDlzzJzhnTvHpUiIIWfLBYnB8ZA4hG4AAAKw+rb26GHvC6Wm242zRi1e03NVNVL69denV/PqSN1yi/t+3z/Yk53zIUugcQV++03697/t7cJCe/3qq/3PT5dWABbf+ZfdRnovKJAGDYpPeRBbvj/HSP/9BqqL/2oBIMUx2E/sWDXdTZrY+yKtFXXWmu/cGXmZwhEsdB97rGleDDO43VtvefeJlqQLLkhMeSLVuHHV57RsGXqQTqdB1CyErprFN3SnS6sWpB5CNwAADiNHmrm1Kyrs2kJrKiYp8j/a69Sxa5XdQveuXdF/gGKF7ieekG680fsPUN8av5qsTh3zvfEdOO/hhxNTnkj59k/2dcopwY936WI+g9bn9Nhjo1OuZPLQQ4kuAeIpI8N7MEAeuiBRqvjnGQCQ7NKt+WcilZWZgCpJS5a413RH2v85I0OqX9/c0zd0b95spjI64QTTlD0nR7ruushex8kK3R07Slde6f1ZKSio/v3TjbNlwFNPmZ9XqttnH9OkXDLvydewYdJzz5n1b781vwPW9yEd+/ofeGCiS4B4c36O0+F3GqmJmm4ASHE0L4+e5cvt9cxM6fnnzbqzb2+oA/EcdJC9vmyZWVojQfuG7vPOMyOl//e/0pgxpq/17beHVXRX5eVm6dZv+/rrq3//dHb55YkuQWT+8Q/v7XvukebPl9ascR+5+YknpAcftLeLi+1135G+gVTkrN0mdCNRCN0AAPzl99/tdWf4WL/eXg91cK1586RFi8xDEat5o/UHn2/o/uwz/+v/8Q9p69bQXisQq8bSCt2DB9vHcnKqd+90dPfdZjlsWGLLUR2+Nbm1aklHHim1bet+fp060hVX2NuLF9vrjPSMdOBswZJu884jddC8HABSHM3Lo8c52NmHH9rrLVtK77xjwmvDhqHdq3Fj/4Gt3EL3nDmB7/Hyy6ZpeKTzaFt/bFr9t084QXrlFbPOgEL+TjvNPGDJz090SaInlL77ztq/DRvMskMH/m1BenD+DqTajARIH4RuAEhxNC+Pjj//lB54wN52NtO96Sb/QbYiYYWbHTvsfb16BT7f6te9ebM9n3I4fGu6nfM4w12LFokuQfX4to6oanA1yTuUXHihWf7wQ/TKlGy6dDH911EzzJtnrzNFIhKFjx4AADIDmc2e7X4sGoFbkhYsMMtXXw3vum3bIns939B9yCHS9OnSr79Gdj8kvxNO8N4mZPh7661ElwBATcM/xQCQ4mgCWn2zZwcOtkcfHb3XsVolhDv/caTT3PiGbsk0VXcbUAvpoU0b7/nXIx0XoEOH6JQnGbVrJ735ppSbK338caJLg1h75plElwAgdANAyqN5efXs2CEddVTg4y++GL+yBDJtWmTXBRu9HOnrsMPs9ZKSyO7hNrhfOjn7bPNA4qSTEl0SxNqwYdK990qzZiW6JKjJ+G8YAFCj/fln8OOBRn2OpxEjIrvOraYb6e/mm+31Vq1Cu+bll723U71veyj4vagZMjOl0aOlY45JdElQk/HPDQCkOJqXV8+uXYGPde8e3dcaOdIs9903uvcNxHf0ctQMTZtKL7wgXXutdPrpoV0zeLA94NQTT8SubABQEzF6OQCgRnOOJO5rv/2i+1onnSRNmBC/WkRqumuuIUPMVzh69KC7CgDEAv8NAwBqNGsAtdat/Y9Fe05Xa45v53zgoYg0NBO6AQBIPP4bBoAUR81U9fzxh1k2b+5/zJpXO1oaNDDLYLXrbk49NbLXYyA1AAASj/+GAQA1mhW699pLevddM+COpW7d6L6WVdO9dq10ySWBR5a+6CLv7YMOiuz1qOkGACDx+G8YAFIcA6lVz9ChZrlmjTRwoHfoLi2N7mu1aWOvT5okPf+8+3k9enhv+5bD47FrsQOZONFuxs5AagAAJA6hGwBSHM3LI7Nxo3Tppfb2qlVmmZ1t7ysuju5r+jZX37DB/TzfEdXLyry3TztN6tBB2r3b/fodO7zfGzXdAAAkDv8NAwBqpCuuMLXBltmz/c+JdSuCQLXVwUK3xyNNmWIeEnz1lfv1vn3GCd0AACQO/w0DQIqjeXlkFi601zMypJ49/c+JtC91qHbudN/vG7qffNKu1XbWbgf62fvWjBO6AQBIHP4bBoAUR/PyyDj7STdo4B1MP/tMuukm6eqrY1sGa2A1X7t2STk53vtuv90s//wz+D09HumUU7z3EboBAEgc/hsGAKS0336Tfv45/Oucods3/B5/vPTPf3r3744W53zgztHLp0yRDjzQrA8a5N90/NFHTQ32AQfY+9z6dD/2mPTdd9776tSpXpkBAEDkCN0AkOJqcvPyigpp332ldu2k114L/bp166Tff7e3A9U4x4Lz57Vtm1lmZkoDBpgm70uXSkcdJR16qAnaTkuWeA/u5tsMXZKuu85/nzU/OAAAiD9CNwCkuJrcvHzLFnv9ggtCv+7ww723rfms4+HBB+315cu9X79hQ6ljR/t4Vpb3tb411oH6hPuiphsAgMQhdAMAUlZhYWTX/fGH9/ZPP1W/LKE65xzpkkvM+hdfBD+3dm3vbd/5ut1qups29d9Xk1tDAACQaIRuAEhxNTlQOUN3376hXZMMLQOsvttV8Q3dL7zgve0Wun1r/BctCrlYAAAgBgjdAJBkwg2FyRAiE2XDBnvdtxY4ELfBx2I9NZivevVCO8+3efm//+297da83Pl9uPde/6b0AAAgvgjdAICU5azpnjlTeuop74HG3PgG1aws6eWXo1+2YLZvD+0835puX++/b0Yqv/9+ac8es88aEX3kSGn06MjLCAAAoqOK/84BAPFWk5uLh+u337y3r7xSmjvXvxm2kzN0//67VLeuVL9+bMoXSKdOoZ3nW9Pt65tvpC5dzHrt2tKtt9qhu127yMsHAACih5puAEDKmjbNf9+LL/oPlOZkhe7GjaUmTeIfuCVp4MDQzquqpttp4UKztGq8YzHHOAAACB+hGwCQktatk1ascD/WpIlUVuZ+bMcOs0xE2A5XOKE786//0T/80CyZJgwAgORA6AaAJFOTB0YLx0svBT+elSWtWeO//88/zbJRo+iXKdoCNS9364PeoYO0das9UFwm/8MDAJAU+C8ZAJCSWrSo+pzLLvPfV1Rklrm50S1PdRx5pPv+QDXd55/vv6+0VJo0qeprAQBAfBG6ASDJMJBaaKw5qps1C3yO2/fSGt08Jyf6ZYrU55+77w9U052ZKTVv7r1vxw7pppvs7X79olI0AABQTTwHBwCkJKtv9kknSYcdJu23nzRokPs5Fo/HjPgtJU9Nd3a21KCB+zFrJHI3mzZ5b/tOQxZKSwAAABB7hG4AQEp67z2z3LlTuvlm977w8+Z5b993n/TYY2Y9mUJ3IFb/7FCEOvc3AACIr4Q2L//iiy906qmnqmXLlsrIyNB71l9Qf/F4PBozZoxatGihevXqqU+fPlq5cqXXOVu3btXgwYOVk5Ojxo0ba9iwYdrOXx4AUhgDqVXtww+lOXPM+oIFZpmR4T5i9y+/2OtjxtjryTK6d7ByBKvp9hVsmjQAAJA4CQ3dO3bs0OGHH64JEya4Hn/wwQc1fvx4PfXUU/r666/VoEED9evXT7sdj/4HDx6spUuXavr06ZoyZYq++OILjRgxIl5vAQCQAJdfbq87/wtZtUr67jvplVfsfW4jmEvS8uWxKVu4AvXblqR99gl87LDDvLenTo1OeQAAQHQlNHT3799f9913n8444wy/Yx6PR//+9781evRonX766TrssMP04osvav369ZU14suXL9cnn3yiZ599Vj169NBRRx2lxx57TK+//rrWr18f53cDANHBQGpV27DBXh8wwF5v1Urq3Nl8Wazm5L4OPzwWJQtfsNDdvbv01FPSp59KF15o9ll9ta+7ziwPPji25QMAANWTtKOXr1mzRoWFherTp0/lvtzcXPXo0UNz586VJM2dO1eNGzfWkY65Vvr06aPMzEx9/fXXcS8zACD2Skvt9b/+O/DTsaO9/s477uckOqxaDwtuuCH4eZdfLp1wgvT449Lf/y59+aXZf8klplZ//vzYlhMAAFRP0g6kVlhYKEnKy8vz2p+Xl1d5rLCwUM195kypXbu2mjRpUnmOmz179mjPnj2V28XW/DEAgKRnzbMtSV27hnaNx+M9KFnLlu5zeMfT5MnS4sWmNjsUubnSHXfY2xkZdo3+3/5m93GX7BHaAQBA4iVtTXcsjRs3Trm5uZVfrVq1SnSRAKASA6kFdu653vNyB2uafddd9vq0ad59uFeulGon+LFzvXpSz55mzu3qOuEE7+0OHap/TwAAEB1JG7rz8/MlSRs3bvTav3Hjxspj+fn52uQzUWlZWZm2bt1aeY6bUaNGqaioqPJr3bp1US49ACDaioqkN98M/fzbb7fXTzrJrhXPy5Pq149u2RLN+SBCCjzvNwAAiL+kDd3t2rVTfn6+ZsyYUbmvuLhYX3/9tQoKCiRJBQUF2rZtmxYuXFh5zmeffaaKigr16NEj4L2zs7OVk5Pj9QUAySLdB1KbN880737lFem556S77w7tutWrvbdPOSX4+dnZ7uHa51luWvAN3dGoPQcAANGR0MZ127dv16pVqyq316xZo0WLFqlJkyZq3bq1rr/+et1333064IAD1K5dO/3f//2fWrZsqYEDB0qSDj74YJ100kkaPny4nnrqKZWWlurqq6/Weeedp5YtWyboXQEAAtm2TfrruWnlaNySmWP63/8OfF15uX//7Q8/rPr1du7035cs83NHU7o/qAEAIJUlNHQvWLBAxx9/fOX2jTfeKEkaOnSoJk2apFtvvVU7duzQiBEjtG3bNh111FH65JNPVLdu3cprXnnlFV199dU64YQTlJmZqUGDBmn8+PFxfy8AUNOUl5tlrVqhX7PXXu77H300eOhetMh7+/ffQ39NX8ccE/m1yapnT3v9r1k1AQBAkkho6D7uuOPkCTJiUEZGhu655x7dc889Ac9p0qSJXn311VgUDwASIhUGUrNqnisqzLRVzuC9e7cZ4Cwjw7uZ8x9/RP56//mPvX711VKTJpHf68wzI782WTkbd4XzEAQAAMQevb4AAGF7800z3dWSJdLTT5t9M2ZI999vRuWuXduEv4svtq9xjh4ejsJC+zUk6eGHQ7/WreHT8OGRlSOZOUdxb98+ceUAAAD+CN0AkGSSvX+uxyNdcIG9PXKk6Tvdp490553e577wgjR1qln3HQgtVP/6l/d2sGnCfF1zjf++RE8VFitTpkiTJjFdGAAAySZN//QAAMTKY4/573MOiubrpJOkpUulv4bt0IUXSi+/HPrrffCBve6cezsS4Uw5lmoGDEh0CQAAgBtqugEgCaRCP27L/Pn++959N/g1nTpJW7aY9Xnz3M8vLPTf98gj0o8/mvUHH5TuuCO8skrSV19JV1xhRk4/++zwrwcAAKgOaroBIMkkewD/7rvqXf/cc+4jiA8caAK5xeOxa8clacSI8JqWW3r1Ml8AAACJQE03ACSBZA/alvJyadUqs750qf/xxo2lNm3M+tChUl6e9/GsLDtw/+9/0v/9n33s66+9z/WtUc/JibjYAAAACUPoBoAkk8wDqf3yi7Rnj5SdLR10kDR5sn0sL89MC7ZihfTxx9ITT5im3U7vvGOvH3qodPfdUv369r5ly+x1Zwh/6aXk/r4AAAAEQvNyAECVtm41TbR37DDbBx5opgRzNtu2QnF2thk8TTLTV3k80saN0vffS717e983I8PUaHfqZLaPOsq8liRde619XrCB2gAAAJIZoRsAkkAyNy8vLpaaNvXeZ01L5Wzy/cQTge+Rl+ff1Nyy7772en6+We7eHX45AQAAkhGhGwCSTLIF8Jtu8t/XrZtZNmggXXWVtGuXGQgtEs7gfsYZZrl2rb3vo48iuy8AAEAyIHQDQBJItqDt9L//+e9zjj4+YUL1X2P4cOk//5Huv980YT/rLLN///2l/v2rf38AAIBEYSA1AEgy8RgwrLxcKi0N7Vxn82/LIYdEtzzOsjz6qDRypFkP1CQdAAAgVRC6AaCG2b1batjQNOsuLg5+bmmptGSJWX/vPWnLFmnDBtOsPJrOPNN726pd79Iluq8DAAAQb4RuAEgC8Wxe3qqVCd67d0uXXhr4vFWrpDp1pJUrzfa++5oB1azBzqLp5JPd9++9d/RfCwAAIJ4I3QCQZGIZwIuLTW21ZcGCwOcecID3dps2sSmTZKYfKyvz35+dHbvXBAAAiAdCNwAkgXjVdM+b573t2697zhwpK8u/X/nf/hb7WudataSnnvLeF6wmHgAAIBUQugEgDqZNMzXHM2dWfW6sBlLzeKR+/bz3rV8vvf66vd2rl3+N86xZ0uzZsSmTr8svN6/fvbt05JE0LwcAAKmP0A0AcXDyyaaPdO/eUmGh//E9e+z1Cy90b2odiRkzpA4dTHDOdPyLX6+evX7++dKPP7qXS5IOPzw6ZQlVrVqmRv7rr73LDAAAkIr4cwYA4qC83F5v0UK66ipp8mQzN3VZmdS+vff5X34Zndc991xpxQrpuOO89y9c6L190EH+I4hL0sCBUm5udMoSjowMAjcAAEgP/EkDADHm1l/7ySelc86RRowwfag3bfI+/uOP1X/d8nLp99/99z/zjHTwwSbwO82da6+XlJhyv/tu9csBAABQkxG6ASDG1q0L/5rFi6v3mu+/L9Wu7b9/332l4cPN+mWXmTm3fX31lXkQAAAAgOojdANAjL32WmjnffONdMUVZn3Vquq95sCB7vsvv9x7Oz9feughe/uqq8xgagAAAIgOQjcAxFhJSWjndesmHX+8WXcOrBauX34JfMytBvvyy6W6dc36uHGRvy4AAAD8EboBIMZ+/tksL7jA3te9u/c5xxxjltnZZhlqUHezfr29Pn68dNZZ9rZbDXijRtKCBWbAtZycyF8XAAAA/gjdABBjzz9vlj17SsuWSVOnmumwKirscw44wCzr1DHLefOkxx6L7PX+/NMs8/Kka64xo6Rv2yb98YcZpdxNp07SgQdG9noAAAAIjNANADG0c6e9vs8+ZtTwvn3NdkaGNH26aVb+r3+ZfVZNtyRde234r7d+vdSvn1nv3Nnen5srNW4c/v0AAABQPYRuAIiSxx4zo4Y7pwh79FF7/Ywz/K/p08cMoGbNhW3VdIeqqEjavdve3mcfe/3ww8O7FwAAAKKP0A0AUTBihKmZHjhQysyU3nzTNPO+4w5zvFUrU7NdFWdNtyTdc0/gc5cvN7XXmze7H7/++hAKDgAAgJgidANAFPznP97b557rPSjZE09Edt+xY6UtW0xt9vDhZmC0P/6QFi2SOnYMfN3y5VKLFpG9JgAAAKKndqILAACpaPVq6ZRTpA0bzLIqvXuHdl+3Ucsff9xMIfbss2b7uuuC32PSJKlDh9BeDwAAALFFTTcAhOH5500z8fbtpR9+MH2qX3nFPr57t3Tffd7XLFki1a8f2v333tt/3913Sw88EPgaa7oxy6mnhvZaAAAAiD1CNwCEaOxYadiwwMeHDzd9su+804Tz66+XysulQw4J/TUOOkh6+mnpww+lo46q+vydO6VZs6S33zbbLVtKTZqE/noAAACIrQyPxznObs1UXFys3NxcFRUVKcfZCRMA/vLBB9Lppwc/Z+VKUwMeLTt3Sg0aeO979lnpssvM+sSJ0sUX28d275bq1o3e6wMAACCwUHMkNd0AUIVVq/wD99lnm37Ww4fb+6IZuCXTJN26/8yZUkWFqWnfsEH66itp6FDv8wncAAAAyYeablHTDcBdebn08MPSa69J331n7589W/rb38y6xyO98IJ07LFSu3aJKScAAADiL9QcyejlqBaPRxo3zvRhbdfONK+tVSvRpQKqr6JCqu3yL+S2bVJurr2dkeHdxBsAAABwonk5Atq508z1G0yfPiZwS9KaNSakZGSYprBAKnvhBf99Gzd6B24AAACgKoTuFLN2rXTaaWa0YsuKFaaG+dlnTeDNyDC1dJHYvl36+WdTg92rl9Sxo7nf889LP/5o1rOypM8+M+uffeZ+n969pVdfjawMQDyUl0u33SZ98on78YkTvbdnz5aaN499uQAAAJBe6NOt1OrTnZFhr3/2mfT++9Kjj/qf99VXJjSHq0sX03d16lSpX7/Qr/vtN2mfffz3z5pl5hD2eKRPP5WOPjr8wZ7OO0964w2zvmNH6PMdA24eeki69VbvfatXS/vtZz6nFRXm4dZ++5ljCxZIXbvGv5wAAABIboxenoZ8H4/07u0euCUzv2/TpiY433uv/7VuvvzSHiwqnMA9apSZG3jnTlOeKVPsY9bgUpmZUt++0siRod1z/Xrp3HPNQwYrcEtm+qQ33wy9bLFUWip1727KOH9+ZPfgkVfsVVSYQc+sViC+gVuS9t/fHMvMNF0krMB9wgkEbgAAAFQPNd1KnZruhx+Wbrop8ut//FE64IDAx5216ME8+6yZDzg31wTjrCz/c849N3A4Hj1auvtuE3CcKirMvvJy9wGsnPbskerUCa280fLJJ1L//qZJcu/e0hdfSH//u328tNS/3CtXSk89ZR4+nHaa97HLLjNzP8+ZI/3yi2mdMGpU/N+XZL73Dz9syn/ddaF/FqKhvNx0a4hFX2mPR8rLkzZvjuz6Z581U3QBAAAAvkLNkYRupUboLitzD7cW66dYUmKacH/zTfDzfN15p3T//f77H3rINDX/9FOzff/9JhhWZcMGE1jGjHE/ftZZ0uTJpjz/+pe5Z1mZCaJ79kgvveR9/pYtJsRfdZW9r6IivuGwqtfKzZV69LBD+eLFUufO9vHdu6VFi6QLL5See84EcTe7d0vZ2dEqdXAVFWYwPOfAdx98IJ16qln3eKSFC6VDDon+HNAejzRwoHk9Sfr2W+mII0wA/+036cAD7e/5unXmgdMNN5jtLl3s71F5ufnsOL9nHo+5xzvvmIcITh06SIcdZmqxL73U/IyWLvUv34gR0hNPMBo/AAAA3BG6w5AKofvpp6UrrjDrX31lmnK//rr08cemprRtW+/zf/1VatXKNKudM8f/fh9+KLVoYZrOTpokXXKJfSw7W7roIumZZ0zo+eUXacAAU+NnhZ5QlZRIf/xhgkuzZt7H/vMf6b77zP0DcQbrigrvADRjhgm3q1ebc6wmwdVVVmYeNjRv7l3L2ayZCf+h+OIL86DinnvCf/1DDpGWLHE/5vF4txA4+GATViMJxNu3S40auR9bu9Z8fq65Rnr8cbPv//5Puv568/0uKTFhtUGD8F/X8tFH5nMVzODB0tixJoC7GTBA+u9/zXrbtuZhTt265nPla+tWaa+9Ar9WYaF5sNW0aUjFBwAAQA1H6A5DsofuP/80gXLLFtM0+957w7t+5kzplFNMUK/K7NkmqMfCihWmv/fNN4d2/vr15sGAU3GxaSK/aZMJhd27S2+/bY498YQ0dKg90FpZmTRvnlRQEF5t5QkneI/KbgX/QDXd8+dL3bqFfv9QvPKKqWlt0UI6+2zTEqBRI/dm+xdeaLcMmDNH+v13u6baje/Di0AaNDAD1wVzyy3S5ZebBxKBfnX27DEPMfr3Nw95tmzxfwATS3l5Zjq7evXi95oAAABIf4TuMCR76PZ4pPfeM02S3303eDPzQMaMqTqsT5smnXhiREUMy/jx3k1+8/JMoBw8WDrjDBPSunULHHK/+so0oQ9k1izvpts9e5owGmpTdN/z7rlHOvxw6fTTzfapp5oa/zVrTG1vly7mgcbYsaYW+sEHva+/7TbpH/9wf63TTzfNq++809zrrLMCl+uf/wz+wGKvvUyrAslMd3Xxxd7HN240U8Bt3ep/bXa2+b5Xxz/+Yb4v1ufzt9/MgH4//2yf4/aAolcv87DH915PPul9bcOGpnXEpk3256dTJ/P9X7zY1L736mUeKhQWmibpp55qPvvRbhoPAAAAELrDkOyhOxo2bDAjjEvSkUea2uDvv7cD2EsvmRrTeBk3TrrjDjPN2E8/hTd42M6d4TdrnjfP9Lf2tWCBdPXVpjlynz5mn2/o3mcfE9pWrzbbVf3GzJhh30sKvY92qDXQ1j137pSaNAlejt69TUgtKnJvom2Fc4/HfG3d6l8LfcAB0ty5ZmmF+r59zUMaX337mq4Qd94Z+jztzhYNGzaY0L733mbb6kbRoIF0zjnx7cMPAAAABEPoDkNNCN2BbN9ugkx1+uYmQr9+duh7+mlTszl2bPBrRo824fqaa0yz6Nq17QcRkqlt//FHOwBOm2ZCpNMVV5ga2Kr8+qsJxu3bh/6eJFMLvGCBvX3EEdL//mcGC7M4R6EfMcLU/krScceZWt+HHw7ttT7+WDrpJP/977wjDRpkpnd77LHAQbe01Ezn9tNPplb52Wfdz9trLxOiV6703l9VH2sAAAAgmRG6w1CTQ3e6Wb3aDrpr15rm8itWhH+fzEzTJ9x3WrPly83o17FidQNo08a7afXPP5sm1+eea8J1MO+/b0YFd3PUUdILL5iB2qzm8tHSubNp5m0ZPtzUTlu1/ldeaaZPk2L/fQQAAABijdAdBkJ3+tq82YxCHq6DDpJ++ME7xEsmiMdyCqmyMmnCBFOTX51QWl5umpP/9JPZPvlk033gnHNiV35nX/1Jk8ygdr527TKDs1nNxwEAAIBURegOA6E7vRUXm5rdn382tcTffGMGW9t3XzNS+9/+Zvozv/SSaTq+Z48ZIdwK2z//LD3/vKm5bdUqgW8kAqWlphl9PPpCV1RI551nlm++6d9KAAAAAEgnhO4wELoBAAAAAOEINUdSFwUAAAAAQIwQugEAAAAAiJG0Cd0TJkxQ27ZtVbduXfXo0UPffPNNoosEAAAAAKjh0iJ0v/HGG7rxxhs1duxYffvttzr88MPVr18/bdq0KdFFAwAAAADUYGkRuh9++GENHz5cl1xyiTp27KinnnpK9evX1/PPP5/oogEAAAAAarCUD90lJSVauHCh+vTpU7kvMzNTffr00dy5c12v2bNnj4qLi72+AAAAAACItpQP3Vu2bFF5ebny8vK89ufl5amwsND1mnHjxik3N7fyq1WqTb4MAAAAAEgJKR+6IzFq1CgVFRVVfq1bty7RRQIAAAAApKHaiS5Ade29996qVauWNm7c6LV/48aNys/Pd70mOztb2dnZ8SgeAAAAAKAGS/ma7jp16qhr166aMWNG5b6KigrNmDFDBQUFCSwZAAAAAKCmS/mabkm68cYbNXToUB155JHq3r27/v3vf2vHjh265JJLEl00AAAAAEANlhah+9xzz9XmzZs1ZswYFRYWqnPnzvrkk0/8BlcDAAAAACCeMjwejyfRhUi04uJi5ebmqqioSDk5OYkuDgAAAAAgyYWaI1O+TzcAAAAAAMmK0A0AAAAAQIwQugEAAAAAiBFCNwAAAAAAMULoBgAAAAAgRgjdAAAAAADESFrM011d1qxpxcXFCS4JAAAAACAVWPmxqlm4Cd2S/vzzT0lSq1atElwSAAAAAEAq+fPPP5WbmxvwOKFbUqNGjSRJ69atCzqpeawVFxerVatWCS8Hooufa/riZ5u++NmmJ36u6YufbXri55q+0uVna70PK08GQuiWlJOTo6KiIjVq1EgZGRmJLo5ycnJS+sMHd/xc0xc/2/TFzzY98XNNX/xs0xM/1/SV6j/bRo0aVebIYAjdkjIyMlL6hw0AAAAAiK9QcySjlwMAAAAAECOE7iSSnZ2tsWPHKjs7O9FFQRTxc01f/GzTFz/b9MTPNX3xs01P/FzTV0372WZ4qhrfHAAAAAAARISabgAAAAAAYoTQDQAAAABAjBC6AQAAAACIEUI3AAAAAAAxQuhOEhMmTFDbtm1Vt25d9ejRQ998802iiwSHL774QqeeeqpatmypjIwMvffee17HPR6PxowZoxYtWqhevXrq06ePVq5c6XXO1q1bNXjwYOXk5Khx48YaNmyYtm/f7nXO//73Px199NGqW7euWrVqpQcffDDWb61GGzdunLp166ZGjRqpefPmGjhwoFasWOF1zu7duzVy5Eg1bdpUDRs21KBBg7Rx40avc9auXasBAwaofv36at68uW655RaVlZV5nfP555+rS5cuys7OVvv27TVp0qRYv70a7cknn9Rhhx2mnJwc5eTkqKCgQB9//HHlcX6u6eGBBx5QRkaGrr/++sp9/GxT01133aWMjAyvrw4dOlQe5+ea2n777TddeOGFatq0qerVq6dDDz1UCxYsqDzO31Gpp23btn6/sxkZGRo5cqQkfmf9eJBwr7/+uqdOnTqe559/3rN06VLP8OHDPY0bN/Zs3Lgx0UXDXz766CPPnXfe6XnnnXc8kjzvvvuu1/EHHnjAk5ub63nvvfc8ixcv9px22mmedu3aeXbt2lV5zkknneQ5/PDDPfPmzfN8+eWXnvbt23vOP//8yuNFRUWevLw8z+DBgz3ff/+957XXXvPUq1fP8/TTT8frbdY4/fr180ycONHz/fffexYtWuQ5+eSTPa1bt/Zs37698pwrrrjC06pVK8+MGTM8CxYs8PTs2dPzt7/9rfJ4WVmZ55BDDvH06dPH891333k++ugjz9577+0ZNWpU5Tk//fSTp379+p4bb7zRs2zZMs9jjz3mqVWrlueTTz6J6/utST744APPf//7X8+PP/7oWbFiheeOO+7wZGVleb7//nuPx8PPNR188803nrZt23oOO+wwz3XXXVe5n59taho7dqynU6dOng0bNlR+bd68ufI4P9fUtXXrVk+bNm08F198sefrr7/2/PTTT56pU6d6Vq1aVXkOf0elnk2bNnn9vk6fPt0jyTNz5kyPx8PvrC9CdxLo3r27Z+TIkZXb5eXlnpYtW3rGjRuXwFIhEN/QXVFR4cnPz/c89NBDlfu2bdvmyc7O9rz22msej8fjWbZsmUeSZ/78+ZXnfPzxx56MjAzPb7/95vF4PJ4nnnjCs9dee3n27NlTec5tt93mOeigg2L8jmDZtGmTR5Jn1qxZHo/H/ByzsrI8kydPrjxn+fLlHkmeuXPnejwe80AmMzPTU1hYWHnOk08+6cnJyan8Wd56662eTp06eb3Wueee6+nX7//Zu+4wKYq0/5vZvOSw5IxkVJAkiAKKonIGVMR0gnrmnPXuU9TzTg89T70z3HkemBVQECOCZAQEBCSJ5Jxhd9m8M9PfH52qq6uqq3tmNlm/59lne7qrq6orvm+9aUSyP0mBQIMGDbT//ve/ql9rAE6cOKF16tRJmzVrljZkyBCL6VZ9W30xfvx47dRTT2U+U/1avfHoo49qgwcP5j5XdFTNwL333qt17NhRi8Vias4yoNTLKxllZWVYuXIlhg8fbt0Lh8MYPnw4lixZUok1U5DF9u3bceDAAUcf1qtXDwMGDLD6cMmSJahfvz769u1rpRk+fDjC4TCWLVtmpTnrrLOQnp5upRkxYgQ2bdqE48ePV9DX/LaRl5cHAGjYsCEAYOXKlSgvL3f0bdeuXdGmTRtH35588slo2rSplWbEiBHIz8/H+vXrrTRkHmYaNccrBtFoFB9//DEKCwsxcOBA1a81AHfeeSdGjhzpan/Vt9UbmzdvRosWLdChQwdce+212LVrFwDVr9UdM2bMQN++fTF69Gg0adIEvXv3xltvvWU9V3RU9UdZWRnef/993HjjjQiFQmrOMqCY7krGkSNHEI1GHQMOAJo2bYoDBw5UUq0U/MDsJ1EfHjhwAE2aNHE8T01NRcOGDR1pWHmQZSgkD7FYDPfddx/OOOMM9OzZE4De7unp6ahfv74jLd23Xv3GS5Ofn4/i4uJkfI4CgLVr16J27drIyMjAbbfdhmnTpqF79+6qX6s5Pv74Y/z000947rnnXM9U31ZfDBgwAJMmTcK3336LN954A9u3b8eZZ56JEydOqH6t5ti2bRveeOMNdOrUCTNnzsTtt9+Oe+65B++88w4ARUfVBEyfPh25ubkYN24cALUWs5Ba2RVQUFBQqAq48847sW7dOixatKiyq6KQIHTp0gWrV69GXl4epk6dirFjx2L+/PmVXS2FOLB7927ce++9mDVrFjIzMyu7OgoJxAUXXGBdn3LKKRgwYADatm2LyZMnIysrqxJrphAvYrEY+vbti7/+9a8AgN69e2PdunV48803MXbs2EqunUIi8Pbbb+OCCy5AixYtKrsqVRZK0l3JaNy4MVJSUlze/A4ePIhmzZpVUq0U/MDsJ1EfNmvWDIcOHXI8j0QiOHbsmCMNKw+yDIXk4K677sKXX36JuXPnolWrVtb9Zs2aoaysDLm5uY70dN969RsvTd26dRUxmUSkp6fjpJNOQp8+ffDcc8/h1FNPxSuvvKL6tRpj5cqVOHToEE477TSkpqYiNTUV8+fPx6uvvorU1FQ0bdpU9W0NQf369dG5c2ds2bJFzdlqjubNm6N79+6Oe926dbPMBxQdVb2xc+dOzJ49G3/4wx+se2rOuqGY7kpGeno6+vTpg++//966F4vF8P3332PgwIGVWDMFWbRv3x7NmjVz9GF+fj6WLVtm9eHAgQORm5uLlStXWmnmzJmDWCyGAQMGWGkWLFiA8vJyK82sWbPQpUsXNGjQoIK+5rcFTdNw1113Ydq0aZgzZw7at2/veN6nTx+kpaU5+nbTpk3YtWuXo2/Xrl3rIAZmzZqFunXrWkTGwIEDHXmYadQcr1jEYjGUlpaqfq3GOOecc7B27VqsXr3a+uvbty+uvfZa61r1bc1AQUEBtm7diubNm6s5W81xxhlnuMJx/vrrr2jbti0ARUdVd0ycOBFNmjTByJEjrXtqzjJQ2Z7cFPSQYRkZGdqkSZO0DRs2aLfccotWv359hzc/hcrFiRMntFWrVmmrVq3SAGgvvfSStmrVKm3nzp2apumhLurXr699/vnn2s8//6xdcsklzFAXvXv31pYtW6YtWrRI69SpkyPURW5urta0aVPt97//vbZu3Trt448/1rKzs1WoiyTi9ttv1+rVq6fNmzfPEfaiqKjISnPbbbdpbdq00ebMmaOtWLFCGzhwoDZw4EDruRny4rzzztNWr16tffvtt1pOTg4z5MXDDz+sbdy4UXvttdeqbciL6oLHHntMmz9/vrZ9+3bt559/1h577DEtFApp3333naZpql9rEkjv5Zqm+ra64sEHH9TmzZunbd++XVu8eLE2fPhwrXHjxtqhQ4c0TVP9Wp3x448/aqmpqdpf/vIXbfPmzdoHH3ygZWdna++//76VRtFR1RPRaFRr06aN9uijj7qeqTnrhGK6qwj++c9/am3atNHS09O1/v37a0uXLq3sKikQmDt3rgbA9Td27FhN0/RwF0888YTWtGlTLSMjQzvnnHO0TZs2OfI4evSodvXVV2u1a9fW6tatq91www3aiRMnHGnWrFmjDR48WMvIyNBatmypPf/88xX1ib9JsPoUgDZx4kQrTXFxsXbHHXdoDRo00LKzs7VRo0Zp+/fvd+SzY8cO7YILLtCysrK0xo0baw8++KBWXl7uSDN37lytV69eWnp6utahQwdHGQqJx4033qi1bdtWS09P13JycrRzzjnHYrg1TfVrTQLNdKu+rZ4YM2aM1rx5cy09PV1r2bKlNmbMGEccZ9Wv1RtffPGF1rNnTy0jI0Pr2rWr9p///MfxXNFR1RMzZ87UALj6StPUnKUR0jRNqxQRu4KCgoKCgoKCgoKCgoJCDYey6VZQUFBQUFBQUFBQUFBQSBIU062goKCgoKCgoKCgoKCgkCQopltBQUFBQUFBQUFBQUFBIUlQTLeCgoKCgoKCgoKCgoKCQpKgmG4FBQUFBQUFBQUFBQUFhSRBMd0KCgoKCgoKCgoKCgoKCkmCYroVFBQUFBQUFBQUFBQUFJIExXQrKCgoKCgoKCgoKCgoKCQJiulWUFBQUFBQUFBQUFBQUEgSFNOtoKCgoKCgoKCgoKCgoJAkKKZbQUFBQUFBQUFBQUFBQSFJUEy3goKCgoKCgoKCgoKCgkKSoJhuBQUFBQUFBQUFBQUFBYUkQTHdCgoKCgoKCgoKCgoKCgpJgmK6FRQUFBQUFBQUFBQUFBSSBMV0KygoKCgoKCgoKCgoKCgkCYrpVlBQUFBQUFBQUFBQUFBIEhTTraCgoKBQZTFv3jyEQiHMmzcvofmGQiE89dRTCc1TgY127drhd7/7XWVXw4GhQ4di6NChlVL27t27kZmZicWLF1dK+VdddRWuvPLKSilbQUFB4bcKxXQrKCgoKCQEkyZNQigUsv5SU1PRsmVLjBs3Dnv37q3w+nz99ddVjrEuKCjA+PHj0bNnT9SqVQuNGjVCr169cO+992Lfvn1WuqpYdxE2bNiAp556Cjt27Eh43qFQCHfddVfC860sPPPMMxgwYADOOOMM6964ceMccycjIwOdO3fGk08+iZKSElcesuPoqaeeQigUwpEjR6x7jz76KD799FOsWbMmuR+qoKCgoGAhtbIroKCgoKBQs/DMM8+gffv2KCkpwdKlSzFp0iQsWrQI69atQ2ZmZoXV4+uvv8Zrr73GZF6Li4uRmlqxW2B5eTnOOuss/PLLLxg7dizuvvtuFBQUYP369fjwww8xatQotGjRwrPuVREbNmzA008/jaFDh6Jdu3aVXZ0qi8OHD+Odd97BO++843qWkZGB//73vwCAvLw8fP755/jzn/+MrVu34oMPPrDS+RlHLPTu3Rt9+/bF3//+d7z77ruJ/0gFBQUFBRcU062goKCgkFBccMEF6Nu3LwDgD3/4Axo3boy//e1vmDFjRpVRa61I5t/E9OnTsWrVKnzwwQe45pprHM9KSkpQVlYWKN9IJIJYLIb09PREVFMhiXj//feRmpqKiy66yPUsNTUV1113nfX7jjvuwKBBg/DRRx/hpZdeQtOmTQEkZhxdeeWVGD9+PF5//XXUrl07zq9SUFBQUPCCUi9XUFBQUEgqzjzzTADA1q1bHfd/+eUXXHHFFWjYsCEyMzPRt29fzJgxwzO/hQsXYvTo0WjTpg0yMjLQunVr3H///SguLrbSjBs3Dq+99hoAONR2TZA23VOnTkUoFML8+fNdZf373/9GKBTCunXr4q63+f2kWrGJzMxM1K1b17PuO3bsQCgUwosvvoiXX34ZHTt2REZGBjZs2CBdN9MMYPHixXjggQeQk5ODWrVqYdSoUTh8+LAjbSwWw1NPPYUWLVogOzsbw4YNw4YNG9CuXTuMGzfOym/06NEAgGHDhln1pe3wFy1ahP79+yMzMxMdOnQILGU17fwnT56Mv/zlL2jVqhUyMzNxzjnnYMuWLa70//nPf9CxY0dkZWWhf//+WLhwITPf0tJSjB8/HieddJI1rh555BGUlpZaacaOHYvMzExs3LjR8e6IESPQoEEDh2o3C9OnT8eAAQOkGN1QKITBgwdD0zRs27bNui87jkQ499xzUVhYiFmzZnmmVVBQUFCIH0rSraCgoKCQVJh2vg0aNLDurV+/HmeccQZatmyJxx57DLVq1cLkyZNx6aWX4tNPP8WoUaO4+U2ZMgVFRUW4/fbb0ahRI/z444/45z//iT179mDKlCkAgFtvvRX79u3DrFmz8N577wnrN3LkSNSuXRuTJ0/GkCFDHM8++eQT9OjRAz179oy73m3btgUAvPvuu/i///s/xyEACZm6T5w4ESUlJbjllluQkZGBhg0b+q7b3XffjQYNGmD8+PHYsWMHXn75Zdx111345JNPrDSPP/44JkyYgIsuuggjRozAmjVrMGLECIed8VlnnYV77rkHr776Kv74xz+iW7duAGD9B4AtW7bgiiuuwE033YSxY8fif//7H8aNG4c+ffqgR48e3DYT4fnnn0c4HMZDDz2EvLw8TJgwAddeey2WLVtmpXn77bdx6623YtCgQbjvvvuwbds2XHzxxWjYsCFat25tpYvFYrj44ouxaNEi3HLLLejWrRvWrl2Lf/zjH/j1118xffp0AMArr7yCOXPmYOzYsViyZAlSUlLw73//G9999x3ee+89oVp3eXk5li9fjttvv136G1lzR3YcidC9e3dkZWVh8eLFwjGroKCgoJAgaAoKCgoKCgnAxIkTNQDa7NmztcOHD2u7d+/Wpk6dquXk5GgZGRna7t27rbTnnHOOdvLJJ2slJSXWvVgspg0aNEjr1KmTdW/u3LkaAG3u3LnWvaKiIlfZzz33nBYKhbSdO3da9+68806Nt80B0MaPH2/9vvrqq7UmTZpokUjEurd//34tHA5rzzzzjO96s1BUVKR16dJFA6C1bdtWGzdunPb2229rBw8edKXl1X379u0aAK1u3braoUOHHM9k62b20/Dhw7VYLGbdv//++7WUlBQtNzdX0zRNO3DggJaamqpdeumljnKeeuopDYA2duxY696UKVNc/WSibdu2GgBtwYIF1r1Dhw5pGRkZ2oMPPshpLRsAtDvvvNP6bY6Jbt26aaWlpdb9V155RQOgrV27VtM0TSsrK9OaNGmi9erVy5HuP//5jwZAGzJkiHXvvffe08LhsLZw4UJH2W+++aYGQFu8eLF1b+bMmRoA7dlnn9W2bdum1a5d29VGLGzZskUDoP3zn/90PRs7dqxWq1Yt7fDhw9rhw4e1LVu2aC+++KIWCoW0nj17OvrJzzgaP368BkA7fPiw61nnzp21Cy64wLPeCgoKCgrxQ6mXKygoKCgkFMOHD0dOTg5at26NK664ArVq1cKMGTPQqlUrAMCxY8cwZ84cXHnllThx4gSOHDmCI0eO4OjRoxgxYgQ2b94s9HaelZVlXRcWFuLIkSMYNGgQNE3DqlWrAtV5zJgxOHTokEMleurUqYjFYhgzZkzC6r1s2TI8/PDDAHS17JtuugnNmzfH3Xff7VBj9sLll1+OnJwc63eQut1yyy0OKemZZ56JaDSKnTt3AgC+//57RCIR3HHHHY737r77bul6mujevbtlZgAAOTk56NKli0Nt2i9uuOEGhx27mb+Z54oVK3Do0CHcdtttjnTjxo1DvXr1HHlNmTIF3bp1Q9euXa22O3LkCM4++2wAwNy5c6205513Hm699VY888wzuOyyy5CZmYl///vfnvU9evQoAKfUmkRhYSFycnKQk5ODk046CQ899BDOOOMMfP75545+StQ4atCggcOruYKCgoJC8qCYbgUFBQWFhOK1117DrFmzMHXqVFx44YU4cuQIMjIyrOdbtmyBpml44oknLCbD/Bs/fjwA4NChQ9z8d+3ahXHjxqFhw4aoXbs2cnJyLLXwvLy8QHU+//zzUa9ePYdq9SeffIJevXqhc+fOCak3ANSrVw8TJkzAjh07sGPHDrz99tvo0qUL/vWvf+HPf/6zdH3bt2/v+B2kbm3atHH8NpnB48ePA4DFfJ900kmOdA0bNuQyjjzQZZnlmWUFgWz9O3Xq5EiXlpaGDh06OO5t3rwZ69evd7Wd2fd027344oto2LAhVq9ejVdffRVNmjSRrremacz7mZmZmDVrFmbNmoWJEyeiW7duOHTokOOQyUQixpGmaYFU0xUUFBQU/EPZdCsoKCgoJBT9+/e3vJdfeumlGDx4MK655hps2rQJtWvXRiwWAwA89NBDGDFiBDMPmtEzEY1Gce655+LYsWN49NFH0bVrV9SqVQt79+7FuHHjrLz9IiMjA5deeimmTZuG119/HQcPHsTixYvx17/+1UoTT71ZaNu2LW688UaMGjUKHTp0wAcffIBnn31W6l2aEQtSt5SUFGY6HlMYD5JRViLzjMViOPnkk/HSSy8xn5P23wCwatUqixFfu3Ytrr76as8yGjVqBADcg4aUlBQMHz7c+j1ixAh07doVt956q9BRX9BxdPz4cdeBhIKCgoJCcqCYbgUFBQWFpCElJQXPPfcchg0bhn/961947LHHLCljWlqag8mQwdq1a/Hrr7/inXfewfXXX2/dZ3lh9ivFGzNmDN555x18//332LhxIzRNs1TLAcRVbxEaNGiAjh07Ojyk+617MupmOuzasmWLQ7J+9OhRF+NYFSWmZv03b95sqYkDukOz7du349RTT7XudezYEWvWrME555zj+S2FhYW44YYb0L17dwwaNAgTJkzAqFGj0K9fP+F7bdq0QVZWFrZv3y5V/+bNm+P+++/H008/jaVLl+L0008XpmeNIx4ikQh2796Niy++WKouCgoKCgrxQamXKygoKCgkFUOHDkX//v3x8ssvo6SkBE2aNMHQoUPx73//G/v373elp8NWkTClm6Q0U9M0vPLKK660tWrVAgDk5uZK1XP48OFo2LAhPvnkE3zyySfo37+/g9mMp94AsGbNGqYN7c6dO7FhwwZ06dIlcN3jrRsL55xzDlJTU/HGG2847v/rX/9ypfVb34pA3759kZOTgzfffNMRu3rSpEmuel555ZXYu3cv3nrrLVc+xcXFKCwstH4/+uij2LVrF9555x289NJLaNeuHcaOHetpS52Wloa+fftixYoV0t9w9913Izs7G88//7x1z8844mHDhg0oKSnBoEGDpOuioKCgoBAcStKtoKCgoJB0PPzwwxg9ejQmTZqE2267Da+99hoGDx6Mk08+GTfffDM6dOiAgwcPYsmSJdizZw/WrFnDzKdr167o2LEjHnroIezduxd169bFp59+ylTZ7dOnDwDgnnvuwYgRI5CSkoKrrrqKW8e0tDRcdtll+Pjjj1FYWIgXX3zRlSZovQFdGj9+/HhcfPHFOP3001G7dm1s27YN//vf/1BaWmrFDQ9S93jrxkLTpk1x77334u9//zsuvvhinH/++VizZg2++eYbNG7c2CER7tWrF1JSUvC3v/0NeXl5yMjIwNlnn+3L1jnRSEtLw7PPPotbb70VZ599NsaMGYPt27dj4sSJLpvu3//+95g8eTJuu+02zJ07F2eccQai0Sh++eUXTJ48GTNnzkTfvn0xZ84cvP766xg/fjxOO+00AHr4tqFDh+KJJ57AhAkThHW65JJL8Kc//Qn5+flS8bQbNWqEG264Aa+//jo2btyIbt26+RpHPMyaNQvZ2dk499xzPdMqKCgoKCQAleM0XUFBQUGhpsEMRbV8+XLXs2g0qnXs2FHr2LGjFZZr69at2vXXX681a9ZMS0tL01q2bKn97ne/06ZOnWq9xwoZtmHDBm348OFa7dq1tcaNG2s333yztmbNGg2ANnHiRCtdJBLR7r77bi0nJ0cLhUKOEFygQoaZmDVrlgZAC4VCjhBnJGTqzcK2bdu0J598Ujv99NO1Jk2aaKmpqVpOTo42cuRIbc6cOY60vLqbIcNeeOGFwHXj9ROrrSORiPbEE09ozZo107KysrSzzz5b27hxo9aoUSPttttuc7z/1ltvaR06dNBSUlIc+bRt21YbOXKkq65DhgxxhO3iAZyQYVOmTHGkM9uGHAOapmmvv/661r59ey0jI0Pr27evtmDBAmbZZWVl2t/+9jetR48eWkZGhtagQQOtT58+2tNPP63l5eVp+fn5Wtu2bbXTTjtNKy8vd7x7//33a+FwWFuyZInwWw4ePKilpqZq7733nuO+GTKMha1bt2opKSlWiDY/44gXMmzAgAHaddddJ6yrgoKCgkLiENK0JHhMUVBQUFBQUKiRyM3NRYMGDfDss8/iT3/6U2VXp9rhpptuwq+//oqFCxdWSvmrV6/Gaaedhp9++gm9evWqlDooKCgo/NagbLoVFBQUFBQUmCguLnbde/nllwHotvoK/jF+/HgsX74cixcvrpTyn3/+eVxxxRWK4VZQUFCoQChJt4KCgoKCggITkyZNwqRJk3DhhReidu3aWLRoET766COcd955mDlzZmVXT0FBQUFBoVpAOVJTUFBQUFBQYOKUU05BamoqJkyYgPz8fMu5mmw8cQUFBQUFBQUl6VZQUFBQUFBQUFBQUFBQSBqUTbeCgoKCgoKCgoKCgoKCQpKgmG4FBQUFBQUFBQUFBQUFhSRBMd0KCgoKCgoKCgoKCgoKCkmCcqQGIBaLYd++fahTpw5CoVBlV0dBQUFBQUFBQUFBQUGhikPTNJw4cQItWrRAOMyXZyumG8C+ffvQunXryq6GgoKCgoKCgoKCgoKCQjXD7t270apVK+7zSmW6FyxYgBdeeAErV67E/v37MW3aNFx66aXWc03TMH78eLz11lvIzc3FGWecgTfeeAOdOnWy0hw7dgx33303vvjiC4TDYVx++eV45ZVXULt2bel61KlTB4DeWHXr1k3Y9ykoKCgoKCgoKCgoKCjUTOTn56N169YWP8lDpTLdhYWFOPXUU3HjjTfisssucz2fMGECXn31Vbzzzjto3749nnjiCYwYMQIbNmxAZmYmAODaa6/F/v37MWvWLJSXl+OGG27ALbfcgg8//FC6HqZKed26dRXTraCgoKCgoKCgoKCgoCANLxPlKhOnOxQKOSTdmqahRYsWePDBB/HQQw8BAPLy8tC0aVNMmjQJV111FTZu3Iju3btj+fLl6Nu3LwDg22+/xYUXXog9e/agRYsWUmXn5+ejXr16yMvLU0y3goKCgoKCgoKCgoKCgidk+cgq6718+/btOHDgAIYPH27dq1evHgYMGIAlS5YAAJYsWYL69etbDDcADB8+HOFwGMuWLePmXVpaivz8fMefgoKCgoKCgoKCgoKCgkKiUWWZ7gMHDgAAmjZt6rjftGlT69mBAwfQpEkTx/PU1FQ0bNjQSsPCc889h3r16ll/yomagoKCgoKCgoKCgoKCQjJQZZnuZOLxxx9HXl6e9bd79+7KrpKCgoICkL8ZODivsmvhjaI9wJfdgXV/qeyaKCgoKCgoKChUeVRZprtZs2YAgIMHDzruHzx40HrWrFkzHDp0yPE8Eong2LFjVhoWMjIyLKdpynmagoJClcGXnYHvhwG56yq7JmLs+xrI3wj8/H+VXRMFBQUFBQUFhSqPKst0t2/fHs2aNcP3339v3cvPz8eyZcswcOBAAMDAgQORm5uLlStXWmnmzJmDWCyGAQMGVHidFRQUFBKC42squwZilJ+o7BooJANFe4BIUWXXQkFBQUFBocahUkOGFRQUYMuWLdbv7du3Y/Xq1WjYsCHatGmD++67D88++yw6depkhQxr0aKF5eG8W7duOP/883HzzTfjzTffRHl5Oe666y5cddVV0p7LFRQUFKocPMJOuFB2HPjlFaDdtUDdTsmpkwNVIuiFQiJRsA2Y0RHIbAJcdtA7vYKCgoKCgoI0KpXpXrFiBYYNG2b9fuCBBwAAY8eOxaRJk/DII4+gsLAQt9xyC3JzczF48GB8++23VoxuAPjggw9w11134ZxzzkE4HMbll1+OV199tcK/RUFBQaHSsPxOYOdHwIbngatKkl8eGWlS0/wfEihUPeyfqf8vOSROp6CgoKCQWMQiQChF7aU1HJXKdA8dOhSiMOGhUAjPPPMMnnnmGW6ahg0b4sMPP0xG9RQUFBSqBw4v1v/HSiu+bC2mEwsKCgoKCgoKThTs0P2gdLgBSM1yP48UA190BOqfAgz7tsKrp1BxqFSmW0FBQeE3g/xNQFZLIK22ROKqftpNHpbGACimW0FBQUGBgUixLsFNyfROWxPxVXcgWgwU7gB6T3A/PzgHKN6v/ynUaFRZR2oKCgoKlY6y405V6qA4sgz4siswpQ5wYHb8+VU6SPXyWOVVQ0FBQUGh6iIW0ZnOGScBUY4m1oE5wJwRul+Jmohosf7/4JzKrUd1wJxzgS+7JYbuqoJQTLeCgoICC3u+AKY2BL7tE39eu6fa1/MvkXihiku6tRrIdO/4ENg5ubJrUXmooUSOgoJCJaI8X5fwFu/lM9VzzgEOfAcsvrZCq1Z1oNZeAEDRXl0okf8LkFvFI7gEhGK6qxvK82vuaaCCQlXCqof0/8dXASVH4syMWGrD6XHmVdVQA5jusuPAD9cCi8cA0QpwRKegoKDwW4DjUNbjMLmkmqpXR0slaYQqfphe2SjPt69r6D6smO7qhu8G6Wo6eRsruyYKCtUDeRt0e2q/OPGrfV12PL46hIiltn4PifRVfHPe9LJ9XRMk3ZFC+5qnAqmgoKCg4BPk/lBDJbrfDQSmt5Swya7i+3plg9yHa6jmlWK6qxvy1gPQgMMLK7smCgpVH5FC4Kseuj11rDx4PuG0+OoRK7Ovs9tIvFDFN+cSIo5zTWC6He1dMzd7hSqCwl3Alv+qwx2F3wY0P0x3Fd/3WCg9qmvDxcqAYz9Vdm2qN0zbdwA1QoOOAcV0VycU7ravQ3EyAQrBEA/jplDxKD1qX8ejrhSv5DkWsa/T68eXFwuVKhmvAptj6VGg+KB3Oh5ITYQacYgQAGTYt3jaUkGMmf2AH28GNhBejI+t1J0H7fmi8uqloJAMkOup59paDZnufEIjzmtvr+oabJUNkulWkm6FSsfnhIQsxYj1p2nAwsuBJeMqpUq/Kez9CphcB9g2qbJroiALkpGI58BEi8ZXj3rdE5cXCxW9QdVqW3ll09A04NPGwLRmTvW0wPlFvNPURJAEY7So0qpR41FySP+/72v73oJRuvOgBRdXTp0UFFgoPgAcXR5nJn6Y7iqK4gPAzNOBrRPdzzSCrmDtheTBv4IYDsFINR0rHlBMd3VF2GAmCncCuz8Dtr+j1NUSCdbiOf93QKwUWHpDxddHIX7E4pgfsTgZ5eW3EXnVAKauVnv7urIJKZJBPLElWB7kN9SE/gkC8rsru09rKkiikiTWIwUVXxcFBS9MbwnM7B+fDyHHWuKxrlRVSfCaPwJHlwHLbnQ/c+wXjO9b8yfiRxX9vqoCx/qoJN0KVQkswvC3KqFJNLZOBKa1UPY5NQGkdPv4z8HziUc6TR+GyeTll/iocGLFByGVbJQTDEtQbQayT36r66ijDZKgjaHg9O2Q1dK+JjVyFBSqCkyG+cjS+PMAJBipKsqUluXyn2keh5Vb/k38qKLfV1WgbLoVqixM4jKc6r6nEB+W3QiUHACWjmM/T61VodVRiAOkFPTHW4LnEw8TQobBACSZuiq+OTsYtEreHI+vsq+D1sVBGP5GGU4H8fgbbYNkgxxndU6yrxXTrVCVEYqHVahCB7SBQdS7aI9T6JVoDaFkS3jXPw/88nJyy/ALLQYcXQGUn3Deq4FQTHd1hUkgOWxWy9hpqzI0DVj7DLDx75VdE3mkN6rsGijIYst/7OuiXfLv0RtfPEwIPS8rajPRtOQ5xIpVIaZ7+R32dWApdUD18uKDwIHZNUMVTkm6+YgUAT/eDuybGWdGvHFSxQ/ZSKx6GJh1JhCthvSGQkDEsb7VBEdq5Po+vTUw5xzimYd6ee0O9rWURloS95LiA8Cax4Gf7q9a83fdn3UHkyvvJm7WgD2VAcV0V1dsnOC+F4+ke88M4PDi4O8HxaH5wNrxwKqH4vMunQyEMzgPKpHJKNqre7it6kR+eX7VqGPR3oAv0kx3HCrHLgZGpl0SQHysfVp3Lvbra/HnRcPxTUmcD1oMWHApsPpxfpomZ9nXm18PVk7Mh3r5oUXA5+11x4ozOgBzzgV2fxqs3IpCwTbgpwfF88FLTfK3jM2vA1veBOadH18+3HatJu2dvwnY+CJweBGwV3larzBs+Bvw422Vt6fGU64fpruq2nTT9T60gHjmsW6S4UZDqe7ngLN9tZi+H/FU2kuP6b6c/KJwl67BaaEKrTnrn3Pfq6F7kGK6qyvyN+n/HQ6AAp5cFewAFlwCzBocd7V8o/SwfV3VHMGF09n3K3Mx+KKz7uF2xweVVwcvHF4CTKkHzGgPbH27cuvS+vJg79F9HI/kz5VXBY2fdU/r/1fclfi8K4pBO7QA2PM5sOF5fpqsFva1n3kRKQZy1xoED0kYejDdc4YDhTt0x4qm+QLpiboqYs65wC8v6QcYPBTtsa+TLeku2qMfBFQXlB5JTD68uVJdCMzNhH2qMmerOKx+TLcNPrai4sokGcF4okKY3vqB6ivpZjGox9fo9A05D1jfR4b3rd3e/dwFDZhzNjC1AZC/2f3400bA5+2c7eqFgu3A522Bb3qL61ppYBzqVAWhTRKgmO5qD2JgBt0Ei4NKAxMBYpGtaurxPDumylysqgORv3a8/r9wJ7DsD+yNo6IQ5pwseyGRTLdrw5bYTOI98TcP5ZKFirLpltF+8auFsHuaHqLpi07A16fo0R/8qFazvOBXKQKGAZPBFRHt6/9qXyeT6dY0XUVzRke3v4OqiGiZfkCTEJASLUq6VR3gx0RHIfFIREhEaRDj06H26xOzzyR+EOM8WuY2f6oukm4A+KaXTt/s/JhM6E5Hqpdnt5Yry5Skb3/X+ayYkFTnrvPOy8SB79nlVBUw61KF6pdAKKa7uiMRku7KHAYkcVfVmG4uqsBiUJWlDKSDIMCpzVDRCOxYK+r+XbBD//MLOtxYIje7WIR9Inx8deLKYCEe9fKNfwc+7wAU7vb3Hi9sm98QX8tuAvZMtw8bt/0vASHDasCpfHYr+zqpBBnRVkHUJCsai8cAv76amLy44ZOq4PiJFAIntjrvaVW8zjUeFdjmyVgDyDy/7aObP+X/mvhyRNg1FVh+p891XtDuB+cQyViSboK+lqLbiLLoQ4gfb2Xn6wVm2ipAx1pQkm6FaoMESLrJCem10K64V/9L1IQg61xdmO6qcEJYlcMaZTZz/o7L82mcCCyxo/o4UqSry89oH8D3QABJtwwihcD0VmyVYZ7tmAzKC7y1E+KRdK96CCjcTsUvlcCO9zh18TkXyo5T78ec31O43SMDhjSmKqwJ8aLJMPs6qZJu8oCjCh8emtgzPXF58exbqyKB+UUn4IuTqAO8GjDOWTi6XHfIWHq0smsiRkWOk6SsaUT98wxJrcMfRgVIuheN1n00JMoPh9deSN4rkXBs6siDop3yiXjp8TLdFbFnxaLAtnfdh3fuyrBeTkaNKh2K6a7uSISk28F0C4itSJF+4v/rq0CB1ySSBEkwVzkCjLMBVAXPvoEdhFUA0upQNyqT6U5ACCkAKDtGXOfFl5cU4SRBfOz7Wt/E985w3i/Liy882lc9gC876zZrPCRCvVyGWSa1JI4uZ6eJd93QYs5vWH6nOD1LBbImMN0x4jApWWvcz+OB6UR8alPapGm6g6AaD837OtlaKrIo3q//30OsLzxtExkc/xn4siuw+Jr46pUMzOwPbH5DPxCsTtA0YPHVwPIk+O1IBtNTlWy6I0XeaaRA0jceTLcMjU6mp/caknbwFWaQxXRXAB279b/A0rH64Z0IXocVNQiK6a72SLSkWzARyWe0tCgoSBWfXZONe+XAvJFsj4YVCZ59UVVYDI5xGJCqANoBXWVKuoMSDkLnZxymueQQsPV/7s3cNacSNX5C7OtVDzoPCfxA02y7zX3fCNIlgOmWGRdHf7SvefZwcds5UpJuT3MIVr2roKTSLxz7R5LWuHXPUI6VjPX/h+t0B0GHFiW2vOM/Ax+GgKU3JDbfoOBKuol9MI+QZlUJkLbn5ez7XijcBXxzqu5rYudHAU04KgBV5cCDC6rNC7bpNsWbX0t8myZDqs7cK3ww2iWHEhcGk+coNx542SZLaWUJ2t1BS/iRdFfSQfGh+XG8XAP2VAYU011dYYYhSLRNt/D0i+MEJh6Qm/iGv+n/d03VpXhr/piYMhKNqsB0V2XQY6MynaMEPc1l2XR7YdEY3V54BSUpTZak25mpfUkyqn5BqtKmNxAUl4iQYRLfWP8U+5r0Ug7oxNeScXy1c1nQkm7SthnQPTbv/syWxDIPC2oAgVAZcbpNRn/nh/p/kZf6IPjmVP3/tkmJzTcwOEw3eeARTZQELkEgQxcFjTAy60znb4fzKQ72fqWHuatIBj2rlXeaqgRyLUp4yFVifAaNAiLKkwURrRAtBT5rqtuBJ2JMJIouiZywr70ktjLrqiMPqo6k6ZMvYUYlqZcnKr57DYJiuqsr6vXU/2sVKenmqcbFAcfiaSww0UR5ipVA3gZg/sXAsZ8YD3mS7qqmBk9gx8fAzslyabVYkmzE6DxrgHq5zAn1oXn6fxeBHyBkmBRBwEnDIkjoMjdMAH552Z1ux4f2Nc10F++3w0oFlXQ7pHgS38hytLjyPl1FdfFVwPZ35Mvm4eAcZzntfm9fF+8Hlt8GLLxcl8QemFN59nHJhl/i0ES0RF8/g6wl9FpaE9pRBEcbcQ7MN7+p+1WoKtj0sr0/kp77/fQ37fXcPGAXYf7v9DB3FRl2MuxHZbeCIKK7whn2daIPaxxqzgnaw5eMc98LcTS2aBz5wb4mGd3ASIYwwEu93KekW9TufvokNZtxM6YfJO/4OH4TrV2f6mEpSe/qQJzreQ04yGZAMd3VFRYT4Fd1hQFZppt3Sh8tBXZP92/rCjgnu7X4VqBkdM5wYO8XwOyh8u8k/EQ5QSgvAH64Wve2W7RPnDZSrDvKWTQ68fWgF9qq4kgtI8fHi9Q3eMXilK2DfsPf+zxwiRXWxk/UoeQQsPpR4Kf73aGQSEcvKVnE+zFgWgs91FOk0Ek8+GkPUhVcRkLNYro3vaKrqJqHHAkBx46OVl1f92ew16caQCDIHKRoMbdp0ZzzdE/EQZgjFxFaA9pRCM4eSuLYCuDHmyumOrL49Z/6/0Q5Oy3z4bAsUf5jpFAFQ1aJHO6Ra1Wi6ZJkHIDFE56WDHsV9Fsd7eejr2UPmFjpHOuqBI0uknST8ENXkXu5VU5UP0j+4WrgK0OIV7QX2PCCf/PRRVcAB2YDqx6myohjDJlh02oYFNNdXWFO5IRIuonT3a968j0NFpKn1cRkWvMnYOEoYP5I/2WTi1Cj0436kBtJQHU2WZjOYpgnp1VwAxaBZBC8iJr9M3V7sER58HSAJgyqiKTbz/ygNwsHsemX6Q4g6Y5n7DFV3IiNn7Q5p4kAUp0bnLYr2uPM78gS+brRdnRemzvNdCdLEkqe0DuIJHospyAp3suPrdJ9WEQrMYKDjKR7/sXA1Ia6rbSJwwv1/1v+rf8vPaarBZNpuGVGqDGQRKa7KngIl43NLaN+XaEwtdAC7Mes7/TDNFWXqCZJg0DS7RhPiTYJSdBam1rbI4GkpJscR4GdoCV5DfC06farXi4A6dQwfxPw00NOfxleeZL3Thhh22YPBVY/omuTBYHrUCWO9qbNvGoIFNNdnZBCqIjEWJLuBKg9F+8Dlt/OfkaqhJGL/fZ39f+HF/svjyT6W11iXBALL6lSVNE4tiK+90uPAl+dDKxPsJ0iD2T/0xJMV1pK8mkePiSmItTvJB9erLxfV1tjEtXE/CjPld+s6c2RJPz8Ejf0hmducK50fjcoH47+ZOtcpxP7HYdmS4nz2fLb5PIGbF8UrHxZIMv56X6gJEkx3w98xy6TJjxDKRw1zjiJuW9P031YbHo5vnziggRxuO8r/f/mN/jZrLhLVws27amFRZYD654lyk0m0x2AiUh0fVgOGcsToSorQPkJYM8XcUpCjbXGDPMEyK8prMPOZsP56Y8uB/Z9S7xfgUx3pTr95EDWCWCimW5ZiasXaAeYonkoNKsi3pvZL1hdRJ7BE4Kg6uWcgxXheCTbYwDwy991m3fWYSdrbLD6oWCL/p+MPe4HB+fShQTLB0jCIVLVQBVcYRT4YKiSk8xSUEk3Ldk+MIvtEdi056TrkpLhSiqNGMsbquTJZ7IRIezqghBfv7ykEylrHk9cnURwOOPxsosn+u+zprrqsBejLgtXWyWZkN70sm7be2KL+zkd4mbjC/L5OvIh1cv9Mt1Ueq66ZDxMt4cEjet9nZ5fPMkJeSq+JY4N0ec30uVMa8ZOFy9Icwyeh2mAH6YlURJ4UZi2ZMOXIzVBP/o5rIwU6o4zLSTRpjuQ+VWi1y7G2OJJp0Q4ukL3RyKDRVcCCy7WtQ+Cgun9WLI9WUxzvR789DP7A/MuIMqpSA0FAb2RtwH4+hTdfjUodk8DprX056V/x/v2tWhvTbQWkEzEDinQml702iJJ45HfXnY82LhIts+IwI7UeP0oKfkvJ0w7WYedTKZbsMZnNOY/84N42tusX8khXSsziPlqFYRiuqsTWKpEpJQgKNP90/3ue9tZ9pYc26J4Qi+wbEMr09s1D0GYjGSf0NOnpg5pLIcgMvuNtRh6hkqSBZX37unAvpnxZXl4MbDqUffBgMO8gtXeVF2kw/EI1Mu9YtXSp9OyG09QlS4XBJLuWMSD+Cbbk/hOUkqmRYIz3S6v8B6EU0Wddu/7klMmw1Si+fnu9xNFzCVK0lZ6FFj7Z6Bwp+55XQYOIi4O6avIHpxGyUGnk63ctcHL9UKQ/THRDB/5fUH3u9KjuqTvKwHjSmK/ITXe8h9/5TjAqKNse7LWZfPbNQ3Y8ZG43yuTHohFdC2BkiPAD9fq9Vx0RfD8Fl6maxPOY6whgZBE9XKRmY2vfBhMNzc/SUk3EOwQzdFGSRhX9LeWHLbNbwB+nQ/Mtq/JcLD02K9/Mr8sIbwO4ulniVr34sjHpD9+fgKY0RHY9GpiqlTJUEx3tQJJEBuTl1QpDupIjSUVZS3gR5ezn8fDdLPifpIT/td/Bc87kQiyoYVS7WvawURgEItw/ibnIy9nX2W5uvO0nx5iP08UwU8v2Guf1IkML2ZVhFmDgY0TgI0v0oVxrs1bNPMsqWJJv+dgOj2ITZc0VHJzNJ0V6ZnIvcOCSL18x/vAnmnEA4G9OTnmN0xg5wcAWS3t69x1wJ4Zgrr5dCrnd941Octfeq8yWZJuZii1RDnHS6CX4LVP6qGaFkqG+yG/e9kfvBLr//I3i/Pxuh+jbIRLEhSDl1l+FZB0b3qF+BHwoKZod7D34mJe45B0s0yXzLGw/zvgh2t0CbKfspMGqqxf/6VrCcwaBJTnJ66YRPmqkfUREASOQ5V4JJbUHIpFnHUlxyVJM3nmE0TIlGRJN53/wlHUY86cIenc+Rfxsw8aYYKZVsR0JyhMX1zMu1E/s59p07RqCsV0VyswTjVDxEAMKumWZcDisWvlgekFmahPUhx9BUAgpptgvlzMYkCQqvxhaoPSWG1J4NfXdNXmX/7O+Z5ELQe8hdZcRKPAj7cD29/npBPAdNbEKkvGljmoTff6v9jXX/XwkATSku4gY0eC0CTTeHmeNp8XUgS7UF2RyHP/N+z8AKBOR/v665OBBZc4D+h477F+0/B7UEP6vfCDTEJtXaRerkXYjoESJRngqa/7hWmj7odBc9geSjIFuZL2gwCb4Ey2o0yv8j3hs18PLdAltzy0IojwwOEMNfZ1RUO2PZdc775nfvvxVRIZJJnpFtn5mloiJxiHS77L4YSL85cJ/3fCJd0kPcEZZ/mbGXa8NFiSbs7YER06BgnjKcqD7mtNAxZfDay4l/Wi//wBt58jv31E7weO/H2MIb9+XuINIWYXEserpnaeyXQLDmSqEao8092uXTuEQiHX35133gkAGDp0qOvZbbf5cOxTneAgBo0FpyXhMTzwRGEx3R4DPFFqOiyb7qroQMG14EssJokioB3lCuwuvRZk0gFUUm2beBu04UBsz2fAljeBJb/3n7Uw5IiEpFs2lqlX+5DhS2hkNPSXFxCQeCaZbo8TcOueh709bwzRYWsc3tAZ/h/y1jPqCzcT7TXXE+EcUgYO/w0CR2r7vubM6yqmXs4bc6I1KVHrLle9nMV0V2D4xRObvNPQ8LNOajFg9hBdcluwjZ3G0b8sHyZSBXGuk4iDc4Hc9VQYQcm5yWKs/Yy1IBL6oj1AwXa5tKI+Tq1FVsR/PUiQ+13g/Ve0fida0k3OV07eX3YGvj9bHKmAqV7OY7pFNFMCJN2ids/boEcN+DUeNWYvzS2fBwWpdfj5+1qbGPNN5BPCT9uKIm4kwqbbrEtISborBMuXL8f+/futv1mzZgEARo+24wvffPPNjjQTJkzgZVfNwVAvJx0eBJZ0MyakF8OYMAKNIZ1NtrOLIKAXS5nvTzrTLXBQ4hmmxefJpx/w+u9rIxZk6bHElANQzKqH93IAaDZCMl+PMciKe2mCVqeUYrrjbHuvAxdeHUTq+rzxdGSxN9PNdTgmOihiwDdTFpAJ4TnKY2oBsVRtEyXpThRhwamPUH2T+NZ63f0XeWwFsPHvcI2/8gLdpwPLYVhFeqY+vtr/OzyNDRZI9ePyAnYa0n+K19hnzSv9Rfk8aMQiwJwRwKpH/L1XsEVfv0lTtECaA9bL+j8phtons6vFgOmtgRkdgGIJcwXHmkSTxBxnlYcW6CZPfsbUjg/k0/IgWme+7Rt//o6yPDTnSLA0XnjvunyCkOrlokNB2lQsyPgTOCkjTc+COoP1E41DBmkU0y3SwhKWy0gr4hf8HHYfWykqWD4f16tRZ12UennFICcnB82aNbP+vvzyS3Ts2BFDhgyx0mRnZzvS1K1btxJrnESwHKk51LMDMt0sFU4viYvfxaPkMNs7toOZrcKS7m0Tnb9lFjw/6jCxKFAkkuLCkDCKVF89FmRyrDBjsXO+KXcdsP0DH4yFR7qELp4+1culYz96Md0+/BjIjGfXBiizNHPUy1nMDU/STarNA+w1Rq+gfUn7WWAy3Zyx71e9XFb9uIMRVico80uuQ6VHiPvUOGjQi1NGPMQF8W5Wi+D5OPLkjF/R3CM94Nbv5ZE/53tXPeQ+dJp/ke7T4YuTGPnEudYX7QPmng/s/ZL9vI19OI86nf3nf3SZfFpyfZVZ+732kA2cSAueB408hHR11wPf6VEc4j0oikcF1ZfZiF+mm8h7jiA0GSu9rFR99hC9Leec669uiUYy43Tn/0Lk7TFW/UiotSifYRbSnVQ+B+f6H8Miz+AxwWEr6ehMOn/Wc58HBSL18nhtukVrlJ8DDVG0ikQ44DPropjuikdZWRnef/993HjjjQgRi+MHH3yAxo0bo2fPnnj88cdRVCRWIS0tLUV+fr7jr3qAXGAjzv9AgiXdqXpYhiM/sieOn3iHxQeAz5roYaloOCRMRjkOla5Khvmde7+iHkgw3X4k3QsuBaa30h3LeNWFVweRWizglCqxPJXzFvGvTwaWXGfH6PWC10KbLKZbRr2c/MaifcCiq4BDC+GC14b2/dm6R1upKkqMFdrDtMzYIeedl+d583tYYdW4KuVEG4iIZJbKPm9D923TLSnpDpu+DoIy3UQ99ky3DxLo9qrVHr49wXqWTbx74Ds5hqQ8HzhGqO1qMXs8xqLwLek+scUZPz6ekGE0Ds0TZBMno7DiTmD/TL7zIXIeBVJH9UF8+rYxNfuds39y7YjjkHSTTk+5knRJxOVsyUe9/aqXk/sPGVecm15kKqcJnsF5QFchCCiBDYINfyOK8WK6w0DBDn0/PfKj8xlLQs0Stpj58EDn88PVurmPHwg9dgtM96Th0U5+pfMuWiqBkm4R++dHgCe06efUMVrm7V/HpV6ubLorHNOnT0dubi7GjRtn3bvmmmvw/vvvY+7cuXj88cfx3nvv4brrrhPm89xzz6FevXrWX+vWrZNc8wSAxzyQkqDAhB/jvUPzgakNge8GsE/5/CxKh+br/8tzGUUz7IYykxSLNwisiV/Gvi8Ci3EqOQLsnOyW4JkhixzebTl14f6m7G5pbHnTvmZ5YvUi9oVqRJx6sECq0G5/H5g5gIoBT+cnICx4ToU0TZfmuzY5om4/3grs+gSYfRYjX4m5tFHWjMVUpRQstyWUdDBRtr0mtKiuabKD4bzO4SCREzKs/Dg/b5N4J9MnTL1cUtJttV+CiFCT2abDKcbKOOMxHpMYIr/Di4DNr3m/8k1v4NvT7LV54WXAZznA4R+An+7jv0cfhmz8u67FQoeTkmWo4g3ntPl19z0/5ifFB8TPHc7hfKqyx6Jux4Mi5BPhCKVMSrzGPkMzDIhD0g3K+WKc/hJkx4jLLhX2t0tJwvyOMZ9zUZrp5kBWCpoQeDDd8YTmzF0HbHvX7hOHxpRHO4RS9IP5XZ/oNKMDDNqV3JcPLXDmwwWjDrKCACsLhl8ksl4WAq7niVYvl/W54pkNy8+LYP76OaBkORa1yiAPwAjNic/bApNrs7VfrXdN9XJT0q2Y7grH22+/jQsuuAAtWtgS01tuuQUjRozAySefjGuvvRbvvvsupk2bhq1bWeqzOh5//HHk5eVZf7t3BwzBUZFwxWQ2JkXxPuJmAqQ8Jrb+175mqe75WjwEm6bGkHRXlHMYwPv0bL/uQ8Dlzddc/HZ+Amx+E0yw8v5+KLB4DLD2KV6F9H9Fe4Btk5xOKrwYFj+bBtP7dqI2DI/+I1Wzl/weOPqjO3Y0+d17BSGoeJLuLf/W1VnXPU0lJ76xkOPsiE7Hg+zGZLZbRo7+n2kPTi3FUky3D2JUizrjIZNwMCNEG25/174uPcrPO1qiMyhkPjzbZN+Sbkmm25xrCfPmbLQtzajFyiClUeEH9Ls7PvR+x3TUtXOy/n/P5/r/Ta+IwyySWibb39PVwZdcx4gtX4kmPhEfMcJJJnLPDPe65iCyfTKZCy6WOwAB9PH//dnscrnwGKtNz+Y8iMN7ueNQLc6wQLLr30m3MOoRJ/0glFjGwXQHOUSKR8X88BLgwxDweTs5+3MadP+vvCd4Xb4+GVg61o4YU0g4omOablESalId3ZGOZdNNjL0y4pAtbyO48CutZeZB9PW6P/OfBY4skGD1chHT7WsOeZgbup75WCvTREw3UYYZDlLTgJIDADT+mAEIptsUWiTBR1IloNow3Tt37sTs2bPxhz+I44cOGKCfsm3ZwlCjNJCRkYG6des6/qo8XJPVsO9NhGt/r8mbXk/8jsgLIiDeyFiSbnJhyW4FlOWx1WJNrH/ebf8WKeTYLdN1o21mqEXODJVES9zM7198FbD8dra3WpYatenVeefH4np92xdYegOw4TnipsCGm37utfizpD6enqQTxHSz4rqTxPLSG4BPMoCfx+u/vcaXVSxR7tqnOWnIdhEtfxKbbkqmXF3MMs3xIOOcS2qD8UEgrrhHj9POguNgh6jbMR9OpKLFzjGVKPVynrSPRkuOenG8oL+Dx3QfnBNHIfR4iEd67CWRIr5n1cPEfWq8xcuQVRiItlpwCbDwCuo5Ken2uVf6UV098gO/XB48nTVmcB4E9VgdohiLeJnuON73w9S4wnhNB6bUsw+a4skboL6DEUYqmZg1SP9fuJMRDpMB17eJJKEBcXAe46aXv5Qw+OsWw6abHHthYpznDBJUjNEXvg9JiO9wRdgIytASSLSk25U+qHo5S9ItqIuftUG0DpD7N81EA+L+s9KZ/6sNuypEtfmKiRMnokmTJhg5cqQw3erVqwEAzZs3r4BaVSBYkyBGeYEM7ETIYyFIYxxKmO8sGStRgGhisWJBEt9RtEe3df6iE5DPCPlSegxY8ziw+hEn4/ZFF13SSdo9MqsmioMI23uyS72cSlfCsKkVegrmtbnRVuap4J7p/HdkvZf/cB3wHbWZscYTnf/x1cBa4jRYdpH3GocsKSjZD9sm6f/XPSNTGPuat5g7pBqC5U/K0U9Ij8nLklCQnvh/vNVIbn43ox3TqTBjMowXGebKCwe+A1bcxX7Gk3T7gRalpNKcthURESzwCGsa1kFOoryIG+1Pj9VYeWIIWxL0fPFDSPolOsk1qYQct34l3UlkRmLl8nsZ/f1mfHITWhxMtx/wNKFEsCQ4vLWKk0c8cbpJO3ERsSyTr6zmgF+C3wWqfRaO0te+BZdy0sejXi74btJ3RYPe/sqQASnxtarjk6kOajLg0IBg+NHw8n4dEjDdLJtuUohCxrLObCqoYyIk3bI23QGZ26iHnwS/B1VLrqecJSfQppumAUmax89aSeZDOwIl7bZpdXEAYt6AlnRXG3ZViGrxFbFYDBMnTsTYsWORmmoTDVu3bsWf//xnrFy5Ejt27MCMGTNw/fXX46yzzsIpp5xSiTVOAliTtWg3nBtMUILZY/KGGRI9LaYv1KQKKhciSTepXs6QdAM2c8GynSIZBvLajOdMMq3MqtFMN0UMmBJulk23Y6NiLVKCdpVd1EhnN3Td9lP2W6wFORbRQ5UcWeJdPt3u3/QG1j7Jf86FaGPTgJ+fcN8PuqCyJMqA8/TckZ48ZY1T0r1xgh6T97uBjHKM+brvW9vJmSk1ZbVjNuVXQoaZMpl5WfC8jMY4km4SXl7ftagc8+5X0i0CS2MiYcyg0f5tKMkpT9IdF6g29zUXfDLdPK/7rnXQgzhMpgTwyy66GU4iQO6biQ5Ppmm6n4vyE+5DOt48Ig+wg6qi7ppM/PDJYC67kchftAdJ9K8sA8Gc43FIuj3Li4Pppt/Nbmlfk175XYfzkmYwIoTTdUeqhYQZkKfzVKqfgmgfaBqlIi+pzq9RTDePpmEJB+YSoTtlDmv1F923/NINorHh8F4ekAFd8yeP8jn9U6sd/51dU4j3JW26XYc1jDlIf9fc8/j5ieA4FCDX2yiQu8b+bUq9yTRCx3mK6a40zJ49G7t27cKNN97ouJ+eno7Zs2fjvPPOQ9euXfHggw/i8ssvxxdffFFJNU0iWJN11yfUJKxAW2gt6mFrS0CoQsLyYukzDIr1eoBQPq6JTJ/Kmkw3tUBpMedCxjwQCKC+Q7eVQ1JD5eeyV2bYdJNhgBx1YzHdXgxQAiTdhxex1ZYD2+swVC1LjwKFOzjpyW+QUG0SeVo324u0fbOeGf1L+lwwmUSZ0GYyTA3LMWEQOIgeRrmRQrGjO0Cvv8OpI2cs+WW6U7L5z8z27PMKrL5MFDNo9lG9ns77XEdqAGYPczsk81OWhZBexrKbgV8ZNsWkOYDIxIEFUnIvihJxYBZbs8gv/DhFM6HFdOdKstomwryIdS7Rku69M3QzoJn93ev5xhd1LTAXwyFJNAP8ubHpZSJNHONdKOmWkdTHwXTzQhgmAn77mYyfTX837/CWrncixlbBVp0Z/byt3a+ejiepejAPIj0QKwMOfu+RiNFPDkl3Cv9Qi2XTzYMf7+X6C/z0TFCmi478OYcviVw3eHO6YR/+O459XkAPOsrxMkWEux+CmkiRa2zJId38o/gAcHiBM12Z4YxVZM5BwvIjU7OY7mrhDu68886DxthcWrdujfnz5yeuoMJCIIVB/KekAJmZznQ8hMNAVlawtEVF/E20mHIQUwqgOAoUlQCmNlBRqV5eKARkE8RqcTEQk2SYyuCmBYpK9HxLAJjNoEWB3XPtsk2Q31vLJOpCdr50exQa9c+AvTCUlLrzJb8vO9tmTsvK7LSFBUDUaE/zXpT4mLIyoJxaQEs0wLwVIxjpiPFXWKj/FVN1ipQB6TE77YqngY6EjSQAFBbp76TDPt4y842WA7t/AI4uBU662c47QvR/xKif2WbF+c46kPxgJGKXZ5ZdWAgU5+r3UmHP9ij0sUa3cUEBkFEIpKcDmqEWFIPed4DeV3T/paXp6QEgGgVKStxtZSIV9kJK5gsAO2YBfYy86frGYs78yDqUF+j9lwZ97mgaMO0UdvkAUEoWGiLay8iz/ASwdSKQ2USvX3a6vemKoleVUA9P5On9Xlhgv5edpl+HjXqaY7iw0Nl3AFBYrN8XrRF0fULQ55H1reDTtGTaWJm9RhRRfXdsNzC9jT3vAXsuh8L2nC04oduMm2uENZdL9HFhfVehM3+SGKDTAkC0NlBijMUM2Ht0OYDyiD6Wiw3V9hIAxRH3GlFaqs8PqxyqLVjzs+AEkF4IFBVT877EvUaY2DVP/2t+rf47M9PeT1hrj4nyAr09rToYYzjXCHfUcpwz/ZaX7OtYmrNNiyPuNcLc0qIASqL2WG96FbD1bf26qEz/FnKNmNoVGEOZMFjrlNFv0RL3XCaxc7YzX1FawDnvy3KBqOBQIY1YAB3rFLE+FBrjIgX2PNY0fR6ZyNuo+5Ho8Ueg1cVAaiqQYUwODfo8ImHmv2GSXmb+LzZBaLbPr5/o/3MuA5obsaJTUpxEd1G5MfeL3WMyDCdxSn6TY504AUTTxXSEmT4FejtZ0fUifJojWqZ/N7me0LSBuceYqEUc4pA0hzmHGg8EmpwBbHjROe9p2sC1zhKEeUkJfy8AgKK1wCxD86gc+jjm0WDmGrHmcTttcZkzfRFnDz/wszOvwhNAmlHPrCx93Qac855FK5HzPm+Xneb4HiCjoT6/zHvpsMdEebmeN72eZtfX72Vk6OOYTMtDmBjgUQDF5e58zbGanm7Pu+1TCdqzRN87zKHkSKs55+eJE+62MOd9KGzTETR2fu+mDTSIaWySPonFdBrHzLrd5dS8ouyPzWcH5rjrmwKb/iLXiMb93XM1DL3vAL3/WPUtLnenNd836V4AKI7ZZdFtRP4syHdqNRVTaUsBFBQy5hrcdISILwmFnOtUGYBZo4D0+sCgd535zxsHdBhrr8Nl0Ne+NE499kzT/2sxPW1RGb+vybWHRUeQENEG8aSV5bE0BS0vL08DoOXZZLvz78ILnS9kZ7PTAZo2ZIgzbePG/LR9+zrTtm3LT9u1k6Z9AE37KEP/35KTDtDzIdG3Lz9t48aa9nkHPc8PoGndBPlmwE73yz81rZcgLTm0dk3TtP4ead+Gpq15Uk9/aR9x2kOH7LxvvUGc9qs77bQPPSROu26dppXl6d93mUd9F3yhaZFiPe3VHmn/ZLRZLKZpYz3SPjdAr+sH0LRbPNLeQ7Tx5MnitLcQffeQR77/+pem7f1GT/snj7QTJth1+PFHcdrLoGm7p+v5/s0j35FGXTVN02Y+Ik473Eh7cIE+NkRpzyfmxnSPcdYfmjalgd1uorQXXmin+wDiNaIbNC0aSfwa0RLOOojWiMZEuqMrxGtEHSpfmTVi1zS9vhdeKG63w0vsb7viCnHat4k6nOnRH+Qacccd4rQvE/mO9Mj3n601bdFVcmvEjz/adZgwQZz2T0Qd7jpJnPbP3ey0z1wsTnsPke89HvX1s0Y8eLq9TnmtEVcT+T7jkfYyIu3K+eK0Dz2kad+dqad92SPf4dC0DS/odfZaI8aOtb/tbY98+xt13TdTbo0w9+8PoGmZYX7abtC09cTamow14tgaTevenZ+WXCM+gKZ1EHxb48bOOpx1Fj9tBjRt8bV6unV/9aYjfnpEfo34pJ3/NeIDY3yI0r4M+TVi3Tq7vuPHi9M+Q+R7cwdx2j9B0z4M6/n+61/itF9+addh4kRx2vffkl8jJk6085WhIzRN0z6pI79GrLhfjo4w6ztlnDjtQw/Z9d2+XZz29yPsfHeuFac9k6iD7BrxATTtYwFdAOhzgZxzGYK0A7ra3/YB9H2al7ZHK2e+jQVpzTXChGiNaNtW0+ZfKrdG1DHyLNovT0domqZ9O0Ce15BZIwoK7LRjx4rT+qAj8n7+WQOg5eXlaSLUDHn9bwl+Y9Wd2OodhL5ZAFsO0iGLF2TVQszT76Mr/deHn6nP5JI2ppoGKRW8IHnLglZ9TSSSFhMxzri+Qkj0deFO4ofEuBSpl9NIq+ejLgl2xkWCGZJMgKhI9BgQ0vOoEkNTBYIWrM6JsPk04YiHXoO3cE1iPvux9y3Pl0tXcliubEc9ZPc4P2PHZx38It443SIUe5mjJMmm22+/VTck2okjkFwHg3oB8kl3vO8z7wSuf0GdlPkqI5FRIfyM9STOC79+BEw1c1kkqy8qCSFNq+mrlDfy8/NRr1495O3bxw4fVhXUy09sBeacqhP22S2BQxuAIV8COz8Cths2Sd0eBE552qle/qGh2j1yk/5e7npg5gDdBudKw9533X12XG6WejkAdHsA2PI2kGK80/EmYOPb7rSkOqKp8rHnC2D2xXpaWl1x1lnAsZ90dZaefwJOfRZ4J6SrOdHocg/Q669OlY+8PcCnhhOqi7cCWYb3y0+M2IG9HgNOM8JusVQ8P21mO2obFwXKjwOfNrZVR3v8Eej5R2DVY874t5dvBrKbAlPq2mnpb9v4EvDzk7Zq2phS4IMMp0oqALQdo8f7BoB2FwFnz9D7LQIguzNwwU/6s4KdwFc97PdOfgjoZ4RKi0SALZ/onsoBoN/rQIfr9XHz9alu9XLWPjtspq7+l54OHF8KzD7LqRZ20i1An5ec77DUy39+Atj4D3f+qdC/bcHFbDVTs/0+qW3X9xoNWPtXYDnhoGTUbiC9gX5dlgvMaKWrep0zD2hyFjBRsBGnABhrzLGZg4C9S5xlfzcQOL5Wvw4DqNfSdsonUi+/phj4qpWtPn/2GqBOR2Dbu8DyO5xpwwB+X2KHBCostMeriaFfAU2HuNeIg+uArOa6LS89Jk21sNRauh22rHr5OfOAuv119aifn9THLQ2WenlqLX1DjBYDI9fp3oRPbNHTDp4MtBntVvXa9E9g9eP277M/BNpdrV/TaQu2A1+dbP+m1cvNpP1e0x1U/fB7oPEg4JzvxGphn7VwMmAs9fJh3wJNBgNb3gJW3m+nbdAWaNwH2P2ZW73chDmWSPXyZfcB61/Rr0fnOg+1So8CX7e169DwLGAfYQ93xRGn7fbcM4H8Vfp1t6eBzg/a46f1KGD3NDstrV6e1RnI/9V4VseO+NDjj8Cmv7rXCHpNM8vpPBYYPElfp0Qq40O/BhZdGEy9/OJdQIj26k8gLQ1YcB5waL4zX7LOs4foh7gpALrcAJz+P32PJdXLZ51pR7k4eTyw4Wmg+516jG4NbvXykeuA1Y8Ce7+y1UGHfac7IqLXiAFv2eM7JQWYVssmIuucCZz9DVC4G/iym/O9MIB+zwE9HtN/W+YvBcBnzex0l2zX9yERHWH2WWot3buyOe/PWwpkn8ymOcpPANOai9XLAeDcxUDDU/VrUsVz3lh97QOAtlfpITJPeVZf81Y9DHQeAwz+GFj/HLD8jzZtoGnA5DrOMk57DOhl7OElJcCMbkDBDv23i57oCRQZz8w1gk5jwlwjPgzZadPrA6OIA4PF1+nOWFlrBIlLd+nq4ABbvTxWDkxp4HxnTAEwrbadb4Mzgf0L9etzFwINe+vr1GeGR2izDtdotsp43i+6XwETne8Aek/wp15evhf4uot+HQXQ4irg9P/qceeP/Kjfb9QPGD7XqV7+XsimI874CFh8tfPbzLSfZAPlxYBWV/+eIZ8D8y9x1oGc92Miej+XHQemUQ5G6bRNzwfKYkDP8fY4JEGrl+9fqftgAIBOtwKn/d1Ou/sT4Keb9OuLdwChxu592QRPvbz5ecBZn9npPqntVBkPpQAXM/zsLBrjXE9MlADo8zJwkhEqmdy7BrwB9LhNv/4w5Fx7Ot8F9H7e/v3Li8Cmp+zfpQB6PGHHKif3ApM2uDqmzw8v9fJllwP7v9V/k2vEOfPcDjFv1HQadccHetqhs4Ccgex2zoQ+1r/tCxxYCQz+TG9fFqqAenl+eTnqNWiAvLw8YRjqamHTXWGoVcvZeaJ0fvKUBWmHTSNizPBwqh72JQNAdgaQmWITxFlp7PLSAUR3A7U6A7sWGumjdlrypJPnhyMtor9nJt36Njst73vNtJGdQL3u9v0MjbATN2ZrGpz2yiZ2vgqc8QqVb5r9fnYmkG2Ub96LEcRVerq9AJvIDNkbaDhsSyLMhT0jpn9TZsjJeIRDdn3NtPS3Z6U439Gizg3DRHaGnS6VYBhTAWSl2vlGqDqQ+aSm6vbH9FiIZjjfAfQNg+W3LL0MKN0EZPe2HZuFYb+fGRaP55QUo63S3GWaMBcwMl8T5gJH3w9T97LSgUyjHmllxFjR2O/zECb6x/yuWnUAMjQ06ZhGlG9mpnNj2v4SMHCSPiZZ75ESr1q13GlqZbnb+vBi4PvBQMN+wPk/useXCbPveD6AaMRKbaI9M9W7/cwmSUvVvyMCfQz3vB1Y9aCRp/F9mVRm6VFn/ivvtpkSOm1UMI7INSI7C0gz2jn1BLD/A6D15UBGI/15RoZtowvoaw7Pb585P835k5XurEMoZp/ss+YywJ4jJdvtfA59BnS8wX6WUuQU2KRRfZCVBqQReYYJzmfjeODUPxLzXtB/KdDXMYv+PmG3Q3a681vMNaJWLX1cm/OWtU6x5rKJWpnOfEVpaYQgv3+S+ZLvpMfs+2aItFDImaZWbcDcJjY/rY+rza/ZdaDru/pG4OiP1H1j7tNpM1PssmjtqCyzHlmcNiHWEzOPcmr+lKwHGrZ1vkbSESWH7PRpKc7DVi3CpznKIu71g7nfM9ap0qPAvnftcg9+rF/XytKZ7kzA4UjNzNcca17rbGaKvWfTZZNS8TQATfvJjSFrPckFClfqh7eAvv/T9WHu4Vn2nkTCpDkiRe58sjKd875sD0XLZAPlZez2SEvT/yLU2MlMdX+vmZaHE0QlUgCUbtTzyACx94fc+ZJ0RBa1VpNptZgxPzOBknydjhD1sUlHHJzivVYcNJi9pcv0w0wRwmF9PeLRM44m0tj7MgvkGkHOd8D9vhZ1MnJWOs5engknXU/uXWtut5luuqzC5dQ6SAkiMuCkH1JjQP3OwIlf7TQfhYGrysV8CeCU3pNrRHY6Z+zWs9Pu+Q/Qbji/nc01Mx16PWTmMk1HiEDTBvGkzZfTpKrBumk1DObADqXaqmyxKKWuJlBaMDf7VQ/x8xYhVian5sE6ESNV774+hcrXQQV45+8ukLg0HRwRXNOvr8q/T+ZhworTTXsvj8Jx7F//ZLggiqNNwqGaSKvSEb+P/STO3+HN0njmR/Vn/kXAt32AfV+D3Reyaj6idAJVwcgJ9n263Rwhrsj+96uGxKhLKrXB8EIsMUHUxfIEStSpEyHxDqIyteMj/b/p/Z2bh89lXRTqq2E//nuhFJvB16KUN2xO3ei1xvJQyoA59zwRg9WXuWv1UGoLRnmk94BVT3p9iPHnsSyKdjl/s7yXk6DV/+k2PPKDfNk8iQXv/uHFusRzx4f0C/GVJ/VuIryXk+FsOPn5Ncco2MYohzOmSCKWNZaEYLQd/Q3zfyeOZb/uWeIHtS7EygWmJZLrE8tbtqNMApECIkoFL3/WeIlDjbZ2O3HyMobUce+X9rW06rVHe5mabCRo9X4yCoYWBeYM16XNIrjmF/U7Ughsf1+s0svzLu5H3Vo4V406mZ7gpUP3UXNbFMmCF6XFVRXiO2jayFGvGHBwnlyezkycPxsNYNSB1VYStDsrfxN1u7Hv75mh74fRYvczOlxv7fbuNHPP59fLyodDY/L4ikb9iTQea7xG8Dg1xJSqZnzFbwExgum2ui1GLYyyE5cCGTJDCCL/Br05SViTKMR/7iCKAjAirAWJDNME6CpYgOE5kiJ4vQghM5wSvYBoVNub6s6ONHRbcL5PGC6LaLsl17nrwMvfinkegEHY+TF7LMn2j5DQFhDJOz/m5Ecz3byDGp/jJ4VxaknHpA8JJAQ0HHHCGcSoI/wMVVeSIQfYbZhGqV3y+sPv5iSK053RmP8ezXQ7Qq5wxh19P6u5XL1E2DbJLTk4vJCfXmYcxyjCs05n80H8TLeLAKLqQ3+LI6QbGMSMn/4mxhU5Tnh2s/Mv1iXEP1xLZSPLCMVjjyfxrpe9b0yG6ZaQjAzy2CN5Y8oRjoou32hD7kEII0/WvS1v8utFjrVQCDiJkIytuAv4JEM3CaEhFa4NYPYRK4QioNfdHHN+5pDXoZTwXY9yTNMy3j1Zu3ev+UDGRwd0JknE0Bfv1w9uj6/2Ktj589d/AisfsH//eBuw5Pe66Q83C94BaZSfpizX+Vu0VlvhN409cdnNQPux/PQW6PCpkn1Rlsv3oUF+x57PgC86A0eW6b/J/ohF3UIOGciMVWYIPRHtLugHE7w43wsu0cNYbniOkS9Fe7Py9gwlB8Z+ZN7n0QBE+laXivOOldv1Uky3QoXCHKjhVILQpSZKrFSX8LBiuybEcZMEoeXXUUQyJN00IbbgYv3//Iv1GJj7Zgqyk5R0n9jkjF18iIpJyMqLSwAIJN1+4layFucgjju0GNhSFtm8BP0oIpJ5G6XwRJosVgN+Hi+uGgCs/bNuU0Y6PuMRQH4cqbEYGnIzDROHK3TfpQtsV1n5Awh2iMOAw8EUVYbIoZ6Q6ebUje7LNL7tkzRhHimEP0I8gKTb/M5oSbA5RY77fd9QZdH9SkskqfFOM0TkGPUi/snn5IESr03Kjonz84I08+bz3YLtep3LOdoxVh6kNIeTn8MBIgekSRS7IPbtot3EWkyv1+ZvH9oH8Rz4hMLOA4a89fr/r1laWkQ558wDandg58laN7nzS3PSLq7HmuRhL/G7eD+nLK+6EHUSvSMtlfVJX2W1EPeldD8z6r+J8KdiOiZj0SfcPEKMOtBMN7UubH5dkL/xriltLzsm1nCyqkEfPkqsu2XHgakNgBmc8Up+R+lR3SHwd6cbj8qd6QIxeUFpZHrfJekOGY0DTh+yYM5BR3tymG7A9p/Agx9Jt6bJHc5bz8thfb9iuhUqFKSk2yLoKanLjg90px8r7nK/nwgPgOSGyGNSWJuUkHFkSLp5UnR2Bu736QXH9LS+3yB2N71MvKM5r3lSVfp7F1wKfNPLo2oi9W8CQomTiJngEXHEtV/Pkla+jM1DVt03qKRbizrfNQldevF2ENJkWRqw7hnv+q19Etg7A9j9KZEnR53YD9NN1qXJEHd+IYKB9dSCYBGDtFYGp51LDwsqycBSwr6YzlNEdDoOADmS7sNL9ENAM1/6xD1/E7D5TWDN/7nzl12zTv0r/HnF90EYmfU2Dx/Kjtvxs4Mil4rx6ynpptXLqbXIV6QBcjymsK8TCVnpVGYzxk1O///6uk5Us/Y5V/kSkm7T+aYIjkMxiblJwoyYQJd/ZIlHoZKSblmtg9KjutM5Gqx13TrATtUdOnbmtHUsAuRtcOYR4o1Hgun2w6zT90sO2dekY1Heu8d+0h04yrYdmS4icITrlY8wfSRBTHcCICXppvdFSjskd61E/gwBiRD0mi7RxqbUmtZ2dNWFAdJzuha1Haj6AZ1/qTFWTyFMLmTUy7kHon7MMjhoPMh4hV4bOXmLzFfofEiw6F0tCvzyMlWuAKSku4awqzXjK34LcEi6SRUtcoMg1KIilApjQtzuk4smZ6Ltmsq4KSCIHUyhkX/Dvsyk7CqRjKY5gT0YV65al4DpDiQxlpR0iwhekWRYaDMeh3o5b6x4hZ6jy2ZC8D2ZTamyOaqIPBvkRNiP7vvKeT+U4uOElTQ3MIl0UtItkCwGIrISMac98hQx3Q5JN3UAuMbwNj9rkM4c0e1qotHpwPLbgfV/AY6vcT6TbZPaHeXSWfn6UC+3+o8YtyUH/JXnuz60TTelAeLS/PAzdkimmygnWUy3rKSw3xvue7x+WvNH/f/mN+BJbEqZL0kc2LDMRRwQjCmRdFd/wLkta+IjagPq2fFVgrTka+Yhv1F32vzFxO4pOuM7e5h9r/FATp6EJNv0duwA57A3ckL37MzSOis7rpuXrH7coHkYPlq+7QOsvAfY/h6nTLqexnwqOQIcW8n+FlE+W/8HHBKYtwCGx33BgZQsvZGQ4EOcA1+RpNvLLM+kFRyaNeQaI1PvAOFFSf8MzEMWwVpJzg0tBmx80X/5ZJnFB23/D/VPse+b6/ehhXr0nuM/Mw41OLQC94DEw7afBOvgi6deDnjvw1z1cpakOwbkb7R/k9qiLCj1coVKA7kJWoOPmigkcVa0h5qIAqJAxqZNrwSRHWeiyTq0sLIk8tnyHyNfQV1d5bIk3RRoaaXGYPTN913MEEfSLQNZm25Hujjs1Vj2/UHVy1mbuXnqr2niuMMiQkB0iJCS6fwmy2GgSNJNtmkCmG4aJGPpmQc5P0rd98h8AjHdHoROIuCSdAvGvUu9nKgPzZia2iY0SEdHtLMf2e9LSfe27SXzlJkTLkdqiSBuuYU5f9LEhdfhnZ94y7y5afZzVgv5vGQgGwM+nO627+fOCaKvvTR5ZNTLZYg5x9yVZYath+LyeX3C8rXi1wnTAQmbzIwcRpbEIT/g9n9hOm761VArPrrUuz6hsFvS7tA0i7Lf3fpf3WHcJ1k6XUP7OFh6A7DheWDD3xjfQfQLSxrLbHvjne2TGM84MPM5/AOw7CY93KYX9kzjP5PWUEvAusQzexCqAXuYOi0Z607nmEOc76vVlkjvgxYy5zBJyzI1ODjzlD5cCby3Et9LjnXy0M789tln6b5H5l0AV3s6mG6Bs2Rr/PqoryW0o/qApQUjk7c5Vjvf7bz/M0N7jc5r7VMeeSumW6Gy4FAv50iXSLurlAy5EzIASDdC6/R/S1wHR348G1iGRECoXk7UP1Kgxx0W1ZVW92JJuunFmmaaeIwE3Z5k2kASY0lJ95Z/CzKpDEk3h/hJr6//X3478Ekmn6CLykrE6XKp9uc53SH7b9cU4v04VPK0iB4Dl0Yo7EMKSLSZdShB9lHIeWBGwiWtZBFT1D3Sy27CQJUhMikQ2XS7wFkDRGuUbH+mN4L0YRWtrcFzQGOut5ZDtSSqe/q1OxWZW3gXRlwyNJekzSkkiX1ZSXcoDLfjJEa7lB4DynPl85dRL5caO2QaibnpeGR+h0/V8AKGgzO/eRTu4D8zQTtoBOz1iKsqbtSDtdZzJV8e41yG0Znemv8sfwPjJpEnkw4RHKD4kiLH9Hm49wv71qGFurpzEUfVmXcf8LHeJIPpZngvpw/ZvUyddk9150G2P2/Nqn0S8cMHe5JpHNiRTDfLNIA3xr6ltCuDrvdk/uRBFenPJVLg9EVQvA/ug1dy3gn2SFMFnm7/7Jbs+tXuwBdm8BApBLZ/oGuUsGCOF1p4x3IC6Pcwg7TpriHsas34it8CSBsrS+02xp/kNOMkGuzmpGnUDzjpVlEl7Eveoml5+SUgVJGmFrfDi8R1dXn+lfxGEkd+YDNYLM/EFtPtkTeLMXNtZkFUqojfLS+intF1YizOQSTd+ovuW2ZICfOQYM5wnQimsfW/gmw9JEJkfc02NZl9EyShTUpQt74tyNsDWlQPreFCWEB4ujKxL806OpjpELgq8ywvuq7sqT5JtJoz4O4fVqgRE36Ybt4aQPb3ejrUkOR8TqsNeaabamfegYpZr9WP6P/zWAR9guAipGhinNY+EGj7eBdGZkTcNg91JZluWYaElkryEEqBm+lmjKevKIdmXky3jPdymbFDjl9W+CUZSTfTxpGjUs3Nyq96uUyerHpR6uU08jfx8+MS84x6ku3K07CSRsjtoMtLi4ypgiw4JOFBi+mH0Ruet+/NPkt30jWdwwCJ8q9I9XKXk9jNcPm3cTGwEurM5Seo9pVguh2HJJx5eUWu+x5rnDIP/yX7VMZrNxOkORkhgCLX1cM/uOeIqx+JeqbW5aSBfggVi7rr2/Rsp+8DEyc/Ay4NwsPap/TIOUtv0E0uAN0Hy+ft9ENs81vCjGgwNGTLTKuv/y/YYY8hJelWqFDwbLrJRY0M40A/Ey7wJkMvUqXVwJSMmDBV1ByxeiXAIiCFTDcleXNssjzpLmPx3jjBeEQwVGXHBUy3l10Lx2mE84Y4D4AhpSd+m21rqmG66kqqg8Xc92QRCrEXeNZGKSK+WPBkusn6GuO8bhcqGYcgEanredYrCuykYxHDn6Tb4fWWIekm86LbYSulZZIQW70goCXdHkx3OE5JNzmmDs6lnjHy48VqlVVFpMcwr2/3fa2f7icDLht02u52NfWYYafq+O2HOeD0UcyvpFsSPKY4Z7DzN9N3AuO7Sg7K5W89T5B6uef6L9pfRUycT0bTr3q5VJ4C21dfTvoM8OLGd75T/yPLNX0/AIjfR0XIfajGk7TaCdy3TFrG1xqsiQ996zEcvgkdqVWgevl3jFjS+RvFTDdPJZ1EtBTc+vGYbscewFnTw+m6LxAmiPL8SLpprHpYLp0of5IJJfentDoMe3H6QJ1gmC16j1P3rf9h398wwX2PdH4axGQyYkSLWP8X3UHkvJEEb+Ll9wL+9ipA93RvausopluhQiHjvZyUkNBO1lgbyNIbgS3/JZjuVMHADgEiSbcVdoW1yEqqlwNAyWEIN1+aCZjZ352XzMQuNqSEYZrp5qi4ypzQearHBtggvskAeQAAl8RJREFUWeq3JlFQTBGgjnaLR9JN9bWVJcsxht+F24M4ZaqXc5gOLQZs+59csb0YGxArTxp+bLrJNjMPwOjvIeeub1QAI85ziMOCSNLd4kIqbZgd3km48TPaiMtcM+5vfw/I2+i8R8e6ZxHDgO7Znk6bKMgQrM4Ezp91Ogmee4wRrl2xBOEU5CCI1b/9/wOcuxBoebF9j6VeLnNgWLRb/DxRjtRYds/OggSPBDbdmiZ+15Xep3q5VJ4iSXcApns/IyRnKEVnHrLb2Pf2Uc7U/Er9WXD5b6HMe2iw2s4y04tXA4GAqa3V8Wa5d4IwRH6Qt1EPncnU+DPK92XTzdJiCFOHHqRWg8T38db6UIrTFwhZPtOxLpks3oMdDziYbtKOOwo0NZwNbpsI/Poq/aI7LysCioepIMvMT9PYY8hBgwShDal6Hppnl5PC2Tuank28LrGmh8JAI0Pdn9QcSZazzwpGgBVVoVLAitONGITOuVxOSihsm6j/pRo2XSIGI0Qz3RHGc7A3MV/q5QuB4wwbMxMk0811ACKzsGq6t2RSVZAVMsz6LZFnLOJceBKhXn58lS5NrtuFYLoNG/woffrMkHQHsk3iMN2sRdovcSA83afb32wLzmHG1rfl1LIB3TO6CDyVSFlJd/kJZ1uYdqf09/BsumVQIdJvWtLtwXSTTqLIbzX9RFhpQ8CS6915CD34Gvk17Ae0uUL3ALtoND89DbO8a4w6Fu52xqvt+SSQc0Z8GhLSIOZ14XbnI09bV6pP2o4Bjv/Eft8VjozOi+gjUmvIIpwEKoJBCFaWerl5QFuHsN8MpTD2iQQQyFI23RIIhfSIBLy45cK2Ee1Lfm0ckyHpZq3rHurlfmEy72R+pG0+ED/TzdLQYh3iOiDqE4m6pNbRpX9ea7N5QF6LOHRICNMdsL1MM429MzjZ0ppLdF3pduaZPRD3SU/VUvbEHGFNKMx/5unHKMlMNzdaSdSeA6wQXEy6mT6gF9D6ono48kyJj+mm27RuV5uG5h3Yku2w82Pns4b9WC8AqbX1S9LBnZJ0K1QoSEk3z6abhEvSLaFeHhZJ9agNzXVSaRJMPjcB1sSPMCRiJhyEIm0Xw5F0M51KaMCCUdS9GGMB88G8ejpOC7hBWjGMjbqYaku0Z2DWhhPkxDycyt4EEsJ0exCnXGkQ+dtIQzJQXvBasLn9K8l00+FoWIceJLFAS/FMb8B2Bt5lJgVGuaYpg6ykO0aZs7jGShjYM92dh0g92LLlSgG6PwK0OB98qaSHtDJSCHzexnnvlKflVOJM0NL7hMGrr6k5QxPK5DooiioA8Me55QyHo77vqofk+GR5L7fmIh2yTMKRmh/Q+yN3jkt+i9AhqGh/FUm6fTKarHJIszIane8JlqfDh4wP8EwyzLYjHUolur8RgtDPiayk28/hvUMAIoLxnHQ2RZtKOJJL7qvxHsQeW8HJl9qLPbVzWO1ImziSz+KUdLueadR/Vh0hb25nhfz0Ca7juKgHHSHQEPUUoHDGMKv9SKa7PF9QH15RVJtmNrP3Dp5NN2nPTntIP7ackZ5guh2oGexqzfiK3wI0lnq5wI7SteAZE5PlrdehXi5gumUk3fGql3vBIenm2TZSC0PzEey8yminKzG3HZC5SCeC6Q5KVFhaBNTGfXSp06adtUmKbHIB4Ipj7jBBPKlwLAIcpBZNL+KADAFC1osFWtJthaHhSLplnTQBEqekvJPhsJzDskxK/ZRJuIXsAyU6Xq7UPCDy2vct0KC3xDs+YdbX3EBFp+GhFDicspDfsPMjYPObRFoJm25XXcx1iXiXS4h5MN3HVrHv+zo9j2O7lLL55T2nxubhxdRzog3beGgC8CRMlqQ7i/0cYO8nXmDNUXOPcfQry3t5HJJpgH8o64Is0+2XaLYqYiRhMbcxu3/TGwBdH/CoBCMPWnNCul5mEpF6Oeebm53Lvs81yQgx8mM4j4rXkZqIOfTtvdxjXpKaPp5mDua6Shzy7Xifnz7Zkm4vbJxA+UMIoLVHO/MlIfo+izEWrfUSkm6hFoMHWo8CWvxOLq2zAsQlpWkqWj9YY42WdHNpfVYb8/onbJhwAjgwm53EUmtnFub8GS0m/IHwJN2k2arEuOEx3UrSrVChYDpS85J0M9TLWY5ymDHAKdBELUmM55wBa4H0o14eSF2R3AgkJd2sxar4gLuuv/7TdrDmlScLMpJuT0dFjLayVOCN+pKn5Zv+SWTPkOqImO46nXVCr25X5/30hmAujloE+H4oddOjXS7Z4c6DC4akuyyX359k2A0vpNUVP+cREbLqlbQTMJYvAHJuLR7DTk/Wp3AXsPha4OgK3bHKplfs5/MuYHsnJTHoI9t0RBqMMUaCHL/kelFywP0Ny28n0nLWFUd8X7oqhKTbzoiT2IPp5vajjy0w6KYfLeGrcQLwJgQ9CBVSWyBVJKkGn3AzYxiL3mc5OfQCa/3hSbpde4xJbGpiaS4LsahbldEX0cpAMiTdtCT2tL+L68DKww+RLJunlyO1jjd550vCbDu/jIevMjy8kzP3Xlb7SGqJhcJAeZ5+PYdzCEHXQ9ZRoayvlGSZHO2a4qa1HFJimXFF0adNhtrXQqbbXM9Yktqw879VFsumm3PIJYNYBMhq5rzXsC87LTd/oo2aDhOPfZbGF22Kxl2/iDKFvpWg14Hn6NDEIIEDUXq8RYvh6Q+E1M6VyRMh/6GHqxFqxlf8FsCK0y2y6Xape5rXrI3JlCj5cRpFIkTky5rsHIJYNk4gCZG6oBkjk15YWeVECt1q7FvfBvJ/pcrzI+mmDwEYp8OyIXlIHJitSw1pSTcAxAh1e5YNlojpNgmqoz+6nzG9l7Mcqfnc9IXqxJoenoJE+Qm4xlQsCUw3bx7JLvSb33D+Nvtq+7v8vH4hmGjW+Fo0RveoPrMf8Ms/3M/NGJ08tLsK/m1GjbbmqooRRHgoxVZPXHaTxxyR9C7uqAtD0p1optvPRi5knAXYw3jPIQXxmkNeTDdJwAY0ozD7URT2xRHOT7I/WXHeLUm3l3q5Uddf/wlMbeDPm/zW/wJLx1L58eaC5BwR7o2iPBgMgYnig/DsX0dWjDxEB2vSEkkKDnM2BnwTwAxJt8tsyKeqPa8MR57EtzEFDix1/eN6DG0vTSo/plXWIYakOYtsfPtkmiHRjP/8kf7KpbUtyTEjOnwv2OZOb+XBWDuchRKXcTDd0RJ32laXAmd+6vEiS7u0LZCa5cF0s8YSLemWWL9MTVZeWhn6Xhj6i8qXlHTz/IGIhHmAeyyQzt6cFRPUq/qgZnzFbwE8STfPRoWnXi4iloTq5SKEPNTLOQikPihQcd/4gvnAu5xD89jZd7mX/W6ibLq92pfXP8tvJ07LGVJInv2iMOSTQVCRYVwAQ+1I0qbb76YvJCY0YNskxm2qP01nRiyCngsvZkSgXh4IhqokGUecLuOn+4hnjPGV/0vAsslqBPQuz9tAaUk3iU0v87MN0o6WpJt4lw41ZeXvxXSLojJIwI/GwI+3A9/0se2rWfNG6KSITutD0k32CW3awasLCVGIKKaTQw9sfp1VCPUfbPVys11WGmuyH2/y+79x3zNDz9CQPjj0I60hnwkkVTveg9TeTOfluCfamyQlkq57Xo7UfM5nGUl3IkKGubIk5wZrbDPaZ/1f9djapOOvuMFQLxcmp+YpyQgFlW7zPJVz60DtHaRXelnNP573eNG+tOIOQaaMtUMvzF2veBypxUrdaUMpQOvLxO+xDlMtJ4KCOSOSdPtRL7cEMnHQMyJtDJeku9Rb0u3gWRj1ctFxHKZbSboVKhQOb6KEHaXQo6HHqR+NMJG3CyJmnZB0+7EvCcJ0k98R4zBdMurlPKQZtiTW4iVp38UqJwjTLcyfwxCVnwA+bwesfdKdNiLBdO/72nn/8EJIM91+VQJFTLd5wk2XSZexwjgk8GPT7RlvVmADFQS0IxqAr7INsMeKAwEkxYA3k+VK70O93FcMX6od63SWqAuhgWPi9P8B3R8FGvbxUTb4885rI89orP/v87J8WVve1L2Lm5o3LJDzwHMO+ZB0h0J2yKNBHzGy8lgLhdIYhqQ7u5U4P1EZtKSbZjplnR6xwGNMiln+GRJh0y0h6TbTpDfgFcB4lVSxP87uP2FEiAD7FnmPN8cTIel2lRmnpJt1aEEeOjMl3YLyvNRw/cBqY8l2o5lS2hO2/YP9fulRd4hGUxU+IZA9zCHTkQITAdNdeoxfBssfhAMMm+7yfODDEDDzdB+S7lJ3Wpkx74j2QWmXCsc+J7wXmY+MTwrTJ0c85nL0PGk8kPhB09YRYq0QSbrNcll0JfVdPEm3YroVKhRMR2oeNt1MpxIBJd2eqqNBJN0eDEHPJxk3iW9iSUUBBtPtg/GwpGsGsRGPpNu1QGmU91YWRMyVmR8pIUrV1VdpRy6WpFvgfdokqEx7TrquruJZ7eiX6RZstuuecd+LloI7prycxJHw3GwSLOnWYu5x12GcO13BDiM9S5WarEdQppvRP7XaAj3+KE7P0qYA3OrlsqDr3/V+iZcY4z0zB+j1PFCnC12AR/m8dvXoX5M5DnJYZs0XD7XXRDLdpDNCVp2lnENxQHueBWwv937AsumGQNIdCDwHTqxDv2TbdFNEMy1xFTF+5hha9TAwtSGw5d+sRPz3g9p0e4UM87su8mxxSWz4G/BZc3/5Ogtx3yL3RaYET9B2ln1sAmC1sayklRqnjpjPZBg8Tv9+2hiYQplUmeMuETHAZc0WeBEtRAcAluNYxrhkrh2ALelmCJrW/En/f3SZ+yCChxhDvVxmzJ/YDJzYql8fXqT/LzY0JkRrqyjKg1kPXr+R9bQEMkGZ7pB7faLjjZMo3scom87Sw6bb5ZSZtRfA/5pTRVEzvuK3AJaHcZY0zZGe4UhNyHSn8JlCIePqoV7OW6C9GNna7RnveDlGgXux9CVRN21a05zvmv8738V/9egK/UT1y676IhpI0i2KaW5+F9Ge6/9iS+cdaU0P34INVrgJMBhav5Lu099x35O2VTNQvIdfhh/1cs+QYZwxKuv4xoWYczNpdSnbSdUMY4y7CHLa3tGn1K/X3/jPcgYDp/4FaHs146FRLu9AQ6ReLgTV/iIv2VZVzAMwRjk0Ex9UvdxrXJgq4oE2fAmVY690ZlpL+sOAY04Re4LnAZ9PkDHSSQmsX7AYMJEjtWRDtpzATsAo1VeXXbPZhsb3n/mZ/fyE4WPkF8PB2raJwcoWQei9nKfNwpgPrMNbE6z5SftU2fy6OFxoEDj2CEadReM3o5H+PyuegwADfqKgAG7Jp19JNzNP473F18i/w4PMgTepiRkKsxlLJiSYbno9Lt6vOx3N/Zko3yj713/Z92TpD5akW5Zd2vSq/n/1Y0Zexhj0K+kmNVp/egj4nDAXOuXP7HdNDTUtBjbj6mXeyJAyOw55BOOX60iNtOmOQ9JdQ9jVmvEVvwWwbLrhQ9JtMQCCRVrkSM3T6ZkxwYsPAgtHU+EIgqqXszZJ4psym7mfA3CdJvtx2EZLuunNUqQivNCI+52/Sbd/SpZ6Ob0gsQgjmbAnohis5bnue0xHaoz8TfXJRv0YefhkuqMlCD5+CHjGm00w002H0BLls/dLtnSSJFRz1/srP82wQe7Eso8zxo9py2+qUAOw24F3Ui6QdAulntQ4kbFtFEr/aYIioCaA13vxSLoLtjlD+pEgxwYpLWBh1cPAp42AnZOBnxnaP34k3Z6QJOJZB4CysOol6UgtCGQPekuPyq9JfpwBOZ5RazFXemx8f4sL7HtLb/Cul4zndL95eKqXM+bN16cICmC03QbBwWAQeB6MsdpJ0D6maRbpdTsozPEhKz2nI1OQ66VjHw6gWbh7qvw7PJiHQMLySPo0BNTrKkxugwqR6ngkUC/f+SGw8h7iRsxtsia7pvBsumXAPeAN6L1ciznbOyUb6Pl/Nk1BHiyF47TpDoXd9STHm8jkJ6hNt2vtDIO5XvgyZ6u68PUV+fn5Uunq1q3rnUjBHxzeRI1rmrAn4VLtMdOJmG6BGohosSJtun+6Dyg9oi/s13ipRXoww8wFgvVNFDxtq0XgSbo91G5pRAoYhIwM0x1jL0yhMKxvd9mzik4PBX0gWsTKGXNd1pGa5UCE0X9+VdtEJhR+4NXuXG+fARd6Wr1cxGTOv8hdHj0G9n0ZrB6nvaTH1DUPhABCWmC0CRkTM2KYI/Dss0SS7rS67jj3Jn5+gp8PD0ImxSfTHdibqzmWqXTNzwf2fyt+9ef/0/8GfSiuz4JLxfmYnsXpMHMmeJLuIEy3NJNmrotxSLpJJ4NMCUsy1MuN9adwl1NyJAORY0PhXmZKuhmHSOn14aorueZ4hQUk8xWV7YXjq5z7ipd6uW9Haoz5yXNsFxgB1gDRGDOluaFUoEEv4PjqoBWz94J6PeXS0/4g/KqXM+sQxyEWDZFWg6M8ghbo/SLfJJBEIPVyVvkx3Qs9iRKWTwcGWN7LzbIzm4nz8ct055wJ5G9w3zfXdXpPdezf5U6m29ORmpekm6VxJCnp5qmXk47R9kxzP6bbMhRit2FQWqyKwdfKWb9+fTRo0ID7Zz5XSAJ43svz1nHS0+rlJqMuknwyTrkc+XFftMsqPcJ6mf2al4SBNfE8vVMy7sdj0124HSg5IifpJhFOCybp5jmT0WJAyUG7bqR0knl6KCGJMr/xtJcE75P3OJLu3PVUHF1KXZKEX0l3wphur6Uu0ZJuSr1cdsOIRxOChZQMp+QMYBAuxLebm+Kx5ez8HO1BO74SzLPCnVQ+cUq6TQ/20oizf+l+CWx2YCKBqtMuSbeHRFWIgJLujn/QJTAyMOvlUP3VkFBJNwmHlNBoK9MjeqIgiqssknTX7kCs36ywWhKHlPGqlwPuvuPZn5vwbW5RBZQqmeNJ0D4m0x1OBUb8CFwmcQDCzcsY6+EUoNHp/t93qJcHXDuChGh15eEzTJpV17Curl+nk7/3aXg6UiPfj7nT0SFJeRA5UmsyRPwuV5OFc//wQrZGlHnwsvoRdj7mmCL99ljCooDq5ax5GpNkunnhcEV8BWAf9DvqwKp7zWC6fX3F3Llzk1UPBS844nQbE4Pl7dkET71cyHSHgjPdpC2NiaI9undbVjzOUNi2Z+XCi+nmSbrjsOm2JNrE1Fj7FMF0S9iiAno/0eUuv83NfLDK5/VRnnEa6pIKCSTdopNwcxHreBPw0wPs90mwNu0jS4Elv9evr4roRAWpUubKwyfTDc4hxPb3/GUTSgFaXsT3KH18Dec9vwu9cQBFS7plHaE57HCDqkxT79Jzmma6/UhLSE2PvZ87n/k53BIdXpUcAmYNtiWhrDVp31fO317ty5V0+2C6e/8dWPWg/jtepjuRUieepDsIoyNN0FNMd4cbga4PAl91k3jXqBe5lsbK4R7vCZJ0Z+TohzTRYpuJ5an9B4VXKESAfYi08l6g28PGD5PplgytZCcSFC3rJI5a5zb9Q/9/bCUnfUBHaslEkDVA1D6kpDucpjtxTK1j2533/RewQuDjhVvPAG3hOIjx4Q8is6l9WJ+INWfuCKDjzUCehLkTSYPKONKzIJB0c0OGscpnMN1eaDoMODiXo15u5MXU5iIET4lyPsgDnX/+JncZohCo3R4BNk6QyxuQl3QLIx0Ivp32D8Cz6f4tqpcPGeJxwqOQPDgcmxiLEqme50pPOLEA9HAjgDdRRU+6jByg9LBYtYq32R1aCLRjOGuKRYAUCUmXp6SbtwAk0JEaoNs388J18cCSdB9eLFG8wGTABH1yyDrw8KNezpJQiZzrkCAZr71fAK0vtctk9Z+0MxWzTM4hxJLr5fNo2Ec/Ye/6AJ/pJmOQkvDLXIVTdUK5cDvVXkZb9HlFLGXjOVKLB66N1CSAKEl3GeFRttlwyi+DAdJuO57DLdHJ9+rH3arH3hmKH/PWPT+SbjLutSyz7rc+vmAe8CRQ0n1wjlw62pGa6MCWhpmOXEtjZe595MhS/7GFWQin6vtY0S57/YlbU4HC1rf5z6y+ZvRL0W7KDpWCzCGlOe9+eQXIbELtubLrCKkVp9nMNk+jJGjIsKQipK/zPLqIOecE8zBijD2yv4Z+Dcw+0y7PL1KyAzLdBiOixeCss0f/mgw34O9QlIeDc/U/GTjqKhE2y0SDU433RY7UZNo+Bv9mEEb9YixJt/Gsfk+3uVcoBKFZHfm+LGp3BAq2MvIRfZNHFKFQCnDqswKmm0VzSzLdonDDojrTkm5uyLCawXT7GpGRSASlpc7YuAcPHsTTTz+NRx55BIsWLUpo5Z566imEQiHHX9eutjOGkpIS3HnnnWjUqBFq166Nyy+/HAcPHhTkWI3BUi8vEXyrFnWedpWZJ/teTDc1JFqbzsE2SleVyMysDFU3SRUl1sQjmTxZSTePoRK965jgIULSLalejlAwwnrPNL7JgAXq5JC2lwXgkkSxYH4jc6GVlHST6Sw7cIIQpyFzQu4sAPKEIwNdHwBGLAc3DIVVDGdM+l3oSWaMPBE32zgjx+P9BKuXA3D4XCDrQs/PNY/baTrezM6L5YHdhB/1RdEmTJuosNrEpaYYlOmWVfvneVQNiIRIuo1+cxDBxCFVkPrSoQe5RdPrS0jeWzpL6lWnE1x9+MtLwLIb5fJ01Y9YM0JphNqlMc8TwYCQEGmdiSTdJFjrpQzTHYvo0q6f7gN+oD1TB3CkxgszaR641ekMKdKR9PpdIeF+PPZc5kGyoH1MQQW5RpBmXUHCOGY1C9gWxJ7vCDdYATbd3R7xTsMrz3UAKDNuWtrv0/CTjxbz30ek6jbPe3mPPwHdHwfOJ7VA6PCHgrxFIA8DO3LWPjofU9296dlw7emsd0U0DVNQQvB8Qkm3QMIvGvOu9aZmO1LzNftvvvlm3HOPfSp74sQJ9OvXD6+99hpmzpyJYcOG4euvv05oBXv06IH9+/dbfyRjf//99+OLL77AlClTMH/+fOzbtw+XXXZZQsuvMmCpl4sYGFrSLaNeDrgntIxEh2fLxwsjJmsXxJqou6bY1zx1MdZ9lmMwJhiSbpLplnWk5lDz9IlZZ4mfe9nIAHbZok3ZWsQEcYSzWuin+wCbMY0xVKhF6uUHv9f/txjJr5ejHnHadGuaXS/Rwl+0l33fr0Qsi/Co78hT8qQ/YZJuOqQW6RWdkhaYY4R0FGV6oKchsttNlKTb9e2MfutAeXX2JK44Y0j2oEAU2SEIEhkOi1QBdngvTyKj49KkCSDpJpGajcRKQ4n2Dafa89jcexJh3yoLae/ljPsye6UWtRlE17MAkm5eP5y3BGh7DTD0K++x1fUB98F1shHyYLojhcZ+Qn6rxDzkRmwIKEUN0hbknu9HvZxE0IOmul2CvUdq7dHOO73eI/+T8KOmHkS93GK6BTbdabWBXn8FGp5GPnSn4+UtLD+Nfc2qR4Ne+n/zMCy9of1M5DiU3itrdxTXkXR4KBxDIkm34NuPrqCSh9n7eTIEEpUAXyNy8eLFuPzyy63f7777LqLRKDZv3ow1a9bggQcewAsvvJDQCqampqJZs2bWX+PG+kljXl4e3n77bbz00ks4++yz0adPH0ycOBE//PADli5dmtA6VAmQkm4pz420Tbd5wu+T6ZY5XerzMi8z9m1pybPH8GRKY8s43yi50bEk3aEQrM1ZVr1ci4Pp5kka7Ap5522FdhDZ8JuSbhbTbbxXu73t3ZopKSDvUYcsog3PjIHqBZc6nV8Q74rqc+QH9n2/ku6CbbatKukoKiTLdBvPiyW9rMqCSSxS/eWQDlL1TG8AdL6HcoAm8HLqCUFf0IwC6+DD1ZcBJd2ZlOZBXU5YG0esUb9gEcYJZLpdZcWhXk4SYMJiTEaSCC0Vd0idJDFm4TQG0+3DIZRJ3AYGJen2IwmT2UO0iDPPzf8mnsmOM41zTaD+ycAZHwB1TvKeC+EMKtIBkd7LEZUMWl7MuOmxL657GvimFzB7iL3GmOkzm/LfI2kgUprne7xKHP5yXyWkhSymu243YKSHFpnMQVP//zDK9rkHWkw6qXUj4QDNijFt1JMVnsrKpwLUy2Ml1DPJvPw6UiNBjrXyPHYaMx9zL7YEcqRGm8CmmwZJ03p9o9CRGm9d40mujfqb/iPI9Eq9XMfevXvRqZOt1vf999/j8ssvR7169QAAY8eOxfr1ftVHxdi8eTNatGiBDh064Nprr8WuXbsAACtXrkR5eTmGDx9upe3atSvatGmDJUuWCPMsLS1Ffn6+46/KgwzhIXXKR6mX7/xQjoFxSbo9BnrrK3TGjAVTNY4momVVGENhPdxOu2vZz5lMN8MBhp5YrkyLYYxTvTxRXrdZCIWBYo5k1gJlc8nMR9C3VtsSp5Skww5XOgCH5lNlCjZG2Q3MJZnwCU1CgiNCOM3pbbZeD+93TMcg+0itH+N7vQ6xCrfr/3+8OYCHbgGY8b/pDVrAdA/6COj7ivM+/S1eDELtk4z/HdgEiKWOSjPdLP8PfglXzhiiY4t3fZCdLpRClRmnWmfBDvn3/YBcd4IQ97KHYeb64tDAikPSrT+QLFsC9AGSRaCae5KPA6KBPp02uuoiK+kOGp4w6mQGl99GaD9IjtMThO0ouW/xDqG8+ioUFki6E9DPTKaLOBznIXet7i2aPjRKbwh0f5RTFtG26Q3ta154RB6s+RiE6SbpPsY3hkL2+sqDzAFOen3n75TsAIcLhBq8S9ItYrqNw+qYQNLt25GaX/VyIl+XTxNRmZRmDTNvGUm3jCNVSmvAQauR2musccKoA1eTg4FYBFh6k/t+s+GCvuXYdPPCkrLUy0+6JXmHshUMX7M/MzMTxcW2p7mlS5diwIABjucFBQlwfGJgwIABmDRpEr799lu88cYb2L59O84880ycOHECBw4cQHp6OurXr+94p2nTpjhwQCwleu6551CvXj3rr3Xr1gmrc9LgcKQmyXTTk+7EFglJN5W3l3pttIT/zFJLoTb+hv3EedqV0Z3CDHqf/Zi1KLPUgnhpaaTWst8NU5Ju3zbdcUi6vSB76KJf8NOIbDBJFXEp5hzA1v8aEiRKvfxchq8HaSlcBUm6eQinAtkt7N80USLCljfdZSdcRSoEXMbw7XD0RyoZQ9JNq5dz08MeKw7m3afqfX0jRm23R9h9wQtzxyQUEiTpBoCcwfZ1O9omlqiDywZZEiyp6pxz2Gl7x6spRqiXIywXms0BnxpBDl8jgrFNeioXEWdJAcEAWqqrPphukRRUCqZU1dzD41A/ZSEWcb9baB5sSzLdC0jJMfEOzwzIay2lTaDI9Mkye/BSLydBqzCHUvjrGbn/kes/7XXZu4LGvyDjnLTpJp3JkuYdXmugxJin9/qWv/N36N3sXCcz6Mem21wjrHqymEZq7xKBdWBfiyMgsvIX2TvL0EuCPKRU64n68tZuWmvAsa4QBzObXpGrg4PG95ib+74Ctv3Pfb92R/444Umuec6UWXG6SV8K1Ry+Vr9evXrhvff0U9+FCxfi4MGDOPvss63nW7duRYsWLXiv+8YFF1yA0aNH45RTTsGIESPw9ddfIzc3F5MnT44r38cffxx5eXnW3+7dkpLXyoRDjS+Aerl5T+R8DWAQ216EdQBJ6sq7gTUs518CmGqPzUcQN43va3WJfYvpAANymzEZ25xeiCxm3Id6uadDtKCIh+kmbY8kmWmRdJZmKEgNC3PhzDmD8aLHN5gSFnLjNNXc/cCxEQSRMFDj/6Tb/OehZ2T889h4L1zrM9uw7rGYBk1gMQlggaSbluKwxopfxyZmmC/eJmwRwtRcNf0AOCtE/YyD6W5tmEyl1XPnayKzqbMNZTQeTPhRZfYj7ewwTv/fgLAtdEi6U+RjZ/uF2VcxycPgWm3sa4sop9Ymab8bMiAl3QQRR9dbBjLjXEiQG3WZd6H+v2A7O92JX+Xr5Mg/CnfbM0xGpPOLsa8d8FpL6TmeYEk3EyH5wxR6rRFpEPLmJEv9WVi9eCTdxCHGwbnAjI7A/u9gj/OQd76//EP8HGCMY599dcozxPwmBA88SXdaXfvaYrpFNt0+HKmxDuy9nPg26G1f035NpNXLAzLdba6EU2LuYdNtHcKYY56WdIveJe/5kHSX5XLyTQGXF+D5IBKGVhP4pKnm8DX7n3zySbzyyivo2LEjRowYgXHjxqF5c9tD5bRp0zBo0KCEV9JE/fr10blzZ2zZsgXNmjVDWVkZcnNzHWkOHjyIZs2asTMwkJGRgbp16zr+qjxkiRsTJANpQkTUmDZSftXLRUy3KQWnF4DctcD6Zz3ypfJuf71xQXy7uellNrUZMp56uYzUORYhNmHSHi2ApPv4av/qZ7KQdSICuNvewXxJMNNeDqSYRA7DkZoVi9Z85CUpMcskHOOJbCu5+cUr6U5ztmG7a4HOd/vPxyI6POZTnZOA09/xkS+nb2i16bAE002GcyvexylHgijgwRxTB+ew682TdLMIfz+Sbp6qnYnOd+nq8yPX88dIWl1KWueDCPDDdPshcs01yhEyLAar/ZLqSI0h6RZpzsg4oCo9lJCquUEQfSKCngc/zp+YoMZeea582SZEUQ80hqTbfui/LIctqQ/inX7Ok24na1xqUfn46y5JN+cgEOC3rW9NtgTZdP94i+47ZO4IuA6XRNgzXaIcmv4Lw9cYIg8vSG1Lpk13SHe4Z4KWdCfCkRq9d3itxV0fsEND0mmTbdNNaloC3mrqZn2swx8Zm26WpJtkugPOTRHTzVMvL+Gt96y5mMS9rILh60uGDBmCFStW4J577sHEiRPx1ltvOZ736tULt99+e0IrSKKgoABbt25F8+bN0adPH6SlpeH7720pyKZNm7Br1y4MHDgwaXWoNJDq5TKSbpKBtO4JFpy9M4z8AzhS4yEaL9PJsDHd/w2QZ4QvI1XDTGcQpcfccf8AwQSH7QnZIen2YdNNMziAvzBlfhGPejn5rlCCbRyYpGSIGUV6YywvsMcd2Va0qpQM0QbA4YdAVr2LRM5ZRJ4BvcbShI0ZR9REFqHdwz3lllQvZ3kX9UrvNx3PeznJHLgk5aZ6LnmIETDWcdEedv/zPO4znRfSbSRiuj38K4RTgXZXAdkt+fmE09xMd5Oz2Gld5fuRdPvYks35S4aVIssKKh2QcnRFMd1eh8EOXwCcesUjlSclZnrFiLIJvxRBTH7ideDDkjp5qbnSEGlWaFHGmsHQXpHFL6RaahxMt0OrKsGSblabRork+5elXs47UOftk37HkkwUDe67PO0g84CNZLjiAD3WQ2FjXZREON051yyGkMEs034yfEm6ZdXLaUm3QBMiuzWQmmWXEZTpNueMuY6azum8aOlQmKqvxyGQ1c6EIzUZ7+Wuez6Ybh5t4qo79cwPq8ka679VSTcAdO/eHffeey/GjBmDcNh+vbS0FCdOnMCoUaMSVrmHHnoI8+fPx44dO/DDDz9g1KhRSElJwdVXX4169erhpptuwgMPPIC5c+di5cqVuOGGGzBw4ECcfvrp3plXNzi8l0syXa4FR4L4cw12L4JDsPhZkl7Oxt30bPZ9Ew77FqIe+74xnhMbpqn2/d0ARqxSAEtv5JdjfTMhVXU5UhOol2cyNCuSuUj4Ybp5YS8Acd+a9mrhDH8HL6S9D2nH6WK6vdqH2DwswiIA8dt2jP93SORLqHySfg0G/JeTyAfT7QeydoVS3suJsUJL1ljhavyMCzpmrx9JNytMX5MzqfqJmO5yMdMtk084DY51N5QCaSJXJtayla8f4sRkuol1nTxwDCq1OGcOMHy+OI3ZnqxQliyQWlY8tVxpJ24M9CP8J2gaXGYlNNPt62ArXqabMfb6veEzE8H4jUXcTKjlnTsA0x05QeTD6SsZTSVHGuL6wHf+6yQDr3lGOkEzv+uI4XQ3lCI4MOX1fwzo/2/OMxboddcHCndx2tyHTbcMXAdiYaApx/8EC1nNqbkmsOnWIs5vSqWYbqb3cr+SbioPkVlJrNRZVxeDLrme/nQ/HKFrzXHnuY6E4dTME6lfE//NeofT4NrTXe8yDi0cB/Je9AeP6U7RDy2YttccSTe3CAaTnkytrQqGry8pLS3F448/jr59+2LQoEGYPn06AGDixIlo3749Xn75Zdx///0Jq9yePXtw9dVXo0uXLrjyyivRqFEjLF26FDk5OkH4j3/8A7/73e9w+eWX46yzzkKzZs3w2WefJaz8KgVZ4sYES708KtiUTLvARKqXlxeI0/ixF2fanZgLVJjNDJMOko4tF5RDLCRmOzuYRMI5EUvqRjKXVpbJXCR8qJeLYh6LmKaIwcylZPhjBCOEI0WHpJvua1n1cklJNzefOCUsx1fBre4sCGnFs/k36yFz2p0Mm0empJs4bHL8B9DifOf7Vr2pOTlMUqMjWkpWBsz+5xH4LAlUw9P0uMGX7vEue/Mb8kw3V7qQxiBOJPtJtO66yvFLnIBiuk84nzfzQTCT73lpMWgx4MhSSDtSIxmitDrsNL6dvpHvEvXVYsChefbveCXd5tgf9GHAyjH2P7+mGSLmWYswyvCQdLP8QLjeBZBWn5NGRtJNpMnfKE7vG4zvIsfY+Svcz8l3zHGw/q/6//yNbA05QCzpPukWpx2wCPFIugt3eOx/dESKgHBJun0y82QUA6ZNN22rS9IjxjofE6mXs9TUeRCol9ft5k5OO32jy5dqfwPHV8GmW4y6es35UNh2XFi3q0CqTDHOEUJAYr5zfDWnEJbGQQJMP0Ip+jy5dC8wcgP1jHPIzoWSdFt48skn8cYbb6Bdu3bYsWMHRo8ejVtuuQX/+Mc/8NJLL2HHjh149FFO2IUA+Pjjj7Fv3z6UlpZiz549+Pjjj9GxY0freWZmJl577TUcO3YMhYWF+OyzzzztuastHMSNxCJYvN8dckikWmOGoPLtSE0AL8m6pzMbTggjl9SC4wQlnMZmiGmQ75oxstMIp12OzYPRHkymO5mSbklHeoCbWJOVdJvq5eF0f5Keej2J/Il6stTLf/cLcPpEdj6kmpT5DSKG1eFgj4cAUp+ULOfhDQtSKvsSjtSSGYeyiGBOaZtuTdMlkSSRQY9zlno5QkDz8+x8RKDXImY7cA6KmOrlABqfbqs+lp9gpwGAg/PcefIgknTTqpHp9eTy9KNeLks01+1qpyWZ7nLi0CuUoqs2nvIsMORLH3WAN3OqRYHvCDMu+jA4uw31AvEsi7dHxxEakNxLyFBFAFC0171nSEuACSlN7Q7eyUkbVas+jAMfWS0RS21ecGjE0mqzH3Jui5h44ln3h/nphAjLM2vNhnunkUGMONjLYDmXjLKvAX39a3MFO1+uTTfDd4kQPqS0ovcddSDVy+PJ2wDTpltUJXqfCNlRawp3OGk0/QV+/rSkWxgyTFK93OVIzVgnWHsKfUBAQ9QW9OFmtJhg4s1+lzhwH/Bf4LR/6NpG3ANg4/6BWfr/gi36/3CGrhFhPmOFkHOFC4WzHE+61UOCnpLOMLcMIulWjtQAAFOmTMG7776LqVOn4rvvvkM0GkUkEsGaNWtw1VVXISWl5jRMlQMp6ZbxmrlxAvA9pb4tYrp5MUS9iAPh5s1x5mU99+PMhqhHmCKgwilAwVbGOx5OwOwM7UvztDuFXDg0fvsA9mbhKDvJku6mw8RJuDbdko7UTJXpsE9Jt8kANOzjvO/anFOAul1sD8w0HOrMLJV/Ap3uYNuh9npepsZi1G4PdLlXVwf9nRGnXERMem3YQqbbh72aF4RMBUW4lB0DptRzno5zT5oTILXj2ify1iCJiAFea5u0pNsH093nFTkpVzLUy0lJu8ORGtkOYSCjIdDzT0B2K/k6AHxptFUObbZC2WdKfbOHBokfOCJFsBzvUeYRgZwiSdSPJa0/thz4sjuVL2POXLDGvm5rmEi1uVL/79AUgfMgUIvA/c2UyQhp3uEHLlt5Sfix4wzqG4KGOeZ4MePpgxkavOgYvH0nqE13UKdQQvVy82ccYUozmzHazaOuLsFJ2HbC+dMDDMaTzo/47ceRmsxcFDlSY81TEY3nKJuBcAbQfiyZmChbUtKNsB6Srut9+nwVOaZkISXDGemDperN0jjgmYGwIGNuwvTf42fMM5j036p6+Z49e9Cnj05M9+zZExkZGbj//vsRqiFBy6s0SIc1myRCP7Ag9NxoLGI0sZTCcBLGeo/5yFx0OASvV3gPh003Q9Ido09RaXCIexrk+DUl3eRpHamqz8qPKU1P4pwIhYG63cVpzFNQEdMtOlCJEpJuP7a7poScJqSCOlIjDzx49ej3GnsMdKe1bgL0iRbTN8tOtwF1OxvZeGye9U9h3DQlEQHjgJqQjhMvAE/Vz5GGehZmSbrNOeH3sJVz8m1u6FmU4x4ZtWMhU+3hvdxRNUabWIcEJGGRonu5veAn7zx9eS+XZVQISSKZP3lNtrGfEGeA21mgC1R7hilJt8vXgAxDHQfTLZJikqrv5rM6neXyJce2zKEAa36vfcqtXk2vZW2vARoQ60Z9o7+0GFB8ADhGqUtnNAaGLzTSRN11OzjPrLT+76RbqUoxvmX3NP4zGl7MHe9gjcbA9/jxekUgw+SZMGkX+oDMhGiMAPz68vYdP2Hn9AKMfwFpAy+b7ngQSgXO+8E9fr36kPbDQH8bLekWMVO0IzWWM1qWbxEuWIetptYci+mWoCd5SMkAdn9KVtR94CCjXu68wU5nznVamyic7vTezzr4NMOg8fYJr/7mjXmW+Zp9wyfTHBMc+ld/+GK6o9Eo0tPtwZqamoratQPEzlXwD4cjtYAQEX/mAkGHufIr8XA8iwJHVwB7OaqN5iLHVdvzYdPNgrQtCUksml67CUbasUCxvD9K3ksUZAkawE2MkWq+Qkm36ZzDp3p5lHTqQcAl6fZiusnN1QxpVcpN7pvoaHMlWxWURqP+jHdHO3/TbczSQvAj6RYRZaQzIBGEhF0A+z+RpJv3TSN+BM5b6pEfAd7hisxBg4gJ2PeVHtWAhEv9WQDzkIV18CeDpDhSI1TwYhxJt+wBWxC4JN2UdLHLPfQLMpkGr0/9k4lsRJJuv9JJn+u4rNaHa02lD0fNQ64osOoRxvthm+GJMSTdm1833ucwGazvWngZuy4seLYjQ0WUhdTsYLb8LAm8uT/wJN2eTDdPwilwpAbIM9HW3Kbm+Cky4VPB+aYEMd2n/kXX6qKlq17rUYsLqRs0001rlgiiTqRQNt3HGQeaXt65XWVz0rG0p7yYblE/5wx2+rMJheyy/aiXi37bFdX/0XQIXW9632l1CSc/H+rlXEk38R5No/i16Y6V+WiL6gdfO7GmaRg3bhwyMvQBW1JSgttuuw21ajmloTXWmVllwlIvj4OZk5F0t7kSWPJ7+7aL6Q7BuSmLvKqWAzP7CZ4b33TyU8DR5XropTWPu+sEUCdpDJtuFmQnOzmhzYWKJPS9mG4WoZXUkzlJgiZaBiEBJXR8ZB4+pPtfMAE3ke/Xe7nDpttUkRT4a/ArPTh9ok7w/fKSOJ0ZTo5EahZwdVQnUut0Ara/bz9r2A84tIhRPz/q5QKwwtOxIJLKcQkgAZg23eYzTr0zm3LmBu/QyPA6TRMnaRK2015E2M9POH8P+9Y7TxPWN5DECVHHnMHAYUafm/DDdMv2CSnpJqXKPAlGosFkuom6Nx0GrPuzzzzjYLqbE47/WISheZi88yNda0Xam73PNpQ93PB0qEjscYcWsJ+TjDm37TiRH0S+TmT6wUtLLSQp3QqnI5B6eSikv0vOLXLvYUq6abt/lokEqyyeTXcC4nSfM8/H/iqQdMerbWqOD1ddjHzbXw9sf1c3CSs5BJQdNx6HdTOu1Y/Zv0lsm+jM1+WcTCDpZtaTFrgIIDIrYh3kWqFOOaELWfPiwrXAge+Bznfq6vR2RYOpl5PgjguOhhn9m9Y28gpnSl437OvWrgEEfUNqgaXqh2JWxAqfku5YOVz74G9V0j127Fg0adIE9erVQ7169XDdddehRYsW1m/zTyEJINXLebZHnnlISLpT0oFBH9j3U6kTZZp5EhEv5bke9TEmcFpdoO+rQNOh1HMPSbeMOpDUZCcmuKkiRC7KBdvsa6bTtCQ5wKrbhX2fJLhFiBSI+0e0kAVWLyfs6hxl+fRebj0nJN1CKa9fokMyPc+uKhQGzpoO9H4BjoONWq05fWNuvIK2TJWIUzx4incaL8iolwPOk3GRWh99yt1qFND2Kj2ECGuM1WovIGRj7rEjNf48iLCiXc7f9Rjea3kwiSXaptuEqbLHrVoS4nSznM0AFDNEPe98t3e+MmMQEBPPrLLlMg3wjgHSMVLpEfdzM0yVxcDKMt0+iT1ZBtIzndEWO953hluzECZ8m0SAvPXifOjvkHEwKqyeB8O5+zO5PYqOCiANxjzxUi8noUWBNX+i6uJT0u3XkRrLrpn0rC9Ct4c9vsnHfGNpYplrLE+9vL0hiAmnU8wnHYmCqsfOj4zbpkkgpa3mm+k2D+Nl1goR083yEyJxuE+jfk+g673uPar0sP4HEP3uU9LtpV7ul+nmMf2sfe28H4BR+xhlcw7baDoplRDW+dHMBAwaQEm6AeihwRQqCZbTsFSgz6vAshv95yFL/JGMNa3GlZLhXDhFTJ1XeV6eLStD0s0qjwTL/oy1mHlJAmTQ9hrdO/OyP1B1C3PshinEPCTdpv068xnpvTyAIzWXZMWvTTfB5Ek5P/JJ5Jt59X0NWHGnv3e9UHLYfc/c5EUbrxUbm/MttTtI2NpKwEvS3eVe/X+PPwF7PtevLaLCg+kOpwFnkZpOjD7r/qhAmsAguHhpvd5LFLyY7mbDgb1f8N83mYF6PSmHXxRaXuyDuOAx3YQHXprpacTQOmrYT3dCaZqdZLeWKz53jfN3IElbHEw2DVJd9GuJOSIt6fbrSC2opJvK27KvBlCex6hX2F5LIoXA0nHsciwCnRpX8TLdXvbMh+YDOWd655OSHmzshEJwjX9SvZwb6sxA7s/ABsrRJm+fE4UM8wWWWY8k093zCWDjC6xKMPL0AIth5Uq6KZV40tzLLJfrlIuRjyt8IovpFo0tsx4SbS+SdAdRL/ezXs2/yL4OatPtpV7uxXQXU0wz76CP5UgtnMZ2vnhgNicPkVkCfTDjBc2d/rcq6VaoRJDey2VVTF15SKiX06AnnotpMBY1FrHm6SiNUpmnFxmHpJtc2GmmW2DTLTPEWe+b6lMAUKej/p8X25S1mJltLUN48BBOA7P+oTDlKZMHDWKmW2AjHSNsswMx3fQizPBeLgLLkZqIsPBLuJn5Z+aI0/nJywRL6mRqTohUpT3bOVHLtYekO72Ruz7WnCPGU/9/89NZRTG+KbW27lWbiZiboOrxODspCWnv5LA9QsvCHLu87+x0BzDwfXBhzomWv2M/N8dE7xfhy5EaHYaNLIuZD+NeOBVodq79uzeLsE8SXMS/JFHb919uXwFkf0SLvAncZDHdMpLutLrufZRuCzLeOs+PgpSGFYdAr8MIJwTozkllnO55ecM/+WlnmEIek0964fcFxjtm6CTa1IEFcn+3suTREQKtHD9ghvUKyXmp5tYhyMEVKwKFh6Tbak+NYbtMfU9DxuGetX9QNCFL0n1gNv+70usbF5Lq5Svu8MiHSg8g4WyRxXT7ten2GHdeTDcNbvkM9XLfEBwY8CTdvDCWmsZIX3NY1ZrzJTUdjjjdAU99ZBypAc5FlY5FS5dtEsinT2KU58V0054t6e/iLKy0qmsyJN1aDDjpNqMaHvb0LALPeoeRd6tR3nUCDCkza4pKbtRkjGsWTGm26BnPkVrPJzllmiE56M3bp4MWliO1UBgYsZz3gjg/XvpEmAZkUuporG8zGVlRbGdmDE2PfIPAS9LNeh5iSLqbn2c8S2Gkg/sZfY9UQTOhMZhu2kMuC14EsBnCrlZbYNCH3vmRKN5rXHAk3eFUoP21ug07C6TJhek0klRJd6ztPlRVt/7XfT//F3f9WHW27qUC/d8ATn4GuHgr/2BRFmaYmoanOe+ztD/8Mi1kGfTBs8trslfeybLpTuObBdmJ5G26AfaBtuzexlNF7fMq0PIid/pYqa5dBYg9vNftDAyerEtgWcgZBBRuJ+pB0ALkoReTwJZByK2qbELGmZ0f3xT0mnbyU/pcP3m8XRcpUFJjgMG0cuAp9fQj6WZ9u/GNXEdqxv+8DdT6TNvrhvSQV678SUk5eZ/hSA0Atk1iVt3qW5nDhqLdQOFO9rM2Y3Q/EKf82RZgdH/cWVcXgtrNmwcXPm26ueUZ3779XSp5itj01I96uV9wNSQA8LQ56nblZKbB9e1K0q1Q4SBtugMz3SKHPsQiVp9SzyO9JLqYbmMRZUmuRDbkgFtSLZJ0O6TeibbpZkmTic2EJ721Xmepl5vvsKRLknZ/4TQwF15pIsVL0k2H9SGfedh0s+JiAwSD4XEK68l0E5s0Kelu1NfpUfzU5+xnnmCowfmNMc3MVuLEud21/Gf2ix7lVBTTLcmwsZ7JtIUZ194hzTMQKwO2vMkviwcvdUPTZKZ2R7kDKxaCEifknOhnfBvJSJFaTLJbcqRAfGDEXHc4/ZreADj5CXcUiVH7BIdcHFy6Bxid5zZLYmo9UWuTrNQulOKctyc/xcjag6kOJOmWQDgVGL5AP4RuNICTZ9ibACf7lhfeSkqVnaNentUUGDLDnTxWZrdNrbbirNuMBk55hvOQKo88gHetuUHVy3lF+2gXmXrQ+Z08Hhi1H6jlIwICYNfZUXdJ9XLuuuBHvZyQVrseeThS47V3ySFn2aTZgyMbimYzQc5DUhvCy3xS5pCBZZZhlZUBDPsG6Pl/wIC3dM2ZU/7srKsLAc1hkqVeTh5qAUa9RQ5UZZjugDSGaN9nSbrbXy/+PlmpfzWEYrqrC075CzDgbf0UnR6AXqpeJlgqVSbIxa9hb+Ds74GLDHUtx6KaAnR7iHjPnOSMoeRl001LkOmJlt2C/V6ibbqbcFTALcaPYrov2clORyJi2Euz1OqkmW6epFty2rrsr6AzHSZEdn0k0w0AdSnHU7xNL8pzpOZzESW9lNI23WS9zdNx33aBAkk3y97LV9bUt/Z8krBpF9XTg8Ax24TuC9/wUC8nVfutVyTji8vMN5F5jGlDbuUnqYnQ4gLxc6tecXj5Dcx0E9ofLOKTNLORJXpy17qdWpJgHaix6izq16zm+iGXF5oNt69TMtjhnFhwMZM+mG5yXDCl8x55BWG6ZQ4FThjaAh3G8sd5ONXbptvBdHOkslKh9Dz8YbT7vfN3tFTSh4YH6LWF7CPH/hdQ0i16RyYEGasvyfdIKT+TiQyyjjCEC9KOEznrjZ/ICKYWijnWGvR258/dtzn13DvDfYjAWlOsfKixTB7GyIxnEzIRLUT0J+2HpPEA+1Ay6Liv151TFke9vOVFQIdx7nQmeFpH5tg96VaqHA9Jt5e9vZlHEPi16e7/H3D34sKdPg4gqh9qzpfUdLS+FOh4o04I0QP8TMkQbaWHBA+pTajZ2bYtM01sOhY8wQbtqV5Oq20TedQ/FWgylF0/MlSK430K4QzvReSsGYxYk4BjoaAPB2q1ATreZCdlOXrK36j/ZxFefiTdTCdvxj1T/Z0HpiORkO7IKqsl0J0R/9V+2aiDQYi4iAyeZ02eTbdPGx2HOhp1sOPYnD1Usrn5G+lZfSGjzuzMzPlTFIpGRKx5EXJmmwybKV81UT6JknSTJ+6mXaUJvw6bSo86f8tGasho5DEfzP6Ow5zA7+GCCVLSTTPdmgaHk0w/xIVfLQ2eenm86PgH9n0zFvqZn7Kfu9YmP5Just5BGKAkSbpLDni/y7THpr6d1EpganGEgbAMk8JRL7ceU3t0pIAoLx7ykHp34LvsZCxVUikI3sld6/066yAjnAKMOqBra5ChUj0PiIm6XLAG6HKfO4YyAGboQYTscHbCMjh9schQ1T+6zDsPcs0BKMaTI+l22XQzK0dchjiHFJRJIF0nQJLpNsqS2VeETLdgbPOeeR3mcPcfjnr5kBlOfxr0nGl6Dic/o/+aj6CKSeXbSQPAtv/Z1yRdSkulg0DEJNOS7tTa+uGsqCw6AoWSdCtUKmSdotAoETDdwpN/StJNphU5M/N0pCaw6T75SYEkzrjvdSJ/dJn3ItLqIk4aQr1cYzgnIhd90WLMkvrIhpUJp4M5Rc16tbrYIwNCvbxBL70ugz7Q42peulsuNEaYJ6Hl9E0sQTbdpLdUq58ZGy7PDvrs791ZssIhJYLpKNjq/E1LH6Q3DC/i02iTWiwbTx+bkjTTzQnZ5wd+N/E91AHiGT7sr0lCmQZpnhMUfiTdYwh/CaRHfxfTTayloSQz3UxTlQSMf14eF64Bzlsi8GERVL2cUmENQiiyYl/zyrIg40hNZoxIqIZ7qpen6Eyi5xgQaKIB7rXqi5Ns1d64JN3Uu6SdO9nPdbsFLCcOjRUA3EOXrKaGTTtRJz8HdQ1OAfr8g5AqE7AYW0oyLBPpJN443IC91rB84ch6L6fRqD+cfcFjuslDdLJOfpluMz+JPhFqAYiYbqoNOt0JtL7MHdLW/SLntkC9XMTwhkJuU08A3IgEoRRdM4kXwpI83CHb/cRmIlGy1MtZ3ykY0y7P6zWHVa05X/JbAm2bJ6NOBYiZ7nbXCV4kJkd5HhzEh8iZmSzTzVK7olV8HeqYmvMej7g58Wt8DA9t0+2QPhBtULSbn20mI+yCLLEcSuNstmZ7eXwb6Uit0x3AFceBxoY9NJ3vsJlAjz8COYOpojhMN48I4IUME6mXNx7ozsfB+FGEo6P9OCrZzc5251m3ix4O69S/2PfoQ5HWl3vbB9OgvUjTJ+y+x2AAR2ojfgSaC1Ssz5pO/JBVLyfvVdBJ8+HF9nWv573VxmXh5QxRCuT65JFPSoatEXTkB7tsF9NN2rqmwhcz4ZfpZpkXycblFtaDQwCn1wcan84fZ6KDXi8fAg6m22ef8sLe+K0HExJMN1PSTachmW7GPmoR8oK9n1z/eWuHiDGJi9ANAR1uJH4TeZFrblYzBGKg42VC6TV68BQqfwZD6gssesKYrwfnEvdCQONBAfIPAGvNYdBN5hx2HZZ7mDzRMZVDITFzKWK6ZelYVj1ZCDy2qWf9/qVr6/i1yabvezLdsuY/nIM0nokAC6QT3aNEJIhkqZfvIyXwDHrfBaVerlCVQA9wWRvUUoYHWROisDzkgC87Rkm6BWEW6I2NtlERhQyjF2BHXpJMN8AO38QEbfvcgWC6Gc7BSPUc0ts7DZb0TXYTT0lnE4ghSabbwbDSXkYpND9PZ0bpuln9QEt5eEx3AEdqDoaQes6K0x1iMN2yNpp9XtYPF0zQquQnPy12MCcDWUl3Vku58DxWPkSb0fVueBow7Gv+u7XaEfl4MfeMzdsivipQzevYSn/pRWOA51XfD/zadNPzjQy/Z65dK+9x5umHuJDVmDHBIkJP/au/PFiQUedljjWBerlQ/ZNSL5eJ407i2E/yacl+bthXZxhZ0icrvSTTTRPgtJSfdGrHCu0ow3QXbIOtXs5pT57HfdE7MgiFdemg9Ztoi55PAjlnAP3fiqOcBDPdba5w/k4ltam81gxWXRj3zDFbesyZTtaxY+vL5dJxEQNW3A0cM5wjOsYqR9JdYJoOcfqo4x/cDDlzjTXfFzDdfg430ht6pwnKdAcd96S/HBKW+RAx51mOVZmH3QKmm0djyRzGtr1a/+9Qb+fUQQYi88FQ2Lk3W+NdZGpHfduhhcHqVQWhmO7qCC+Ghgde+ATAY6KKbFZFNt3UxkYS/oAtfWI5sLDC9Jhlkqf9pvdG43t433/aP9j3ZdDuajtflvfy7o/q3mn7/FPc/iyiyI+kmykFNhkgzvQ1JWwOSYckkcJiFPTM6ITs93nq5a6lhvid2UQPP+PI3mjTwh2EnTjDDtsyNZBQ0WOB7ru02t5ee71Qni8uw0TX+4CR64h0HlIFss1ojQQvMCWDHpLu+qfozl5Ihy2n/UPvr14T/JUfBHu/8JdexHTzNDBkUNsw3/G06aadYVFjPiXDXuu0KLD6j8CW/xDpfXgvByBtl2yCNWb8emBmgVYFZIE1poXq5B4EGdmPMtJ6lodzGThsEbOAyw4DFwiYdlmm27V2U21B1pcVGkuGwC7LhePQlQUr+gMLcUq6eQxFZmPg3EXASX+w03Kz4bWhRN3qdOI/8zpYPfyDdx1EYI1385CMtX/JoOkw//UgoUWBX/9FlC2hXm5qR7LqOXgqcNItcPWfL+/lUXcaIYyyWDbzNEQ23SKbcLIesk4hATuEJi8/8pC0y73uslhjmnWAIVIvB+T2uP7/1v0s8Oguv6DfM0NX6g+pxKYwixPyj5Vf4Y5g9aqCUEx3dYSL6U6AvY9w46OGCenAQWRXTTNCrtN9WlJN5EGHWyFPETVNP/0/vsqZDw0vGyERwREK24tb7s9UPaGHSBuxFOhylwfTzSCKUgjNBIezOApaBKjXk5Wpuz4mTvuH3RcOJ2QBme4sQz2eJpC56uWSkm76dJ+O2Whu9tvfJWJ2CtTLvZz28eBqw5CuatjyIuA8Cec0LPR+waMMzn0vm1aybzztX2nHTCShZ27OXpLukO7spT8RwqtuZ93ZUPeHPcr3CZOxJeE7jrOgTeJhui1bTIZkSPyi+zdJfG6g1h+/Nt1+x3w9htf7hNh0yxBqjO/qaKgfN+yn/9d8SLpJTSNuvFcCprPMWm0h7bDNLItECi+ihAkJW2AZySYrBKezYsY/AdNdtItoU2Kudye02jIZtsdWEXFKuj0PqSTK4caNF+xnppmN6EDCy3kZyRAE0o4RSLpZ+5eJFiMFWcZJroscfFprHPWtlnYk43saDzD2EBmm26RJBEy3H3OZeNXLsziRcQBnO3e+W75OvP3UdCgZZhx8O9qKJelmtYkH083Tfun9on2dVgdo/3vdBMiRtd89lyrbBDl/QmGnTwez3jzbczKNCZa2TzWFYrqrI1gbWLxqn6IF3WQ6TTQZDLQ0nHj1fY3/vosopNJYTHmY+g33okiGpYEGlJ+wf/LU5r3U7kWhiwBg+yQ6Q3Y6EeHK2kjIQwuReiArdAJg32P1ef2TiXcI9XLpDZvaOKw2oglVno2gpE23632q3KJdjKqJJN0e4el4cNUrpG8QQ2bY9u9+0Z7yjyByqOQAEY+cBb9OnRxFkRu+eS0hUWfWIxGHfHSRjHki2pRZoAm6ut1se0lXpAQBzl/hNHkwiSZWnHcRWNJMs+1ZDHMoDH6fMBBUu8NRZgL6suv9wcpp+Ttg5Ebg3AXGDXJMS6iXn/uDbmtJEnTcd8iDSB/wu6+2u9r7XSktCUlGT8SoLLwcOGg4lCTHokwYOPodvwiFnX0uzEswBrmmA4J3Wpyv/xdqvvgItZUw9XKjr4TSzYDaHzKg10cZ9XLrEJ3VfxzNLNb4Nh0Xumy6iTXMix6jYZpY8UJoBvVenogQWiSyDBMOB91ilEE6s5WVdPtRLyfT8NTfSZiCLL/wmt+ktpzFdNcHGp3OeYX6NjK0WjWHYrqrI/wy3Z3vksmU/4g1EYd8rnvobTrEuCEh6aYXZ1rSTS6SKRTDHAoRE1Rz5kWrrVvveCyYXqeltOM5X0SUWQaDqSZVxoVELyeGqYjpzmgMqy8dIcMCSrqtfpWUdMuGDGMxuySYYdzM706gpNvlsCMAYSN0Qgi+ZItuo6M/ivPxJemm3/WjXl5RdttE+ay52O91f9nRBF3fV22ihmv2wEDDPkCrS4hqstpDYpyIHNIxPVKH3E75RBARlXHbf/pAtow5Bqe96nUlNJJkJd1GH+YMdNoNC8GRtHnBcw+hmF4yVm+Q/cJPGlb5/Awl0zkyD/AOp7ygkm6uc6oQkJEjLlskHfMzDvyOGYC9j4Q40mQS3G8CEs90syTdtPaV+Y7oYEGiXuW5Rn4Cm25eeMieTxBFEmWdt1Q38ztzKvs94cGKoM7kfh3vXkj6jyHpFnMMkJJmWZtuL/VyM1wt4KQ/ZWgbPx7kWWUzn4WpepB+Mvqw36H36YaSB4XVAIrpro7wLemW6eYACzrJGDPVy6lFnlbpom2lHc4WGMyqJdXUnExH26tsxxAkSAKIBb8LaiDbLhZRFGZfd33AmUyLgd0vYeq/gbR6QINTib6gHKlJgcOEupg8nzbdno7VqPxYjlIs50GMGL1BpX6yTmxEyGaE8CLh2y6R07YnyBjYcUjsPNXLE7wtMA9Q4JyzLOKCpXIuBEtaaB7KxKFeHuIcPHnCJ9MN2JJJGdD22Dln2tdNzhK/2+oSYPh8+bJEkJpDEuuPI8ySiCjmMJqigwZyj/F7YCWCyzaUlO7KarhA3nzHlZWsf5AA+3vcIcMSIOnmPgsBIzcAZ3zi3vstB6gl7tdM+NkvooJ8uBBIusn9y1wHBryta/ORkTVcWSZ4XWbadFP1tqI+iKSw9AGLqD+pfYs8LOcx3T3+j32/zkl6hAue0EVoM1xRkm7yYJmYqyZ969DGlGS6vbyXk3D4Lqgkphshap0i25fXD15CmuqLmvMlvyX4DekTyQcanOaRZ5ynqDKTgueN2Kx7vW66V9NWozj5mXXU4Fi8w6lAn1eAttc4k3up0XkR4J3vcf7mEpcCIo4ZJoIj4WtH1b/tVZy+Djv/mzjlz2YCo1oJcKTGZTj82nT7lHSLpIukhK/0iHEvQZLuIIdP3R/WfRCc9jL7eTwSLxIlB+3rXhP0DZuUAohQmZJunppn1/uIMhlz0a8tJdNm0fjGkgPB8tQzMvLX3PeErwVgulmOE3kYTEl4HNpBHvU77SVvxtzEBav5z7wOnKzqSOwPA9/T59FZM8TrFW98DnxXonzSz4UECraJn9PqzzKO1BoIvJ+LwJLqy4ZZcjgiCqr15AM8KZzfcriS7rBuj972SrcjPfOdpufo/7NbuR1i+dkvGg/wTuOuIOMWw6bbrEfHG4GzZxkxwn3kSaP+ydI1lPI/IDJ5SjUis7iYW0E9RerlrEgvXR/Q/SiIwGMUhYclkmMuWUy3pQruYQIpVC/3McfouvAQ2Kbboz0d9IdH+7Yf6y2UqcZQTHd1x0hDlUQ06LdNApqd45FRvIM6ARt0KKx7NT3rM046gummJQOZOcAZHxDVkZAAeC1SpIqpniknoYjpZm0YRFuTRCtdn4xGbJs2q704jGo8km6eejnZ3pfu5i+CXJtuuq29mG7BYcOv/7TvbZto1C+oI7UEMN3pDXSnel3vZT/nSdbi2dDr9wCuLABOeUYuvUOq4aEW6Df+syc4308SS8z+9lsPmukO8+eIH5iED+ncKr2e93tBmG46hIsIdTsDDXrbvx0qfJy16rKDwMj1zpBUXhAxiYlUg67bWZ9HrS6CcD/htZ2oDJ4jJy+wYpuTcHlOlyDYez3PuMmYIy0vcv52aLqYhLfkHPF7YAQgfvVyshxBXqLQgDLaQDwtrL7/1J1HnfuDHp6RhNd+QdoXex0+yDIEpulIiCHploGoHNOE0A/TJKNGbZkAMtrAXL9de72gnvRhB/mbRSvJeA/n9Y8olKuXo0bWdbxgHXyTB6UsvzSsNY3lHBGwQ8GZzm9d5XO+uQvhk4NUTfcDP5JuL4/toRAjP8V0K1QqiG6zJpjXxpCAUzDh63G8L3ta75A4eTgIE9k7mvBSpZE9SRSpK7IW/lBI95ze/VHnyTRLBbtuJ6DLfVQGZr14jKpJYAbwXs5VFSO+MbMpPz+epNtLXUiqrX1s5rKoiBPVTI6dHv3NJoEhrVrqQ2rLSstVL/cpDRZJQgE+IciyzSfhl/l3qegSkm4rTQD7TDMEXzgNuOK4/ickhkwwDnS8mG7fRB5RpmMd5fRtZhNvsxs/kJWG+jblETHdnLkulKaS6uUBxgAPQkk3Zx7JhiGi9yfWd1dp9XLyt6BvDs0TZCTBdPP2kvT6QLcHgVqt3eV77RfxmiAwbbrNQ3GS6fazbwn6w9TK87VmEvnxHNaJfMKY39j+et1jfJ9/8tNa+ZXzf4dCephKXh298qYh8lAvmg+kb5W4HRQT5ZAMtukEzjN/Vp8bYzO7lfN24zP0/y1pYZFVGfZth5PigPDSZHHYs3uol2taQI206gHFdFdH1Oum2+81PYcg1L2Y7gSd1vIQzyZFO03jgpR0+3QQxizXI76rNOEg+PbcNcCA/7rv93jMkHiIbACN8vtQ8cZ5cbrN35Z0JgHq5UxHagwJogmuTbdXW/qQdLNQmZJuL/AOleg28CKY6nQOXgcmA8CTdPvc8LykpjymO8xROQtaDxczRdmVAkDBdvn82l2r/+9GhEdLr+8Os8ID/U1tx0gw3T63ZI3DdFeUDZwsUer3IEdUfx7DJPT+Tki6WQ62/GgYkKBtumVUU5kqpYw9xLU+MNaRZDpSi2sMJcgmk/ceqXLsmo8S5neeBy8+6Bkz5B2JX15y37O8lxP183UAJNKoM+ZXvzfkszOdmwH80GymtoWo/1KzgGFf6+FT9cT8tA5nudlA98f0/+ahAemXwqtcL5TnB3vvwCyi/ARKusNpwAWrgBHLbVX6QHS7MQ5oG/ja7fX/ne/k5MXplxYXiOsgA09JN2+v53xf++vjr1MVRc09TgiAwrJCpJS5B09KOAWZqZmOdDyEQ2FkpWUFSltUXgSNw7yGQiFkpxlMYjgNRUO+0adeeZF+Twtb2pUhANnEWC5uci5i0SjX91KtsPkWUFxejBhNJBM/a2XUt65LIiWIxoxNo6zQlX8tog4lMSCamg1EitwViESQrWkIGYtCaaQUERZhFYsBMSBbiyFkLDylMSBCtjFZh7JCZGlA2FhryjSgnGxeLaTX23gvK0SkjZahvLzUmV9Ms9JnpmYixVDPKotFUM7T6mo9BpkNeyNl2R8A6OWXkfWNlttllJcgQwNSjTqUx6Ioi5S4v6u8GAgVIiMWtSZwRANKI+V6/cwxcXgZEI0AMSA9FoNJnkViEZRGOE5GYjGka0CaUYeopqGkrBCIEOOnvBgoLwFierp0Ky1QYrZZNGq3LQBESpGm2WljAIodz4sd35gW02CSVTENKNaMtqLHWTSG1EgpMgymW9OAIg3OsgmkhlORkZphpNVQVFZMjZkiIEV/18+8d6XNbA0U7Tbaq8RRn3AMyAoDyBmsp0W6riFQv5/Rf/a4C8NICwAdxnqvEcRvR9pIif2dZcUIlRchm9iEi2NEM0QirvarlW6rW7rWCC3kXCOI90oiJYgaY9CCmXekzE4bCulrBFloeamjHtlp2eI1otzuy+wQEDLUy0tjgJWy+LDr27LSshA2CIGyaBnKowZh2OdN4NQX9INN4x1uWkAfqFYbFyJTA8zdpKz1lSjXwta8ob4UmSEjbShFXyNYXXz6JGDpOGSEyDVCQ5lZJlm+MVcyUjOQahA8wnkPID0lHWkpaey0Z0wDFo6y04aMNSIURjQWRUmEbz+ZlpKGdKMOUQ36eiJKm5IOIGTPexoptYGyQiItENNiKC4v1vdBmpGJakiNliMDALQYtGgxiuj1OpRutV0qgAyTR281CkWs+hppU3KGINNU6wRQWFYMpBjlR2OOcZ8CIDMlbBGghY51zDnnwqEwsghCtjAGIGbv8TDX+rICez0xUBRjsGcRfZ8JAY55X1RexFdEicUc6wmTNgCsOpH7fXG0FDFiPqK8xEH0k+uJa9478tac64mZNhqz24toZ33eM9aIGJxrUKQE2WYQlMym7vUkFnPMZeG87/ZHIJwFtLrUTmu+StIcsZC9fxl5Z0bL7DXCzLf3y8DK+5ztUFaIzGjESutaI8y1su7JQAzONYK3npTkEmmJNYJsp57PGnuS3pfWvIdgPTH2GjKtNe8JOhXnzQfSmwCX7EVaWra+34fT9LRmfc15EbN/p0XL3POerHMobB30kvSJYz1hzGknbWDQEVH3XuhOq6HIpLno6REpR0qkxKYNGvTS6Qhr7JYRc6TUmRZAITkOTRi0VTgWBXnkVxgx6AzGO2EAWaDmPUlHEOlD5UU2rwHOemKmhclr6CPeWiMcc60MQCoQM9YIY10rLi9GjKQNstsCRTuBNtcCWpiiI8oQFewbjvWE5EsY8KQjAqZlro0MhDQeBfcbQn5+PurVqwc8BoChcXxhpwvx1TVfWb9r/bWWPckoDGk7BPPGzbN+57yQgyNFR5hp+7boi+U32xt2u5fbYWfeTmba7jndsf6O9dbvHq/3wIbDG5hp26YCO9rbv/sd64AVR9kOYRqnAIc7ALjsMJDZGEMnDcX8nfOZabNDQOENnwGtdeJr5Icj8fXmr5lpAUDrZF+P3g9MFZjYFDxeYE2ccdPH4Z0173DTHrrqLeS0Ph+Y3hp3Hg7j9Vz+YN/eDmhncJsPHwZezOXXYV0boIchhHiqxXg8Pf9pbtof//Aj+rXUT7hf+KAXHtmyhpt27ti5GPrDMADAa7nAXZyw4gDwZQtgZC0AoTAmdXsbN3x+Azft5AtewOgtuhRuygngygP8fCeecRvGDddPwb/69Sv87qPfcdP+Kwe4s75+Pa/PVAz7+Apu2gmNgYcbAKjTGcsP/4r+u/l1GN8QeMrQqlrf4+/oOf1BbtqHugzDC7G5AIAd5UD7Hfx87+h7B15rXA5sfQuHI0ATgTBz7KljMenSSQB0Jrr2cxyPqQCu6H4FpoyeYv0OPc0/wXetEX/JRlGkmJl2SOtBmHfF/6z4wjkTGuJIMdt2tG8GsLyN8aPbQ2g3f4p4jahvrAkn3YoeKxby14h6bbHjjtXA1AYAgH67gBUcfqxxdmMcftgetMI1IiUVhf9nE6TSa0TOYIz+eVHi1oj2QM5Fa4ANz+PO5R/h9Tx+vtvv3Y529dsBAB7+7mG8uORFbtp1t69DjyY9AABPzXtKvEZ0aYN+sV0AgBdwGh7Z/BM37dyWwNA/aEDxQbw2sZncGnGNhknvtsYN2/dw006+YjJG9xgNAJiyfgqunHolN+3ESyZiXK9xAHysEfW6Y16P1zDsnWHctBOGT8DDWAXs/AjLyzPRfwefQR8/ZDyeGvoU8FkzrM87iJ67uEnx0MCH8MJ5LwAAduTuQPtX2nPT3nHqdXit6H0gJRuHW12DJrMZ2kcGxtYBJhmR5gqbX4TaC77gpr2i3UBMSVti/Q5t5tf3wmzgq06tgUv1j6r1TEgn7BkY0nYI5nVpC2x/FwCQsw04wqEjHWsEgHbbgZ0c2rB7OrD+958DrS4G4EFHZNbGjkdPWL/7vdUPK/atYKa16AgDQ4v6Yf7e5cy02WnZKPyjTUCP/HsGvi7gh3fyRUd0BGoN/B/Q8Qa5NSIVQO2TcGfKeXh9BT9Eoe81YnZPAMBTR4Gnj/Hr++Olr6DfqbqU94XFL+CR2Y9w084d/gCG7tQl6NJ0BIBJ+cANB/lpJzcDRt9UCKRme68RTYFxdQGc+ld8lXaKPB1RBAzby6/DhOET8PAZDwOrHsbyVS+K6QhzjQCw/tB69HyjJzftQ/WBFwzrLik6YuRrwIehqkNH/DkVRRwGckibMzEvY6H1O2dPQxwpZg+2vhnA8uu/sWLYS/MaH4bQYyewgTM9LV7j7FlAs+Fya0S9nsDItWI6Ii0bhWNeBQxh1cjIMHy9fS67EgC08fZCOnrKaEzdwAkjB590xEOHkFNLH0B3fnWncI34+YafcUrbU5CXl4e6dfkmREq9vCZC2kaagKz6MR2mpjKw94tg6uykc5SqDplTM18mAUHVpmXV0v2qYSXY3IHlhKQyIap/OM1iuPW0km2X8PPRClSl90SC69LqYqBej8Tn6wfkGJBWw/Y5j4oFJ20VgUIBV0yi3+tAz/G6h3IpJLjfrNCHUXEoIf8Z+0vuxwwm0VEE/EIUcssLfppF1lxDuuxqRNam+KBJgnqWloHfNku4s02zHkr51gnBRPJtEppE+aqftUp2rLUZHawuVRxK0g1b0r3v8D7mCUWVUy9npf2iM1C8T087ag+yP7edLBT3n4hY4Q5grSGVaXw6cPZsYPd0YMl1usrH6HwgrQ5bhWyyfYpX68KfgIa9ATDUOCY7T/tc6uXhNLaDsysL5NQ4jPyzG/REaPAU4KtuKA1lIHL5UXcd2v0e6P8GsvZOQ3jJ7wEAZZktUX72POBL4+j8gtV6rEfjPYd6+ZhSlB/6AfiekOC0uBAYPBkApV6+4AqU7/rUXV8AuHg7Mmu3RsrH+mZSrgFlo4mj+u3vActv169HrkPG1z1ttbAxZSiLljm/C9A9EKfWQkbBFqR+2wuAoV7e9z9A+2uAeb/TndP0/y+wfSJweDHSB3+ItHZ6PFOhmumSsUjf86mtFnbpPpSk1gW+7GarS19ZAOSuBb4baKtv1euBaO56lKQ3BEqP6V5jO91m51u0F2lfdbFVvc74BMXNR9rPjfxMpPV5BemrdG/gllpYn1eAjjc509Zqj9SLNiLjxz8AO9631cKuZItDmGphZNtevN1yfBaXenlJriVFxpnTgOa2zajnGrHnC+AHva8c6uWd70bRqc+L14gpBhF30q0o6v2SM635nQP+h1C7McjWyqw6OtTLh34DNHHa1gnVyym4VL1+fgbY8JydwOyb0qOo9UVb/TpnMEoOLnKqmY46AKTZfeO5RpQcAn68GWg/DtkdrtXTLhiF0l3TbfXyhv2A4c4Tc6HqKAVh2s/b2SHsrixA5nf9kGJ4gy3rcBPKT3tFtzOc1sKVb2YISLlWA0qPoXxqI10d9PRJQFYzYMn1QK8XgDaXA5Nr26qj12go/yBkq462uxbYYURw6Pc60P76xKmXF+4CvrIdsDlUR6+KeKuXG+qgUqroKenAtJaIFe1zq5f3fwsw1jGmevm05kD5Cec7tdoh9ZzZyPjyJCCUAi0WdUuYW1wI7NM1Mhzq5S0vQdHAD8BDyr5vkfmDrQlUePkJmxj++UmHbW8KgMysHODyQ3ra9wmiucUFwGBbGhYOhZH10z3AVl0iXxiDHuLt0AI9Qac7gN4TgK96Ily4w1u9vNdzwOrHdXXQkauABr30tOVF0PJ/Bb7p7fq2EIDs6+ycuPPeWFcc6uXn/4xY0R5g3oX6DWo9dqwRG19BlFanNtHgNNTKszVELPXys2c5w+vt+wZYNFpXLx/4DtDheucaMdktidRV0QHUPgmlF65zridTG9i0ypUF/teIjwzagFQvbzYcOGs6sOwmYOcnAIDMq8uRkpLKzvfzNvpeWq8HMGIZMrf9Dyk/6VJxl8r4JTtt51w7P0HG5leRmruGndZE3a5A/i/6enJ1GRBO0+f9hwRDbfZbwVbg61PteX/aS4h0vpu9nuStA2ae7lYvH81XUbDm8ponEF33rK1efupfgC732v3X9iqkDXrHPe83vQqs+aOexlRThkC9nEEfWLTBhyGbjuj3mh7CipcWlHo5Pc5GLENKg1P4dISmAVMM++7eLyCly13OtIuus9d0ExmNgEt2IowQsqba86jwgo2608DCPcBXXR2vhAFkDfsKaKnPRxf/YNa7xQUInTnV5jU+DOnrSVZToJhSl2h9OUK7P9XVy8+ZBzQdYq8RZDsM+ghIrwvMG6mvEQ16Axf8pKf9+Slg4wQ9HTmGAdQKRYEp9QAAJSM3IUpHICBQFdTLy4vL0aB+A09JtzpWIlArvZaj80Tp/OQpC5Kp9p32/9s78zgriqvv/+4++85sMAzDIjsDsgwDsigji7hA0PAoCrjEFzMYffSjgkkkPkZRfJ+8bgSyKMRoJDERYoyCiICasAQCImBGFBRUBlCEGYZltnr/6LtU963e7r19tznfz+d+5k533arqru6qOnVOneNwBpSH6Z1l+1pSnW7AmRI473QD7nTA1sYdk+rJCwN++IUpbnWN7xwAAO4M1TANKXYANgZc+jdgsyIUiuIeeZweeCBwNtP9JuDz30ud+t/7Smntdnj43/vq6vJeY07A9Mhtd8DtyQikSS0IlK1YfHM73HC70+XHnZ6gukr52uFWW7zzZEmhOXIqgVMfwpU/FC4+DxfXLu5M2cKmy+HyT4Jl9XBnSs5LHIHB0WkDnO40qX5Ot5Te5Qbsduk7tzLttDvhdKu8+k63rA4Ou0t6hmX1TJc+sufCDocNSEerdNxXFx9t8muzQ/Fu+OrM/+9LawPSbQBcqVKenuxAWoddahevBsnmS2vgvbPZbFId7Db4p6nuDNXfmnvvM7lnMUWzPkH58veap73ZRB/BgtPy9XGlARcC5u/8pB2eTM36CvsIFVKcKcCA+4H/PI7APfbmbeMGxtTOUh/h46IfAelFqvkK+wh3BVDzjvzYl2vgsSOQ0unSvDa3w+2f0OkRlNZuk78j3Oq/2+EJ9CeitvU7WXLA5ZusulKAzpOAa7nJjuK3Lm5iK3tufO8Kh+Z7ryAobUuGuN6QFpyMvhuG09rsgfeeR3BdgCSkprvTpXFQOd9y2KXnHQBYW6CPKPsecOQ1bxqn8Pr8fYQaLvkYmO7hJpuu1OA8OU13+rTPgNd7BMpXlsNp/dLtkPeRvue49zxg9wLZz9JE7eRKl96NpsN+gRvwziPyBwNZPSTBimeI3IRa9b0XlJfqSpPuOf8+qJDSdTqw6+7gEza7bBwAEOgjPNnyPPmyvP2MrI/QVK4xQX/Sqlp3U30EJ/Th+DtSXpUPA437gb73S+2ulu/E94GPnwT6/8Tbn3CXy7/3gPx+9LpF+vzBJk7rw864+yJ9cdqdcMrmGt483Yr33+ZQ709kbSHhsBkcP+1OKa2/T0uVzzUcTpkTPf9732MO8JFX6O52LfCf/w3Oms9Xpy7+PsKVZiAt10fw110wCug0Iih90H3w99lp0jydT+t0BT+7dpuwTuke79ylVa2vDiyYqc4N7I5AX+lLaweQVgJc4MahXncAZTOAr7zKJu9Y5+8jhjwKfPhj6bsnU3Ic5yvDu3iV6kqVP4PKeUdzYE9YilN7DsUTJJdooCprhJC24XyDoXzi2g5n8eLFGD58ODIzM1FYWIhp06ahrq5Olmb8+PGw2Wyyz7x581RyTGJMeSf3pm3jVtwMmxdppdMzd2kHOqvvAdLFUyAoUu+6FTEBeSc7Ss+zenmrmdBohR/x/Wb8G8CAnwJjX1cm0M9ftV6K+qWXy8+zNuDC8eByDOXt+9/7O1eO/HiQB2Dv79TidCvrqnR2pPxfdC/OeveuikzbQg0ZBijMgCNk1hpWuB2VOvjCsYWNz6O9igAWaRM/dw4wcJF2OUXj5ef6/Hdk6+Av00pzc4U6SRQ+Su0d95/nfiOLy2wEu8r3CBB1k12VdtJrP9VnV1B/I2EldeH7DgPjBd9P8V7/RdYrrQqNPZ+fP73BdrE5gOIJQI+bVc4L8ul8tbG8hfnZZAveunUTYocslrTslELo5fP4Sn0PvhiRGthCA9Cs3sAVe4CKG7XTZfcDRq4AMr0LM1qezg1HgOHgtYG677fivdPzVh0qQe+vMi8DeZdMDL18JeFs8Ri+1KKyuGezcBx33NuGam1pyKhZy2Uax9Cn5ceUdc+p5M45FXM2rn4HlouPJzFxfZWbN29GbW0ttm7divXr16OlpQUTJ05EU5PcHPMHP/gBjh496v8sWbIkRjWOIcoXjX/BGINwcqAVx1C1HK09JjqPk79OIXbKwoFFLS/fcX7ia5cLLnpxuo2GPWnT2PvmC5WQ1gUY9D9AmtK01KbyXQNfPfi2yBkEFF7iPe7tAL/bDTR4F6kMC2zKwdVbljJ8E5/fxG2BdL79kkHxr5XPp9K9prJtBffCa/4p3DccasgwKUPtckPBCuHOlNBtoHx3tvh4tGJkyuLVKhddrBqarBS6lUVx18BpssVpBUL3d+qO1/zwMZ9lQn4Ur9MK+Gvp+X9M/E7t/gqeJyP7UvXSaIW/EfVJZvoppVmpaEHB6Hui9043CjzA+cIahYTdawZ7GOC3f4lQuwabXb09leMFn0eZwPFntPcKX/kfwJkpbQOIFFp7unXnMqL8eKFbbzHL4FxIOhl8iLOu0EQv1KhqkbwZneCddamb+wbB30uzQve4gBM0uPPM/dbotfLPwfHN3O+99yCU0LY+guKkq2B3KZQVGguOdpe8Tfi0/MKiMg9+vq8Mj5bAxLXQvXbtWsydOxf9+/dHZWUlVq5cicOHD2Pnzp2ydGlpaSguLvZ/tOzpkxcTK5V+QSoUp0danbNOx53t3RMY6oRQWF8doVvWAdmB9G5STNayawFnhOJ0azmc0eu0Q5ooCxYULrozOM+6pwPHzmu4L1Wrj6wsRd14LVH+8MB1+gYE5SQn6D4oJhA5AxXpBffCN4jxz4GvDfuqe33VJe4c76g8B6L4wqpoDLB6K95WTFCdggm8XUPojqUDtIjBC906mm7RedFEwxc3t+tM6W+nsYFzyr4ukvDvSHb/yOYtLjDwdcRyyVQTNv2YssL7axNPxG3cMYUPA2Ea4Xm7+DsAYRuoCt0GJsQiyyzDQkkIGjszgkpQed56pZcBHh3hQ2uhRO2c0rybvw8+Py081b9TL1/UH4brKCyrN/D9BqB8Znj5yFARuksmhZadmXFPaemm9TyJxu5L1L1Jy3+rYyGnBj8nEM0ThzxpLB9A8oWjWh8deEfDZucVan2XEtXxW8UC0v87jUWbyTukbQwDfqJRQY26BSlZFEI3fx8vqCzCBQndKZIPpVEv6/chCUS8zTY1OX1asvHPy5M3wMsvv4yCggIMGDAACxcuxNmz4nBePi5cuICGhgbZJ+HResFTSxSrUt4XosetkgA69NnIlKPnQXrsGm+6EL1wijTdqqvkAqGbtUnHL3sbGPOq+HcAMOgRcd5qA02vWvW8gjS4QRXl6mfwvog03bLJn8is0aApZdD99JkiK4VuTutqs+nfqyBNt1KzadM+D0iOgwD5oOrbd9ipWnqeQ8IC83K1/MOh06jI5KOHFUJ3r3mSI6Ghz3DlcM+Esr0jZkqvJEaabpEmW5bW+77wWhblRBcARr0EjP4jUOWbGHITMCs13aklUtsNXx7YxmIlyvt0+fvA95sAd67274QaXSbWBNrdwJWfSNfU+y5g+lFJM/k9fg+9zrugJXSL2jqcbTA+M2MZBqdwRjWNPHrbrzQx8/ypXYNN/VyQptsh/u5D81oEQsyEjdLi0oR3NX5ngE4qizmhoGZerrcwJCK/Cuh2g/H0ygUYzTIFbZ/ezVg5QYv1KtvdlHjyJT8gve8GPIXB51O7BC/sq5HGOewyu1ilNw/T/G0I5uWislXn6BoLe3lDgcpHghVRpV5nt8LtXiaEbn4R64zatilBvbteZ+45TQASxpFae3s77r77bowePRoDBgT2Ct1www0oLy9HaWkp9uzZgwceeAB1dXV47bXXVPNavHgxHn744WhUO3qoCUsAUHQp8N0u7pw3rTNdEkDNFaR+KvMiRTnK84IV6Mv/YbxooQCrZ17O0aQReNFHTiW32qe4p8c2iH/TdYb4eOWj+pNf2Xmj+8gE2me9zt5wSC2lcN2mclyZn+JeBZmJKeoUysJLmtcjP9+Bp5YEvouEFCPI3p140LCq1MGMma0WqcXa560wL3emSR6H1VAKI5wX04gSTbNrkdDt+67UePLnK2ZL8Zl7/yg4T1cWUM7F0ZW9Rxbu6QaA3l5rmq/eiHzeQQi2uTgNCIFGzZEBaRE3q5f0AaT3QrkPU1fjqXHPhZNftT7eQN9/0Xxg/xMGyhCQN9RYOh9j/xreu2JGy6e2b1u5HUz2Gw1Nt+gZMLuQ2Gk0MHWvud+IiGR/ozZmKvf+G2HSVmDfY8bT22ySUPuJd9FUs3/mrtmdJ2ni1dpYSajm5QAwzGvZd+ZzQZXsJkJuhuBnR5hNFITu9IrAvNZvwarWZ4Xgp2DsGsnBYlZvKYoGjxnzciMLQ3FncWgNCXOVtbW12Lt3L1atWiU7fvvtt2PSpEkYOHAgZs2ahRdffBGrV6/GZ599ppITsHDhQpw+fdr/OXLkiNXVtx6RkzEfNhtUBTQjjFnNZ6aervpFoPwGacA2SlqZ8bQisyG9QU02aBsYAJWO13jOHVX/XYpAkOn/oH55/CtoWNPt0+Lzv1XRePloM6g5VK6m+/f9Ku5d3sWKOik7XZ3BU+9aRfFLfYMJ/xzIhLUQnd/I4vbGg9AtuI6MHvrbIfQY8xow8GGg6DLtdLGIlcragKoXpO/Dl0c+dq+faLavwLwcEE+u+PMjVwIzz6loNpVw75FW3xVJojE5CrUMVVNlQbvnDzeQn85kUdauBszLw8G36MhjRVtM2SXFuQ8HU/VSS2sH2s6JTymt3vQ03bGOeR4J1MbMaPXXvEm/p5N6Ov5dG/8WMPoPxsvQmzcYQbiVxA7D84NwtNWyeVgYWvLAwcDX4cukv6P/GDg29P8F/15t/3Moig67UxK4eUShu5TXalcsMhtZyCehO36YP38+3njjDWzcuBFduggGHo6qqioAwKefqnt+9Xg8yMrKkn0SnpErpBi0Y3zxopWagjCE7oKRxn6bMwAY/bJYo+1Scdqktk9JhBFHar4OIneIN3tOoDKyh72N25pg6j5x19FvoTTYGMEWgtAd+HHg60nOz4HQvNzgfmBe6L7qAOcASnGfU4uBaz4Hrj3pPa9nXq7UdAtM5SZsBEqmAFd/BuEA6cuDH1R5jaHhlWwF/H2PCwdUFnnOLZsODHxI/xqj5UiNh7VJnpVvYECvCGn0AaBksvz/oU+L00WCfg9If7teJ/1V03SL3kWZJtxm3DGS7Nm10Lycp+kL6/L2E2L9zQggXQ3st9V1pKbiIEj0vxah9l38fUrram7BWzXLUN//EJyCAhoLJXYpvjgQHCs5aCzX03RrtYWFnsp5MnuF93s183K1/nr619JfkWM5IIRnjruHmts8wphrBs3xQhG6BfO8TpeY374HmBec+b7drHM7vbJ6zQP+qxko5cY02bYJbtvhpO1S9IGrDwXaKkseuztkOo2W/rZw4YHNmJerkhDiaNjEtXk5Ywx33nknVq9ejU2bNqGiokL3N7t37wYAlJSUaCdMNjJ7ApO3cweUHWoYJjN8+lC8ZALq+2ncJsxIRSaCyk595IuSiXuP26T/zTr9aeX9AZiYOPAd+mCTZluBTIz/TolsIi/SdKtoDJTwA7vMCkG0T4vb26lsh6CJgLJOggGwaHwgdNSJfwafF+2LDWePZLQw6wREOBmKpll0LIRui9qx6jfAGu9z3PtuILdSM3lY9LlX8pHhdxjJa7p1Jh2h+iNQE7qtnMC0ntFPEy5G+yslvrCCPHrO67Rw6sSGVQuFA4S/8JE/Evh2q3Yavs173CZpqDuNAU68H3q5Zt9/m0MaNzqNAk78I7heergypIWqwwo/Kza75Afi2u+k74c4Z2hKC4RIaSetxBGmpVLzKfHxMyrb5lJLpEVMwB+zOyxk80AtBUYYPlKUyhlVx64aKPvai37ktRKLgnl5C2fqb7a9jZSlvDY1C8f84cA47wLcpW8Dzd8ZD+Gnh2/MOXOQO6hU8vGWJ2RezhPXV1lbW4uXXnoJf/jDH5CZmYn6+nrU19fj3DlpQP7ss8/wyCOPYOfOnfj888/x+uuvY/bs2Rg7diwGDTLo+r7DEMbqoyy2dQgDhzsvYBqjxGUiFIAR7+UFIyRNmW8PEb9yakTby8dONaWp0IihqQlXf7MOinhBJYNbkBJtNehzj8E8uUm8KQ+uZh2p6a06CwZIvi3TywHYgFz+PY/E5CmCwu3I3wEDFhkzY5URoqPBSBEToduiaxaZ5FqFzSYJ9b73pvkkd07lnrpygPFrgX4LQixUzbzcwkWaaIRvCXUrhXB/q8q90JrkVj4qLZ70vU+7PFkoHGU5ZsZZQd814leB71W/VZz0ObgUOHKL1OTaKFd8JFl5DOfqa7YfveRP0tYXHt/1uHMQ7DNES7MmaleNsUEvXna45EvWl+hxS3j5+CxolDR+EmKGJsdLowsbsvfA5FxT2bdEwrzcv8UwBPNyo3vRffiUS8qQWkbI6ht87BsTPo/U7lX+MKDkcnN10cQXoYa30lT6KAlB0x0XVobWE9ea7mXLJEFt/PjxsuMrVqzA3Llz4Xa78c477+Cpp55CU1MTysrKMGPGDPzkJ2bc3icpZTOAI38Bcr17b8PpCFMKvRpjm0GtHe9IIxeYcSIyq1hC7+URelEnbgP+8wtg8ONc3oo6l2t4UQxZaFAshqSVAWcN+hjgtby8B3VRfFU+lIUW/KAnu369MFN6e7oVg1eejiDKr+CWTA5eNLjqgOTMjZ+cd58D1D0F5A3TzluTCHb83WfrpxERLc2LGjExL4/CQoNV2nQ1Tu/nylZZlPPkAaUhhvwB5A4No6XpjoY57qhXgC03AZUmrIbUUBsjtBaX+j9ozCcHvxAcinm5r78vEzjj5BeklRpAf7sLBKFQvFnLMzeXPLuvNG6eMxiWUo2BD0lekl/1bfczoSgIRdOd5a23cgtKpLnsHeC7f0smzuHQqToy9fFhdpyRLeppjRFhaLqDhLMImJf7zKsNXy9XZtNhc2V78oDp9foWMjxTdgPnvgZyBFaZDXU6P+avKUo6VCYSupXRaHih25lUcbbDJa6FbqbzkpSVlWHz5s1Rqk2CUfU8UDyB288ThqbbZpc6BghCQ+n+1hE5sxFT3stNUjACuGSV4qCi3hUaQlSomm7loGRGu8wLEXwnH879FgnsAPCNnpmjzh5u/jrtLul+a8K9+5cK9seLVk9zB0v72LScCuoRF6utgkmv0T35kSBWjtSSoQzVslUE/nAdPMmiCAi0nolK3pDIeI8GEJKm2yia5uU6jpEAaVz97t8qzg01BEmf+b1I0x1u20dkASzEhRl+/NGMga5Az5GaCHdu+A7jjODKAArHWl+OafQW0jXGdMNjhMlnMWj+o3gWjfjlUdatn9daxehzzfv1Mev1HwBSi8ylz61U3/bU/0HjXuajNXfxjaOybX6KaDZK83J+O4Jv62cHJcFHZkIVdzbQ6w4gxedlMswwCHaneVMbtbLy9QQuFUSabiNCqk8gHfWKufKUA33Dx+ppQ56oKMrwmaIZgXeiIbvPYbzWaoOpXtxk3T3dHHres4HQ72dqiUmzeCVxIHSLFhuNWj9o5SFC5HU/FpruaJjUx1LoDgqx5zsepvadF+ZlfYCVz3EcvCNmUI2NHuF9rka8lyvTePKkfcuiOsqcnyreSZ9TJKGGN8zrCnkBmdd8RcIagjfz5cb+kinaZQtDZooccybYcxwxfNet00ZBSg5+4VxjjLCFoelWWmmcVISgNeJTSFmmP5SowWfy/PHAdyt9gBjBqaIE8RNDTTc/dqVq+NBSzsf4LZwdEBK6OwrRHGBcnDd40QAYqkMR0SqnEeFs+lHgqk+Bbv9lrrwgQVJLmAtRaFC2y8BF0qr4ZYqY4P0WBv82swfQ/8fAxb9QDHRhaHDUrrFAz7RNZ0+3/KSZGllPerfA91gKZv46CJ4lPXP8UOk+V/rLe6NNpj3dQMCss3uYeyrDQU3oDtVhmA81oc9STXeMtz+YxsL+RuZ13ogjNTN1EfTpk/4FDPwZ0Odu7wmRpjvM680OdU84X24E3mc14U1oNaJnXh5j55SRgh+rfJg1j/ct1ustjAQpOVT8RwQRxlZG5fxDKWTzc0uj2AwuMvjwOXNVhsqKBWbe5WhZN/nG6k6jAsfSOovTAMFtykdD6oDEtXk5EUH4yZ2at8tIwb+Aeiv4ZhAJ3ee+1v+dK1PdbFq7QPm/3bT2dIcorKWWyv/P6g3UCLZMqIUbqfx58LFwOl81gatyMbBhPJCj4qBQb0+3/KSBikRxYp9SBDR9Ln03sxfLMgTXnlJoLguj79jAh4GCUZJFzNvehZVYxLS1crFjwruS9kI5MYgHzteH9/sRvwE2XQEMehg4x+cVJYHC5zMkrrFS6NYyaw5z7BNpb/OHSR+tNOFOvkOxaAPkApFmSCmDqPUJer4ZjPZfibgFY9K/JI/2m68KHCuuMZeHM1U/DaCtVY7Wnm7fAkHlY8AXq4C+95rLj8ew9VchMOPbEOeMkUbn/ql5L7cS33uZOxiYuFUR5cafKPDV96xc8zlw+j9A0aWBc5584MK3FlU0PiGhu6NwgfekG83BJoITHiP7eSIJf586X6U9kQhVU5c/XNJUR9LkJpz2VTMbKxoHTN2v7mFdL0637FycCd088TAREz1LZk2+jU4wHG6gy1WSJjatTPIUnGxCt90VnwJ3JMgdBEz3hsnatzhwPFrP8YR3o1NOWFjYl8jCKCksuIRtYKZdDJjzipzneToJk1qOww1c8wUAFnpoUR7ezJdHr68Q9V/C9z8BNd0pBUDnK4FBPwf2eB0GZ/Y0l4d/W5pJ83J+TDFqXh62pts75+u/UPqEhYl+wGyYT8vQe0b5a4rc89ze3o7mZsWWQrd37pcxGDh/3vvda37v+99Hc3sgfXMb0HoecBQBeUXytIOeAz5cIM4jznC5XHA4wp8bkdDdUeBXh9ui+HBHcvIndKRmJRp76pQ4M4GWU6EV0+e/DSQyMWCEJXRrmNBnC0JaqJUZ7r7gaHrwjgeTchkCodtqk2+7C7j6oNSOsdjrGGuP7VYTDSE4aublHO5s/TTRJLs/cHqf/JieP4pwkAndivFJaOVlol0MeeQWhDe6aL7k+PK73UCTxVZtSoxGyQgHoR8EXrMmuFe5g4HhvwS+2RaI9x0PC6yhwltkdTbpDG7I/3q/mDUvF2gvhUTSe3mYY1HhOC6rBGxv3TrzbRKZcbu5uRmHDh1Ce7tiHtJnNdDaJCmfDun0K+12oNty6fsXGv5o2vsH0unlGQfk5OSguLgYtjDuNQndHQVee2blJCSIcPe1ccRS063HpWuBrXMlrXXMCWNwyTC5aq5WZth7uqMohIUaE9gqRAJoOB7ZjRILB2r9HwQ+e0GK85vM9Pqh9WVEzZFaHDPmNeANxV7MNgs9//PvjHJ8MuK9XBMDfjpEvjycacDY14BPfgnsqBX/LpEJ1by81x2SFYBP6E6Wd8SIAHDFXmkRpuTywFYlvYVOLSWHVXu6g8LdhdlGGT0C39O7AWcOhpdf1InuM8oYw9GjR+FwOFBWVga7PcS5JGsDTrVIz2ZOhXba1i7S8+SI8vzeBIwxnD17FsePS9Y3JSUajuN0IKG7oyDT5kVTqxTBTkP0UlbMiVz+SswI3QVVwJUa3s2jSTgrul2vBRoeNudFXVRmIu3pHv4r4P1pklO6uIC79urfAwdfkMwJk5HKR6VrS2ZPwhk9JbNQH8U1QP07kS+HnyRbqdVp/MS6vMNFZEas5YsjXGTxaJVCSpiabiOWVlqx2XvcBny7HSgJIw58PCLcyqWj6RaeS+I+R0lOf0EcaJ0xNk/hr4G/71r9dTjeyyO98Msv0FQ9D/xjJtAnjH3h0abTaO3zEbYQa21txdmzZ1FaWoq0tDCVEZ7BUvvrbleLwFaUKJCaKm3LOH78OAoLC0M2NSehu6MQK6E7oublAqHbyv2ncWWOFCXzcpsdGPhQaL+T/R/unu4okt0HuPI/sa4FB9fWFTdKn2Qm3p6HSKN8N8asBl61wEmPzBrCwnsaze1JZuE1ZcOXS1q90issLI8XupWabkEbmBmvzJqXK9M43ED1SuPlxQ02aI93gnMsBKE7rsZ3k4i8mEeKSduBQy9Jzhl5LnxjMANe6A5X0x0m/Lw3oxswaVtk87eagipgwkYgQ01bHNm5fFubdL/c7ghonWMSetRafAsRLS0tIQvdCdzrEKbgVymjun/SYkdqlg6cfN4x3nPaZZp0rYXj9dPGYn+scqKj2eEaeCZ041MmMVaGzyKiT1Dc2AxryknhHGglskARDvyeUFcWUDZdsDcVBkIgGsSmYV4uml5php0Mypz7qhZrPAb7+K2mu9d6zRfqT4lwfOtgmu4u1wAD/wcYvzaMTFTmCfnDgWFPS041ZcdHGMzXpvLdAKbeDwMI9/8nGEXj1R3YWkQ4e5aTmUjcl+RbiiDEyDTdUZzUhx2rlP9ZlB9XfoBubYpu2Uo8+cD3m4w5k2s5Lf8/KgKsmT3dBuh6LXDkL0CnMeHlk5AkuVOxjkJ+FfDttujFB3dyIZusFMBSS4BzR63LPxxk8Zw1HCRGKu69lqZbJECY8UtiMyt0xyDqgBUMew4oqgFKp4jPi+L88g7cNE2fk0TTbbMBA38aXh5mF+dDeb7M3mPlOxOuRl9v/z9BRBkSujsM/H6caA7OggGw6YvQsop2DGVeI6UWviSaGA3D8u2/5P9f83nEqxKEmT3dRiaedhcw5s/h1SlRIU13cnDZeuld5D3oWok9Slq8/JHAl6utyz9SKN+j1M7Aua+k723nIlMG3+8pfY6I+jlTQrcRLXYSarqd6UDFrODjU/cDh18VR/tw5wJT9+mPke28Uz3S5pnCcPzzCGm60yuA8u+b+72SuItMEmlogT7RSJJemtCF73y04k1HGtGqc/GE0PKyO4FpR6TB1U+UOp1E6ryVpkjRiDnZdlb+v9YA7Y8TSoihgTQpcGUCxZcphGEvaV0sKJAfzkmgCLLoGvRI4HvZ9MgUwY9vQZpu7v8etwbXQT9zPjOVJBHSdHefK/3tF24sZAvJ7iv5G3GpWG5l9wMyumvncfbLyNcrUckZZC59arGxdHy8+vYWc2Xwi/WDHg5/ISkZzMu1SPZQmwaZO3cubDYbbDYbXC4XKioqcP/99+M8F/t78+bNuOyyy5CXl4e0tDT06tULc+bM8ccj37RpE2w2G06dOmVpXUnT3VHghUZXThQLFkz+1AZNI6R1AVojpKUwQ2Nd9MsMlcqfS4NV0+fWOhHiaVDcHy1Nt2iPJRGANN3JT8VsYN9jUvzgSCEznbXSwWSCCPTKhdKKG4GjayVT5JLJkS9PKXQ7OUupEb8GBjxkMo61SfPycPqNEb8BetUCuUNCzyMRqJgN7JgvfW/+LrZ1iTXl3weaTxr3b1B0mbQokzNAO507G+h2I3D2sIYDMBVsBhaazGDJ4mY8QUK3j8mTJ2PFihVoaWnBzp07MWfOHNhsNjzxxBPYv38/Jk+ejDvvvBPPPPMMUlNTceDAAfzlL3/xO4+LFiR0dxT4Abnn7daXV3oF8PWbQLkgXEvx5cDH/zf0vPkJZbRW+syu2MYSTz4wfGl0yzy9T/6/SLvnPxdhZynJBgndyc+ARZKAU3Rp5PKM1v7eRHk+lUK33QVc8kfrylP62yiukcbB7AFS25gSuGHQvJwTUr56Heh2vbkyfNidQP6w0H6bSPALId9ujV094gGbHbjohybS24DBjxlLO+r3odVJWV6oXPo2cOhF4/VNVIxuOewAeDweFBdL1hhlZWWoqanB+vXr8cQTT+Dtt99GcXExlixZ4k/fo0cPTJ5sweKrDiR0dxT4CUjnq6wvr+q3wLc7gM5XBp8rmQhcug7I6hNa3rzQZjiMBRFVDHuQJYKh1eukx+GWnAVGEl4w01r0Cpd4F7pTCiUfHMWXR7fcIPNyBzD+72FkaEDr13Qo8D1vaBhldRASxUqDQFia7pLLpU+yUzxRms9H0mKKh7HgrYPRwpEW8vu6d+9e/POf/0R5ubTVsri4GEePHsV7772HsWPHRrKWpiGhu6PAC93RGHhSS4AuGsJ9ycTQ8+br33wy9HzMkNU3OuUkC5pCN3U7msS7UEPEKdHSdMe5f4urD0mmw2mdo1uuGSdpRjDivbyNcwzWW+BgjCASFVeWfpqOjt0BjHvduvzbzgJ/sijEpR7fP2PKefIbb7yBjIwMtLa24sKFC7Db7XjuuecAANdddx3WrVuHcePGobi4GCNHjsSECRMwe/ZsZGVF9zkjR2odhWSdyLc0RqecbgJvqkSASxSexrU6S9J060CabiIEZIKZhUN7vI8lzrToC9xAsPfysDFgXt4WcBRkqXUDQUSLi38BdLsJKI2+6S+RuFx66aXYvXs3tm3bhjlz5uDmm2/GjBkzAAAOhwMrVqzAl19+iSVLlqBz58547LHH0L9/fxw9Gt3wl6Ry6ijEu3bCLEUTgGMbgB63WVvOuL8BX78F9L3P2nISna4zAt8ze2mnJaFbG/JISoRCtBypKb2CExKWOq9TEbqT3lEU0eEQhYQjYoMjTdI4x6psE6Snp6Nnz54AgBdeeAGVlZV4/vnnceutt/rTdO7cGTfddBNuuukmPPLII7jooouwfPlyPPzwwxGtuhYkdHcUkk3oHvdX4OS/gYJR1pbT+UrxvnTCPIXjgeObgO43x7omcQ4J3UQIRMuRWkZPAOusyz/R8MX/Lp0a4Yz5fkBF6C6/Hmj4OHqx4AmC6DjYbKZMvOMFu92OBx98EPfccw9uuOEGpKYGh6nNzc1FSUkJmpqaolo3Ero7CskmdDvTgcIxsa4FYYbL3gFaTkcnbngiE+/mu0R8Ei2hu/LnQHuzFIKLAK74EGj8FMgfEdl8HamSIN/aBKSXi9PYHUDlo5EtN9nxLZL0uFU/LUEQCcl1112H++67D0uXLkVmZiZ2796N6dOno0ePHjh//jxefPFF7Nu3D88++2xU60VCd0eh733AV38Dul4X65oQHRW7gwRuQ0RC6CZteccjSt7L3TlA1a+tyz/R8ORLn0hjswHj34h8vh2daUckB6xWtBlBEHGB0+nE/PnzsWTJEqxevRoffPAB5s2bh6+//hoZGRno378/1qxZg3HjomslREJ3R6FwDPC9EzTQENZDe5LDg+4fEQrR0nQTRCJjs9E8iCCSiJUrVwqPL1iwAAsWLAAAjB49WjOP8ePHg0Vh7kVCd0cipSDWNSA6AhQLNUzIvJwIAV7odgTvYSMIgiAIInaQ0E0QRGRR87RLGIM03UQopBQDZTMATwGQUhjr2hAEQRAEwUFCN0EQkeX8iVjXIMEhTTcRAjYbMObPsa4FQRAEQRACSCVFEERkaT4Z6xokNqTpJgiCIAiCSCpI6CYIgiAIgiAIgiAIiyChmyAIIp7odQeQVgb0/u/Q83BmRK4+BEEQBEF0CKLhxTsRaW8Pf+tf0uzpXrp0KZ588knU19ejsrISzz77LEaMGBHrahFExyGlGDhfD7iyY12TxMaTB1zzRWhe4Ef8Cjj4O2DATyJfL4IgCIIgkhKXywWbzYYTJ06gU6dOsFEkGgDSIkRzczNOnDgBu90Ot9sdcl42lgRLGn/84x8xe/ZsLF++HFVVVXjqqafw6quvoq6uDoWF+l5cGxoakJ2djdOnTyMrKysKNSaIJOTUPmDPT4CBi4DcwbGuDUEQBEEQBGGQM2fO4MsvvyRtt4C0tDSUlJQIhW6jcmRSCN1VVVUYPnw4nnvuOQCSCUBZWRnuvPNOf2B0LUjoJgiCIAiCIAiiI9PW1oaWlpZYVyOucDgccDqdqtp/o3JkwpuXNzc3Y+fOnVi4cKH/mN1uR01NDbZs2SL8zYULF3DhwgX//w0NDZbXkyAIgiAIgiAIIl5xOBxwOByxrkZSkvCO1L755hu0tbWhqKhIdryoqAj19fXC3yxevBjZ2dn+T1lZWTSqShAEQRAEQRAEQXQwEl7oDoWFCxfi9OnT/s+RI0diXSWCIAiCIAiCIAgiCUl48/KCggI4HA4cO3ZMdvzYsWMoLi4W/sbj8cDj8USjegRBEARBEARBEEQHJuGFbrfbjaFDh2LDhg2YNm0aAMmR2oYNGzB//nxDefh8ydHeboIgCIIgCIIgCMIIPvlRzzd5wgvdAHDPPfdgzpw5GDZsGEaMGIGnnnoKTU1NuPnmmw39vrGxEQBobzdBEARBEARBEARhisbGRmRnZ6ueTwqhe+bMmThx4gQeeugh1NfXY/DgwVi7dm2QczU1SktLceTIEWRmZsY0GHxDQwPKyspw5MgRCl2WRFC7Ji/UtskLtW1yQu2avFDbJifUrslLsrQtYwyNjY0oLS3VTJcUcbqTBYoXnpxQuyYv1LbJC7VtckLtmrxQ2yYn1K7JS0dr2w7pvZwgCIIgCIIgCIIgogEJ3QRBEARBEARBEARhESR0xxEejweLFi2icGZJBrVr8kJtm7xQ2yYn1K7JC7VtckLtmrx0tLalPd0EQRAEQRAEQRAEYRGk6SYIgiAIgiAIgiAIiyChmyAIgiAIgiAIgiAsgoRugiAIgiAIgiAIgrAIEroJgiAIgiAIgiAIwiJI6I4Tli5dim7duiElJQVVVVXYvn17rKtEcLz33nu46qqrUFpaCpvNhjVr1sjOM8bw0EMPoaSkBKmpqaipqcGBAwdkaU6ePIlZs2YhKysLOTk5uPXWW3HmzBlZmj179mDMmDFISUlBWVkZlixZYvWldWgWL16M4cOHIzMzE4WFhZg2bRrq6upkac6fP4/a2lrk5+cjIyMDM2bMwLFjx2RpDh8+jKlTpyItLQ2FhYW477770NraKkuzadMmXHzxxfB4POjZsydWrlxp9eV1aJYtW4ZBgwYhKysLWVlZqK6uxltvveU/T+2aHDz++OOw2Wy4++67/ceobROTn/3sZ7DZbLJPnz59/OepXRObr776CjfeeCPy8/ORmpqKgQMHYseOHf7zNI9KPLp16xb0ztpsNtTW1gKgdzYIRsScVatWMbfbzV544QW2b98+9oMf/IDl5OSwY8eOxbpqhJc333yT/fjHP2avvfYaA8BWr14tO//444+z7OxstmbNGvbhhx+yq6++mlVUVLBz587500yePJlVVlayrVu3svfff5/17NmTXX/99f7zp0+fZkVFRWzWrFls79697JVXXmGpqansV7/6VbQus8MxadIktmLFCrZ37162e/dudsUVV7CuXbuyM2fO+NPMmzePlZWVsQ0bNrAdO3awkSNHslGjRvnPt7a2sgEDBrCamhq2a9cu9uabb7KCggK2cOFCf5qDBw+ytLQ0ds8997D9+/ezZ599ljkcDrZ27dqoXm9H4vXXX2d///vf2SeffMLq6urYgw8+yFwuF9u7dy9jjNo1Gdi+fTvr1q0bGzRoELvrrrv8x6ltE5NFixax/v37s6NHj/o/J06c8J+ndk1cTp48ycrLy9ncuXPZtm3b2MGDB9m6devYp59+6k9D86jE4/jx47L3df369QwA27hxI2OM3lklJHTHASNGjGC1tbX+/9va2lhpaSlbvHhxDGtFqKEUutvb21lxcTF78skn/cdOnTrFPB4Pe+WVVxhjjO3fv58BYP/617/8ad566y1ms9nYV199xRhj7Je//CXLzc1lFy5c8Kd54IEHWO/evS2+IsLH8ePHGQC2efNmxpjUji6Xi7366qv+NB9//DEDwLZs2cIYkxZk7HY7q6+v96dZtmwZy8rK8rfl/fffz/r37y8ra+bMmWzSpElWXxLBkZuby377299SuyYBjY2NrFevXmz9+vVs3LhxfqGb2jZxWbRoEausrBSeo3ZNbB544AF2ySWXqJ6neVRycNddd7EePXqw9vZ2emcFkHl5jGlubsbOnTtRU1PjP2a321FTU4MtW7bEsGaEUQ4dOoT6+npZG2ZnZ6Oqqsrfhlu2bEFOTg6GDRvmT1NTUwO73Y5t27b504wdOxZut9ufZtKkSairq8N3330Xpavp2Jw+fRoAkJeXBwDYuXMnWlpaZG3bp08fdO3aVda2AwcORFFRkT/NpEmT0NDQgH379vnT8Hn40tA7Hh3a2tqwatUqNDU1obq6mto1CaitrcXUqVOD7j+1bWJz4MABlJaWonv37pg1axYOHz4MgNo10Xn99dcxbNgwXHfddSgsLMSQIUPwm9/8xn+e5lGJT3NzM1566SXccsstsNls9M4KIKE7xnzzzTdoa2uTPXAAUFRUhPr6+hjVijCDr5202rC+vh6FhYWy806nE3l5ebI0ojz4MgjraG9vx913343Ro0djwIABAKT77na7kZOTI0urbFu9dlNL09DQgHPnzllxOQSAjz76CBkZGfB4PJg3bx5Wr16Nfv36UbsmOKtWrcK///1vLF68OOgctW3iUlVVhZUrV2Lt2rVYtmwZDh06hDFjxqCxsZHaNcE5ePAgli1bhl69emHdunW444478KMf/Qi/+93vANA8KhlYs2YNTp06hblz5wKgvliEM9YVIAiCiAdqa2uxd+9efPDBB7GuChEhevfujd27d+P06dP485//jDlz5mDz5s2xrhYRBkeOHMFdd92F9evXIyUlJdbVISLIlClT/N8HDRqEqqoqlJeX409/+hNSU1NjWDMiXNrb2zFs2DA89thjAIAhQ4Zg7969WL58OebMmRPj2hGR4Pnnn8eUKVNQWloa66rELaTpjjEFBQVwOBxB3vyOHTuG4uLiGNWKMIOvnbTasLi4GMePH5edb21txcmTJ2VpRHnwZRDWMH/+fLzxxhvYuHEjunTp4j9eXFyM5uZmnDp1SpZe2bZ67aaWJisriyaTFuJ2u9GzZ08MHToUixcvRmVlJZ5++mlq1wRm586dOH78OC6++GI4nU44nU5s3rwZzzzzDJxOJ4qKiqhtk4ScnBxcdNFF+PTTT+mdTXBKSkrQr18/2bG+ffv6tw/QPCqx+eKLL/DOO+/gtttu8x+jdzYYErpjjNvtxtChQ7Fhwwb/sfb2dmzYsAHV1dUxrBlhlIqKChQXF8vasKGhAdu2bfO3YXV1NU6dOoWdO3f607z77rtob29HVVWVP817772HlpYWf5r169ejd+/eyM3NjdLVdCwYY5g/fz5Wr16Nd999FxUVFbLzQ4cOhcvlkrVtXV0dDh8+LGvbjz76SDYZWL9+PbKysvyTjOrqalkevjT0jkeX9vZ2XLhwgdo1gZkwYQI++ugj7N692/8ZNmwYZs2a5f9ObZscnDlzBp999hlKSkronU1wRo8eHRSO85NPPkF5eTkAmkclOitWrEBhYSGmTp3qP0bvrIBYe3IjpJBhHo+HrVy5ku3fv5/dfvvtLCcnR+bNj4gtjY2NbNeuXWzXrl0MAPvFL37Bdu3axb744gvGmBTqIicnh/31r39le/bsYddcc40w1MWQIUPYtm3b2AcffMB69eolC3Vx6tQpVlRUxG666Sa2d+9etmrVKpaWlkahLizkjjvuYNnZ2WzTpk2ysBdnz571p5k3bx7r2rUre/fdd9mOHTtYdXU1q66u9p/3hbyYOHEi2717N1u7di3r1KmTMOTFfffdxz7++GO2dOnShA15kSgsWLCAbd68mR06dIjt2bOHLViwgNlsNvb2228zxqhdkwneezlj1LaJyr333ss2bdrEDh06xP7xj3+wmpoaVlBQwI4fP84Yo3ZNZLZv386cTid79NFH2YEDB9jLL7/M0tLS2EsvveRPQ/OoxKStrY117dqVPfDAA0Hn6J2VQ0J3nPDss8+yrl27MrfbzUaMGMG2bt0a6yoRHBs3bmQAgj5z5sxhjEnhLn7605+yoqIi5vF42IQJE1hdXZ0sj2+//ZZdf/31LCMjg2VlZbGbb76ZNTY2ytJ8+OGH7JJLLmEej4d17tyZPf7449G6xA6JqE0BsBUrVvjTnDt3jv3whz9kubm5LC0tjU2fPp0dPXpUls/nn3/OpkyZwlJTU1lBQQG79957WUtLiyzNxo0b2eDBg5nb7Wbdu3eXlUFEnltuuYWVl5czt9vNOnXqxCZMmOAXuBmjdk0mlEI3tW1iMnPmTFZSUsLcbjfr3LkzmzlzpiyOM7VrYvO3v/2NDRgwgHk8HtanTx/261//Wnae5lGJybp16xiAoLZijN5ZJTbGGIuJip0gCIIgCIIgCIIgkhza000QBEEQBEEQBEEQFkFCN0EQBEEQBEEQBEFYBAndBEEQBEEQBEEQBGERJHQTBEEQBEEQBEEQhEWQ0E0QBEEQBEEQBEEQFkFCN0EQBEEQBEEQBEFYBAndBEEQBEEQBEEQBGERJHQTBEEQBEEQBEEQhEWQ0E0QBEEQBEEQBEEQFkFCN0EQBEEQBEEQBEFYBAndBEEQBEEQBEEQBGERJHQTBEEQBEEQBEEQhEX8f6rVb/kGURYiAAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Create subplots\n", + "import matplotlib.pyplot as plt\n", + "fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8), gridspec_kw={'height_ratios': [3, 1]})\n", + "\n", + "# price graph\n", + "ax1.plot(df['Close'], label='Close Price', color='blue')\n", + "ax1.set_title('Stock Price')\n", + "ax1.set_ylabel('Price')\n", + "ax1.legend()\n", + "\n", + "# rsi graph\n", + "ax2.plot(df['RSI'], label='RSI', color='orange')\n", + "ax2.axhline(70, color='red', linestyle='--') # Overbought line\n", + "ax2.axhline(30, color='green', linestyle='--') # Oversold line\n", + "ax2.set_title('Relative Strength Index (RSI)')\n", + "ax2.set_ylabel('RSI')\n", + "ax2.legend()\n", + "\n", + "plt.tight_layout()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    OpenHighLowCloseVolumeSMA_10SMA_50RSI
    6221.70097922.03121221.70097921.81420114674821.021.63304621.56747140.418486
    6321.81420123.11626121.85666122.17745815454878.021.59200221.66295545.076147
    6422.31426622.40862122.03121222.21048021249133.021.59483321.75494851.133774
    6521.70097922.92755521.70097922.80961640137428.021.71560421.84665957.684634
    6623.12097723.87107722.51712423.53140853712115.021.96752321.94893659.348024
    \n", + "
    " + ], + "text/plain": [ + " Open High Low Close Volume SMA_10 \\\n", + "62 21.700979 22.031212 21.700979 21.814201 14674821.0 21.633046 \n", + "63 21.814201 23.116261 21.856661 22.177458 15454878.0 21.592002 \n", + "64 22.314266 22.408621 22.031212 22.210480 21249133.0 21.594833 \n", + "65 21.700979 22.927555 21.700979 22.809616 40137428.0 21.715604 \n", + "66 23.120977 23.871077 22.517124 23.531408 53712115.0 21.967523 \n", + "\n", + " SMA_50 RSI \n", + "62 21.567471 40.418486 \n", + "63 21.662955 45.076147 \n", + "64 21.754948 51.133774 \n", + "65 21.846659 57.684634 \n", + "66 21.948936 59.348024 " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Correlations" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "corr = df.corr()\n", + "corr" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "plt.figure(figsize=(10,8))\n", + "sns.heatmap(corr, annot=True, linewidths=0.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "id": "OQ3cGqgTMBwt" + }, + "outputs": [], + "source": [ + "# Select features and target variable\n", + "X = df[['Open', 'High', 'Low', 'Volume']]\n", + "y = df['Close']" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "id": "9Oz-bwJOMEWD" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "id": "ugapDyXODtn3" + }, + "outputs": [], + "source": [ + "# Scale the features using Min-Max scaling\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "997ZEgibCZIO", + "outputId": "2a45a8e3-71b0-47f3-bd66-91bcdc028c76" + }, + "outputs": [], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "bmtt76RuCeyG", + "outputId": "658075af-e75d-45b1-f6cf-756e349a32d1" + }, + "outputs": [], + "source": [ + "X_test.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "CeJkUJ92Ciqd", + "outputId": "93dec527-ea2e-42e6-c70b-a9491c71d917" + }, + "outputs": [], + "source": [ + "y_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7HGC7VuTCjWc", + "outputId": "64dc2569-b4b4-4c2e-d416-1cf77c41ac75" + }, + "outputs": [], + "source": [ + "y_test.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "c6Ek8jRlO2_I" + }, + "source": [ + "## 1. LINEAR REGRESSION" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "id": "RdZ1SpzdMHAJ" + }, + "outputs": [], + "source": [ + "# Create a linear regression model\n", + "model1 = LinearRegression()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mPM035IzMY04", + "outputId": "07379dba-cfe8-4814-b972-d08b12f224ac" + }, + "outputs": [], + "source": [ + "y_train.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "qBhQ9HbYMI3d", + "outputId": "52e0655f-1d23-47b7-decc-7a7ca35c0470" + }, + "outputs": [], + "source": [ + "# Train the model\n", + "model1.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "id": "X269co2kMS4z" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred1 = model1.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "id": "QK8GvDYPOd0Y" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse1 = np.sqrt(mean_squared_error(y_test, pred1))\n", + "mae1 = mean_absolute_error(y_test, pred1)\n", + "mape1 = mean_absolute_percentage_error(y_test, pred1)\n", + "accuracy1 = accuracy_score(y_test > pred1, y_test > pred1.round())\n", + "precision1 = precision_score(y_test > pred1, y_test > pred1.round())\n", + "confusion1 = confusion_matrix(y_test > pred1, y_test > pred1.round())\n", + "recall1 = recall_score(y_test > pred1, y_test > pred1.round())\n", + "f11 = f1_score(y_test > pred1, y_test > pred1.round())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dEi49xtEOtne", + "outputId": "0000b074-3187-41de-fbac-4ae75cbda6bd" + }, + "outputs": [], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse1)\n", + "print(\"MAE:\", mae1)\n", + "print(\"MAPE:\", mape1)\n", + "print(\"Accuracy:\", accuracy1)\n", + "print(\"Precision:\", precision1)\n", + "print(\"Confusion Matrix:\\n\", confusion1)\n", + "print(\"Recall:\", recall1)\n", + "print(\"F1 Score:\", f11)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GxtMzlg-gR2P" + }, + "source": [ + "## 2. SVR" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "id": "o7K9r7EXWRjQ" + }, + "outputs": [], + "source": [ + "from sklearn.svm import SVR" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "id": "0xQewd7QWTtq" + }, + "outputs": [], + "source": [ + "# Create an SVR model\n", + "model2 = SVR()" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "id": "DuNes3s6U2IV" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "22SaCsQmfhgP", + "outputId": "2121e992-399d-4b78-e42c-fc20b9d52189" + }, + "outputs": [], + "source": [ + "# Train the model\n", + "model2.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "id": "OQ1nL4oYfkAC" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred2 = model2.predict(X_test)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "id": "nRYTwydsfpjb" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse2 = np.sqrt(mean_squared_error(y_test, pred2))\n", + "mae2 = mean_absolute_error(y_test, pred2)\n", + "mape2 = mean_absolute_percentage_error(y_test, pred2)\n", + "accuracy2 = accuracy_score(y_test > pred2, y_test > pred2.round())\n", + "precision2 = precision_score(y_test > pred2, y_test > pred2.round())\n", + "confusion2 = confusion_matrix(y_test > pred2, y_test > pred2.round())\n", + "recall2 = recall_score(y_test > pred2, y_test > pred2.round())\n", + "f12 = f1_score(y_test > pred2, y_test > pred2.round())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "656J5oz5fzq6", + "outputId": "ce67d2d8-0bc8-4e6d-d6b5-6b78e7e1c59b" + }, + "outputs": [], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse2)\n", + "print(\"MAE:\", mae2)\n", + "print(\"MAPE:\", mape2)\n", + "print(\"Accuracy:\", accuracy2)\n", + "print(\"Precision:\", precision2)\n", + "print(\"Confusion Matrix:\\n\", confusion2)\n", + "print(\"Recall:\", recall2)\n", + "print(\"F1 Score:\", f12)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hcIfVMWdgcKt" + }, + "source": [ + "## 3. Random Forest" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "id": "f7raXT_hf2ij" + }, + "outputs": [], + "source": [ + "from sklearn.ensemble import RandomForestRegressor\n", + "# Create a Random Forest model\n", + "model3 = RandomForestRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "id": "TadNM7MEU7fh" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "fF002Yepgk55", + "outputId": "d148c589-4879-4e2d-8b0f-5b5ca01a2a53" + }, + "outputs": [], + "source": [ + "# Train the model\n", + "model3.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "id": "8nRU_pzEgnCt" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred3 = model3.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "id": "4aKEXGVUgsry" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse3 = np.sqrt(mean_squared_error(y_test, pred3))\n", + "mae3 = mean_absolute_error(y_test, pred3)\n", + "mape3 = mean_absolute_percentage_error(y_test, pred3)\n", + "accuracy3 = accuracy_score(y_test > pred3, y_test > pred3.round())\n", + "precision3 = precision_score(y_test > pred3, y_test > pred3.round())\n", + "confusion3 = confusion_matrix(y_test > pred3, y_test > pred3.round())\n", + "recall3 = recall_score(y_test > pred3, y_test > pred3.round())\n", + "f13 = f1_score(y_test > pred3, y_test > pred3.round())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8pPzsCY1g305", + "outputId": "72c4ea56-2610-41c6-f286-4c8289d3f0ac" + }, + "outputs": [], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse3)\n", + "print(\"MAE:\", mae3)\n", + "print(\"MAPE:\", mape3)\n", + "print(\"Accuracy:\", accuracy3)\n", + "print(\"Precision:\", precision3)\n", + "print(\"Confusion Matrix:\\n\", confusion3)\n", + "print(\"Recall:\", recall3)\n", + "print(\"F1 Score:\", f13)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mZsLwLivhLGH" + }, + "source": [ + "## 4. Gradient Boosting Models (GBM)" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "id": "TI8idoxOg6jF" + }, + "outputs": [], + "source": [ + "import xgboost as xgb\n", + "# Create an XGBoost model\n", + "model4 = xgb.XGBRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": { + "id": "7r9xJDtOVBEA" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "id": "2gpbDxshhexj", + "outputId": "b2b1a681-7ede-4d66-be5d-1a8606d0f470" + }, + "outputs": [], + "source": [ + "# Train the model\n", + "model4.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": { + "id": "Jj9DXdUPhh9V" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred4 = model4.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": { + "id": "TdH60Sllhn5O" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse4 = np.sqrt(mean_squared_error(y_test, pred4))\n", + "mae4 = mean_absolute_error(y_test, pred4)\n", + "mape4 = mean_absolute_percentage_error(y_test, pred4)\n", + "accuracy4 = accuracy_score(y_test > pred4, y_test > pred4.round())\n", + "precision4 = precision_score(y_test > pred4, y_test > pred4.round())\n", + "confusion4 = confusion_matrix(y_test > pred4, y_test > pred4.round())\n", + "recall4 = recall_score(y_test > pred4, y_test > pred4.round())\n", + "f14 = f1_score(y_test > pred4, y_test > pred4.round())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "qpnLeFyZhwB3", + "outputId": "4dcac062-ec60-4b2c-ab4b-dcda1b0f2341" + }, + "outputs": [], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse4)\n", + "print(\"MAE:\", mae4)\n", + "print(\"MAPE:\", mape4)\n", + "print(\"Accuracy:\", accuracy4)\n", + "print(\"Precision:\", precision4)\n", + "print(\"Confusion Matrix:\\n\", confusion4)\n", + "print(\"Recall:\", recall4)\n", + "print(\"F1 Score:\", f14)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "d8nSGoyuh9dx" + }, + "source": [ + "## 5. Extreme Gradient Boosting (XGBoost)" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": { + "id": "DyhhdlZAhx94" + }, + "outputs": [], + "source": [ + "import xgboost as xgb\n", + "# Create an XGBoost model\n", + "model5 = xgb.XGBRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "id": "Z_AD0lVOVHwB" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "id": "RAIwxIp5iH9Z", + "outputId": "d2b4aa97-7e07-4015-c308-76a292b0929f" + }, + "outputs": [], + "source": [ + "# Train the model\n", + "model5.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": { + "id": "XmJds5fYiKT3" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred5 = model5.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": { + "id": "lZ1A0-L8iNCM" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse5 = np.sqrt(mean_squared_error(y_test, pred5))\n", + "mae5 = mean_absolute_error(y_test, pred5)\n", + "mape5 = mean_absolute_percentage_error(y_test, pred5)\n", + "accuracy5 = accuracy_score(y_test > pred5, y_test > pred5.round())\n", + "precision5 = precision_score(y_test > pred5, y_test > pred5.round())\n", + "confusion5 = confusion_matrix(y_test > pred5, y_test > pred5.round())\n", + "recall5 = recall_score(y_test > pred5, y_test > pred5.round())\n", + "f15 = f1_score(y_test > pred5, y_test > pred5.round())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7IkE-RAmiWNo", + "outputId": "cf4c1d84-412b-4a18-f70c-65ce637772ea" + }, + "outputs": [], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse5)\n", + "print(\"MAE:\", mae5)\n", + "print(\"MAPE:\", mape5)\n", + "print(\"Accuracy:\", accuracy5)\n", + "print(\"Precision:\", precision5)\n", + "print(\"Confusion Matrix:\\n\", confusion5)\n", + "print(\"Recall:\", recall5)\n", + "print(\"F1 Score:\", f15)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "A_J776rtiovq" + }, + "source": [ + "## 6. AdaBoostRegressor" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": { + "id": "HNq66cXRiYPJ" + }, + "outputs": [], + "source": [ + "from sklearn.ensemble import AdaBoostRegressor\n", + "# Create an AdaBoost model\n", + "model6 = AdaBoostRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": { + "id": "qPHH6rG0VW4V" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "P0oB5wjQivBr", + "outputId": "8726c583-6782-4504-b0ac-d2ef4ccbca4c" + }, + "outputs": [], + "source": [ + "# Train the model\n", + "model6.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": { + "id": "Bf1m5ukOi2VM" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred6 = model6.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "id": "oFWSqC4ai6gd" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse6 = np.sqrt(mean_squared_error(y_test, pred6))\n", + "mae6 = mean_absolute_error(y_test, pred6)\n", + "mape6 = mean_absolute_percentage_error(y_test, pred6)\n", + "accuracy6 = accuracy_score(y_test > pred6, y_test > pred6.round())\n", + "precision6 = precision_score(y_test > pred6, y_test > pred6.round())\n", + "confusion6 = confusion_matrix(y_test > pred6, y_test > pred6.round())\n", + "recall6 = recall_score(y_test > pred6, y_test > pred6.round())\n", + "f16 = f1_score(y_test > pred6, y_test > pred6.round())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "BsajWJGBjC80", + "outputId": "1af1194f-9a33-40af-8578-c99832509c1b" + }, + "outputs": [], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse6)\n", + "print(\"MAE:\", mae6)\n", + "print(\"MAPE:\", mape6)\n", + "print(\"Accuracy:\", accuracy6)\n", + "print(\"Precision:\", precision6)\n", + "print(\"Confusion Matrix:\\n\", confusion6)\n", + "print(\"Recall:\", recall6)\n", + "print(\"F1 Score:\", f16)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Q9DzOt3CkWFX" + }, + "source": [ + "## 7. Decision Tree" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": { + "id": "23DZ2biSjF9a" + }, + "outputs": [], + "source": [ + "from sklearn.tree import DecisionTreeRegressor\n", + "# Create a Decision Tree model\n", + "model7 = DecisionTreeRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": { + "id": "Ajo2RAVAVb7H" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "6mQEQf-ykc9F", + "outputId": "f1a62020-4125-4aea-e7e4-11acffdc5169" + }, + "outputs": [], + "source": [ + "# Train the model\n", + "model7.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": { + "id": "BFJ9q_tvkgRC" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred7 = model7.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "id": "9IxfYZbYkjv1" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse7 = np.sqrt(mean_squared_error(y_test, pred7))\n", + "mae7 = mean_absolute_error(y_test, pred7)\n", + "mape7 = mean_absolute_percentage_error(y_test, pred7)\n", + "accuracy7 = accuracy_score(y_test > pred7, y_test > pred7.round())\n", + "precision7 = precision_score(y_test > pred7, y_test > pred7.round())\n", + "confusion7 = confusion_matrix(y_test > pred7, y_test > pred7.round())\n", + "recall7 = recall_score(y_test > pred7, y_test > pred7.round())\n", + "f17 = f1_score(y_test > pred7, y_test > pred7.round())\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AnZXMYb8kooV", + "outputId": "273fa9ed-d6f2-4c4d-fb0e-a643f5ef5732" + }, + "outputs": [], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse7)\n", + "print(\"MAE:\", mae7)\n", + "print(\"MAPE:\", mape7)\n", + "print(\"Accuracy:\", accuracy7)\n", + "print(\"Precision:\", precision7)\n", + "print(\"Confusion Matrix:\\n\", confusion7)\n", + "print(\"Recall:\", recall7)\n", + "print(\"F1 Score:\", f17)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LH-B-Xd6k5UD" + }, + "source": [ + "## 8. KNeighborsRegressor(KNN)" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": { + "id": "JVDSed7yktFY" + }, + "outputs": [], + "source": [ + "from sklearn.neighbors import KNeighborsRegressor\n", + "# Create a KNN model\n", + "model8 = KNeighborsRegressor()" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": { + "id": "XJHb5SxrVgVp" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "9fn64o-ZlBka", + "outputId": "dc5e6af2-de37-46ee-cde7-e0a3baa31a1f" + }, + "outputs": [], + "source": [ + "# Train the model\n", + "model8.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": { + "id": "hbfbbjcSlDn7" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred8 = model8.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": { + "id": "hnWyNv3blHdL" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse8 = np.sqrt(mean_squared_error(y_test, pred8))\n", + "mae8 = mean_absolute_error(y_test, pred8)\n", + "mape8 = mean_absolute_percentage_error(y_test, pred8)\n", + "accuracy8 = accuracy_score(y_test > pred8, y_test > pred8.round())\n", + "precision8 = precision_score(y_test > pred8, y_test > pred8.round())\n", + "confusion8 = confusion_matrix(y_test > pred8, y_test > pred8.round())\n", + "recall8 = recall_score(y_test > pred8, y_test > pred8.round())\n", + "f18 = f1_score(y_test > pred8, y_test > pred8.round())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IPoDRkcMlMAr", + "outputId": "9892f42f-e65f-46c0-eeed-77ce32f6a7eb" + }, + "outputs": [], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse8)\n", + "print(\"MAE:\", mae8)\n", + "print(\"MAPE:\", mape8)\n", + "print(\"Accuracy:\", accuracy8)\n", + "print(\"Precision:\", precision8)\n", + "print(\"Confusion Matrix:\\n\", confusion8)\n", + "print(\"Recall:\", recall8)\n", + "print(\"F1 Score:\", f18)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "X5XtlzMXljps" + }, + "source": [ + "## 9. Artificial Neural Networks (ANN)" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": { + "id": "bJk1-9VhlRL6" + }, + "outputs": [], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": { + "id": "sZVPMR9Wlo7-" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": { + "id": "vd1fDjQiltP4" + }, + "outputs": [], + "source": [ + "# Create an ANN model\n", + "model9 = Sequential()\n", + "model9.add(Dense(32, activation='relu', input_shape=(X_train.shape[1],)))\n", + "model9.add(Dense(16, activation='relu'))\n", + "model9.add(Dense(1, activation='linear'))" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": { + "id": "ZIf94WLMlv04" + }, + "outputs": [], + "source": [ + "# Compile the model\n", + "model9.compile(loss='mean_squared_error', optimizer='adam')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "FX5DTKqslxWf", + "outputId": "9253b26c-1a79-4390-975e-d14c28a5e2a8" + }, + "outputs": [], + "source": [ + "# Train the model\n", + "model9.fit(X_train_scaled, y_train, epochs=100, batch_size=32, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OVW2qpNsmGVq", + "outputId": "34343782-f560-4dee-c307-ff0d0c52ab5a" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "pred9 = model9.predict(X_test_scaled).flatten()" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": { + "id": "CqRmjMj2maJY" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse9 = np.sqrt(mean_squared_error(y_test, pred9))\n", + "mae9 = mean_absolute_error(y_test, pred9)\n", + "mape9 = mean_absolute_percentage_error(y_test, pred9)\n", + "accuracy9 = accuracy_score(y_test > pred9, y_test > pred9.round())\n", + "precision9 = precision_score(y_test > pred9, y_test > pred9.round())\n", + "confusion9 = confusion_matrix(y_test > pred9, y_test > pred9.round())\n", + "recall9 = recall_score(y_test > pred9, y_test > pred9.round())\n", + "f19 = f1_score(y_test > pred9, y_test > pred9.round())\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5zuwkC1emmh3", + "outputId": "5d6a0e05-3112-4d27-f5fb-ed665867b22d" + }, + "outputs": [], + "source": [ + "# Print the evaluation metrics\n", + "print(\"RMSE:\", rmse9)\n", + "print(\"MAE:\", mae9)\n", + "print(\"MAPE:\", mape9)\n", + "print(\"Accuracy:\", accuracy9)\n", + "print(\"Precision:\", precision9)\n", + "print(\"Confusion Matrix:\\n\", confusion9)\n", + "print(\"Recall:\", recall9)\n", + "print(\"F1 Score:\", f19)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vjSMQNcOnFPJ" + }, + "source": [ + "## 10. LSTM(Long Short term Memory)" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": { + "id": "nCoyUanhnDKw" + }, + "outputs": [], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import LSTM, Dense" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": { + "id": "ThcXESVEVv0U" + }, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "# Scale the features using Min-Max scaling\n", + "scaler = MinMaxScaler()\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "X_test_scaled = scaler.transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": { + "id": "uACvajfImrbB" + }, + "outputs": [], + "source": [ + "# Reshape the input data for LSTM\n", + "n_features = X_train_scaled.shape[1]\n", + "n_steps = 10\n", + "n_samples_train = X_train_scaled.shape[0] - n_steps + 1\n", + "n_samples_test = X_test_scaled.shape[0] - n_steps + 1\n", + "\n", + "# Reshape the input data\n", + "X_train_reshaped = np.array([X_train_scaled[i:i+n_steps, :] for i in range(n_samples_train)])\n", + "X_test_reshaped = np.array([X_test_scaled[i:i+n_steps, :] for i in range(n_samples_test)])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": { + "id": "r066pVYpnXH5" + }, + "outputs": [], + "source": [ + "# Create an LSTM model\n", + "model = Sequential()\n", + "model.add(LSTM(64, activation='relu', input_shape=(n_steps, n_features)))\n", + "model.add(Dense(1))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": { + "id": "YpSfHu6gov35" + }, + "outputs": [], + "source": [ + "# Compile the model\n", + "model.compile(loss='mean_squared_error', optimizer='adam')\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0vHjcluaoxzP", + "outputId": "1eaafd31-9f91-4655-f437-e9199c0f7933" + }, + "outputs": [], + "source": [ + "# Train the model\n", + "model.fit(X_train_reshaped, y_train[n_steps-1:], epochs=100, batch_size=32, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "gEE06_TjozYv", + "outputId": "30306af7-2ec8-4733-db96-d3416a7fc6d4" + }, + "outputs": [], + "source": [ + "# Make predictions on the test set\n", + "y_pred = model.predict(X_test_reshaped).flatten()" + ] + }, + { + "cell_type": "code", + "execution_count": 113, + "metadata": { + "id": "7k6C8DrxpB_Q" + }, + "outputs": [], + "source": [ + "# Calculate evaluation metrics\n", + "rmse10 = np.sqrt(mean_squared_error(y_test[n_steps-1:], y_pred))\n", + "mae10 = mean_absolute_error(y_test[n_steps-1:], y_pred)\n", + "mape10 = mean_absolute_percentage_error(y_test[n_steps-1:], y_pred)\n", + "accuracy10 = accuracy_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "precision10 = precision_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "recall10 = recall_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "f110 = f1_score(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n", + "confusion10 = confusion_matrix(y_test[n_steps-1:] > y_pred, y_test[n_steps-1:] > y_pred.round())\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "i_6-UUDhpi0c", + "outputId": "3dcc5761-03b6-4b52-dfe6-08dece835c8d" + }, + "outputs": [], + "source": [ + "# Print evaluation metrics\n", + "print(\"RMSE:\", rmse10)\n", + "print(\"MAE:\", mae10)\n", + "print(\"MAPE:\", mape10)\n", + "print(\"Accuracy:\", accuracy10)\n", + "print(\"Precision:\", precision10)\n", + "print(\"Recall:\", recall10)\n", + "print(\"F1 Score:\", f110)\n", + "print(\"Confusion Matrix:\\n\", confusion10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "qpWPtph9CGip", + "outputId": "c099cb8d-96af-4223-f499-743040aecdf1" + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of accuracies from accuracy1 to accuracy10\n", + "accuracies = [accuracy1*100, accuracy2*100, accuracy3*100, accuracy4*100, accuracy5*100, accuracy6*100, accuracy7*100, accuracy8*100, accuracy9*100, accuracy10*100]\n", + "\n", + "# List of corresponding labels for each accuracy\n", + "labels = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, accuracies, color='blue')\n", + "plt.xlabel('Accuracy Variables')\n", + "plt.ylabel('Accuracy Values')\n", + "plt.title('Bar Graph of Accuracies')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "RFaaCNH6Cfoa", + "outputId": "67a8f358-e3ce-4ad2-9c78-ebc75902beb4" + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of RMSE values from rmse1 to rmse10\n", + "rmse_values = [rmse1, rmse2, rmse3, rmse4, rmse5, rmse6, rmse7, rmse8, rmse9, rmse10]\n", + "\n", + "# List of corresponding labels for each RMSE value\n", + "labels = ['RMSE1', 'RMSE2', 'RMSE3', 'RMSE4', 'RMSE5', 'RMSE6', 'RMSE7', 'RMSE8', 'RMSE9', 'RMSE10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, rmse_values, color='green')\n", + "plt.xlabel('RMSE Variables')\n", + "plt.ylabel('RMSE Values')\n", + "plt.title('Bar Graph of RMSE')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "nrZu-K-KDCJ2", + "outputId": "69165581-da05-4554-a464-a606eb87a734" + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of MAE values from mae1 to mae10\n", + "mae_values = [mae1, mae2, mae3, mae4, mae5, mae6, mae7, mae8, mae9, mae10]\n", + "\n", + "# List of corresponding labels for each MAE value\n", + "labels = ['MAE1', 'MAE2', 'MAE3', 'MAE4', 'MAE5', 'MAE6', 'MAE7', 'MAE8', 'MAE9', 'MAE10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, mae_values, color='orange')\n", + "plt.xlabel('MAE Variables')\n", + "plt.ylabel('MAE Values')\n", + "plt.title('Bar Graph of MAE')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "_c4Pe76fDNM-", + "outputId": "0e3d2f74-9042-4e2d-92c6-5ce61e967bd4" + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of MAPE values from mape1 to mape10\n", + "mape_values = [mape1, mape2, mape3, mape4, mape5, mape6, mape7, mape8, mape9, mape10]\n", + "\n", + "# List of corresponding labels for each MAPE value\n", + "labels = ['MAPE1', 'MAPE2', 'MAPE3', 'MAPE4', 'MAPE5', 'MAPE6', 'MAPE7', 'MAPE8', 'MAPE9', 'MAPE10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, mape_values, color='purple')\n", + "plt.xlabel('MAPE Variables')\n", + "plt.ylabel('MAPE Values')\n", + "plt.title('Bar Graph of MAPE')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "ZDPV0M5rDTi6", + "outputId": "9db63164-3f42-47be-d302-d80d381d9b91" + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of precision values from precision1 to precision10\n", + "precision_values = [precision1, precision2, precision3, precision4, precision5, precision6, precision7, precision8, precision9, precision10]\n", + "\n", + "# List of corresponding labels for each precision value\n", + "labels = ['Precision1', 'Precision2', 'Precision3', 'Precision4', 'Precision5', 'Precision6', 'Precision7', 'Precision8', 'Precision9', 'Precision10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, precision_values, color='red')\n", + "plt.xlabel('Precision Variables')\n", + "plt.ylabel('Precision Values')\n", + "plt.title('Bar Graph of Precision')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "39LBleNeDeuw", + "outputId": "3c6c40bc-f1da-44fb-da14-25ec6d6cf278" + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming you have a list of recall values from recall1 to recall10\n", + "recall_values = [recall1, recall2, recall3, recall4, recall5, recall6, recall7, recall8, recall9, recall10]\n", + "\n", + "# List of corresponding labels for each recall value\n", + "labels = ['Recall1', 'Recall2', 'Recall3', 'Recall4', 'Recall5', 'Recall6', 'Recall7', 'Recall8', 'Recall9', 'Recall10']\n", + "\n", + "# Plotting the bar graph\n", + "plt.bar(labels, recall_values, color='cyan')\n", + "plt.xlabel('Recall Variables')\n", + "plt.ylabel('Recall Values')\n", + "plt.title('Bar Graph of Recall')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "13cZXvb0DsvK" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +}