-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpython-tutorial-40.html
2102 lines (2046 loc) · 238 KB
/
python-tutorial-40.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" >
<title>Python API Tutorial for AllegroGraph 4.2</title>
<style type="text/css">
.input { margin-left:4em; background-color:#ADDFFF;}
.output { margin-left:4em; background-color:#F1F1F1;}
.returnlink {font-size:small; font-weight:normal; }
</style>
</head>
<body>
<h1>Python Sesame API Tutorial for AllegroGraph 4.2</h1>
<p>This is an introduction to the Python client API to AllegroGraph RDFStore™ version 4.2 from <a href="http://agraph.franz.com/allegrograph/">Franz Inc.</a> </p>
<p>
The Python Sesame API offers convenient and efficient
access to an AllegroGraph server from a Python-based application. This API provides methods for
creating, querying and maintaining RDF data, and for managing the stored triples. </p>
<p>The Python Sesame API deliberately emulates the Aduna Sesame API to make it easier to migrate from Sesame to AllegroGraph. The Python Sesame API has also been extended in ways that make it easier and more intuitive than the Sesame API. </p>
<h2 id="Contents">Contents</h2>
<table width="554" border="0" style="vertical-align:top" >
<tr>
<td width="249"><ul>
<li><a href="#Overview">Overview</a></li>
<!-- <li><a href="#PrerequisitesWindows">Prerequisites (Windows)</a> </li>
--> <li><a href="#PrerequisitesLinux">Prerequisites (Linux)</a></li>
<li><a href="#Terminology">Terminology</a></li>
<li><a href="#Creating Users with WebView">Creating Users with WebView</a></li>
<li><a href="#Running Python">Running Python Tutorial Examples</a></li>
<li><a href="#Creating a Repository">Creating a Repository and Triple Indices </a></li>
<li><a href="#Asserting and Retracting Triples">Asserting and Retracting Triples</a></li>
<li><a href="#A SPARQL Query">A SPARQL Query</a></li>
<li><a href="#Statement Matching">Statement Matching</a></li>
<li><a href="#Literal Values">Literal Values</a></li>
<li><a href="#Importing Triples">Importing Triples</a></li>
<li><a href="#Exporting Triples">Exporting Triples</a></li>
<li><a href="#Datasets and Contexts">Searching Multiple Graphs </a></li>
</ul></td>
<td width="295"><ul>
<li><a href="#Namespaces">Namespaces</a></li>
<li><a href="#Free Text Search">Free Text Search</a></li>
<li><a href="#Ask, Describe, and Construct Queries">Select, Ask, Describe, and Construct Queries</a></li>
<li><a href="#Parametric Queries">Parametric Queries</a></li>
<li><a href="#Range Matches">Range Matches</a></li>
<li><a href="#Federated Repositories">Federated Repositories</a></li>
<li><a href="#Prolog Rule Queries">Prolog Rule Queries</a></li>
<li><a href="#Loading Prolog Rules">Loading Prolog Rules</a> </li>
<li><a href="#RDFS++ Inference">RDFS++ Inference</a> </li>
<li><a href="#Geospatial Search">Geospatial Search</a> </li>
<li><a href="#Social Network Analysis">Social Network Analysis</a> </li>
<li><a href="#Transaction Control">Transaction Control</a></li>
<li><a href="#Duplicate Triples">Duplicate Triples</a></li>
<p> </p></td>
</tr>
</table>
<p> </p>
<h2 id="Overview">Overview <a class="returnlink" href="#Contents">Return to Top</a></h2>
<p>The Python client tutorial rests on a simple architecture involving AllegroGraph, disk-based data files, Python, and a file of Python examples called tutorial_examples_40.py.</p>
<table width="944" border="0">
<tr>
<td width="309"><p>AllegroGraph 4.1 Server contains the Python API, which is part of the AllegroGraph installation. </p>
<p>Python communicates with AllegroGraph through HTTP port 8080 in this example. Python and AllegroGraph may be installed on the same computer, but in practice one server is shared by multiple clients. </p>
<p>Load tutorial_examples_40.py into Python to view the tutorial examples. </p></td>
<td width="625"><img src="allegrographdiagram.jpg" width="617" height="412"></td>
</tr>
</table>
<p>Each lesson in <strong>tutorial_examples_40.py</strong> is encapsulated in a Python function, named exampleN(), where N ranges from 0 to 21 (or more). The function names are referenced in the title of each section to make it easier to compare the tutorial text and the living code of the examples file. </p>
<!-- Commented out until new procedures become clear.
<h2 id="PrerequisitesLinux">Prerequisites (Windows) <a class="returnlink" href="#Contents">Return to Top</a></h2>
<table border="1">
<tr>
<td width="867">The following procedure describes the installation of both the paid and free versions of AllegroGraph Server. Note that you cannot install both versions on the same computer. Follow the instructions that are appropriate to your version. </td>
</tr>
</table>
<p>The tutorial examples can be run on a 32-bit Windows XP computer, running AllegroGraph and Python on the same computer ("localhost"). The tutorial assumes that AllegroGraph and Python 2.5 have been installed and configured using this procedure:</p>
<p> </p>
<ol>
<li>Download an AllegroGraph 4.0 installation file (agraph-4.0-windows.exe). The free edition is available <a href="http://www.franz.com/downloads/clp/ag_survey">here.</a> For the licensed edition please contact <a href="mailto:[email protected]">Franz customer support</a> for a download link and authorizing key. </li>
<li>Run the agraph-4.0-windows.exe to install AllegroGraph. The default installation directory is C:\Program Files\AllegroGraphFJE32 for the free edition, or c:\Program Files\AllegroGraphJEE32 for the licensed edition.</li>
<li>Create a scratch directory for AllegroGraph to use for disk-based data storage. In this tutorial the directory is c:\tmp\scratch. If you elect to use a different location, the configuration and example files will have to be modified in the same way.</li>
<li>
Edit the <strong>agraph.cfg</strong> configuration file. You'll find it in the AllegroGraph installation directory. Set the following parameters to the indicated values.
<pre>:new-http-port 8080
:new-http-catalog ("c:/tmp/scratch")
:client-prolog t </pre>
If you use a different port number, you will need to change the value of the AG_PORT variable at the top of tutorial_examples_40.py.
It defaults to 8080. <br>
<br>
NOTE: On Windows Vista and Windows 7 systems, you must edit this file with elevated privileges. To do this, either start a Command Prompt with the context menu item "Run as Administrator" then edit the file using a text editor launched in that shell, or run your favorite editor with "Run as Administrator". If you do not edit with elevated privileges, the file will look like it was saved successfully but the changes will not be seen by the service when it is started. This produces a "cannot connect to server" error message.
<li>To update AllegroGraph Server with recent patches, open a connection to the Internet. Run <strong>update.exe</strong>, which you will find the AllegroGraph installation directory. This automatically downloads and installs all current patches. </li>
<li>On a Windows computer, the AllegroGraph Server runs as a Windows service. You have to restart this service to load the updates. Beginning at the Windows <strong>Start </strong>button, navigate this path: <br>
<br>
Start > Settings > Control Panel > Administrative Tools > Services. <br>
<br>
Locate the AllegroGraph Server service and select it. Click the <strong>Restart</strong> link to restart the service. </li>
<li>This example used ActivePython 2.5 from ActiveState.com. Download and install the Windows installation file,
<a href="http://downloads.activestate.com/ActivePython/windows/2.5/ActivePython-2.5.2.2-win32-x86.msi">ActivePython-2.5.2.2-win32-x86.msi.</a> The default installation direction is C:\Python25.</li>
<li>It is necessary to augment Python 2.5 with the CJSON package from python.cs.hu. Download and run the installation file,
<a href="http://python.cx.hu/python-cjson/python-cjson-1.0.3x6.win32-py2.5.exe">python-cjson-1.0.3x6.win32-py2.5.exe.</a> It will add files to the default Python directory structure.</li>
<li>It is also necessary to augment Python 2.5 with the Pycurl package. Download and run the installation file,
<a href="http://pycurl.sourceforge.net/download/pycurl-ssl-7.18.2.win32-py2.5.exe">pycurl-ssl-7.18.2.win32-py2.5.exe.</a> It will add a small directory to your default Python directory structure. </li>
<li>
Link the Python software to the AllegroGraph Python API by setting a PYTHONPATH environment variable. For the free edition of AllegroGraph, the path value is:
<pre>PYTHONPATH=C:\Program Files\AllegroGraphFJE40\python</pre>
For the licensed edition of AllegroGraph, the path value is:
<pre>PYTHONPATH=C:\Program Files\AllegroGraphJEE40\python</pre>
In Windows XP, you can set an environment variable by
right-clicking on the <strong>My Computer</strong> icon, then navigate to Properties > Advanced tab > Environment Variables. Create a new variable showing the path to the AllegroGraph python subdirectory.<br>
<br>
<img src="environmentvariable.jpg" width="423" height="205"> <br>
</li>
<li>Start the ActivePython 2.5 PythonWin editor. Navigate this path: <strong>Start</strong> button > Programs > ActiveState ActivePython 2.5 > PythonWin Editor. </li>
<li>In the PythonWin editor, open the File menu, select Run, and browse to the location of the tutorial_examples_40.py file. It will be in the AllegroGraph\python subdirectory. Run this file. This loads and runs the Python tutorial examples.</li>
</ol>
-->
<h2 id="PrerequisitesLinux">Prerequisites (Linux) <a class="returnlink" href="#Contents">Return to Top</a></h2>
<p>The tutorial examples can be run on a Linux system, running AllegroGraph and the examples on the same computer ("localhost"). The tutorial assumes that AllegroGraph and Python 2.5 have been installed and configured using the procedure posted on <a href="http://www.franz.com/agraph/support/documentation/4.0/server-installation.html">this webpage</a>. </p>
<h2 id="Terminology">Terminology <a class="returnlink" href="#Contents">Return to Top</a></h2>
<p>We need to clarify some terminology before proceeding. </p>
<ul>
<li>"RDF" is the <a href="http://www.w3.org/RDF/">Resource Description Framework</a> defined by the <a href="http://www.w3.org/">World Wide Web Consortium</a> (W3C). It provides a elegantly simple means for describing multi-faceted resource objects and for linking them into complex relationship graphs. AllegroGraph Server creates, searches, and manages such RDF graphs. </li>
<li>A "URI" is a <a href="http://www.isi.edu/in-notes/rfc2396.txt">Uniform Resource Identifier</a>. It is label used to uniquely identify variosu types of entities in an RDF graph. A typical URI looks a lot like a web address: <http:\\www.company.com\project\class#number>. In spite of the resemblance, a URI is not a web address. It is simply a unique label. </li>
<li>A "triple" is a data statement, a "fact," stored in RDF format. It states that a resource has an attribute with a value. It consists of three fields:</li>
<ul> <li>Subject: The first field contains the URI that uniquely identifies the resource that this triple describes. </li>
<li>Predicate: The second field contains the URI identifying a property of this resource, such as its color or size, or a relationship between this resource and another one, such as parentage or ownership. </li>
<li>Object: The third field is the value of the property. It could be a literal value, such as "red," or the URI of a linked resource. </li>
</ul>
<li>A "quad" is a triple with an added "context" field, which is used to divide the repository into "subgraphs." This context or subgraph is just a URI label that appears in the fourth field of related triples. </li>
<li>A "quint" is a quad with fifth field used for the "tripleID." AllegroGraph Server implements all triples as quints behind the scenes. The fourth and fifth fields are often ignored, however, so we speak casually of "triples," and sometimes of "quads," when it would be more rigorous to call them all "quints." </li>
<li>A "resource description" is defined as a collection of triples that all have the same URI in the subject field. In other words, the triples all describe attributes of the same thing.</li>
<li>A "statement" is a client-side Python object that describes a triple (quad, quint). </li>
</ul>
<table width="809" border="0">
<tr>
<td width="378"><p>In the context of AllegroGraph Server: </p>
<ul>
<li>A "catalog" is a list of repositories owned by an AllegroGraph server.</li>
<li>A "repository" is a collection of triples within a Catalog, stored and indexed on a hard disk.</li>
<li>A "context" is a subgraph of the triples in a repository. </li>
<li>If contexts are not in use, the triples are stored in the background (default) graph. </li>
</ul> </td>
<td width="421"><img src="catalogrepositorycontext.jpg" width="397" height="400" align="right"></td>
</tr>
</table>
<h2 id="Creating Users with WebView">Creating Users with WebView <a class="returnlink" href="#Contents">Return to Top</a></h2>
<p>Each connection to an AllegroGraph server runs under the credentials of a registered AllegroGraph user account. </p>
<h3>Initial Superuser Account </h3>
<p>The installation instructions for AllegroGraph advise you to create a default <strong>superuser</strong> called "test", with password "xyzzy". This is the user (and password) expected by the tutorial examples. If you created this account as directed, you can proceed to the <a href="#Creating a Repository">next section</a> and return to this topic at a later time when you need to create non-superuser accounts. </p>
<p>If you created a different superuser account you'll have to edit the <strong>tutorial_examples_40.py</strong> file before proceeding. Modify these entries near the top of the file:</p>
<pre class="input">AG_USER = 'test'<br>AG_PASSWORD = 'xyzzy' </pre>
<p>Otherwise you'll get an authentication failure when you attempt to connect to the server. </p>
<h3>Users, Permissions, Access Rules, and Roles</h3>
<p>AllegroGraph user accounts may be given any combination of the following three permissions:</p>
<ul>
<li>Superuser</li>
<li>Start Session</li>
<li>Evaluate Arbritray Code</li>
</ul>
<p>In addition, a user account may be given read, write or read/write access to individual repositories. </p>
<p>You can also define a <strong>role</strong> (such as "librarian") and give the role a set of permissions and access rules. Then you can assign several users to a shared role. This lets you manage their permissions and access by editing the role instead of the individual user accounts. </p>
<p>A <strong>superuser</strong> automatically has all possible permissions and unlimited access. A superuser can also create, manage and delete other user accounts. Non-superusers cannot view or edit account settings. </p>
<p>A user with the <strong>Start Sessions</strong> permission can use the AllegroGraph features that require spawning a dedicated session, such as <a href="#Transaction Control">Transactions </a> and <a href="#Social Network Analysis">Social Network Analysis</a>. If you try to use these features without the appropriate permission, you'll encounter authentication errors. </p>
<p>A user with permission to <strong>Evaluate Arbitrary Code </strong>can run <a href="#Prolog Rule Queries">Prolog Rule Queries</a>. This user can also do anything else that allows executing Lisp code, such as defining select-style generators, or doing eval-in-server, as well as loading server-side files. </p>
<h3>WebView</h3>
<p>WebView is AllegroGraph's HTTP-based graphical user interface for user and repository management. It provides a SPARQL endpoint for querying your triple stores as well as various tools that let you create and maintain triple stores interactively. </p>
<p>To connect to WebView, simply direct your Web browser to the AllegroGraph port of your server. If you have installed AllegroGraph locally (and used the default port number), use:</p>
<pre class="output">http://localhost:10035</pre>
<p>You will be asked to log in. Use the superuser credentials described in the previous section. </p>
<p>The first page of WebView is a summary of your catalogs, repositories, and federations. Click the <strong>user account</strong> link in the lower left corner of the page. This exposes the <strong>Users and Roles</strong> page.</p>
<p><img src="webviewUser1.jpg" width="668" height="340"> </p>
<p>This is the environment for creating and managing user accounts. </p>
<p>To create a new user, click the [add a user] link. This exposes a small form where you can enter the username (one symbol) and password. Click OK to save the new account.</p>
<p>The new user will appear in the list of users. Click the [view permissions] link to open a control panel for the new user account:</p>
<p><img src="webviewNewUser.jpg" width="658" height="171"> </p>
<p>Use the checkboxes to apply permissions to this account (superuser, start session, evaluate arbitrary code). </p>
<p>It is imporant that you set up access permissions for the new user. Use the form to create an access rule by selecting read, write or read/write access, naming a catalog (or * for all), and naming a repository within that catalog (or * for all). Click the [add] link. This creates an access rule for your new user. The access rule will appear in the permissions display:</p>
<p><img src="webviewAccessRule.jpg" width="629" height="196"> </p>
<p>This new user can log in and perform transactions on any repository in the system. </p>
<p>To repeat, the "test" superuser is all you need to run all of the tutorial examples. This section is for the day when you want to issue more modest credentials to some of your operators. </p>
<h2 id="Running Python">Running Python Tutorial Examples <a class="returnlink" href="#Contents">Return to Top</a></h2>
<p>The AllegroGraph Python Tutorial examples are in the<strong> tutorial </strong>subdirectory where you unpacked the Python client tar.gz file. Navigate to that directory and follow one of these examples:</p>
<pre> $ python tutorial_examples_40.py runs all tests.
$ python tutorial_examples_40.py all runs all tests.
$ python tutorial_examples_40.py 10 runs example10()
$ python tutorial_examples_40.py 1 5 22 runs examples 1, 5, and 22</pre>
<h2 id="Creating a Repository">Creating a Repository and Triple Indices (example1()) <a class="returnlink" href="#Contents">Return to Top</a></h2>
<p>The first task is to attach to our AllegroGraph Server and open a repository. This task is implemented in<strong> example1()</strong> from<strong> tutorial_examples_40.py</strong>. </p>
<p>In <strong>example1()</strong> we build a chain of Python objects, ending in a"connection" object that lets us manipulate triples in a specific repository. The overall process of generating the connection object follows
this diagram:</p>
<table width="809" border="0">
<tr>
<td width="378"><p>The example1() function opens (or creates) a repository by building a series of client-side objects, culminating in a "connection" object. The connection object will be passed to other functions in tutorial_examples_40.py. </p>
<p>The connection object contains the methods that let us manipulate triples in a specific repository. </p></td>
<td width="421"><img src="createconnectionobject.jpg" width="448" height="212"></td>
</tr>
</table>
<p>The example first connects to an AllegroGraph Server by providing the endpoint (host IP address and port number) of an already-launched AllegroGraph server. This creates a client-side server object, which can access the AllegroGraph server's list of available catalogs through the <strong>listCatalogs()</strong> method:. </p>
<pre class="input">def example1(accessMode=Repository.RENEW):
server = AllegroGraphServer(AG_HOST, AG_PORT, 'user', 'password')
print "Available catalogs", server.listCatalogs()
</pre>
<p>This is the output so far:</p>
<pre class="output">>>> example1()
Defining connnection to AllegroGraph server -- host:'localhost' port:8080
Available catalogs ['/', 'scratch']</pre>
<p>This output says that the server has two catalogs, the default <strong>rootCatalog, '/'</strong>, and a named catalog 'scratch' that someone has created for some experimentation.</p>
<p>In the next line of example1(), we use the <strong>server.openCatalog()</strong> method to create a client-side catalog object. In this example we will connect to the default rootCatalog by calling openCatalog() with no arguments. When we look inside the root catalog, we can see which repositories are available:</p>
<pre class="input">
catalog = server.openCatalog()
print "Available repositories in catalog '%s': %s" % (catalog.getName(), catalog.listRepositories()) </pre>
<p>The corresponding output lists the available repositories. (When you run the examples, you may see a different list of repositories.)</p>
<pre class="output">Available repositories in catalog 'None': ['tutorial'] </pre>
<p>The next step is to create a client-side repository object representing the respository we wish to open, by calling the
<strong>getRepository()</strong> method of the catalog object. We have to provide the name of the desired repository (<strong>AG_REPOSITORY,</strong> bound to <strong>python-tutorial </strong> in this case), and select one of four access modes:</p>
<ul>
<li><strong>Repository.RENEW</strong> clears the contents of an existing repository before opening. If the indicated repository does not exist,
it creates one. </li>
<li><strong>Repository.OPEN</strong> opens an existing repository, or throws an exception if the repository is not found. </li>
<li><strong>Repository.ACCESS</strong> opens an existing repository, or creates a new one if the repository is not found.</li>
<li><strong>Repository.CREATE</strong> creates a new repository, or throws an exception if one by that name already exists.</li>
</ul>
<p>Repository.RENEW is the default setting for the example1() function of tutorial_examples_40.py. It can be overridden by calling
example1() with the appropriate argument, such as example1(Repository.OPEN).</p>
<pre class="input">
myRepository = catalog.getRepository(AG_REPOSITORY, accessMode)
myRepository.initialize()</pre>
<p>A new or renewed repository must be initialized, using the <strong>initialize()</strong> method of the repository object. If you try to initialize a respository twice you get a warning message in the Python window but no exception. </p>
<p>The goal of all this object-building has been to create a client-side connection object, whose methods let us manipulate the triples of the repository. The repository object's <strong>getConnection()</strong> method returns this connection object. </p>
<pre class="input">
connection = myRepository.getConnection()
print "Repository %s is up! It contains %i statements." % (
myRepository.getDatabaseName(), connection.size())
</pre>
<p>The <strong>size()</strong> method of the connection object returns how many triples are present. In the example1() function, this number should always be zero because we "renewed" the repository. This is the output in the Python window: </p>
<pre class="output"> Repository pythontutorial is up! It contains 0 statements.
<franz.openrdf.repository.repositoryconnection.RepositoryConnection object at 0x0127D710>
>>> </pre>
<p>Whenever you create a new repository, you should stop to consider which kinds of triple indices you will need. This is an important efficiency decision. AllegroGraph uses a set of sorted indices to quickly identify a contiguous block of triples that are likely to match a specific query pattern. </p>
<p>These indices are identified by names that describe their organization. The default set of indices are called <strong>spogi, posgi, ospgi, gspoi, gposi, gospi</strong>, and<strong> i</strong> , where: </p>
<ul>
<li>S stands for the subject URI. </li>
<li>P stands for the predicate URI. </li>
<li>O stands for the object URI or literal. </li>
<li>G stands for the graph URI. </li>
<li>I stands for the triple identifier (its unique id number within the triple store). </li>
</ul>
<p> The order of the letters denotes how the index has been organized. For instance, the <strong>spogi</strong> index contains all of the triples in the store, sorted first by subject, then by predicate, then by object, and finally by graph. The triple id number is present as a fifth column in the index. If you know the URI of a desired resource (the <em>subject</em> value of the query pattern), then the <strong>spogi</strong> index lets you retrieve all triples with that subject as a single block. </p>
<p>The idea is to provide your respository with the indices that your queries will need, and to avoid maintaining indices that you will never need. </p>
<p>We can use the connection object's <strong>listValidIndices()</strong> method to examine the list of all possible AllegroGraph triple indices: </p>
<pre class="input"> indices = conn.listValidIndices()<br> print "All valid triple indices: %s" % (indices)</pre>
<p>This is the list of all possible valid indices:</p>
<pre class="output">All valid triple indices: ['spogi', 'spgoi', 'sopgi', 'sogpi', 'sgpoi', 'sgopi',
'psogi', 'psgoi', 'posgi', 'pogsi', 'pgsoi', 'pgosi', 'ospgi', 'osgpi', 'opsgi',
'opgsi', 'ogspi', 'ogpsi', 'gspoi', 'gsopi', 'gpsoi', 'gposi', 'gospi', 'gopsi', 'i']</pre>
<p>AllegroGraph can generate any of these indices if you need them, but it creates only seven indices by default. We can see the current indices by using the connection object's <strong>listIndices()</strong> method:</p>
<pre class="input"> indices = conn.listIndices()<br> print "Current triple indices: %s" % (indices)</pre>
<p>There are currently seven indices:</p>
<pre class="output">Current triple indices: ['i', 'gospi', 'gposi', 'gspoi', 'ospgi', 'posgi', 'spogi']</pre>
<p>The indices that begin with "g" are sorted primarily by subgraph (or "context"). If you application does not use subgraphs, you should consider removing these indices from the repository. You don't want to build and maintain triple indices that your application will never use. This wastes CPU time and disk space. The connection object has a convenient <strong>dropIndex()</strong> method:</p>
<pre class="input"> print "Removing graph indices..."<br> conn.dropIndex("gospi")<br> conn.dropIndex("gposi")<br> conn.dropIndex("gspoi")<br> indices = conn.listIndices()<br> print "Current triple indices: %s" % (indices)</pre>
<p>Having dropped three of the triple indices, there are now four remaining:</p>
<pre class="output">Removing graph indices...<br>Current triple indices: ['i', 'ospgi', 'posgi', 'spogi']</pre>
<p>The <strong>i</strong> index is for deleting triples by using the triple id number. The <strong>ospgi</strong> index is sorted primarily by object value, which makes it possible to grab a range of object values as a single block of triples from the index. Similarly, the <strong>posgi</strong> index lets us reach for a block of triples that all share the same predicate. We mentioned previously that the <strong>spogi</strong> index lets us retrieve blocks of triples that all have the same subject URI. </p>
<p>As it happens, we may have been overly hasty in eliminating all of the graph indices. AllegroGraph can find the right matches as long as there is <em>any</em> one index present, but using the "right" index is much faster. Let's put one of the graph indices back, just in case we need it. We'll use the connection object's<strong> addIndex()</strong> method: </p>
<pre class="input"> print "Adding one graph index back in..."<br> conn.addIndex("gspoi")<br> indices = conn.listIndices()<br> print "Current triple indices: %s" % (indices)
return conn</pre>
<pre class="output">Adding one graph index back in...<br>Current triple indices: ['i', 'gspoi', 'ospgi', 'posgi', 'spogi']</pre>
<p>The last line (return conn) is the pointer to the new connection object. This is the value returned by example1() when it is called by other functions in tutorial_examples_40.py. The other functions then use the connection object to access the repository. </p>
<h2 id="Asserting and Retracting Triples">Asserting and Retracting Triples (example2()) <a class="returnlink" href="#Contents">Return to Top</a></h2>
<p>
In example example2(), we show how
to create resources describing two
people, Bob and Alice, by asserting individual triples into the respository. The example also retracts and replaces a triple. Assertions and retractions to the triple store
are executed by 'add' and 'remove' methods belonging to the connection object, which we obtain by calling the example1() function (described above).
</p>
<p>Before asserting a triple, we have to generate the URI values for the subject, predicate and object fields. The Python Sesame API to AllegroGraph Server predefines a number of classes and predicates for the RDF, RDFS, XSD, and OWL ontologies. RDF.TYPE is one of the predefined predicates we will use. </p>
<p>
The 'add' and 'remove' methods take an optional 'contexts' argument that
specifies one or more subgraphs that are the target of triple assertions
and retractions. When the context is omitted, triples are asserted/retracted
to/from the background graph. In the example below, facts about Alice and Bob
reside in the background graph.
</p>
<p>The example2() function begins by calling example1() to create the appropriate connection object, which is bound to the variable <strong>conn</strong>. </p>
<pre class="input">def example2():
conn = example1()
</pre>
<p>The next step is to begin assembling the URIs we will need for the new triples. The createURI() method generates a URI from a string. These are the subject URIs identifying the resources "Bob" and "Alice":</p>
<pre class="input">
alice = conn.createURI("http://example.org/people/alice")
bob = conn.createURI("http://example.org/people/bob")
</pre>
<p>Bob and Alice will be members of the "person" class (RDF:TYPE person). </p>
<pre class="input"> person = conn.createURI("http://example.org/ontology/Person")
</pre>
<p>Both Bob and Alice will have a "name" attribute. </p>
<pre class="input"> name = conn.createURI("http://example.org/ontology/name")
</pre>
<p>The name attributes will contain literal values. We have to generate the Literal objects from strings: </p>
<pre class="input"> bobsName = conn.createLiteral("Bob")
alicesName = conn.createLiteral("Alice")</pre>
<p>The next line prints out the number of triples currently in the repository. </p>
<pre class="input">
print "Triple count before inserts: ", conn.size()
</pre>
<pre class="output">Triple count before inserts: 0
</pre>
<p>Now we assert four triples, two for Bob and two more for Alice, using the connection object's <strong>add()</strong> method. After the assertions, we count triples again (there should be four) and print out the triples for inspection. </p>
<pre class="input"> ## alice is a person
conn.add(alice, RDF.TYPE, person)
## alice's name is "Alice"
conn.add(alice, name, alicesName)
## bob is a person
conn.add(bob, RDF.TYPE, person)
## bob's name is "Bob":
conn.add(bob, name, bobsName)
print "Triple count: ", conn.size()
for s in conn.getStatements(None, None, None, None, False): print s </pre>
<p>The "None" arguments to the getStatements() method say that we don't want to restrict what values may be present in the subject, predicate, object or context positions. Just print out all the triples. </p>
<p>This is the output at this point. We see four triples, two about Alice and two about Bob:</p>
<pre class="output">
Triple count: 4
(<http://example.org/people/alice>, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>, <http://example.org/ontology/Person>)
(<http://example.org/people/alice>, <http://example.org/ontology/name>, "Alice")
(<http://example.org/people/bob>, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>, <http://example.org/ontology/Person>)
(<http://example.org/people/bob>, <http://example.org/ontology/name>, "Bob")</pre>
<p>We see two resources of type "person," each with a literal name. </p>
<p>The next step is to demonstrate how to remove a triple. Use the remove() method of the connection object, and supply a triple pattern that matches the target triple. In this case we want to remove Bob's name triple from the repository. Then we'll count the triples again to verify that there are only three remaining. Finally, we re-assert Bob's name so we can use it in subsequent examples, and we'll return the connection object.. </p>
<pre class="input">
conn.remove(bob, name, bobsName)
print "Triple count: ", conn.size()
conn.add(bob, name, bobsName)
return conn</pre>
<pre class="output">
Triple count: 3
<franz.openrdf.repository.repositoryconnection.RepositoryConnection object at 0x01466830></pre>
<h2 id="A SPARQL Query">A SPARQL Query (example3()) <a class="returnlink" href="#Contents">Return to Top</a></h2>
<p>SPARQL stands for the "<a href="http://www.w3.org/TR/rdf-sparql-query/">SPARQL Protocol and RDF Query Language</a>," a recommendation of the <a href="http://www.w3.org/">World Wide Web Consortium (W3C)</a>. SPARQL is a query language for retrieving RDF triples. </p>
<p>Our next example illustrates how to evaluate a SPARQL query. This is the simplest query, the one that returns all triples. Note that example3() continues with the four triples created in example2(). </p>
<pre class="input">def example3():
conn = example2()
try:
queryString = "SELECT ?s ?p ?o WHERE {?s ?p ?o .}"
</pre>
<p>The SELECT clause returns the variables ?s, ?p and ?o in the bindingSet. The variables are bound to the subject, predicate and objects values of each triple that satisfies the WHERE clause. In this case the WHERE clause is unconstrained. The dot (.) in the fourth position signifies the end of the pattern. </p>
<p>The connection object's prepareTupleQuery() method
creates a query object that can be evaluated one or more times. (A "tuple" is an ordered sequence of data elements in Python.) The results are returned in an iterator that yields a sequence of bindingSets.</p>
<pre class="input">
tupleQuery = conn.prepareTupleQuery(QueryLanguage.SPARQL, queryString)
result = tupleQuery.evaluate();
</pre>
<p>Below we illustrate one (rather heavyweight) method for extracting the values
from a binding set, indexed by the name of the corresponding column variable
in the SELECT clause.</p>
<pre class="input">
try:
for bindingSet in result:
s = bindingSet.getValue("s")
p = bindingSet.getValue("p")
o = bindingSet.getValue("o")
print "%s %s %s" % (s, p, o)
</pre>
<pre class="output">
http://example.org/people/alice http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://example.org/ontology/Person
http://example.org/people/alice http://example.org/ontology/name "Alice"
http://example.org/people/bob http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://example.org/ontology/Person
http://example.org/people/bob http://example.org/ontology/name "Bob"
</pre>
<p>The Connection class is designed to be created for the duration of a sequence of updates and queries, and then closed. In practice, many AllegroGraph applications keep a connection open indefinitely. However, best practice dictates that the connection should be closed, as illustrated below. The same hygiene applies to the iterators that generate binding sets.</p>
<pre class="input"> finally:<br> result.close();<br> finally:<br> conn.close();<br> myRepository = conn.repository<br> myRepository.shutDown()</pre>
<h2 id="Statement Matching">Statement Matching (example4()) <a class="returnlink" href="#Contents">Return to Top</a></h2>
<p>
The getStatements() method of the connection object provides a simple way to perform unsophisticated queries. This method lets you enter a mix of required values and wildcards, and retrieve all matching triples. (If you need to perform sophisticated tests and comparisons you should use the SPARQL query instead.)</p>
<p>
Below, we illustrate two kinds of 'getStatement' calls. The first mimics
traditional Sesame syntax, and returns a Statement object at each iteration. This is the <strong>example4()</strong> function of tutorial_examples_40.py. It begins by calling example2() to create a connection object and populate the <strong>pythontutorial</strong> repository with four triples describing Bob and Alice. We're going to search for triples that mention Alice, so we have to create an "Alice" URI to use in the search pattern: </p>
<pre class="input">def example4():<br> conn = example2()<br> alice = conn.createURI("http://example.org/people/alice")
</pre>
<p> Now we search for triples with Alice's URI in the subject position. The "None" values are wildcards for the predicate and object positions of the triple. </p>
<pre class="input"> print "Searching for Alice using getStatements():"
statements = conn.getStatements(alice, None, None)
</pre>
<p>The getStatements() method returns a repositoryResult object (bound to the variable "statements" in this case). This object can be iterated over, exposing one result statement at a time. It is sometimes desirable to screen the results for duplicates, using the enableDuplicateFilter() method. Note, however, that duplicate filtering can be expensive. Our example does not contain any duplicates, but it is possible for them to occur. </p>
<pre class="input"> statements.enableDuplicateFilter() <br> for s in statements:<br> print s
</pre>
<p>This prints out the two matching triples for "Alice." </p>
<pre class="output">Searching for Alice using getStatements():<br>(<http://example.org/people/alice>, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>, <http://example.org/ontology/Person>)
(<http://example.org/people/alice>, <http://example.org/ontology/name>, "Alice") </pre>
<p>At this point it is good form to close the respositoryResponse object because they occupy memory and are rarely reused in most programs. </p>
<pre class="input"> statements.close()</pre>
<h2 id="Literal Values">Literal Values (example5()) <a class="returnlink" href="#Contents">Return to Top</a></h2>
<p>The next example, <strong>example5()</strong>, illustrates some variations on what we have seen so far. The example creates and asserts <a href="http://www.w3.org/TR/rdf-concepts/#section-Graph-Literal">typed and plain literal values</a>, including language-specific plain literals, and then conducts searches for them in three ways:</p>
<ul>
<li>getStatements() search, which is an efficient way to match a single triple pattern. </li>
<li>SPARQL direct match, for efficient multi-pattern search. </li>
<li>SPARQL filter match, for sophisticated filtering such as performing range matches. </li>
</ul>
<p>The getStatements() and SPARQL direct searches return exactly the datatype you ask for. The SPARQL filter queries can sometimes return multiple datatypes. This behavior will be one focus of this section. </p>
<p>If you are not explicit about the datatype of a value, either when asserting the triple or when writing a search pattern, AllegroGraph will deduce an appropriate datatype and use it. This is another focus of this section. This helpful behavior can sometimes surprise you with unanticipated results. </p>
<h3>Setup</h3>
<p>Example5() begins by obtaining a connection object from example1(), and then clears the repository of all existing triples. </p>
<pre class="input">def example5():<br> conn = example1()<br> conn.clear()
</pre>
<p>For sake of coding efficiency, it is good practice to create variables for namespace strings. We'll use this namespace again and again in the following lines. We have made the URIs in this example very short to keep the result displays compact.</p>
<pre class="input"> exns = "http://people/"
</pre>
<p>The example creates new resources describing seven people, named alphabetically from Alice to Greg. These are URIs to use in the subject field of the triples. The example shows how to enter a full URI string, or alternately how to combine a namespace with a local resource name. </p>
<pre class="input"> alice = conn.createURI("http://example.org/people/alice")<br> bob = conn.createURI("http://example.org/people/bob")<br> carol = conn.createURI("http://example.org/people/carol")<br> dave = conn.createURI(namespace=exns, localname="dave")<br> eric = conn.createURI(namespace=exns, localname="eric")<br> fred = conn.createURI(namespace=exns, localname="fred")
greg = conn.createURI(namesapce=exns, localname="greg")</pre>
<h3>Numeric Literal Values </h3>
<p>This section explores the behavior of numeric literals.</p>
<h3>Asserting Numeric Data</h3>
<p>The first section assigns ages to the participants, using a variety of numeric types. First we need a URI for the "age" predicate. </p>
<pre class="input"> age = conn.createURI(namespace=exns, localname="age")</pre>
<p>The next step is to create a variety of values representing ages. Coincidentally, these people are all 42 years old, but we're going to record that information in multiple ways:</p>
<pre class="input"> fortyTwo = conn.createLiteral(42) # creates long
fortyTwoDouble = conn.createLiteral(42.0) # creates double
fortyTwoInt = conn.createLiteral('42', datatype=XMLSchema.INT)
fortyTwoLong = conn.createLiteral('42', datatype=XMLSchema.LONG)
fortyTwoFloat = conn.createLiteral('42', datatype=XMLSchema.FLOAT)
fortyTwoString = conn.createLiteral('42', datatype=XMLSchema.STRING)
fortyTwoPlain = conn.createLiteral('42') # creates plain literal</pre>
<p>In four of these statements, we explicitly identified the datatype of the value in order to create an INT, a LONG, a FLOAT and a STRING. This is the best practice. </p>
<p>In three other statements, we just handed AllegroGraph numeric-looking values to see what it would do with them. As we will see in a moment, 42 creates a LONG, 42.0 becomes into a DOUBLE, and '42' becomes a "plain" (untyped) literal value. (Note that plain literals are not <em>quite </em>the same thing as typed literal strings. A search for a plain literal will not always match a typed string, and <em>vice versa</em>.)</p>
<p>Now we need to assemble the URIs and values into statements (which are client-side triples):</p>
<pre class="input"> stmt1 = conn.createStatement(alice, age, fortyTwo)
stmt2 = conn.createStatement(bob, age, fortyTwoDouble)
stmt3 = conn.createStatement(carol, age, fortyTwoInt)
stmt4 = conn.createStatement(dave, age, fortyTwoLong)
stmt5 = conn.createStatement(eric, age, fortyTwoFloat)
stmt6 = conn.createStatement(fred, age, fortyTwoString)
stmt7 = conn.createStatement(greg, age, fortyTwoPlain)</pre>
<p>And then add the statements to the triple store on the AllegroGraph server. We can use either <strong>add()</strong> or <strong>addStatement()</strong> for this purpose. </p>
<pre class="input"> conn.add(stmt1)
conn.add(stmt2)
conn.add(stmt3)
conn.addStatement(stmt4)
conn.addStatement(stmt5)
conn.addStatement(stmt6)
conn.addStatement(stmt7)
</pre>
<p>Now we'll complete the round trip to see what triples we get back from these assertions. This is how we use <strong>getStatements()</strong> in this example to retrieve and display triples for us:</p>
<pre class="input"> print "\nShowing all age triples using getStatements(). Seven matches."
statements = conn.getStatements(None, age, None)
for s in statements:
print s</pre>
<p>This loop prints all age triples to the interaction window. Note that the retrieved triples are of six types: two ints, a long, a float, a double, a string, and a "plain literal." All of them say that their person's age is 42. Note that the triple for Greg has the plain literal value "42", while the triple for Fred uses "42" as a typed string.</p>
<pre class="output">Showing all age triples using getStatements(). Seven matches.<br>(<http://people/greg>, <http://people/age>, "42")<br>(<http://people/fred>, <http://people/age>, "42"^^<http://www.w3.org/2001/XMLSchema#string>)<br>(<http://people/eric>, <http://people/age>, "4.2E1"^^<http://www.w3.org/2001/XMLSchema#float>)<br>(<http://people/dave>, <http://people/age>, "42"^^<http://www.w3.org/2001/XMLSchema#long>)<br>(<http://people/carol>, <http://people/age>, "42"^^<http://www.w3.org/2001/XMLSchema#int>)<br>(<http://people/bob>, <http://people/age>, "4.2E1"^^<http://www.w3.org/2001/XMLSchema#double>)<br>(<http://people/alice>, <http://people/age>, "42"^^<http://www.w3.org/2001/XMLSchema#long>)</pre>
<p>If you ask for a specific datatype, you will get it. If you leave the decision up to AllegroGraph, you might get something unexpected such as an plain literal value. </p>
<h3>Matching Numeric Data</h3>
<p>This section explores getStatements() and SPARQL matches against numeric triples. </p>
<p>In the first example, we asked AllegroGraph to find an untyped number, <strong>42.</strong> </p>
<table width="1038" border="1">
<tr>
<td width="140"><strong>Query Type </strong></td>
<td width="368"><strong>Query</strong></td>
<td width="508"><strong>Matches which types? </strong></td>
</tr>
<tr>
<td><strong>getStatements()</strong></td>
<td>conn.getStatements(None, age, 42)</td>
<td>"42"^^<http://www.w3.org/2001/XMLSchema#long> </td>
</tr>
<tr>
<td><strong>SPARQL direct match </strong></td>
<td>SELECT ?s ?p WHERE {?s ?p 42 .}</td>
<td>No direct matches. </td>
</tr>
<tr>
<td><strong>SPARQL filter match </strong></td>
<td>SELECT ?s ?p ?o WHERE {?s ?p ?o . filter (?o = 42)}</td>
<td>"42"^^<http://www.w3.org/2001/XMLSchema#int><br> "4.2E1"^^<http://www.w3.org/2001/XMLSchema#float><br>
"42"^^<http://www.w3.org/2001/XMLSchema#long><br> "4.2E1"^^<http://www.w3.org/2001/XMLSchema#double></td>
</tr>
</table>
<p>The getStatements() query returned triples containing longs only. The SPARQL direct match didn't know how to interpret the untyped value and found zero matches. The SPARQL filter match, however, opened the doors to matches of multiple numeric types, and returned ints, floats, longs and doubles. </p>
<p><strong>"Match 42.0"</strong> without explicitly declaring the number's type.</p>
<table width="1038" border="1">
<tr>
<td width="140"><strong>Query Type </strong></td>
<td width="368"><strong>Query</strong></td>
<td width="508"><strong>Matches which types? </strong></td>
</tr>
<tr>
<td><strong>getStatements()</strong></td>
<td>conn.getStatements(None, age, 42.0)</td>
<td><p>"42"^^<http://www.w3.org/2001/XMLSchema#double><br>
Matches a double but not a float. </p> </td>
</tr>
<tr>
<td><strong>SPARQL direct match </strong></td>
<td>SELECT ?s ?p WHERE {?s ?p 42.0 .}</td>
<td>No direct matches. </td>
</tr>
<tr>
<td><strong>SPARQL filter match </strong></td>
<td>SELECT ?s ?p ?o WHERE {?s ?p ?o . filter (?o = 42.0)}</td>
<td>"42"^^<http://www.w3.org/2001/XMLSchema#int><br> "4.2E1"^^<http://www.w3.org/2001/XMLSchema#float><br> "42"^^<http://www.w3.org/2001/XMLSchema#long><br>
"4.2E1"^^<http://www.w3.org/2001/XMLSchema#double></td>
</tr>
</table>
<p>The getStatements() search returned a double but not the similar float. The filter match returned all numeric types that were equal to 42.0.</p>
<p><strong>"Match '42'^^<http://www.w3.org/2001/XMLSchema#int>."</strong> Note that we have to use a variable (fortyTwoInt) bound to a Literal value in order to offer this int to getStatements(). We can't just type the value into the getStatements() method directly. </p>
<table width="1038" border="1">
<tr>
<td width="140"><strong>Query Type </strong></td>
<td width="368"><strong>Query</strong></td>
<td width="508"><strong>Matches which types? </strong></td>
</tr>
<tr>
<td><strong>getStatements()</strong></td>
<td>conn.getStatements(None, age, fortyTwoInt)</td>
<td><p>"42"^^<http://www.w3.org/2001/XMLSchema#int><br>
</p> </td>
</tr>
<tr>
<td><strong>SPARQL direct match </strong></td>
<td>SELECT ?s ?p WHERE {?s ?p "42"^^<http://www.w3.org/2001/XMLSchema#int>}</td>
<td>"42"^^<http://www.w3.org/2001/XMLSchema#int></td>
</tr>
<tr>
<td><strong>SPARQL filter match </strong></td>
<td>SELECT ?s ?p ?o WHERE {?s ?p ?o . filter (?o = "42"^^<http://www.w3.org/2001/XMLSchema#int>)}</td>
<td>"42"^^<http://www.w3.org/2001/XMLSchema#int><br> "4.2E1"^^<http://www.w3.org/2001/XMLSchema#float><br> "42"^^<http://www.w3.org/2001/XMLSchema#long><br>
"4.2E1"^^<http://www.w3.org/2001/XMLSchema#double></td>
</tr>
</table>
<p>Both the getStatements() query and the SPARQL direct query returned exactly what we asked for: ints. The filter match returned all numeric types that matches in value. </p>
<p><strong>"Match '42'^^<http://www.w3.org/2001/XMLSchema#long>."</strong> Again we need a bound variable to offer a Literal value to getStatements(). </p>
<table width="1038" border="1">
<tr>
<td width="140"><strong>Query Type </strong></td>
<td width="368"><strong>Query</strong></td>
<td width="508"><strong>Matches which types? </strong></td>
</tr>
<tr>
<td><strong>getStatements()</strong></td>
<td>conn.getStatements(None, age, fortyTwoLong)</td>
<td><p>"42"^^<http://www.w3.org/2001/XMLSchema#long><br>
</p></td>
</tr>
<tr>
<td><strong>SPARQL direct match </strong></td>
<td>SELECT ?s ?p WHERE {?s ?p "42"^^<http://www.w3.org/2001/XMLSchema#long>}</td>
<td>"42"^^<http://www.w3.org/2001/XMLSchema#long></td>
</tr>
<tr>
<td><strong>SPARQL filter match </strong></td>
<td>SELECT ?s ?p ?o WHERE {?s ?p ?o . filter (?o = "42"^^<http://www.w3.org/2001/XMLSchema#long>)}</td>
<td>"42"^^<http://www.w3.org/2001/XMLSchema#int><br>
"4.2E1"^^<http://www.w3.org/2001/XMLSchema#float><br>
"42"^^<http://www.w3.org/2001/XMLSchema#long><br>
"4.2E1"^^<http://www.w3.org/2001/XMLSchema#double></td>
</tr>
</table>
<p>Both the getStatements() query and the SPARQL direct query returned longs. The filter match returned all numeric types. </p>
<p><strong>"Match '42'^^<http://www.w3.org/2001/XMLSchema#double>."</strong> </p>
<table width="1038" border="1">
<tr>
<td width="140"><strong>Query Type </strong></td>
<td width="368"><strong>Query</strong></td>
<td width="508"><strong>Matches which types? </strong></td>
</tr>
<tr>
<td><strong>getStatements()</strong></td>
<td>conn.getStatements(None, age, fortyTwoDouble)</td>
<td><p>"42"^^<http://www.w3.org/2001/XMLSchema#double><br>
</p></td>
</tr>
<tr>
<td><strong>SPARQL direct match </strong></td>
<td>SELECT ?s ?p WHERE {?s ?p "42"^^<http://www.w3.org/2001/XMLSchema#double>}</td>
<td>"42"^^<http://www.w3.org/2001/XMLSchema#double></td>
</tr>
<tr>
<td><strong>SPARQL filter match </strong></td>
<td>SELECT ?s ?p ?o WHERE {?s ?p ?o . filter (?o = "42"^^<http://www.w3.org/2001/XMLSchema#double>)}</td>
<td>"42"^^<http://www.w3.org/2001/XMLSchema#int><br>
"4.2E1"^^<http://www.w3.org/2001/XMLSchema#float><br>
"42"^^<http://www.w3.org/2001/XMLSchema#long><br>
"4.2E1"^^<http://www.w3.org/2001/XMLSchema#double></td>
</tr>
</table>
<p>Both the getStatements() query and the SPARQL direct query returned doubles. The filter match returned all numeric types. </p>
<h3>Matching Numeric Strings and Plain Literals</h3>
<p>At this point we are transitioning from tests of numeric matches to tests of string matches, but there is a gray zone to be explored first. What do we find if we search for strings that contain numbers? In particular, what about "plain literal" values that are almost, but not quite, strings?</p>
<p><strong>"Match '42'^^<http://www.w3.org/2001/XMLSchema#string>."</strong> This example asks for a typed string to see if we get any numeric matches back. </p>
<table width="1038" border="1">
<tr>
<td width="140"><strong>Query Type </strong></td>
<td width="368"><strong>Query</strong></td>
<td width="508"><strong>Matches which types? </strong></td>
</tr>
<tr>
<td><strong>getStatements()</strong></td>
<td>conn.getStatements(None, age, fortyTwoString)</td>
<td><p>"42"^^<http://www.w3.org/2001/XMLSchema#string><br>
It did not match the plain literal.
<br>
</p></td>
</tr>
<tr>
<td><strong>SPARQL direct match </strong></td>
<td>SELECT ?s ?p WHERE {?s ?p "42"^^<http://www.w3.org/2001/XMLSchema#string>}</td>
<td><p>"42"^^<http://www.w3.org/2001/XMLSchema#string><br>"42" This is the plain literal value. </p> </td>
</tr>
<tr>
<td><strong>SPARQL filter match </strong></td>
<td>SELECT ?s ?p ?o WHERE {?s ?p ?o . filter (?o = "42"^^<http://www.w3.org/2001/XMLSchema#string>)}</td>
<td>"42"^^<http://www.w3.org/2001/XMLSchema#string><br>
"42" This is the plain literal value. </td>
</tr>
</table>
<p>The getStatements() query matched a literal string only. The SPARQL queries returned matches that were both typed strings and plain literals. There were no numeric matches. </p>
<p><strong>"Match plain literal '42'."</strong> This example asks for a plain literal to see if we get any numeric matches back. </p>
<table width="1038" border="1">
<tr>
<td width="140"><strong>Query Type </strong></td>
<td width="368"><strong>Query</strong></td>
<td width="508"><strong>Matches which types? </strong></td>
</tr>
<tr>
<td><strong>getStatements()</strong></td>
<td>conn.getStatements(None, age, fortyTwoPlain)</td>
<td><p>"42" This is the plain literal. It did not match the string. <br>
</p></td>
</tr>
<tr>
<td><strong>SPARQL direct match </strong></td>
<td>SELECT ?s ?p WHERE {?s ?p "42"}</td>
<td><p>"42"^^<http://www.w3.org/2001/XMLSchema#string><br>
"42" This is the plain literal value. </p></td>
</tr>
<tr>
<td><strong>SPARQL filter match </strong></td>
<td>SELECT ?s ?p ?o WHERE {?s ?p ?o . filter (?o = "42")}</td>
<td>"42"^^<http://www.w3.org/2001/XMLSchema#string><br>
"42" This is the plain literal value. </td>
</tr>
</table>
<p>The getStatements() query matched the plain literal only, and did not match the string. The SPARQL queries returned matches that were both typed strings and plain literals. There were no numeric matches. </p>
<p>The interesting lesson here is that AllegroGraph distinguishes between strings and plain literals when you use getStatements(), but it lumps them together when you use SPARQL. </p>
<h3>Matching Strings</h3>
<p>In this section we'll set up a variety of string triples and experiment with matching them using getStatements() and SPARQL. Note that <a href="#Free Text Search">Free Text Search</a> is a different topic. In this section we're doing simple matches of whole strings.</p>
<h3>Asserting String Values </h3>
<p>We're going to add a "favorite color" attribute to five of the person resources we have used so far. First we need a predicate.</p>
<pre class="input"> favoriteColor = conn.createURI(namespace=exns, localname="favoriteColor")
</pre>
<p>Now we'll create a variety of string values, and a single "plain literal" value. </p>
<pre class="input"> UCred = conn.createLiteral('Red', datatype=XMLSchema.STRING)<br> LCred = conn.createLiteral('red', datatype=XMLSchema.STRING)<br> RedPlain = conn.createLiteral('Red') #plain literal<br> rouge = conn.createLiteral('rouge', datatype=XMLSchema.STRING)<br> Rouge = conn.createLiteral('Rouge', datatype=XMLSchema.STRING)<br> RougePlain = conn.createLiteral('Rouge') #plain literal<br> FrRouge = conn.createLiteral('Rouge', language="fr") #plain literal with language tag</pre>
<p>Note that in the last line we created a plain literal and assigned it a French language tag. <em>You cannot assign a language tag to strings, only to plain literals.</em> See <a href="http://www.w3.org/TR/rdf-concepts/#section-Graph-Literal">typed and plain literal values</a> for the specification.</p>
<p>Next we'll add these values to new triples in the triple store. For variety, we bypassed creating client-side statements and just asserted the triples in one step.</p>
<pre class="input"> conn.addTriples([(alice, favoriteColor, UCred),<br> (bob, favoriteColor, LCred),<br> (carol, favoriteColor, RedPlain),<br> (dave, favoriteColor, rouge),<br> (eric, favoriteColor, Rouge),<br> (fred, favoriteColor, RougePlain),<br> (greg, favoriteColor, FrRouge)])</pre>
<p>If we run a getStatements() query for all favoriteColor triples, we get these values returned:</p>
<pre class="input">(<http://people/alice>, <http://people/favoriteColor>, "Red"^^<http://www.w3.org/2001/XMLSchema#string>)<br>(<http://people/bob>, <http://people/favoriteColor>, "red"^^<http://www.w3.org/2001/XMLSchema#string>)<br>(<http://people/carol>, <http://people/favoriteColor>, "Red")<br>(<http://people/dave>, <http://people/favoriteColor>, "rouge"^^<http://www.w3.org/2001/XMLSchema#string>)<br>(<http://people/eric>, <http://people/favoriteColor>, "Rouge"^^<http://www.w3.org/2001/XMLSchema#string>)<br>(<http://people/fred>, <http://people/favoriteColor>, "Rouge")<br>(<http://people/greg>, <http://people/favoriteColor>, "Rouge"@fr)</pre>
<p>That's four typed strings, capitalized and lower case, plus three plain literals, one with a language tag. </p>
<h3>Matching String Data</h3>
<p>First let's search for "Red" without specifying a datatype. </p>
<p><strong>"Match 'Red'."</strong> What happens if we search for "Red" without specifying a string datatype? </p>
<table width="1038" border="1">
<tr>
<td width="140"><strong>Query Type </strong></td>
<td width="368"><strong>Query</strong></td>
<td width="508"><strong>Matches which types? </strong></td>
</tr>
<tr>
<td><strong>getStatements()</strong></td>
<td>conn.getStatements(None, age, "Red")</td>
<td><p>"Red" This is the plain literal. It did not match the string. <br>
</p></td>
</tr>
<tr>
<td><strong>SPARQL direct match </strong></td>
<td>SELECT ?s ?p WHERE {?s ?p "Red"}</td>
<td><p>"Red"^^<http://www.w3.org/2001/XMLSchema#string><br>
"Red" This is the plain literal value.</p>
</td>
</tr>
<tr>
<td><strong>SPARQL filter match </strong></td>
<td>SELECT ?s ?p ?o WHERE {?s ?p ?o . filter (?o = "Red")}</td>
<td>"Red"^^<http://www.w3.org/2001/XMLSchema#string><br>
"Red" This is the plain literal value.</td>
</tr>
</table>
<p>The getStatements() query matched the plain literal only, and did not match the similar string. The SPARQL queries matched both "Red" typed strings and "Red" plain literals, but they did not return the lower case "red" triple. The match was liberal regarding datatype but strict about case. </p>
<p>Let's try "Rouge".</p>
<p><strong>"Match 'Rouge'."</strong> What happens if we search for "Rouge" without specifying a string datatype or language? Will it match the triple with the French tag? </p>
<table width="1038" border="1">
<tr>
<td width="140"><strong>Query Type </strong></td>
<td width="368"><strong>Query</strong></td>
<td width="508"><strong>Matches which types? </strong></td>
</tr>
<tr>
<td><strong>getStatements()</strong></td>
<td>conn.getStatements(None, age, "Rouge")</td>
<td><p>"Rouge" This is the plain literal. It did not match the string. <br>
</p></td>
</tr>
<tr>
<td><strong>SPARQL direct match </strong></td>
<td>SELECT ?s ?p WHERE {?s ?p "Rouge"}</td>
<td><p>"Rouge"^^<http://www.w3.org/2001/XMLSchema#string><br>
"Rouge" This is the plain literal value. <br>
Did not match the "Rouge"@fr triple. </p></td>
</tr>
<tr>
<td><strong>SPARQL filter match </strong></td>
<td>SELECT ?s ?p ?o WHERE {?s ?p ?o . filter (?o = "Rouge")}</td>
<td>"Rouge"^^<http://www.w3.org/2001/XMLSchema#string><br>
"Rouge" This is the plain literal value. <br>
Did not match the"Rouge"@fr triple. </td>
</tr>
</table>
<p>The getStatements() query matched the plain literal only, and did not match the similar string. The SPARQL queries matched both "Rouge" typed strings and "Rouge" plain literals, but they did not return the "Rouge"@fr triple. The match was liberal regarding datatype but strict about language. We didn't ask for French, so we didn't get French. </p>
<p><strong>"Match 'Rouge'@fr."</strong> What happens if we search for "Rouge"@fr? We'll have to bind the value to a variable (FrRouge) to use getStatements(). We can type the value directly into the SPARQL queries. </p>
<table width="1038" border="1">
<tr>
<td width="140"><strong>Query Type </strong></td>
<td width="368"><strong>Query</strong></td>
<td width="508"><strong>Matches which types? </strong></td>
</tr>
<tr>
<td><strong>getStatements()</strong></td>
<td>conn.getStatements(None, age, FrRouge)</td>
<td><p>"Rouge"@fr <br>
</p></td>
</tr>
<tr>
<td><strong>SPARQL direct match </strong></td>
<td>SELECT ?s ?p WHERE {?s ?p "Rouge"@fr}</td>
<td><p>"Rouge"@fr </p></td>
</tr>
<tr>
<td><strong>SPARQL filter match </strong></td>
<td>SELECT ?s ?p ?o WHERE {?s ?p ?o . filter (?o = "Rouge"@fr)}</td>
<td>"Rouge"@fr </td>
</tr>
</table>
<p>If you ask for a specific language, that's exactly what you are going to get, in all three types of queries. </p>
<p>You may be wondering how to perform a string match where language and capitalization don't matter. You can do that with a SPARQL filter query using the <strong>str()</strong> function, which strips out the string portion of a literal, leaving behind the datatype or language tag. Then the <strong>lowercase()</strong> function eliminates case issues:</p>
<pre class="input">PREFIX fn: <http://www.w3.org/2005/xpath-functions#>
SELECT ?s ?p ?o
WHERE {?s ?p ?o . filter (fn:lower-case(str(?o)) = "rouge")}</pre>
<p>This query returns a variety of "Rouge" triples:</p>
<pre class="output"><http://people/greg> <http://people/favoriteColor> "Rouge"@fr<br><http://people/fred> <http://people/favoriteColor> "Rouge"<br><http://people/eric> <http://people/favoriteColor> "Rouge"^^<http://www.w3.org/2001/XMLSchema#string><br><http://people/dave> <http://people/favoriteColor> "rouge"^^<http://www.w3.org/2001/XMLSchema#string> </pre>
<p>This query matched all triples containing the string "rouge" regardless of datatype or language tag. Remember that the SPARQL "filter" queries are powerful, but they are also the slowest queries. SPARQL direct queries and getStatements() queries are faster. </p>
<h3>Matching Booleans</h3>
<p>In this section we'll assert and then search for Boolean values.</p>
<h3>Asserting Boolean Values</h3>
<p>The Python language includes predefined True and False symbols for use in your decision-making logic. These Boolean constants are fine for programming, but they are not appropriate for asserting Boolean values into triples. They do not result in legal RDF Boolean values, and this creates subsequent matching issues.</p>
<p>We'll be adding a new attribute to the person resources in our example. Are they, or are they not, seniors?</p>
<pre class="input"> senior = conn.createURI(namespace=exns, localname="seniorp") </pre>
<p>The correct way to create Boolean values for use in triples is to create literal values of type Boolean:</p>
<pre class="input"> trueValue = conn.createLiteral("true", datatype=XMLSchema.BOOLEAN)<br> falseValue = conn.createLiteral("false", datatype=XMLSchema.BOOLEAN)</pre>
<p>Note that "true" and "false" must be lower case. </p>
<p>We'll only need two triples:</p>
<pre class="input"> conn.addTriple(alice, senior, trueValue)<br> conn.addTriple(bob, senior, falseValue)</pre>
<p>When we retrieve the triples (using getStatements()) we see:</p>
<pre class="output">(<http://people/bob>, <http://people/seniorp>, "false"^^<http://www.w3.org/2001/XMLSchema#boolean>)<br>(<http://people/alice>, <http://people/seniorp>, "true"^^<http://www.w3.org/2001/XMLSchema#boolean>) </pre>
<p>These are RDF-legal Boolean values that work with the AllegroGraph query engine. Note that "true" and "false" are lower case.</p>
<p>As an object lesson, this getStatements() query uses the Python "True" Boolean, which does not match the values in the RDF store:</p>
<pre class="input">conn.getStatements(None, senior, True) # no matches</pre>
<p><strong>"Match 'true'."</strong> There are three correct ways to perform a Boolean search. One is to use the varible trueValue (defined above) to pass a Boolean literal value to getStatements(). SPARQL queries will recognize <strong>true</strong> and <strong>false</strong>, and of course the fully-typed <strong>"true"^^<http://www.w3.org/2001/XMLSchema#boolean></strong> format is also respected by SPARQL:</p>
<table width="1038" border="1">
<tr>
<td width="140"><strong>Query Type </strong></td>
<td width="368"><strong>Query</strong></td>
<td width="508"><strong>Matches which types? </strong></td>
</tr>
<tr>
<td><strong>getStatements()</strong></td>
<td>conn.getStatements(None, senior, trueValue)</td>
<td><p>"true"^^<http://www.w3.org/2001/XMLSchema#boolean><br>
</p></td>
</tr>
<tr>
<td><strong>SPARQL direct match </strong></td>
<td>SELECT ?s ?p WHERE {?s ?p true}</td>
<td><p>"true"^^<http://www.w3.org/2001/XMLSchema#boolean></p></td>
</tr>
<tr>
<td><strong>SPARQL direct match </strong></td>
<td>SELECT ?s ?p WHERE {?s ?p "true"^^<http://www.w3.org/2001/XMLSchema#boolean></td>
<td>"true"^^<http://www.w3.org/2001/XMLSchema#boolean></td>
</tr>
<tr>
<td><strong>SPARQL filter match </strong></td>
<td>SELECT ?s ?p ?o WHERE {?s ?p ?o . filter (?o = true)}</td>
<td>"true"^^<http://www.w3.org/2001/XMLSchema#boolean></td>
</tr>
<tr>
<td><strong>SPARQL filter match </strong></td>
<td>SELECT ?s ?p ?o WHERE {?s ?p ?o . filter (?o = "true"^^<http://www.w3.org/2001/XMLSchema#boolean>}</td>
<td>"true"^^<http://www.w3.org/2001/XMLSchema#boolean></td>
</tr>
</table>
<p>All of these queries correctly match Boolean values. </p>
<h3>Dates, Times and Datetimes </h3>
<p>In this final section of example5(), we'll assert and retrieve dates, times and datetimes. </p>
<p>In this context, you might be surprised by the way that AllegroGraph handles time zone data. If you assert (or search for) a timestamp that includes a time-zone offset, AllegroGraph will "normalize" the expression to Greenwich (zulu) time before proceeding. This normalization greatly speeds up searching and happens transparently to you, but you'll notice that the matched values are all zulu times. </p>
<h3>Asserting Date, Time and Datetime Values</h3>
<p>We're going to add birthdates to our personnel records. We'll need a birthdate predicate:</p>
<pre class="input"> birthdate = conn.createURI(namespace=exns, localname="birthdate") </pre>
<p>We'll also need four types of literal values: a date, a time, a datetime, and a datetime with a time-zone offset.</p>
<pre class="input"> date = conn.createLiteral('1984-12-06', datatype=XMLSchema.DATE) <br> datetime = conn.createLiteral('1984-12-06T09:00:00', datatype=XMLSchema.DATETIME) <br> time = conn.createLiteral('09:00:00Z', datatype=XMLSchema.TIME) <br> datetimeOffset = conn.createLiteral('1984-12-06T09:00:00+01:00', datatype=XMLSchema.DATETIME)</pre>
<p>It is interesting to notice that these literal values print out exactly as we defined them. </p>
<pre class="output">Printing out Literals for date, datetime, time, and datetime with Zulu offset.<br>"1984-12-06"^^<http://www.w3.org/2001/XMLSchema#date><br>"1984-12-06T09:00:00"^^<http://www.w3.org/2001/XMLSchema#dateTime><br>"09:00:00Z"^^<http://www.w3.org/2001/XMLSchema#time><br>"1984-12-06T09:00:00+01:00"^^<http://www.w3.org/2001/XMLSchema#dateTime></pre>
<p>Now we'll add them to the triple store:</p>
<pre class="input"> conn.addTriples([(alice, birthdate, date),<br> (bob, birthdate, datetime),<br> (carol, birthdate, time),<br> (dave, birthdate, datetimeOffset)])</pre>
<p>And then retrieve them using getStatements():</p>
<pre class="output">Showing all birthday triples using getStatements(). Should be four.<br>(<http://people/alice>, <http://people/birthdate>, "1984-12-06"^^<http://www.w3.org/2001/XMLSchema#date>)<br>(<http://people/bob>, <http://people/birthdate>, "1984-12-06T09:00:00Z"^^<http://www.w3.org/2001/XMLSchema#dateTime>)<br>(<http://people/carol>, <http://people/birthdate>, "09:00:00Z"^^<http://www.w3.org/2001/XMLSchema#time>)<br>(<http://people/dave>, <http://people/birthdate>, "1984-12-06T08:00:00Z"^^<http://www.w3.org/2001/XMLSchema#dateTime>)</pre>
<p>If you look sharply, you'll notice that the zulu offset has been normalized:</p>
<pre>Was:<span class="output">"1984-12-06T09:00:00+01:00"</span>
Now:<span class="output">"1984-12-06T08:00:00Z"</span></pre>
<p>Note that the one-hour zulu offset has been applied to the timestamp. "9:00" turned into "8:00." </p>
<h3>Matching Date, Time, and Datetime Literals</h3>
<p><strong>"Match date."</strong> What happens if we search for the date literal we defined? We'll use the "date" variable with getStatements(), but just type the expected value into the SPARQL queries. </p>
<table width="1038" border="1">
<tr>
<td width="140"><strong>Query Type </strong></td>
<td width="368"><strong>Query</strong></td>
<td width="508"><strong>Matches which types? </strong></td>
</tr>
<tr>
<td><strong>getStatements()</strong></td>
<td>conn.getStatements(None, age, date)</td>
<td><p>"1984-12-06"<br>
^^<http://www.w3.org/2001/XMLSchema#date><br>
</p></td>
</tr>
<tr>
<td><strong>SPARQL direct match </strong></td>
<td>SELECT ?s ?p WHERE {?s ?p '1984-12-06'^^<http://www.w3.org/2001/XMLSchema#date></td>
<td><p>"1984-12-06"<br>
^^<http://www.w3.org/2001/XMLSchema#date></p></td>
</tr>
<tr>
<td><strong>SPARQL filter match </strong></td>
<td>SELECT ?s ?p ?o WHERE {?s ?p ?o . filter (?o =<br>
'1984-12-06'<br>
^^<http://www.w3.org/2001/XMLSchema#date>)}</td>
<td>"1984-12-06"<br>
^^<http://www.w3.org/2001/XMLSchema#date></td>
</tr>
</table>
<p>All three queries match narrowly, meaning the exact date and datatype we asked for is returned. </p>
<p><strong>"Match datetime."</strong> What happens if we search for the datetime literal? We'll use the "datetime" variable with getStatements(), but just type the expected value into the SPARQL queries. </p>
<table width="1038" border="1">
<tr>
<td width="140"><strong>Query Type </strong></td>
<td width="368"><strong>Query</strong></td>
<td width="508"><strong>Matches which types? </strong></td>
</tr>
<tr>
<td><strong>getStatements()</strong></td>
<td>conn.getStatements(None, age, datetime)</td>
<td><p>"1984-12-06T09:00:00Z"<br>
^^<http://www.w3.org/2001/XMLSchema#dateTime><br>
</p></td>
</tr>
<tr>
<td><strong>SPARQL direct match </strong></td>
<td>SELECT ?s ?p WHERE {?s ?p '1984-12-06T09:00:00Z'<br>
^^<http://www.w3.org/2001/XMLSchema#dateTime> .}</td>
<td><p>"1984-12-06T09:00:00Z"<br>
^^<http://www.w3.org/2001/XMLSchema#dateTime></p></td>
</tr>
<tr>
<td><strong>SPARQL filter match </strong></td>
<td>SELECT ?s ?p ?o WHERE {?s ?p ?o . filter (?o = '1984-12-06T09:00:00Z'^^<http://www.w3.org/2001/XMLSchema#dateTime>)}</td>
<td>"1984-12-06T09:00:00Z"<br>
^^<http://www.w3.org/2001/XMLSchema#dateTime></td>
</tr>
</table>
<p>The matches are specific for the exact date, time and type. </p>
<p><strong>"Match time."</strong> What happens if we search for the time literal? We'll use the "time" variable with getStatements(), but just type the expected value into the SPARQL queries. </p>
<table width="1038" border="1">
<tr>
<td width="140"><strong>Query Type </strong></td>
<td width="368"><strong>Query</strong></td>
<td width="508"><strong>Matches which types? </strong></td>
</tr>
<tr>
<td><strong>getStatements()</strong></td>
<td>conn.getStatements(None, age, time)</td>
<td><p>"09:00:00Z"<br>
^^<http://www.w3.org/2001/XMLSchema#time><br>
</p></td>
</tr>
<tr>
<td><strong>SPARQL direct match </strong></td>
<td>SELECT ?s ?p WHERE {?s ?p "09:00:00Z"<br>
^^<http://www.w3.org/2001/XMLSchema#time> .}</td>
<td><p>"09:00:00Z"<br>
^^<http://www.w3.org/2001/XMLSchema#time></p></td>
</tr>
<tr>
<td><strong>SPARQL filter match </strong></td>
<td>SELECT ?s ?p ?o WHERE {?s ?p ?o . filter (?o = "09:00:00Z"^^<http://www.w3.org/2001/XMLSchema#time>)}</td>
<td>"09:00:00Z"<br>
^^<http://www.w3.org/2001/XMLSchema#time></td>
</tr>
</table>
<p>The matches are specific for the exact time and type. </p>
<p><strong>"Match datetime with offset."</strong> What happens if we search for a datetime with zulu offset? </p>
<table width="1038" border="1">
<tr>
<td width="140"><strong>Query Type </strong></td>
<td width="368"><strong>Query</strong></td>
<td width="508"><strong>Matches which types? </strong></td>
</tr>
<tr>
<td><strong>getStatements()</strong></td>
<td>conn.getStatements(None, age, datetimeOffset)</td>
<td><p>"1984-12-06T08:00:00Z"<br>
^^<http://www.w3.org/2001/XMLSchema#dateTime><br>
</p></td>
</tr>
<tr>
<td><strong>SPARQL direct match </strong></td>
<td>SELECT ?s ?p WHERE {?s ?p "1984-12-06T09:00:00+01:00"<br>
^^<http://www.w3.org/2001/XMLSchema#dateTime> .}</td>
<td><p>"1984-12-06T08:00:00Z"<br>
^^<http://www.w3.org/2001/XMLSchema#dateTime></p></td>
</tr>
<tr>
<td><strong>SPARQL filter match </strong></td>
<td><p>SELECT ?s ?p ?o WHERE {?s ?p ?o . filter (?o = "1984-12-06T09:00:00+01:00"^^<http://www.w3.org/2001/XMLSchema#dateTime>)}</p> </td>
<td>"1984-12-06T08:00:00Z"<br>
^^<http://www.w3.org/2001/XMLSchema#dateTime></td>
</tr>
</table>
<p>Note that we searched for "1984-12-06T09:00:00+01:00" but found "1984-12-06T08:00:00Z". It is the same moment in time. </p>
<h2 id="Importing Triples">Importing Triples (example6() and example7()) <a class="returnlink" href="#Contents">Return to Top</a></h2>
<p>
The Python Sesame API client can load triples in either RDF/XML format or NTriples format. The example below calls the connection object's <strong>add()</strong> method to load
an NTriples file, and <strong>addFile()</strong> to load an RDF/XML file. Both methods work, but the best practice is to use addFile(). </p>
<table width="769" border="2px" cellpadding="4px" style="border-collapse:collapse; border-color:#0000FF;">
<tr>
<td width="928"><strong>Note:</strong> If you get a "file not found" error while running this example, it means that Python is looking in the wrong directory for the data files to load. The usual explanation is that you have moved the tutorial_examples_40.py file to an unexpected directory. You can clear the issue by putting the data files in the same directory as tutorial_examples_40.py, or by setting the Python current working directory to the location of the data files using os.setcwd(). </td>
</tr>
</table>
<p>The RDF/XML file contains a short list of v-cards (virtual business cards), like this one:</p>
<pre> <rdf:Description rdf:about="http://somewhere/JohnSmith/"><br> <vCard:FN>John Smith</vCard:FN><br> <vCard:N rdf:parseType="Resource"><br> <vCard:Family>Smith</vCard:Family><br> <vCard:Given>John</vCard:Given><br> </vCard:N><br> </rdf:Description> </pre>
<p>The NTriples file contains a graph of resources describing the Kennedy family, the places where they were each born, their colleges, and their professions. A typical entry from that file looks like this:</p>
<pre><http://www.franz.com/simple#person1> <http://www.franz.com/simple#first-name> "Joseph" .
<http://www.franz.com/simple#person1> <http://www.franz.com/simple#middle-initial> "Patrick" .
<http://www.franz.com/simple#person1> <http://www.franz.com/simple#last-name> "Kennedy" .
<http://www.franz.com/simple#person1> <http://www.franz.com/simple#suffix> "none" .
<http://www.franz.com/simple#person1> <http://www.franz.com/simple#alma-mater> <http://www.franz.com/simple#Harvard> .
<http://www.franz.com/simple#person1> <http://www.franz.com/simple#birth-year> "1888" .
<http://www.franz.com/simple#person1> <http://www.franz.com/simple#death-year> "1969" .
<http://www.franz.com/simple#person1> <http://www.franz.com/simple#sex> <http://www.franz.com/simple#male> .
<http://www.franz.com/simple#person1> <http://www.franz.com/simple#spouse> <http://www.franz.com/simple#person2> .
<http://www.franz.com/simple#person1> <http://www.franz.com/simple#has-child> <http://www.franz.com/simple#person3> .
<http://www.franz.com/simple#person1> <http://www.franz.com/simple#profession> <http://www.franz.com/simple#banker> .
<http://www.franz.com/simple#person1> <http://www.franz.com/simple#birth-place> <http://www.franz.com/simple#place5> .
<http://www.franz.com/simple#person1> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.franz.com/simple#person> . </pre>
<p>Note that AllegroGraph can segregate triples into contexts (subgraphs) by treating them as quads, but the NTriples and RDF/XML formats can not include context information. They deal with triples only, so there is no place to store a fourth field in those formats. In the case of the add() call, we have omitted the context
argument so the triples are loaded the default background graph (sometimes called the "null context<em>.</em>") The
addFile() call includes an explicit context setting, so the fourth argument of
each vcard triple will be the context named "/tutorial/vc_db_1_rdf".
The connection size() method takes an optional context argument. With no
argument, it returns the total number of triples in the repository. Below, it returns the number
'16' for the 'context' context argument, and the number '28' for the null context
(None) argument. </p>
<p>The example6() function of tutorial_examples_40.py creates a <a href="#Transaction Control">dedicated session</a> connection to AllegroGraph, using methods you have seen before, plus the Connection object's <strong>openSession()</strong> method: </p>
<pre class="input">def example6(close=True):<br> print "Starting example6()."<br> server = AllegroGraphServer(AG_HOST, AG_PORT, AG_USER, AG_PASSWORD)<br> catalog = server.openCatalog(AG_CATALOG) <br> myRepository = catalog.getRepository(AG_REPOSITORY, Repository.RENEW)<br> myRepository.initialize()<br> conn = myRepository.getConnection()<br> conn.clear()<br> conn.openSession()</pre>
<p>The dedicated session is not immediately pertinent to the examples in this section, but will become important in later examples that reuse this connection to demonstrate <a href="#Prolog Rule Queries">Prolog Rules</a> and <a href="#Social Network Analysis">Social Network Analysis</a>. </p>
<p>The variables path1 and path2 are bound to the RDF/XML and NTriples files, respectively. </p>
<pre class="input"> path1 = "./python-vcards.rdf" <br> path2 = "./python-kennedy.ntriples" </pre>
<p>The NTriples about the vcards will be added to a specific context, so naturally we need a URI to identify that context. </p>
<pre class="input"> context = conn.createURI("http://example.org#vcards")</pre>
<p>In the next step we use addFile() to load the vcard triples into the #vcards context: </p>